Sample records for charge transfer doping

  1. Charge transport in electrically doped amorphous organic semiconductors.

    PubMed

    Yoo, Seung-Jun; Kim, Jang-Joo

    2015-06-01

    This article reviews recent progress on charge generation by doping and its influence on the carrier mobility in organic semiconductors (OSs). The doping induced charge generation efficiency is generally low in OSs which was explained by the integer charge transfer model and the hybrid charge transfer model. The ionized dopants formed by charge transfer between hosts and dopants can act as Coulomb traps for mobile charges, and the presence of Coulomb traps in OSs broadens the density of states (DOS) in doped organic films. The Coulomb traps strongly reduce the carrier hopping rate and thereby change the carrier mobility, which was confirmed by experiments in recent years. In order to fully understand the doping mechanism in OSs, further quantitative and systematic analyses of charge transport characteristics must be accomplished. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Interfacial characteristics and leakage current transfer mechanisms in organometal trihalide perovskite gate-controlled devices via doping of PCBM

    NASA Astrophysics Data System (ADS)

    Wang, Yucheng; Zhang, Yuming; Liu, Yintao; Pang, Tiqiang; Hu, Ziyang; Zhu, Yuejin; Luan, Suzhen; Jia, Renxu

    2017-11-01

    Two types of perovskite (with and without doping of PCBM) based metal-oxide-semiconductor (MOS) gate-controlled devices were fabricated and characterized. The study of the interfacial characteristics and charge transfer mechanisms by doping of PCBM were analyzed by material and electrical measurements. Doping of PCBM does not affect the size and crystallinity of perovskite films, but has an impact on carrier extraction in perovskite MOS devices. The electrical hysteresis observed in capacitance-voltage and current-voltage measurements can be alleviated by doping of PCBM. Experimental results demonstrate that extremely low trap densities are found for the perovskite device without doping, while the doped sample leads to higher density of interface state. Three mechanisms including Ohm’s law, trap-filled-limit (TFL) emission, and child’s law were used to analyze possible charge transfer mechanisms. Ohm’s law mechanism is well suitable for charge transfer of both the perovskite MOS devices under light condition at large voltage, while TFL emission well addresses the behavior of charge transfer under dark at small voltage. This change of charge transfer mechanism is attributed to the impact of the ion drift within perovskites.

  3. A comparison of various surface charge transfer hole doping of graphene grown by chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Chandramohan, S.; Seo, Tae Hoon; Janardhanam, V.; Hong, Chang-Hee; Suh, Eun-Kyung

    2017-10-01

    Charge transfer doping is a renowned route to modify the electrical and electronic properties of graphene. Understanding the stability of potentially important charge-transfer materials for graphene doping is a crucial first step. Here we present a systematic comparison on the doping efficiency and stability of single layer graphene using molybdenum trioxide (MoO3), gold chloride (AuCl3), and bis(trifluoromethanesulfonyl)amide (TFSA). Chemical dopants proved to be very effective, but MoO3 offers better thermal stability and device fabrication compatibility. Single layer graphene films with sheet resistance values between 100 and 200 ohm/square were consistently produced by implementing a two-step growth followed by doping without compromising the optical transmittance.

  4. Charge Transfer from n-Doped Nanocrystals: Mimicking Intermediate Events in Multielectron Photocatalysis.

    PubMed

    Wang, Junhui; Ding, Tao; Wu, Kaifeng

    2018-06-12

    In multielectron photocatalytic reactions, an absorbed photon triggers charge transfer from the light-harvester to the attached catalyst, leaving behind a charge of the opposite sign in the light-harvester. If this charge is not scavenged before the absorption of the following photons, photoexcitation generates not neutral but charged excitons from which the extraction of charges should become more difficult. This is potentially an efficiency-limiting intermediate event in multielectron photocatalysis. To study the charge dynamics in this event, we doped CdS nanocrystal quantum dots (QDs) with an extra electron and measured hole transfer from n-doped QDs to attached acceptors. We find that the Auger decay of charged excitons lowers the charge separation yield to 68.6% from 98.4% for neutral excitons. In addition, the hole transfer rate in the presence of two electrons (1290 ps) is slower than that in the presence one electron (776 ps), and the recombination rate of charge separated states is about 2 times faster in the former case. This model study provides important insights into possible efficiency-limiting intermediate events involved in photocatalysis.

  5. Reduced Charge Transfer Exciton Recombination in Organic Semiconductor Heterojunctions by Molecular Doping

    NASA Astrophysics Data System (ADS)

    Deschler, Felix; da Como, Enrico; Limmer, Thomas; Tautz, Raphael; Godde, Tillmann; Bayer, Manfred; von Hauff, Elizabeth; Yilmaz, Seyfullah; Allard, Sybille; Scherf, Ullrich; Feldmann, Jochen

    2011-09-01

    We investigate the effect of molecular doping on the recombination of electrons and holes localized at conjugated-polymer-fullerene interfaces. We demonstrate that a low concentration of p-type dopant molecules (<4% weight) reduces the interfacial recombination via charge transfer excitons and results in a favored formation of separated carriers. This is observed by the ultrafast quenching of photoluminescence from charge transfer excitons and the increase in photoinduced polaron density by ˜70%. The results are consistent with a reduced formation of emissive charge transfer excitons, induced by state filling of tail states.

  6. Energy Level Alignment of N-Doping Fullerenes and Fullerene Derivatives Using Air-Stable Dopant.

    PubMed

    Bao, Qinye; Liu, Xianjie; Braun, Slawomir; Li, Yanqing; Tang, Jianxin; Duan, Chungang; Fahlman, Mats

    2017-10-11

    Doping has been proved to be one of the powerful technologies to achieve significant improvement in the performance of organic electronic devices. Herein, we systematically map out the interface properties of solution-processed air-stable n-type (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) doping fullerenes and fullerene derivatives and establish a universal energy level alignment scheme for this class of n-doped system. At low doping levels at which the charge-transfer doping induces mainly bound charges, the energy level alignment of the n-doping organic semiconductor can be described by combining integer charger transfer-induced shifts with a so-called double-dipole step. At high doping levels, significant densities of free charges are generated and the charge flows between the organic film and the conducting electrodes equilibrating the Fermi level in a classic "depletion layer" scheme. Moreover, we demonstrate that the model holds for both n- and p-doping of π-backbone molecules and polymers. With the results, we provide wide guidance for identifying the application of the current organic n-type doping technology in organic electronics.

  7. Tuning near-gap electronic structure, interface charge transfer and visible light response of hybrid doped graphene and Ag3PO4 composite: Dopant effects

    PubMed Central

    He, Chao-Ni; Huang, Wei-Qing; Xu, Liang; Yang, Yin-Cai; Zhou, Bing-Xin; Huang, Gui-Fang; Peng, P.; Liu, Wu-Ming

    2016-01-01

    The enhanced photocatalytic performance of doped graphene (GR)/semiconductor nanocomposites have recently been widely observed, but an understanding of the underlying mechanisms behind it is still out of reach. As a model system to study the dopant effects, we investigate the electronic structures and optical properties of doped GR/Ag3PO4 nanocomposites using the first-principles calculations, demonstrating that the band gap, near-gap electronic structure and interface charge transfer of the doped GR/Ag3PO4(100) composite can be tuned by the dopants. Interestingly, the doping atom and C atoms bonded to dopant become active sites for photocatalysis because they are positively or negatively charged due to the charge redistribution caused by interaction. The dopants can enhance the visible light absorption and photoinduced electron transfer. We propose that the N atom may be one of the most appropriate dopants for the GR/Ag3PO4 photocatalyst. This work can rationalize the available experimental results about N-doped GR-semiconductor composites, and enriches our understanding on the dopant effects in the doped GR-based composites for developing high-performance photocatalysts. PMID:26923338

  8. N-type molecular electrical doping in organic semiconductors: formation and dissociation efficiencies of charge transfer complex

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Min; Yoo, Seung-Jun; Moon, Chang-Ki; Sim, Bomi; Lee, Jae-Hyun; Lim, Heeseon; Kim, Jeong Won; Kim, Jang-Joo

    2016-09-01

    Electrical doping is an important method in organic electronics to enhance device efficiency by controlling Fermi level, increasing conductivity, and reducing injection barrier from electrode. To understand the charge generation process of dopant in doped organic semiconductors, it is important to analyze the charge transfer complex (CTC) formation and dissociation into free charge carrier. In this paper, we correlate charge generation efficiency with the CTC formation and dissociation efficiency of n-dopant in organic semiconductors (OSs). The CTC formation efficiency of Rb2CO3 linearly decreases from 82.8% to 47.0% as the doping concentration increases from 2.5 mol% to 20 mol%. The CTC formation efficiency and its linear decrease with doping concentration are analytically correlated with the concentration-dependent size and number of dopant agglomerates by introducing the degree of reduced CTC formation. Lastly, the behavior of dissociation efficiency is discussed based on the picture of the statistical semiconductor theory and the frontier orbital hybridization model.

  9. Electronic and magnetic properties of transition metal doped graphyne

    NASA Astrophysics Data System (ADS)

    Gangan, Abhijeet Sadashiv; Yadav, Asha S.; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2017-05-01

    We have theoretically investigated the interaction of few 3d (V,Mn) and 4d (Y,Zr) transition metals with the γ-graphyne structure using the spin-polarized density functional theory for its potentials application in Hydrogen storage, spintronics and nano-electronics. By doping different TMs we have observed that the system can be either metallic(Y), semi-conducting or half metallic. The system for Y and Zr doped graphyne becomes non-magnetic while V and Mn doped graphyne have a magnetic moments of l μB and 3 μB respectively From bader charge analysis it is seen that there is a charge transfer from the TM atom to the graphyne. Zr and Y have a net charge transfer of 2.15e and 1.73e respectively. Charge density analysis also shows the polarization on the carbon skeleton which becomes larger as the charge transfer for the TM atom increases. Thus we see Y and Zr are better candidates for hydrogen storage devices since they are non-magnetic and have less d electrons which is ideal for kubas-type interactions between hydrogen molecule and TM.

  10. Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors.

    PubMed

    Zhang, Fengjiao; Dai, Xiaojuan; Zhu, Weikun; Chung, Hyunjoong; Diao, Ying

    2017-07-01

    Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C 8 -benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This paper further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor-acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengjiao; Dai, Xiaojuan; Zhu, Weikun

    Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C8-benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This papermore » further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor–acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall.« less

  12. Bromine-doped DWNTs: A Molecular Faraday Cage

    NASA Astrophysics Data System (ADS)

    Chen, Gugang; Margine, Roxana; Gupta, Rajeev; Crespi, Vincent; Eklund, Peter; Sumanasekera, Gamini; Bandow, Shunji; Iijima, S.

    2003-03-01

    Raman scattering is used to probe the charge transfer distribution in Bromine-doped double-walled carbon nanotubes (DWNT). Using 1064 nm and 514.5 nm laser excitation we are able to study the charge-transfer sensitive phonons in the inner ( (5,5)) and outer ( (10,10)) tubes of the double-walled pair. The experimental results are compared to our tight binding band structure calculations that include a self-consistent electrostatic term sensitive to the average net charge density on each tube. Upon doping, the nanotube tangential and radial Raman bands from the outer (primary) tubes were observed to shift dramatically to higher frequencies, consistent with a C-C bond contraction driven by the acceptor-doping. The peak intensities of these bands significantly decreased with increasing doping exposure, and they eventually vanished, consistent with a deep depression in the Fermi energy that extinguishes the resonant Raman effect. Interestingly, at the same time, we observed little or no change for the tangential and radial Raman features identified with the inner (secondary) tubes during the bromine doping. Our electronic structure calculations show that the charge distribution between the outer and inner tubes depends on doping level and also, to some extent, on specific tube chirality combinations. In general, in agreement with experiment, the calculations find a very small net charge on the inner tube, consistent with a "Molecular Faraday Effect", e.g., a DWNT of (10, 10)/ (5, 5) configuration that exhibits 0.5 holes/Å total charge transfer, has only 0.04 holes/Å on the inner (secondary) tube.

  13. Doping graphene films via chemically mediated charge transfer.

    PubMed

    Ishikawa, Ryousuke; Bando, Masashi; Morimoto, Yoshitaka; Sandhu, Adarsh

    2011-01-31

    Transparent conductive films (TCFs) are critical components of a myriad of technologies including flat panel displays, light-emitting diodes, and solar cells. Graphene-based TCFs have attracted a lot of attention because of their high electrical conductivity, transparency, and low cost. Carrier doping of graphene would potentially improve the properties of graphene-based TCFs for practical industrial applications. However, controlling the carrier type and concentration of dopants in graphene films is challenging, especially for the synthesis of p-type films. In this article, a new method for doping graphene using the conjugated organic molecule, tetracyanoquinodimethane (TCNQ), is described. Notably, TCNQ is well known as a powerful electron accepter and is expected to favor electron transfer from graphene into TCNQ molecules, thereby leading to p-type doping of graphene films. Small amounts of TCNQ drastically improved the resistivity without degradation of optical transparency. Our carrier doping method based on charge transfer has a huge potential for graphene-based TCFs.

  14. Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao

    2017-03-01

    External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.

  15. Charge-transfer crystallites as molecular electrical dopants

    PubMed Central

    Méndez, Henry; Heimel, Georg; Winkler, Stefanie; Frisch, Johannes; Opitz, Andreas; Sauer, Katrein; Wegner, Berthold; Oehzelt, Martin; Röthel, Christian; Duhm, Steffen; Többens, Daniel; Koch, Norbert; Salzmann, Ingo

    2015-01-01

    Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi–Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites—rather than individual acceptor molecules—should be regarded as the dopants in such systems. PMID:26440403

  16. Surface Charge Transfer Doping via Transition Metal Oxides for Efficient p-Type Doping of II-VI Nanostructures.

    PubMed

    Xia, Feifei; Shao, Zhibin; He, Yuanyuan; Wang, Rongbin; Wu, Xiaofeng; Jiang, Tianhao; Duhm, Steffen; Zhao, Jianwei; Lee, Shuit-Tong; Jie, Jiansheng

    2016-11-22

    Wide band gap II-VI nanostructures are important building blocks for new-generation electronic and optoelectronic devices. However, the difficulty of realizing p-type conductivity in these materials via conventional doping methods has severely handicapped the fabrication of p-n homojunctions and complementary circuits, which are the fundamental components for high-performance devices. Herein, by using first-principles density functional theory calculations, we demonstrated a simple yet efficient way to achieve controlled p-type doping on II-VI nanostructures via surface charge transfer doping (SCTD) using high work function transition metal oxides such as MoO 3 , WO 3 , CrO 3 , and V 2 O 5 as dopants. Our calculations revealed that these oxides were capable of drawing electrons from II-VI nanostructures, leading to accumulation of positive charges (holes injection) in the II-VI nanostructures. As a result, Fermi levels of the II-VI nanostructures were shifted toward the valence band regions after surface modifications, along with the large enhancement of work functions. In situ ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy characterizations verified the significant interfacial charge transfer between II-VI nanostructures and surface dopants. Both theoretical calculations and electrical transfer measurements on the II-VI nanostructure-based field-effect transistors clearly showed the p-type conductivity of the nanostructures after surface modifications. Strikingly, II-VI nanowires could undergo semiconductor-to-metal transition by further increasing the SCTD level. SCTD offers the possibility to create a variety of electronic and optoelectronic devices from the II-VI nanostructures via realization of complementary doping.

  17. Layer and doping tunable ferromagnetic order in two-dimensional Cr S2 layers

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Zhou, Xieyu; Pan, Yuhao; Qiao, Jingsi; Kong, Xianghua; Kaun, Chao-Cheng; Ji, Wei

    2018-06-01

    Interlayer coupling is of vital importance for manipulating physical properties, e.g., electronic band gap, in two-dimensional materials. However, tuning magnetic properties in these materials is yet to be addressed. Here, we found the in-plane magnetic orders of Cr S2 mono and few layers are tunable between striped antiferromagnetic (sAFM) and ferromagnetic (FM) orders by manipulating charge transfer between Cr t2 g and eg orbitals. Such charge transfer is realizable through interlayer coupling, direct charge doping, or substituting S with Cl atoms. In particular, the transferred charge effectively reduces a portion of Cr4 + to Cr3 +, which, together with delocalized S p orbitals and their resulting direct S-S interlayer hopping, enhances the double-exchange mechanism favoring the FM rather than sAFM order. An exceptional interlayer spin-exchange parameter was revealed over -10 meV , an order of magnitude stronger than available results of interlayer magnetic coupling. It addition, the charge doping could tune Cr S2 between p - and n -doped magnetic semiconductors. Given these results, several prototype devices were proposed for manipulating magnetic orders using external electric fields or mechanical motion. These results manifest the role of interlayer coupling in modifying magnetic properties of layered materials and shed considerable light on manipulating magnetism in these materials.

  18. Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobaltocene

    DOE PAGES

    Koh, Weon-kyu; Koposov, Alexey Y.; Stewart, John T.; ...

    2013-06-18

    Colloidal nanocrystals (NCs) of lead chalcogenides are a promising class of tunable infrared materials for applications in devices such as photodetectors and solar cells. Such devices typically employ electronic materials in which charge carrier concentrations are manipulated through “doping;” however, persistent electronic doping of these NCs remains a challenge. In this paper, we demonstrate that heavily doped n-type PbSe and PbS NCs can be realized utilizing ground-state electron transfer from cobaltocene. This allows injecting up to eight electrons per NC into the band-edge state and maintaining the doping level for at least a month at room temperature. Doping is confirmedmore » by inter- and intra-band optical absorption, as well as by carrier dynamics. In conclusion, FET measurements of doped NC films and the demonstration of a p-n diode provide additional evidence that the developed doping procedure allows for persistent incorporation of electrons into the quantum-confined NC states.« less

  19. Improved utilization of photogenerated charge using fluorine-doped TiO(2) hollow spheres scattering layer in dye-sensitized solar cells.

    PubMed

    Song, Junling; Yang, Hong Bin; Wang, Xiu; Khoo, Si Yun; Wong, C C; Liu, Xue-Wei; Li, Chang Ming

    2012-07-25

    We demonstrate a strategy to improve utilization of photogenerated charge in dye-sensitized solar cells (DSSCs) with fluorine-doped TiO2 hollow spheres as the scattering layer, which improves the fill factor from 69.4% to 74.1% and in turn results in an overall efficiency of photoanode increased by 13% (from 5.62% to 6.31%) in comparison with the control device using undoped TiO2 hollow spheres. It is proposed that the fluorine-doping improves the charge transfer and inhibition of charge recombination to enhance the utilization of the photogenerated charge in the photoanode.

  20. Optical properties of 3d transition-metal-doped MgAl2O4 spinels

    NASA Astrophysics Data System (ADS)

    Izumi, K.; Miyazaki, S.; Yoshida, S.; Mizokawa, T.; Hanamura, E.

    2007-08-01

    Strong emission bands in the visible region are observed in MgAl2O4 crystals doped with transition-metal ions under excitation at the band-to-band transitions. We report optical responses of Cr-, Co-, and Ni-doped MgAl2O4 and present optical models for M -doped MgAl2O4 ( M=Ti , V, Cr, Mn, Co, and Ni) to describe the charge-transfer transitions and the transitions between multiplet levels of 3d electrons, which are observed competitively or coexisting, depending on the number of 3d electrons. While the optical responses of Cr- and Ni-doped MgAl2O4 are dominated by the multiplet-multiplet transitions, those of Ti- and V-doped MgAl2O4 are governed by the charge-transfer transitions. The two kinds of transitions coexist in the Mn- and Co-doped MgAl2O4 . These behaviors are well understood based on the numerical results of unrestricted Hartree-Fock approximation.

  1. Boosting surface charge-transfer doping efficiency and robustness of diamond with WO3 and ReO3

    NASA Astrophysics Data System (ADS)

    Tordjman, Moshe; Weinfeld, Kamira; Kalish, Rafi

    2017-09-01

    An advanced charge-transfer yield is demonstrated by employing single monolayers of transition-metal oxides—tungsten trioxide (WO3) and rhenium trioxide (ReO3)—deposited on the hydrogenated diamond surface, resulting in improved p-type sheet conductivity and thermal stability. Surface conductivities, as determined by Hall effect measurements as a function of temperature for WO3, yield a record sheet hole carrier concentration value of up to 2.52 × 1014 cm-2 at room temperature for only a few monolayers of coverage. Transfer doping with ReO3 exhibits a consistent narrow sheet carrier concentration value of around 3 × 1013 cm-2, exhibiting a thermal stability of up to 450 °C. This enhanced conductivity and temperature robustness exceed those reported for previously exposed surface electron acceptor materials used so far on a diamond surface. X-ray photoelectron spectroscopy measurements of the C1s core level shift as a function of WO3 and ReO3 layer thicknesses are used to determine the respective increase in surface band bending of the accumulation layers, leading to a different sub-surface two-dimensional hole gas formation efficiency in both cases. This substantial difference in charge-exchange efficiency is unexpected since both surface acceptors have very close work functions. Consequently, these results lead us to consider additional factors influencing the transfer doping mechanism. Transfer doping with WO3 reveals the highest yet reported transfer doping efficiency per minimal surface acceptor coverage. This improved surface conductivity performance and thermal stability will promote the realization of 2D diamond-based electronic devices facing process fabrication challenges.

  2. Charge transfer at organic-organic heterojunctions, and remote doping of a pentacene transistor

    NASA Astrophysics Data System (ADS)

    Zhao, Wei

    Organic-organic heterojunctions (OOHs) are the fundamental building blocks of organic devices, such as organic light-emitting diodes, organic photovoltaic cells, and photo detectors. Transport of free electrons and holes, exciton formation, recombination or dissociation, and various other physical processes all take place in OOHs. Understanding the electronic structures of OOH is critical for studying device physics and further improving the performance of organic devices. This work focuses on the electronic structure, i.e., the energy level alignment, at OOHs, investigated by ultraviolet and inverse photoemission spectroscopy (UPS and IPES). The weak interaction that generally prevails at OOH interfaces leads to small interface dipoles of 0˜0.5eV. The experimental observations on the majority of OOHs studied can be semi-quantitatively predicted by the model derived from the induced density of interface states and charge neutrality level (IDIS/CNL). However, we also find that the electronic structure of interfaces between two small-band-gap semiconductors, e.g., using copper phthalocyanine (CuPc) as the donor and a tris(thieno)-hexaazatriphenylene derivative (THAP) as the acceptor, is strongly influenced by changes in the substrate work function. In these cases, the charge transfer that takes place at the interface is governed by thermodynamic equilibrium, dominating any subtle interaction due to IDIS/CNL. The impact of doping on the energy level alignment of OOHs is also studied. The charges donated by the dopant molecules transfer from the parent doped layer to the adjacent undoped layer, taking advantage of the molecular level offset, and are then spatially separated from the dopant molecules. Remote doping, based on this charge transfer mechanism, is demonstrated with the heterojunction formed between pentacene and N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'bisphenyl-4,4'diazine (alpha-NPD) p-doped with tris[1,2-bis(trifluoromethyl) ethane-1,2-dithiolene] (Mo(tfd)3). A remotely doped pentacene transistor, based on this type of hetero-structure, exhibits increased conductivity, decreased activation energy for carrier hopping, and enhanced mobility, compared to an undoped transistor. Another featured improvement of the remotely doped transistor is that it can be reasonably switched off by placing an undoped interlayer in the structure. Our preliminary results show chemical doping technology can potentially benefit the organic thin film transistors.

  3. Self-doping processes between planes and chains in the metal-to-superconductor transition of YBa2Cu3O6.9.

    PubMed

    Magnuson, M; Schmitt, T; Strocov, V N; Schlappa, J; Kalabukhov, A S; Duda, L-C

    2014-11-12

    The interplay between the quasi 1-dimensional CuO-chains and the 2-dimensional CuO2 planes of YBa(2)Cu(3)O(6+x) (YBCO) has been in focus for a long time. Although the CuO-chains are known to be important as charge reservoirs that enable superconductivity for a range of oxygen doping levels in YBCO, the understanding of the dynamics of its temperature-driven metal-superconductor transition (MST) remains a challenge. We present a combined study using x-ray absorption spectroscopy and resonant inelastic x-ray scattering (RIXS) revealing how a reconstruction of the apical O(4)-derived interplanar orbitals during the MST of optimally doped YBCO leads to substantial hole-transfer from the chains into the planes, i.e. self-doping. Our ionic model calculations show that localized divalent charge-transfer configurations are expected to be abundant in the chains of YBCO. While these indeed appear in the RIXS spectra from YBCO in the normal, metallic, state, they are largely suppressed in the superconducting state and, instead, signatures of Cu trivalent charge-transfer configurations in the planes become enhanced. In the quest for understanding the fundamental mechanism for high-Tc-superconductivity (HTSC) in perovskite cuprate materials, the observation of such an interplanar self-doping process in YBCO opens a unique novel channel for studying the dynamics of HTSC.

  4. Charge transfer efficiency improvement of 4T pixel for high speed CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Jin, Xiangliang; Liu, Weihui; Yang, Hongjiao; Tang, Lizhen; Yang, Jia

    2015-03-01

    The charge transfer efficiency improvement method is proposed by optimizing the electrical potential distribution along the transfer path from the PPD to the FD. In this work, we present a non-uniform doped transfer transistor channel, with the adjustments to the overlap length between the CPIA layer and the transfer gate, and the overlap length between the SEN layer and transfer gate. Theory analysis and TCAD simulation results show that the density of the residual charge reduces from 1e11 /cm3 to 1e9 /cm3, and the transfer time reduces from 500 ns to 143 ns, and the charge transfer efficiency is about 77 e-/ns. This optimizing design effectively improves the charge transfer efficiency of 4T pixel and the performance of 4T high speed CMOS image sensor.

  5. Correlated electron-hole mechanism for molecular doping in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Li, Jing; D'Avino, Gabriele; Pershin, Anton; Jacquemin, Denis; Duchemin, Ivan; Beljonne, David; Blase, Xavier

    2017-07-01

    The electronic and optical properties of the paradigmatic F4TCNQ-doped pentacene in the low-doping limit are investigated by a combination of state-of-the-art many-body ab initio methods accounting for environmental screening effects, and a carefully parametrized model Hamiltonian. We demonstrate that while the acceptor level lies very deep in the gap, the inclusion of electron-hole interactions strongly stabilizes dopant-semiconductor charge transfer states and, together with spin statistics and structural relaxation effects, rationalize the possibility for room-temperature dopant ionization. Our findings reconcile available experimental data, shedding light on the partial vs. full charge transfer scenario discussed in the literature, and question the relevance of the standard classification in shallow or deep impurity levels prevailing for inorganic semiconductors.

  6. How can we make stable linear monoatomic chains? Gold-cesium binary subnanowires as an example of a charge-transfer-driven approach to alloying.

    PubMed

    Choi, Young Cheol; Lee, Han Myoung; Kim, Woo Youn; Kwon, S K; Nautiyal, Tashi; Cheng, Da-Yong; Vishwanathan, K; Kim, Kwang S

    2007-02-16

    On the basis of first-principles calculations of clusters and one dimensional infinitely long subnanowires of the binary systems, we find that alkali-noble metal alloy wires show better linearity and stability than either pure alkali metal or noble metal wires. The enhanced alternating charge buildup on atoms by charge transfer helps the atoms line up straight. The cesium doped gold wires showing significant charge transfer from cesium to gold can be stabilized as linear or circular monoatomic chains.

  7. Photo-induced changes of the surface band bending in GaN: Influence of growth technique, doping and polarity

    NASA Astrophysics Data System (ADS)

    Winnerl, Andrea; Pereira, Rui N.; Stutzmann, Martin

    2017-05-01

    In this work, we use conductance and contact potential difference photo-transient data to study the influence of the growth technique, doping, and crystal polarity on the kinetics of photo-generated charges in GaN. We found that the processes, and corresponding time scales, involved in the decay of charge carriers generated at and close to the GaN surface via photo-excitation are notably independent of the growth technique, doping (n- and p-types), and also crystal polarity. Hence, the transfer of photo-generated charges from band states back to surface states proceeds always by hopping via shallow defect states in the space-charge region (SCR) close to the surface. Concerning the charge carrier photo-generation kinetics, we observe considerable differences between samples grown with different techniques. While for GaN grown by metal-organic chemical vapor deposition, the accumulation of photo-conduction electrons results mainly from a combined trapping-hopping process (slow), where photo-generated electrons hop via shallow defect states to the conduction band (CB), in hydride vapor phase epitaxy and molecular beam epitaxy materials, a faster direct process involving electron transfer via CB states is also present. The time scales of both processes are quite insensitive to the doping level and crystal polarity. However, these processes become irrelevant for very high doping levels (both n- and p-types), where the width of the SCR is much smaller than the photon penetration depth, and therefore, most charge carriers are generated outside the SCR.

  8. Optical spectra of La2-xSrxCuO4: Effect of carrier doping on the electronic structure of the CuO2 plane

    NASA Astrophysics Data System (ADS)

    Uchida, S.; Ido, T.; Takagi, H.; Arima, T.; Tokura, Y.; Tajima, S.

    1991-04-01

    Optical reflectivity spectra are studied for single crystals of the prototypical high-Tc system La2-xSrxCuO4 over a wide compositional range 0<=x<=0.34, which covers insulating, superconducting, and normal metallic phases. The measurements are made at room temperature over an energy range from 0.004 to 35 eV for the polarization parallel to the CuO2 planes. They are also extended to the perpendicular polarization to study anisotropy and to discriminate the contribution from the CuO2 plane. The present study focuses on the x dependence of the optical spectrum, which makes it possible to sort out the features of the excitations in the CuO2 plane and thus to characterize the electronic structure of the CuO2 plane in the respective phase. Upon doping into the parent insulator La2CuO4 with a charge-transfer energy gap of about 2 eV the spectral weight is rapidly transferred from the charge-transfer excitation to low-energy excitations below 1.5 eV. The low-energy spectrum is apparently composed of two contributions; a Drude-type one peaked at ω=0 and a broad continuum centered in the midinfrared range. The high-Tc superconductivity is realized as doping proceeds and when the transfer of the spectrum weight is saturated. The resulting spectrum in the high-Tc regime is suggestive of a strongly itinerant character of the state in the moderately doped CuO2 plane while appreciable weight remains in the charge-transfer energy region. The spectrum exhibits a second drastic change for heavy doping (x~0.25) corresponding to the superconductor-to-normal-metal transition and becomes close to that of a Fermi liquid. The results are universal for all the known cuprate superconductors including the electron-doped compounds, and they reconcile the dc transport properties with the high-energy spectroscopic results.

  9. Interplay of local structure, charge, and spin in bilayered manganese perovskites

    NASA Astrophysics Data System (ADS)

    Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz; Kapusta, Czesław; Mitchell, John F.

    2018-03-01

    Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. Here, we show results of high-energy resolution x-ray absorption and emission spectroscopies on a La2 -2 xSr1 +2 xMn2O7 family of bilayered manganites in a broad doping range (0.5 ≤x ≤1 ). We established a relation between local Mn charge and Mn-O distances as a function of doping. Based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.

  10. Influence of dehydrated nanotubed titanic acid on charge transport and luminescent properties of polymer light-emitting diodes with fluorescent dye

    NASA Astrophysics Data System (ADS)

    Qian, Lei; Bera, Debasis; Jin, Zhen-Sheng; Du, Zu-Liang; Xu, Zheng; Teng, Feng; Liu, Wei

    2007-09-01

    In this paper, we discuss the influence of dehydrated nanotubed titanic acid (DNTA) on charge transport and luminescent properties of polymer light-emitting diodes (PLEDs) doped with fluorescent dye. Photoluminescence results confirm the efficient energy transfer from PVK to 4-(dicyanom-ethylene)-2- t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) and tris-(8-hydroxtquinoline) aluminum (Alq 3) in a DNTA-doped device. The device showed lower turn-on voltages and higher charge current by doping with DNTA, which also caused a shift in the exciton's recombination region.

  11. Structure and functionality of bromine doped graphite.

    PubMed

    Hamdan, Rashid; Kemper, A F; Cao, Chao; Cheng, H P

    2013-04-28

    First-principles calculations are used to study the enhanced in-plane conductivity observed experimentally in Br-doped graphite, and to study the effect of external stress on the structure and functionality of such systems. The model used in the numerical calculations is that of stage two doped graphite. The band structure near the Fermi surface of the doped systems with different bromine concentrations is compared to that of pure graphite, and the charge transfer between carbon and bromine atoms is analyzed to understand the conductivity change along different high symmetry directions. Our calculations show that, for large interlayer separation between doped graphite layers, bromine is stable in the molecular form (Br2). However, with increased compression (decreased layer-layer separation) Br2 molecules tend to dissociate. While in both forms, bromine is an electron acceptor. The charge exchange between the graphite layers and Br atoms is higher than that with Br2 molecules. Electron transfer to the Br atoms increases the number of hole carriers in the graphite sheets, resulting in an increase of conductivity.

  12. Probing charge transfer in a novel class of luminescent perovskite-based heterostructures composed of quantum dots bound to RE-activated CaTiO 3 phosphors

    DOE PAGES

    Crystal S. Lewis; Wong, Stanislaus S.; Liu, Haiqing; ...

    2016-01-04

    We report on the synthesis and structural characterization of novel semiconducting heterostructures composed of cadmium selenide (CdSe) quantum dots (QDs) attached onto the surfaces of novel high-surface area, porous rare-earth-ion doped alkaline earth titanate micron-scale spherical motifs, i.e. both Eu-doped and Pr-doped CaTiO 3, composed of constituent, component nanoparticles. These unique metal oxide perovskite building blocks were created by a multi-pronged synthetic strategy involving molten salt and hydrothermal protocols. Subsequently, optical characterization of these heterostructures indicated a clear behavioral dependence of charge transfer in these systems upon a number of parameters such as the nature of the dopant, the reactionmore » temperature, and particle size. Specifically, 2.7 nm diameter ligand-functionalized CdSe QDs were anchored onto sub-micron sized CaTiO 3-based spherical assemblies, prepared by molten salt protocols. We found that both the Pr- and Eu-doped CaTiO 3 displayed pronounced PL emissions, with maximum intensities observed using optimized lanthanide concentrations of 0.2 mol% and 6 mol%, respectively. Analogous experiments were performed on Eu-doped BaTiO 3 and SrTiO 3 motifs, but CaTiO 3 still performed as the most effective host material amongst the three perovskite systems tested. Furthermore, the ligand-capped CdSe QD-doped CaTiO 3 heterostructures exhibited effective charge transfer between the two individual constituent nanoscale components, an assertion corroborated by the corresponding quenching of their measured PL signals.« less

  13. Organic doping of rotated double layer graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Lijin; Jaiswal, Manu, E-mail: manu.jaiswal@iitm.ac.in

    2016-05-06

    Charge transfer techniques have been extensively used as knobs to tune electronic properties of two- dimensional systems, such as, for the modulation of conductivity \\ mobility of single layer graphene and for opening the bandgap in bilayer graphene. The charge injected into the graphene layer shifts the Fermi level away from the minimum density of states point (Dirac point). In this work, we study charge transfer in rotated double-layer graphene achieved by the use of organic dopant, Tetracyanoquinodimethane. Naturally occurring bilayer graphene has a well-defined A-B stacking whereas in rotated double-layer the two graphene layers are randomly stacked with differentmore » rotational angles. This rotation is expected to significantly alter the interlayer interaction. Double-layer samples are prepared using layer-by-layer assembly of chemical vapor deposited single-layer graphene and they are identified by characteristic resonance in the Raman spectrum. The charge transfer and distribution of charges between the two graphene layers is studied using Raman spectroscopy and the results are compared with that for single-layer and A-B stacked bilayer graphene doped under identical conditions.« less

  14. Engineering high charge transfer n-doping of graphene electrodes and its application to organic electronics.

    PubMed

    Sanders, Simon; Cabrero-Vilatela, Andrea; Kidambi, Piran R; Alexander-Webber, Jack A; Weijtens, Christ; Braeuninger-Weimer, Philipp; Aria, Adrianus I; Qasim, Malik M; Wilkinson, Timothy D; Robertson, John; Hofmann, Stephan; Meyer, Jens

    2015-08-14

    Using thermally evaporated cesium carbonate (Cs2CO3) in an organic matrix, we present a novel strategy for efficient n-doping of monolayer graphene and a ∼90% reduction in its sheet resistance to ∼250 Ohm sq(-1). Photoemission spectroscopy confirms the presence of a large interface dipole of ∼0.9 eV between graphene and the Cs2CO3/organic matrix. This leads to a strong charge transfer based doping of graphene with a Fermi level shift of ∼1.0 eV. Using this approach we demonstrate efficient, standard industrial manufacturing process compatible graphene-based inverted organic light emitting diodes on glass and flexible substrates with efficiencies comparable to those of state-of-the-art ITO based devices.

  15. Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobkov, K K; Rybaltovsky, A A; Vel'miskin, V V

    2014-12-31

    We have studied photodarkening in ytterbium-doped fibre preforms with an aluminosilicate glass core. Analysis of their absorption and luminescence spectra indicates the formation of stable Yb{sup 2+} ions in the glass network under IR laser pumping at a wavelength λ = 915 nm and under UV irradiation with an excimer laser (λ = 193 nm). We have performed comparative studies of the luminescence spectra of the preforms and crystals under excitation at a wavelength of 193 nm. The mechanism behind the formation of Yb{sup 2+} ions and aluminium – oxygen hole centres (Al-OHCs), common to ytterbium-doped YAG crystals and aluminosilicatemore » glass, has been identified: photoinduced Yb{sup 3+} charge-transfer state excitation. (optical fibres)« less

  16. Magnetoresistance and charge transport in graphene governed by nitrogen dopants.

    PubMed

    Rein, Markus; Richter, Nils; Parvez, Khaled; Feng, Xinliang; Sachdev, Hermann; Kläui, Mathias; Müllen, Klaus

    2015-02-24

    We identify the influence of nitrogen-doping on charge- and magnetotransport of single layer graphene by comparing doped and undoped samples. Both sample types are grown by chemical vapor deposition (CVD) and transferred in an identical process onto Si/SiO2 wafers. We characterize the samples by Raman spectroscopy as well as by variable temperature magnetotransport measurements. Over the entire temperature range, the charge transport properties of all undoped samples are in line with literature values. The nitrogen doping instead leads to a 6-fold increase in the charge carrier concentration up to 4 × 10(13) cm(-2) at room temperature, indicating highly effective doping. Additionally it results in the opening of a charge transport gap as revealed by the temperature dependence of the resistance. The magnetotransport exhibits a conspicuous sign change from positive Lorentz magnetoresistance (MR) in undoped to large negative MR that we can attribute to the doping induced disorder. At low magnetic fields, we use quantum transport signals to quantify the transport properties. Analyses based on weak localization models allow us to determine an orders of magnitude decrease in the phase coherence and scattering times for doped samples, since the dopants act as effective scattering centers.

  17. Charge Transfer and Catalysis at the Metal Support Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Lawrence Robert

    Kinetic, electronic, and spectroscopic characterization of model Pt–support systems are used to demonstrate the relationship between charge transfer and catalytic activity and selectivity. The results show that charge flow controls the activity and selectivity of supported metal catalysts. This dissertation builds on extensive existing knowledge of metal–support interactions in heterogeneous catalysis. The results show the prominent role of charge transfer at catalytic interfaces to determine catalytic activity and selectivity. Further, this research demonstrates the possibility of selectively driving catalytic chemistry by controlling charge flow and presents solid-state devices and doped supports as novel methods for obtaining electronic control over catalyticmore » reaction kinetics.« less

  18. "Intact" Carrier Doping by Pump-Pump-Probe Spectroscopy in Combination with Interfacial Charge Transfer: A Case Study of CsPbBr3 Nanocrystals.

    PubMed

    Wang, Junhui; Ding, Tao; Leng, Jing; Jin, Shengye; Wu, Kaifeng

    2018-06-21

    Carrier doping is important for semiconductor nanocrystals (NCs) as it offers a new knob to tune NCs' functionalities, in addition to size and shape control. Also, extensive studies on NC devices have revealed that under operating conditions NCs are often unintentionally doped with electrons or holes. Thus, it is essential to be able to control the doping of NCs and study the carrier dynamics of doped NCs. The extension of previously reported redox-doping methods to chemically sensitive materials, such as recently introduced perovskite NCs, has remained challenging. We introduce an "intact" carrier-doping method by performing pump-pump-probe transient absorption spectroscopy on NC-acceptor complexes. The first pump pulse is used to trigger charge transfer from the NC to the acceptor, leading to NCs doped with a band edge carrier; the following pump-probe pulses measure the dynamics of carrier-doped NCs. We performed this measurement on CsPbBr 3 NCs and deduced positive and negative trion lifetimes of 220 ± 50 and 150 ± 40 ps, respectively, for 10 nm diameter NCs, both dominated by Auger recombination. It also allowed us to identify randomly photocharged excitons in CsPbBr 3 NCs as positive trions.

  19. Modification of graphene electronic properties via controllable gas-phase doping with copper chloride

    NASA Astrophysics Data System (ADS)

    Rybin, Maxim G.; Islamova, Vera R.; Obraztsova, Ekaterina A.; Obraztsova, Elena D.

    2018-01-01

    Molecular doping is an efficient, non-destructive, and simple method for changing the electronic structure of materials. Here, we present a simple air ambient vapor deposition method for functionalization of pristine graphene with a strong electron acceptor: copper chloride. The doped graphene was characterized by Raman spectroscopy, UV-vis-NIR optical absorption spectroscopy, scanning electron microscopy, and electro-physical measurements performed using the 4-probe method. The effect of charge transfer from graphene to a dopant results in shifting the Fermi level in doped graphene. The change of the electronic structure of doped graphene was confirmed by the tangential Raman peak (G-peak) shift and by the appearance of the gap in the UV-vis-NIR spectrum after doping. Moreover, the charge transfer resulted in a substantial decrease in electrical sheet resistance depending on the doping level. At the highest concentration of copper chloride, a Fermi level shift into the valence band up to 0.64 eV and a decrease in the sheet resistance value by 2.36 times were observed (from 888 Ω/sq to 376 Ω/sq for a single graphene layer with 97% of transparency).

  20. Interplay of local structure, charge, and spin in bilayered manganese perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz

    Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. In this paper, we show results of high-energy resolution x-ray absorption and emission spectroscopies on amore » $${\\mathrm{La}}_{2{-}2x}{\\mathrm{Sr}}_{1+2x}{\\mathrm{Mn}}_{2}{\\mathrm{O}}_{7}$$ family of bilayered manganites in a broad doping range $$(0.5{\\le}x{\\le}1)$$. We established a relation between local Mn charge and Mn-O distances as a function of doping. Finally, based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.« less

  1. Interplay of local structure, charge, and spin in bilayered manganese perovskites

    DOE PAGES

    Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz; ...

    2018-03-27

    Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. In this paper, we show results of high-energy resolution x-ray absorption and emission spectroscopies on amore » $${\\mathrm{La}}_{2{-}2x}{\\mathrm{Sr}}_{1+2x}{\\mathrm{Mn}}_{2}{\\mathrm{O}}_{7}$$ family of bilayered manganites in a broad doping range $$(0.5{\\le}x{\\le}1)$$. We established a relation between local Mn charge and Mn-O distances as a function of doping. Finally, based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.« less

  2. Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes.

    PubMed

    Meyer, Jens; Kidambi, Piran R; Bayer, Bernhard C; Weijtens, Christ; Kuhn, Anton; Centeno, Alba; Pesquera, Amaia; Zurutuza, Amaia; Robertson, John; Hofmann, Stephan

    2014-06-20

    The interface structure of graphene with thermally evaporated metal oxide layers, in particular molybdenum trioxide (MoO3), is studied combining photoemission spectroscopy, sheet resistance measurements and organic light emitting diode (OLED) characterization. Thin (<5 nm) MoO3 layers give rise to an 1.9 eV large interface dipole and a downwards bending of the MoO3 conduction band towards the Fermi level of graphene, leading to a near ideal alignment of the transport levels. The surface charge transfer manifests itself also as strong and stable p-type doping of the graphene layers, with the Fermi level downshifted by 0.25 eV and sheet resistance values consistently below 50 Ω/sq for few-layer graphene films. The combination of stable doping and highly efficient charge extraction/injection allows the demonstration of simplified graphene-based OLED device stacks with efficiencies exceeding those of standard ITO reference devices.

  3. Effects of Charge Transfer on the Adsorption of CO on Small Molybdenum-Doped Platinum Clusters.

    PubMed

    Ferrari, Piero; Vanbuel, Jan; Tam, Nguyen Minh; Nguyen, Minh Tho; Gewinner, Sandy; Schöllkopf, Wieland; Fielicke, André; Janssens, Ewald

    2017-03-23

    The interaction of carbon monoxide with platinum alloy nanoparticles is an important problem in the context of fuel cell catalysis. In this work, molybdenum-doped platinum clusters have been studied in the gas phase to obtain a better understanding of the fundamental nature of the Pt-CO interaction in the presence of a dopant atom. For this purpose, Pt n + and MoPt n-1 + (n=3-7) clusters were studied by combined mass spectrometry and density functional theory calculations, making it possible to investigate the effects of molybdenum doping on the reactivity of platinum clusters with CO. In addition, IR photodissociation spectroscopy was used to measure the stretching frequency of CO molecules adsorbed on Pt n + and MoPt n-1 + (n=3-14), allowing an investigation of dopant-induced charge redistribution within the clusters. This electronic charge transfer is correlated with the observed changes in reactivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Theoretical study of Ag doping-induced vacancies defects in armchair graphene

    NASA Astrophysics Data System (ADS)

    Benchallal, L.; Haffad, S.; Lamiri, L.; Boubenider, F.; Zitoune, H.; Kahouadji, B.; Samah, M.

    2018-06-01

    We have performed a density functional theory (DFT) study of the absorption of silver atoms (Ag,Ag2 and Ag3) in graphene using SIESTA code, in the generalized gradient approximation (GGA). The absorption energy, geometry, magnetic moments and charge transfer of Ag clusters-graphene system are calculated. The minimum energy configuration demonstrates that all structures remain planar and silver atoms fit into this plane. The charge transfer between the silver clusters and carbon atoms constituting the graphene surface is an indicative of a strong bond. The structure doped with a single silver atom has a magnetic moment and the two other are nonmagnetic.

  5. Noble metal (Pt or Au)-doped monolayer MoS2 as a promising adsorbent and gas-sensing material to SO2, SOF2 and SO2F2: a DFT study

    NASA Astrophysics Data System (ADS)

    Chen, Dachang; Zhang, Xiaoxing; Tang, Ju; Cui, Hao; Li, Yi

    2018-02-01

    We explored the adsorption of SO2, SOF2, and SO2F2 on Pt- or Au-doped MoS2 monolayer based on density functional theory. The adsorption energy, adsorption distance, charge transfer as well as density of states were discussed. SO2 and SOF2 exhibit strong chemical interactions with Pt-doped MoS2 based on large adsorption energy, charge transfer, and changes of electron orbitals in gas molecule. SO2 also shows obvious chemisorption on Au-doped MoS2 with apparent magnetism transfer from Au to gas molecules. The adsorption of SO2F2 on Pt-MoS2 and SOF2 on Au-MoS2 exhibits weaker chemical interactions and SO2F2 losses electrons when adsorbed on Pt-MoS2 which is different from other gas adsorption. The adsorption of SO2F2 on Au-MoS2 represents no obvious chemical interaction but physisorption. The gas-sensing properties are also evaluated based on DFT results. This work could provide prospects and application value for typical noble metal-doped MoS2 as gas-sensing materials.

  6. Novel Polymers for High Efficiency Renewable and Portable Power Applications

    DTIC Science & Technology

    2015-07-30

    photoelectric, thermoelectric , energy conversions, charge transfer, energy transfer, photoluminescence (PL). REPORT DOCUMENTATION PAGE 11. SPONSOR...of polymer/dye interface of photo generated excitons in the covalent system resulting in more efficient exciton dissociations. 4) For thermoelectric ...studies, it appears the thermoelectric charge carrier generations of the four conjugated polymers doped with iodine at room temperature are in the

  7. Improvement of Charge Transportation in Si Quantum Dot-Sensitized Solar Cells Using Vanadium Doped TiO2.

    PubMed

    Seo, Hyunwoong; Ichida, Daiki; Hashimoto, Shinji; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu; Nam, Sang-Hun; Boo, Jin-Hyo

    2016-05-01

    The multiple exciton generation characteristics of quantum dots have been expected to enhance the performance of photochemical solar cells. In previous work, we first introduced Si quantum dot for sensitized solar cells. The Si quantum dots were fabricated by multi-hollow discharge plasma chemical vapor deposition, and were characterized optically and morphologically. The Si quantum dot-sensitized solar cells had poor performance due to significant electron loss by charge recombination. Although the large Si particle size resulted in the exposure of a large TiO2 surface area, there was a limit to ho much the particle size could be decreased due to the reduced absorbance of small particles. Therefore, this work focused on decreasing the internal impedance to improve charge transfer. TiO2 was electronically modified by doping with vanadium, which can improve electron transfer in the TiO2 network, and which is stable in the redox electrolyte. Photogenerated electrons can more easily arrive at the conductive electrode due to the decreased internal impedance. The dark photovoltaic properties confirmed the reduction of charge recombination, and the photon-to-current conversion efficiency reflected the improved electron transfer. Impedance analysis confirmed a decrease in internal impedance and an increased electron lifetime. Consequently, these improvements by vanadium doping enhanced the overall performance of Si quantum dot-sensitized solar cells.

  8. Effect of chromium doping on the correlated electronic structure of V2O3

    NASA Astrophysics Data System (ADS)

    Grieger, Daniel; Lechermann, Frank

    2014-09-01

    The archetypical strongly correlated Mott-phenomena compound V2O3 is known to show a paramagnetic metal-insulator transition driven by doping with chromium atoms and/or (negative) pressure. Via charge self-consistent density-functional theory+dynamical mean-field theory calculations we demonstrate that these two routes cannot be understood as equivalent. An explicit description of Cr-doped V2O3 by means of supercell calculations and the virtual crystal approximation is performed. Introducing chromium's additional electron to the system is shown to modify the overall many-body electronic structure substantially. Chromium doping increases electronic correlations which in addition induce charge transfers between Cr and the remaining V ions. Thereby the transition-metal orbital polarization is increased by the electron doping, in close agreement with experimental findings.

  9. Charge compensation mechanisms in favor of the incorporation of the Eu3+ ion into the ZnO host lattice

    NASA Astrophysics Data System (ADS)

    Baira, M.; Bekhti-Siad, A.; Hebali, K.; Bouhani-Benziane, H.; Sahnoun, M.

    2018-05-01

    Eu3+ doped phosphors with charge compensation are potential candidates of red emitting phosphors for lamp applications. Charge compensation improves the luminescence performance of the material. The charge compensation can most probably be achieved by three possible mechanisms: (a) two Zn2+ ions are replaced by one Eu3+ ions and one monovalent cation, 2Zn2+ →Eu3++ Li+, where Li+ is acting as a charge compensator; (b) the charge compensation is provided by a zinc vacancy (VZn) defects, 3Zn2+ → 2Eu3++ VZn, the subscript Zn denotes an ion in a normal zinc site in the lattice; (c) two Zn2+ ions are replaced by one Eu3+ ions with the presence of interstitial oxygen (Oi), 2Zn2+ → 2Eu3++ Oi. Electronic structures of the crystals corresponding to the three models are evaluated by the first-principles quantum mechanical calculations based on the density functional theory. It is found that the charge compensator defects make Eu3+ doping in ZnO energetically more favorable. They break the local symmetry around the Eu3+ ion and lead to deep states below the empty upper band, the conduction band that could facilitate intra-4f shell transitions, which can obviously improve the emission intensity of Eu3+-doped ZnO. Therefore, the effect of these defects on the host crystals electronic band states relative to the Eu3+ states is reported, since both electron transfer and electronically energy transfer processes enhance the performance of optoelectronic devices based on this material. These theoretical insights are helpful for designing rare-earth doped oxide materials with high photoluminescence (PL) performance.

  10. Exploring routes to tailor the physical and chemical properties of oxides via doping: an STM study

    NASA Astrophysics Data System (ADS)

    Nilius, Niklas

    2015-08-01

    Doping opens fascinating possibilities for tailoring the electronic, optical, magnetic, and chemical properties of oxides. The dopants perturb the intrinsic behavior of the material by generating charge centers for electron transfer into adsorbates, by inducing new energy levels for electronic and optical excitations, and by altering the surface morphology and hence the adsorption and reactivity pattern. Despite a vivid scientific interest, knowledge on doped oxides is limited when compared to semiconductors, which reflects the higher complexity and the insulating nature of many oxides. In fact, atomic-scale studies, aiming at a mechanistic understanding of dopant-related processes, are still scarce. In this article, we review our scanning tunneling microscopy (STM) experiments on thin, crystalline oxide films with a defined doping level. We demonstrate how the impurities alter the surface morphology and produce cationic/anionic vacancies in order to keep the system charge neutral. We discuss how individual dopants can be visualized in the lattice, even if they reside in subsurface layers. By means of STM-conductance and x-ray photoelectron spectroscopy, we determine the electronic impact of dopants, including the energies of their eigen states and local band-bending effects in the host oxide. Electronic transitions between dopant-induced gap states give rise to new optical modes, as detected with STM luminescence spectroscopy. From a chemical perspective, dopants are introduced to improve the redox potential of oxide materials. Electron transfer from Mo-donors, for example, alters the growth behavior of gold and activates O2 molecules on a wide-gap CaO surface. Such results demonstrate the enormous potential of doped oxides in heterogeneous catalysis. Our experiments address the issue of doping from a fundamental viewpoint, posing questions on the lattice position, charge state, and electron-transfer potential of the impurity ions. Whether doped oxides are suitable to catalyze surface reactions needs to be explored in more applied studies in the future.

  11. Band gap opening of bilayer graphene by F4-TCNQ molecular doping and externally applied electric field.

    PubMed

    Tian, Xiaoqing; Xu, Jianbin; Wang, Xiaomu

    2010-09-09

    The band gap opening of bilayer graphene with one side surface adsorption of F4-TCNQ is reported. F4-TCNQ doped bilayer graphene shows p-type semiconductor characteristics. With a F4-TCNQ concentration of 1.3 x 10(-10) mol/cm(2), the charge transfer between each F4-TCNQ molecule and graphene is 0.45e, and the built-in electric field, E(bi), between the graphene layers could reach 0.070 V/A. The charge transfer and band gap opening of the F4-TCNQ-doped graphene can be further modulated by an externally applied electric field (E(ext)). At 0.077 V/A, the gap opening at the Dirac point (K), DeltaE(K) = 306 meV, and the band gap, E(g) = 253 meV, are around 71% and 49% larger than those of the pristine bilayer under the same E(ext).

  12. Conductivity measurements on CdCl2 doped PVA solid polymeric electrolyte for battery application

    NASA Astrophysics Data System (ADS)

    Baraker, Basavarajeshwari M.; Lobo, Blaise

    2018-04-01

    Ionic conductivity of pure polyvinyl alcohol (PVA) and 6.3 wt% of CdCl2 doped PVA solid polymeric electrolyte have been studied using DC and AC electrical measurements. From DC electrical results, the determination transference number confirmed that ions are the dominant charge carriers in CdCl2 doped PVA. Interestingly, the ion transference number (ti) for 6.3 wt% CdCl2 doped sample is significantly more (0.993), when compared to that of pure PVA (for which, ti is 0.988). Temperature dependent dielectric studies showed interesting results at different frequencies: 120 Hz, 500 Hz, 1 kHz, 5 kHz, 10 kHz and 100 kHz.

  13. Charge transfer induced by MoO3 at boron subphthalocyanine chloride/α-sexithiophene heterojunction interface

    NASA Astrophysics Data System (ADS)

    Foggiatto, Alexandre L.; Sakurai, Takeaki

    2018-03-01

    The energy-level alignment of boron subphthalocyanine chloride (SubPc)/α-sexithiophene (6T) grown on MoO3 was investigated using ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS). We demonstrated that the p-doping effect generated by the MoO3 layer can induce charge transfer at the organic-organic heterojunction interface. After the deposition of 6T on MoO3, the fermi level becomes pinned close to the 6T highest occupied molecular orbital (HOMO) level and when SubPc is deposited, owing to its tail states, charge transfer occurs in order to achieve thermodynamic equilibrium. We also demonstrated that the charge transfer can be reduced by annealing the film. We suggested that the reduction of the misalignment on the film induces a reduction in the density of gap states, which controls the charge transfer.

  14. Orbital-occupancy versus charge ordering and the strength of electron correlations in electron-doped CaMnO3.

    PubMed

    Luo, Weidong; Franceschetti, Alberto; Varela, Maria; Tao, Jing; Pennycook, Stephen J; Pantelides, Sokrates T

    2007-07-20

    The structural, electronic, and magnetic properties of mixed-valence compounds are believed to be governed by strong electron correlations. Here we report benchmark density-functional calculations in the spin-polarized generalized-gradient approximation (GGA) for the ground-state properties of doped CaMnO(3). We find excellent agreement with all available data, while inclusion of strong correlations in the GGA+U scheme impairs this agreement. We demonstrate that formal oxidation states reflect only orbital occupancies, not charge transfer, and resolve outstanding controversies about charge ordering.

  15. Orbital-Occupancy versus Charge Ordering and the Strength of Electron Correlations in Electron-Doped CaMnO3

    NASA Astrophysics Data System (ADS)

    Luo, Weidong; Franceschetti, Alberto; Varela, Maria; Tao, Jing; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2007-07-01

    The structural, electronic, and magnetic properties of mixed-valence compounds are believed to be governed by strong electron correlations. Here we report benchmark density-functional calculations in the spin-polarized generalized-gradient approximation (GGA) for the ground-state properties of doped CaMnO3. We find excellent agreement with all available data, while inclusion of strong correlations in the GGA+U scheme impairs this agreement. We demonstrate that formal oxidation states reflect only orbital occupancies, not charge transfer, and resolve outstanding controversies about charge ordering.

  16. Adsorption of phenol and hydrazine upon pristine and X-decorated (X = Sc, Ti, Cr and Mn) MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Wang, Meiyan; Wang, Wei; Ji, Min; Cheng, Xinlu

    2018-05-01

    Using density functional theory (DFT), we present a theoretical investigation of phenol (C6H5OH) and hydrazine (N2H4) on pristine and decorated MoS2 monolayer. In our work, we first focus on the interactions between several metal atoms and MoS2 monolayer and then choose the MoS2 nanosheet decorated by Sc, Ti, Cr and Mn to be the substrate. Furthermore, the properties of phenol and N2H4 on pure and X-doped (X = Sc, Ti, Cr and Mn) MoS2 base materials are discussed in terms of adsorption energy, adsorption distance, charge transfer, charge density difference, HOMO and LUMO molecular orbitals and density of states (DOS). The results predict that the adsorption of phenol and hydrazine upon X-decorated MoS2 monolayers are more favorable than the adsorption on isolated ones, which demonstrating that Sc, Ti, Cr and Mn doping help to improve the adsorption abilities. Calculations also show shorter adsorption distance and more charge transfer for Sc-, Ti-, Cr- and Mn-doped systems than the pristine one. The results confirm that X-doped MoS2 monolayer can be used as effective and potential adsorbents for toxic phenol and hydrazine.

  17. Review on charge transfer and chemical activity of TiO2: Mechanism and applications

    NASA Astrophysics Data System (ADS)

    Cai, Yongqing; Feng, Yuan Ping

    2016-12-01

    Charge separation and transfer at the interface between two materials play a significant role in various atomic-scale processes and energy conversion systems. In this review, we present the mechanism and outcome of charge transfer in TiO2, which is extensively explored for photocatalytic applications in the field of environmental science. We list several experimental and computational methods to estimate the amount of charge transfer. The effects of the work function, defects and doping, and employment of external electric field on modulating the charge transfer are presented. The interplay between the band bending and carrier transport across the surface and interface consisting of TiO2 is discussed. We show that the charge transfer can also strongly affect the behavior of deposited nanoparticles on TiO2 through built-in electric field that it creates. This review encompasses several advances of composite materials where TiO2 is combined with two-dimensional materials like graphene, MoS2, phosphorene, etc. The charge transport in the TiO2-organohalide perovskite with respect to the electron-hole separation at the interface is also discussed.

  18. Enhanced luminescence in Eu-doped ZnO nanocrystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Keigo, E-mail: ksuzuki@murata.com; Murayama, Koji; Tanaka, Nobuhiko

    We found an enhancement of Eu{sup 3+} emissions in Eu-doped ZnO nanocrystalline films fabricated by microemulsion method. The Eu{sup 3+} emission intensities were increased by reducing annealing temperatures from 633 K to 533 K. One possible explanation for this phenomenon is that the size reduction enhances the energy transfer from ZnO nanoparticles to Eu{sup 3+} ions. Also, the shift of the charge-transfer band into the low-energy side of the absorption edge is found to be crucial, which seems to expedite the energy transfer from O atoms to Eu{sup 3+} ions. These findings will be useful for the material design of Eu-doped ZnOmore » phosphors.« less

  19. Surface correlation effects in two-band strongly correlated slabs.

    PubMed

    Esfahani, D Nasr; Covaci, L; Peeters, F M

    2014-02-19

    Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/center to center/surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.

  20. Photoinduced doping in heterostructures of graphene and boron nitride.

    PubMed

    Ju, L; Velasco, J; Huang, E; Kahn, S; Nosiglia, C; Tsai, Hsin-Zon; Yang, W; Taniguchi, T; Watanabe, K; Zhang, Y; Zhang, G; Crommie, M; Zettl, A; Wang, F

    2014-05-01

    The design of stacks of layered materials in which adjacent layers interact by van der Waals forces has enabled the combination of various two-dimensional crystals with different electrical, optical and mechanical properties as well as the emergence of novel physical phenomena and device functionality. Here, we report photoinduced doping in van der Waals heterostructures consisting of graphene and boron nitride layers. It enables flexible and repeatable writing and erasing of charge doping in graphene with visible light. We demonstrate that this photoinduced doping maintains the high carrier mobility of the graphene/boron nitride heterostructure, thus resembling the modulation doping technique used in semiconductor heterojunctions, and can be used to generate spatially varying doping profiles such as p-n junctions. We show that this photoinduced doping arises from microscopically coupled optical and electrical responses of graphene/boron nitride heterostructures, including optical excitation of defect transitions in boron nitride, electrical transport in graphene, and charge transfer between boron nitride and graphene.

  1. Unravelling Doping Effects on PEDOT at the Molecular Level: From Geometry to Thermoelectric Transport Properties.

    PubMed

    Shi, Wen; Zhao, Tianqi; Xi, Jinyang; Wang, Dong; Shuai, Zhigang

    2015-10-14

    Tuning carrier concentration via chemical doping is the most successful strategy to optimize the thermoelectric figure of merit. Nevertheless, how the dopants affect charge transport is not completely understood. Here we unravel the doping effects by explicitly including the scattering of charge carriers with dopants on thermoelectric properties of poly(3,4-ethylenedioxythiophene), PEDOT, which is a p-type thermoelectric material with the highest figure of merit reported. We corroborate that the PEDOT exhibits a distinct transition from the aromatic to quinoid-like structure of backbone, and a semiconductor-to-metal transition with an increase in the level of doping. We identify a close-to-unity charge transfer from PEDOT to the dopant, and find that the ionized impurity scattering dominates over the acoustic phonon scattering in the doped PEDOT. By incorporating both scattering mechanisms, the doped PEDOT exhibits mobility, Seebeck coefficient and power factors in very good agreement with the experimental data, and the lightly doped PEDOT exhibits thermoelectric properties superior to the heavily doped one. We reveal that the thermoelectric transport is highly anisotropic in ordered crystals, and suggest to utilize large power factors in the direction of polymer backbone and low lattice thermal conductivity in the stacking and lamellar directions, which is viable in chain-oriented amorphous nanofibers.

  2. Molecule-Doped Nickel Oxide: Verified Charge Transfer and Planar Inverted Mixed Cation Perovskite Solar Cell.

    PubMed

    Chen, Wei; Zhou, Yecheng; Wang, Linjing; Wu, Yinghui; Tu, Bao; Yu, Binbin; Liu, Fangzhou; Tam, Ho-Won; Wang, Gan; Djurišić, Aleksandra B; Huang, Li; He, Zhubing

    2018-05-01

    Both conductivity and mobility are essential to charge transfer by carrier transport layers (CTLs) in perovskite solar cells (PSCs). The defects derived from generally used ionic doping method lead to the degradation of carrier mobility and parasite recombinations. In this work, a novel molecular doping of NiO x hole transport layer (HTL) is realized successfully by 2,2'-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6TCNNQ). Determined by X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy, the Fermi level (E F ) of NiO x HTLs is increased from -4.63 to -5.07 eV and valence band maximum (VBM)-E F declines from 0.58 to 0.29 eV after F6TCNNQ doping. The energy level offset between the VBMs of NiO x and perovskites declines from 0.18 to 0.04 eV. Combining with first-principle calculations, electrostatic force microscopy is applied for the first time to verify direct electron transfer from NiO x to F6TCNNQ. The average power conversion efficiency of CsFAMA mixed cation PSCs is boosted by ≈8% depending on F6TCNNQ-doped NiOx HTLs. Strikingly, the champion cell conversion efficiency of CsFAMA mixed cations and MAPbI 3 -based devices gets to 20.86% and 19.75%, respectively. Different from passivation effect, the results offer an extremely promising molecular doping method for inorganic CTLs in PSCs. This methodology definitely paves a novel way to modulate the doping in hybrid electronics more than perovskite and organic solar cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. [Optical and morphological investigation on the interaction of dual dopants in poly (N-vinylcarzole)].

    PubMed

    Zhang, Ting; Xu, Zheng; Teng, Feng; Qian, Lei; Wang, Yong-Sheng; Xu, Xu-Rong

    2006-05-01

    The effect of optical and electrical properties of poly(N-vinylcarzole) (PVK) doped with two dyes, i. e. 8-tris-hydroxyquinoline (Alq3) and 4-(dicyanomethylene)-2-tert-butyl-6 (1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), on the energy transfer and charge trapping processes was investigated. The phase separation in blends film at different doping concentration was also studied. More homogeneous dispersion of dyes in PVK with increasing doping concentration was showed. The results indicate that there is a certain interaction of Alq3 and DCJTB in this dual-doped system. It is the incorporation of DCJTB that untangled the aggregation of Alq3 owing to the interaction of DCJTB and Alq3. But for higher doping concentration, DCJTB results in an isolated charge transport channel that decreases the electroluminescence (EL) operating voltage.

  4. Exciton-to-Dopant Energy Transfer in Mn-Doped Cesium Lead Halide Perovskite Nanocrystals.

    PubMed

    Parobek, David; Roman, Benjamin J; Dong, Yitong; Jin, Ho; Lee, Elbert; Sheldon, Matthew; Son, Dong Hee

    2016-12-14

    We report the one-pot synthesis of colloidal Mn-doped cesium lead halide (CsPbX 3 ) perovskite nanocrystals and efficient intraparticle energy transfer between the exciton and dopant ions resulting in intense sensitized Mn luminescence. Mn-doped CsPbCl 3 and CsPb(Cl/Br) 3 nanocrystals maintained the same lattice structure and crystallinity as their undoped counterparts with nearly identical lattice parameters at ∼0.2% doping concentrations and no signature of phase separation. The strong sensitized luminescence from d-d transition of Mn 2+ ions upon band-edge excitation of the CsPbX 3 host is indicative of sufficiently strong exchange coupling between the charge carriers of the host and dopant d electrons mediating the energy transfer, essential for obtaining unique properties of magnetically doped quantum dots. Highly homogeneous spectral characteristics of Mn luminescence from an ensemble of Mn-doped CsPbX 3 nanocrystals and well-defined electron paramagnetic resonance spectra of Mn 2+ in host CsPbX 3 nanocrystal lattices suggest relatively uniform doping sites, likely from substitutional doping at Pb 2+ . These observations indicate that CsPbX 3 nanocrystals, possessing many superior optical and electronic characteristics, can be utilized as a new platform for magnetically doped quantum dots expanding the range of optical, electronic, and magnetic functionality.

  5. Quadratic Electro-optic Effect in a Novel Nano-optical Polymer (iodine-doped polyisoprene)

    NASA Astrophysics Data System (ADS)

    Swamy, Rajendra; Titus, Jitto; Thakur, Mrinal

    2004-03-01

    In this report, exceptionally large quadratic electro-optic effect in a novel nano-optical polymer will be discussed. The material involved is cis-1,4-polyisoprene or natural rubber which is a nonconjugated conductive polymer[1,2].Upon doping with an acceptor such as iodine, an electron is transferred from its isolated double bond to the dopant leading to a charge-transfer complex. The positive charge (hole) thus created is localized around the double-bond site, within a nanometer dimension - thus, forming a nano-optical material. The quadratic electro-optic measurement on the doped polyisoprene film was made using field-induced birefringence method. The measured Kerr coefficient is about sixty six times that of nitrobenzene at 632 nm. Significant electroabsorption was also observed in this material at 632 nm. 1. M. Thakur, J. Macromol. Sci. - PAC, 2001, A38(12), 1337. 2. M. Thakur, S. Khatavkar and E.J. Parish, J. Macromol. Sci. - PAC, 2003, A40 (12), 1397.

  6. Co-doping effects on luminescence and scintillation properties of Ce doped (Lu,Gd)3(Ga,Al)5O12 scintillator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroaki; Kamada, Kei; Kurosawa, Shunsuke; Pejchal, Jan; Shoji, Yasuhiro; Yokota, Yuui; Ohashi, Yuji; Yoshikawa, Akira

    2016-11-01

    Mg co-doping effects on scintillation properties of Ce:Lu1Gd2(Ga,Al)5O12 (LGGAG) were investigated. Mg 200 ppm co-doped Ce:LGGAG single crystals were prepared by micro pulling down method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of Mg co-doping. Ce4+ charge transfer absorption was observed below 300 nm in Mg,Ce:LGGAG which is in good agreement with previous reports. The scintillation decay times were accelerated by Mg co-doping.

  7. Charge Transfer in Saturation Doping of Double-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Tchernatinsky, Alexander; Jayanthi, Chakram; Sumanasekera, Gamini; Wu, Shi-Yu

    2004-03-01

    Recent experimental evidences suggest that the outer tube of a double-wall carbon nanotube (DWCNT) may serve as a 'Faraday' cage (G. Chen, et al., Phys. Rev. Lett., 90, 257403 (2003)). In this presentation, we report the result of our systematic study of the effect of saturation doping of a (10,10) single-wall carbon nanotube, a (5,5)@(10,10) DWCNT, and a C_60@(10,10) peapod using DFT-based VASP computational package (G. Kresse and J. Hafner, Phys. Rev. B, 47, 558 (1993)). By comparing the resulting charge transfer of the above mentioned cases we shall provide the physics underlying the Faraday cage behavior of DWCNTs. Acknowledgments: This work was supported by the NSF (DMR-0112824) and the U.S.DOE (DE-FG02-00ER45832).

  8. Novel hydrothermal method for effective doping of N and F into nano Titania for both, energy and environmental applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jyothi, M.S.; D’Souza Laveena, P.; Shwetharani, R.

    2016-02-15

    Highlights: • Novel method to synthesize N, F doped TiO{sub 2} via hydrothermal method is discussed. • Change in bandgap of TiO{sub 2} upon doping makes a photocatalyst visible active. • 94% of degradation of EtBr was achieved within a less time of 90 min. • The doped titania also showed good efficiency as photo anodic material for solar cell. - Abstract: A novel and an efficient hydrothermal method for the preparation of an effective doped titania photocatalyst is reported. The crystal phase, binding energy, elemental composition, morphology, optical and electronic structure analyses were done by various techniques. The dopedmore » titania proved as an efficient electrode material and photocatalyst for solar cells and water treatment respectively. The photocatalyst is able to degrade the most potent mutagen ethidium bromide under sunlight with an enhancement of 1.6 times over its undoped analogue. As photo-anode material, showed an improved open circuit potential and fill factor. The created electron states in the doped sample act as charge carrier traps suppressing recombination which later detraps the same to the surface of the catalyst causing enhanced interfacial charge transfer. Surface acidity caused by F induction and lowered band gap energy that can respond to visible light facilitates improved energy harvesting and energy transfer leading to better photo activity.« less

  9. Understanding the doping effects on the structural and electrical properties of ultrathin carbon nanotube networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ying, E-mail: y-shuu@aist.go.jp; Shimada, Satoru; Azumi, Reiko

    Similar to other semiconductor technology, doping of carbon nanotube (CNT) thin film is of great significance for performance improvement or modification. However, it still remains a challenge to seek a stable and effective dopant. In this paper, we unitize several spectroscopic techniques and electrical characterizations under various conditions to investigate the effects of typical dopants and related methods. Nitric acid (HNO{sub 3}) solution, I{sub 2} vapor, and CuI nanoparticles are used to modify a series of ultrathin CNT networks. Although efficient charge transfer is achieved initially after doping, HNO{sub 3} is not applicable because it suffers from severe reliability problemsmore » in structural and electrical properties, and it also causes a number of undesired structural defects. I{sub 2} vapor doping at 150 °C can form some stable C-I bonding structures, resulting in relatively more stable but less efficient electrical performances. CuI nanoparticles seem to be an ideal dopant. Photonic curing enables the manipulation of CuI, which not only results in the construction of novel CNT-CuI hybrid structures but also encourages the deepest level of charge transfer doping. The excellent reliability as well as processing feasibility identify the bright perspective of CNT-CuI hybrid film for practical applications.« less

  10. First-principles study of Sr2Ir1-xRhxO4: charge transfer, spin-orbit coupling change, and the metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Sim, Jae-Hoon; Kim, Heung-Sik; Han, Myung Joon

    2015-03-01

    Using first-principles density functional theory (DFT) calculations, we investigated the electronic structure of Rh-doped iridate, Sr2Ir1-xRhxO4 for which the doping (x) dependent metal-insulator transition (MIT) has been reported experimentally and the controversial discussion developed regarding the origin of this transition. Our DFT+U calculation shows that the value of < L . S > remains largely intact over the entire doping range considered here (x = 0 . 0 , 0 . 125 , 0 . 25 , 0 . 50 , 0 . 75 , and 1 . 0) in good agreement with the branching ratio measured by x-ray absorption spectroscopy. Also contrary to a previous picture to explain MIT based on the charge transfer between the transition-metal sites, our calculation clearly shows that those sites remain basically isoelectronic while the impurity bands of predominantly rhodium character are introduced near the Fermi level. As the doping increases, this impurity band overlaps with lower Hubbard band of iridium, leading to metal-insulator transition. The results will be discussed with comparison to the case of Ru doping. Computational resources were suported by The National Institute of Supercomputing and Networking/Korea Institute of Science and Technology Information with supercomputing resources including technical spport (Grant No. KSC-2013-C2-23).

  11. First-principles study on the gas sensing property of the Ge, As, and Br doped PtSe2

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Yang, Gui; Tian, Junlong; Ma, Dongwei; Wang, Yuanxu

    2018-03-01

    Based on first-principles calculations, the adsorption behaviors of H2, O2, CO, CO2, NH3, NO, and NO2 molecules on the Ge-, As- and Br-doped PtSe2 monolayers are theoretically investigated. The results indicate that it is viable for the dopant atoms to be filled into the Se vacancies under Pt-rich conditions. Ge and As act as p-type dopants, while Br acts as n-type dopant. For the adsorption of molecules, the geometrical structures, adsorption energies, charge transfers and the electronic and magnetic properties of the most stable configurations are presented and discussed. It is found that the Ge-doped PtSe2 monolayers exhibit greatly enhanced sensitivity toward O2, CO, NH3, NO and NO2 molecules and the As-doped PtSe2 monolayers are more sensitive toward O2, NH3, NO and NO2 molecules than the pristine ones. This is evident from large adsorption energies, charge transfers, and obvious changes of the electronic states due to the molecule adsorption. However, Br doping cannot enhance the sensing sensitivity of the PtSe2 monolayer. The possible reason is that when substituting for the Se atom, the doped Br with more 4p electrons and less empty orbitals are already chemically saturated by the two of the three neighboring Pt atoms, and thus lose the ability of charge exchange with the adsorbed molecules. On the contrary, the Ge and As as p-type dopants have sizable empty 4p orbitals near the Fermi level to exchange the electrons with the adsorbed molecules, and thus form strong bonds with them.

  12. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion

    NASA Astrophysics Data System (ADS)

    Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning

    2016-08-01

    Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.

  13. Designing a Spin-one Mott Insulator: Complete Charge Transfer in Nickelate-Titanate Heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Hanghui; Marianetti, Chris; Millis, Andrew

    2013-03-01

    Ab initio calculations are performed to show that complete charge transfer may occur from the TiO2 to the NiO2 layers in (LaTiO3)1/(LaNiO3)1 superlattices. Although the two component materials are an S = 1 / 2 Mott insulator and a weakly correlated paramagnetic metal, strong correlation effects on Ni d states can render the superlattice an unusual S = 1 charge transfer insulator, with the Ti- d band empty, the Ni in the d8 state and the oxygen bands filled. The charge transfer gap is set by the Ti/Ni d level splitting. Magnetic, photoemission and x-ray scattering experiments are suggested to test the theory. The results show that heterostructuring can lead to very high levels of electron doping of oxides. This research was supported by the Army Research Office under ARO-Ph 56032 and DOE-ER-046169.

  14. Process techniques of charge transfer time reduction for high speed CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Zhongxiang, Cao; Quanliang, Li; Ye, Han; Qi, Qin; Peng, Feng; Liyuan, Liu; Nanjian, Wu

    2014-11-01

    This paper proposes pixel process techniques to reduce the charge transfer time in high speed CMOS image sensors. These techniques increase the lateral conductivity of the photo-generated carriers in a pinned photodiode (PPD) and the voltage difference between the PPD and the floating diffusion (FD) node by controlling and optimizing the N doping concentration in the PPD and the threshold voltage of the reset transistor, respectively. The techniques shorten the charge transfer time from the PPD diode to the FD node effectively. The proposed process techniques do not need extra masks and do not cause harm to the fill factor. A sub array of 32 × 64 pixels was designed and implemented in the 0.18 μm CIS process with five implantation conditions splitting the N region in the PPD. The simulation and measured results demonstrate that the charge transfer time can be decreased by using the proposed techniques. Comparing the charge transfer time of the pixel with the different implantation conditions of the N region, the charge transfer time of 0.32 μs is achieved and 31% of image lag was reduced by using the proposed process techniques.

  15. Carrier-doped aromatic hydrocarbons: a new platform in condensed matter chemistry and physics.

    PubMed

    Heguri, Satoshi; Tanigaki, Katsumi

    2018-02-27

    High-quality bulk samples of the first four polyacenes, which are naphthalene, anthracene, tetracene, and pentacene, doped with alkali metal in 1 : 1 and 1 : 2 stoichiometries were prepared and their fundamental properties were systematically studied. A new systematic understanding on the electronic states of electron-doped polyacenes sensitive to the energetic balance among on-site Coulomb repulsion, bandwidth and the Peierls instability was provided. The carrier-doped typical aromatic hydrocarbons showed a large variety of properties as well as charge transfer complexes and metal-doped fullerides. We open a new avenue for organometallic and inorganic chemistry.

  16. Preliminary results on the photo-transferred thermoluminescence from Ge-doped SiO2 optical fiber

    NASA Astrophysics Data System (ADS)

    Zulkepely, Nurul Najua; Amin, Yusoff Mohd; Md Nor, Roslan; Bradley, D. A.; Maah, Mohd Jamil; Mat Nawi, Siti Nurasiah; Wahib, Nur Fadira

    2015-12-01

    A study is made of photo-transferred thermoluminescence (PTTL), the TL being induced by transferring charge carriers from deeper to more superficial traps through energetic light exposure. Potential applications include dose reassessment in radiation dosimetry and also as a useful tool for dating. With incomplete emptying of deep traps following first readout, subsequent UV exposure is shown to lead to charge transfer to more shallow traps. Using Ge-doped SiO2 optical fibers exposed to 60Co gamma rays, the PTTL from the medium has been characterized in terms of the stimulation provided by exposure to a UV lamp and duration of exposure, maximum read-out temperature and pre-gamma irradiation dose. Ge-doped SiO2 optical fibers of flat cross-sectional shape have been used in this study. The efficiency of dose reassessment was compared to that of the highly popular phosphor-based TL detector TLD-100. Results show the maximum temperature of readout to have no measurable effect on the PTTL signal. For doses from 20 to 500 cGy, the method is shown to be effective using a UV lamp of wavelength 254 nm, also being indicative of potential application for doses on either side of the range currently investigated. A study was also made of the effect of UV exposure time on PTTL, seeking to determine the greatest accessible sensitivity and lowest measurable dose.

  17. Structure and Stability of GeAu{sub n}, n = 1-10 clusters: A Density Functional Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priyanka,; Dharamvir, Keya; Sharma, Hitesh

    2011-12-12

    The structures of Germanium doped gold clusters GeAu{sub n} (n = 1-10) have been investigated using ab initio calculations based on density functional theory (DFT). We have obtained ground state geometries of GeAu{sub n} clusters and have it compared with Silicon doped gold clusters and pure gold clusters. The ground state geometries of the GeAu{sub n} clusters show patterns similar to silicon doped gold clusters except for n = 5, 6 and 9. The introduction of germanium atom increases the binding energy of gold clusters. The binding energy per atom of germanium doped cluster is smaller than the corresponding siliconmore » doped gold cluster. The HUMO-LOMO gap for Au{sub n}Ge clusters have been found to vary between 0.46 eV-2.09 eV. The mullikan charge analysis indicates that charge of order of 0.1e always transfers from germanium atom to gold atom.« less

  18. Compositional dependence of broadband near-infrared downconversion and upconversion of Yb3+-doped multi-component glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Liaolin; Xia, Yu; Shen, Xiao; Wei, Wei

    2017-07-01

    Yb3+ single-doped glasses show a strong excitation band in the 300-400 nm region, and efficiently emit photons with wavelengths of 920-1150 nm, and have potential applications in solar cells operating in an extraterrestrial situation. In this work, we systematically study the broadband near-infrared downconversion and upconversion of Yb3+-doped silicate, germanate, phosphate, tellurite and tungsten tellurite glasses. All samples show a broad excitation band in the 300-400 nm range, which is attributed to the charge transfer of the Yb3+-O2- couple. The position of the charge transfer band (CTB) shifts from 300 nm to longer wavelengths around 350 nm when the length of the R-O(Si, P, Ge, Te) increases. The longer R-O gives rise to a smaller central void for Yb3+, thus resulting in a small proportion of Yb3+ ions, thus leading to the blue-shift of the CTB. A smaller proportion of Yb3+ in silicate glasses causes in the strongest upconversion emission at 500 nm.

  19. Giant magnetoresistance and anomalous transport in phosphorene-based multilayers with noncollinear magnetization

    NASA Astrophysics Data System (ADS)

    Zare, Moslem; Majidi, Leyla; Asgari, Reza

    2017-03-01

    We theoretically investigate the unusual features of the magnetotransport in a monolayer phosphorene ferromagnetic/normal/ferromagnetic (F/N/F) hybrid structure. We find that the charge conductance can feature a minimum at parallel (P) configuration and a maximum near the antiparallel (AP) configuration of magnetization in the F/N/F structure with n -doped F and p -doped N regions and also a finite conductance in the AP configuration with the N region of n -type doping. In particular, the proposed structure exhibits giant magnetoresistance, which can be tuned to unity. This perfect switching is found to show strong robustness with respect to increasing the contact length and tuning the chemical potential of the N region with a gate voltage. We also explore the oscillatory behavior of the charge conductance or magnetoresistance in terms of the size of the N region. We further demonstrate the penetration of the spin-transfer torque into the right F region and show that, unlike graphene structure, the spin-transfer torque is very sensitive to the chemical potential of the N region as well as the exchange field of the F region.

  20. Characterizations of Pr-doped Yb3Al5O12 single crystals for scintillator applications

    NASA Astrophysics Data System (ADS)

    Yoshida, Yasuki; Shinozaki, Kenji; Igashira, Takuya; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-04-01

    Yb3Al5O12 (YbAG) single crystals doped with different concentrations of Pr were synthesized by the Floating Zone (FZ) method. Then, we evaluated their basic optical and scintillation properties. All the samples showed photoluminescence (PL) with two emission bands appeared approximately 300-500 nm and 550-600 nm due to the charge transfer luminescence of Yb3+ and intrinsic luminescence of the garnet structure, respectively. A PL decay profile of each sample was approximated by a sum of two exponential decay functions, and the obtained decay times were 1 ns and 3-4 ns. In the scintillation spectra, we observed emission peaks in the ranges from 300 to 400 nm and from 450 to 550 nm for all the samples. The origins of these emissions were attributed to charge transfer luminescence of Yb3+ and intrinsic luminescence of the garnet structure, respectively. The scintillation decay times became longer with increasing the Pr concentrations. Among the present samples, the 0.1% Pr-doped sample showed the lowest scintillation afterglow level. In addition, pulse height spectrum of 5.5 MeV α-rays was demonstrated using the Pr-doped YbAG, and we confirmed that all the samples showed a full energy deposited peak. Above all, the 0.1% Pr-doped sample showed the highest light yield with a value of 14 ph/MeV under α-rays excitation.

  1. pn-Heterojunction effects of perylene tetracarboxylic diimide derivatives on pentacene field-effect transistor.

    PubMed

    Yu, Seong Hun; Kang, Boseok; An, Gukil; Kim, BongSoo; Lee, Moo Hyung; Kang, Moon Sung; Kim, Hyunjung; Lee, Jung Heon; Lee, Shichoon; Cho, Kilwon; Lee, Jun Young; Cho, Jeong Ho

    2015-01-28

    We investigated the heterojunction effects of perylene tetracarboxylic diimide (PTCDI) derivatives on the pentacene-based field-effect transistors (FETs). Three PTCDI derivatives with different substituents were deposited onto pentacene layers and served as charge transfer dopants. The deposited PTCDI layer, which had a nominal thickness of a few layers, formed discontinuous patches on the pentacene layers and dramatically enhanced the hole mobility in the pentacene FET. Among the three PTCDI molecules tested, the octyl-substituted PTCDI, PTCDI-C8, provided the most efficient hole-doping characteristics (p-type) relative to the fluorophenyl-substituted PTCDIs, 4-FPEPTC and 2,4-FPEPTC. The organic heterojunction and doping characteristics were systematically investigated using atomic force microscopy, 2D grazing incidence X-ray diffraction studies, and ultraviolet photoelectron spectroscopy. PTCDI-C8, bearing octyl substituents, grew laterally on the pentacene layer (2D growth), whereas 2,4-FPEPTC, with fluorophenyl substituents, underwent 3D growth. The different growth modes resulted in different contact areas and relative orientations between the pentacene and PTCDI molecules, which significantly affected the doping efficiency of the deposited adlayer. The differences between the growth modes and the thin-film microstructures in the different PTCDI patches were attributed to a mismatch between the surface energies of the patches and the underlying pentacene layer. The film-morphology-dependent doping effects observed here offer practical guidelines for achieving more effective charge transfer doping in thin-film transistors.

  2. Two Photon Absorption in a Novel Nano-optical Material Based on the Nonconjugated Conductive Polymer, Poly(beta-pinene)

    NASA Astrophysics Data System (ADS)

    Titus, Jitto; Thakur, Mrinal

    2006-03-01

    As recently reported, the electrical conductivity of the nonconjugated polymer, poly(beta-pinene) increases by more than ten orders of magnitude upon doping with iodine [1]. The FTIR, optical absorption and EPR measurements have shown that radical cations are formed upon doping and charge-transfer involving the isolated double-bond in poly(beta-pinene). In this report, exceptionally large two-photon absorption in iodine-doped poly(beta-pinene) will be discussed. The linear absorption spectrum of medium-doped poly(beta-pinene) have peaks at about 4 eV and 3.1 eV. The first peak is due to the radical cation and the second due to the charge-transfer between the double bond and the dopant. The two-photon absorption of the medium-doped polymer has been measured at 730-860 nm using open-aperture z-scan with 150 femtosecond pulses from a Ti:Sapphire laser. A two-photon peak at about 1.5 eV with a magnitude of more than 1 cm/MW has been observed. The large magnitude of the two-photon absorption coefficient which is proportional to the imaginary part of the third order susceptibility has been attributed to the special structure of the radical cation and the confinement within a sub-nanometer dimension. [1] Vippa, Rajagopalan and Thakur, J. Poly. Sci. Part B: Poly. Phys., 43, 3695 (2005).

  3. Enhancing charge storage of conjugated polymer electrodes with phenolic acids

    NASA Astrophysics Data System (ADS)

    Wagner, Michal; Rębiś, Tomasz; Inganäs, Olle

    2016-01-01

    We here present studies of electrochemical doping of poly(1-aminoanthraquinone) (PAAQ) films with three structurally different phenolic acids. The examined phenolic acids (sinapic, ferulic and syringic acid) were selected due to their resemblance to redox active groups, which can be found in lignin. The outstanding electrochemical stability of PAAQ films synthesized for this work enabled extensive cycling of phenolic acid-doped PAAQ films. Potentiodynamic and charge-discharge studies revealed that phenolic acid-doped PAAQ films exhibited enhanced capacitance in comparison to undoped PAAQ films, together with appearance of redox activity characteristics specific for each dopant. Electrochemical kinetic studies performed on microelectrodes affirmed the fast electron transfer for hydroquinone-to-quinone reactions with these phenolic compounds. These results imply the potential application of phenolic acids in cheap and degradable energy storage devices.

  4. Fabrication of water-dispersible and highly conductive PSS-doped PANI/graphene nanocomposites using a high-molecular weight PSS dopant and their application in H2S detection

    NASA Astrophysics Data System (ADS)

    Cho, Sunghun; Lee, Jun Seop; Jun, Jaemoon; Kim, Sung Gun; Jang, Jyongsik

    2014-11-01

    This work describes the fabrication of poly(4-styrenesulfonic acid)-doped polyaniline/graphene (PSS-doped PANI/graphene) nanocomposites and their use as sensing elements for hydrogen sulfide (H2S) detection. PSS with a weight-average molecular weight (Mw) of 1.96 × 106 was synthesized using low-temperature free-radical polymerization. The PSS was used as both a doping agent and a binding agent for the polymerization of aniline monomers in a biphasic system (water-chloroform) at -50 °C. The high Mw of PSS resulted in relatively large particle sizes and smooth surfaces of the PSS-doped PANI. These physical characteristics, in turn, resulted in low interparticle resistance and high conductivity. In addition, the PSS allowed homogeneous dispersion of reduced graphene sheets through electrostatic repulsion. The prepared PSS-doped PANI/graphene solutions showed good compatibility with flexible poly(ethylene terephthalate) (PET) substrates, making them suitable for flexible sensor electrodes. Changes in the charge-transport properties, such as protonation level, conjugation length, crystalline structure, and charge-transfer resistance, of the electrode materials were the main factors influencing the electrical and sensor performance of the PSS-doped PANI-based electrodes. PSS-doped PANI/graphene composites containing 30 wt% graphene showed the highest conductivity (168.4 S cm-1) and the lowest minimum detection level (MDL) for H2S gas (1 ppm). This result is consistent with the observed improvements in charge transport in the electrode materials via strong π-π stacking interactions between the PANI and the graphene sheets.This work describes the fabrication of poly(4-styrenesulfonic acid)-doped polyaniline/graphene (PSS-doped PANI/graphene) nanocomposites and their use as sensing elements for hydrogen sulfide (H2S) detection. PSS with a weight-average molecular weight (Mw) of 1.96 × 106 was synthesized using low-temperature free-radical polymerization. The PSS was used as both a doping agent and a binding agent for the polymerization of aniline monomers in a biphasic system (water-chloroform) at -50 °C. The high Mw of PSS resulted in relatively large particle sizes and smooth surfaces of the PSS-doped PANI. These physical characteristics, in turn, resulted in low interparticle resistance and high conductivity. In addition, the PSS allowed homogeneous dispersion of reduced graphene sheets through electrostatic repulsion. The prepared PSS-doped PANI/graphene solutions showed good compatibility with flexible poly(ethylene terephthalate) (PET) substrates, making them suitable for flexible sensor electrodes. Changes in the charge-transport properties, such as protonation level, conjugation length, crystalline structure, and charge-transfer resistance, of the electrode materials were the main factors influencing the electrical and sensor performance of the PSS-doped PANI-based electrodes. PSS-doped PANI/graphene composites containing 30 wt% graphene showed the highest conductivity (168.4 S cm-1) and the lowest minimum detection level (MDL) for H2S gas (1 ppm). This result is consistent with the observed improvements in charge transport in the electrode materials via strong π-π stacking interactions between the PANI and the graphene sheets. Electronic supplementary information (ESI) available: FE-SEM images of PSS-doped PANI/graphene nanocomposites and graphene sheets, FT-IR spectra of PSS with different Mw, XRD patterns of PSS-doped PANI polymerized with different Mw of PSS, FT-IR spectra of GO, RGO, PSS-coated GO, and PSS-coated RGO, fully XPS scanned spectra of PSS-doped PANI/graphene nanocomposites, cyclic voltammogram of PSS-doped PANI/graphene nanocomposites at different scan rates (10 to 50 mV-1), and I-V characteristics of PSS-doped PANI/graphene nanocomposites with a thickness of 5 μm. See DOI: 10.1039/c4nr04413d

  5. Influence of axial tensile strain on the electronic and structural properties as well as NO gas sensitivity and reactivity of C-doped SW-BNNTs

    NASA Astrophysics Data System (ADS)

    Roohi, Hossein; Maleki, Layla

    2017-11-01

    The insulating character of BNNTs strongly imposes a great restriction on their applicability in nano-electronic devices. Therefore, it is desirable to find the practical routes for reducing the H-L gap. In this work, we demonstrate that the structural and electronic properties of the C-doped SW-BNNT can be significantly engineered and tuned by applying the axial tensile strain. Defect formation energies, cohesive energies, dipole moments, NBO charges, and global reactivity descriptors for un-doped SW-BNNT and C1-3-doped SW-BNNTs are calculated upon the axial strain. The B3LYP/6-31 +G(d) calculated H-L gap for five C-doped SW-BNNTs are expected to be smaller than that of un-doped SW-BNNT. At 10% axial tensile strain, CB NT is a suitable conductance with a 1.947 eV H-L gap. The decrease in the H-L gap for 2C-doped CN,B (-0.839 eV) NT within 15% strain is greater than 1C- and 3C-doped SW-BNNTs. In the second part of this work, reactivity and the sensitivity of strained C1-2-doped SW-BNNTs toward NO gas were evaluated at M06-2X/6-31 ++G(d,p) level of theory. Optimized structures, molecular graphs, adsorption energies (AE), dispersion corrected AEs, H-L gap, NBO charges, charge transfer values, density of states and electrostatic potentials were calculated. The strained C1-doped SW-BNNTs showed an increased ability for the sensitivity and adsorption of NO molecule, as compared with unstrained doped SW-BNNT. In general, the CN,B NTs have practically less potential for the adsorption of NO molecule than CB and CN ones.

  6. Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and FLEX results [Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and RPA+FLEX results

    DOE PAGES

    Nocera, Alberto; Wang, Yan; Patel, Niravkumar D.; ...

    2018-05-31

    Here, we study the magnetic and charge dynamical response of a Hubbard model in a two-leg ladder geometry using the density matrix renormalization group (DMRG) method and the random phase approximation within the fluctuation-exchange approximation (FLEX). Our calculations reveal that FLEX can capture the main features of the magnetic response from weak up to intermediate Hubbard repulsion for doped ladders, when compared with the numerically exact DMRG results. However, while at weak Hubbard repulsion both the spin and charge spectra can be understood in terms of weakly interacting electron-hole excitations across the Fermi surface, at intermediate coupling DMRG shows gappedmore » spin excitations at large momentum transfer that remain gapless within the FLEX approximation. For the charge response, FLEX can only reproduce the main features of the DMRG spectra at weak coupling and high doping levels, while it shows an incoherent character away from this limit. Overall, our analysis shows that FLEX works surprisingly well for spin excitations at weak and intermediate Hubbard U values even in the difficult low-dimensional geometry such as a two-leg ladder. Finally, we discuss the implications of our results for neutron scattering and resonant inelastic x-ray scattering experiments on two-leg ladder cuprate compounds.« less

  7. Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and FLEX results [Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and RPA+FLEX results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nocera, Alberto; Wang, Yan; Patel, Niravkumar D.

    Here, we study the magnetic and charge dynamical response of a Hubbard model in a two-leg ladder geometry using the density matrix renormalization group (DMRG) method and the random phase approximation within the fluctuation-exchange approximation (FLEX). Our calculations reveal that FLEX can capture the main features of the magnetic response from weak up to intermediate Hubbard repulsion for doped ladders, when compared with the numerically exact DMRG results. However, while at weak Hubbard repulsion both the spin and charge spectra can be understood in terms of weakly interacting electron-hole excitations across the Fermi surface, at intermediate coupling DMRG shows gappedmore » spin excitations at large momentum transfer that remain gapless within the FLEX approximation. For the charge response, FLEX can only reproduce the main features of the DMRG spectra at weak coupling and high doping levels, while it shows an incoherent character away from this limit. Overall, our analysis shows that FLEX works surprisingly well for spin excitations at weak and intermediate Hubbard U values even in the difficult low-dimensional geometry such as a two-leg ladder. Finally, we discuss the implications of our results for neutron scattering and resonant inelastic x-ray scattering experiments on two-leg ladder cuprate compounds.« less

  8. Increasing the doping efficiency by surface energy control for ultra-transparent graphene conductors.

    PubMed

    Chang, Kai-Wen; Hsieh, Ya-Ping; Ting, Chu-Chi; Su, Yen-Hsun; Hofmann, Mario

    2017-08-22

    Graphene's attractiveness in many applications is limited by its high resistance. Extrinsic doping has shown promise to overcome this challenge but graphene's performance remains below industry requirements. This issue is caused by a limited charge transfer efficiency (CTE) between dopant and graphene. Using AuCl 3 as a model system, we measure CTE as low as 5% of the expected values due to the geometrical capacitance of small adsorbate clusters. We here demonstrate a strategy for enhancing the CTE by a two-step optimization of graphene's surface energy prior to AuCl 3 doping. First, exposure to UV ozone modified the hydrophilicity of graphene and was found to decrease the cluster's geometric capacitance, which had a direct effect on the CTE. Occurrence of lattice defects at high UV exposure, however, deteriorated graphene's transport characteristics and limited the effectiveness of this pretreatment step. Thus, prior to UV exposure, a functionalized polymer layer was introduced that could further enhance graphene's surface energy while protecting it from damage. Combination of these treatment steps were found to increase the AuCl 3 charge transfer efficiency to 70% and lower the sheet resistance to 106 Ω/γ at 97% transmittance which represents the highest reported performance for doped single layer graphene and is on par with commercially available transparent conductors.

  9. Unusual photoelectric behaviors of Mo-doped TiO2 multilayer thin films prepared by RF magnetron co-sputtering: effect of barrier tunneling on internal charge transfer

    NASA Astrophysics Data System (ADS)

    Yan, B. X.; Luo, S. Y.; Mao, X. G.; Shen, J.; Zhou, Q. F.

    2013-01-01

    Mo-doped TiO2 multilayer thin films were prepared by RF magnetron co-sputtering. Microstructures, crystallite parameters and the absorption band were investigated with atomic force microscopy, X-ray diffraction and ultraviolet-visible spectroscopy. Internal carrier transport characteristics and the photoelectric property of different layer-assemble modes were examined on an electrochemical workstation under visible light. The result indicates that the double-layer structure with an undoped surface layer demonstrated a red-shifted absorption edge and a much stronger photocurrent compared to the uniformly doped sample, signifying that the electric field implanted at the interface between particles in different layers accelerated internal charge transfer effectively. However, a heavily doped layer implanted at the bottom of the three-layer film merely brought about negative effects on the photoelectric property, mainly because of the Schottky junction existing above the substrate. Nevertheless, this obstacle was successfully eliminated by raising the Mo concentration to 1020 cm-3, where the thickness of the depletion layer fell into the order of angstroms and the tunneling coefficient manifested a dramatic increase. Under this circumstance, the Schottky junction disappeared and the strongest photocurrent was observed in the three-layer film.

  10. Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays.

    PubMed

    Jiao, Zhengbo; Chen, Tao; Xiong, Jinyan; Wang, Teng; Lu, Gongxuan; Ye, Jinhua; Bi, Yingpu

    2013-01-01

    Well-aligned TiO2 nanotube arrays have become of increasing significance because of their unique highly ordered array structure, high specific surface area, unidirectional charge transfer and transportation features. However, their poor visible light utilization as well as the high recombination rate of photoexcited electron-hole pairs greatly limited their practical applications. Herein, we demonstrate the fabrication of visible-light-responsive heterostructured Cr-doped SrTiO3/TiO2 nanotube arrays by a simple hydrothermal method, which facilitate efficient charge separation and thus improve the photoelectrochemical as well as photocatalytic performances.

  11. Conjugated ionomers for photovoltaic applications: electric field driven charge separation in organic photovoltaics. Final Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lonergan, Mark

    Final technical report for Conjugated ionomers for photovoltaic applications, electric field driven charge separation in organic photovoltaics. The central goal of the work we completed was been to understand the photochemical and photovoltaic properties of ionically functionalized conjugated polymers (conjugated ionomers or polyelectrolytes) and energy conversion systems based on them. We primarily studied two classes of conjugated polymer interfaces that we developed based either upon undoped conjugated polymers with an asymmetry in ionic composition (the ionic junction) or doped conjugated polymers with an asymmetry in doping type (the p-n junction). The materials used for these studies have primarily been themore » polyacetylene ionomers. We completed a detailed study of p-n junctions with systematically varying dopant density, photochemical creation of doped junctions, and experimental and theoretical work on charge transport and injection in polyacetylene ionomers. We have also completed related work on the use of conjugated ionomers as interlayers that improve the efficiency or organic photovoltaic systems and studied several important aspects of the chemistry of ionically functionalized semiconductors, including mechanisms of so-called "anion-doping", the formation of charge transfer complexes with oxygen, and the synthesis of new polyfluorene polyelectrolytes. We also worked worked with the Haley group at the University of Oregon on new indenofluorene-based organic acceptors.« less

  12. Exciton generation/dissociation/charge-transfer enhancement in inorganic/organic hybrid solar cells by robust single nanocrystalline LnPxOy (Ln = Eu, Y) doping.

    PubMed

    Jin, Xiao; Sun, Weifu; Chen, Zihan; Wei, Taihuei; Chen, Chuyang; He, Xingdao; Yuan, Yongbiao; Li, Yue; Li, Qinghua

    2014-06-11

    Low-temperature solution-processed photovoltaics suffer from low efficiencies because of poor exciton or electron-hole transfer. Inorganic/organic hybrid solar cell, although still in its infancy, has attracted great interest thus far. One of the promising ways to enhance exciton dissociation or electron-hole transport is the doping of lanthanide phosphate ions. However, the underlying photophysical mechanism remains poorly understood. Herein, by applying femtosecond transient absorption spectroscopy, we successfully distinguished hot electron, less energetic electron, hole transport from electron-hole recombination. Concrete evidence has been provided that lanthanide phosphate doping improves the efficiency of both hot electron and "less energetic" electron transfers from donor to acceptor, but the hole transport almost remains unchanged. In particular, the hot electron transfer lifetime was shortened from 30.2 to 12.7 ps, that is, more than 60% faster than pure TiO2 acceptor. Such improvement was ascribed to the facts that the conduction band (CB) edge energy level of TiO2 has been elevated by 0.2 eV, while the valence band level almost remains unchanged, thus not only narrowing the energy offset between CB levels of TiO2 and P3HT, but also meanwhile enlarging the band gap of TiO2 itself that permits one to inhibit electron-hole recombination within TiO2. Consequently, lanthanide phosphate doped TiO2/P3HT bulk-heterojunction solar cell has been demonstrated to be a promising hybrid solar cell, and a notable power conversion efficiency of 2.91% is therefore attained. This work indicates that lanthanide compound ions can efficiently facilitate exciton generation, dissociation, and charge transport, thus enhancing photovoltaic performance.

  13. Metal Doped Manganese Oxide Thin Films for Supercapacitor Application.

    PubMed

    Tung, Mai Thanh; Thuy, Hoang Thi Bich; Hang, Le Thi Thu

    2015-09-01

    Co and Fe doped manganese oxide thin films were prepared by anodic deposition at current density of 50 mA cm(-2) using the electrolyte containing manganese sulfate and either cobalt sulfate or ferrous sulfate. Surface morphology and crystal structure of oxides were studied by scanning electron microscope (SEM) and X-ray diffraction (XRD). Chemical composition of materials was analyzed by X-ray energy dispersive spectroscope (EDS), iodometric titration method and complexometric titration method, respectively. Supercapacitive behavior of Co and Fe doped manganese oxide films were characterized by cyclic voltammetry (CV) and impedance spectroscopy (EIS). The results show that the doped manganese oxides are composed of nano fiber-like structure with radius of 5-20 nm and remain amorphous structure after heat treatment at 100 degrees C for 2 hours. The average valence of manganese increases from +3.808 to +3.867 after doping Co and from +3.808 to +3.846 after doping Fe. The doped manganese oxide film electrodes exhibited preferably ideal pseudo-capacitive behavior. The specific capacitance value of deposited manganese oxide reaches a maximum of 175.3 F/g for doping Co and 244.6 F/g for doping Fe. The thin films retained about 84% of the initial capacity even after 500 cycles of charge-discharge test. Doping Co and Fe decreases diffusion and charge transfer resistance of the films. The electric double layer capacitance and capacitor response frequency are increased after doping.

  14. Disorder-driven metal-insulator-transition assisted by interband Coulomb repulsion in a surface transfer doped electron system

    NASA Astrophysics Data System (ADS)

    Francisco Sánchez-Royo, Juan

    2012-12-01

    The two-dimensional conducting properties of the Si(111) \\sqrt {3} \\times \\sqrt {3} surface doped by the charge surface transfer mechanism have been calculated in the frame of a semiclassical Drude-Boltzmann model considering donor scattering mechanisms. To perform these calculations, the required values of the carrier effective mass were extracted from reported angle-resolved photoemission results. The calculated doping dependence of the surface conductance reproduces experimental results reported and reveals an intricate metallization process driven by disorder and assisted by interband interactions. The system should behave as an insulator even at relatively low doping due to disorder. However, when doping increases, the system achieves to attenuate the inherent localization effects introduced by disorder and to conduct by percolation. The mechanism found by the system to conduct appears to be connected with the increasing of the carrier effective mass observed with doping, which seems to be caused by interband interactions involving the conducting band and deeper ones. This mass enhancement reduces the donor Bohr radius and, consequently, promotes the screening ability of the donor potential by the electron gas.

  15. SU-E-T-782: Using Light Output From Doped Plastic Scintillators to Resolve the Linear Energy Transfer Spectrum of Clinical Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nusrat, H; Pang, G; Ahmad, S

    2015-06-15

    Purpose: This research seeks to develop a portable, clinically-suitable linear energy transfer (LET) detector. In radiotherapy, absorbed dose is commonly used to measure the amount of delivered radiation, though, it is not a good indicator of actual biological damage. LET is the energy absorbed per unit length by a medium along charged particle’s pathway; studies have shown that LET correlates well with relative biological effectiveness (RBE). Methods: According to Birks’ law, light output of plastic scintillators is stopping-power dependent. This dependency can be varied through doping by various high-Z elements. By measuring light output signals of differently doped plastic scintillatorsmore » (represented by column vector S, where each row corresponds to different scintillator material), the fluence of charged particles of a given LET (represented by column vector Φ, where each row corresponds to different LET bins) can be unfolded by S=R*Φ where R is system response matrix (each row represents a different scintillator, each column corresponds to different electron LET). Monte Carlo (MC) GEANT4.10.1 was used to evaluate ideal detector response of BC408 scintillating material doped with various concentrations of several high Z dopants. Measurements were performed to validate MC. Results: Signal for 1%-lead doped BC408 and the non-doped scintillator was measured experimentally by guiding light emitted by the scintillator (via in-house made taper, fiber system) to a PMT and then an electrometer. Simulations of 1%Pb-doped scintillator to non-doped scintillator revealed 9.3% reduction in light output for 6 MeV electrons which compared well (within uncertainty) with measurements showing 10% reduction (6MeV electrons). Conclusion: Measurements were used to validate MC simulation of light output from doped scintillators. The doping of scintillators is a viable technique to induce LET dependence. Our goal is to use this effect to resolve the LET spectrum of an incident beam.« less

  16. Rod-like polyaniline supported on three-dimensional boron and nitrogen-co-doped graphene frameworks for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Liao, Kexuan; Gao, Jialu; Fan, Jinchen; Mo, Yao; Xu, Qunjie; Min, Yulin

    2017-12-01

    In this work, novel three-dimensional (3D) boron and nitrogen-co-doped three-dimensional (3D) graphene frameworks (BN-GFs) supporting rod-like polyaniline (PANI) are facilely prepared and used as electrodes for high-performance supercapacitors. The results demonstrated that BN-GFs with tuned electronic structure can not only provide a large surface area for rod-like PANI to anchor but also effectively facilitate the ion transfer and charge storage in the electrode. The PANI/BN-GF composite with wrinkled boron and nitrogen-co-doped graphene sheets interconnected by rod-like PANI exhibits excellent capacitive properties with a maximum specific capacitance of 596 F/g at a current density of 0.5 A/g. Notably, they also show excellent cycling stability with more than 81% capacitance retention after 5000 charge-discharge cycles.

  17. Effect of band gap engineering in anionic-doped TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Abd Hamid, Sharifah Bee

    2017-01-01

    A simple yet promising strategy to modify TiO2 band gap was achieved via dopants incorporation which influences the photo-responsiveness of the photocatalyst. The mesoporous TiO2 was successfully mono-doped and co-doped with nitrogen and fluorine dopants. The results indicate that band gap engineering does not necessarily requires oxygen substitution with nitrogen or/and fluorine, but from the formation of additional mid band and Ti3+ impurities states. The formation of oxygen vacancies as a result of modified color centres and Ti3+ ions facilitates solar light absorption and influences the transfer, migration and trapping of the photo-excited charge carriers. The synergy of dopants in co-doped TiO2 shows better optical properties relative to single N and F doped TiO2 with c.a 0.95 eV band gap reduction. Evidenced from XPS, the synergy between N and F in the co-doped TiO2 uplifts the valence band towards the conduction band. However, the photoluminescence data reveals poorer electrons and holes separation as compared to F-doped TiO2. This observation suggests that efficient solar light harvesting was achievable via N and F co-doping, but excessive defects could act as charge carriers trapping sites.

  18. Aptamer biosensor for Salmonella typhimurium detection based on luminescence energy transfer from Mn2 +-doped NaYF4:Yb, Tm upconverting nanoparticles to gold nanorods

    NASA Astrophysics Data System (ADS)

    Cheng, Keyi; Zhang, Jianguo; Zhang, Liping; Wang, Lun; Chen, Hongqi

    2017-01-01

    A highly sensitive luminescent bioassay for the detection of Salmonella typhimurium was fabricated using Mn2 +-doped NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) as the donor and gold nanorods (Au NRs) as the acceptor and utilizing an energy transfer (LET) system. Mn2 +-doped NaYF4:Yb,Tm UCNPs with a strong emission peak at 807 nm were obtained by changing the doped ion ratio. Carboxyl-terminated Mn2 +-doped NaYF4:Yb,Tm UCNPs were coupled with S. typhimurium aptamers, which were employed to capture and concentrate S. typhimurium. The electrostatic interactions shorten the distance between the negatively charged donor and the positively charged acceptor, which results in luminescence quenching. The added S. typhimurium leads to the restoration of luminescence due to the formation of UCNPs-aptamers-S. typhimurium, which repels the UCNPs-aptamers from the Au NRs. The LET system does not occur because of the nonexistence of the luminescence emission band of Mn2 +-doped NaYF4:Yb,Tm UCNPs, which had large spectral overlap with the absorption band of Au NRs. Under optimal conditions, the linear range of detecting S. typhimurium was 12 to 5 × 105 cfu/mL (R = 0.99). The limit of detection for S. typhimurium was as low as 11 cfu/mL in an aqueous buffer. The measurement of S. typhimurium in milk samples was satisfied in accordance with the plate-counting method, suggesting that the proposed method was of practical value in the application of food security.

  19. Morphology controls the thermoelectric power factor of a doped semiconducting polymer

    PubMed Central

    Patel, Shrayesh N.; Glaudell, Anne M.; Peterson, Kelly A.; Thomas, Elayne M.; O’Hara, Kathryn A.; Lim, Eunhee; Chabinyc, Michael L.

    2017-01-01

    The electrical performance of doped semiconducting polymers is strongly governed by processing methods and underlying thin-film microstructure. We report on the influence of different doping methods (solution versus vapor) on the thermoelectric power factor (PF) of PBTTT molecularly p-doped with FnTCNQ (n = 2 or 4). The vapor-doped films have more than two orders of magnitude higher electronic conductivity (σ) relative to solution-doped films. On the basis of resonant soft x-ray scattering, vapor-doped samples are shown to have a large orientational correlation length (OCL) (that is, length scale of aligned backbones) that correlates to a high apparent charge carrier mobility (μ). The Seebeck coefficient (α) is largely independent of OCL. This reveals that, unlike σ, leveraging strategies to improve μ have a smaller impact on α. Our best-performing sample with the largest OCL, vapor-doped PBTTT:F4TCNQ thin film, has a σ of 670 S/cm and an α of 42 μV/K, which translates to a large PF of 120 μW m−1 K−2. In addition, despite the unfavorable offset for charge transfer, doping by F2TCNQ also leads to a large PF of 70 μW m−1 K−2, which reveals the potential utility of weak molecular dopants. Overall, our work introduces important general processing guidelines for the continued development of doped semiconducting polymers for thermoelectrics. PMID:28630931

  20. Synthesis and characterization of Ag doped ZnS quantum dots for enhanced photocatalysis of Strychnine asa poison: Charge transfer behavior study by electrochemical impedance and time-resolved photoluminescence spectroscopy.

    PubMed

    Gupta, Vinod Kumar; Fakhri, Ali; Azad, Mona; Agarwal, Shilpi

    2018-01-15

    In this study, the photocatalytic degradation of Strychnine was investigated by ZnS quantum dots and doped with silver in UV systems. ZnS and Ag-ZnS quantum dots were synthesized by chemical method and characterized by powder X-ray diffraction, transmission electron microscopy, UV-vis spectra and photoluminescence. The charge transfer process on the semicon-ductor/electrolyte interface was investigated via electrochemical impedance spectroscopy (EIS) and time-resolved photoluminescence. The average diameters of ZnS and Ag doped ZnS QDs were 3.0-5.0nm and 3.0-5.3nm, respectively. The band gap of ZnS and Ag-ZnS QDs was computed as 3.47 and 3.1eV, respectively. The surface area values of ZnS and Ag-ZnS QDs have been found as 78.25 and 89.54m 2 /g, respectively. The influences of key operating parameters such as initial pH, catalyst dosage, UV radiation intensity, reaction time as well as the effect of initial Strychnine concentration on mineralization extents were studied. The results of the study showed that the maximum removal efficiency of Strychnine had been achieved by un-doped and Ag-doped ZnS QDs at radiation intensity of 100W/m 2 , at time of 60min, pH of 3 and initial Strychnine concentration of 20mg/ml. Also the observations clearly showed that the photocatalysis process with Ag doped ZnS QDs are more effective than un-doped ZnS QDs. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules.

    PubMed

    Salzmann, Ingo; Heimel, Georg; Oehzelt, Martin; Winkler, Stefanie; Koch, Norbert

    2016-03-15

    Today's information society depends on our ability to controllably dope inorganic semiconductors, such as silicon, thereby tuning their electrical properties to application-specific demands. For optoelectronic devices, organic semiconductors, that is, conjugated polymers and molecules, have emerged as superior alternative owing to the ease of tuning their optical gap through chemical variability and their potential for low-cost, large-area processing on flexible substrates. There, the potential of molecular electrical doping for improving the performance of, for example, organic light-emitting devices or organic solar cells has only recently been established. The doping efficiency, however, remains conspicuously low, highlighting the fact that the underlying mechanisms of molecular doping in organic semiconductors are only little understood compared with their inorganic counterparts. Here, we review the broad range of phenomena observed upon molecularly doping organic semiconductors and identify two distinctly different scenarios: the pairwise formation of both organic semiconductor and dopant ions on one hand and the emergence of ground state charge transfer complexes between organic semiconductor and dopant through supramolecular hybridization of their respective frontier molecular orbitals on the other hand. Evidence for the occurrence of these two scenarios is subsequently discussed on the basis of the characteristic and strikingly different signatures of the individual species involved in the respective doping processes in a variety of spectroscopic techniques. The critical importance of a statistical view of doping, rather than a bimolecular picture, is then highlighted by employing numerical simulations, which reveal one of the main differences between inorganic and organic semiconductors to be their respective density of electronic states and the doping induced changes thereof. Engineering the density of states of doped organic semiconductors, the Fermi-Dirac occupation of which ultimately determines the doping efficiency, thus emerges as key challenge. As a first step, the formation of charge transfer complexes is identified as being detrimental to the doping efficiency, which suggests sterically shielding the functional core of dopant molecules as an additional design rule to complement the requirement of low ionization energies or high electron affinities in efficient n-type or p-type dopants, respectively. In an extended outlook, we finally argue that, to fully meet this challenge, an improved understanding is required of just how the admixture of dopant molecules to organic semiconductors does affect the density of states: compared with their inorganic counterparts, traps for charge carriers are omnipresent in organic semiconductors due to structural and chemical imperfections, and Coulomb attraction between ionized dopants and free charge carriers is typically stronger in organic semiconductors owing to their lower dielectric constant. Nevertheless, encouraging progress is being made toward developing a unifying picture that captures the entire range of doping induced phenomena, from ion-pair to complex formation, in both conjugated polymers and molecules. Once completed, such a picture will provide viable guidelines for synthetic and supramolecular chemistry that will enable further technological advances in organic and hybrid organic/inorganic devices.

  2. Improving surface-enhanced Raman scattering properties of TiO(2) nanoparticles by metal Co doping.

    PubMed

    Yang, Libin; Qin, Xiaoyu; Gong, Mengdi; Jiang, Xin; Yang, Ming; Li, Xiuling; Li, Guangzhi

    2014-04-05

    In this paper, pure and different amount Co ions doped TiO2 nanoparticles were synthesized by a sol-hydrothermal method and were served as SERS-active substrate. The effect of metal Co doping on SERS properties of TiO2 nanoparticles was mostly investigated. The results indicate that abundant metal doping energy levels can be formed in the energy gap of TiO2 by an appropriate amount Co ions doping, which can promote the charge transfer from TiO2 to molecule, and subsequently enhance SERS signal of adsorbed molecule on TiO2 substrate, and improve remarkably SERS properties of TiO2 nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Mg-doped Li2FeSiO4/C as high-performance cathode material for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Qu, Long; Luo, Dong; Fang, Shaohua; Liu, Yi; Yang, Li; Hirano, Shin-ichi; Yang, Chun-Chen

    2016-03-01

    Mg-doped Li2FeSiO4/C is synthesized by using Fe2O3 nanoparticle as iron source. Through Rietveld refinement of X-ray diffraction data, it is confirmed that Mg-doped Li2FeSiO4 owns monoclinic P21/n structure and Mg occupies in Fe site in the lattice. Through energy dispersive X-ray measurement, it is detected that Mg element is distributed homogenously in the resulting product. The results of transmission electron microscopy measurement reveal that the effect of Mg-doping on Li2FeSiO4 crystallite size is not obvious. As a cathode material for lithium-ion battery, this Mg-doped Li2FeSiO4/C delivers high discharge capacity of 190 mAh g-1 (the capacity was with respect to the mass of Li2FeSiO4) at 0.1C and its capacity retention of 100 charge-discharge cycles reaches 96% at 0.1C. By the analysis of electrochemical impedance spectroscopy, it is concluded that Mg-doping can help to decrease the charge-transfer resistance and increase the Li+ diffusion capability.

  4. First principles study of the magnetic properties and charge transfer of Ni-doped BiFeO3

    NASA Astrophysics Data System (ADS)

    Sun, Yuan; Sun, Zhenghao; Wei, Ren; Huang, Yuxin; Wang, Lili; Leng, Jing; Xiang, Peng; Lan, Min

    2018-03-01

    We present a first-principles study of electronic structures and magnetic properties in Ni-doped BiFeO3 using the density functional theory + U methods. The BiNixFe1-xO3 (x = 0.125, 0.25, 0.5) multiferroic ceramics represent ferromagnetic properties due to the ferrimagnetic order in Ni-O-Fe, and the magnetic moment rises with increase in Ni doping concentration agreeing well with experimental results. Ni atoms prefer to occupy the diagonal positions in the quasi-plane Ni-O-Fe eight-membered ring. Charge transfer from Bi 6s state to Ni 3d state through O 2p orbital lead to the 2+ oxidation state of Ni, indicating high Néel temperatures of BiNixFe1-xO3, and the electronic state of the system can be described as Bi4+xBi3+1-xNi2+xFe3+1-xO3. The spin polarization of Bi 6s state and O 2p state near the Fermi level contributes to the total magnetic moment. A spin-polarized acceptor level of about 0.4 eV constituted by Bi 6s state and O 2p state is found, which is responsible for the increase in leakage current of Ni-doped BiFeO3.

  5. Field Effect Modulation of Heterogeneous Charge Transfer Kinetics at Back-Gated Two-Dimensional MoS2 Electrodes.

    PubMed

    Wang, Yan; Kim, Chang-Hyun; Yoo, Youngdong; Johns, James E; Frisbie, C Daniel

    2017-12-13

    The ability to improve and to modulate the heterogeneous charge transfer kinetics of two-dimensional (2D) semiconductors, such as MoS 2 , is a major challenge for electrochemical and photoelectrochemical applications of these materials. Here we report a continuous and reversible physical method for modulating the heterogeneous charge transfer kinetics at a monolayer MoS 2 working electrode supported on a SiO 2 /p-Si substrate. The heavily doped p-Si substrate serves as a back gate electrode; application of a gate voltage (V BG ) to p-Si tunes the electron occupation in the MoS 2 conduction band and shifts the conduction band edge position relative to redox species dissolved in electrolyte in contact with the front side of the MoS 2 . The gate modulation of both charge density and energy band alignment impacts charge transfer kinetics as measured by cyclic voltammetry (CV). Specifically, cyclic voltammograms combined with numerical simulations suggest that the standard heterogeneous charge transfer rate constant (k 0 ) for MoS 2 in contact with the ferrocene/ferrocenium (Fc 0/+ ) redox couple can be modulated by over 2 orders of magnitude from 4 × 10 -6 to 1 × 10 -3 cm/s, by varying V BG . In general, the field effect offers the potential to tune the electrochemical properties of 2D semiconductors, opening up new possibilities for fundamental studies of the relationship between charge transfer kinetics and independently controlled electronic band alignment and band occupation.

  6. Superconductor to Mott insulator transition in YBa2Cu3O7/LaCaMnO3 heterostructures.

    PubMed

    Gray, B A; Middey, S; Conti, G; Gray, A X; Kuo, C-T; Kaiser, A M; Ueda, S; Kobayashi, K; Meyers, D; Kareev, M; Tung, I C; Liu, Jian; Fadley, C S; Chakhalian, J; Freeland, J W

    2016-09-15

    The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In pursuit of a new realization of the SIT by interfacial charge transfer, we developed extremely thin superlattices composed of high Tc superconductor YBa2Cu3O7 (YBCO) and colossal magnetoresistance ferromagnet La0.67Ca0.33MnO3 (LCMO). By using linearly polarized resonant X-ray absorption spectroscopy and magnetic circular dichroism, combined with hard X-ray photoelectron spectroscopy, we derived a complete picture of the interfacial carrier doping in cuprate and manganite atomic layers, leading to the transition from superconducting to an unusual Mott insulating state emerging with the increase of LCMO layer thickness. In addition, contrary to the common perception that only transition metal ions may respond to the charge transfer process, we found that charge is also actively compensated by rare-earth and alkaline-earth metal ions of the interface. Such deterministic control of Tc by pure electronic doping without any hindering effects of chemical substitution is another promising route to disentangle the role of disorder on the pseudo-gap and charge density wave phases of underdoped cuprates.

  7. The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: a first-principles study.

    PubMed

    Ren, Xiaodong; Wang, Beizhou; Zhu, Jinzhen; Liu, Jianjun; Zhang, Wenqing; Wen, Zhaoyin

    2015-06-14

    A lithium-air battery as an energy storage technology can be used in electric vehicles due to its large energy density. However, its poor rate capability, low power density and large overpotential problems limit its practical usage. In this paper, the first-principles thermodynamic calculations were performed to study the catalytic activity of X-doped graphene (X = B, N, Al, Si, and P) materials as potential cathodes to enhance charge reactions in a lithium-air battery. Among these materials, P-doped graphene exhibits the highest catalytic activity in reducing the charge voltage by 0.25 V, while B-doped graphene has the highest catalytic activity in decreasing the oxygen evolution barrier by 0.12 eV. By combining these two catalytic effects, B,P-codoped graphene was demonstrated to have an enhanced catalytic activity in reducing the O2 evolution barrier by 0.70 eV and the charge voltage by 0.13 V. B-doped graphene interacts with Li2O2 by Li-sited adsorption in which the electron-withdrawing center can enhance charge transfer from Li2O2 to the substrate, facilitating reduction of O2 evolution barrier. In contrast, X-doped graphene (X = N, Al, Si, and P) prefers O-sited adsorption toward Li2O2, forming a X-O2(2-)···Li(+) interface structure between X-O2(2-) and the rich Li(+) layer. The active structure of X-O2(2-) can weaken the surrounding Li-O2 bonds and significantly reduce Li(+) desorption energy at the interface. Our investigation is helpful in developing a novel catalyst to enhance oxygen evolution reaction (OER) in Li-air batteries.

  8. Clean Transfer of Wafer-Scale Graphene via Liquid Phase Removal of Polycyclic Aromatic Hydrocarbons.

    PubMed

    Kim, Hyun Ho; Kang, Boseok; Suk, Ji Won; Li, Nannan; Kim, Kwang S; Ruoff, Rodney S; Lee, Wi Hyoung; Cho, Kilwon

    2015-05-26

    Pentacene (C22H14), a polycyclic aromatic hydrocarbon, was used as both supporting and sacrificing layers for the clean and doping-free graphene transfer. After successful transfer of graphene to a target substrate, the pentacene layer was physically removed from the graphene surface by using intercalating organic solvent. This solvent-mediated removal of pentacene from graphene surface was investigated by both theoretical calculation and experimental studies with various solvents. The uses of pentacene and appropriate intercalation solvent enabled graphene transfer without forming a residue from the supporting layer. Such residues tend to cause charged impurity scattering and unintentional graphene doping effects. As a result, this clean graphene exhibited extremely homogeneous surface potential profiles over a large area. A field-effect transistor fabricated using this graphene displayed a high hole (electron) mobility of 8050 cm(2)/V·s (9940 cm(2)/V·s) with a nearly zero Dirac point voltage.

  9. Mg,Ce co-doped Lu2Gd1(Ga,Al)5O12 by micro-pulling down method and their luminescence properties

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Yamaguchi, Hiroaki; Yoshino, Masao; Kurosawa, Shunsuke; Shoji, Yasuhiro; Yokota, Yuui; Ohashi, Yuji; Pejchal, Jan; Nikl, Martin; Yoshikawa, Akira

    2018-04-01

    The effects of Mg co-doping on the scintillation properties of Ce:Lu2Gd1(Ga,Al)5O12 (LGGAG) single crystals with different Ga/Al ratios were investigated. Mg co-doped and non co-doped Ce:LGGAG single crystals were grown by the micro-pulling down (µ-PD) method and then cut, polished and annealed for each measurement. Absorption spectra, radioluminescence (RL) spectra, pulse height spectra, and scintillation decay were measured to reveal the effect of Mg co-doping. Ce4+ charge transfer (CT) absorption band peaking at ∼260 nm was observed in Mg co-doped samples, which is in good agreement with previous reports for the Ce4+ CT absorption band in other garnet-based crystals. The scintillation decay time tended to be accelerated and the light yield tended to be decreased by Mg co-doping at higher Ga concentrations.

  10. Influence of Li+ charge compensator ion on the energy transfer from Pr3 + to Gd3 + ions in Ca9Mg(PO4)6F2:Gd3 +, Pr3 +, Li+ phosphor

    NASA Astrophysics Data System (ADS)

    Tamboli, Sumedha; Dhoble, S. J.

    2017-09-01

    Phototherapy is a renowned treatment for curing skin diseases since ancient times. Phototherapeutic treatment for psoriasis and many other diseases require narrow band ultra violet-B (NB-UVB) light with peak intensity at 313 nm to be exposed to the affected part of body. In this paper, we report combustion synthesis of NB-UVB - 313 nm emitting Ca9Mg(PO4)6F2 phosphors doped with Gd3 +, Pr3 + and Li+ ions. The phase formation was confirmed by obtaining X-ray diffraction (XRD) pattern and morphology was studied with the Scanning electron microscopy (SEM) images. Photoluminescence (PL) emission spectra show intense narrow band emission at 313 nm under 274 nm excitation wavelengths. Emission intensity was enhanced when Ca9Mg(PO4)6F2 compound is co-doped with Pr3 + ions. Excitation spectra of Ca9Mg(PO4)6F2:Gd3 +, Pr3 + doped samples shows broad excitation in ultra violet C (UVC) region. Diffuse reflectance spectra (DRS), obtained by UV-visible spectrophotometer, measures the absorption properties of the material. By applying Kubelka Munk function on the diffuse reflectance spectra, band gap of the material is determined. PL decay curves were examined which indicates efficient energy transfer between Pr3 + and Gd3 + ions. Charge compensation effect was also studied by co-doping Li+ ion in host. Emission intensity was found to increase with the addition of charge compensator. The prepared phosphor has potential to convert UVC light into NB-UVB. The luminescence intensity of Gd3 + shows remarkable increase when it is sensitized with Pr3 +, and an addition of charge compensator in the form of Li+, show even better results. This phosphor surely has the potential to be used as phototherapy lamp phosphor.

  11. Electronic doping of transition metal oxide perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cammarata, Antonio, E-mail: cammaant@fel.cvut.cz; Rondinelli, James M.

    2016-05-23

    CaFeO{sub 3} is a prototypical negative charge transfer oxide that undergoes electronic metal-insulator transition concomitant with a dilation and contraction of nearly rigid octahedra. Altering the charge neutrality of the bulk system destroys the electronic transition, while the structure is significantly modified at high charge content. Using density functional theory simulations, we predict an alternative avenue to modulate the structure and the electronic transition in CaFeO{sub 3}. Charge distribution can be modulated using strain-rotation coupling and thin film engineering strategies, proposing themselves as a promising avenue for fine tuning electronic features in transition metal-oxide perovskites.

  12. Interaction of single-walled carbon nanotubes with poly(propyl ether imine) dendrimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayamurugan, G.; Rajesh, Y. B. R. D.; Jayaraman, N.

    2011-03-14

    We study the complexation of nontoxic, native poly(propyl ether imine) dendrimers with single-walled carbon nanotubes (SWNTs). The interaction was monitored by measuring the quenching of inherent fluorescence of the dendrimer. The dendrimer-nanotube binding also resulted in the increased electrical resistance of the hole doped SWNT, due to charge-transfer interaction between dendrimer and nanotube. This charge-transfer interaction was further corroborated by observing a shift in frequency of the tangential Raman modes of SWNT. We also report the effect of acidic and neutral pH conditions on the binding affinities. Experimental studies were supplemented by all atom molecular dynamics simulations to provide amore » microscopic picture of the dendrimer-nanotube complex. The complexation was achieved through charge transfer and hydrophobic interactions, aided by multitude of oxygen, nitrogen, and n-propyl moieties of the dendrimer.« less

  13. Enhancing the superconducting temperature of MgB2 by SWCNT dilution

    NASA Astrophysics Data System (ADS)

    Ma, Danhao; Jayasingha, Ruwantha; Hess, Dustin T.; Adu, Kofi W.; Sumanasekera, Gamini U.; Terrones, Mauricio

    2014-02-01

    We report, for the first time, an increase in the superconducting critical temperature, TC of commercial “dirty” MgB2 by a nonsubstitutional hole-doping of the MgB2 structure using minute, single-wall carbon nanotube (SWCNT) inclusions. We varied the SWCNTs concentration from 0.05 wt% to 5 wt% and investigated the temperature-dependent resistivity from 10 K to 300 K. We used micro-Raman spectroscopy, field-emission scanning electron microscopy, and X-ray diffraction to analyze the interfacial interactions between the SWCNTs and the MgB2 grains. We obtained an increase in TC from 33.0 to 37.8 K (ΔTC+=4.8 K), which is attributed to charge transfer from the MgB2 structure to the SWCNT structure. The charge transfer phenomenon is confirmed by micro-Raman analysis of the phonon states of the SWCNT tangential band frequency in the composites. We determined the charge transfer per carbon atom to be 0.0023/C, 0.0018/C and 0.0008/C for 0.05 wt%, 0.5 wt% and 5 wt% SWCNT inclusions, respectively, taking into account the contributions from the softening of the lattice constant and the nonadiabatic (dynamic) effects at the Fermi level. This report provides an experimental, alternative pathway to hole-doping of MgB2 without appealing to chemical substitution.

  14. Ultralow contact resistance at an epitaxial metal/oxide heterojunction through interstitial site doping.

    PubMed

    Chambers, Scott A; Gu, Meng; Sushko, Peter V; Yang, Hao; Wang, Chongmin; Browning, Nigel D

    2013-08-07

    Heteroepitaxial growth of Cr metal on Nb-doped SrTiO₃(001) is accompanied by Cr diffusion to interstitial sites within the first few atomic planes, an anchoring of the Cr film to the substrate, charge transfer from Cr to Ti, and metallization of the near-surface region, as depicted in the figure. The contact resistance of the resulting interface is exceedingly low. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Preparation of K+-Doped Core-Shell NaYF4:Yb, Er Upconversion Nanoparticles and its Application for Fluorescence Immunochromatographic Assay of Human Procalcitonin.

    PubMed

    Tang, Jie; Lei, Lijiang; Feng, Hui; Zhang, Hongman; Han, Yuwang

    2016-11-01

    In the present study, we reported a convenient route to prepare well dispersed and functionalized K + -doped core-shell upconversion nanoparticles (UCP) by layer-by-layer (LbL) assembly of polyelectrolytes. UCP was firstly transferred to aqueous phase using cationic surfactant cetyl trimethyl ammonium bromide (CTAB) via hydrophobic interaction without removing the existing oleic acid (OA). Then the positively charged hydrophilic UCP@CTAB was further alternately deposited with negatively charged [poly (sodium 4-styrenesulfonate)] (PSS), positively charged [poly (allylamine hydrochloride)] (PAH) and negatively charged [poly (acrylic acid)] (PAA). The final carboxyl functionalized UCP@CTAB@PSS@PAH@PAA was then conjugated with monoclonal antibody1 (AB1) of procalcitonin (PCT), resulting in successful detection of PCT antigens based on the immunochromatographic assay (ICA). Linear response was achieved from 0 to 10 ng/mL, and the lowest limit of detection (LLD) was 0.18 ng/mL.

  16. Distorted Carbon Nitride Structure with Substituted Benzene Moieties for Enhanced Visible Light Photocatalytic Activities.

    PubMed

    Kim, Hyejin; Gim, Suji; Jeon, Tae Hwa; Kim, Hyungjun; Choi, Wonyong

    2017-11-22

    Carbon nitride (CN) is being intensively investigated as a low-cost visible light active photocatalyst, but its practical applications are limited because of the fast charge pair recombination and low visible light absorption. Here, we introduce a new strategy for enhancing its visible light photocatalytic activity by designing the CN structure in which the nitrogen of tertiary amine is substituted with a benzene molecule connected by three heptazine rings. The intramolecular benzene doping induced the structural changes from planar symmetric structure to distorted geometry, which could be predicted by density functional theory calculation. This structural distortion facilitated the spatial separation of photogenerated charge pairs and retarded charge recombination via exciton dissociation. Such unique properties of the benzene-incorporated CN were confirmed by the photoluminescence (PL) and photoelectrochemical analyses. The optimal loading of benzene doping reduced the PL of the conjugated ring system (π → π* transition) but enhanced the PL of the forbidden n → π* transition at the nitrogen atoms with lone pair electrons due to the distortion from the planar geometry. The photoelectrode of benzene-doped CN exhibited higher photocurrent and lower charge transfer resistance than bare CN electrode, indicating that the photogenerated charge pairs are more efficiently separated. As a result, the benzene-doped CN markedly increased the photocatalytic activity for the degradation of various organic pollutants and that for H 2 O 2 production (via O 2 reduction). This study proposes a simple strategy for chemical structural modification of carbon nitride to boost the visible light photocatalytic activity.

  17. Surface enhanced Raman scattering of aged graphene: Effects of annealing in vacuum

    NASA Astrophysics Data System (ADS)

    Wang, Yingying; Ni, Zhenhua; Li, Aizhi; Zafar, Zainab; Zhang, Yan; Ni, Zhonghua; Qu, Shiliang; Qiu, Teng; Yu, Ting; Xiang Shen, Ze

    2011-12-01

    In this paper, we report a simple method to recover the surface enhanced Raman scattering activity of aged graphene. The Raman signals of Rhodamine molecules absorbed on aged graphene are dramatically increased after vacuum annealing and comparable to those on fresh graphene. Atomic force microscopy measurements indicate that residues on aged graphene surface can efficiently be removed by vacuum annealing, which makes target molecule closely contact with graphene. We also find that the hole doping in graphene will facilitate charge transfer between graphene and molecule. These results confirm the strong Raman enhancement of target molecule absorbed on graphene is due to the charge transfer mechanism.

  18. A nonconjugated radical polymer glass with high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Joo, Yongho; Agarkar, Varad; Sung, Seung Hyun; Savoie, Brett M.; Boudouris, Bryan W.

    2018-03-01

    Solid-state conducting polymers usually have highly conjugated macromolecular backbones and require intentional doping in order to achieve high electrical conductivities. Conversely, single-component, charge-neutral macromolecules could be synthetically simpler and have improved processibility and ambient stability. We show that poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a nonconjugated radical polymer with a subambient glass transition temperature, underwent rapid solid-state charge transfer reactions and had an electrical conductivity of up to 28 siemens per meter over channel lengths up to 0.6 micrometers. The charge transport through the radical polymer film was enabled with thermal annealing at 80°C, which allowed for the formation of a percolating network of open-shell sites in electronic communication with one another. The electrical conductivity was not enhanced by intentional doping, and thin films of this material showed high optical transparency.

  19. High conductivity carbon nanotube wires from radial densification and ionic doping

    NASA Astrophysics Data System (ADS)

    Alvarenga, Jack; Jarosz, Paul R.; Schauerman, Chris M.; Moses, Brian T.; Landi, Brian J.; Cress, Cory D.; Raffaelle, Ryne P.

    2010-11-01

    Application of drawing dies to radially densify sheets of carbon nanotubes (CNTs) into bulk wires has shown the ability to control electrical conductivity and wire density. Simultaneous use of KAuBr4 doping solution, during wire drawing, has led to an electrical conductivity in the CNT wire of 1.3×106 S/m. Temperature-dependent electrical measurements show that conduction is dominated by fluctuation-assisted tunneling, and introduction of KAuBr4 significantly reduces the tunneling barrier between individual nanotubes. Ultimately, the concomitant doping and densification process leads to closer packed CNTs and a reduced charge transfer barrier, resulting in enhanced bulk electrical conductivity.

  20. Electronic structure evolution in doping of fullerene (C{sub 60}) by ultra-thin layer molybdenum trioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenggong; Wang, Congcong; Kauppi, John

    2015-08-28

    Ultra-thin layer molybdenum oxide doping of fullerene has been investigated using ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The highest occupied molecular orbital (HOMO) can be observed directly with UPS. It is observed that the Fermi level position in fullerene is modified by ultra-thin-layer molybdenum oxide doping, and the HOMO onset is shifted to less than 1.3 eV below the Fermi level. The XPS results indicate that charge transfer was observed from the C{sub 60} to MoO{sub x} and Mo{sup 6+} oxides is the basis as hole dopants.

  1. Adsorption of cyanogen chloride on the surface of boron nitride nanotubes for CNCl sensing

    NASA Astrophysics Data System (ADS)

    Movlarooy, Tayebeh; Fadradi, Mahboobeh Amiri

    2018-05-01

    The adsorption of CNCl gas, on the surface of boron nitride nanotubes in pure form, as well as doped with Al and Ga, based on the density functional theory (DFT) has been studied. The electron and structural properties of pristine and doped nanotubes have been investigated. By calculating the adsorption energy, the most stable positions and the equilibrium distance are obtained, and charge transferred and electronic properties have been calculated. The most stable molecule adsorption position for pure nanotube is obtained at the center of the hexagon and for doped nanotube above the impurity atom from N side.

  2. Electron transport in doped fullerene molecular junctions

    NASA Astrophysics Data System (ADS)

    Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick

    The effect of doping on the electron transport of molecular junctions is analyzed in this paper. The doped fullerene molecules are stringed to two semi-infinite gold electrodes and analyzed at equilibrium and nonequilibrium conditions of these device configurations. The contemplation is done using nonequilibrium Green’s function (NEGF)-density functional theory (DFT) to evaluate its density of states (DOS), transmission coefficient, molecular orbitals, electron density, charge transfer, current, and conductance. We conclude from the elucidated results that Au-C16Li4-Au and Au-C16Ne4-Au devices behave as an ordinary p-n junction diode and a Zener diode, respectively. Moreover, these doped fullerene molecules do not lose their metallic nature when sandwiched between the pair of gold electrodes.

  3. Electronic Transport Properties of Carbon-Nanotube Networks: The Effect of Nitrate Doping on Intratube and Intertube Conductances

    NASA Astrophysics Data System (ADS)

    Ketolainen, T.; Havu, V.; Jónsson, E. Ö.; Puska, M. J.

    2018-03-01

    The conductivity of carbon-nanotube (CNT) networks can be improved markedly by doping with nitric acid. In the present work, CNTs and junctions of CNTs functionalized with NO3 molecules are investigated to understand the microscopic mechanism of nitric acid doping. According to our density-functional-theory band-structure calculations, there is charge transfer from the CNT to adsorbed molecules indicating p -type doping. The average doping efficiency of the NO3 molecules is higher if the NO3 molecules form complexes with water molecules. In addition to electron transport along individual CNTs, we also study electron transport between different types (metallic, semiconducting) of CNTs. Reflecting the differences in the electronic structures of semiconducting and metallic CNTs, we find that in addition to turning semiconducting CNTs metallic, doping further increases electron transport most efficiently along semiconducting CNTs as well as through the junctions between them.

  4. Facile hydrothermal synthesis of mn doped ZnO nanopencils for development of amperometric glucose biosensors

    NASA Astrophysics Data System (ADS)

    Shukla, Mayoorika; Pramila; Agrawal, Jitesh; Dixit, Tejendra; Palani, I. A.; Singh, Vipul

    2018-05-01

    Mn doped ZnO nanopencils were synthesized via low temperature hydrothermal process for fabrication of enzymatic electrochemical glucose biosensor. The KMnO4 was found to play a dual role in modifying morphology and inducing Mn doping. Interestingly, two different types of morphologies viz nanorods and nanopencils along with Mn doping in the later were obtained. Incorporation of Mn has shown a tremendous effect on the morphological variations, repression of defects and electrochemical charge transfer at electrode electrolyte interface. The possible reason behind obtained morphological changes has been proposed which in turn were responsible for the improvement in the different figure of merits of as fabricated enzymatic electrochemical biosensor. There has been a 17 fold enhancement in the sensitivity of the as fabricated glucose biosensor from ZnO nanorods to Mn doped ZnO nanopencils which can be attributed to morphological variation and Mn doping.

  5. Synthesis, properties, and formation mechanism of Mn-doped Zn 2 SiO 4 nanowires and associated heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Haiqing; Moronta, Dominic; Li, Luyao

    In this study, we have put forth a facile hydrothermal approach to synthesize an array of one-dimensional (1D) Mn-doped Zn 2SiO 4 nanostructures. Specifically, we have probed and correlated the effects of controllable reaction parameters such as the pH and Mn dopant concentrations with the resulting crystal structures and morphologies of the products obtained. Based upon our results, we find that careful tuning of the pH versus the Mn dopant level gives rise to opposite trends with respect to the overall size of the resulting one-dimensional nanostructures. Significantly, we have highlighted the role of the Mn dopant ion concentration asmore » a potentially generalizable reaction parameter in solution-based synthesis for controlling morphology and hence, the observed optical behavior. Indeed, such a strategy can be potentially generalized to systems such as but not limited to Mn-doped ZnS, CdS, and CdSe quantum dots (QD), which, to the best of our knowledge, denote promising candidates for a variety of optoelectronic applications. Specifically, we have carefully optimized the synthesis conditions in order to generate a series of chemically well-defined Mn-doped Zn 2SiO 4 not only possessing Mn concentrations ranging from 3% to 8% but also characterized by highly crystalline, monodisperse wire-like motifs measuring ~30 nm in diameter and ~700 nm in length. Optically, the photoluminescence signals associated with the 1D series yielded a volcano-shaped relationship between PL intensities and the Mn dopant level. In additional experiments, we have immobilized CdSe quantum dots (QDs) onto the external surfaces of our as-synthesized Mn-doped Zn 2SiO 4 nanowires, in order to form novel composite heterostructures. The optical properties of the CdSe QD–Mn:Zn 2SiO 4 heterostructures have been subsequently examined. Our results have demonstrated the likely co-existence of both energy transfer and charge transfer phenomena between the two constituent components of our as-prepared composites. Specifically, when both components are photoexcited, both energy transfer and charge transfer were found to plausibly occur, albeit in opposite directions. When the CdSe QDs are excited alone for example, charge transfer probably takes place from the CdSe QDs to the dopant Mn 2+ ions. We believe that our as-processed heterostructures are therefore promising as a tunable light-harvesting motif. Essentially, these materials have broadened the effective light absorption range for optical ‘accessibility’, not only through their incorporation of dopant-tunable Zn 2SiO 4 possessing complementary absorption properties to those of the QDs but also through their integration of CdSe QDs with size-tailorable optical behavior.« less

  6. Synthesis, properties, and formation mechanism of Mn-doped Zn 2 SiO 4 nanowires and associated heterostructures

    DOE PAGES

    Liu, Haiqing; Moronta, Dominic; Li, Luyao; ...

    2018-03-28

    In this study, we have put forth a facile hydrothermal approach to synthesize an array of one-dimensional (1D) Mn-doped Zn 2SiO 4 nanostructures. Specifically, we have probed and correlated the effects of controllable reaction parameters such as the pH and Mn dopant concentrations with the resulting crystal structures and morphologies of the products obtained. Based upon our results, we find that careful tuning of the pH versus the Mn dopant level gives rise to opposite trends with respect to the overall size of the resulting one-dimensional nanostructures. Significantly, we have highlighted the role of the Mn dopant ion concentration asmore » a potentially generalizable reaction parameter in solution-based synthesis for controlling morphology and hence, the observed optical behavior. Indeed, such a strategy can be potentially generalized to systems such as but not limited to Mn-doped ZnS, CdS, and CdSe quantum dots (QD), which, to the best of our knowledge, denote promising candidates for a variety of optoelectronic applications. Specifically, we have carefully optimized the synthesis conditions in order to generate a series of chemically well-defined Mn-doped Zn 2SiO 4 not only possessing Mn concentrations ranging from 3% to 8% but also characterized by highly crystalline, monodisperse wire-like motifs measuring ~30 nm in diameter and ~700 nm in length. Optically, the photoluminescence signals associated with the 1D series yielded a volcano-shaped relationship between PL intensities and the Mn dopant level. In additional experiments, we have immobilized CdSe quantum dots (QDs) onto the external surfaces of our as-synthesized Mn-doped Zn 2SiO 4 nanowires, in order to form novel composite heterostructures. The optical properties of the CdSe QD–Mn:Zn 2SiO 4 heterostructures have been subsequently examined. Our results have demonstrated the likely co-existence of both energy transfer and charge transfer phenomena between the two constituent components of our as-prepared composites. Specifically, when both components are photoexcited, both energy transfer and charge transfer were found to plausibly occur, albeit in opposite directions. When the CdSe QDs are excited alone for example, charge transfer probably takes place from the CdSe QDs to the dopant Mn 2+ ions. We believe that our as-processed heterostructures are therefore promising as a tunable light-harvesting motif. Essentially, these materials have broadened the effective light absorption range for optical ‘accessibility’, not only through their incorporation of dopant-tunable Zn 2SiO 4 possessing complementary absorption properties to those of the QDs but also through their integration of CdSe QDs with size-tailorable optical behavior.« less

  7. Enhancing light harvesting and charge transport in organic solar cells via integrating lanthanide-doped upconversation materials

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Yang, Xiao-Yu; Niu, Meng-si; Feng, Lin; Lv, Cheng-kun; Zhang, Kang-ning; Bi, Peng-qing; Yang, Junliang; Hao, Xiao-Tao

    2018-07-01

    Irradiation of lanthanide-doped upconversion nanoparticles with infrared light can lead to the emission of visible light, which is subsequently absorbed by the organic photoactive layer resulting in the performance enhancement of organic solar cells (OSCs). In this work, OSCs based on poly (3-hexylthiophene) (P3HT) and Phenyl C61 butyric acid methyl ester (PC61BM) blending ytterbium(III), erbium(III) co-doped sodium yttrium fluoride (NaYF4: Yb3+, Er3+) nanoparticles were fabricated with inverted structures. The results indicated that the short current density (J sc) and fill factor were apparently enhanced from 8.60 mA cm‑2 to 9.31 mA cm‑2 and from 57.96% to 64.84%, respectively, leading to an increment of power conversion efficiency (PCE). The photocurrent improvement may have attributed to the additional absorption light generated from upconversion with 980 nm excitation. The active layers with upconversion nanoparticles were investigated to prove enhanced light harvesting, charge transport and energy transfer from upconversion nanoparticles to P3HT. A synergistic effect of broadening light harvesting, efficient energy transfer process, increased carrier mobility and enhanced exciton dissociation in the polymer bulk heterojunction may contribute to the performance enhancement.

  8. Improved electron transfer and plasmonic effect in dye-sensitized solar cells with bi-functional Nb-doped TiO2/Ag ternary nanostructures.

    PubMed

    Park, Jung Tae; Chi, Won Seok; Jeon, Harim; Kim, Jong Hak

    2014-03-07

    TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements.

  9. Tuning the pure monoclinic phase of WO3 and WO3-Ag nanostructures for non-enzymatic glucose sensing application with theoretical insight from electronic structure simulations

    NASA Astrophysics Data System (ADS)

    Ponnusamy, Rajeswari; Gangan, Abhijeet; Chakraborty, Brahmananda; Sekhar Rout, Chandra

    2018-01-01

    Here, we report the controlled hydrothermal synthesis and tuning of the pure monoclinic phase of WO3 and WO3-Ag nanostructures. Comparative electrochemical nonenzymatic glucose sensing properties of WO3 and WO3-Ag were investigated by cyclic voltammetry and chronoamperometric tests. We observed enhanced glucose sensing performance of WO3-Ag porous spheres as compared to bare WO3 nanoslabs. The sensitivity of the pure WO3 nanoslabs is 11.1 μA μM-1 cm-2 whereas WO3-Ag porous spheres exhibit sensitivity of 23.3 μA μM-1 cm-2. The WO3-Ag porous spheres exhibited a good linear range (5-375 μM) with excellent anti-interference property. Our experimental observations are qualitatively supported by density functional theory simulations through investigation of bonding and charge transfer mechanism of glucose on WO3 and Ag doped WO3. As the binding energy of glucose is more on the Ag doped WO3 (100) surface compared to the bare WO3 (100) surface and the Ag doped WO3 (100) surface becomes more conducting due to enhancement of density of states near the Fermi level, we can infer that Ag doped WO3 exhibits a better charge transfer media compared to bare WO3 resulting in enhanced glucose sensitivity in consistency with our experimental data.

  10. Electronic properties of doped and defective NiO: A quantum Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Hyeondeok; Luo, Ye; Ganesh, Panchapakesan

    NiO is a canonical Mott (or charge-transfer) insulator and as such is notoriously difficult to describe using density functional theory (DFT) based electronic structure methods. Doped Mott insulators such as NiO are of interest for various applications but rigorous theoretical descriptions are lacking. Here, we use quantum Monte Carlo methods, which very accurately include electron-electron interactions, to examine energetics, charge- and spin-structures of NiO with various point defects, such as vacancies or substitutional doping with potassium. The formation energy of a potassium dopant is significantly lower than for a Ni vacancy, making potassium an attractive monovalent dopant for NiO. Wemore » compare our results with DFT results that include an on-site Hubbard U (DFT+U) to account for correlations and find relatively large discrepancies for defect formation energies as well as for charge and spin redistributions in the presence of point defects. Finally, it is unlikely that single-parameter fixes of DFT may be able to obtain accurate accounts of anything but a single parameter, e.g., band gap; responses that, maybe in addition to the band gap, depend in subtle and complex ways on ground state properties, such as charge and spin densities, are likely to contain quantitative and qualitative errors.« less

  11. Electronic properties of doped and defective NiO: A quantum Monte Carlo study

    DOE PAGES

    Shin, Hyeondeok; Luo, Ye; Ganesh, Panchapakesan; ...

    2017-12-28

    NiO is a canonical Mott (or charge-transfer) insulator and as such is notoriously difficult to describe using density functional theory (DFT) based electronic structure methods. Doped Mott insulators such as NiO are of interest for various applications but rigorous theoretical descriptions are lacking. Here, we use quantum Monte Carlo methods, which very accurately include electron-electron interactions, to examine energetics, charge- and spin-structures of NiO with various point defects, such as vacancies or substitutional doping with potassium. The formation energy of a potassium dopant is significantly lower than for a Ni vacancy, making potassium an attractive monovalent dopant for NiO. Wemore » compare our results with DFT results that include an on-site Hubbard U (DFT+U) to account for correlations and find relatively large discrepancies for defect formation energies as well as for charge and spin redistributions in the presence of point defects. Finally, it is unlikely that single-parameter fixes of DFT may be able to obtain accurate accounts of anything but a single parameter, e.g., band gap; responses that, maybe in addition to the band gap, depend in subtle and complex ways on ground state properties, such as charge and spin densities, are likely to contain quantitative and qualitative errors.« less

  12. Analysis of pure and malachite green doped polysulfone sample using FT-IR technique

    NASA Astrophysics Data System (ADS)

    Nayak, Rashmi J.; Khare, P. K.; Nayak, J. G.

    2018-05-01

    The sample of pure and malachite green doped Polysulfone in the form of foil was prepared by isothermal immersion technique. For the preparation of pure sample 4 gm of Polysulfone was dissolved in 50 ml of Dimethyl farmamide (DMF) solvent, while for the preparation of doped sample 10 mg, 50 mg and 100 mg Malachite Green was mixed with 4 gm of Polysulfone respectively. For the study of structural characterization of these pure and doped sample, Fourier Transform Infra-Red Spectroscopy (FT-IR) technique was used. This study shows that the intensity of transmittance decreases as the ratio of doping increases in pure polysulfone. The reduction in intensity of transmittance is clearly apparent in the present case more over the bands were broader which indicates towards charge transfer interaction between the donar and acceptor molecule.

  13. Contribution of Jahn-Teller and charge transfer excitations to the photovoltaic effect of manganite/titanite heterojunctions

    NASA Astrophysics Data System (ADS)

    Ifland, Benedikt; Hoffmann, Joerg; Kressdorf, Birte; Roddatis, Vladimir; Seibt, Michael; Jooss, Christian

    2017-06-01

    The effect of correlation effects on photovoltaic energy conversion at manganite/titanite heterojunctions is investigated. As a model system we choose a heterostructure consisting of the small polaron absorber Pr0.66Ca0.34MnO3 (PCMO) epitaxially grown on single-crystalline Nb-doped SrTi0.998Nb0.002O3 (STNO) substrates. The high structural and chemical quality of the interfaces is proved by detailed characterization using high-resolution transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) studies. Spectrally resolved and temperature-dependent photovoltaic measurements show pronounced contributions of both the Jahn-Teller (JT) excitations and the charge transfer (CT) transitions to the photovoltaic effect at different photon energies. A linear temperature dependence of the open-circuit voltage for an excitation in the PCMO manganite is only observed below the charge-ordering temperature, indicating that the diffusion length of the photocarrier exceeds the size of the space charge region. The photovoltaic response is compared to that of a heterojunction of lightly doped Pr0.05Ca0.95MnO3 (CMO)/STNO, where the JT transition is absent. Here, significant contributions of the CT transition to the photovoltaic effect set in below the Neel temperature. We conclude that polaronic correlations and ordering effects are essentials for photovoltaic energy conversion in manganites.

  14. Superconductor to Mott insulator transition in YBa 2Cu 3O 7/LaCaMnO 3 heterostructures

    DOE PAGES

    Gray, B. A.; Middey, S.; Conti, G.; ...

    2016-09-15

    The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In this paper, in pursuit of a new realization of the SIT by interfacial charge transfer, we developed extremely thin superlattices composed of high Tc superconductor YBa 2Cu 3O 7 (YBCO) and colossal magnetoresistance ferromagnet La 0.67Ca 0.33MnO 3 (LCMO). By using linearly polarized resonant X-ray absorption spectroscopy and magnetic circular dichroism, combined with hard X-ray photoelectron spectroscopy, we derived a complete picture of the interfacial carrier doping inmore » cuprate and manganite atomic layers, leading to the transition from superconducting to an unusual Mott insulating state emerging with the increase of LCMO layer thickness. In addition, contrary to the common perception that only transition metal ions may respond to the charge transfer process, we found that charge is also actively compensated by rare-earth and alkaline-earth metal ions of the interface. Finally, such deterministic control of Tc by pure electronic doping without any hindering effects of chemical substitution is another promising route to disentangle the role of disorder on the pseudo-gap and charge density wave phases of underdoped cuprates.« less

  15. Li2.97Mg0.03VO4: High rate capability and cyclability performances anode material for rechargeable Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Dong, Youzhong; Zhao, Yanming; Duan, He; Singh, Preetam; Kuang, Quan; Peng, Hongjian

    2016-07-01

    Mg-doped composite, Li2.97Mg0.03VO4, with an orthorhombic structure was prepared by a sol-gel method. The effects of the Mg doping on the structure and electrochemical performance of Li3VO4 were investigated. The X-ray diffraction pattern shows that the Mg doping does not change the crystal structure of Li3VO4. The EDS mappings indicated the fairly uniform distribution of Mg throughout the grains of Li2.97Mg0.03VO4. Electronic conductivity of Mg-doped Li3VO4 increased by two orders of magnitude compared to that of pure Li3VO4. CV and EIS measurement confirms that the Li2.97Mg0.03VO4 sample exhibits a smaller polarization and transfer resistance and a higher lithium diffusion coefficient compared with the pure Li3VO4. Due to the better electrochemical kinetics properties, Mg-doped Li3VO4 showed a significant improved performance compared to the pure Li3VO4, especially for the high rate capability. At the higher discharge/charge rate (2C), the discharge and charge capacities of 415.5 and 406.1 mAh/g have been obtained for the Li2.97Mg0.03VO4 which is more than three times higher the discharge/charge capacities of Li3VO4. The discharge and charge capacities of pure Li3VO4 are only 126.4 and 125.8 mAh/g respectively. The excellent electrochemical performance of Li2.97Mg0.03VO4 enables it as a promising anode material for rechargeable lithium-ion batteries.

  16. Doping process of p-type GaN nanowires: A first principle study

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Diao, Yu; Feng, Shu

    2017-10-01

    The process of p-type doping for GaN nanowires is investigated using calculations starting from first principles. The influence of different doping elements, sites, types, and concentrations is discussed. Results suggest that Mg is an optimal dopant when compared to Be and Zn due to its stronger stability, whereas Be atoms are more inclined to exist in the interspace of a nanowire. Interstitially-doped GaN nanowires show notable n-type conductivity, and thus, Be is not a suitable dopant, which is to be expected since systems with inner substitutional dopants are more favorable than those with surface substitutions. Both interstitial and substitutional doping affect the atomic structure near dopants and induce charge transfer between the dopants and adjacent atoms. By altering doping sites and concentrations, nanowire atomic structures remain nearly constant. Substitutional doping models show p-type conductivity, and Mg-doped nanowires with doping concentrations of 4% showing the strongest p-type conductivity. All doping configurations are direct bandgap semiconductors. This study is expected to direct the preparation of high-quality GaN nanowires.

  17. Ionization of doped helium nanodroplets: Complexes of C60 with water clusters

    NASA Astrophysics Data System (ADS)

    Denifl, S.; Zappa, F.; Mähr, I.; Mauracher, A.; Probst, M.; Urban, J.; Mach, P.; Bacher, A.; Bohme, D. K.; Echt, O.; Märk, T. D.; Scheier, P.

    2010-06-01

    Water clusters are known to undergo an autoprotonation reaction upon ionization by photons or electron impact, resulting in the formation of (H2O)nH3O+. Ejection of OH cannot be quenched by near-threshold ionization; it is only partly quenched when clusters are complexed with inert gas atoms. Mass spectra recorded by electron ionization of water-doped helium droplets show that the helium matrix also fails to quench OH loss. The situation changes drastically when helium droplets are codoped with C60. Charged C60-water complexes are predominantly unprotonated; C60(H2O)4+ and (C60)2(H2O)4+ appear with enhanced abundance. Another intense ion series is due to C60(H2O)nOH+; dehydrogenation is proposed to be initiated by charge transfer between the primary He+ ion and C60. The resulting electronically excited C60+∗ leads to the formation of a doubly charged C60-water complex either via emission of an Auger electron from C60+∗, or internal Penning ionization of the attached water complex, followed by charge separation within {C60(H2O)n}2+. This mechanism would also explain previous observations of dehydrogenation reactions in doped helium droplets. Mass-analyzed ion kinetic energy scans reveal spontaneous (unimolecular) dissociation of C60(H2O)n+. In addition to the loss of single water molecules, a prominent reaction channel yields bare C60+ for sizes n=3, 4, or 6. Ab initio Hartree-Fock calculations for C60-water complexes reveal negligible charge transfer within neutral complexes. Cationic complexes are well described as water clusters weakly bound to C60+. For n=3, 4, or 6, fissionlike desorption of the entire water complex from C60(H2O)n+ energetically competes with the evaporation of a single water molecule.

  18. Conjugated ionic state and its distribution in perylene bisimide doped film: A characterization of Z-scanning in confocal Raman spectroscopy.

    PubMed

    Zhou, Xuehong; Zhang, Wenqiang; Wang, Cong; Zhou, Jiadong; Liu, Linlin; Xie, Zengqi; Ma, Yuguang

    2018-04-27

    Ion-doped states are significant for improving the performance in organic semiconductor-based devices, which require clear characterization to understand their relationship with conductivity and charge transporting mechanisms. In this paper, Raman spectroscopy is used to track the evolution of a dianion-anion-neutral mixture in a perylene bisimide (PBI)-doped film under air, with z-scanning carried out in the confocal mode. The precise distribution for the different states along the film depth is realized within 3.5 μm. The whole film is clearly divided into three regions: the ion-poor state, transition region and ion-rich state. The ion ratio and distribution are strongly related to the film conductivity and the onset voltage shift. Changes in the distribution of the ionic species during oxidation and electrode catalysis are clearly recorded by z-scanning, which is beneficial for understanding the charge transfer properties as well as the mechanism underlying working devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Strong compensation hinders the p-type doping of ZnO: a glance over surface defect levels

    NASA Astrophysics Data System (ADS)

    Huang, B.

    2016-07-01

    We propose a surface doping model of ZnO to elucidate the p-type doping and compensations in ZnO nanomaterials. With an N-dopant, the effects of N on the ZnO surface demonstrate a relatively shallow acceptor level in the band gap. As the dimension of the ZnO materials decreases, the quantum confinement effects will increase and render the charge transfer on surface to influence the shifting of Fermi level, by evidence of transition level changes of the N-dopant. We report that this can overwhelm the intrinsic p-type conductivity and transport of the ZnO bulk system. This may provide a possible route of using surface doping to modify the electronic transport and conductivity of ZnO nanomaterials.

  20. Positron annihilation study of Y 1- xPr xBa 2Cu 3O 7

    NASA Astrophysics Data System (ADS)

    Zhao, Y. G.; Cao, B. S.; Yu, W. Z.; Du, Z. H.; Wang, Y. J.; Luo, C. Y.; Hu, H.; Wang, S.; Yang, J. H.; He, A. S.; Gu, B. L.

    1995-02-01

    A positron annihilation study of Y 1- xPr xBa 2Cu 3O 7 was performed. The results showed that charge transfer between the CuO 2 planes and 1D CuO chains upon Pr doping, as proposed in the literature, did not occur. Pr doping suppressed the anomaly of positron annihilation lifetime near and below Tc which has been observed in YBa 2Cu 3O 7. The perfection of the 1D CuO chains was reduced by Pr doping and this may be partly responsible for the increase of resistivity with Pr doping, and finally the semiconducting behaviour of DC resistivity in Y 1- xPr xBa 2Cu 3O 7 with x > 0.6.

  1. Combined ab initio and density functional study on polaron to bipolaron transitions in oligophenyls and oligothiophenes

    NASA Astrophysics Data System (ADS)

    Irle, Stephan; Lischka, Hans

    1997-08-01

    Ab initio self-consistent-field (SCF), two-configuration SCF (TCSCF), and density functional theory (DFT) calculations on the charge-transfer complexes of doubly Li/Cl-doped oligothiophenes and oligo(p-phenyls) and on respective charged systems without counterions have been carried out in order to study polaron to bipolaron transitions. Oligomer chains up to octamers and the ring structures cyclo-dodecathiophene and cyclo-dodeca(p-phenyl) have been investigated. Special attention is paid to the open-shell biradical character of two isolated polaronic defects. It is found that the TCSCF and the spin-unrestricted DFT methods can be successfully applied. A bipolaron structure is obtained when the doping atoms are located on neighboring rings and when there is one undoped ring separating the two doped ones. If there are two or more undoped rings in between a two-polaron configuration (biradical) is found. The bipolaron system is calculated to be more stable than the two-polaron case when counterions are taken into account. The stabilities are reversed if the bare, doubly-charged systems are considered. A theoretical estimate for the barrier height of the polaron to bipolaron transition is given using model reaction coordinates.

  2. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

    PubMed Central

    Grisolia, M.N.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J.E.; Rueff, J.-P.; Barthélémy, A.; Santamaria, J.; Bibes, M.

    2015-01-01

    At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence. PMID:27158255

  3. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

    NASA Astrophysics Data System (ADS)

    Grisolia, M. N.; Varignon, J.; Sanchez-Santolino, G.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J. E.; Rueff, J.-P.; Barthélémy, A.; Santamaria, J.; Bibes, M.

    2016-05-01

    At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions at and between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence.

  4. Photoinduced charge transfer from vacuum-deposited molecules to single-layer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Osada, Kazuki; Tanaka, Masatoshi; Ohno, Shinya; Suzuki, Takanori

    2016-06-01

    Variations of photoluminescence (PL) and Raman spectra of single-layer MoS2, MoSe2, WS2, and WSe2 due to the vacuum deposition of C60 or copper phthalocyanine (CuPc) molecules have been investigated. PL spectra are decomposed into two competitive components, an exciton and a charged exciton (trion), depending on carrier density. The variation of PL spectra is interpreted in terms of charge transfer across the interfaces between transition metal dichalcogenides (TMDs) and dopant molecules. We find that deposited C60 molecules inject photoexcited electrons into MoS2, MoSe2, and WS2 or holes into WSe2. CuPc molecules also inject electrons into MoS2, MoSe2, and WS2, while holes are depleted from WSe2 to CuPc. We then propose a band alignment between TMDs and dopant molecules. Peak shifts of Raman spectra and doped carrier density estimated using a three-level model also support the band alignment. We thus demonstrate photoinduced charge transfer from dopant molecules to single-layer TMDs.

  5. Interaction between adsorbed hydrogen and potassium on a carbon nanocone containing material as studied by photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiaofeng; Raaen, Steinar, E-mail: sraaen@ntnu.no

    2015-09-14

    Hydrogen adsorption on a potassium doped carbon nanocone containing material was studied by photoelectron spectroscopy and work function measurement. The valence band spectra indicate that there is charge transfer from potassium to carbon. Upon deposition on carbon potassium is in its ionic state for lower doping and shows both ionic and metallic behavior at higher doping. Adsorption of hydrogen facilitates diffusion of potassium on the carbon material as seen by changes in the K{sub 2p} core level spectrum. Variations in the measured sample work function indicate that hydrogen initially adsorb on the K dopants and subsequently adsorb on the carbonmore » cone containing material.« less

  6. Enhanced monolayer MoS2/InP heterostructure solar cells by graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Lin, Shisheng; Ding, Guqiao; Li, Xiaoqiang; Wu, Zhiqian; Zhang, Shengjiao; Xu, Zhijuan; Xu, Sen; Lu, Yanghua; Xu, Wenli; Zheng, Zheyang

    2016-04-01

    We demonstrate significantly improved photovoltaic response of monolayer molybdenum disulfide (MoS2)/indium phosphide (InP) van der Waals heterostructure induced by graphene quantum dots (GQDs). Raman and photoluminescence measurements indicate that effective charge transfer takes place between GQDs and MoS2, which results in n-type doping of MoS2. The doping effect increases the barrier height at the MoS2/InP heterojunction, thus the averaged power conversion efficiency of MoS2/InP solar cells is improved from 2.1% to 4.1%. The light induced doping by GQD provides a feasible way for developing more efficient MoS2 based heterostructure solar cells.

  7. First-principles investigation of CO adsorption on pristine, C-doped and N-vacancy defected hexagonal AlN nanosheets

    NASA Astrophysics Data System (ADS)

    Ouyang, Tianhong; Qian, Zhao; Ahuja, Rajeev; Liu, Xiangfa

    2018-05-01

    The optimized atomic structures, energetics and electronic structures of toxic gas CO adsorption systems on pristine, C-doped and N-vacancy defected h-AlN nanosheets respectively have been investigated using Density functional theory (DFT-D2 method) to explore their potential gas detection or sensing capabilities. It is found that both the C-doping and the N-vacancy defect improve the CO adsorption energies of AlN nanosheet (from pure -3.847 eV to -5.192 eV and -4.959 eV). The absolute value of the system band gap change induced by adsorption of CO can be scaled up to 2.558 eV or 1.296 eV after C-doping or N-vacancy design respectively, which is evidently larger than the value of 0.350 eV for pristine material and will benefit the robustness of electronic signals in potential gas detection. Charge transfer mechanisms between CO and the AlN nanosheet have been presented by the Bader charge and differential charge density analysis to explore the deep origin of the underlying electronic structure changes. This theoretical study is proposed to predict and understand the CO adsorption properties of the pristine and defected h-AlN nanosheets and would help to guide experimentalists to develop better AlN-based two-dimensional materials for efficient gas detection or sensing applications in the future.

  8. Characterization of SrTiO3 target doped with Co ions, SrCoxTi1-xO3-δ, and their thin films prepared by pulsed laser ablation (PLA) in water for visible light response

    NASA Astrophysics Data System (ADS)

    Ichihara, Fumihiko; Murata, Yuma; Ono, Hiroshi; Choo, Cheow-keong; Tanaka, Katsumi

    2017-10-01

    SrTiO3 (STO) and Co-doped SrTiO3 (Co-STO) sintered targets were synthesized and were Ar+ sputtered to elucidate the charge compensation effect between Sr, Ti and Co cations following the reduction by oxygen desorption. Following exposure of the Ar+-sputtered target to the air, charge transfer reactions occurred among Co2+, Ti3+, O2- and Sr2+ species which were studied by their XPS spectra. Pulsed laser ablation (PLA) of these targets was carried out in water to prepare the nanoparticles which could be supplied to the thin films with much higher surface reactivity expected for photocatalytic reactions. The roles of Co ions were studied for the stoichiometry and crystallinity of the nanoparticles which constituted the thin films. Photo-degradation of methylene blue was carried out on the PLA thin films under very weak visible light at 460 nm. The PLA thin films showed the photocatalytic activities, which were enhanced by the presence of Co ions. Such the effect of Co ions was considered from viewpoint of the d-d transition and the charge-transfer between Co ions and the ligand oxygen.

  9. Theoretical study of ozone adsorption on the surface of Fe, Co and Ni doped boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Farmanzadeh, Davood; Askari Ardehjani, Nastaran

    2018-06-01

    In this work, the adsorption of ozone molecule on Fe, Co and Ni doped boron nitride nanosheets (BNNSs) were investigated using density functional theory. The most stable adsorption configurations, charge transfer and adsorption energy of ozone molecule on pure and doped BNNSs are calculated. It is shown that ozone molecule has no remarkable interaction with pure boron nitride nanosheet, it tends to be chemisorbed on Fe, Co and Ni doped BNNSs with adsorption energy in the range of -249.4 to -686.1 kJ/mol. In all configurations, the adsorption of ozone molecule generates a semiconductor by reducing Eg in the pure and Fe, Co and Ni doped boron nitride nanosheet. It shows that the conductance of BNNSs change over the adsorption of ozone molecule. The obtained results in this study can be used in developing BN-based sheets for ozone molecule removal.

  10. Strain tunable magnetic properties of 3d transition-metal ion doped monolayer MoS2: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zhu, Yupeng; Liang, Xiao; Qin, Jun; Deng, Longjiang; Bi, Lei

    2018-05-01

    In this article, a systematic study on the magnetic properties and strain tunability of 3d transition metal ions (Mn, Fe, Co, Ni) doped MoS2 using first-principles calculations is performed. Antiferromagnetic coupling is observed between Mn, Fe ions and the nearest neighbor Mo ions; whereas ferromagnetic coupling is observed in Co and Ni systems. It is also shown that by applying biaxial tensile strain, a significant change of the magnetic moment is observed in all transition metal doped MoS2 materials with a strain threshold. The changes of total magnetic moment have different mechanisms for different doping systems including an abrupt change of the bond lengths, charge transfer and strain induced structural anisotropy. These results demonstrate applying strain as a promising method for tuning the magnetic properties in transition metal ion doped monolayer MoS2.

  11. Incorporation of quaternary ammonium salts containing different counterions to improve the performance of inverted perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Yan, Po-Ruei; Huang, Wei-Jie; Yang, Sheng-Hsiung

    2017-02-01

    In this research, three quaternary ammonium salts containing different counterions, including tetrabutylammonium bromide (TBABr), tetrabutylammonium tetrafluoroborate (TBABF4), and tetrabutylammonium hexafluorophosphate (TBAPF6), were incorporated into [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) as electron transporting layer (ETL). These salts-doped PCBM films revealed higher electron mobility and Fermi levels compared with the un-doped one. Better charge transfer at the interface between perovskite and salts-doped PCBM was also obtained from PL quenching experiments. Inverted perovskite solar cells with the configuration of ITO/PEDOT:PSS/CH3NH3PbI3/PCBM + salts/Ag were fabricated, and the JSC and FF of devices were significantly enhanced using salts-doped PCBM as ETL. The best device based on TBABF4-doped PCBM delivered a power conversion efficiency (PCE) up to 13.41%, which was superior to the one with undoped PCBM layer (PCE = 8.77%).

  12. Photoluminescence-detected magnetic-resonance study of fullerene-doped π-conjugated polymers

    NASA Astrophysics Data System (ADS)

    Lane, P. A.; Shinar, J.; Yoshino, K.

    1996-10-01

    X-band photoluminescence (PL)-detected magnetic resonance (PLDMR) spectra of C60- and C70-doped 2,5-dihexoxy poly(p-phenylenevinylene) (DHO-PPV), 2,5-dibutoxy poly(p-phenylene ethynylene) (DBO-PPE), and poly(3-dodecylthiophene) (P3DT) are described and discussed. While light doping of DHO-PPV by both fullerenes quenches the PL, both the polaron and triplet exciton resonances are dramatically enhanced. This is attributed to the creation of conformational defects which enhance the fission of 11Bu singlet excitons to polaron pairs and intersystem crossing to 13Bu triplet excitons. The triplet resonance in all polymers is quenched at relatively low doping levels of C60 and C70, which is attributed to quenching of triplets by positive polarons injected onto the polymer chain. Increased doping by C60, but not C70, quenches the polaron resonance, also due to photoinduced charge transfer.

  13. Electric field changes on Au nanoparticles on semiconductor supports--the molecular voltmeter and other methods to observe adsorbate-induced charge-transfer effects in Au/TiO2 nanocatalysts.

    PubMed

    McEntee, Monica; Stevanovic, Ana; Tang, Wenjie; Neurock, Matthew; Yates, John T

    2015-02-11

    Infrared (IR) studies of Au/TiO2 catalyst particles indicate that charge transfer from van der Waals-bound donor or acceptor molecules on TiO2 to or from Au occurs via transport of charge carriers in the semiconductor TiO2 support. The ΔνCO on Au is shown to be proportional to the polarizability of the TiO2 support fully covered with donor or acceptor molecules, producing a proportional frequency shift in νCO. Charge transfer through TiO2 is associated with the population of electron trap sites in the bandgap of TiO2 and can be independently followed by changes in photoluminescence intensity and by shifts in the broad IR absorbance region for electron trap sites, which is also proportional to the polarizability of donors by IR excitation. Density functional theory calculations show that electron transfer from the donor molecules to TiO2 and to supported Au particles produces a negative charge on the Au, whereas the transfer from the Au particles to the TiO2 support into acceptor molecules results in a positive charge on the Au. These changes along with the magnitudes of the shifts are consistent with the Stark effect. A number of experiments show that the ∼3 nm Au particles act as "molecular voltmeters" in influencing ΔνCO. Insulator particles, such as SiO2, do not display electron-transfer effects to Au particles on their surface. These studies are preliminary to doping studies of semiconductor-oxide particles by metal ions which modify Lewis acid/base oxide properties and possibly strongly modify the electron-transfer and catalytic activity of supported metal catalyst particles.

  14. IR, 1H NMR, mass, XRD and TGA/DTA investigations on the ciprofloxacin/iodine charge-transfer complex.

    PubMed

    Refat, Moamen S; El-Hawary, W F; Moussa, Mohamed A A

    2011-05-01

    The charge-transfer complex (CTC) of ciprofloxacin drug (CIP) as a donor with iodine (I(2)) as a sigma acceptor has been studied spectrophotometrically in CHCl(3). At maximum absorption bands, the stoichiometry of CIP:iodine system was found to be 1:1 ratio according to molar ratio method. The essential spectroscopic data like formation constant (K(CT)), molar extinction coefficient (ɛ(CT)), standard free energy (ΔG°), oscillator strength (f), transition dipole moment (μ), resonance energy (R(N)) and ionization potential (I(D)) were estimated. The spectroscopic techniques such as IR, (1)H NMR, mass and UV-vis spectra and elemental analyses (CHN) as well as TG-DTG and DTA investigations were used to characterize the chelating behavior of CIP/iodine charge-transfer complex. The iodine CT interaction was associated with a presence of intermolecular hydrogen bond. The X-ray investigation was carried out to investigate the iodine doping in the synthetic CT complex. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Ultraviolet and near-infrared luminescence of LaBO3:Ce3+,Yb3+

    NASA Astrophysics Data System (ADS)

    Wei, Heng-Wei; Shao, Li-Ming; Jiao, Huan; Jing, Xi-Ping

    2018-01-01

    Ce3+ or Yb3+ singly doped LaBO3 and Ce3+-Yb3+ co-doped LaBO3 were prepared by conventional solid state reactions at 1100 °C and their photoluminescence (PL) properties were investigated. The emission spectrum of LaBO3:Ce3+,Yb3+ contains both the Ce3+ ultraviolet (UV) emissions (355 nm and 380 nm) and the Yb3+ near infrared (NIR) emission (975 nm) when excited by the UV light at 270 nm. By using the data of the Ce3+ decay curves and the PL intensities of both Ce3+ and Yb3+, the energy transfer efficiency (η) from Ce3+ to Yb3+, the actual energy transfer efficiency (AE) and the quantum efficiency (Q) of the Yb3+ emission were calculated. In the Ce3+-Yb3+ co-doped LaBO3, Ce3+ can transfer its absorbed energy to Yb3+ efficiently (η can be over 60%), and Yb3+ shows the Q value over 50% when it accepts the energy from Ce3+, which results in the low AE value ∼30%. The energy transfer process from Ce3+ to Yb3+ may be understood by the charge transfer mechanism: Ce3+ + Yb3+ ↔ Ce4+ + Yb2+. Particularly the Ce3+-Yb3+ co-doped LaBO3 phosphor gives the emissions mainly in the UV range and the NIR range with a portion of visible emissions in eye-insensitive range. This unique property may be suitable for applications in anti-counterfeiting techniques and public security affairs.

  16. Study on the adsorption properties of O{sub 3}, SO{sub 2}, and SO{sub 3} on B-doped graphene using DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rad, Ali Shokuhi, E-mail: a.shokuhi@gmail.com; Shabestari, Sahand Sadeghi; Mohseni, Soheil

    2016-05-15

    We investigated the structure, adsorption, electronic states, and charge transfer of O{sub 3}, SO{sub 2} and SO{sub 3} molecules on the surface of a B-doped graphene using density functional theory (DFT). We found weak physisorption of SO{sub 2} (−10.9 kJ/mole, using B3LYP-D) and SO{sub 3} (−15.7 kJ/mole, using B3LYP-D) on the surface of B-doped graphene while there is strong chemisorption for O{sub 3} (−96.3 kJ/mole, using B3LYP-D ) on this surface. Our results suggest the potential of B-doped graphene as a selective sensor/adsorbent for O{sub 3} molecule. We noticed some change in hybridizing of boron from sp{sup 2} to sp{supmore » 3} upon adsorption of O{sub 3} which cases transformation of the adsorbent from 2D to 3D. - Graphical abstract: The electronic property of B-doped graphene is responsible to highly adsorption of O{sub 3} molecules while the adsorption of SO{sub 2} and SO{sub 3} molecules on this surface exhibits only a weak interaction. - Highlights: • B-doped graphene clearly is n-type semiconductor. • High negatively charge of C-atoms neighboring the boron dopant. • Chemisorption of O{sub 3} and physisorption of SO{sub 2} and SO{sub 3} on the surface of B-doped graphene.« less

  17. Tungsten-doped TiO2/reduced Graphene Oxide nano-composite photocatalyst for degradation of phenol: A system to reduce surface and bulk electron-hole recombination.

    PubMed

    Yadav, Manisha; Yadav, Asha; Fernandes, Rohan; Popat, Yaksh; Orlandi, Michele; Dashora, Alpa; Kothari, D C; Miotello, Antonio; Ahuja, B L; Patel, Nainesh

    2017-12-01

    Recombination of photogenerated charges is the main factor affecting the photocatalytic activity of TiO 2 . Here, we report a combined strategy of suppressing both the bulk as well as the surface recombination processes by doping TiO 2 with tungsten and forming a nanocomposite with reduced graphene oxide (rGO), respectively. Sol-gel method was used to dope and optimize the concentration of W in TiO 2 powder. UV-Vis, XPS, PL and time resolved PL spectra along with DFT calculations indicate that W 6+ in TiO 2 lattice creates an impurity level just below the conduction band of TiO 2 to act as a trapping site of electrons, which causes to improve the lifetime of the photo-generated charges. Maximum reduction in the PL intensity and the improvement in charge carrier lifetime was observed for TiO 2 doped with 1 at.% W (1W-TiO 2 ), which also displayed the highest photo-activity for the degradation of p-nitro phenol pollutant in water. Tuning of rGO/TiO 2 ratio (weight) disclosed that the highest activity can be achieved with the composite formed by taking equal amounts of TiO 2 and rGO (1:1), in which the strong interaction between TiO 2 and rGO causes an effective charge transfer via bonds formed near the interface as indicated by XPS. Both these optimized concentrations were utilized to form the composite rGO/1W-TiO 2 , which showed the highest activity in photo-degradation of p-nitro phenol (87%) as compared to rGO/TiO 2 (42%), 1W-TiO 2 (62%) and pure TiO 2 (29%) in 180 min. XPS and PL results revealed that in the present nanocomposite, tungsten species traps the excited electron to reduce the interband recombination in the bulk, while the interaction between TiO 2 and rGO creates a channel for fast transfer of excited electrons towards the latter before being recombined on the surface defect sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Photoinduced electron transfer and solvation in iodide-doped acetonitrile clusters.

    PubMed

    Ehrler, Oli T; Griffin, Graham B; Young, Ryan M; Neumark, Daniel M

    2009-04-02

    We have used ultrafast time-resolved photoelectron imaging to measure charge transfer dynamics in iodide-doped acetonitrile clusters I(-)(CH(3)CN)(n) with n = 5-10. Strong modulations of vertical detachment energies were observed following charge transfer from the halide, allowing interpretation of the ongoing dynamics. We observe a sharp drop in the vertical detachment energy (VDE) within 300-400 fs, followed by a biexponential increase that is complete by approximately 10 ps. Comparison to theory suggests that the iodide is internally solvated and that photodetachment results in formation of a diffuse electron cloud in a confined cavity. We interpret the initial drop in VDE as a combination of expansion of the cavity and localization of the excess electron on one or two solvent molecules. The subsequent increase in VDE is attributed to a combination of the I atom leaving the cavity and rearrangement of the acetonitrile molecules to solvate the electron. The n = 5-8 clusters then show a drop in VDE of around 50 meV on a much longer time scale. The long-time VDEs are consistent with those of (CH(3)CN)(n)(-) clusters with internally solvated electrons. Although the excited-state created by the pump pulse decays by emission of a slow electron, no such decay is seen by 200 ps.

  19. Utilizing Electrical Characteristics of Individual Nanotube Devices to Study the Charge Transfer between CdSe Quantum Dots and Double-Walled Nanotubes

    DOE PAGES

    Zhu, Yuqi; Zhou, Ruiping; Wang, Lei; ...

    2017-03-02

    To study the charge transfer between cadmium selenide (CdSe) quantum dots (QDs) and double-walled nanotubes (DWNTs), various sizes of CdSe-ligand-DWNT structures are synthesized, and field-effect transistors (FETs) from individual functionalized DWNTs rather than networks of the same are fabricated. From the electrical measurements, two distinct electron transfer mechanisms from the QD system to the nanotube are identified. By the formation of the CdSe-ligand-DWNT heterostructure, an effectively n-doped nanotube is created due to the smaller work function of CdSe as compared with the nanotube. In addition, once the QD-DWNT system is exposed to laser light, further electron transfer from the QDmore » through the ligand, i.e. 4-mercaptophenol (MTH), to the nanotube occurs and a clear QD-size dependent tunneling process is observed. Furthermore, the detailed analysis of a large set of devices and the particular methodology employed here for the first time allowed for extracting a wavelength and quantum dot size dependent charge transfer efficiency – a quantity that is evaluated for the first time through electrical measurement.« less

  20. Utilizing Electrical Characteristics of Individual Nanotube Devices to Study the Charge Transfer between CdSe Quantum Dots and Double-Walled Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yuqi; Zhou, Ruiping; Wang, Lei

    To study the charge transfer between cadmium selenide (CdSe) quantum dots (QDs) and double-walled nanotubes (DWNTs), various sizes of CdSe-ligand-DWNT structures are synthesized, and field-effect transistors (FETs) from individual functionalized DWNTs rather than networks of the same are fabricated. From the electrical measurements, two distinct electron transfer mechanisms from the QD system to the nanotube are identified. By the formation of the CdSe-ligand-DWNT heterostructure, an effectively n-doped nanotube is created due to the smaller work function of CdSe as compared with the nanotube. In addition, once the QD-DWNT system is exposed to laser light, further electron transfer from the QDmore » through the ligand, i.e. 4-mercaptophenol (MTH), to the nanotube occurs and a clear QD-size dependent tunneling process is observed. Furthermore, the detailed analysis of a large set of devices and the particular methodology employed here for the first time allowed for extracting a wavelength and quantum dot size dependent charge transfer efficiency – a quantity that is evaluated for the first time through electrical measurement.« less

  1. The effect of Ga vacancies on the defect and magnetic properties of Mn-doped GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Joongoo; Chang, K. J.; Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and Korea Institute for Advanced Study, Seoul 130-722

    2007-10-15

    We perform first-principles theoretical calculations to investigate the effect of the presence of Ga vacancy on the defect and magnetic properties of Mn-doped GaN. When a Ga vacancy (V{sub Ga}) is introduced to the Mn ions occupying the Ga lattice sites, a charge transfer occurs from the Mn d band to the acceptor levels of V{sub Ga}, and strong Mn-N bonds are formed between the Mn ion and the N atoms in the neighborhood of V{sub Ga}. The charge transfer and chemical bonding effects significantly affect the defect and magnetic properties of Mn-doped GaN. In a Mn-V{sub Ga} complex, whichmore » consists of a Ga vacancy and one Mn ion, the dangling bond orbital of the N atom involved in the Mn-N bond is electrically deactivated, and the remaining dangling bond orbitals of V{sub Ga} lead to the shallowness of the defect level. When a Ga vacancy forms a complex with two Mn ions located at a distance of about 6 A, which corresponds to the percolation length in determining the Curie temperature in diluted Mn-doped GaN, the Mn d band is broadened and the density of states at the Fermi level is reduced due to two strong Mn-N bonds. Although the broadening and depopulation of the Mn d band weaken the ferromagnetic stability between the Mn ions, the ferromagnetism is still maintained because of the lack of antiferromagnetic superexchange interactions at the percolation length.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Mu-Tsun, E-mail: mttsai@ms23.hinet.net; Chang, Yee-Shin; Chou, You-Hsin

    A blue-emitting phosphor of titanium-doped zinc spinel (ZnAl{sub 2}O{sub 4}:Ti; Ti=0–6.0 mol% in relation to Al) nanopowders was prepared by a simple sol–gel method. On annealing at 1000 °C, single-phase ZnAl{sub 2}O{sub 4}:Ti powders had primary particles of 25–30 nm in size and most Ti ions in the form of Ti{sup 4+}. Under UV excitation at 280 nm, a strong and broad blue emission centered at 435 nm was observed. The sources of the excitation and emission were assigned to the charge-transfer excitation and recombination between O{sup 2–}–Ti{sup 4+} and Ti{sup 3+}–O{sup –} ion pairs. Optimum brightness occurred at amore » doping of 2.0 mol% Ti. The decay lifetime of ZnAl{sub 2}O{sub 4}:2%Ti was calculated to be 3.0 ms for the blue emission with CIE coordinates of x=0.168 and y=0.153. The results suggest that ZnAl{sub 2}O{sub 4}:Ti is a promising candidate for application as a blue component phosphor for UV-converting white light-emitting diodes. - Graphical abstract: The absorption band around 270 nm is associated with the charge-transfer processes between octahedral Ti{sup 4+} and O{sup 2−} ions. The excitation band around 280 nm corresponds to the charge-transfer excitations from O{sup 2–}(2p){sup 6} electrons to Ti{sup 4+} (3d{sup 0}). Under 280 nm excitation, the PL spectrum shows a strong blue emission with a peak at around 435 nm. - Highlights: • Single-phase ZnAl{sub 2}O{sub 4}:Ti nanocrystals have been synthesized by a sol–gel process. • Under UV excitation at 280 nm, the blue emission centered at 435 nm is observed. • Blue emission is attributed to a charge-transfer transition involving the Ti{sup 4+} ions.« less

  3. Charge transfer and injection barrier at the metal-organic interfaces

    NASA Astrophysics Data System (ADS)

    Yan, Li

    2002-09-01

    The metal-organic interface plays a critical role in determining the functionality and performance of many innovative organic based devices. It has attracted extensive research interests in recent years. This thesis presents investigations of the electronic structures of organic materials, such as tris-(8-hydroxyquinoline) aluminum (Alq3) and copper phthalocyanine (CuPc), during their interface formation with metals. The characterization is accomplished by X-ray and ultraviolet photoelectron spectroscopes (XPS and UPS) and inverse photoelectron spectroscopy (IPES). As discussed herein, both occupied and unoccupied electronic states at the interfaces are carefully examined in different aspects. In Chapter 4, the charge transfer and chemical reaction at various metal/Alq3 interfaces are investigated using XPS and UPS to study the electron injection into the Alga film. Electron transfer from the low work function metal and Al/LiF(CsF) bilayer to the Alga has been observed. The role of the dielectric and possible chemistry at the interface are discussed in comparison of the low work function metals. Further in Chapter 5, the origin of the metal-interface dipole and the estimation of charge injection barrier is explored using several organic materials. A thermodynamic equilibrium model is extended to explain the relation between the charge transfer process ad the interface dipole. Further, in Chapter 6 the combination of XPS, UPS and IPES detailed the evolution of both occupied and unoccupied energy states during the alkali metal doping. The energy gap modification in organic due to metal doping is observed directly for the spectra. Chapter 7 provides stability study of the organic thin films under x-ray and UV light. The results verify the usability of UPS and XPS for the organic materials used in the thesis. Chapter 7 also shows the secondary ion mass spectroscopy results of metal diffusion in organic thin films.

  4. Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria.

    PubMed

    Wan, Yi; Lin, Zhifeng; Zhang, Dun; Wang, Yi; Hou, Baorong

    2011-01-15

    A facile, sensitive and reliable impedimetric immunosensor doped with reduced graphene sheets (RGSs) and combined with a controllable electrodeposition technique was developed for the selective detection of marine pathogenic sulphate-reducing bacteria (SRB). The morphology of RGSs and the electrochemical properties of RGSs-doped chitosan (CS) nanocomposite film were investigated by atomic force microscopy, Fourier transform infrared spectroscopy, and cyclic voltammetry (CV). Electrochemical impedance spectroscopy and CV were used to verify the stepwise assembly of the sensor system. Faradic impedance spectroscopy for charge transfer for the redox probe Fe(CN)(6)(3-/4-) was done to determine SRB concentrations. The diameter of the Nyquist diagram that is equal to the charge-transfer resistance (R(ct)) increased with increasing SRB concentration. A linear relationship between R(ct) and SRB concentration was obtained in the SRB concentration range of 1.8×10(1) to 1.8×10(7) cfu/ml. The impedimetric biosensor gave a distinct response to SRB, but had no obvious response to Vibrio angillarum. It showed a high selectivity for the detection of the pathogen. Based on a combination of the biocompatibility of CS and good electrical conductivity of RGSs, a nanocomposite film with novel architecture was used to immobilize biological and chemical targets and to develop a new type of biosensor. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Digital modulation of the nickel valence state in a cuprate-nickelate heterostructure

    NASA Astrophysics Data System (ADS)

    Wrobel, F.; Geisler, B.; Wang, Y.; Christiani, G.; Logvenov, G.; Bluschke, M.; Schierle, E.; van Aken, P. A.; Keimer, B.; Pentcheva, R.; Benckiser, E.

    2018-03-01

    Layer-by-layer oxide molecular-beam epitaxy has been used to synthesize cuprate-nickelate multilayer structures of composition (La2CuO4)m/LaO /(LaNiO3)n . In a combined experimental and theoretical study, we show that these structures allow a clean separation of dopant and doped layers. Specifically, the LaO layer separating cuprate and nickelate blocks provides an additional charge that, according to density-functional theory calculations, is predominantly accommodated in the interfacial nickelate layers. This is reflected in an elongation of bond distances and changes in valence state, as observed by scanning transmission electron microscopy and x-ray absorption spectroscopy. Moreover, the predicted charge disproportionation in the nickelate interface layers leads to a metal-to-insulator transition when the thickness is reduced to n =2 , as observed in electrical transport measurements. The results exemplify the perspectives of charge transfer in metal-oxide multilayers to induce doping without introducing chemical and structural disorder.

  6. Towards understanding the electronic structure of Fe-doped CeO2 nanoparticles with X-ray spectroscopy.

    PubMed

    Wang, Wei-Cheng; Chen, Shih-Yun; Glans, Per-Anders; Guo, Jinghua; Chen, Ren-Jie; Fong, Kang-Wei; Chen, Chi-Liang; Gloter, Alexandre; Chang, Ching-Lin; Chan, Ting-Shan; Chen, Jin-Ming; Lee, Jyh-Fu; Dong, Chung-Li

    2013-09-21

    This study reports on the electronic structure of Fe-doped CeO2 nanoparticles (NPs), determined by coupled X-ray absorption spectroscopy and X-ray emission spectroscopy. A comparison of the local electronic structure around the Ce site with that around the Fe site indicates that the Fe substitutes for the Ce. The oxygen K-edge spectra that originated from the hybridization between cerium 4f and oxygen 2p states are sensitive to the oxidation state and depend strongly on the concentration of Fe doping. The Ce M(4,5)-edges and the Fe L(2,3)-edges reveal the variations of the charge states of Ce and Fe upon doping, respectively. The band gap is further obtained from the combined absorption-emission spectrum and decreased upon Fe doping, implying Fe doping introduces vacancies. The oxygen vacancies are induced by Fe doping and the spectrum reveals the charge transfer between Fe and Ce. Fe(3+) doping has two major effects on the formation of ferromagnetism in CeO2 nanoparticles. The first, at an Fe content of below 5%, is that the formation of Fe(3+)-Vo-Ce(3+) introduces oxygen deficiencies favoring ferromagnetism. The other, at an Fe content of over 5%, is the formation of Fe(3+)-Vo-Fe(3+), which favors antiferromagnetism, reducing the Ms. The defect structures Fe(3+)-Vo-Ce(3+) and Fe(3+)-Vo-Fe(3+) are crucial to the magnetism in these NPs and the change in Ms can be described as the effect of competitive interactions of magnetic polarons and paired ions.

  7. Adsorption of magnetic transition metals on borophene: an ab initio study

    NASA Astrophysics Data System (ADS)

    Tomar, Shalini; Rastogi, Priyank; Bhadoria, Bhagirath Singh; Bhowmick, Somnath; Chauhan, Yogesh Singh; Agarwal, Amit

    2018-03-01

    We explore the doping strategy for adsorbing different metallic 3d transition-metal atoms (Fe, Co and Ni) on two different polymorphs of borophene monolayer: 2-Pmmn and 8-Pmmn borophene. Both have energy dispersion, with 2-Pmmn borophene being metallic in nature, and 8-Pmmn borophene being semi-metallic with a tilted Dirac cone like dispersion. Using density functional theory based calculations, we find the most suitable adsorption site for each adatom, and calculate the binding energy, binding energy per atom, charge transfer, density of states and magnetic moment of the resulting borophene-adatom system. We show that Ni is the most effective for electron doping for both the polymorphs. Additionally Fe is the most suitable to magnetically dope 8-Pmmn borophene, while Co is the best for magnetically doping 2-Pmmn borophene.

  8. X-ray Absorption Spectroscopy Study of the Effect of Rh doping in Sr2IrO4

    PubMed Central

    Sohn, C. H.; Cho, Deok-Yong; Kuo, C.-T.; Sandilands, L. J.; Qi, T. F.; Cao, G.; Noh, T. W.

    2016-01-01

    We investigate the effect of Rh doping in Sr2IrO4 using X-ray absorption spectroscopy (XAS). We observed appearance of new electron-addition states with increasing Rh concentration (x in Sr2Ir1−xRhxO4) in accordance with the concept of hole doping. The intensity of the hole-induced state is however weak, suggesting weakness of charge transfer (CT) effect and Mott insulating ground states. Also, Ir Jeff = 1/2 upper Hubbard band shifts to lower energy as x increases up to x = 0.23. Combined with optical spectroscopy, these results suggest a hybridisation-related mechanism, in which Rh doping can weaken the (Ir Jeff = 1/2)–(O 2p) orbital hybridisation in the in-planar Rh-O-Ir bond networks. PMID:27025538

  9. Ambipolar thermoelectric power of chemically-exfoliated RuO2 nanosheets

    NASA Astrophysics Data System (ADS)

    Kim, Jeongmin; Yoo, Somi; Moon, Hongjae; Kim, Se Yun; Ko, Dong-Su; Roh, Jong Wook; Lee, Wooyoung

    2018-01-01

    The electrical conductivity and Seebeck coefficient of RuO2 nanosheets are enhanced by metal nanoparticle doping using Ag-acetate solutions. In this study, RuO2 monolayer and bilayer nanosheets exfoliated from layered alkali metal ruthenates are transferred to Si substrates for device fabrication, and the temperature dependence of their conductivity and Seebeck coefficients is investigated. For pristine RuO2 nanosheets, the sign of the Seebeck coefficient changes with temperature from 350-450 K. This indicates that the dominant type of charge carrier is dependent on the temperature, and the RuO2 nanosheets show ambipolar carrier transport behavior. By contrast, the sign of the Seebeck coefficient for Ag nanoparticle-doped RuO2 nanosheets does not change with temperature, indicating that the extra charge carriers from metal nanoparticles promote n-type semiconductor behavior.

  10. Novel three-dimensionally ordered macroporous Fe3+-doped TiO2 photocatalysts for H2 production and degradation applications

    NASA Astrophysics Data System (ADS)

    Yan, Xiaoqing; Xue, Chao; Yang, Bolun; Yang, Guidong

    2017-02-01

    Novel three-dimensionally ordered macroporous (3DOM) Fe3+-doped TiO2 photocatalysts were prepared using a colloidal crystal template method with low-cost raw material including ferric trichloride, isopropanol, tetrabutyl titanate and polymethyl methacrylate. The as-prepared 3DOM Fe3+-doped TiO2 photocatalysts were characterized by various analytical techniques. TEM and SEM results showed that the obtained photocatalysts possess well-ordered macroporous structure in three dimensional orientations. As proved by XPS and EDX analysis that Fe3+ ions have been introduced TiO2 lattice and the doped Fe3+ ions can act as the electron acceptor/donor centers to significantly enhance the electron transfer from the bulk to surface of TiO2, resulting in more electrons could take part in the oxygen reduction process thereby decreasing the recombination rate of photogenerated charges. Meanwhile, the 3DOM architecture with the feature of interfacial chemical reaction active sites and optical absorption active sites is remarkably favorable for the reactant transfer and light trapping in the photoreaction process. As a result, the 3DOM Fe3+-doped TiO2 photocatalysts show the considerably higher photocatalytic activity for decomposition of the Rhodamine B (RhB) and the generation of hydrogen under visible light irradiation due to the synergistic effects of open, interconnected macroporous network and metal ion doping.

  11. Nonplasmonic Hot-Electron Photocurrents from Mn-Doped Quantum Dots in Photoelectrochemical Cells.

    PubMed

    Dong, Yitong; Rossi, Daniel; Parobek, David; Son, Dong Hee

    2016-03-03

    We report the measurement of the hot-electron current in a photoelectrochemical cell constructed from a glass/ITO/Al2 O3 (ITO=indium tin oxide) electrode coated with Mn-doped quantum dots, where hot electrons with a large excess kinetic energy were produced through upconversion of the excitons into hot electron hole pairs under photoexcitation at 3 eV. In our recent study (J. Am. Chem. Soc. 2015, 137, 5549), we demonstrated the generation of hot electrons in Mn-doped II-VI semiconductor quantum dots and their usefulness in photocatalytic H2 production reaction, taking advantage of the more efficient charge transfer of hot electrons compared with band-edge electrons. Here, we show that hot electrons produced in Mn-doped CdS/ZnS quantum dots possess sufficient kinetic energy to overcome the energy barrier from a 5.4-7.5 nm thick Al2 O3 layer producing a hot-electron current in photoelectrochemical cell. This work demonstrates the possibility of harvesting hot electrons not only at the interface of the doped quantum dot surface, but also far away from it, thus taking advantage of the capability of hot electrons for long-range electron transfer across a thick energy barrier. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Li+, Na+ and K+ co-doping effects on scintillation properties of Ce:Gd3Ga3Al2O12 single crystals

    NASA Astrophysics Data System (ADS)

    Yoshino, Masao; Kamada, Kei; Kochurikhin, Vladimir V.; Ivanov, Mikhail; Nikl, Martin; Okumura, Satoshi; Yamamoto, Seiichi; Yeom, Jung Yeol; Shoji, Yasuhiro; Kurosawa, Shunsuke; Yokota, Yuui; Ohashi, Yuji; Yoshikawa, Akira

    2018-06-01

    Ce0.5%: Ce:Gd3Ga3Al2O12(GGAG) single crystals co-doped with 500at.ppm Li+, Na+ and K+ were grown by using the micro-pulling down method. The smooth Ce4+ charge transfer absorption below 350 nm and decay time acceleration were observed in Li co-doped sample. Na+ and K+ co-doping did not show a large effect on the acceleration of decay time compared with Li co-doping. Ce0.5%:GGAG single crystals co-doped with 500 at.ppm Li+ were also grown by the Czochralski method. Optical, scintillation properties and timing performance were evaluated to investigate the effect of univalent alkali metal ions co-doping on Ce:GGAG scintillators. The scintillation decay curves were accelerated by Li co-doping: the decay time was significantly accelerated to 54.8 ns (47%) for the faster component and 158 ns (53%) for the slower component. The light output was 94% of the non co-doped Ce:GGAG standard. The coincidence time resolution was improved to 258 ps by Li co-doping.

  13. The presence of Ti(II) centers in doped nanoscale TiO2 and TiO2-xNx

    NASA Astrophysics Data System (ADS)

    Mikulas, Tanya; Fang, Zongtang; Gole, James L.; White, Mark G.; Dixon, David A.

    2012-06-01

    Unusual trends are observed in the Ti (2s, 2p) XPS spectra of Fe(II) doped TiO2 and TiO2-xNx. The binding energy of Ti (2s, 2p) initially decreases with increasing Fe(II) concentration, as expected, but increases at higher Fe(II) doping levels. Density functional theory is used to analyze the results. The observed VB-XPS and core level XPS spectra are consistent with the facile charge transfer sequence Ti(IV) + Fe(II) → Ti(III) + Fe(III) followed by Ti(III) + Fe(II) → Ti(II) + Fe(III). The formed Ti(II) sites may be relevant to nanoparticle catalysis on TiO2 surfaces.

  14. Band Alignment and Charge Transfer in Complex Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Zhong, Zhicheng; Hansmann, Philipp

    2017-01-01

    The synthesis of transition metal heterostructures is currently one of the most vivid fields in the design of novel functional materials. In this paper, we propose a simple scheme to predict band alignment and charge transfer in complex oxide interfaces. For semiconductor heterostructures, band-alignment rules like the well-known Anderson or Schottky-Mott rule are based on comparison of the work function or electron affinity of the bulk components. This scheme breaks down for oxides because of the invalidity of a single work-function approximation as recently shown in [Phys. Rev. B 93, 235116 (2016), 10.1103/PhysRevB.93.235116; Adv. Funct. Mater. 26, 5471 (2016), 10.1002/adfm.201600243]. Here, we propose a new scheme that is built on a continuity condition of valence states originating in the compounds' shared network of oxygen. It allows for the prediction of sign and relative amplitude of the intrinsic charge transfer, taking as input only information about the bulk properties of the components. We support our claims by numerical density functional theory simulations as well as (where available) experimental evidence. Specific applications include (i) controlled doping of SrTiO3 layers with the use of 4 d and 5 d transition metal oxides and (ii) the control of magnetic ordering in manganites through tuned charge transfer.

  15. Free volume dependent fluorescence property of PMMA composite: Positron annihilation studies

    NASA Astrophysics Data System (ADS)

    Ravindrachary, V.; Praveena, S. D.; Bhajantri, R. F.; Ismayil, Crasta, Vincent

    2013-02-01

    The free volume related fluorescence properties of chalcone chromophore [1-(4-methylphenyl)-3-(4-N, N, dimethylaminophenyl)-2-propen-1-one doped Poly(methyl methacrylate) have been studied using fluorescence spectroscopy and Positron Annihilation lifetime spectroscopy techniques. The fluorescence spectra show that the fluorescence behavior depends on the free volume dependent polymer microstructure and varies with dopant concentration with in the composite. The origin and variation of fluorescence is understood by twisted internal charge transfer state as well as free volume. The Positron annihilation study shows that the free volume related microstructure of the composite is vary with doping level.

  16. Highly enhanced electrochemical activity of Ni foam electrodes decorated with nitrogen-doped carbon nanotubes for non-aqueous redox flow batteries

    NASA Astrophysics Data System (ADS)

    Lee, Jungkuk; Park, Min-Sik; Kim, Ki Jae

    2017-02-01

    Nitrogen-doped carbon nanotubes (NCNTs) are directly grown on the surface of a three-dimensional (3D) Ni foam substrate by floating catalytic chemical vapor deposition (FCCVD). The electrochemical properties of the 3D NCNT-Ni foam are thoroughly examined as a potential electrode for non-aqueous redox flow batteries (RFBs). During synthesis, nitrogen atoms can be successfully doped onto the carbon nanotube (CNT) lattices by forming an abundance of nitrogen-based functional groups. The 3D NCNT-Ni foam electrode exhibits excellent electrochemical activities toward the redox reactions of [Fe (bpy)3]2+/3+ (in anolyte) and [Co(bpy)3]+/2+ (in catholyte), which are mainly attributed to the hierarchical 3D structure of the NCNT-Ni foam electrode and the catalytic effect of nitrogen atoms doped onto the CNTs; this leads to faster mass transfer and charge transfer during operation. As a result, the RFB cell assembled with 3D NCNT-Ni foam electrodes exhibits a high energy efficiency of 80.4% in the first cycle; this performance is maintained up to the 50th cycle without efficiency loss.

  17. Chlorine Doping Reduces Electron–Hole Recombination in Lead Iodide Perovskites: Time-Domain Ab Initio Analysis

    DOE PAGES

    Liu, Jin; Prezhdo, Oleg V.

    2015-10-27

    Rapid development in lead halide perovskites has led to solution-processable thin film solar cells with power conversion efficiencies close to 20%. Nonradiative electron–hole recombination within perovskites has been identified as the main pathway of energy losses, competing with charge transport and limiting the efficiency. Using nonadiabatic (NA) molecular dynamics, combined with time-domain density functional theory, we show that nonradiative recombination happens faster than radiative recombination and long-range charge transfer to an acceptor material. Doping of lead iodide perovskites with chlorine atoms reduces charge recombination. On the one hand, chlorines decrease the NA coupling because they contribute little to the wavemore » functions of the valence and conduction band edges. On the other hand, chlorines shorten coherence time because they are lighter than iodines and introduce high-frequency modes. Both factors favor longer excited-state lifetimes. The simulation shows good agreement with the available experimental data and contributes to the comprehensive understanding of electronic and vibrational dynamics in perovskites. The generated insights into design of higher-efficiency solar cells range from fundamental scientific principles, such as the role of electron–vibrational coupling and quantum coherence, to practical guidelines, such as specific suggestions for chemical doping.« less

  18. Co-adsorption of water and oxygen on GaN: Effects of charge transfer and formation of electron depletion layer.

    PubMed

    Wang, Qi; Puntambekar, Ajinkya; Chakrapani, Vidhya

    2017-09-14

    Species from ambient atmosphere such as water and oxygen are known to affect electronic and optical properties of GaN, but the underlying mechanism is not clearly known. In this work, we show through careful measurement of electrical resistivity and photoluminescence intensity under various adsorbates that the presence of oxygen or water vapor alone is not sufficient to induce electron transfer to these species. Rather, the presence of both water and oxygen is necessary to induce electron transfer from GaN that leads to the formation of an electron depletion region on the surface. Exposure to acidic gases decreases n-type conductivity due to increased electron transfer from GaN, while basic gases increase n-type conductivity and PL intensity due to reduced charge transfer from GaN. These changes in the electrical and optical properties, as explained using a new electrochemical framework based on the phenomenon of surface transfer doping, suggest that gases interact with the semiconductor surface through electrochemical reactions occurring in an adsorbed water layer present on the surface.

  19. Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors

    NASA Astrophysics Data System (ADS)

    Yakimov, A. I.; Kirienko, V. V.; Armbrister, V. A.; Bloshkin, A. A.; Dvurechenskii, A. V.; Shklyaev, A. A.

    2016-10-01

    We study the effect of quantum dot charging on the mid-infrared photocurrent, optical gain, hole capture probability, and absorption quantum efficiency in remotely delta-doped Ge/Si quantum dot photodetectors. The dot occupation with holes is controlled by varying dot and doping densities. From our investigations of samples doped to contain from about one to nine holes per dot we observe an over 10 times gain enhancement and similar suppression of the hole capture probability with increased carrier population. The data are explained by quenching the capture process and increasing the photoexcited hole lifetime due to formation of the repulsive Coulomb potential of the extra holes inside the quantum dots. The normal incidence quantum efficiency is found to be strongly asymmetric with respect to applied bias polarity. Based on the polarization-dependent absorption measurements it is concluded that, at a positive voltage, when holes move toward the nearest δ-doping plane, photocurrent is originated from the bound-to-continuum transitions of holes between the ground state confined in Ge dots and the extended states of the Si matrix. At a negative bias polarity, the photoresponse is caused by optical excitation to a quasibound state confined near the valence band edge with subsequent tunneling to the Si valence band. In a latter case, the possibility of hole transfer into continuum states arises from the electric field generated by charge distributed between quantum dots and delta-doping planes.

  20. Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Xuekun; Li, Zhaoqiang; Zhang, Zhiwei; Li, Qun; Guo, Enyan; Wang, Chengxiang; Yin, Longwei

    2015-02-01

    We designed a facile infiltration route to synthesize mesoporous hollow structured Mo doped SnO2 using silica spheres as templates. It is observed that Mo is uniformly incorporated into SnO2 lattice in the form of Mo6+. The as-prepared mesoporous Mo-doped SnO2 LIBs anodes exhibit a significantly improved electrochemical performance with good cycling stability, high specific capacity and high rate capability. The mesoporous hollow Mo-doped SnO2 sample with 14 at% Mo doping content displays a specific capacity of 801 mA h g-1 after 60 cycles at a current density of 100 mA g-1, about 1.66 times higher than that of the pure SnO2 hollow sample. In addition, even if the current density is as high as 1600 mA g-1 after 60 cycles, it could still retain a stable specific capacity of 530 mA h g-1, exhibiting an extraordinary rate capability. The greatly improved electrochemical performance of the Mo-doped mesoporous hollow SnO2 sample could be attributed to the following factors. The large surface area and hollow structure can significantly enhance structural integrity by acting as mechanical buffer, effectively alleviating the volume changes generated during the lithiation/delithiation process. The incorporation of Mo into the lattice of SnO2 improves charge transfer kinetics and results in a faster Li+ diffusion rate during the charge-discharge process.

  1. APTES-Terminated ultrasmall and iron-doped silicon nanoparticles as X-Ray dose enhancer for radiation therapy.

    PubMed

    Klein, Stefanie; Wegmann, Marc; Distel, Luitpold V R; Neuhuber, Winfried; Kryschi, Carola

    2018-04-15

    Silicon nanoparticles with sizes between were synthesized through wet-chemistry procedures using diverse phase transfer reagents. On the other hand, the preparation of iron-doped silicon nanoparticles was carried out using the precursor Na 4 Si 4 containing 5% Fe. Biocompatibility of all silicon nanoparticle samples was achieved by surface-stabilizing with (3-aminopropyl)triethoxysilane. These surface structures provided positive surface charges which facilitated electrostatic binding to the negatively charged biological membranes. The mode of interaction with membranes, being either incorporation or just attachment, was found to depend on the nanoparticle size. The smallest silicon nanoparticles (ca. 1.5 nm) were embedded in the mitochondrial membrane in MCF-7 cells. When interacting with X-rays these silicon nanoparticles were observed to enhance the superoxide formation upon depolarizing the mitochondrial membrane. X-ray irradiation of MCF-7 cells loaded with the larger silicon nanoparticles was shown to increase the intracellular singlet oxygen generation. The doping of the silicon nanoparticles with iron led to additional production of hydroxyl radicals via the Fenton reaction. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. In-depth understanding of core-shell nanoarchitecture evolution of g-C3N4@C, N co-doped anatase/rutile: Efficient charge separation and enhanced visible-light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Mohamed, Mohamad Azuwa; Jaafar, Juhana; M. Zain, M. F.; Minggu, Lorna Jeffery; Kassim, Mohammad B.; Rosmi, Mohamad Saufi; Alias, Nur Hashimah; Mohamad Nor, Nor Azureen; W. Salleh, W. N.; Othman, Mohd Hafiz Dzarfan

    2018-04-01

    Herein, we demonstrated the simultaneous formation of multi-component heterojunction consisting graphitic carbon nitride (g-C3N4) and C, N co-doped anatase/rutile mixed phase by using facile sol-gel assisted heat treatment. The evolution of core-shell nanostructures heterojunction formation was elucidated by varying the temperature of heat treatment from 300 °C to 600 °C. Homogeneous heterojunction formation between g-C3N4 and anatase/rutile mixed phase was observed in gT400 with C and N doping into TiO2 lattice by O substitution. The core-shell nanoarchitectures between g-C3N4 as shell, and anatase/rutile mixed phase as core with C and N atoms are doped at the interstitial positions of TiO2 lattice was observed in gT500. The result indicated that core-shell nanoarchitectures photocatalyst (gT500) prepared at 500 ◦C exhibited the highest photocatalytic activity in the degradation of methyl orange under visible light irradiation. Meanwhile, the possible mechanisms of charge generation, migration, action species and reaction that probably occur at the gT500 sample were also proposed. The photodegradation results of gT500 correlated completely with the results of the PEC and photoluminescence analysis, which directly evidenced improved charge separation and migration as the crucial parameters governing photocatalysis. It is worthy to note that, the simultaneous formation of multicomponent heterojunction with core-shell structure provided an enormous impact in designing highly active photocatalyst with superior interfacial charge transfer.

  3. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation.

    PubMed

    Subramanian, Arunprabaharan; Annamalai, Alagappan; Lee, Hyun Hwi; Choi, Sun Hee; Ryu, Jungho; Park, Jung Hee; Jang, Jum Suk

    2016-08-03

    Herein we report the influence of a ZrO2 underlayer on the PEC (photoelectrochemical) behavior of hematite nanorod photoanodes for efficient solar water splitting. Particular attention was given to the cathodic shift in onset potential and photocurrent enhancement. Akaganite (β-FeOOH) nanorods were grown on ZrO2-coated FTO (fluorine-doped tin oxide) substrates. Sintering at 800 °C transformed akaganite to the hematite (α-Fe2O3) phase and induced Sn diffusion into the crystal structure of hematite nanorods from the FTO substrates and surface migration, shallow doping of Zr atoms from the ZrO2 underlayer. The ZrO2 underlayer-treated photoanode showed better water oxidation performance compared to the pristine (α-Fe2O3) photoanode. A cathodic shift in the onset potential and photocurrent enhancement was achieved by surface passivation and shallow doping of Zr from the ZrO2 underlayer, along with Sn doping from the FTO substrate to the crystal lattice of hematite nanorods. The Zr based hematite nanorod photoanode achieved 1 mA/cm(2) at 1.23 VRHE with a low turn-on voltage of 0.80 VRHE. Sn doping and Zr passivation, as well as shallow doping, were confirmed by XPS, Iph, and M-S plot analyses. Electrochemical impedance spectroscopy revealed that the presence of a ZrO2 underlayer decreased the deformation of FTO substrate, improved electron transfer at the hematite/FTO interface and increased charge-transfer resistance at the electrolyte/hematite interface. This is the first systematic investigation of the effects of Zr passivation, shallow doping, and Sn doping on hematite nanorod photoanodes through application of a ZrO2 underlayer on the FTO substrate.

  4. Rich interfacial chemistry and properties of carbon-doped hexagonal boron nitride nanosheets revealed by electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Xie, Wei; Tamura, Takahiro; Yanase, Takashi; Nagahama, Taro; Shimada, Toshihiro

    2018-04-01

    The effect of C doping to hexagonal boron nitride (h-BN) to its electronic structure is examined by first principles calculations using the association from π-electron systems of organic molecules embedded in a two-dimensional insulator. In a monolayered carbon-doped structure, odd-number doping with carbon atoms confers metallic properties with different work functions. Various electronic interactions occur between two layers with odd-number carbon substitution. A direct sp3 covalent chemical bond is formed when C replaces adjacent B and N in different layers. A charge transfer complex between layers is found when C replaces B and N in the next-neighboring region, which results in narrower band gaps (e.g., 0.37 eV). Direct bonding between C and B atoms is found when two C atoms in different layers are at a certain distance.

  5. Well-dispersed NiO nanoparticles supported on nitrogen-doped carbon nanotube for methanol electrocatalytic oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Wang, Pengcheng; Zhou, Yingke; Hu, Min; Chen, Jian

    2017-01-01

    Nitrogen-doped carbon nanotube supporting NiO nanoparticles were synthesized by a chemical precipitation process coupled with subsequent calcination. The morphology and structure of the composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performance was evaluated using cyclic voltammetry and chronoamperometric technique. The effects of nitrogen doping, calcination temperature and content of NiO nanoparticles on the electrocatalytic activity toward methanol oxidation were systematically studied. The results show that the uniformly dispersed ultrafine NiO nanoparticles supported on nitrogen-doped carbon nanotube are obtained after calcination at 400 °C. The optimized composite catalysts present high electrocatalytic activity, fast charge-transfer process, excellent accessibility and stability for methanol oxidation reaction, which are promising for application in the alkaline direct methanol fuel cells.

  6. Atomistic nucleation sites of Pt nanoparticles on N-doped carbon nanotubes.

    PubMed

    Sun, Chia-Liang; Pao, Chih-Wen; Tsai, Huang-Ming; Chiou, Jau-Wern; Ray, Sekhar C; Wang, Houng-Wei; Hayashi, Michitoshi; Chen, Li-Chyong; Lin, Hong-Ji; Lee, Jyh-Fu; Chang, Li; Tsai, Min-Hsiung; Chen, Kuei-Hsien; Pong, Way-Faung

    2013-08-07

    The atomistic nucleation sites of Pt nanoparticles (Pt NPs) on N-doped carbon nanotubes (N-CNTs) were investigated using C and N K-edge and Pt L3-edge X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) spectroscopy. Transmission electron microscopy and XANES/EXAFS results revealed that the self-organized Pt NPs on N-CNTs are uniformly distributed because of the relatively high binding energies of the adsorbed Pt atoms at the imperfect sites. During the atomistic nucleation process of Pt NPs on N-CNTs, stable Pt-C and Pt-N bonds are presumably formed, and charge transfer occurs at the surface/interface of the N-CNTs. The findings in this study were consistent with density functional theory calculations performed using cluster models for the undoped, substitutional-N-doped and pyridine-like-N-doped CNTs.

  7. Molecular adsorption of hydrogen peroxide on N- and Fe-doped titania nanoclusters

    NASA Astrophysics Data System (ADS)

    Mohajeri, Afshan; Dashti, Nasimeh Lari

    2017-06-01

    Titanium dioxide (titania) nanoparticles have been extensively investigated for photocatalytic applications such as the decomposition and adsorption of pollutant and undesirable compound in air and waste water. In this context, the present article reports the molecular adsorption of hydrogen peroxide on the surface of doped titania clusters. Density functional theory calculations were performed to investigate the structures and electronic properties of two nanoscale (TiO2)n clusters (n = 5,6) modified by nitrogen and iron dopants. The relative stability of all possible N-doped and Fe-doped isomers has been compared with each other and with the parent cluster. It was found that the Fe-doped clusters are in general more stable than the N-doped counterparts. Moreover, after N/Fe doping an enhanced in the magnetization of the clusters is observed. In the second part, we have investigated different modes of H2O2 adsorption on the lowest-energy isomers of doped clusters. In almost all the cases, the adsorptions on the doped clusters are found to be less exothermic than on the corresponding undoped parent cluster. Our results highlight the essential role of charge transfer into the interaction between H2O2 and doped (TiO2)n clusters, especially for Fe-doped clusters.

  8. A DFT investigation on group 8B transition metal-doped silicon carbide nanotubes for hydrogen storage application

    NASA Astrophysics Data System (ADS)

    Tabtimsai, Chanukorn; Ruangpornvisuti, Vithaya; Tontapha, Sarawut; Wanno, Banchob

    2018-05-01

    The binding of group 8B transition metal (TMs) on silicon carbide nanotubes (SiCNT) hydrogenated edges and the adsorption of hydrogen molecule on the pristine and TM-doped SiCNTs were investigated using the density functional theory method. The B3LYP/LanL2DZ method was employed in all calculations for the considered structural, adsorption, and electronic properties. The Os atom doping on the SiCNT is found to be the strongest binding. The hydrogen molecule displays a weak interaction with pristine SiCNT, whereas it has a strong interaction with TM-doped SiCNTs in which the Os-doped SiCNT shows the strongest interaction with the hydrogen molecule. The improvement in the adsorption abilities of hydrogen molecule onto TM-doped SiCNTs is due to the protruding structure and the induced charge transfer between TM-doped SiCNT and hydrogen molecule. These observations point out that TM-doped SiCNTs are highly sensitive toward hydrogen molecule. Moreover, the adsorptions of 2-5 hydrogen molecules on TM-doped SiCNT were also investigated. The maximum storage number of hydrogen molecules adsorbed on the first layer of TM-doped SiCNTs is 3 hydrogen molecules. Therefore, TM-doped SiCNTs are suitable to be sensing and storage materials for hydrogen gas.

  9. Luminescence Properties of RDX and HMX

    DTIC Science & Technology

    1975-08-01

    AD-AO15 538 LUMINESCENCE PROPERTIES OF RDX AND HMX Paul L. Marinkas Picatinny Arsenal Dover, New Jersey August 1975 DISTRIBUTED BY: National...Technical Information Service U. S. DEPARTMENT OF COMMERCE • i 289106. TECHNICAL REPORT 4840 LUMINESCENCE PROPERTIES, OF RDX AND HMX PAULL. MARINKAS -’-I...yields Charge transfer HMX Phosphorescence Reflectance spectra Circular dichroism Lifetimes Photodecomposition RDX Doping Luminescence Polynitramines

  10. The study of structures and properties of PdnHm(n=1-10, m=1,2) clusters by density functional theory

    NASA Astrophysics Data System (ADS)

    Wen, Jun-Qing; Chen, Guo-Xiang; Zhang, Jian-Min; Wu, Hua

    2018-04-01

    The geometrical evolution, local relative stability, magnetism and charge transfer characteristics of PdnHm(n = 1-10, m = 1,2) have been systematically calculated by using density functional theory. The studied results show that the most stable geometries of PdnH and PdnH2 (n = 1-10) can be got by doping one or two H atoms on the sides of Pdn clusters except Pd6H and Pd6H2. It is found that doping one or two H atoms on Pdn clusters cannot change the basic framework of Pdn. The analysis of stability shows that Pd2H, Pd4H, Pd7H, Pd2H2, Pd4H2 and Pd7H2 clusters have higher local relative stability than neighboring clusters. The analysis of magnetic properties demonstrates that absorption of hydrogen atoms decreases the average atomic magnetic moments compared with pure Pdn clusters. More charges transfer from H atoms to Pd atoms for Pd6H and Pd6H2 clusters, demonstrating the adsorption of hydrogen atoms change from side adsorption to surface adsorption.

  11. Intervalence charge transfer luminescence: Interplay between anomalous and 5d − 4f emissions in Yb-doped fluorite-type crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barandiarán, Zoila, E-mail: zoila.barandiaran@uam.es; Seijo, Luis; Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid

    2014-12-21

    In this paper, we report the existence of intervalence charge transfer (IVCT) luminescence in Yb-doped fluorite-type crystals associated with Yb{sup 2+}–Yb{sup 3+} mixed valence pairs. By means of embedded cluster, wave function theory ab initio calculations, we show that the widely studied, very broad band, anomalous emission of Yb{sup 2+}-doped CaF{sub 2} and SrF{sub 2}, usually associated with impurity-trapped excitons, is, rather, an IVCT luminescence associated with Yb{sup 2+}–Yb{sup 3+} mixed valence pairs. The IVCT luminescence is very efficiently excited by a two-photon upconversion mechanism where each photon provokes the same strong 4f{sup 14}–1A{sub 1g}→ 4f{sup 13}({sup 2}F{sub 7/2})5de{sub g}–1T{submore » 1u} absorption in the Yb{sup 2+} part of the pair: the first one, from the pair ground state; the second one, from an excited state of the pair whose Yb{sup 3+} moiety is in the higher 4f{sup 13}({sup 2}F{sub 5/2}) multiplet. The Yb{sup 2+}–Yb{sup 3+} → Yb{sup 3+}–Yb{sup 2+} IVCT emission consists of an Yb{sup 2+} 5de{sub g} → Yb{sup 3+} 4f{sub 7/2} charge transfer accompanied by a 4f{sub 7/2} → 4f{sub 5/2} deexcitation within the Yb{sup 2+} 4f{sup 13} subshell: [{sup 2}F{sub 5/2}5de{sub g},{sup 2}F{sub 7/2}] → [{sup 2}F{sub 7/2},4f{sup 14}]. The IVCT vertical transition leaves the oxidized and reduced moieties of the pair after electron transfer very far from their equilibrium structures; this explains the unexpectedly large band width of the emission band and its low peak energy, because the large reorganization energies are subtracted from the normal emission. The IVCT energy diagrams resulting from the quantum mechanical calculations explain the different luminescent properties of Yb-doped CaF{sub 2}, SrF{sub 2}, BaF{sub 2}, and SrCl{sub 2}: the presence of IVCT luminescence in Yb-doped CaF{sub 2} and SrF{sub 2}; its coexistence with regular 5d-4f emission in SrF{sub 2}; its absence in BaF{sub 2} and SrCl{sub 2}; the quenching of all emissions in BaF{sub 2}; and the presence of additional 5d–4f emissions in SrCl{sub 2} which are absent in SrF{sub 2}. They also allow to interpret and reproduce recent experiments on transient photoluminescence enhancement in Yb{sup 2+}-doped CaF{sub 2} and SrF{sub 2}, the appearance of Yb{sup 2+} 4f–5d absorption bands in the excitation spectra of the IR Yb{sup 3+} emission in partly reduced CaF{sub 2}:Yb{sup 3+} samples, and to identify the broadband observed in the excitation spectrum of the so far called anomalous emission of SrF{sub 2}:Yb{sup 2+} as an IVCT absorption, which corresponds to an Yb{sup 2+} 4f{sub 5/2} → Yb{sup 3+} 4f{sub 7/2} electron transfer.« less

  12. Simulation of charge transfer and orbital rehybridization in molecular and condensed matter systems

    NASA Astrophysics Data System (ADS)

    Nistor, Razvan A.

    The mixing and shifting of electronic orbitals in molecules, or between atoms in bulk systems, is crucially important to the overall structure and physical properties of materials. Understanding and accurately modeling these orbital interactions is of both scientific and industrial relevance. Electronic orbitals can be perturbed in several ways. Doping, adding or removing electrons from systems, can change the bond-order and the physical properties of certain materials. Orbital rehybridization, driven by either thermal or pressure excitation, alters the short-range structure of materials and changes their long-range transport properties. Macroscopically, during bond formation, the shifting of electronic orbitals can be interpreted as a charge transfer phenomenon, as electron density may pile up around, and hence, alter the effective charge of, a given atom in the changing chemical environment. Several levels of theory exist to elucidate the mechanisms behind these orbital interactions. Electronic structure calculations solve the time-independent Schrodinger equation to high chemical accuracy, but are computationally expensive and limited to small system sizes and simulation times. Less fundamental atomistic calculations use simpler parameterized functional expressions called force-fields to model atomic interactions. Atomistic simulations can describe systems and time-scales larger and longer than electronic-structure methods, but at the cost of chemical accuracy. In this thesis, both first-principles and phenomenological methods are addressed in the study of several encompassing problems dealing with charge transfer and orbital rehybridization. Firstly, a new charge-equilibration method is developed that improves upon existing models to allow next-generation force-fields to describe the electrostatics of changing chemical environments. Secondly, electronic structure calculations are used to investigate the doping dependent energy landscapes of several high-temperature superconducting materials in order to parameterize the apparently large nonlinear electron-phonon coupling. Thirdly, ab initio simulations are used to investigate the role of pressure-driven structural re-organization in the crystalline-to-amorphous (or, metallic-to-insulating) transition of a common binary phase-change material composed of Ge and Sb. Practical applications of each topic will be discussed. Keywords. Charge-equilibration methods, molecular dynamics, electronic structure calculations, ab initio simulations, high-temperature superconductors, phase-change materials.

  13. Quadratic Electro-optic Effect in a Novel Nonconjugated Conductive Polymer, iodine-doped Polynorbornene

    NASA Astrophysics Data System (ADS)

    Narayanan, Ananthakrishnan; Thakur, Mrinal

    2009-03-01

    Quadratic electro-optic effect in a novel nonconjugated conductive polymer, iodine-doped polynorbornene has been measured using field-induced birefringence at 633 nm. The electrical conductivity^1 of polynorbornene increases by twelve orders of magnitude to about 0.01 S/cm upon doping with iodine. The electro-optic measurement has been made in a film doped at the medium doping-level. The electro-optic modulation signal was recorded using a lock-in amplifier for various applied ac voltages (4 kHz) and the quadratic dependence of the modulation on the applied voltage was observed. A modulation of about 0.01% was observed for an applied electric field of 3 V/micron for a 100 nm thick film The Kerr coefficient as determined is about 1.77x10-11m/V^2. This exceptionally large quadratic electro-optic effect has been attributed to the confinement of this charge-transfer system within a sub-nanometer dimension. 1. A. Narayanan, A. Palthi and M. Thakur, J. Macromol. Sci. -- PAC, accepted.

  14. Spectrum-enhanced Au@ZnO plasmonic nanoparticles for boosting dye-sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Liu, Qisheng; Wei, Yunwei; Shahid, Malik Zeeshan; Yao, Mingming; Xu, Bo; Liu, Guangning; Jiang, Kejian; Li, Cuncheng

    2018-03-01

    Spectrum-enhanced Au@ZnO plasmonic nanoparticles (NPs) are developed for fabrication of the dye-sensitized solar cells (DSSCs), and their remarkable enhanced performances are achieved due to Surface Plasmon Resonance (SPR) effects. When being doped different blended amounts of the Au@ZnO NPs within the photoanode layers, various enhanced effects in the SPR-based DSSCs are exhibited. Compared with the power conversion efficiency (PCE, 7.50%) achieved for bare DSSC, device with doped Au@ZnO NPs of 1.93% delivers the top PCE of 8.91%, exhibiting about 20% enhancement. To elaborate the charge transfer process in the Au@ZnO NPs blended DSSCs, the photoluminescence (PL), electrochemical impedance spectra (EIS), etc are performed. We find that both the enhanced SPR absorption properties and the suppressed recombination process of charges contribute much to the improved performance of Au@ZnO-incorporated DSSCs.

  15. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation

    NASA Astrophysics Data System (ADS)

    Hassan, H. E.; Refat, Moamen S.; Sharshar, T.

    2016-04-01

    Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using 60Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τi) and their corresponding intensities (Ii) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation.

  16. Doping-induced spectral shifts in two-dimensional metal oxides

    NASA Astrophysics Data System (ADS)

    Ylvisaker, E. R.; Pickett, W. E.

    2013-03-01

    Doping of strongly layered ionic oxides is an established paradigm for creating novel electronic behavior. This is nowhere more apparent than in superconductivity, where doping gives rise to high-temperature superconductivity in cuprates (hole doped) and to surprisingly high Tc in HfNCl (Tc = 25.5 K, electron doped). First-principles calculations of hole doping of the layered delafossite CuAlO2 reveal unexpectedly large doping-induced shifts in spectral density, strongly in opposition to the rigid-band picture that is widely used as an accepted guideline. These spectral shifts, of similar origin as the charge transfer used to produce negative electron affinity surfaces and adjust Schottky barrier heights, drastically alter the character of the Fermi level carriers, leading in this material to an O-Cu-O molecule-based carrier (or polaron, at low doping) rather than a nearly pure-Cu hole as in a rigid-band picture. First-principles linear response electron-phonon coupling (EPC) calculations reveal, as a consequence, net weak EPC and no superconductivity rather than the high Tc obtained previously using rigid-band expectations. These specifically two-dimensional dipole-layer-driven spectral shifts provide new insights into materials design in layered materials for functionalities besides superconductivity.

  17. Bandgap control and optical properties of β-Si3N4 by single- and co-doping from a first-principles simulation

    NASA Astrophysics Data System (ADS)

    Lu, Xuefeng; Gao, Xu; Ren, Junqiang; Li, Cuixia; Guo, Xin; Wei, Yupeng; La, Peiqing

    2018-06-01

    Bandgap tailoring of β-Si3N4 is performed by single and co-doping by using density functional theory (DFT) of PBE functional and plane-wave pseudopotential method. The results reveal that a direct bandgap transfers into an indirect one when single-doped with As element. Also, a considerate decrease of bandgap to 0.221 eV and 0.315 eV is present for Al-P and As-P co-doped systems, respectively, exhibiting a representative semiconductor property that is characteristic for a narrower bandgap. Compared with other doped systems, Al-doped system with formation energy of 2.67 eV is present for a more stable structure. From charge density difference (CDD) maps, it is found that the blue area between co-doped atoms increases, illustrating an enhancement of covalent property for Al-P and Al-As bonds. Moreover, a slightly obvious “Blue shift” phenomenon can be obtained in Al, Al-P and Al-As doped systems, indicating an enhanced capacity of responses to light, which contributes to the insight for broader applications with regard to photoelectric devices.

  18. Tunable Yellow-Red Photoluminescence and Persistent Afterglow in Phosphors Ca4LaO(BO3)3:Eu3+ and Ca4EuO(BO3)3.

    PubMed

    Chen, Zhen; Pan, Yuexiao; Xi, Luqing; Pang, Ran; Huang, Shaoming; Liu, Guokui

    2016-11-07

    In most Eu 3+ activated phosphors, only red luminescence from the 5 D 0 is obtainable, and efficiency is limited by concentration quenching. Herein we report a new phosphor of Ca 4 LaO(BO 3 ) 3 :Eu 3+ (CLBO:Eu) with advanced photoluminescence properties. The yellow luminescence emitted from the 5 D 1,2 states is not thermally quenched at room temperature. The relative intensities of the yellow and red emission bands depend strongly on the Eu 3+ doping concentration. More importantly, concentration quenching of Eu 3+ photoluminescence is absent in this phosphor, and the stoichiometric compound of Ca 4 EuO(BO 3 ) 3 emits stronger luminescence than the Eu 3+ doped compounds of CLBO:Eu; it is three times stronger than that of a commercial red phosphor of Y 2 O 3 :Eu 3+ . Another beneficial phenomenon is that ligand-to-metal charge transfer (CT) transitions occur in the long UV region with the lowest charge transfer band (CTB) stretched down to about 3.67 eV (∼330 nm). The CT transitions significantly enhance Eu 3+ excitation, and thus result in stronger photoluminescence and promote trapping of excitons for persistent afterglow emission. Along with structure characterization, optical spectra and luminescence dynamics measured under various conditions as a function of Eu 3+ doping, temperature, and excitation wavelength are analyzed for a fundamental understanding of electronic interactions and for potential applications.

  19. Mn@Si14+: a singlet fullerene-like endohedrally doped silicon cluster.

    PubMed

    Ngan, Vu Thi; Pierloot, Kristine; Nguyen, Minh Tho

    2013-04-21

    The electronic structure of Mn@Si14(+) is determined using DFT and CASPT2/CASSCF(14,15) computations with large basis sets. The endohedrally Mn-doped Si cationic cluster has a D3h fullerene-like structure featuring a closed-shell singlet ground state with a singlet-triplet gap of ~1 eV. A strong stabilizing interaction occurs between the 3d(Mn) and the 2D-shell(Si14) orbitals, and a large amount of charge is transferred from the Si14 cage to the Mn dopant. The 3d(Mn) orbitals are filled by encapsulation, and the magnetic moment of Mn is completely quenched. Full occupation of [2S, 2P, 2D] shell orbitals by 18 delocalized electrons confers the doped Mn@Si14(+) cluster a spherically aromatic character.

  20. Electronic excitations in electron-doped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Unger, P.; Fulde, P.

    1995-04-01

    We calculate the electronic single-particle spectrum of an electron-doped cuprate superconductor such as Nd2-xCexCuO4-y. The dynamics of holes in the Cu-O planes is described by the extended Hubbard or Emery model. We consider the system at half-filling (one hole per unit cell, nh=1) and in the case of electron doping where the ground state is paramagnetic. The projection technique of Mori and Zwanzig is applied to derive the equations of motion for the Green's functions of Cu and O holes. These equations are solved self-consistently as in a previous calculation, where we considered the case of hole doping. At half-filling the system exhibits a charge-transfer gap bounded by Zhang-Rice singlet states and the upper Hubbard band. Upon electron doping the upper Hubbard band crosses the Fermi level and the system becomes metallic. With increasing electron doping the singlet band loses intensity and finally vanishes for nh=0. The corresponding spectral weight is transferred to the upper Hubbard band, which becomes a usual tight-binding band for zero hole concentration. The shape of the flat band crossing the Fermi level fits well to angle-resolved photoemission spectra of Nd2-xCexCuO4-y for x=0.15 and 0.22. Furthermore, our findings are in excellent agreement with exact diagonalization studies of 2×2 CuO2 cluster with periodic boundary conditions.

  1. Controlled p-doping of black phosphorus by integration of MoS2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Jeon, Sumin; Kim, Minwoo; Jia, Jingyuan; Park, Jin-Hong; Lee, Sungjoo; Song, Young Jae

    2018-05-01

    Black phosphorus (BP), a new family of two dimensional (2D) layered materials, is an attractive material for future electronic, photonic and chemical sensing devices, thanks to its high carrier density and a direct bandgap of 0.3-2.0 eV, depending on the number of layers. Controllability over the properties of BP by electrical or chemical modulations is one of the critical requirements for future various device applications. Herein, we report a new doping method of BP by integration of density-controlled monolayer MoS2 nanoparticles (NPs). MoS2 NPs with different density were synthesized by chemical vapor deposition (CVD) and transferred onto a few-layer BP channel, which induced a p-doping effect. Scanning electron microscopy (SEM) confirmed the size and distribution of MoS2 NPs with different density. Raman and X-ray photoelectron spectroscopy (XPS) were measured to confirm the oxidation on the edge of MoS2 NPs and a doping effect of MoS2 NPs on a BP channel. The doping mechanism was explained by a charge transfer by work function differences between BP and MoS2 NPs, which was confirmed by Kelvin probe force microscopy (KPFM) and electrical measurements. The hole concentration of BP was controlled with different densities of MoS2 NPs in a range of 1012-1013 cm-2.

  2. A simple and green pathway toward nitrogen and sulfur dual doped hierarchically porous carbons from ionic liquids for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Cui, Zhentao; Wang, Shuguang; Zhang, Yihe; Cao, Minhua

    2014-08-01

    We for the first time demonstrate a simple and green approach to heteroatom (N and S) co-doped hierarchically porous carbons (N-S-HC) with high surface area by using one organic ionic liquid as nitrogen, sulfur and carbon sources and the eutectic salt as templating. The resultant dual-doped N-S-HC catalysts exhibit significantly enhanced electrocatalytic activity, long-term operation stability, and tolerance to crossover effect compared to commercial Pt/C for oxygen reduction reactions (ORR) in alkaline environment. The excellent electrocatalytic performance may be attributed to the synergistic effects, which includes more catalytic sites for ORR provided by N-S heteroatom doping and high electron transfer rate provided by hierarchically porous structure. The DFT calculations reveal that the dual doping of S and N atoms lead to the redistribution of spin and charge densities, which may be responsible for the formation of a large number of carbon atom active sites. This newly developed approach may supply an efficient platform for the synthesis of a series of heteroatom doped carbon materials for fuel cells and other applications.

  3. Interfaces between strongly correlated oxides: controlling charge transfer and induced magnetism by hybridization

    NASA Astrophysics Data System (ADS)

    Bibes, Manuel

    At interfaces between conventional materials, band bending and alignment are controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from correlations between transition metal and oxygen ions. Strong correlations thus offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. In this talk we will show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we have probed charge reconstruction at interfaces with gadolinium titanate GdTiO3 using soft X-ray absorption spectroscopy and hard X-ray photoemission spectroscopy. We show that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate (observed by XMCD), exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence. Work supported by ERC CoG MINT #615759.

  4. Impact of Silicon Doping on Low-Frequency Charge Noise and Conductance Drift in GaAs/AlxGa1 -xAs Nanostructures

    NASA Astrophysics Data System (ADS)

    Fallahi, S.; Nakamura, J. R.; Gardner, G. C.; Yannell, M. M.; Manfra, M. J.

    2018-03-01

    We present measurements of low-frequency charge noise and conductance drift in modulation-doped GaAs /AlxGa1 -xAs heterostructures grown by molecular beam epitaxy in which the silicon doping density is varied from 2.4 ×1018 (critically doped) to 6.0 ×1018 cm-3 (overdoped). Quantum point contacts are used to detect charge fluctuations. A clear reduction of both short-time-scale telegraphic noise and long-time-scale conductance drift with decreased doping density is observed. These measurements indicate that the neutral doping region plays a significant role in charge noise and conductance drift.

  5. Lateral and Vertical Organic Transistors

    NASA Astrophysics Data System (ADS)

    Al-Shadeedi, Akram

    An extensive study has been performed to provide a better understanding of the operation principles of doped organic field-effect transistors (OFETs), organic p-i-n diodes, Schottky diodes, and organic permeable base transistors (OPBTs). This has been accomplished by a combination of electrical and structural characterization of these devices. The discussion of doped OFETs focuses on the shift of the threshold voltage due to increased doping concentrations and the generation and transport of minority charge carriers. Doping of pentacene OFETs is achieved by co-evaporation of pentacene with the n-dopant W2(hpp)4. It is found that pentacene thin film are efficiently doped and that a conductivity in the range of 2.6 x 10-6 S cm-1 for 1 wt% to 2.5 x 10-4 S cm-1 for 16 wt% is reached. It is shown that n-doped OFET consisting of an n-doped channel and n-doped contacts are ambipolar. This behavior is surprising, as n-doping the contacts should suppress direct injection of minority charge carriers (holes). It was proposed that minority charge carrier injection and hence the ambipolar characteristic of n-doped OFETs can be explained by Zener tunneling inside the intrinsic pentacene layer underneath the drain electrode. It is shown that the electric field in this layer is indeed in the range of the breakdown field of pentacene based p-i-n Zener homodiodes. Doping the channel has a profound influence on the onset voltage of minority (hole) conduction. The onset voltage can be shifted by lightly n-doping the channel. The shift of onset voltage can be explained by two mechanisms: first, due to a larger voltage that has to be applied to the gate in order to fully deplete the n-doped layer. Second, it can be attributed to an increase in hole trapping by inactive dopants. Moreover, it has been shown that the threshold voltage of majority (electron) conduction is shifted by an increase in the doping concentration, and that the ambipolar OFETs can be turned into unipolar OFETs at high doping concentrations. In subsequent chapters, the working mechanisms of OPBTs are discussed. OPBTs consist of two Schottky diodes (top and bottom diode), and the charge transport in these C60-based Schottky diodes is studied first. Two transport regimes can be distinguished in forward direction - injection limited currents (ILCs) and space charge limited currents (SCLCs). It is found that the current increases exponentially with applied voltage in the ILC regime and depends quadratically on the applied voltage in the SCLC regime. Furthermore, it is observed that the forward and backward currents of the Schottky diode are increased by decreasing the C60 layer thickness, increasing the active area, and increasing the temperature. Furthermore, in order to reach a high performance, various treatments have been applied. Air exposure, a variation of the thickness of the top electrode, as well as annealing of the diodes are used to optimize the diodes. OPBTs are processed by using the semiconductor C60 due its high charge carrier mobility and good film-forming properties. Again, the working mechanism of OPBTs is studied by electrical characterization (base-sweep measurements and output characteristics). To achieve a high performance of OPBTs, various treatments and techniques have been applied. The annealing of the OPBTs after fabrication changes the morphology of the base electrode. Thus, openings (pinholes) are formed in the base electrode, which enables a high current transfer from the upper to lower semiconductor layer. The formation of openings is proved by analyzing SEM and TEM image of the base electrode. Adding a doped layer at the emitter is another process to optimize the OPBTs. The doped layer ensures a high charge carrier injection at the emitter, leading to a high transmission and current gain. Furthermore, it has been observed that the ON/OFF ratio and transconductance of OPBTs increases by decreasing their active area. A very high transconductance gm of 37 S/cm2 is reached, which has the potential to boost the switching speed of organic transistors to 5 MHz. Furthermore, it is shown that the base electrode thickness is an essential parameter for OPBTs. The current gain beta decreases by increasing thickness of base electrode, whereas the ON/OFF ratio increases for thicker base electrodes.

  6. Doping dependence of charge order in electron-doped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Mou, Yingping; Feng, Shiping

    2017-12-01

    In the recent studies of the unconventional physics in cuprate superconductors, one of the central issues is the interplay between charge order and superconductivity. Here the mechanism of the charge-order formation in the electron-doped cuprate superconductors is investigated based on the t-J model. The experimentally observed momentum dependence of the electron quasiparticle scattering rate is qualitatively reproduced, where the scattering rate is highly anisotropic in momentum space, and is intriguingly related to the charge-order gap. Although the scattering strength appears to be weakest at the hot spots, the scattering in the antinodal region is stronger than that in the nodal region, which leads to the original electron Fermi surface is broken up into the Fermi pockets and their coexistence with the Fermi arcs located around the nodal region. In particular, this electron Fermi surface instability drives the charge-order correlation, with the charge-order wave vector that matches well with the wave vector connecting the hot spots, as the charge-order correlation in the hole-doped counterparts. However, in a striking contrast to the hole-doped case, the charge-order wave vector in the electron-doped side increases in magnitude with the electron doping. The theory also shows the existence of a quantitative link between the single-electron fermiology and the collective response of the electron density.

  7. Synthesis and characterization of Sn-doped hematite as visible light photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Zhiqin; School of Materials Science and Engineering, Pan Zhihua University, Pan Zhihua 617000; Qin, Mingli, E-mail: qinml@mater.ustb.edu.cn

    2016-05-15

    Highlights: • Sn-doped hematite nanoparticles are prepared by SCS in one step. • The Sn doping have the ability to inhibit particle growth of hematite. • Sn can enhance visible light harvesting and e{sup −}/h{sup +} separation. • Sn-doped hematite degrades MB under visible light effectively. • The products with 5 mol% Sn have the highest photocatalytic activity. - Abstract: Sn-doped hematite nanoparticles are prepared by solution combustion synthesis. The products are characterized with various analytical and spectroscopic techniques to determine their structural, morphological, light absorption and photocatalytic properties. The results reveal that all the samples consist of nanocrystalline hematitemore » with mesoporous structures, and Sn has the ability to inhibit the growth of hematite particle. Compared to pure hematite, the doped hematite samples with appropriate amount of Sn show better activities for degradation of methylene blue under visible light irradiation. The highest activity is observed for 5% Sn doped hematite and this product has long-term stability and no selectivity for dye degradation. The enhanced performance of 5% Sn doped hematite is ascribed to the smaller particle size, increased ability to absorb in visible light, efficient charge separation as well as improved e{sup −} transfer associated with the effects of appropriate amount of Sn doped sample.« less

  8. Engineered Mott ground state in a LaTiO3+δ/LaNiO3 heterostructure

    NASA Astrophysics Data System (ADS)

    Cao, Yanwei; Liu, Xiaoran; Kareev, M.; Choudhury, D.; Middey, S.; Meyers, D.; Kim, J.-W.; Ryan, P. J.; Freeland, J. W.; Chakhalian, J.

    2016-01-01

    In pursuit of creating cuprate-like electronic and orbital structures, artificial heterostructures based on LaNiO3 have inspired a wealth of exciting experimental and theoretical results. However, to date there is a very limited experimental understanding of the electronic and orbital states emerging from interfacial charge transfer and their connections to the modified band structure at the interface. Towards this goal, we have synthesized a prototypical superlattice composed of a correlated metal LaNiO3 and a doped Mott insulator LaTiO3+δ, and investigated its electronic structure by resonant X-ray absorption spectroscopy combined with X-ray photoemission spectroscopy, electrical transport and theory calculations. The heterostructure exhibits interfacial charge transfer from Ti to Ni sites, giving rise to an insulating ground state with orbital polarization and eg orbital band splitting. Our findings demonstrate how the control over charge at the interface can be effectively used to create exotic electronic, orbital and spin states.

  9. Engineered Mott ground state in a LaTiO3+δ/LaNiO3 heterostructure

    PubMed Central

    Cao, Yanwei; Liu, Xiaoran; Kareev, M.; Choudhury, D.; Middey, S.; Meyers, D.; Kim, J.-W.; Ryan, P. J.; Freeland, J.W.; Chakhalian, J.

    2016-01-01

    In pursuit of creating cuprate-like electronic and orbital structures, artificial heterostructures based on LaNiO3 have inspired a wealth of exciting experimental and theoretical results. However, to date there is a very limited experimental understanding of the electronic and orbital states emerging from interfacial charge transfer and their connections to the modified band structure at the interface. Towards this goal, we have synthesized a prototypical superlattice composed of a correlated metal LaNiO3 and a doped Mott insulator LaTiO3+δ, and investigated its electronic structure by resonant X-ray absorption spectroscopy combined with X-ray photoemission spectroscopy, electrical transport and theory calculations. The heterostructure exhibits interfacial charge transfer from Ti to Ni sites, giving rise to an insulating ground state with orbital polarization and eg orbital band splitting. Our findings demonstrate how the control over charge at the interface can be effectively used to create exotic electronic, orbital and spin states. PMID:26791402

  10. Engineered Mott ground state in a LaTiO 3+δ/LaNiO 3 heterostructure

    DOE PAGES

    Cao, Yanwei; Liu, Xiaoran; Kareev, M.; ...

    2016-01-21

    In pursuit of creating cuprate-like electronic and orbital structures, artificial heterostructures based on LaNiO 3 have inspired a wealth of exciting experimental and theoretical results. However, to date there is a very limited experimental understanding of the electronic and orbital states emerging from interfacial charge transfer and their connections to the modified band structure at the interface. Towards this goal, we have synthesized a prototypical superlattice composed of a correlated metal LaNiO 3 and a doped Mott insulator LaTiO 3+δ, and investigated its electronic structure by resonant X-ray absorption spectroscopy combined with X-ray photoemission spectroscopy, electrical transport and theory calculations.more » The heterostructure exhibits interfacial charge transfer from Ti to Ni sites, giving rise to an insulating ground state with orbital polarization and e g orbital band splitting. Here, our findings demonstrate how the control over charge at the interface can be effectively used to create exotic electronic, orbital and spin states.« less

  11. Discussion on the structure stability and the luminescence switch under irradiation of a Ce-doped elpasolite compound.

    PubMed

    Cornu, Lucile; Gaudon, Manuel; Veber, Philippe; Villesuzanne, Antoine; Pechev, Stanilas; Garcia, Alain; Jubera, Véronique

    2015-03-23

    Ce-doped Rb2 KInF6 elpasolite has the potential for tunable luminescence due to an unusual reversible redox process between the cerium and indium cations. Coupled with a deep understanding of the luminescence properties, XRD analysis and DFT calculations are used to locate the doping elements in the host lattice. The origin explanation of the charge-transfer mechanism that causes a decrease or increase in the blue-green cerium emission in opposition to the red indium emission is discussed regarding the crystallographic structure, the connection of the metallic cations and their equilibrium valence. Still detectable after nineteen years, the optical contrast created under irradiation makes this material a good candidate as photosensor for data storage. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nitrogen, Fluorine, and Boron Ternary Doped Carbon Fibers as Cathode Electrocatalysts for Zinc-Air Batteries.

    PubMed

    Wang, Lei; Wang, Yueqing; Wu, Mingguang; Wei, Zengxi; Cui, Chunyu; Mao, Minglei; Zhang, Jintao; Han, Xiaopeng; Liu, Quanhui; Ma, Jianmin

    2018-05-01

    Zinc-air batteries with high-density energy are promising energy storage devices for the next generation of energy storage technologies. However, the battery performance is highly dependent on the efficiency of oxygen electrocatalyst in the air electrode. Herein, the N, F, and B ternary doped carbon fibers (TD-CFs) are prepared and exhibited higher catalytic properties via the efficient 4e - transfer mechanism for oxygen reduction in comparison with the single nitrogen doped CFs. More importantly, the primary and rechargeable Zn-air batteries using TD-CFs as air-cathode catalysts are constructed. When compared to batteries with Pt/C + RuO 2 and Vulcan XC-72 carbon black catalysts, the TD-CFs catalyzed batteries exhibit remarkable battery reversibility and stability over long charging/discharging cycles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mesoporous Phosphorus-Doped g-C3N4 Nanostructured Flowers with Superior Photocatalytic Hydrogen Evolution Performance.

    PubMed

    Zhu, Yun-Pei; Ren, Tie-Zhen; Yuan, Zhong-Yong

    2015-08-05

    Graphitic carbon nitride (g-C3N4) has been deemed a promising heterogeneous metal-free catalyst for a wide range of applications, such as solar energy utilization toward water splitting, and its photocatalytic performance is reasonably adjustable through tailoring its texture and its electronic and optical properties. Here phosphorus-doped graphitic carbon nitride nanostructured flowers of in-plane mesopores are synthesized by a co-condensation method in the absence of any templates. The interesting structures, together with the phosphorus doping, can promote light trapping, mass transfer, and charge separation, enabling it to perform as a more impressive catalyst than its pristine carbon nitride counterpart for catalytic hydrogen evolution under visible light irradiation. The catalyst has low cost, is environmentally friendly, and represents a potential candidate in photoelectrochemistry.

  14. Tri-functional Fe2O3-encased Ag-doped ZnO nanoframework: magnetically retrievable antimicrobial photocatalyst

    NASA Astrophysics Data System (ADS)

    Karunakaran, Chockalingam; Vinayagamoorthy, Pazhamalai

    2016-11-01

    Fe2O3-encased ZnO nanoframework was obtained by hydrothermal method and was doped with Ag through photoreduction process. Energy dispersive x-ray spectroscopy, transmission electron microscopy (TEM), high resolution TEM, selected area electron diffractometry, x-ray diffractometry and Raman spectroscopy were employed for the structural characterization of the synthesized material. While the charge transfer resistance of the prepared nanomaterial is larger than those of Fe2O3 and ZnO the coercivity of the nanocomposite is less than that of hydrothermally obtained Fe2O3 nanostructures. Although Fe2O3/Ag-ZnO exhibits weak visible light absorption its band gap energy does not differ from that of ZnO. The photoluminescence of the fabricated nanoframework is similar to that of ZnO. The radiative recombination of charge carriers is slightly slower in Fe2O3/Ag-ZnO than in ZnO. The synthesized Fe2O3-encased Ag-doped ZnO, under UV A light, exhibits sustainable photocatalytic activity to degrade dye and is magnetically recoverable. Also, the Fe2O3/Ag-ZnO nanocomposite disinfects bacteria effectively in absence of direct illumination.

  15. First principles study on the electronic transport properties of C{sub 60} and B{sub 80} molecular bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, X. H., E-mail: xhzheng@theory.issp.ac.cn; Hao, H.; Lan, J.

    2014-08-21

    The electronic transport properties of molecular bridges constructed by C{sub 60} and B{sub 80} molecules which have the same symmetry are investigated by first principles calculations combined with a non-equilibrium Green's function technique. It is found that, like C{sub 60}, monomer B{sub 80} is a good conductor arising from the charge transfer from the leads to the molecule, while the dimer (B{sub 80}){sub 2} and (C{sub 60}){sub 2} are both insulators due to the potential barrier formed at the molecule-molecule interface. Our further study shows that, although both the homogeneous dimer (B{sub 80}){sub 2} and (C{sub 60}){sub 2} display poormore » conductivity, the heterogeneous dimer B{sub 80}C{sub 60} shows a very high conductance as a result from the decreased HOMO-LUMO gap and the excess charge redistribution. Finally, we find that the conductivity of both (B{sub 80}){sub 2} and (C{sub 60}){sub 2} can be significantly improved by electron doping, for example, by doping C in (B{sub 80}){sub 2} and doping N in (C{sub 60}){sub 2}.« less

  16. Structural, thermal, dielectric spectroscopic and AC impedance properties of SiC nanoparticles doped PVK/PVC blend

    NASA Astrophysics Data System (ADS)

    Alghunaim, Naziha Suliman

    2018-06-01

    Nanocomposite films based on poly (N-vinylcarbazole)/polyvinylchloride (PVK/PVC) blend doped with different concentrations of Silicon Carbide (SiC) nanoparticles have been prepared. The X-ray diffraction, Ultra violet-visible spectroscopy, thermogravimetric analysis and electrical spectroscopic has been used to characterize these nanocomposites. The X-ray analysis confirms the semi-crystalline nature of the films. The intensity of the main X-ray peak is decreased due to the interaction between the PVK/PVC and SiC. The main SiC peaks are absent due to complete dissolution of SiC in polymeric matrices. The UV-Vis spectra indicated that the band gap optical energy is affected by adding SiC nanoparticles because the charges transfer complexes between PVK/PVC with amount of SiC. The thermal stability is improved and the estimated values of ε‧ and ε″ are increased with increasing for SiC content due to the free charge carriers which in turn increase the ionic conductivity of the doped samples. The plots of tan δ with frequency are studied. A single peak from the plot between tan δ and Log (f) is appeared and shifted towards the higher frequency confirmed the presence of relaxing dipoles moment.

  17. Energy level alignment at planar organic heterojunctions: influence of contact doping and molecular orientation.

    PubMed

    Opitz, Andreas

    2017-04-05

    Planar organic heterojunctions are widely used in photovoltaic cells, light-emitting diodes, and bilayer field-effect transistors. The energy level alignment in the devices plays an important role in obtaining the aspired gap arrangement. Additionally, the π-orbital overlap between the involved molecules defines e.g. the charge-separation efficiency in solar cells due to charge-transfer effects. To account for both aspects, direct/inverse photoemission spectroscopy and near edge x-ray absorption fine structure spectroscopy were used to determine the energy level landscape and the molecular orientation at prototypical planar organic heterojunctions. The combined experimental approach results in a comprehensive model for the electronic and morphological characteristics of the interface between the two investigated molecular semiconductors. Following an introduction on heterojunctions used in devices and on energy levels of organic materials, the energy level alignment of planar organic heterojunctions will be discussed. The observed energy landscape is always determined by the individual arrangement between the energy levels of the molecules and the work function of the electrode. This might result in contact doping due to Fermi level pinning at the electrode for donor/acceptor heterojunctions, which also improves the solar cell efficiency. This pinning behaviour can be observed across an unpinned interlayer and results in charge accumulation at the donor/acceptor interface, depending on the transport levels of the respective organic semiconductors. Moreover, molecular orientation will affect the energy levels because of the anisotropy in ionisation energy and electron affinity and is influenced by the structural compatibility of the involved molecules at the heterojunction. High structural compatibility leads to π-orbital stacking between different molecules at a heterojunction, which is of additional interest for photovoltaic active interfaces and for ground-state charge-transfer.

  18. A reliable and controllable graphene doping method compatible with current CMOS technology and the demonstration of its device applications

    NASA Astrophysics Data System (ADS)

    Kim, Seonyeong; Shin, Somyeong; Kim, Taekwang; Du, Hyewon; Song, Minho; Kim, Ki Soo; Cho, Seungmin; Lee, Sang Wook; Seo, Sunae

    2017-04-01

    The modulation of charge carrier concentration allows us to tune the Fermi level (E F) of graphene thanks to the low electronic density of states near the E F. The introduced metal oxide thin films as well as the modified transfer process can elaborately maneuver the amounts of charge carrier concentration in graphene. The self-encapsulation provides a solution to overcome the stability issues of metal oxide hole dopants. We have manipulated systematic graphene p-n junction structures for electronic or photonic application-compatible doping methods with current semiconducting process technology. We have demonstrated the anticipated transport properties on the designed heterojunction devices with non-destructive doping methods. This mitigates the device architecture limitation imposed in previously known doping methods. Furthermore, we employed E F-modulated graphene source/drain (S/D) electrodes in a low dimensional transition metal dichalcogenide field effect transistor (TMDFET). We have succeeded in fulfilling n-type, ambipolar, or p-type field effect transistors (FETs) by moving around only the graphene work function. Besides, the graphene/transition metal dichalcogenide (TMD) junction in either both p- and n-type transistor reveals linear voltage dependence with the enhanced contact resistance. We accomplished the complete conversion of p-/n-channel transistors with S/D tunable electrodes. The E F modulation using metal oxide facilitates graphene to access state-of-the-art complimentary-metal-oxide-semiconductor (CMOS) technology.

  19. Spin tuning of electron-doped metal-phthalocyanine layers.

    PubMed

    Stepanow, Sebastian; Lodi Rizzini, Alberto; Krull, Cornelius; Kavich, Jerald; Cezar, Julio C; Yakhou-Harris, Flora; Sheverdyaeva, Polina M; Moras, Paolo; Carbone, Carlo; Ceballos, Gustavo; Mugarza, Aitor; Gambardella, Pietro

    2014-04-09

    The spin state of organic-based magnets at interfaces is to a great extent determined by the organic environment and the nature of the spin-carrying metal center, which is further subject to modifications by the adsorbate-substrate coupling. Direct chemical doping offers an additional route for tailoring the electronic and magnetic characteristics of molecular magnets. Here we present a systematic investigation of the effects of alkali metal doping on the charge state and crystal field of 3d metal ions in Cu, Ni, Fe, and Mn phthalocyanine (Pc) monolayers adsorbed on Ag. Combined X-ray absorption spectroscopy and ligand field multiplet calculations show that Cu(II), Ni(II), and Fe(II) ions reduce to Cu(I), Ni(I), and Fe(I) upon alkali metal adsorption, whereas Mn maintains its formal oxidation state. The strength of the crystal field at the Ni, Fe, and Mn sites is strongly reduced upon doping. The combined effect of these changes is that the magnetic moment of high- and low-spin ions such as Cu and Ni can be entirely turned off or on, respectively, whereas the magnetic configuration of MnPc can be changed from intermediate (3/2) to high (5/2) spin. In the case of FePc a 10-fold increase of the orbital magnetic moment accompanies charge transfer and a transition to a high-spin state.

  20. Localized Charges Control Exciton Energetics and Energy Dissipation in Doped Carbon Nanotubes.

    PubMed

    Eckstein, Klaus H; Hartleb, Holger; Achsnich, Melanie M; Schöppler, Friedrich; Hertel, Tobias

    2017-10-24

    Doping by chemical or physical means is key for the development of future semiconductor technologies. Ideally, charge carriers should be able to move freely in a homogeneous environment. Here, we report on evidence suggesting that excess carriers in electrochemically p-doped semiconducting single-wall carbon nanotubes (s-SWNTs) become localized, most likely due to poorly screened Coulomb interactions with counterions in the Helmholtz layer. A quantitative analysis of blue-shift, broadening, and asymmetry of the first exciton absorption band also reveals that doping leads to hard segmentation of s-SWNTs with intrinsic undoped segments being separated by randomly distributed charge puddles approximately 4 nm in width. Light absorption in these doped segments is associated with the formation of trions, spatially separated from neutral excitons. Acceleration of exciton decay in doped samples is governed by diffusive exciton transport to, and nonradiative decay at charge puddles within 3.2 ps in moderately doped s-SWNTs. The results suggest that conventional band-filling in s-SWNTs breaks down due to inhomogeneous electrochemical doping.

  1. Explicit continuous charge-based compact model for long channel heavily doped surrounding-gate MOSFETs incorporating interface traps and quantum effects

    NASA Astrophysics Data System (ADS)

    Hamzah, Afiq; Hamid, Fatimah A.; Ismail, Razali

    2016-12-01

    An explicit solution for long-channel surrounding-gate (SRG) MOSFETs is presented from intrinsic to heavily doped body including the effects of interface traps and fixed oxide charges. The solution is based on the core SRGMOSFETs model of the Unified Charge Control Model (UCCM) for heavily doped conditions. The UCCM model of highly doped SRGMOSFETs is derived to obtain the exact equivalent expression as in the undoped case. Taking advantage of the undoped explicit charge-based expression, the asymptotic limits for below threshold and above threshold have been redefined to include the effect of trap states for heavily doped cases. After solving the asymptotic limits, an explicit mobile charge expression is obtained which includes the trap state effects. The explicit mobile charge model shows very good agreement with respect to numerical simulation over practical terminal voltages, doping concentration, geometry effects, and trap state effects due to the fixed oxide charges and interface traps. Then, the drain current is obtained using the Pao-Sah's dual integral, which is expressed as a function of inversion charge densities at the source/drain ends. The drain current agreed well with the implicit solution and numerical simulation for all regions of operation without employing any empirical parameters. A comparison with previous explicit models has been conducted to verify the competency of the proposed model with the doping concentration of 1× {10}19 {{cm}}-3, as the proposed model has better advantages in terms of its simplicity and accuracy at a higher doping concentration.

  2. Effects of the impurity-host interactions on the nonradiative processes in ZnS:Cr

    NASA Astrophysics Data System (ADS)

    Tablero, C.

    2010-11-01

    There is a great deal of controversy about whether the behavior of an intermediate band in the gap of semiconductors is similar or not to the deep-gap levels. It can have significant consequences, for example, on the nonradiative recombination. In order to analyze the behavior of an intermediate band, we have considered the effect of the inward and outward displacements corresponding to breathing and longitudinal modes of Cr-doped ZnS and on the charge density for different processes involved in the nonradiative recombination using first-principles. This metal-doped zinc chalcogenide has a partially filled band within the host semiconductor gap. In contrast to the properties exhibited by deep-gap levels in other systems, we find small variations in the equilibrium configurations, forces, and electronic density around the Cr when the nonradiative recombination mechanisms modify the intermediate band charge. The charge density around the impurity is equilibrated in response to the perturbations in the equilibrium nuclear configuration and the charge of the intermediate band. The equilibration follows a Le Chatelier principle through the modification of the contribution from the impurity to the intermediate band and to the valence band. The intermediate band introduced by Cr in ZnS for the concentrations analyzed makes the electronic capture difficult and later multiphonon emission in the charge-transfer processes, in accordance with experimental results.

  3. Effects of Contact-Induced Doping on the Behaviors of Organic Photovoltaic Devices

    DOE PAGES

    Wang, Jian; Xu, Liang; Lee, Yun -Ju; ...

    2015-10-09

    Substrates can significantly affect the electronic properties of organic semiconductors. In this paper, we report the effects of contact-induced doping, arising from charge transfer between a high work function hole extraction layer (HEL) and the organic active layer, on organic photovoltaic device performance. Employing a high work function HEL is found to increase doping in the active layer and decrease photocurrent. Combined experimental and modeling investigations reveal that higher doping increases polaron–exciton quenching and carrier recombination within the field-free region. Consequently, there exists an optimal HEL work function that enables a large built-in field while keeping the active layer dopingmore » low. This value is found to be ~0.4 eV larger than the pinning level of the active layer material. As a result, these understandings establish a criterion for optimal design of the HEL when adapting a new active layer system and can shed light on optimizing performance in other organic electronic devices.« less

  4. Strongly correlated superconductivity and quantum criticality

    NASA Astrophysics Data System (ADS)

    Tremblay, A.-M. S.

    Doped Mott insulators and doped charge-transfer insulators describe classes of materials that can exhibit unconventional superconducting ground states. Examples include the cuprates and the layered organic superconductors of the BEDT family. I present results obtained from plaquette cellular dynamical mean-field theory. Continuous-time quantum Monte Carlo evaluation of the hybridization expansion allows one to study the models in the large interaction limit where quasiparticles can disappear. The normal state which is unstable to the superconducting state exhibits a first-order transition between a pseudogap and a correlated metal phase. That transition is the finite-doping extension of the metal-insulator transition obtained at half-filling. This transition serves as an organizing principle for the normal and superconducting states of both cuprates and doped organic superconductors. In the less strongly correlated limit, these methods also describe the more conventional case where the superconducting dome surrounds an antiferromagnetic quantum critical point. Sponsored by NSERC RGPIN-2014-04584, CIFAR, Research Chair in the Theory of Quantum Materials.

  5. Effect of TiO2 nanoparticles doping on structural and electrical properties of PVA: NaBr polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Sagar, Rohan N.; Ravindrachary, V.; Guruswamy, B.; Hegde, Shreedatta; Mahanthesh, B. K.; Kumari, R. Padma

    2018-05-01

    The effect of TiO2 nanoparticles on morphology and electrical properties of PVA: NaBr composite films were carried out using various techniques. The pure and TiO2 nanoparticle doped PVA: NaBr composite films were prepared using solvent casting method. The FTIR spectral studies shows that the Ti+ ions of TiO2 interacts with hydroxyl group (OH) of PVA via hydrogen bonding and forms the charge transfer complexes (CTC). These interactions are of inter/intra molecular type and affects the surface morphology as well as the electrical properties of composite films. XRD study shows that the crystallinity of the composite increases with doping level. SEM studies shows that the increase in roughness of the surface of the composite films and uniform dispersion of nanofillers in polymer matrix. Electrical properties are analyzed using impedance analyzer and higher conductivity (10-4Scm-1) is achieved for 5 wt % TiO2 doping concentration.

  6. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation.

    PubMed

    Hassan, H E; Refat, Moamen S; Sharshar, T

    2016-04-15

    Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using (60)Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τ(i)) and their corresponding intensities (I(i)) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Magnon Splitting Induced by Charge Transfer in the Three-Orbital Hubbard Model

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Huang, Edwin W.; Moritz, Brian; Devereaux, Thomas P.

    2018-06-01

    Understanding spin excitations and their connection to unconventional superconductivity have remained central issues since the discovery of cuprates. Direct measurement of the dynamical spin structure factor in the parent compounds can provide key information on important interactions relevant in the doped regime, and variations in the magnon dispersion have been linked closely to differences in crystal structure between families of cuprate compounds. Here, we elucidate the relationship between spin excitations and various controlling factors thought to be significant in high-Tc materials by systematically evaluating the dynamical spin structure factor for the three-orbital Hubbard model, revealing differences in the spin dispersion along the Brillouin zone axis and the diagonal. Generally, we find that the absolute energy scale and momentum dependence of the excitations primarily are sensitive to the effective charge-transfer energy, while changes in the on-site Coulomb interactions have little effect on the details of the dispersion. In particular, our result highlights the splitting between spin excitations along the axial and diagonal directions in the Brillouin zone. This splitting decreases with increasing charge-transfer energy and correlates with changes in the apical oxygen position, and general structural variations, for different cuprate families.

  8. Shedding light on the photostability of two intermolecular charge-transfer complexes between highly fluorescent bis-1,8-naphthalimide dyes and some π-acceptors: A spectroscopic study in solution and solid states

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Ismail, Lamia A.; Adam, Abdel Majid A.

    2015-01-01

    Given the great importance of the various uses of 1,8-naphthalimides in the trends of biology, medicine and industry, the current study focused on extending the scope of these dyes by introducing some of their charge-transfer (CT) complexes. For this purpose, two highly fluorescent bis-1,8-naphthalimide dyes and their complexes with some π-acceptors have been synthesized and characterized spectroscopically. The π-acceptors include picric acid (PA), chloranilic acid (CLA), tetracyanoquinodimethane (TCNQ) and dichlorodicyanobenzoquinone (DDQ). The molecular structure, spectroscopic and fluorescence properties as well as the binding modes were deduced from IR, UV-vis and 1H NMR spectral studies. The binding ratio of complexation was determined to be 1:1 according to the elemental analyses and photometric titrations. It has been found that the order of acceptance ability for the different acceptors is TCNQ > DDQ > CLA > PA. The photostability of 1,8-naphthalimide dye as a donor and its charge-transfer complex doped in polymethyl methacrylate/PMMA were exposed to UV-Vis radiation and the change in the absorption spectra was achieved at different times during irradiation period.

  9. Electrochemical oxygen intercalation into Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Fruchter, L.; Brouet, V.; Colson, D.; Moussy, J.-B.; Forget, A.; Li, Z. Z.

    2018-01-01

    Oxygen was electrochemically intercalated into Sr2IrO4 sintered samples, single crystals and a thin film. We estimate the diffusion length to a few μm and the concentration of the intercalated oxygen to δ ≃ 0.01. The latter is thus much smaller than for the cuprate and nickelate parent compounds, for which δ > 0.1 is obtained, which could be a consequence of larger steric effects. The influence of the oxygen doping state on resistivity is small, indicating also a poor charge transfer to the conduction band. It is shown that electrochemical intercalation of oxygen may also contribute to doping, when gating thin films with ionic liquid in the presence of water.

  10. Doped Si nanoparticles with conformal carbon coating and cyclized-polyacrylonitrile network as high-capacity and high-rate lithium-ion battery anodes.

    PubMed

    Xie, Ming; Piper, Daniela Molina; Tian, Miao; Clancey, Joel; George, Steven M; Lee, Se-Hee; Zhou, Yun

    2015-09-11

    Doped Si nanoparticles (SiNPs) with conformal carbon coating and cyclized-polyacrylonitrile (PAN) network displayed capacities of 3500 and 3000 mAh g(-1) at C/20 and C/10, respectively. At 1 C, the electrode preserves a specific discharge capacity of ∼1500 mAh g(-1) for at least 60 cycles without decay. Al2O3 atomic layer deposition (ALD) helps improve the initial Coulombic efficiency (CE) to 85%. The dual coating of conformal carbon and cyclized-PAN help alleviate volume change and facilitate charge transfer. Ultra-thin Al2O3 ALD layers help form a stable solid electrolyte interphase interface.

  11. Construction of Uniform Cobalt-Based Nanoshells and Its Potential for Improving Li-Ion Battery Performance.

    PubMed

    Piao, Jun-Yu; Liu, Xiao-Chan; Wu, Jinpeng; Yang, Wanli; Wei, Zengxi; Ma, Jianmin; Duan, Shu-Yi; Lin, Xi-Jie; Xu, Yan-Song; Cao, An-Min; Wan, Li-Jun

    2018-06-28

    Surface cobalt doping is an effective and economic way to improve the electrochemical performance of cathode materials. Herein, by tuning the precipitation kinetics of Co 2+ , we demonstrate an aqueous-based protocol to grow uniform basic cobaltous carbonate coating layer onto different substrates, and the thickness of the coating layer can be adjusted precisely in nanometer accuracy. Accordingly, by sintering the cobalt-coated LiNi 0.5 Mn 1.5 O 4 cathode materials, an epitaxial cobalt-doped surface layer will be formed, which will act as a protective layer without hindering charge transfer. Consequently, improved battery performance is obtained because of the suppression of interfacial degradation.

  12. Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Li, Wenyuan

    Oxide anodes for solid oxide fuel cells (SOFC) with the advantage of fuel flexibility, resistance to coarsening, small chemical expansion and etc. have been attracting increasing interest. Good performance has been reported with a few of perovskite structure anodes, such as (LaSr)(CrMn)O3. However, more improvements need to be made before meeting the application requirement. Understanding the oxidation mechanism is crucial for a directed optimization, but it is still on the early stage of investigation. In this study, reaction mechanism of oxide anodes is investigated on doped YCrO 3 with H2 fuel, in terms of the origin of electrochemical activity, rate-determining steps (RDS), extension of reactive zone, and the impact from overpotential under service condition to those properties. H2 oxidation on the YCs anodes is found to be limited by charge transfer and H surface diffusion. A model is presented to describe the elementary steps in H2 oxidation. From the reaction order results, it is suggested that any models without taking H into the charge transfer step are invalid. The nature of B site element determines the H2 oxidation kinetics primarily. Ni displays better adsorption ability than Co. However, H adsorption ability of such oxide anode is inferior to that of Ni metal anode. In addition, the charge transfer step is directly associated with the activity of electrons in the anode; therefore it can be significantly promoted by enhancement of the electron activity. It is found that A site Ca doping improves the polarization resistance about 10 times, by increasing the activity of electrons to promote the charge transfer process. For the active area in the oxide anode, besides the traditional three-phase boundary (3PB), the internal anode surface as two-phase boundary (2PB) is proven to be capable of catalytically oxidizing the H2 fuel also when the bulk lattice is activated depending on the B site elements. The contribution from each part is estimated by switching the electrolyte to change 3PB kinetics. Compared to Ni, Co doping activates the bulk oxygen more significantly, promoting the reaction at 2PB. The active surface reaction zone is found to be enlarged by the electrolyte with high oxygen activity (SSZ vs. YSZ) when charge transfer is one of the RDS. Due to the larger exchange current for charge transfer in 3PB with SSZ electrolyte, the adsorption gradient zone is broadened, leading to enhanced surface reaction kinetics. The potential application of such finding is demonstrated on SSZ/YSZ/SSZ sandwich, showing largely improved electrode performance, opening a wide door for the utilization of electrolytes that are too expensive, fragile or instable to be used before. The bulk path way in 2PB reaction can be affected by overpotential in terms of local vacancy concentration, built-in electrical field and stability. It is proven that an uneven distribution of lattice oxygen is established under operation conditions with overpotential by both qualitative analysis and analytic solution. An electrostatic field force is present besides the concentration gradient in the anode lattice to control the motion of oxygen ions. Compared to the usual estimation based on chemical diffusion mechanism, the real deviation of ionic defects concentration under polarization from the equilibrium state near electrode/electrolyte interface is smaller with the built-in electrical field. The overpotential is demonstrated to be able to open up or shut down the bulk pathway depending on the ionic defects of electrodes. The analysis on the bulk pathway in terms of local charged species and various potentials provides new insight in anion diffusion and electrode stability.

  13. Adsorption of sugars on Al- and Ga-doped boron nitride surfaces: A computational study

    NASA Astrophysics Data System (ADS)

    Darwish, Ahmed A.; Fadlallah, Mohamed M.; Badawi, Ashraf; Maarouf, Ahmed A.

    2016-07-01

    Molecular adsorption on surfaces is a key element for many applications, including sensing and catalysis. Non-invasive sugar sensing has been an active area of research due to its importance to diabetes care. The adsorption of sugars on a template surface study is at the heart of matter. Here, we study doped hexagonal boron nitride sheets (h-BNNs) as adsorbing and sensing template for glucose and glucosamine. Using first principles calculations, we find that the adsorption of glucose and glucosamine on h-BNNs is significantly enhanced by the substitutional doping of the sheet with Al and Ga. Including long range van der Waals corrections gives adsorption energies of about 2 eV. In addition to the charge transfer occurring between glucose and the Al/Ga-doped BN sheets, the adsorption alters the size of the band gap, allowing for optical detection of adsorption. We also find that Al-doped boron nitride sheet is better than Ga-doped boron nitride sheet to enhance the adsorption energy of glucose and glucosamine. The results of our work can be potentially utilized when designing support templates for glucose and glucosamine.

  14. Charge Transfer and Support Effects in Heterogeneous Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hervier, Antoine

    The kinetic, electronic and spectroscopic properties of two-dimensional oxide-supported catalysts were investigated in order to understand the role of charge transfer in catalysis. Pt/TiO 2 nanodiodes were fabricated and used as catalysts for hydrogen oxidation. During the reaction, the current through the diode, as well as its I-V curve, were monitored, while gas chromatography was used to measure the reaction rate. The current and the turnover rate were found to have the same temperature dependence, indicating that hydrogen oxidation leads to the non-adiabatic excitation of electrons in Pt. A fraction of these electrons have enough energy to ballistically transport throughmore » Pt and overcome the Schottky barrier at the interface with TiO 2. The yield for this phenomenon is on the order of 10 -4 electrons per product molecule formed, similar to what has been observed for CO oxidation and for the adsorption of many different molecules. The same Pt/TiO 2 system was used to compare currents in hydrogen oxidation and deuterium oxidation. The current through the diode under deuterium oxidation was found to be greater than under hydrogen oxidation by a factor of three. Weighted by the difference in turnover frequencies for the two isotopes, this would imply a chemicurrent yield 5 times greater for D 2 compared to H 2, contrary to what is expected given the higher mass of D 2. Reversible changes in the rectification factor of the diode are observed when switching between D 2 and H 2. These changes are a likely cause for the differences in current between the two isotopes. In the nanodiode experiments, surface chemistry leads to charge flow, suggesting the possibility of creating charge flow to tune surface chemistry. This was done first by exposing a Pt/Si diode to visible light while using it as a catalyst for H 2 oxidation. Absorption of the light in the Si, combined with the band bending at the interface, gives rise to a steady-state flow of hot holes to the surface. This leads to a decrease in turnover on the surface, an effect which is enhanced when a reverse bias is applied to the diode. Similar experiments were carried out for CO oxidation. On Pt/Si diodes, the reaction rate was found to increase when a forward bias was applied. When the diode was exposed to visible light and a reverse bias was applied, the rate was instead decreased. This implies that a flow of negative charges to the surface increases turnover, while positive charges decrease it. Charge flow in an oxide supported metal catalyst can be modified even without designing the catalyst as a solid state electronic device. This was done by doping stoichiometric and nonstoichiometric TiO 2 films with F, and using the resulting oxides as supports for Pt films. In the case of stoichiometric TiO 2, F was found to act as an n-type dopant, creating a population of filled electronic states just below the conduction band, and dramatically increasing the conductivity of the oxide film. The electrons in those states can transfer to surface O, activating it for reaction with CO, and leading to increased turnover for CO oxidation. This reinforces the hypothesis that CO oxidation is activated by a flow of negative charges to the surface. The same set of catalysts was used for methanol oxidation. The electronic properties of the TiO 2 films again correlated with the turnover rates, but also with selectivity. With stoichiometric TiO 2 as the support, F-doping caused an increase in selectivity toward the formation of partial oxidation products, formaldehyde and methyl formate, versus the total oxidation product, CO 2. With non-stoichiometric TiO 2, F-doping had the reverse effect. Ambient Pressure X-Ray Photoelectron Spectroscopy was used to investigate this F-doping effect in reaction conditions. In O 2 alone, and in CO oxidation conditions, the O1s spectrum showed a high binding energy peak that correlated in intensity with the activity of the different films: for stoichiometric films, the peak decreased in intensity with F-doping, while for nonstoichiometric films, the opposite was observed. No such changes were visible in the C1s spectrum, confirming the role of O activation in the reaction. This thesis adds to the body of knowledge on the importance of charge transfer at the metal-oxide interface in shaping the reactivity of heterogeneous catalysts, and provides examples of how this can be the basis for new methods to tune reactivity.« less

  15. Site Occupancies, Luminescence, and Thermometric Properties of LiY9(SiO4)6O2:Ce3+ Phosphors.

    PubMed

    Zhou, Weijie; Pan, Fengjuan; Zhou, Lei; Hou, Dejian; Huang, Yan; Tao, Ye; Liang, Hongbin

    2016-10-04

    In this work, we report the tunable emission properties of Ce 3+ in an apatite-type LiY 9 (SiO 4 ) 6 O 2 compound via adjusting the doping concentration or temperature. The occupancies of Ce 3+ ions at two different sites (Wyckoff 6h and 4f sites) in LiY 9 (SiO 4 ) 6 O 2 have been determined by Rietveld refinements. Two kinds of Ce 3+ f-d transitions have been studied in detail and then assigned to certain sites. The effects of temperature and doping concentration on Ce 3+ luminescence properties have been systematically investigated. It is found that the Ce 3+ ions prefer occupying Wyckoff 6h sites and the energy transfer between Ce 3+ at two sites becomes more efficient with an increase in doping concentration. In addition, the charge-transfer vibronic exciton (CTVE) induced by the existence of free oxygen ion plays an important role in the thermal quenching of Ce 3+ at 6h sites. Because of the tunable emissions from cyan to blue with increasing temperature, the phosphors LiY 9 (SiO 4 ) 6 O 2 :Ce 3+ are endowed with possible thermometric applications.

  16. Adsorption of alanine with heteroatom substituted fullerene for solar cell application: A DFT study.

    PubMed

    Dheivamalar, S; Sugi, L; Ravichandran, K; Sriram, S

    2018-09-05

    C 20 is the most important fullerene cage and alanine is the simplest representation of a backbone unit of the protein. The absorption feasibility of alanine molecule in the Si-doped C 20 and B-doped C 20 fullerenes has been studied based on calculated electronic properties of fullerenes using density functional theory (DFT). In this work, we explore the ability of Si-doped C 20 , B-doped C 20 fullerene to interact with alanine at the DFT-B3LYP/6-31G, RHF level of theory. We find that noticeable structural change takes place in C 20 when one of its carbon is substituted with Si or B. The molecular geometry, electronic properties and vibrational analysis have also been performed on the title compounds. The NMR study reveals the aromaticity of the pure and doped fullerene compounds. Stability of the doped fullerene - alanine compound arises from hyper conjugative interactions. It leads to one of the major property of bioactivity, charge transfer and delocalization of charge and this properties has been analyzed using Natural Bond Orbital (NBO) analysis. The energy gap of the doped fullerene reveals that there is a decrease in the size of energy gap significantly, making them more reactive as compared to C 20 fullerene. Theoretical studies of the electronic spectra by using time - dependent density functional theory (TD-DFT) method were helpful to interpret the observed electronic transition state. We aim to optimize the performance of the solar cells by altering the frontier orbital energy gaps. Considering all studied properties, it may be inferred that the applicability of C 20 fullerene as the non-linear optical (NLO) material and its NLO property would increase on doping fullerene with Si and B atom. Specifically C 19 Si would be better among them. Copyright © 2018. Published by Elsevier B.V.

  17. Room temperature synthesis of Mn2+ doped ZnS d-dots and observation of tunable dual emission: Effects of doping concentration, temperature, and ultraviolet light illumination

    NASA Astrophysics Data System (ADS)

    Kole, A. K.; Tiwary, C. S.; Kumbhakar, P.

    2013-03-01

    Mn2+ doped (0-50.0 molar %) ZnS d-dots have been synthesized in water medium by using an environment friendly low cost chemical technique. Tunable dual emission in UV and yellow-orange regions is achieved by tailoring the Mn2+ doping concentration in the host ZnS nanocrystal. The optimum doping concentration for achieving efficient photoluminescence (PL) emission is determined to be ˜1.10 (at. %) corresponding to 40.0 (molar %) of Mn2+ doping concentration used during synthesis. The mechanism of charge transfer from the host to the dopant leading to the intensity modulated tunable (594-610 nm) yellow-orange PL emission is straightforwardly understood as no capping agent is used. The temperature dependent PL emission measurements are carried out, viz., in 1.10 at. % Mn2+ doped sample and the experimental results are explained by using a theoretical PL emission model. It is found that the ratio of non-radiative to radiative recombination rates is temperature dependent and this phenomenon has not been reported, so far, in Mn2+ doped ZnS system. The colour tuning of the emitted light from the samples are evident from the calculated chromaticity coordinates. UV light irradiation for 150 min in 40.0 (molar %) Mn2+ doped sample shows an enhancement of 33% in PL emission intensity.

  18. Chemically Tunable, All-Inorganic-Based White-Light Emitting 0D-1D Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Shiyu; Zhou, Yuchen; Zou, Shihui

    In this study, we initially created one-dimensional (1D) Mn2+-doped ZnS (ZnS: Mn) nanowires (NWs) with a unique optical signature. Specifically, these nanostructures coupled (i) ZnS defect-related self-activated emission spanning from wavelengths of 400 nm to 500 nm with (ii) Mn2+ dopant-induced emission centered at ~580 nm. These doped ZnS nanostructures were initially fabricated for the first time via a template-based co-precipitation approach followed by a post-synthesis annealing process. We subsequently formed novel 1D - zero-dimensional (0D) heterostructures incorporating ZnS: Mn NWs and AET (2-amino-ethanethiol) - CdSe quantum dots (QDs) by assembling annealed ZnS: Mn NWs with AET- capped CdSe QDsmore » as building blocks via a simple technique, involving physical sonication and stirring. Optical analyses of our heterostructures were consistent with charge (hole) and energy transfer-induced quenching of ZnS self-activated emission coupled with hole transfer-related quenching of Mn2+ emission by the QDs. The CdSe QD emission itself was impacted by competing charge (electron) and energy transfer processes occurring between the underlying ZnS host and the immobilized CdSe QDs. Chromaticity analysis revealed the significance of controlling both QD coverage density and Mn2+ dopant ratios in predictably influencing the observed color of our all-inorganic heterostructures. For example, white-light emitting behavior was especially prominent in composites, simultaneously characterized by (i) a 2.22% Mn2+ doping level and (ii) a molar compositional ratio of [ZnS: Mn2+]: [AET-capped CdSe QDs]) of 1: 1.5. Moreover, using these independent chemical ‘knobs’, we have been able to reliably tune for a significant shift within our composites from ‘cold-white’ (9604 K) to ‘warm-white’ (4383 K) light emission.« less

  19. Chemically Tunable, All-Inorganic-Based White-Light Emitting 0D-1D Heterostructures

    DOE PAGES

    Yue, Shiyu; Zhou, Yuchen; Zou, Shihui; ...

    2017-08-21

    In this study, we initially created one-dimensional (1D) Mn2+-doped ZnS (ZnS: Mn) nanowires (NWs) with a unique optical signature. Specifically, these nanostructures coupled (i) ZnS defect-related self-activated emission spanning from wavelengths of 400 nm to 500 nm with (ii) Mn2+ dopant-induced emission centered at ~580 nm. These doped ZnS nanostructures were initially fabricated for the first time via a template-based co-precipitation approach followed by a post-synthesis annealing process. We subsequently formed novel 1D - zero-dimensional (0D) heterostructures incorporating ZnS: Mn NWs and AET (2-amino-ethanethiol) - CdSe quantum dots (QDs) by assembling annealed ZnS: Mn NWs with AET- capped CdSe QDsmore » as building blocks via a simple technique, involving physical sonication and stirring. Optical analyses of our heterostructures were consistent with charge (hole) and energy transfer-induced quenching of ZnS self-activated emission coupled with hole transfer-related quenching of Mn2+ emission by the QDs. The CdSe QD emission itself was impacted by competing charge (electron) and energy transfer processes occurring between the underlying ZnS host and the immobilized CdSe QDs. Chromaticity analysis revealed the significance of controlling both QD coverage density and Mn2+ dopant ratios in predictably influencing the observed color of our all-inorganic heterostructures. For example, white-light emitting behavior was especially prominent in composites, simultaneously characterized by (i) a 2.22% Mn2+ doping level and (ii) a molar compositional ratio of [ZnS: Mn2+]: [AET-capped CdSe QDs]) of 1: 1.5. Moreover, using these independent chemical ‘knobs’, we have been able to reliably tune for a significant shift within our composites from ‘cold-white’ (9604 K) to ‘warm-white’ (4383 K) light emission.« less

  20. DFT study on the adsorption of diethyl, ethyl methyl, and dimethyl ethers on the surface of gallium doped graphene

    NASA Astrophysics Data System (ADS)

    Shokuhi Rad, Ali; Sani, Emad; Binaeian, Ehsan; Peyravi, Majid; Jahanshahi, Mohsen

    2017-04-01

    In this study, we used density functional theory (DFT) to search on the adsorption properties of three important compounds of ether family; diethyl ether (DEE), ethyl methyl ether (EME), and dimethyl ether (DME) on the surface of Gallium doped graphene (GaG). We used three functionals (B3LYP, wb97xd, and MPW1PW91) for optimization and calculation of adsorption energy. After fully optimization, we scrutinized on the charge allocations on the adsorbed ethers as well as GaG (at the area of interaction) based on natural bond orbitals (NBO). Besides, we have calculated the amount of charge transfer upon adsorption of each analyte. We revel that GaG is an ideal adsorbent for chemisorption of all above-mentioned ethers. There is a little difference between the values of adsorption; -123.5, -120, and -118.3 kJ/mol (based on wb97xd) for DEE, EME, and DME, respectively. We found significant changes in the electronic structure of both adsorbent and adsorbate upon adsorption. Moreover, results of charge analyses confirm GaG is a p-type semiconductor.

  1. Tuning electronic transport via hepta-alanine peptides junction by tryptophan doping.

    PubMed

    Guo, Cunlan; Yu, Xi; Refaely-Abramson, Sivan; Sepunaru, Lior; Bendikov, Tatyana; Pecht, Israel; Kronik, Leeor; Vilan, Ayelet; Sheves, Mordechai; Cahen, David

    2016-09-27

    Charge migration for electron transfer via the polypeptide matrix of proteins is a key process in biological energy conversion and signaling systems. It is sensitive to the sequence of amino acids composing the protein and, therefore, offers a tool for chemical control of charge transport across biomaterial-based devices. We designed a series of linear oligoalanine peptides with a single tryptophan substitution that acts as a "dopant," introducing an energy level closer to the electrodes' Fermi level than that of the alanine homopeptide. We investigated the solid-state electron transport (ETp) across a self-assembled monolayer of these peptides between gold contacts. The single tryptophan "doping" markedly increased the conductance of the peptide chain, especially when its location in the sequence is close to the electrodes. Combining inelastic tunneling spectroscopy, UV photoelectron spectroscopy, electronic structure calculations by advanced density-functional theory, and dc current-voltage analysis, the role of tryptophan in ETp is rationalized by charge tunneling across a heterogeneous energy barrier, via electronic states of alanine and tryptophan, and by relatively efficient direct coupling of tryptophan to a Au electrode. These results reveal a controlled way of modulating the electrical properties of molecular junctions by tailor-made "building block" peptides.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jin; Prezhdo, Oleg V.

    Rapid development in lead halide perovskites has led to solution-processable thin film solar cells with power conversion efficiencies close to 20%. Nonradiative electron–hole recombination within perovskites has been identified as the main pathway of energy losses, competing with charge transport and limiting the efficiency. Using nonadiabatic (NA) molecular dynamics, combined with time-domain density functional theory, we show that nonradiative recombination happens faster than radiative recombination and long-range charge transfer to an acceptor material. Doping of lead iodide perovskites with chlorine atoms reduces charge recombination. On the one hand, chlorines decrease the NA coupling because they contribute little to the wavemore » functions of the valence and conduction band edges. On the other hand, chlorines shorten coherence time because they are lighter than iodines and introduce high-frequency modes. Both factors favor longer excited-state lifetimes. The simulation shows good agreement with the available experimental data and contributes to the comprehensive understanding of electronic and vibrational dynamics in perovskites. The generated insights into design of higher-efficiency solar cells range from fundamental scientific principles, such as the role of electron–vibrational coupling and quantum coherence, to practical guidelines, such as specific suggestions for chemical doping.« less

  3. Synthesis of Nb doped TiO2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Niu, Xiaoyou; Yan, Weijing; Zhao, Hongli; Yang, Jingkai

    2018-05-01

    Limited by the narrowed photoresponse range and unsatisfactory recombination of photoinduced electron-hole pairs, the photocatalytic efficiency of TiO2 is still far below what is expected. Here, we initially doped TiO2 nanotubes (TNTS) by transition metal ion Nb, then it is coupled with reduced graphene oxide (rGO) to construct a heterostructure photocatalyst. The defect state presented in TiO2 leading to the formation of localized midgap states (MS) in the bandgap, which regulating the band structure of TiO2 and extending the optical absorption to visible light region. The internal charge transport and transfer behavior analyzed by electrochemical impedance spectroscopy (EIS) reveal that the coupling of rGO with TNTS results in the formation of electron transport channel in the heterostructure, which makes a great contribution to the photoinduced charge separation. As expected, the Nb-TNTS/rGO exhibits a stable and remarkably enhanced photocatalytic activity in the visible-light irradiation degradation of methylene blue (MB), up to ∼5 times with respect to TNTS, which is attributed to the effective inhibition of charge recombination, the reduction of bandgap and higher redox potential, as well as the great adsorptivity.

  4. Non-adiabatic molecular dynamics investigation of photoionization state formation and lifetime in Mn²⁺-doped ZnO quantum dots.

    PubMed

    Fischer, Sean A; Lingerfelt, David B; May, Joseph W; Li, Xiaosong

    2014-09-07

    The unique electronic structure of Mn(2+)-doped ZnO quantum dots gives rise to photoionization states that can be used to manipulate the magnetic state of the material and to generate zero-reabsorption luminescence. Fast formation and long non-radiative decay of this photoionization state is a necessary requirement for these important applications. In this work, surface hopping based non-adiabatic molecular dynamics are used to demonstrate the fast formation of a metal-to-ligand charge transfer state in a Mn(2+)-doped ZnO quantum dot. The formation occurs on an ultrafast timescale and is aided by the large density of states and significant mixing of the dopant Mn(2+) 3dt2 levels with the valence-band levels of the ZnO lattice. The non-radiative lifetime of the photoionization states is also investigated.

  5. Enhanced visible light activity of nano-titanium dioxide doped with multiple ions: Effect of crystal defects

    NASA Astrophysics Data System (ADS)

    Jaimy, Kanakkanmavudi B.; Ghosh, Swapankumar; Gopakumar Warrier, Krishna

    2012-12-01

    Titanium dioxide photocatalysts co-doped with iron(III) and lanthanum(III) have been prepared through a modified sol-gel method. Doping with Fe3+ resulted in a relatively lower anatase to rutile phase transformation temperature, while La3+ addition reduced the crystal growth and thus retarded the phase transformation of titania nanoparticles. The presence of Fe3+ ions shifted the absorption profile of titania to the longer wavelength side of the spectrum and enhanced the visible light activity. On the other hand, La3+ addition improved the optical absorption of titania nanoparticles. Both the dopants improved the life time of excitons by proper transferring and trapping of photoexcited charges. In the present work, considerable enhancement in photocatalytic activity under visible light was achieved through synergistic effect of optimum concentrations of the two dopants and associated crystal defects.

  6. Effect of carrier doping and external electric field on the optical properties of graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Basak, Tista; Basak, Tushima

    2018-02-01

    In this paper, we demonstrate that the optical properties of finite-sized graphene quantum dots can be effectively controlled by doping it with different types of charge carriers (electron/hole). In addition, the role played by a suitably directed external electric field on the optical absorption of charge-doped graphene quantum dots have also been elucidated. The computations have been performed on diamond-shaped graphene quantum dot (DQD) within the framework of the Pariser-Parr-Pople (PPP) model Hamiltonian, which takes into account long-range Coulomb interactions. Our results reveal that the energy band-gap increases when the DQD is doped with holes while it decreases on doping it with electrons. Further, the optical absorption spectra of DQD exhibits red/blue-shift on doping with electrons/holes. Our computations also indicate that the application of external transverse electric field results in a substantial blue-shift of the optical spectrum for charge-doped DQD. However, it is observed that the influence of charge-doping is more prominent in tuning the optical properties of finite-sized graphene quantum dots as compared to externally applied electric field. Thus, tailoring the optical properties of finite-sized graphene quantum dots by manipulative doping with charge carriers and suitably aligned external electric field can greatly enhance its potential application in designing nano-photonic devices.

  7. Healable supramolecular polymers as organic metals.

    PubMed

    Armao, Joseph J; Maaloum, Mounir; Ellis, Thomas; Fuks, Gad; Rawiso, Michel; Moulin, Emilie; Giuseppone, Nicolas

    2014-08-13

    Organic materials exhibiting metallic behavior are promising for numerous applications ranging from printed nanocircuits to large area electronics. However, the optimization of electronic conduction in organic metals such as charge-transfer salts or doped conjugated polymers requires high crystallinity, which is detrimental to their processability. To overcome this problem, the combination of the electronic properties of metal-like materials with the mechanical properties of soft self-assembled systems is attractive but necessitates the absence of structural defects in a regular lattice. Here we describe a one-dimensional supramolecular polymer in which photoinduced through-space charge-transfer complexes lead to highly coherent domains with delocalized electronic states displaying metallic behavior. We also reveal that diffusion of supramolecular polarons in the nanowires repairs structural defects thereby improving their conduction. The ability to access metallic properties from mendable self-assemblies extends the current understanding of both fields and opens a wide range of processing techniques for applications in organic electronics.

  8. Property Morphology Correlations of Organic Semiconductor Nanowires

    NASA Astrophysics Data System (ADS)

    McFarland, Frederick Marshall

    Chemically doped and non-doped P3HT nanoaggregates are studied to establish a comprehensive understanding of the interplay between their morphology and various optoelectronic properties. One-dimensional nanoaggregates of P3HT are chosen as the model systems here due to their high surface/volume ratio and suitability for microscopic investigations. Atomic force microscopy (AFM) and kelvin probe force microscopy (KPFM) are used to correlate property/morphology characteristics of non-doped P3HT nanowhiskers. Topographical measurements indicate that individually folded P3HT motifs stack via interfacial interactions to form nanowhiskers in solution. Further aging leads to multi-layered nanowhiskers with greater stability and less instances of ?-? sliding of interfacial edge-on oriented motifs. KPFM measurements show higher surface potentials on portions of nanowhiskers containing local defects and stacking faults due to overlapping, and nanowhiskers that are at least triple-layered. Simultaneous UV-Vis and AFM characterizations compare the aggregation rates and morphologies of doped and non-doped P3HT nanowhiskers. Allowing fully solubilized P3HT to age without doping may produce high aspect ratio nanowhiskers containing disordered segments protruding out from the edges of the nanowhiskers. These protruding segments could also serve as "tie-molecules" between adjacent nanowhiskers. Doping fully solubilized P3HT will lead to substantially higher rates of P3HT aggregation. Doped nanowhiskers also display different morphologies. They pack tighter, are smoother, and are thicker and higher versus non-doped nanowhiskers, indicating a different aggregation mechanism. Stopped flow-kinetics was employed to investigate the reactivity of two distinctively different morphological forms of P3HT towards dopants. Fully solubilized P3HT undergoes a slow doping mechanism whereas pre-aggregated P3HT undergoes a fast doping mechanism. Pseudo-single reactant rate fittings indicate that both mechanisms appear to be 1st order in P3HT, whereby pre-aggregated P3HT mixtures will produce more doped products per P3HT monomer unit than fully solubilized P3HT. This study highlights the impact of conjugated polymer's morphology on their doping efficiency. Density functional theory was used to investigate the charge transfer (CT) states between oligothiophene and F4-TCNQ. CT of several unreported complexes that feature two oligomers stacked in a sandwich or layered configuration is investigated. Our preliminary results suggest that these new complexes can generate substantially more charge per F4-TCNQ than previously reported.

  9. A fluorescent probe based on nitrogen doped graphene quantum dots for turn off sensing of explosive and detrimental water pollutant, TNP in aqueous medium

    NASA Astrophysics Data System (ADS)

    Kaur, Manjot; Mehta, Surinder K.; Kansal, Sushil Kumar

    2017-06-01

    This paper reports the carbonization assisted green approach for the fabrication of nitrogen doped graphene quantum dots (N-GQDs). The obtained N-GQDs displayed good water dispersibility and stability in the wide pH range. The as synthesized N-GQDs were used as a fluorescent probe for the sensing of explosive 2,4,6-trinitrophenol (TNP) in aqueous medium based on fluorescence resonance energy transfer (FRET), molecular interactions and charge transfer mechanism. The quenching efficiency was found to be linear in proportion to the TNP concentration within the range of 0-16 μM with detection limit (LOD) of 0.92 μM. The presented method was successfully applied to the sensing of TNP in tap and lake water samples with satisfactory results. Thus, N-GQDs were used as a selective, sensitive and turn off fluorescent sensor for the detection of perilous water contaminant i.e. TNP.

  10. A fluorescent probe based on nitrogen doped graphene quantum dots for turn off sensing of explosive and detrimental water pollutant, TNP in aqueous medium.

    PubMed

    Kaur, Manjot; Mehta, Surinder K; Kansal, Sushil Kumar

    2017-06-05

    This paper reports the carbonization assisted green approach for the fabrication of nitrogen doped graphene quantum dots (N-GQDs). The obtained N-GQDs displayed good water dispersibility and stability in the wide pH range. The as synthesized N-GQDs were used as a fluorescent probe for the sensing of explosive 2,4,6-trinitrophenol (TNP) in aqueous medium based on fluorescence resonance energy transfer (FRET), molecular interactions and charge transfer mechanism. The quenching efficiency was found to be linear in proportion to the TNP concentration within the range of 0-16μM with detection limit (LOD) of 0.92μM. The presented method was successfully applied to the sensing of TNP in tap and lake water samples with satisfactory results. Thus, N-GQDs were used as a selective, sensitive and turn off fluorescent sensor for the detection of perilous water contaminant i.e. TNP. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A first principle simulation of competitive adsorption of SF6 decomposition components on nitrogen-doped anatase TiO2 (101) surface

    NASA Astrophysics Data System (ADS)

    Dong, Xingchen; Zhang, Xiaoxing; Cui, Hao; Zhang, Jun

    2017-11-01

    Gas insulated switchgear has been widely used in modern electric systems due to its significantly excellent performances such as compact structure and low land occupation as well as the security stability. However, inside defects caused during manufacture process can lead to partial discharge which might develop into serious insulation failure. Online monitoring method on basis of gas sensors is considered a promising way of detecting partial discharge for alarm ahead of time. Research has found that TiO2 nanotubes sensors show good response to SO2, SOF2, SO2F2, the decomposition components as a result of partial discharge. In order to investigate the gas-sensing mechanism of nitrogen-doped TiO2 prepared via plasma treatment methods to SO2, SOF2, and SO2F2, the adsorption structures of both three gas molecules and anatase TiO2 (101) surface were built, and DFT calculations were then carried out for calculation and analysis of adsorption parameters. Adsorption property comparison of anatase TiO2 (101) surface after nitrogen doping with Au doping and without doping shows that nitrogen doping can obviously enhance the adsorption energy for SO2 and SOF2 adsorption and no charge transfer for SO2F2 adsorption, further explaining the adsorption mechanism and doping influence of different doping elements.

  12. Controlling the charge state of supported nanoparticles in catalysis: lessons from model systems.

    PubMed

    Pacchioni, Gianfranco; Freund, Hans-Joachim

    2018-04-26

    Model systems are very important to identify the working principles of real catalysts, and to develop concepts that can be used in the design of new catalytic materials. In this review we report examples of the use of model systems to better understand and control the occurrence of charge transfer at the interface between supported metal nanoparticles and oxide surfaces. In the first part of this article we concentrate on the nature of the support, and on the basic difference in metal/oxide bonding going from a wide-gap non-reducible oxide material to reducible oxide semiconductors. The roles of oxide nanostructuring, bulk and surface defectiveness, and doping with hetero-atoms are also addressed, as they are all aspects that severely affect the metal/oxide interaction. Particular attention is given to the experimental measures of the occurrence of charge transfer at the metal/oxide interface. In this respect, systems based on oxide ultrathin films are particularly important as they allow the use of scanning probe spectroscopies which, often in combination with other measurements and with first principles theoretical simulations, allow full characterization of small supported nanoparticles and their charge state. In a few selected cases, a precise count of the electrons transferred between the oxide and the supported nanoparticle has been possible. Charge transfer can occur through thin, two-dimensional oxide layers also thanks to their structural flexibility. The flow of charge through the oxide film and the formation of charged adsorbates are accompanied in fact by a substantial polaronic relaxation of the film surface which can be rationalized based on electrostatic arguments. In the final part of this review the relationships between model systems and real catalysts are addressed by discussing some examples of how lessons learned from model systems have helped in rationalizing the behavior of real catalysts under working conditions.

  13. Reversible non-volatile switch based on a TCNQ charge transfer complex

    NASA Technical Reports Server (NTRS)

    DiStefano, Salvador (Inventor); Moacanin, Jovan (Inventor); Nagasubramanian, Ganesan (Inventor)

    1993-01-01

    A solid-state synaptic memory matrix (10) having switchable weakly conductive connections at each node (24) whose resistances can be selectably increased or decreased over several orders of magnitude by control signals of opposite polarity, and which will remain stable after the signals are removed, comprises an insulated substrate (16), a set of electrical conductors (14) upon which is deposited a layer (18) of an organic conducting polymer, which changes from an insulator to a conductor upon the transfer of electrons, such as polymerized pyrrole doped with 7,7,8,8-tetracyanoquinodimethane (TCNQ), covered by a second set of conductors (20) laid at right angles to the first.

  14. Transition-Metal-Doped p-Type ZnO Nanoparticle-Based Sensory Array for Instant Discrimination of Explosive Vapors.

    PubMed

    Qu, Jiang; Ge, Yuru; Zu, Baiyi; Li, Yuxiang; Dou, Xincun

    2016-03-09

    The development of portable, real-time, and cheap platforms to monitor ultratrace levels of explosives is of great urgence and importance due to the threat of terrorism attacks and the need for homeland security. However, most of the previous chemiresistor sensors for explosive detection are suffering from limited responses and long response time. Here, a transition-metal-doping method is presented to remarkably promote the quantity of the surface defect states and to significantly reduce the charge transfer distance by creating a local charge reservoir layer. Thus, the sensor response is greatly enhanced and the response time is remarkably shortened. The resulting sensory array can not only detect military explosives, such as, TNT, DNT, PNT, PA, and RDX with high response, but also can fully distinguish some of the improvised explosive vapors, such as AN and urea, due to the huge response reaching to 100%. Furthermore, this sensory array can discriminate ppb-level TNT and ppt-level RDX from structurally similar and high-concentration interfering aromatic gases in less than 12 s. Through comparison with the previously reported chemiresistor or Schottky sensors for explosive detection, the present transition-metal-doping method resulting ZnO sensor stands out and undoubtedly challenges the best. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Graphene Charge Transfer, Spectroscopy, and Photochemical Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brus, Louis

    This project focused on the special electronic and optical properties of graphene and adsorbed molecular species. Graphene makes an excellent substrate for current collection in nanostructured photovoltaic designs. Graphene is almost transparent, and can be used as a solar cell window. It also has no surface states, and thus current is efficiently transported over long distances. Progress in graphene synthesis indicates that there will soon be practical methods for making large pieces of graphene for devices. We now need to understand exactly what happens to both ground state and electronically excited molecules and Qdots near graphene, if we are goingmore » to use them to absorb light in a nano-structured photovoltaic device using graphene to collect photocurrent. We also need to understand how to shift the graphene Fermi level, to optimize the kinetics of electron transfer to graphene. And we need to learn how to convert local graphene areas to semiconductor structure, to make useful spatially patterned graphenes. In this final report, we describe how we addressed these goals. We explored the question of possible Surface Enhanced Raman spectroscopy from molecular Charge Transfer onto Graphene substrates. We observed strong hole doping of graphene by adsorbed halogens as indicated by the shift of the graphene G Raman band. In the case of iodine adsorption, we also observed the anionic species made by hole doping. At low frequency in the Raman spectrum, we saw quite intense lines from I 3 - and I 5 - , suggesting possible SERS. We reported on Fresnel calculations on this thin film system, which did not show any net electromagnetic field enhancement.« less

  16. Hydrophobic networked PbO2 electrode for electrochemical oxidation of paracetamol drug and degradation mechanism kinetics.

    PubMed

    He, Yapeng; Wang, Xue; Huang, Weimin; Chen, Rongling; Zhang, Wenli; Li, Hongdong; Lin, Haibo

    2018-02-01

    A hydrophobic networked PbO 2 electrode was deposited on mesh titanium substrate and utilized for the electrochemical elimination towards paracetamol drug. Three dimensional growth mechanism of PbO 2 layer provided more loading capacity of active materials and network structure greatly reduced the mass transfer for the electrochemical degradation. The active electrochemical surface area based on voltammetric charge quantity of networked PbO 2 electrode is about 2.1 times for traditional PbO 2 electrode while lower charge transfer resistance (6.78 Ω cm 2 ) could be achieved on networked PbO 2 electrode. The electrochemical incineration kinetics of paracetamol drug followed a pseudo first-order behavior and the corresponding rate constant were 0.354, 0.658 and 0.880 h -1 for traditional, networked PbO 2 and boron doped diamond electrode. Higher electrochemical elimination kinetics could be achieved on networked PbO 2 electrode and the performance can be equal to boron doped diamond electrode in result. Based on the quantification of reactive oxidants (hydroxyl radicals), the utilization rate of hydroxyl radicals could reach as high as 90% on networked PbO 2 electrode. The enhancement of excellent electrochemical oxidation capacity towards paracetamol drug was related to the properties of higher loading capacity, enhanced mass transfer and hydrophobic surface. The possible degradation mechanism and pathway of paracetamol on networked PbO 2 electrode were proposed in details accordingly based on the intermediate products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNA biosensor for label-free detection of genetically modified organisms by QCM and EIS.

    PubMed

    Truong, Thi Ngoc Lien; Tran, Dai Lam; Vu, Thi Hong An; Tran, Vinh Hoang; Duong, Tuan Quang; Dinh, Quang Khieu; Tsukahara, Toshifumi; Lee, Young Hoon; Kim, Jong Seung

    2010-01-15

    In this paper, we describe DNA electrochemical detection for genetically modified organism (GMO) based on multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole (PPy). DNA hybridization is studied by quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). An increase in DNA complementary target concentration results in a decrease in the faradic charge transfer resistance (R(ct)) and signifying "signal-on" behavior of MWCNTs-PPy-DNA system. QCM and EIS data indicated that the electroanalytical MWCNTs-PPy films were highly sensitive (as low as 4pM of target can be detected with QCM technique). In principle, this system can be suitable not only for DNA but also for protein biosensor construction.

  18. Layered Lithium-Rich Oxide Nanoparticles Doped with Spinel Phase: Acidic Sucrose-Assistant Synthesis and Excellent Performance as Cathode of Lithium Ion Battery.

    PubMed

    Chen, Min; Chen, Dongrui; Liao, Youhao; Zhong, Xiaoxin; Li, Weishan; Zhang, Yuegang

    2016-02-01

    Nanolayered lithium-rich oxide doped with spinel phase is synthesized by acidic sucrose-assistant sol-gel combustion and evaluated as the cathode of a high-energy-density lithium ion battery. Physical characterizations indicate that the as-synthesized oxide (LR-SN) is composed of uniform and separated nanoparticles of about 200 nm, which are doped with about 7% spinel phase, compared to the large aggregated ones of the product (LR) synthesized under the same condition but without any assistance. Charge/discharge demonstrates that LR-SN exhibits excellent rate capability and cyclic stability: delivering an average discharge capacity of 246 mAh g(-1) at 0.2 C (1C = 250 mA g(-1)) and earning a capacity retention of 92% after 100 cycles at 4 C in the lithium anode-based half cell, compared to the 227 mA g(-1) and the 63% of LR, respectively. Even in the graphite anode-based full cell, LR-SN still delivers a capacity of as high as 253 mAh g(-1) at 0.1 C, corresponding to a specific energy density of 801 Wh kg(-1), which are the best among those that have been reported in the literature. The separated nanoparticles of the LR-SN provide large sites for charge transfer, while the spinel phase doped in the nanoparticles facilitates lithium ion diffusion and maintains the stability of the layered structure during cycling.

  19. Effect of silicon, tantalum, and tungsten doping and polarization on bioactivity of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Dhal, Jharana

    Hydroxyapatite (HAp) ceramics has important applications as bone graft because of the structural and compositional similarities with bone tissue. However, inferior osteogenic capacity to bone and poor mechanical properties have been identified to be major disadvantages of synthetic HAp compared to the living bone tissue. The objective of the current study is to evaluate the effect of doping with higher valent cations (Tungsten, tantalum, and silicon) and polarization or combination of both on change in property of doped HAp and subsequent impact its bioactivity. In vitro study with human osteoblast cells was used to investigate the influences of doping and polarization on bone cell-materials interactions. The bioactivity of doped HAp was compared with pure HAp. Effect of doping and polarization on the change in HAp was investigated by monitoring change in mineral phases, stored charge, and activation energy of HAp. Activation energy of depolarization was used to explain the possible mechanism of polarization in doped samples. Bioactivity of HAp increased when doped with tantalum and tungsten. Polarization further increased the bioactivity of tungsten- and tantalum-doped samples. Increase in bioactivity on polarized and doped samples was attributed to increase in surface energy and increase in surface wettability. Whereas, an increase in bioactivity on doped unpolarized surface was attributed to change in microstructure. Polarized charge calculated from TSDC indicates that polarized charge decreases on tantalum- and tungsten-doped HAp. The decrease in polarized charge was attributed to the presence of significant amount of different phases that may hinder the ionic motion in doped samples. However, for silicon-doped HAp, TSDC study showed no difference in the mechanism of polarization between doped and undoped samples. Increase in silicon doping decreased the grain size though mechanism is not affected by grain size. Total stored charge decreased with increase in dopant concentration at a particular sintering temperature. Results of this study provide further evidence for use of higher valence cations to improve biological performance of HAp ceramics and to advance our understanding on mechanism of polarization in doped samples.

  20. Concentration Dependent Dimensionality of Resonance Energy Transfer in a Postsynthetically Doped Morphologically Homologous Analogue of UiO-67 MOF with a Ruthenium(II) Polypyridyl Complex

    DOE PAGES

    Maza, William A.; Padilla, Roberto; Morris, Amanda J.

    2015-06-04

    In this study, a method is described here by which to dope ruthenium(II) bis(2,2'-bipyridine) (2,2'-bipyridyl-5,5'-dicarboxylic acid), RuDCBPY, into a UiO-67 metal–organic framework (MOF) derivative in which 2,2'-bipyridyl-5,5'-dicarboxylic acid, UiO-67-DCBPY, is used in place of 4,4'-biphenyldicarboxylic acid. Emission lifetime measurements of the RuDCBPY triplet metal-to-ligand charge transfer, 3MLCT, excited state as a function of RuDCBPY doping concentration in UiO-67-DCBPY are discussed in light of previous results for RuDCBPY-UiO-67 doped powders in which quenching of the 3MLCT was said to be due to dipole–dipole homogeneous resonance energy transfer, RET. The bulk distribution of RuDCBPY centers within MOF crystallites are also estimated withmore » the use of confocal fluorescence microscopy. In the present case, it is assumed that the rate of RET between RuDCBPY centers has an r –6 separation distance dependence characteristic of Förster RET. The results suggest (1) the dimensionality in which RET occurs is dependent on the RuDCBPY concentration ranging from one-dimensional at very low concentrations up to three-dimensional at high concentration, (2) the occupancy of RuDCBPY within UiO-67-DCBPY is not uniform throughout the crystallites such that RuDCBPY densely populates the outer layers of the MOF at low concentrations, and (3) the average separation distance between RuDCBPY centers is ~21 Å.« less

  1. Synthetic and spectroscopic studies of vanadate glaserites II: Photoluminescence studies of Ln:K{sub 3}Y(VO{sub 4}){sub 2} (Ln=Eu, Er, Sm, Ho, or Tm)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimani, Martin M., E-mail: kimani@g.clemson.edu; McMillen, Colin D., E-mail: cmcmill@g.clemson.edu; Kolis, Joseph W., E-mail: kjoseph@clemson.edu

    2015-03-15

    Glaserite-type potassium yttrium double vanadates (K{sub 3}Y(VO{sub 4}){sub 2}) doped with Eu{sup 3+}, Er{sup 3+}, Sm{sup 3+}, Ho{sup 3+}, or Tm{sup 3+} have been synthesized by solid state reactions at 1000 °C for 48 h and their photoluminescence properties investigated. Efficient energy transfer from the vanadate group to the rare earth ion has been established by photoluminescence investigation. Ultraviolet excitation into the metal to ligand charge transfer band of the vanadate groups results in orange-red, blue and green emissions from Eu{sup 3+} (592 nm), Sm{sup 3+} (602 nm), Tm{sup 3+} (475 nm), Er{sup 3+} (553 nm), and Ho{sup 3+} (541–551more » nm) dopant ions. The emission intensities of the lanthanide-doped K{sub 3}Y(VO{sub 4}){sub 2} powders were studied as a function of dopant ion concentrations. Over the concentration ranges studied, no emission quenching was observed for Eu{sup 3+} or Ho{sup 3+} dopants, while Er{sup 3+}, Sm{sup 3+} and Tm{sup 3+} dopants did exhibit such effects for dopant ion concentrations greater than 5%, probably due to cross relaxation processes. - Graphical abstract: Synthesis and photoluminescence in vanadate glaserites. - Highlights: • K{sub 3}Y(VO{sub 4}){sub 2} doped with Eu, Er, Tm, Sm, or Ho were synthesized via solid-state reactions. • Photoluminescence properties are investigated. • The lanthanide doped K{sub 3}Y(VO{sub 4}){sub 2} compounds revealed efficient energy transfer from the vanadate group to the rare earth ions. • The presented compounds are promising materials for light display systems, lasers, and optoelectronic devices.« less

  2. Electrical Study of Trapped Charges in Copper-Doped Zinc Oxide Films by Scanning Probe Microscopy for Nonvolatile Memory Applications

    PubMed Central

    Su, Ting; Zhang, Haifeng

    2017-01-01

    Charge trapping properties of electrons and holes in copper-doped zinc oxide (ZnO:Cu) films have been studied by scanning probe microscopy. We investigated the surface potential dependence on the voltage and duration applied to the copper-doped ZnO films by Kelvin probe force microscopy. It is found that the Fermi Level of the 8 at.% Cu-doped ZnO films shifted by 0.53 eV comparing to undoped ZnO films. This shift indicates significant change in the electronic structure and energy balance in Cu-doped ZnO films. The Fermi Level (work function) of zinc oxide films can be tuned by Cu doping, which are important for developing this functional material. In addition, Kelvin probe force microscopy measurements demonstrate that the nature of contact at Pt-coated tip/ZnO:Cu interface is changed from Schottky contact to Ohmic contact by increasing sufficient amount of Cu ions. The charge trapping property of the ZnO films enhance greatly by Cu doping (~10 at.%). The improved stable bipolar charge trapping properties indicate that copper-doped ZnO films are promising for nonvolatile memory applications. PMID:28135335

  3. Optical spectroscopy of nanoscale and heterostructured oxides

    NASA Astrophysics Data System (ADS)

    Senty, Tess R.

    Through careful analysis of a material's properties, devices are continually getting smaller, faster and more efficient each day. Without a complete scientific understanding of material properties, devices cannot continue to improve. This dissertation uses optical spectroscopy techniques to understand light-matter interactions in several oxide materials with promising uses mainly in light harvesting applications. Linear absorption, photoluminescence and transient absorption spectroscopy are primarily used on europium doped yttrium vanadate nanoparticles, copper gallium oxide delafossites doped with iron, and cadmium selenide quantum dots attached to titanium dioxide nanoparticles. Europium doped yttrium vanadate nanoparticles have promising applications for linking to biomolecules. Using Fourier-transform infrared spectroscopy, it was shown that organic ligands (benzoic acid, 3-nitro 4-chloro-benzoic acid and 3,4-dihydroxybenzoic acid) can be attached to the surface of these molecules using metal-carboxylate coordination. Photoluminescence spectroscopy display little difference in the position of the dominant photoluminescence peaks between samples with different organic ligands although there is a strong decrease in their intensity when 3,4-dihydroxybenzoic acid is attached. It is shown that this strong quenching is due to the presence of high-frequency hydroxide vibrational modes within the organic linker. Ultraviolet/visible linear absorption measurements on delafossites display that by doping copper gallium oxide with iron allows for the previously forbidden fundamental gap transition to be accessed. Using tauc plots, it is shown that doping with iron lowers the bandgap from 2.8 eV for pure copper gallium oxide, to 1.7 eV for samples with 1 -- 5% iron doping. Using terahertz transient absorption spectroscopy measurements, it was also determined that doping with iron reduces the charge mobility of the pure delafossite samples. A comparison of cadmium selenide quantum dots, both with and without capping ligands, attached to titanium dioxide nanoparticles is performed using a new transient absorption analysis technique. Multiple exponential fit models were applied to the system and compared with the new inversion analysis technique. It is shown how the new inversion analysis can map out the charge carrier dynamics, providing carrier recombination rates and lifetimes as a function of carrier concentration, where the multiple exponential fit technique is not dependent on the carrier concentration. With the inversion analysis technique it is shown that capping ligands allow for increased charge transfer due to traps being passivated on the quantum dot surface.

  4. Efficient charge transfer and utilization of near-infrared solar spectrum by ytterbium and thulium codoped gadolinium molybdate (Gd2(MoO4)3:Yb/Tm) nanophosphor in hybrid solar cells.

    PubMed

    Sun, Weifu; Chen, Zihan; Zhang, Qin; Zhou, Junli; Li, Feng; Jin, Xiao; Li, Dongyu; Li, Qinghua

    2016-11-09

    In this work, thulium and ytterbium codoped gadolinium molybdate (Gd 2 (MoO 4 ) 3 :Yb/Tm) nanophosphors (NPs) have been synthesized, followed by being incorporated into a photo-catalytic titania (TiO 2 ) nanoparticle layer. In detail, morphology and phase identification of the prepared NPs are first characterized and then the up-conversion of the Gd 2 (MoO 4 ) 3 :Yb/Tm NPs is studied. Electron transfer dynamics after interfacing with bare or NP-doped electron donor TiO 2 and the corresponding photovoltaic performance of solar cells are explored. The results show that Gd 2 (MoO 4 ) 3 :Yb/Tm NPs excited at 976 nm exhibit intense blue (460-498 nm) and weak red (627-669 nm) emissions. The lifetime of electron transfer is shortened from 817 to 316 ps after incorporating NPs and correspondingly the electron transfer rate outstrips by 3 times that of the bare TiO 2 . Consequently, a notable power conversion efficiency of 4.15% is achieved as compared to 3.17% of pure TiO 2 /PTB7. This work demonstrates that the co-doping of robust rare earth ions with different unique functions can widen the harvesting range of the solar spectrum, boost electron transfer rate and eventually strengthen device performance, without complicated interfacial and structural engineering.

  5. Nitrogen-Doped Three Dimensional Graphene for Electrochemical Sensing.

    PubMed

    Yan, Jing; Chen, Ruwen; Liang, Qionglin; Li, Jinghong

    2015-07-01

    The rational assembly and doping of graphene play an crucial role in the improvement of electrochemical performance for analytical applications. Covalent assembly of graphene into ordered hierarchical structure provides an interconnected three dimensional conductive network and large specific area beneficial to electrolyte transfer on the electrode surface. Chemical doping with heteroatom is a powerful tool to intrinsically modify the electronic properties of graphene due to the increased free charge-carrier densities. By incorporating covalent assembly and nitrogen doping strategy, a novel nitrogen doped three dimensional reduced graphene oxide nanostructure (3D-N-RGO) was developed with synergetic enhancement in electrochemical behaviors. The as prepared 3D-N-RGO was further applied for catechol detection by differential pulse voltammetry. It exhibits much higher electrocatalytic activity towards catechol with increased peak current and decreased potential difference between the oxidation and reduction peaks. Owing to the improved electro-chemical properties, the response of the electrochemical sensor varies linearly with the catechol concentrations ranging from 5 µM to 100 µM with a detection limit of 2 µM (S/N = 3). This work is promising to open new possibilities in the study of novel graphene nanostructure and promote its potential electrochemical applications.

  6. Charge transfer mechanism in titanium-doped microporous silica for photocatalytic water-splitting applications

    DOE PAGES

    Sapp, Wendi; Koodali, Ranjit; Kilin, Dmitri

    2016-02-29

    Solar energy conversion into chemical form is possible using artificial means. One example of a highly-efficient fuel is solar energy used to split water into oxygen and hydrogen. Efficient photocatalytic water-splitting remains an open challenge for researchers across the globe. Despite significant progress, several aspects of the reaction, including the charge transfer mechanism, are not fully clear. Density functional theory combined with density matrix equations of motion were used to identify and characterize the charge transfer mechanism involved in the dissociation of water. A simulated porous silica substrate, using periodic boundary conditions, with Ti 4+ ions embedded on the innermore » pore wall was found to contain electron and hole trap states that could facilitate a chemical reaction. A trap state was located within the silica substrate that lengthened relaxation time, which may favor a chemical reaction. A chemical reaction would have to occur within the window of photoexcitation; therefore, the existence of a trapping state may encourage a chemical reaction. Furthermore, this provides evidence that the silica substrate plays an integral part in the electron/hole dynamics of the system, leading to the conclusion that both components (photoactive materials and support) of heterogeneous catalytic systems are important in optimization of catalytic efficiency.« less

  7. Benzoyl Peroxide as an Efficient Dopant for Spiro-OMeTAD in Perovskite Solar Cells.

    PubMed

    Liu, Qiuju; Fan, Lisheng; Zhang, Qin'e; Zhou, An'an; Wang, Baozeng; Bai, Hua; Tian, Qingyong; Fan, Bin; Zhang, Tongyi

    2017-08-10

    Although organic small molecule spiro-OMeTAD is widely used as a hole-transport material in perovskite solar cells, its limited electric conductivity poses a bottleneck in the efficiency improvement of perovskite solar cells. Here, a low-cost and easy-fabrication technique is developed to enhance the conductivity and hole-extraction ability of spiro-OMeTAD by doping it with commercially available benzoyl peroxide (BPO). The experimental results show that the conductivity increases several orders of magnitude, from 6.2×10 -6  S cm -1 for the pristine spiro-OMeTAD to 1.1×10 -3  S cm -1 at 5 % BPO doping and to 2.4×10 -2  S cm -1 at 15 % BPO doping, which considerably outperform the conductivity of 4.62×10 -4  S cm -1 for the currently used oxygen-doped spiro-OMeTAD. The fluorescence spectra suggest that the BPO-doped spiro-OMeTAD-OMeTAD layer is able to efficiently extract holes from CH 3 NH 3 PbI 3 and thus greatly enhances the charge transfer. The BPO-doped spiro-OMeTAD is used in the fabrication of perovskite solar cells, which exhibit enhancement in the power conversion efficiency. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development of spontaneous magnetism and half-metallicity in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Rahman, Altaf Ur; Rahman, Gul; García-Suárez, Víctor M.

    2017-12-01

    Half-metallic behavior and ferromagnetism are predicted in strained MoS2 with different light elements adsorbed using density functional theory. We find that strain increases the density of states at the Fermi energy for Y doping (Y = H, Li, and F) at the S sites and strain-driven magnetism develops in agreement with the Stoner mean field model. Strain-driven magnetism requires less strain (∼3%) for H doping as compared with F and Li doping. No saturation of the spin-magnetic moment is observed in Li-doped MoS2 due to less charge transfer from the Mo d electrons and the added atoms do not significantly increase the Spin-orbit coupling. Half-metallic ferromagnetism is predicted in H and F-doped MoS2. Fixed magnetic moments calculations are also performed, and the DFT computed data is fitted with the Landau mean field theory to investigate the emergence of spontaneous magnetism in Y-doped MoS2. We predict spontaneous magnetism in systems with large (small) mag netic moments for H/F (Li) atoms. The large (small) magnetic moments are atttributed to the electronegativity difference between S and Y atoms. These results suggest that H and F adsorbed monolayer MoS2 is a good candidate for spin-based electronic devices.

  9. Modulation-Doped In2 O3 /ZnO Heterojunction Transistors Processed from Solution.

    PubMed

    Khim, Dongyoon; Lin, Yen-Hung; Nam, Sungho; Faber, Hendrik; Tetzner, Kornelius; Li, Ruipeng; Zhang, Qiang; Li, Jun; Zhang, Xixiang; Anthopoulos, Thomas D

    2017-05-01

    This paper reports the controlled growth of atomically sharp In 2 O 3 /ZnO and In 2 O 3 /Li-doped ZnO (In 2 O 3 /Li-ZnO) heterojunctions via spin-coating at 200 °C and assesses their application in n-channel thin-film transistors (TFTs). It is shown that addition of Li in ZnO leads to n-type doping and allows for the accurate tuning of its Fermi energy. In the case of In 2 O 3 /ZnO heterojunctions, presence of the n-doped ZnO layer results in an increased amount of electrons being transferred from its conduction band minimum to that of In 2 O 3 over the interface, in a process similar to modulation doping. Electrical characterization reveals the profound impact of the presence of the n-doped ZnO layer on the charge transport properties of the isotype In 2 O 3 /Li-ZnO heterojunctions as well as on the operating characteristics of the resulting TFTs. By judicious optimization of the In 2 O 3 /Li-ZnO interface microstructure, and Li concentration, significant enhancement in both the electron mobility and TFT bias stability is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Cl-doping of Te-rich CdTe: Complex formation, self-compensation and self-purification from first principles

    NASA Astrophysics Data System (ADS)

    Lindström, A.; Klintenberg, M.; Sanyal, B.; Mirbt, S.

    2015-08-01

    The coexistence in Te-rich CdTe of substitutional Cl-dopants, ClTe, which act as donors, and Cd vacancies, VC d - 1 , which act as electron traps, was studied from first principles utilising the HSE06 hybrid functional. We find ClTe to preferably bind to VC d - 1 and to form an acceptor complex, (ClTe-VCd)-1. The complex has a (0,-1) charge transfer level close to the valence band and shows no trap state (deep level) in the band gap. During the complex formation, the defect state of VCd-1 is annihilated and leaves the Cl-doped CdTe bandgap without any trap states (self-purification). We calculate Cl-doped CdTe to be semi-insulating with a Fermi energy close to midgap. We calculate the formation energy of the complex to be sufficiently low to allow for spontanous defect formation upon Cl-doping (self-compensation). In addition, we quantitatively analyse the geometries, DOS, binding energies and formation energies of the (ClTe-VCd) complexes.

  11. N-doped hollow urchin-like anatase TiO2@C composite as a novel anode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Xing, Yalan; Wang, Shengbin; Fang, Baizeng; Song, Ge; Wilkinson, David P.; Zhang, Shichao

    2018-05-01

    N-doped hollow urchin-like anatase TiO2 spheres (HUTSs) with carbon coating (HUTS@C) are prepared through a facile and scalable hydrothermal reaction followed by coating of polypyrrole and carbonization. The HUTS is composed of radially grown anatase nanorods and possesses an enhanced percentage of exposed {001} facets compared with P25 TiO2 nanoparticles. After the carbon coating, the HUTS@C retains the hollow nanostructure although covered with an N-doped carbon layer. As an anode for Li-ion batteries, the HUTS@C delivers a higher capacity of 165.1 mAh g-1 at 1C after 200 cycles and better rate capability (111.7 mAh g-1 at 10C) than the HUTS. Further electrochemical studies reveal that the HUTS@C has a better electrochemical reversibility, lower charge-transfer resistance, and higher Li-ion diffusion coefficient due to its unique nanosctructure including the hollow core, anatase phase of TiO2 microspheres with high exposed {001} facets and the N-doped carbon layer, which facilitates mass transport and enhances electrical conductivity.

  12. First-principles study of hydrogen adsorption in metal-doped COF-10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Miaomiao; Sun Qiang; Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284

    2010-10-21

    Covalent organic frameworks (COFs), due to their low-density, high-porosity, and high-stability, have promising applications in gas storage. In this study we have explored the potential of COFs doped with Li and Ca metal atoms for storing hydrogen under ambient thermodynamic conditions. Using density functional theory we have performed detailed calculations of the sites Li and Ca atoms occupy in COF-10 and their interaction with hydrogen molecules. The binding energy of Li atom on COF-10 substrate is found to be about 1.0 eV and each Li atom can adsorb up to three H{sub 2} molecules. However, at high concentration, Li atomsmore » cluster and, consequently, their hydrogen storage capacity is reduced due to steric hindrance between H{sub 2} molecules. On the other hand, due to charge transfer from Li to the substrate, O sites provide additional enhancement for hydrogen adsorption. With increasing concentration of doped metal atoms, the COF-10 substrate provides an additional platform for storing hydrogen. Similar conclusions are reached for Ca doped COF-10.« less

  13. Electrically tunable magnetic configuration on vacancy-doped GaSe monolayer

    NASA Astrophysics Data System (ADS)

    Tang, Weiqing; Ke, Congming; Fu, Mingming; Wu, Yaping; Zhang, Chunmiao; Lin, Wei; Lu, Shiqiang; Wu, Zhiming; Yang, Weihuang; Kang, Junyong

    2018-03-01

    Group-IIIA metal-monochalcogenides with the enticing properties have attracted tremendous attention across various scientific disciplines. With the aim to satisfy the multiple demands of device applications, here we report a design framework on GaSe monolayer in an effort to tune the electronic and magnetic properties through a dual modulation of vacancy doping and electric field. A half-metallicity with a 100% spin polarization is generated in a Ga vacancy doped GaSe monolayer due to the nonbonding 4p electronic orbital of the surrounding Se atoms. The stability of magnetic moment is found to be determined by the direction of applied electric field. A switchable magnetic configuration in Ga vacancy doped GaSe monolayer is achieved under a critical electric field of 0.6 V/Å. Electric field induces redistribution of the electronic states. Finally, charge transfers are found to be responsible for the controllable magnetic structure in this system. The magnetic modulation on GaSe monolayer in this work offers some references for the design and fabrication of tunable two-dimensional spintronic device.

  14. Bipolar charge storage characteristics in copper and cobalt co-doped zinc oxide (ZnO) thin film.

    PubMed

    Kumar, Amit; Herng, Tun Seng; Zeng, Kaiyang; Ding, Jun

    2012-10-24

    The bipolar charge phenomenon in Cu and Co co-doped zinc oxide (ZnO) film samples has been studied using scanning probe microscopy (SPM) techniques. Those ZnO samples are made using a pulsed laser deposition (PLD) technique. It is found that the addition of Cu and Co dopants suppresses the electron density in ZnO and causes a significant change in the work function (Fermi level) value of the ZnO film; this results in the ohmic nature of the contact between the electrode (probe tip) and codoped sample, whereas this contact exhibits a Schottky nature in the undoped and single-element-doped samples. These results are verified by Kelvin probe force microscopy (KPFM) and ultraviolet photoelectron spectroscopy (UPS) measurements. It is also found that the co-doping (Cu and Co) can stabilize the bipolar charge, whereas Cu doping only stabilizes the positive charge in ZnO thin films.

  15. Narrow Band Gap Conjugated Polyelectrolytes.

    PubMed

    Cui, Qiuhong; Bazan, Guillermo C

    2018-01-16

    Two essential structural elements define a class of materials called conjugated polyelectrolytes (CPEs). The first is a polymer framework with an electronically delocalized, π-conjugated structure. This component allows one to adjust desirable optical and electronic properties, for example the range of wavelengths absorbed, emission quantum yields, electron affinity, and ionization potential. The second defining feature is the presence of ionic functionalities, which are usually linked via tethers that can modulate the distance of the charged groups relative to the backbone. These ionic groups render CPEs distinct relative to their neutral conjugated polymer counterparts. Solubility in polar solvents, including aqueous media, is an immediately obvious difference. This feature has enabled the development of optically amplified biosensor protocols and the fabrication of multilayer organic semiconductor devices through deposition techniques using solvents with orthogonal properties. Important but less obvious potential advantages must also be considered. For example, CPE layers have been used to introduce interfacial dipoles and thus modify the effective work function of adjacent electrodes. One can thereby modulate the barriers for charge injection into semiconductor layers and improve the device efficiencies of organic light-emitting diodes and solar cells. With a hydrophobic backbone and hydrophilic ionic sites, CPEs can also be used as dispersants for insoluble materials. Narrow band gap CPEs (NBGCPEs) have been studied only recently. They contain backbones that comprise electron-rich and electron-poor fragments, a combination that leads to intramolecular charge transfer excited states and enables facile oxidation and reduction. One particularly interesting combination is NBGCPEs with anionic sulfonate side groups, for which spontaneous self-doping in aqueous media is observed. That no such doping is observed with cationic NBGCPEs indicates that the interplay between electrostatic forces and the redox chemistry of the organic semiconducting chain is essential for stabilizing the polaronic states and increasing the conductivity of the bulk. Capitalizing upon the properties of NBGCPEs has resulted in a range of new applications. When doped, they can be introduced as interlayers in organic and perovskite solar cells. Single-walled carbon nanotubes can be n- or p-doped with NBGCPEs, depending on whether the same backbone contains attached cationic or anionic side groups, respectively. The resulting dispersions can be used to fabricate flexible thermoelectric devices in which the n- and p-semiconductor legs are nearly identical in terms of chemical composition. Electrostatic interactions with negatively charged cell walls, in combination with the long-wavelength absorption and high photothermal efficiencies, have been used to create effective agents for photothermal killing of bacteria. Additionally, recent results have shown that cationic NBGCPEs can effectively n-dope graphene and that this doping is temperature-dependent. The preferential charge carriers can therefore be chosen to be electrons or holes depending on the applied temperature.

  16. Electrical resistivity and thermopower measurements of the hole- and electron-doped cobaltites LnCoO3

    NASA Astrophysics Data System (ADS)

    Jirák, Z.; Hejtmánek, J.; Knížek, K.; Veverka, M.

    2008-07-01

    Two perovskite cobaltites, LaCoO3 and DyCoO3 , which are border compounds with respect to the Ln size, were investigated by the electric resistivity and thermopower measurements up to 800-1000 K. Special attention was given to effects of extra holes or electrons, introduced by light doping of Co sites by Mg2+ or Ti4+ ions. The experiments on the La-based compounds were complemented by magnetic measurements. The study shows that both kinds of charge carriers induce magnetic states on surrounding Co3+ sites and form thus thermally stable polarons of large total spin. Their itinerancy is characterized by low-temperature resistivity, which is of Arrhenius type ρ˜exp(EA/kT) for the hole (Co4+) -doped samples, while an unusual dependence ρ˜1/Tν (n=8-10) is observed for the electron (Co2+) -doped samples. At higher temperatures, additional hole carriers are massively populated in the Co3+ background, leading to a resistivity drop. This transition become evident at ˜300K and 450 K and culminates at TI-M=540 and 780 K for the La- and Dy-based samples, respectively. The electronic behaviors of the cobaltites in dependence on temperature are explained considering local excitations from the diamagnetic low-spin (LS) Co3+ to close-lying paramagnetic high-spin (HS) Co3+ states and subsequent formation of a metallic phase of the IS Co3+ character through a charge transfer mechanism between LS/HS pairs. The magnetic polarons associated with doped carriers are interpreted as droplets of such intermediate (IS) phase.

  17. Remote Control Effect of Li+, Na+, K+ Ions on the Super Energy Transfer Process in ZnMoO4:Eu3+, Bi3+ Phosphors

    PubMed Central

    Ran, Weiguang; Wang, Lili; Tan, Lingling; Qu, Dan; Shi, Jinsheng

    2016-01-01

    Luminescent properties are affected by lattice environment of luminescence centers. The lattice environment of emission centers can be effectively changed due to the diversity of lattice environment in multiple site structure. But how precisely control the doped ions enter into different sites is still very difficult. Here we proposed an example to demonstrate how to control the doped ions into the target site for the first time. Alkali metal ions doped ZnMoO4:Bi3+, Eu3+ phosphors were prepared by the conventional high temperature solid state reaction method. The influence of alkali metal ions as charge compensators and remote control devices were respectively observed. Li+ and K+ ions occupy the Zn(2) sites, which impede Eu and Bi enter the adjacent Zn(2) sites. However, Na+ ions lie in Zn(1) sites, which greatly promoted the Bi and Eu into the adjacent Zn(2) sites. The Bi3+ and Eu3+ ions which lie in the immediate vicinity Zn(2) sites set off intense exchange interaction due to their short relative distance. This mechanism provides a mode how to use remote control device to enhance the energy transfer efficiency which expected to be used to design efficient luminescent materials. PMID:27278286

  18. Nitrogen and sulfur dual-doped chitin-derived carbon/graphene composites as effective metal-free electrocatalysts for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Di, Yi; Xiao, Zhanhai; Yan, Xiaoshuang; Ru, Geying; Chen, Bing; Feng, Jiwen

    2018-05-01

    The photovoltaic performance of dye-sensitized solar cell (DSSC) is strongly influenced by the electrocatalytic ability of its counter electrode (CE) materials. To obtain the affordable and high-performance electrocatalysts, the N/S dual-doped chitin-derived carbon materials SCCh were manufactured via in-situ S-doped method in the annealing process, where richer active sites are created compared to the pristine chitin-derived carbon matrix CCh, thus enhancing the intrinsic catalytic activity of carbon materials. When SCCh is incorporated with graphene, the yielded composites hold a further boosted catalytic activity due to facilitating the electronic fast transfer. The DSSC assembled with the optimizing rGO-SCCh-3 composite CE shows a favourable power conversion efficiency of 6.36%, which is comparable with that of the Pt-sputtering electrode (6.30%), indicate of the outstanding I3- reduction ability of the composite material. The electrochemical characterizations demonstrate that the low charge transfer resistance and excellent electrocatalytic activity all contribute to the superior photovoltaic performance. More importantly, the composite CE exhibits good electrochemical stability in the practical operation. In consideration of the low cost and the simple preparation procedure, the present metal-free carbonaceous composites could be used as a promising counter electrode material in future large scale production of DSSCs.

  19. Broadband near-infrared downconversion luminescence in Yb3+-doped BaZn2(BO3)2

    NASA Astrophysics Data System (ADS)

    Yu, Hua; Deng, Degang; Su, Weitao; Li, Chenxia; Xu, Shiqing

    2018-06-01

    BaZn2(BO3)2 self-activated phosphors were prepared by the conventional high temperature solid-state method. The PL spectra of BaZn2(BO3)2 powders prepared under reductive and air atmosphere consist of a weak ultraviolet emission band (∼410 nm) and a broad emission band which were centered at ∼ 500 and 545 nm, respectively. According to the spectral analysis and EPR results, the green and yellow emissions may arise from the transitions of photo-generated electron close to the conduction band to the deeply trapped hole in single ionized oxygen vacancy (V+ o) centers and single negatively charged interstitial oxygen ion (O- i), respectively. An efficient broadband near-infrared (NIR) quantum cutting was demonstrated in Yb3+ doped BaZn2(BO3)2 phosphor. Upon excitation with an ultraviolet photon at 375 nm, the emissions of two NIR photons at 983 nm from Yb3+ ions were achieved. The dependences of the visible and NIR emissions, the decay lifetime, the energy transfer efficiency, and the quantum efficiency on the Yb3+ doping content were investigated in detail. The results indicated that the maximum energy transfer and the corresponding downconversion quantum efficiency could reach between 68.5% and 168.5%.

  20. Metal oxide charge transport material doped with organic molecules

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.

    2016-08-30

    Doping metal oxide charge transport material with an organic molecule lowers electrical resistance while maintaining transparency and thus is optimal for use as charge transport materials in various organic optoelectronic devices such as organic photovoltaic devices and organic light emitting devices.

  1. Electromagnetic and optical characteristics of Nb5+-doped double-crossover and salmon DNA thin films

    NASA Astrophysics Data System (ADS)

    Babu Mitta, Sekhar; Reddy Dugasani, Sreekantha; Jung, Soon-Gil; Vellampatti, Srivithya; Park, Tuson; Park, Sung Ha

    2017-10-01

    We report the fabrication and physical characteristics of niobium ion (Nb5+)-doped double-crossover DNA (DX-DNA) and salmon DNA (SDNA) thin films. Different concentrations of Nb5+ ([Nb5+]) are coordinated into the DNA molecules, and the thin films are fabricated via substrate-assisted growth (DX-DNA) and drop-casting (SDNA) on oxygen plasma treated substrates. We conducted atomic force microscopy to estimate the optimum concentration of Nb5+ ([Nb5+]O = 0.08 mM) in Nb5+-doped DX-DNA thin films, up to which the DX-DNA lattices maintain their structures without deformation. X-ray photoelectron spectroscopy (XPS) was performed to probe the chemical nature of the intercalated Nb5+ in the SDNA thin films. The change in peak intensities and the shift in binding energy were witnessed in XPS spectra to explicate the binding and charge transfer mechanisms between Nb5+ and SDNA molecules. UV-visible, Raman, and photoluminescence (PL) spectra were measured to determine the optical properties and thus investigate the binding modes, Nb5+ coordination sites in Nb5+-doped SDNA thin films, and energy transfer mechanisms, respectively. As [Nb5+] increases, the absorbance peak intensities monotonically increase until ˜[Nb5+]O and then decrease. However, from the Raman measurements, the peak intensities gradually decrease with an increase in [Nb5+] to reveal the binding mechanism and binding sites of metal ions in the SDNA molecules. From the PL, we observe the emission intensities to reduce them at up to ˜[Nb5+]O and then increase after that, expecting the energy transfer between the Nb5+ and SDNA molecules. The current-voltage measurement shows a significant increase in the current observed as [Nb5+] increases in the SDNA thin films when compared to that of pristine SDNA thin films. Finally, we investigate the temperature dependent magnetization in which the Nb5+-doped SDNA thin films reveal weak ferromagnetism due to the existence of tiny magnetic dipoles in the Nb5+-doped SDNA complex.

  2. Exploring the effect of hole localization on the charge-phonon dynamics of hole doped delafossite

    NASA Astrophysics Data System (ADS)

    Mazumder, Nilesh; Mandal, Prasanta; Roy, Rajarshi; Ghorai, Uttam Kumar; Saha, Subhajit; Chattopadhyay, Kalyan Kumar

    2017-09-01

    For weak or moderate doping, electrical measurement is not suitable for detecting changes in the charge localization inside a semiconductor. Here, to investigate the nature of charge-phonon coupling in the presence of gradually delocalized holes within a weak doping regime (~1016 cm-3), we examine the temperature dependent Raman spectra (303-817 K) of prototype hole doped delafossite CuC{{r}1-x}M{{g}x}{{O}2-y}{{S}y} (x  =  0/0.03, y  =  0/0.01). For both {{E}g} and {{A}1g} phonons, negative lineshape asymmetry and relative thermal hardening are distinctly observed upon SO× and (MgCr\\bullet+SO×) doping. Using Allen formalism, charge density of states at the Fermi level per spin and molecule, and charge delocalization associated to a - b plane, are estimated to increase appreciably upon codoping compared to the c -axis. We delineate the interdependence between charge-phonon coupling constant (λ ) and anharmonic phonon lifetime ({τanh} ), and deduce that excitation of delocalized holes weakly coupled with phonons of larger {τanh} is the governing feature of observed Fano asymmetry (q ) reversal.

  3. Impurity-induced modulations in PdxNbSe3 coupled to charge-density-wave formation

    NASA Astrophysics Data System (ADS)

    Xue, Q.; Gong, Y.; Drake, D. L.; Qian, J.; Coleman, R. V.

    1996-01-01

    Very dilute amounts of Pd in PdxNbSe3 introduce long-range electronic modulations of wavelength 7b0, 4b0, 3b0, and 2b0 at room temperature as the Pd concentration increases in the range x=0.002 to x=0.02 while the low-temperature charge-density waves (CDW's) initially remain unchanged. For x>=0.02 the low-temperature CDW's are quenched while the NbSe3 structure remains intact, and the high-temperature modulations disappear, indicating a clear correlation between the two effects. The magnetoquantum oscillations due to magnetic breakdown first detect the band-structure shift followed by the sudden quenching of the nested Fermi surface sheets. The atomic force microscope scans show substantial charge transfer between chains caused by the Pd doping.

  4. Enhancement of Catalytic Activity of Reduced Graphene Oxide Via Transition Metal Doping Strategy

    NASA Astrophysics Data System (ADS)

    Lee, Hangil; Hong, Jung A.

    2017-06-01

    To compare the catalytic oxidation activities of reduced graphene oxide (rGO) and rGO samples doped with five different transition metals (TM-rGO), we determine their effects on the oxidation of L-cysteine (Cys) in aqueous solution by performing electrochemistry (EC) measurements and on the photocatalytic oxidation of Cys by using high-resolution photoemission spectroscopy (HRPES) under UV illumination. Our results show that Cr-, Fe-, and Co-doped rGO with 3+ charge states (stable oxide forms: Cr3+, Fe3+, and Co3+) exhibit enhanced catalytic activities that are due to the charge states of the doped metal ions as we compare them with Cr-, Fe-, and Co-doped rGO with 2+ charge states.

  5. Transition from the diamagnetic insulator to ferromagnetic metal in La1-xSrxCoO3

    NASA Astrophysics Data System (ADS)

    Knížek, Karel; Jirák, Zdeněk; Hejtmánek, Jiří; Novák, Pavel

    2010-05-01

    We have analyzed, using the theoretical GGA+U calculations, different configurations of spin states (low-spin, LS; intermediate-spin, IS and high-spin, HS Co) and proposed a model that accounts for magnetic and electric transport properties of perovskite cobaltites upon doping by charge carriers. In particular, it appears that the compositional transition from the diamagnetic LS phase of LaCoO3 to the ferromagnetic metallic IS phase in La1-xSrxCoO3 ( x>0.2) involves the same mechanisms as the high-temperature transition in pure LaCoO3. The process occurs gradually via a phase-separated state, where metallic IS domains stabilized through a charge transfer between Co and Co neighbors coexist with the Co poor regions in the LS ground state (or at higher temperatures, in mixed LS/HS state). This phase separation vanishes when doping in La1-xSrxCoO3 reaches x˜0.2, and a uniform IS phase, analogous to that in pure LaCoO3 in the high-temperature limit, is established.

  6. Disentangling specific versus generic doping mechanisms in oxide heterointerfaces

    NASA Astrophysics Data System (ADS)

    Gabel, J.; Zapf, M.; Scheiderer, P.; Schütz, P.; Dudy, L.; Stübinger, M.; Schlueter, C.; Lee, T.-L.; Sing, M.; Claessen, R.

    2017-05-01

    More than a decade after the discovery of the two-dimensional electron system (2DES) at the interface between the band insulators LaAlO3 (LAO) and SrTiO3 (STO) its microscopic origin is still under debate. Several explanations have been proposed, the main contenders being electron doping by oxygen vacancies and electronic reconstruction, i.e., the redistribution of electrons to the interface to minimize the electrostatic energy in the polar LAO film. However, no experiment thus far could provide unambiguous information on the microscopic origin of the interfacial charge carriers. Here we utilize a novel experimental approach combining photoelectron spectroscopy (PES) with highly brilliant synchrotron radiation and apply it to a set of samples with varying key parameters that are thought to be crucial for the emergence of interfacial conductivity. Based on microscopic insight into the electronic structure, we obtain results tipping the scales in favor of polar discontinuity as a generic, robust driving force for the 2DES formation. Likewise, other functionalities such as magnetism or superconductivity might be switched in all-oxide devices by polarity-driven charge transfer.

  7. The influence of selective chemical doping on clean, low-carrier density SiC epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Chuang, Chiashain; Yang, Yanfei; Huang, Lung-I.; Liang, Chi-Te; Elmquist, Randolph E.; National Institute of of Standards; Technology Collaboration; National Taiwan University, Department of Physics Collaboration

    2015-03-01

    The charge-transfer effect of ambient air on magneto-transport in polymer-free SiC graphene was investigated. Interestingly, adsorption of atmospheric gas molecules on clean epitaxial graphene can reduce the carrier density to near charge neutrality, allowing observation of highly precise v = 2 quantum Hall plateaus. The atmospheric adsorbates were reproducibly removed and pure gases (N2, O2, CO2, H2O) were used to form new individual adsorbates on SiC graphene. Our experimental results (τt/τq ~ 2) support the theoretical predictions for the ratio of transport relaxation time τt to quantum lifetime τq in clean graphene. The analysis of Shubnikov-de Haas oscillations at intermediate doping levels indicates that the carrier scattering is reduced by water and oxygen so as to increase both the classical and quantum mobility. This study points to the key dopant gases in ambient air and also paves the way towards extremely precise quantized Hall resistance standards in epitaxial graphene systems with carrier density tuned by exposure to highly pure gases and vacuum annealing treatment. National Institute of Standard and Technology.

  8. Boosting Photovoltaic Performance of Dye-Sensitized Solar Cells Using Silver Nanoparticle-Decorated N,S-Co-Doped-TiO2 Photoanode

    PubMed Central

    Lim, Su Pei; Pandikumar, Alagarsamy; Lim, Hong Ngee; Ramaraj, Ramasamy; Huang, Nay Ming

    2015-01-01

    A silver nanoparticle-decorated N,S-co-doped TiO2 nanocomposite was successfully prepared and used as an efficient photoanode in high-performance dye-sensitized solar cells (DSSCs) with N719 dye. The DSSCs assembled with the N,S-TiO2@Ag-modified photoanode demonstrated an enhanced solar-to-electrical energy conversion efficiency of 8.22%, which was better than that of a DSSC photoanode composed of unmodified TiO2 (2.57%) under full sunlight illumination (100 mWcm−2, AM 1.5 G). This enhanced efficiency was mainly attributed to the reduced band gap energy, improved interfacial charge transfer, and retarded charge recombination process. The influence of the Ag content on the overall efficiency was also investigated, and the optimum Ag content with N,S-TiO2 was found to be 20 wt%. Because of the enhanced solar energy conversion efficiency of the N,S-TiO2@Ag nanocomposite, it should be considered as a potential photoanode for high-performance DSSCs. PMID:26146362

  9. Studies on entanglement entropy for Hubbard model with hole-doping and external magnetic field [rapid communication

    NASA Astrophysics Data System (ADS)

    Yao, K. L.; Li, Y. C.; Sun, X. Z.; Liu, Q. M.; Qin, Y.; Fu, H. H.; Gao, G. Y.

    2005-10-01

    By using the density matrix renormalization group (DMRG) method for the one-dimensional (1D) Hubbard model, we have studied the von Neumann entropy of a quantum system, which describes the entanglement of the system block and the rest of the chain. It is found that there is a close relation between the entanglement entropy and properties of the system. The hole-doping can alter the charge charge and spin spin interactions, resulting in charge polarization along the chain. By comparing the results before and after the doping, we find that doping favors increase of the von Neumann entropy and thus also favors the exchange of information along the chain. Furthermore, we calculated the spin and entropy distribution in external magnetic filed. It is confirmed that both the charge charge and the spin spin interactions affect the exchange of information along the chain, making the entanglement entropy redistribute.

  10. Charge partitioning and anomalous hole doping in Rh-doped Sr 2 IrO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikara, S.; Fabbris, G.; Terzic, J.

    2017-02-01

    The simultaneous presence of sizable spin-orbit interactions and electron correlations in iridium oxides has led to predictions of novel ground states including Dirac semimetals, Kitaev spin liquids, and superconductivity. Electron and hole doping studies of spin-orbit assisted Mott insulator Sr2IrO4 are being intensively pursued due to extensive parallels with the La2CuO4 parent compound of cuprate superconductors. In particular, the mechanism of charge doping associated with replacement of Ir with Rh ions remains controversial with profound consequences for the interpretation of electronic structure and transport data. Using x-ray absorption near edge structure measurements at the Rh L, K, and Ir Lmore » edges we observe anomalous evolution of charge partitioning between Rh and Ir with Rh doping. The partitioning of charge between Rh and Ir sites progresses in a way that holes are initially doped into the J(eff) = 1/2 band at low x only to be removed from it at higher x values. This anomalous hole doping naturally explains the reentrant insulating phase in the phase diagram of Sr2Ir1-x Rh-x O-4 and ought to be considered when searching for superconductivity and other emergent phenomena in iridates doped with 4d elements.« less

  11. Charge partitioning and anomalous hole doping in Rh-doped Sr 2 IrO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikara, Shalinee; Fabbris, G.; Terzic, J.

    2017-02-15

    The simultaneous presence of sizable spin-orbit interactions and electron correlations in iridium oxides has led to predictions of novel ground states including Dirac semimetals, Kitaev spin liquids, and superconductivity. Electron and hole doping studies of spin-orbit assisted Mott insulator Sr 2IrO 4 are being intensively pursued due to extensive parallels with the La 2CuO 4 parent compound of cuprate superconductors. In particular, the mechanism of charge doping associated with replacement of Ir with Rh ions remains controversial with profound consequences for the interpretation of electronic structure and transport data. Using x-ray absorption near edge structure measurements at the Rh L,more » K, and Ir L edges we observe anomalous evolution of charge partitioning between Rh and Ir with Rh doping. The partitioning of charge between Rh and Ir sites progresses in a way that holes are initially doped into the J eff = 1/2 band at low x only to be removed from it at higher x values. Furthermore, this anomalous hole doping naturally explains the reentrant insulating phase in the phase diagram of Sr 2Ir 1–xRh xO 4 and ought to be considered when searching for superconductivity and other emergent phenomena in iridates doped with 4d elements.« less

  12. Charge partitioning and anomalous hole doping in Rh-doped Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Chikara, S.; Fabbris, G.; Terzic, J.; Cao, G.; Khomskii, D.; Haskel, D.

    2017-02-01

    The simultaneous presence of sizable spin-orbit interactions and electron correlations in iridium oxides has led to predictions of novel ground states including Dirac semimetals, Kitaev spin liquids, and superconductivity. Electron and hole doping studies of spin-orbit assisted Mott insulator Sr2Ir O4 are being intensively pursued due to extensive parallels with the La2CuO4 parent compound of cuprate superconductors. In particular, the mechanism of charge doping associated with replacement of Ir with Rh ions remains controversial with profound consequences for the interpretation of electronic structure and transport data. Using x-ray absorption near edge structure measurements at the Rh L, K, and Ir L edges we observe anomalous evolution of charge partitioning between Rh and Ir with Rh doping. The partitioning of charge between Rh and Ir sites progresses in a way that holes are initially doped into the Jeff=1 /2 band at low x only to be removed from it at higher x values. This anomalous hole doping naturally explains the reentrant insulating phase in the phase diagram of Sr2Ir1 -xRhxO4 and ought to be considered when searching for superconductivity and other emergent phenomena in iridates doped with 4 d elements.

  13. Electrochemical Advanced Oxidation Process for Shipboard Final Purification of Filtered Black Water, Gray Water, and Bilge Water, Vol. 1

    DTIC Science & Technology

    2001-08-01

    doped SnO2 developed by Memming and M`llers (1972) is most directly applicable to our electrodes. This model ignores the effect of ions in the...electron transfer model of Memming and M`llers (1972) with the surface charging/ ion complexation model of Davis et al. (1978). The combined model...model of Memming and M`llers. The model of Davis et al. represents the diffuse double layer by an analytical expression which describes only pure

  14. Decoupling the Lattice Distortion and Charge Doping Effects on the Phase Transition Behavior of VO2 by Titanium (Ti4+) Doping

    PubMed Central

    Wu, Yanfei; Fan, Lele; Liu, Qinghua; Chen, Shi; Huang, Weifeng; Chen, Feihu; Liao, Guangming; Zou, Chongwen; Wu, Ziyu

    2015-01-01

    The mechanism for regulating the critical temperature (TC) of metal-insulator transition (MIT) in ions-doped VO2 systems is still a matter of debate, in particular, the unclear roles of lattice distortion and charge doping effects. To rule out the charge doping effect on the regulation of TC, we investigated Ti4+-doped VO2 (TixV1-xO2) system. It was observed that the TC of TixV1-xO2 samples first slightly decreased and then increased with increasing Ti concentration. X-ray absorption fine structure (XAFS) spectroscopy was used to explore the electronic states and local lattice structures around both Ti and V atoms in TixV1-xO2 samples. Our results revealed the local structure evolution from the initial anatase to the rutile-like structure around the Ti dopants. Furthermore, the host monoclinic VO2 lattice, specifically, the VO6 octahedra would be subtly distorted by Ti doping. The distortion of VO6 octahedra and the variation of TC showed almost the similar trend, confirming the direct effect of local structural perturbations on the phase transition behavior. By comparing other ion-doping systems, we point out that the charge doping is more effective than the lattice distortion in modulating the MIT behavior of VO2 materials. PMID:25950809

  15. CMOS Imager Has Better Cross-Talk and Full-Well Performance

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Cunningham, Thomas J.

    2011-01-01

    A complementary metal oxide/semiconductor (CMOS) image detector now undergoing development is designed to exhibit less cross-talk and greater full-well capacity than do prior CMOS image detectors of the same type. Imagers of the type in question are designed to operate from low-voltage power supplies and are fabricated by processes that yield device features having dimensions in the deep submicron range. Because of the use of low supply potentials, maximum internal electric fields and depletion widths are correspondingly limited. In turn, these limitations are responsible for increases in cross-talk and decreases in charge-handling capacities. Moreover, for small pixels, lateral depletion cannot be extended. These adverse effects are even more accentuated in a back-illuminated CMOS imager, in which photogenerated charge carriers must travel across the entire thickness of the device. The figure shows a partial cross section of the structure in the device layer of the present developmental CMOS imager. (In a practical imager, the device layer would sit atop either a heavily doped silicon substrate or a thin silicon oxide layer on a silicon substrate, not shown here.) The imager chip is divided into two areas: area C, which contains readout circuits and other electronic circuits; and area I, which contains the imaging (photodetector and photogenerated-charge-collecting) pixel structures. Areas C and I are electrically isolated from each other by means of a trench filled with silicon oxide. The electrical isolation between areas C and I makes it possible to apply different supply potentials to these areas, thereby enabling optimization of the supply potential and associated design features for each area. More specifically, metal oxide semiconductor field-effect transistors (MOSFETs) that are typically included in CMOS imagers now reside in area C and can remain unchanged from established designs and operated at supply potentials prescribed for those designs, while the dopings and the lower supply potentials in area I can be tailored to optimize imager performance. In area I, the device layer includes an n+ -doped silicon layer on which is grown an n-doped silicon layer. A p-doped silicon layer is grown on top of the n -doped layer. The total imaging device thickness is the sum of the thickness of the n+, n, and p layers. A pixel photodiode is formed between a surface n+ implant, a p implant underneath it, the aforementioned p layer, and the n and n+ layers. Adjacent to the diode is a gate for transferring photogenerated charges out of the photodiode and into a floating diffusion formed by an implanted p+ layer on an implanted n-doped region. Metal contact pads are added to the back-side for providing back-side bias.

  16. Spin properties of charged Mn-doped quantum dota)

    NASA Astrophysics Data System (ADS)

    Besombes, L.; Léger, Y.; Maingault, L.; Mariette, H.

    2007-04-01

    The optical properties of individual quantum dots doped with a single Mn atom and charged with a single carrier are analyzed. The emission of the neutral, negatively and positively charged excitons coupled with a single magnetic atom (Mn) are observed in the same individual quantum dot. The spectrum of the charged excitons in interaction with the Mn atom shows a rich pattern attributed to a strong anisotropy of the hole-Mn exchange interaction slightly perturbed by a small valence-band mixing. The anisotropy in the exchange interaction between a single magnetic atom and a single hole is revealed by comparing the emission of a charged Mn-doped quantum dot in longitudinal and transverse magnetic field.

  17. Origin of the 1 eV-reflectivity edges in high-T c superconducting cuprates

    NASA Astrophysics Data System (ADS)

    Tajima, S.; Uchida, S.; Kaneko, T.; Tomeno, I.; Kosuge, M.; Yamauchi, H.; Koshizuka, N.

    1992-05-01

    The reflectivity edge commonly observed at around 1 eV in the optical spectrum is investigated for a number of high- Tc superconducting cuprates. We have found that the edge energy ( ωedge) is almost independent of doping concentration in each material but varies widely among the materials dependent on the average CuO 2-plane spacing d c. This is consistent with a view supposing that the observed reflectivity edge corresponds to the plasma edge associated with the renormalized two-dimensional band, which would be nearly half-filled and has been reconstructed on doping from the gap-separated states of the charge transfer insulator as a result of reduced renormalization. We could not find a universal correlation between Tc and ω'p2.

  18. A density functional global optimisation study of neutral 8-atom Cu-Ag and Cu-Au clusters

    NASA Astrophysics Data System (ADS)

    Heard, Christopher J.; Johnston, Roy L.

    2013-02-01

    The effect of doping on the energetics and dimensionality of eight atom coinage metal subnanometre particles is fully resolved using a genetic algorithm in tandem with on the fly density functional theory calculations to determine the global minima (GM) for Cu n Ag(8- n) and Cu n Au(8- n) clusters. Comparisons are made to previous ab initio work on mono- and bimetallic clusters, with excellent agreement found. Charge transfer and geometric arguments are considered to rationalise the stability of the particular permutational isomers found. An interesting transition between three dimensional and two dimensional GM structures is observed for copper-gold clusters, which is sharper and appears earlier in the doping series than is known for gold-silver particles.

  19. Oscillatory bistability of real-space transfer in semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Do˙ttling, R.; Scho˙ll, E.

    1992-01-01

    Charge transport parallel to the layers of a modulation-doped GaAs/AlxGa1-xAs heterostructure is studied theoretically. The heating of electrons by the applied electric field leads to real-space transfer of electrons from the GaAs into the adjacent AlxGa1-xAs layer. For sufficiently large dc bias, spontaneous periodic 100-GHz current oscillations, and bistability and hysteretic switching transitions between oscillatory and stationary states are predicted. We present a detailed investigation of complex bifurcation scenarios as a function of the bias voltage U0 and the load resistance RL. For large RL subcritical Hopf bifurcations and global bifurcations of limit cycles are displayed.

  20. Charge movement in a GaN-based hetero-structure field effect transistor structure with carbon doped buffer under applied substrate bias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooth, Alexander, E-mail: a.pooth@bristol.ac.uk; IQE; Uren, Michael J.

    2015-12-07

    Charge trapping and transport in the carbon doped GaN buffer of a GaN-based hetero-structure field effect transistor (HFET) has been investigated under both positive and negative substrate bias. Clear evidence of redistribution of charges in the carbon doped region by thermally generated holes is seen, with electron injection and capture observed during positive bias. Excellent agreement is found with simulations. It is shown that these effects are intrinsic to the carbon doped GaN and need to be controlled to provide reliable and efficient GaN-based power HFETs.

  1. The Physical Electronics of Graphene on Germanium

    NASA Astrophysics Data System (ADS)

    Rojas Delgado, Richard

    The properties of graphene make it an outstanding candidate for electronic-device applications, especially those that require no band gap but a high conductance. The conductance, involving both carrier mobility and carrier concentration, will depend critically on the substrate to which graphene is transferred. I demonstrate an exceptionally high conductance in graphene transferred to Ge(001) and provide an understanding of the mechanism. Essential in this understanding is an interfacial chemistry consisting of Ge oxide and suboxide layers that provide the necessary charges to dope the graphene sheet, and whose chemical behavior is such that one can obtain long-term stability in the conductance. In contrast, when high-quality graphene is grown directly on Ge (100), (111), or (110), the conductance is unexceptional, but oxidation of the surface is significantly delayed and slowed, relative to both clean Ge and Ge with graphene transferred to its surface. [2,3] I fabricate Hall bars in graphene transferred to Ge(001) and graphene grown on Ge(001) using atmospheric-pressure chemical vapor deposition (CVD) with methane precursors, and measure the sheet resistance and Hall effect from 300K to 10K. Values of mobility and carrier concentration are extracted. I obtain the highest combination of mobility and carrier concentration yet reported in graphene (suspended or supported) for temperatures from 10 to 300K. The implication is that the primary mechanisms for scattering charge in the graphene, roughness and a non-uniform electrostatic potential due to fixed charges, have limited effect when the substrate is oxidized Ge.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen-Phan, Thuy -Duong; Luo, Si; Vovchok, Dimitriy

    Here, three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO 2 hierarchical architectures composed of radially aligned, densely-packed TiO 2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyzes the formation of the 3D urchin structure and drives the enhanced photocatalytic H 2 production under visible light irradiation, not possible on undoped and bulk rutile TiO 2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m 2 g –1 but alsomore » induces enhanced photoresponse in the regime of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti 3+, significantly below the conduction band of TiO 2, and ruthenium species act as electron donors/acceptors that accelerate the photogenerated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen-Phan, Thuy-Duong; Luo, Si; Vovchok, Dimitriy

    Three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO2 hierarchical architectures composed of radially aligned, densely-packed TiO2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyze the formation of the 3D urchin structure and drive the enhanced photocatalytic H2 production under visible light irradiation, not possible on undoped and bulk rutile TiO2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m2 g-1 but also induces enhanced photo response in the regimemore » of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti3+, significantly below the conduction band of TiO2, and ruthenium species act as electron donors/acceptors that accelerate the photogenetated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity.« less

  4. Electronic structure of Cr doped Fe3O4 thin films by X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Chi-Liang; Dong, Chung-Li; Asokan, Kandasami; Chern, G.; Chang, C. L.

    2018-04-01

    Present study reports the electronic structures of Cr doped Fe3O4 (Fe3-xCrxO4 (0 ≤ x ≤ 3) grown on MgO (100) substrates in the form of thin films fabricated by a plasma-oxygen assisted Molecular Beam Epitaxy (MBE). X-ray absorption near-edge structure (XANES) spectra at Cr & Fe L-, and O K-edges were used to understand the electronic structure: changes in the bonding nature, valence states, and site occupancies. Cr doping in Fe3O4 results in the change of charge transfer, crystal structure, and selective occupation of ions in octahedral and tetrahedral sites. Such change modifies the electrical and magnetic properties due to the covalency of Cr ions. The physical and chemical properties of ferrites are strongly dependent on the lattice site, ion size of dopant, and magnetic nature present at different structural symmetry of the spinel structure.

  5. Effects of annealing on the ferromagnetism and photoluminescence of Cu-doped ZnO nanowires.

    PubMed

    Xu, H J; Zhu, H C; Shan, X D; Liu, Y X; Gao, J Y; Zhang, X Z; Zhang, J M; Wang, P W; Hou, Y M; Yu, D P

    2010-01-13

    Room temperature ferromagnetic Cu-doped ZnO nanowires have been synthesized using the chemical vapor deposition method. By combining structural characterizations and comparative annealing experiments, it has been found that both extrinsic (CuO nanoparticles) and intrinsic (Zn(1-x)Cu(x)O nanowires) sources are responsible for the observed ferromagnetic ordering of the as-grown samples. As regards the former, annealing in Zn vapor led to a dramatic decrease of the ferromagnetism. For the latter, a reversible switching of the ferromagnetism was observed with sequential annealings in Zn vapor and oxygen ambience respectively, which agreed well with previous reports for Cu-doped ZnO films. In addition, we have for the first time observed low temperature photoluminescence changed with magnetic properties upon annealing in different conditions, which revealed the crucial role played by interstitial zinc in directly mediating high T(c) ferromagnetism and indirectly modulating the Cu-related structured green emission via different charge transfer transitions.

  6. Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices

    NASA Astrophysics Data System (ADS)

    Li, Jinchai; Yang, Weihuang; Li, Shuping; Chen, Hangyang; Liu, Dayi; Kang, Junyong

    2009-10-01

    The internal electric field is modified by using Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices (SLs). The first-principles simulation results show that the internal electric field in SL has been significantly intensified due to the charge transferring from Si-doped interface to Mg-doped interface. Accordingly, the Mg- and Si-δ-codoped p-type Al0.2Ga0.8N/GaN SLs are grown by metalorganic vapor phase epitaxy and higher hole concentration as much as twice of that in modulation-doped SL has been achieved, as determined by Hall effect measurements. Furthermore, by applying Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN SLs with high Al content as the p-type layers, we have fabricated deep ultraviolet light emitting diodes with superior current-voltage characteristics by lowering Mg-acceptor activation energy.

  7. DFT STUDY OF HYDROGEN STORAGE ON Li- AND Na-DOPED C59B HETEROFULLERENE

    NASA Astrophysics Data System (ADS)

    Zahedi, Ehsan; Mozaffari, Majid

    2014-05-01

    Effect of light alkali metal (Li and Na) decorated on the C59B heterofullerene for hydrogen storage is considered using DFT-MPW1PW91 method. Results show that Li and Na atoms strongly prefer to adsorb on top of five-member and six-member ring where a carbon atom is replaced by a boron atom. Significant charge transfer from the alkali metal to the C59B compensates for the electron deficiency of C59B and makes the latter aromatic in nature. Corrected binding energies of hydrogen molecule on the alkali-doped C59B using counterpoise method, structural properties and NBO analysis indicate that first hydrogen molecule is adsorbed physically and does not support minimal conditions of DOE requirement. Finally, positive values of binding energies for the adsorption of a second hydrogen molecule show that alkali doped C59B are capable of storing a maximum of one hydrogen molecule.

  8. A detailed study on Sn4+ doped ZnO for enhanced photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Beura, Rosalin; Pachaiappan, R.; Thangadurai, P.

    2018-03-01

    The samples of Sn4+ doped (1, 5, 10, 15, 20 & 30%) ZnO nanostructures were synthesized by a low temperature hydrothermal method. Structural analysis by XRD and Raman spectroscopy showed the hexagonal wurtzite phase of ZnO and the formation of a secondary phase Zn2SnO4 beyond 10% doping of Sn4+. Microstructural analysis by TEM also confirmed the wurtzite ZnO with rod as well as particle like structure. Presence of various functional groups (sbnd OH, sbnd CH, Znsbnd O) were confirmed by FTIR. Optical properties were studied by UV-vis absorption, photoluminescence emission spectroscopies and lifetime measurement. Band gap of the undoped and Sn4+ doped ZnO were analyzed by Tauc plot and it was observed that the band gap of the materials had slightly decreased from 3.2 to 3.16 eV and again increased to 3.23 eV with respect to the increase in the doping concentration from 1 to 30%. A significant change was also noticed in the photoluminescence emission properties of ZnO i.e. increase in the intensity of NBE emission and decrease in DLE, on subject to Sn4+ doping. Average PL lifetime had increased from 29.45 ns for ZnO to 30.62 ns upon 1% Sn ion doping in ZnO. Electrical properties studied by solid state impedance spectroscopy showed that the conductivity had increased by one order of magnitude (from 7.48×10-8 to 2.21×10-7 S/cm) on Sn4+ doping. Photocatalytic experiments were performed on methyl orange (MO) as a model industrial dye under UV light irradiation for different irradiation times. The optimum Sn4+ content in order to achieve highest photocatalytic activity was found to be 1% Sn 4+ doping. The enhancement was achieved due to a decrease in the band gap favoring the generation of electron-hole pairs and the enhanced PL life time that delays the recombination of these charge carrier formation. The third reason was that the increased electrical conductivity that indicated the faster charge transfer in this material to enhance the photocatalytic activity. The Sn doped ZnO was found to be more photostable than pure ZnO.

  9. Characterization of Polar, Semi-Polar, and Non-Polar p-n Homo and Hetero-junctions grown by Ammonia Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Hurni, Christophe Antoine

    Widespread interest in the group III-Nitrides began with the achievement of p-type conductivity in the early 1990s in Mg-doped GaN films grown by metal organic chemical vapor deposition (MOCVD) by Nakamura et al. Indeed, MOCVD-grown Mg-doped GaN is insulating as-grown, because of the formation of neutral Mg-H complexes. Nakamura et al. showed that a rapid thermal anneal removes the hydrogen and enables p-conductivity. Shortly after this discovery, the first LEDs and lasers were demonstrated by Nakamura et al. The necessary annealing step is problematic for devices which need a buried p-layer, such as hetero-junction bipolar transistors. Ammonia molecular beam epitaxy (NH3-MBE) has a great potential for growing vertical III-Nitrides-based devices, thank to its N-rich growth conditions and all the usual advantages of MBE, which include a low-impurity growth environment, in situ monitoring techniques as well as the ability to grow sharp interfaces. We first investigated the growth of p-GaN by NH3-MBE. We found that the hole concentration strongly depends on the growth temperature. Thanks to comprehensive Hall and transfer length measurements, we found evidences for a compensating donor defects in NH3-MBE-grown Mg-doped GaN films. High-quality p-n junctions with very low reverse current and close to unity ideality factor were also grown and investigated. For the design of heterojunction devices such as laser diodes, light emitting diodes or heterojunction bipolar transistors, hetero-interface's characteristics such as the band offset or interface charges are fundamental. A technique developed by Kroemer et al. uses capacitance-voltage (C-V) profiling to extract band-offsets and charges at a hetero-interface. We applied this technique to the III-Nitrides. We discovered that for the polar III-Nitrides, the technique is not applicable because of the very large polarization charge. We nevertheless successfully measured the polarization charge at the AlGaN/GaN hetero-interface though C-V profiling. In the non-polar and semi-polar cases, the hetero-interface charge was low enough to extract the conduction band-offset through C-V profiling, provided that the doping profile had a foreseeable behavior.

  10. Unraveling the mechanism of molecular doping in organic semiconductors.

    PubMed

    Mityashin, Alexander; Olivier, Yoann; Van Regemorter, Tanguy; Rolin, Cedric; Verlaak, Stijn; Martinelli, Nicolas G; Beljonne, David; Cornil, Jérôme; Genoe, Jan; Heremans, Paul

    2012-03-22

    The mechanism by which molecular dopants donate free charge carriers to the host organic semiconductor is investigated and is found to be quite different from the one in inorganic semiconductors. In organics, a strong correlation between the doping concentration and its charge donation efficiency is demonstrated. Moreover, there is a threshold doping level below which doping simply has no electrical effect. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Photo-assisted Kelvin probe force microscopy investigation of three dimensional GaN structures with various crystal facets, doping types, and wavelengths of illumination

    NASA Astrophysics Data System (ADS)

    Ali Deeb, Manal; Ledig, Johannes; Wei, Jiandong; Wang, Xue; Wehmann, Hergo-Heinrich; Waag, Andreas

    2017-08-01

    Three dimensional GaN structures with different crystal facets and doping types have been investigated employing the surface photo-voltage (SPV) method to monitor illumination-induced surface charge behavior using Kelvin probe force microscopy. Various photon energies near and below the GaN bandgap were used to modify the generation of electron-hole pairs and their motion under the influence of the electric field near the GaN surface. Fast and slow processes for Ga-polar c-planes on both Si-doped n-type as well as Mg-doped p-type GaN truncated pyramid micro-structures were found and their origin is discussed. The immediate positive (for n-type) and negative (for p-type) SPV response dominates at band-to-band and near-bandgap excitation, while only the slow process is present at sub-bandgap excitation. The SPV behavior for the semi-polar facets of the p-type GaN truncated pyramids has a similar characteristic to that on its c-plane, which indicates that it has a comparable band bending and no strong influence of the polarity-induced charges is detectable. The SPV behavior of the non-polar m-facets of the Si-doped n-type part of a transferred GaN column is similar to that of a clean c-plane GaN surface during illumination. However, the SPV is smaller in magnitude, which is attributed to intrinsic surface states of m-plane surfaces and their influence on the band bending. The SPV behavior of the non-polar m-facet of the slightly Mg-doped part of this GaN column is found to behave differently. Compared to c- and r-facets of p-type surfaces of GaN-light-emitting diode micro-structures, the m-plane is more chemically stable.

  12. Manipulating charge density waves in 1 T -TaS2 by charge-carrier doping: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Shao, D. F.; Xiao, R. C.; Lu, W. J.; Lv, H. Y.; Li, J. Y.; Zhu, X. B.; Sun, Y. P.

    2016-09-01

    The transition-metal dichalcogenide 1 T -TaS2 exhibits a rich set of charge-density-wave (CDW) orders. Recent investigations suggested that using light or an electric field can manipulate the commensurate CDW (CCDW) ground state. Such manipulations are considered to be determined by charge-carrier doping. Here we use first-principles calculations to simulate the carrier-doping effect on the CCDW in 1 T -TaS2 . We investigate the charge-doping effects on the electronic structures and phonon instabilities of the 1 T structure, and we analyze the doping-induced energy and distortion ratio variations in the CCDW structure. We found that both in bulk and monolayer 1 T -TaS2 , the CCDW is stable upon electron doping, while hole doping can significantly suppress the CCDW, implying different mechanisms of such reported manipulations. Light or positive perpendicular electric-field-induced hole doping increases the energy of the CCDW, so that the system transforms to a nearly commensurate CDW or a similar metastable state. On the other hand, even though the CCDW distortion is more stable upon in-plane electric-field-induced electron injection, some accompanied effects can drive the system to cross over the energy barrier from the CCDW to a nearly commensurate CDW or a similar metastable state. We also estimate that hole doping can introduce potential superconductivity with a Tc of 6-7 K. Controllable switching of different states such as a CCDW/Mott insulating state, a metallic state, and even a superconducting state can be realized in 1 T -TaS2 . As a result, this material may have very promising applications in future electronic devices.

  13. Magnetic properties of Mg12O12 nanocage doped with transition metal atoms (Mn, Fe, Co and Ni): DFT study

    NASA Astrophysics Data System (ADS)

    Javan, Masoud Bezi

    2015-07-01

    Binding energy of the Mg12O12 nanocage doped with transition metals (TM=Mn, Fe, Co and Ni) in endohedrally, exohedrally and substitutionally forms were studied using density functional theory with the generalized gradient approximation exchange-correlation functional along 6 different paths inside and outside of the Mg12O12 nanocage. The most stable structures were determined with full geometry optimization near the minimum of the binding energy curves of all the examined paths inside and outside of the Mg12O12 nanocage. The results reveal that for all stable structures, the Ni atom has a larger binding energy than the other TM atoms. It is also found that for all complexes additional peaks contributed by TM-3d, 4s and 4p states appear in the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) gap of the host MgO cluster. The mid-gap states are mainly due to the hybridization between TM-3d, 4s and 4p orbitals and the cage π orbitals. The magnetic moment of the endohedrally doped TM atoms in the Mg12O12 are preserved to some extent due to the interaction between the TM and Mg12O12 nanocage, in contrast to the completely quenched magnetic moment of the Fe and Ni atoms in the Mg11(TM)O12 complexes. Furthermore, charge population analysis shows that charge transfer occurs from TM atom to the cage for endohedrally and substitutionally doping.

  14. The synergistic effect of nitrogen-doped titanium dioxide/mercaptobenzoic acid/silver nanocomplexes for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Bao, Wenyuan; Li, Lijun; Cheng, Hao; Huang, Wenyi; Kong, Hongxing; Li, Yanqing

    2018-03-01

    We synthesized titanium dioxide (TiO2) and nitrogen-doped TiO2 nanoparticles (N-TiO2 NPs) via a sol-hydrothermal method using ammonium chloride (NH4Cl) as the nitrogen (N) source. Furthermore, an N-TiO2/4-mercaptobenzoic acid (4-MBA)/silver (Ag) nanocomplex served as an active substrate for surface-enhanced Raman scattering (SERS) and was prepared by self-assembly. During SERS, the Raman signals of 4-MBA of the N-TiO2/MBA/Ag nanocomplexes exhibited higher intensity and sensitivity than pure TiO2/MBA/Ag, with 1% N doping in N-TiO2, producing the strongest Raman signals. We characterized the N-TiO2 hybrid materials by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible diffuse reflectance spectra. N doping did not influence the phase of the TiO2 crystal. The doped N entered into the crystal lattice of the TiO2, replacing some oxygen (O) to form Ti-O-N or Ti-N-O linkage. The results indicated that an appropriate amount of N doping could enhance the SERS performance of the TiO2 SERS substrate via N substitution doping. These doping forms were beneficial to the molecular charge transfer (CT), and this resulted in improved SERS performance for N-doped TiO2 NPs. We attributed this improvement to the formation of N-doping energy levels that were beneficial to the process of TiO2 to MBA molecule CT. This work not only enriched the nonmetal-doped CT mechanism in SERS but also provided several reference values for practical applications. [Figure not available: see fulltext.

  15. The optimum titanium precursor of fabricating TiO2 compact layer for perovskite solar cells.

    PubMed

    Qin, Jianqiang; Zhang, Zhenlong; Shi, Wenjia; Liu, Yuefeng; Gao, Huiping; Mao, Yanli

    2017-12-29

    Perovskite solar cells (PSCs) have attracted tremendous attentions due to its high performance and rapid efficiency promotion. Compact layer plays a crucial role in transferring electrons and blocking charge recombination between the perovskite layer and fluorine-doped tin oxide (FTO) in PSCs. In this study, compact TiO 2 layers were synthesized by spin-coating method with three different titanium precursors, titanium diisopropoxide bis (acetylacetonate) (c-TTDB), titanium isopropoxide (c-TTIP), and tetrabutyl titanate (c-TBOT), respectively. Compared with the PSCs based on the widely used c-TTDB and c-TTIP, the device based on c-TBOT has significantly enhanced performance, including open-circuit voltage, short-circuit current density, fill factor, and hysteresis. The significant enhancement is ascribed to its excellent morphology, high conductivity and optical properties, fast charge transfer, and large recombination resistance. Thus, a power conversion efficiency (PCE) of 17.03% has been achieved for the solar cells based on c-TBOT.

  16. The optimum titanium precursor of fabricating TiO2 compact layer for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Qin, Jianqiang; Zhang, Zhenlong; Shi, Wenjia; Liu, Yuefeng; Gao, Huiping; Mao, Yanli

    2017-12-01

    Perovskite solar cells (PSCs) have attracted tremendous attentions due to its high performance and rapid efficiency promotion. Compact layer plays a crucial role in transferring electrons and blocking charge recombination between the perovskite layer and fluorine-doped tin oxide (FTO) in PSCs. In this study, compact TiO2 layers were synthesized by spin-coating method with three different titanium precursors, titanium diisopropoxide bis (acetylacetonate) (c-TTDB), titanium isopropoxide (c-TTIP), and tetrabutyl titanate (c-TBOT), respectively. Compared with the PSCs based on the widely used c-TTDB and c-TTIP, the device based on c-TBOT has significantly enhanced performance, including open-circuit voltage, short-circuit current density, fill factor, and hysteresis. The significant enhancement is ascribed to its excellent morphology, high conductivity and optical properties, fast charge transfer, and large recombination resistance. Thus, a power conversion efficiency (PCE) of 17.03% has been achieved for the solar cells based on c-TBOT.

  17. Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector.

    PubMed

    Li, Xiaoqiang; Lin, Shisheng; Lin, Xing; Xu, Zhijuan; Wang, Peng; Zhang, Shengjiao; Zhong, Huikai; Xu, Wenli; Wu, Zhiqian; Fang, Wei

    2016-01-11

    In graphene/semiconductor heterojunction, the statistic charge transfer between graphene and semiconductor leads to decreased junction barrier height and limits the Fermi level tuning effect in graphene, which greatly affects the final performance of the device. In this work, we have designed a sandwich diode for solar cells and photodetectors through inserting 2D hexagonal boron nitride (h-BN) into graphene/GaAs heterostructure to suppress the static charge transfer. The barrier height of graphene/GaAs heterojunction can be increased from 0.88 eV to 1.02 eV by inserting h-BN. Based on the enhanced Fermi level tuning effect with interface h-BN, through adopting photo-induced doping into the device, power conversion efficiency (PCE) of 10.18% has been achieved for graphene/h-BN/GaAs compared with 8.63% of graphene/GaAs structure. The performance of graphene/h-BN/GaAs based photodetector is also improved with on/off ratio increased by one magnitude compared with graphene/GaAs structure.

  18. Charge-doping and chemical composition-driven magnetocrystalline anisotropy in CoPt core-shell alloy clusters

    NASA Astrophysics Data System (ADS)

    Ruiz-Díaz, P.; Muñoz-Navia, M.; Dorantes-Dávila, J.

    2018-03-01

    Charge-doping together with 3 d-4 d alloying emerges as promising mechanisms for tailoring the magnetic properties of low-dimensional systems. Here, throughout ab initio calculations, we present a systematic overview regarding the impact of both electron(hole) charge-doping and chemical composition on the magnetocrystalline anisotropy (MA) of CoPt core-shell alloy clusters. By taking medium-sized Co n Pt m ( N = n + m = 85) octahedral-like alloy nanoparticles for some illustrative core-sizes as examples, we found enhanced MA energies and large induced spin(orbital) moments in Pt-rich clusters. Moreover, depending on the Pt-core-size, both in-plane and off-plane directions of magnetization are observed. In general, the MA of these binary compounds further stabilizes upon charge-doping. In addition, in the clusters with small MA, the doping promotes magnetization switching. Insights into the microscopical origins of the MA behavior are associated to changes in the electronic structure of the clusters. [Figure not available: see fulltext.

  19. Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Dong-Wook, E-mail: shindong37@skku.edu; Kim, Tae Sung; Yoo, Ji-Beom, E-mail: jbyoo@skku.edu

    Highlights: • Substitution doping is a promising method for opening the energy band gap of graphene. • Substitution doping with phosphorus in the graphene lattice has numerous advantage such as high band gap, low formation energy, and high net charge density compared to nitrogen. • V{sub dirac} of Inductively coupled plasma (ICP) and triphenylphosphine (TPP) treated graphene was −57 V, which provided clear evidence of n-type doping. • Substitutional doping of graphene with phosphorus is verified by the XPS spectra of P 2p core level and EELS mapping of phosphorus. • The chemical bonding between P and graphene is verymore » stable for a long time in air (2 months). - Abstract: Graphene is considered a host material for various applications in next-generation electronic devices. However, despite its excellent properties, one of the most important issues to be solved as an electronic material is the creation of an energy band gap. Substitution doping is a promising method for opening the energy band gap of graphene. Herein, we demonstrate the substitutional doping of graphene with phosphorus using inductively coupled plasma (ICP) and triphenylphosphine (TPP) treatments. The electrical transfer characteristics of the phosphorus doped graphene field effect transistor (GFET) have a V{sub dirac} of ∼ − 54 V. The chemical bonding between P and C was clearly observed in XPS spectra, and uniform distribution of phosphorus within graphene domains was confirmed by EELS mapping. The capability for substitutional doping of graphene with phosphorus can significantly promote the development of graphene based electronic devices.« less

  20. Photoluminescent spectroscopy measurements in nanocrystalline praseodymium doped zirconia powders

    NASA Astrophysics Data System (ADS)

    Ramos-Brito, F.; Murrieta S, H.; Hernández A, J.; Camarillo, E.; García-Hipólito, M.; Martínez-Martínez, R.; Álvarez-Fragoso, O.; Falcony, C.

    2006-05-01

    Praseodymium doped zirconia powder (ZrO2: (0.53 at%) Pr3+) was prepared by a co-precipitation technique and annealed in air at a temperature Ta = 950 °C. The x-ray diffraction pattern shows a nanocrystalline structure composed of 29.6% monoclinic and 70.4% cubic-tetragonal phases. Medium infrared and Raman analysis confirms the monoclinic/cubic-tetragonal crystalline structure and proves the absence of praseodymium aggregates in the material. Photoluminescent spectroscopy over excitations of 457.9 and 514.9 nm (at 20 K), shows two emission spectra composed of many narrow peaks in the visible-near infrared region (VIS-NIR) of the electromagnetic spectrum, associated with 4f inter-level electronic transitions in praseodymium ions incorporated in the zirconia. Excitation and emission spectra show the different mechanisms of the direct and non-direct excitation of the dopant ion (Pr3+), and the preferential relaxation of the material by charge transfer from the host (zirconia) to the 4f5d band and the 4f inter-level of the dopant ion (Pr3+). No evidence of energy transfer from the host to the dopant was observed.

  1. N-type Cu2O doped activated carbon as catalyst for improving power generation of air cathode microbial fuel cells.

    PubMed

    Zhang, Xi; Li, Kexun; Yan, Pengyu; Liu, Ziqi; Pu, Liangtao

    2015-01-01

    A novel n-type Cu2O doped activated carbon (AC) air cathode (Cu/AC) was developed as an alternative to Pt electrode for oxygen reduction in microbial fuel cells (MFCs). The maximum power density of MFCs using this novel air cathode was as high as 1390±76mWm(-2), almost 59% higher than the bare AC air cathode. Specifically, the resistance including total resistance and charge transfer resistance significantly decreased comparing to the control. Tafel curve also showed the faster electro-transfer kinetics of Cu/AC with exchange current density of 1.03×10(-3)Acm(-2), which was 69% higher than the control. Ribbon-like Cu2O was deposited on the surface of AC with the mesopore surface area increasing. Cubic Cu2O crystals exclusively expose (111) planes with the interplanar crystal spacing of 2.48Å, which was the dominate active sites for oxygen reduction reaction (ORR). N-type Cu2O with oxygen vacancies played crucial roles in electrochemical catalytic activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Surface engineered two-dimensional and quasi-one-dimensional nanomaterials for electronic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Du, Xiang

    As the sizes of individual components in electronic and optoelectronic devices approach nano scale, the performance of the devices is often determined by surface properties due to their large surface-to-volume ratio. Surface phenomena have become one of the cornerstones in nanoelectronic industry. For this reason, research on the surface functionalization has been tremendous amount of growth over the past decades, and promises to be an increasingly important field in the future. Surface functionalization, as an effective technique to modify the surface properties of a material through a physical or chemical approach, exhibits great potential to solve the problems and challenges, and modulate the performance of nanomaterials based functional devices. Surface functionalization drives the developments and applications of modern electronic and optoelectronic devices fabricated by nanomaterials. In this thesis, I demonstrate two surface functionalization approaches, namely, surface transfer doping and H2 annealing, to effectively solve the problems and significantly enhance the performance of 2D (single structure black phosphorus (BP) and heterostructure graphene/Si Schottky junction), and quasi-1D (molybdenum trioxide (MoO 3) nanobelt) nanomaterials based functional devices, respectively. In situ photoelectron spectroscopy (PES) measurements were also carried out to explore the interfacial charge transfer occurring at the interface between the nanostructures and doping layers, and the gap states in MoO 3 thin films, which provides the underlying mechanism to understand and support our device measurement results. In the first part of this thesis, I will discuss the first surface functionalization approach, namely, surface transfer doping, to effectively modulate the ambipolar characteristics of 2D few-layer BP flakes based FETs. The ambipolar characteristics of BP transistors were effectively modulated through in situ surface functionalization with cesium carbonate (Cs2CO3) and MoO3, respectively. Cs2CO3 was found to strongly electron dope black phosphorus. The electron mobility of black phosphorus was significantly enhanced to ˜27 cm2V-1s-1 after 10 nm Cs2CO3 modification, indicating a greatly improved electron transport behavior. In contrast, MoO3 decoration demonstrated a giant hole doping effect. In situ PES characterization confirms the interfacial charge transfer between black phosphorus and doping layers. This doping can also modulate the Schottky junctions formed between metal contacts and black phosphorus flakes, and hence to enhance the responsivity of black phosphorus based photodetectors. These findings coupled with the tunable nature of the surface transfer doping scheme ensure black phosphorus as a promising candidate for further complementary logic electronics. Following the same surface transfer doping technique, I will demonstrate a remarkable performance enhancement of graphene/Si Schottky junction based self-powered photodetectors via surface modification with MoO3 thin film. It was found that the photocurrent responsivity of MoO3 doped graphene/Si photodetectors was highly increased under a wide spectrum of illuminated light from ultraviolet to near infrared. The current on-off ratio reached up to ˜104 under illumination of 500 nm light with intensity of ˜62 muWcm-2. More importantly, the external quantum efficiency of graphene/Si devices was significantly enhanced up to ˜80% by almost four times in the visible light region after MoO3 functionalization. The largely improved photodetecting performance originates from the increased Schottky barrier height at the graphene/Si interface as well as the reduced series resistance after MoO3 modification, which was further corroborated by the in situ PES and electrical transport characterizations. These observations promise a simple method to effectively modify the graphene/Si Schottky junction based self-powered photodetectors and thus significantly enhance their photodetecting performance. After discussion of the first surface functionalization method, next I will introduce the second approach which is H2 annealing, to greatly extend the photoresponse range of single MoO3 nanobelt based photodetector from UV to visible light by introducing substantial gap states. After annealing, the conductance of MoO3 nanobelt was largely enhanced; at the same time, the photodetector possessed wide visible spectrum response. As corroborated by in situ PES investigations, such strong wide spectrum photoresponse arises from the largely enriched oxygen vacancies and gap states in MoO3 nanobelt after H2 annealing. These results open up a new avenue to extend the wide bandgap metal oxide nanomaterials based optoelectronics devices with efficient visible light response through surface modification, i.e. the introduction of the high density of carefully engineered gap states.

  3. Understanding the effects of cationic dopants on α-MnO 2 oxygen reduction reaction electrocatalysis

    DOE PAGES

    Lambert, Timothy N.; Vigil, Julian A.; White, Suzanne E.; ...

    2017-01-09

    Nickel-doped α-MnO 2 nanowires (Ni–α-MnO 2) were prepared with 3.4% or 4.9% Ni using a hydrothermal method. A comparison of the electrocatalytic data for the oxygen reduction reaction (ORR) in alkaline electrolyte versus that obtained with α-MnO 2 or Cu–α-MnO 2 is provided. In general, Ni-α-MnO 2 (e.g., Ni-4.9%) had higher n values (n = 3.6), faster kinetics (k = 0.015 cm s –1), and lower charge transfer resistance (R CT = 2264 Ω at half-wave) values than MnO 2 (n = 3.0, k = 0.006 cm s –1, R CT = 6104 Ω at half-wave) or Cu–α-MnO 2 (Cu-2.9%,more » n = 3.5, k = 0.015 cm s –1, R CT = 3412 Ω at half-wave), and the overall activity for Ni–α-MnO 2 trended with increasing Ni content, i.e., Ni-4.9% > Ni-3.4%. As observed for Cu–α-MnO 2, the increase in ORR activity correlates with the amount of Mn 3+ at the surface of the Ni–α-MnO 2 nanowire. Examining the activity for both Ni–α-MnO 2 and Cu–α-MnO 2 materials indicates that the Mn 3+ at the surface of the electrocatalysts dictates the activity trends within the overall series. Single nanowire resistance measurements conducted on 47 nanowire devices (15 of α-MnO 2, 16 of Cu–α-MnO 2-2.9%, and 16 of Ni–α-MnO 2-4.9%) demonstrated that Cu-doping leads to a slightly lower resistance value than Ni-doping, although both were considerably improved relative to the undoped α-MnO 2. As a result, the data also suggest that the ORR charge transfer resistance value, as determined by electrochemical impedance spectroscopy, is a better indicator of the cation-doping effect on ORR catalysis than the electrical resistance of the nanowire.« less

  4. Enhanced, robust light-driven H 2 generation by gallium-doped titania nanoparticles

    DOE PAGES

    Luo, Si; Nguyen-Phan, Thuy-Duong; Vovchok, Dimitriy; ...

    2017-12-14

    The splitting of water into molecular hydrogen and oxygen with the use of renewable solar energy is considered one of the most promising routes to yield sustainable fuel. In this paper, we report the H 2 evolution performance of gallium doped TiO 2 photocatalysts with varying degrees of Ga dopant. The gallium(III) ions induced significant changes in the structural, textural and electronic properties of TiO 2 nanoparticles, resulting in remarkably enhanced photocatalytic activity and good stability for H 2 production. Ga 3+ ions can act as hole traps that enable a large number of excited electrons to migrate towards themore » TiO 2 surface, thereby facilitating electron transfer and charge separation. Additionally, the cationic dopant and its induced defects might introduce a mid-gap state, promoting electron migration and prolonging the lifetime of charge carrier pairs. We have discovered that the optimal Ga dopant concentration was 3.125 at% and that the incorporation of platinum (0.5 wt%) as a co-catalyst further improved the H 2 evolution rate up to 5722 μmol g -1 h -1. Pt not only acts as an electron sink, drastically increasing the electron/hole pair lifetime, but it also creates an intimate contact at the heterojunction between Pt and Ga-TiO 2, thus improving the interfacial electron transfer process. Finally, these catalyst design strategies provide new ways of designing transition metal photocatalysts that improve green fuel production from renewable solar energy and water.« less

  5. High performance dye-sensitized solar cells using graphene modified fluorine-doped tin oxide glass by Langmuir–Blodgett technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roh, Ki-Min; Jo, Eun-Hee; Chang, Hankwon

    Since the introduction of dye-sensitized solar cells (DSSCs) with low fabrication cost and high power conversion efficiency, extensive studies have been carried out to improve the charge transfer rate and performance of DSSCs. In this paper, we present DSSCs that use surface modified fluorine-doped tin oxide (FTO) substrates with reduced graphene oxide (r-GO) sheets prepared using the Langmuir–Blodgett (LB) technique to decrease the charge recombination at the TiO{sub 2}/FTO interface. R-GO sheets were excellently attached on FTO surface without physical deformations such as wrinkles; effects of the surface coverage of r-GO on the DSSC performance were also investigated. By usingmore » graphene modified FTO substrates, the resistance at the interface of TiO{sub 2}/FTO was reduced and the power conversion efficiency was increased to 8.44%. - Graphical abstract: DSSCs with graphene modified FTO glass were fabricated with the Langmuir Blodgett technique. GO sheets were transferred to FTO at various surface pressures in order to change the surface density of graphene and the highest power conversion efficiency of the DSSC was 8.44%. - Highlights: • By LB technique, r-GO sheets were coated on FTO without physical deformation. • DSSCs were fabricated with, r-GO modified FTO substrates. • With surface modification by r-GO, the interface resistance of DSSC decreased. • Maximum PCE of the DSSC was increased up to 8.44%.« less

  6. Light metal decorated graphdiyne nanosheets for reversible hydrogen storage.

    PubMed

    Panigrahi, P; Dhinakaran, A K; Naqvi, S R; Gollu, S R; Ahuja, R; Hussain, T

    2018-05-29

    The sensitive nature of molecular hydrogen (H 2 ) interaction with the surfaces of pristine and functionalized nanostructures, especially two-dimensional materials, has been a subject of debate for a while now. An accurate approximation of the H 2 adsorption mechanism has vital significance for fields such as H 2 storage applications. Owing to the importance of this issue, we have performed a comprehensive density functional theory (DFT) study by means of several different approximations to investigate the structural, electronic, charge transfer and energy storage properties of pristine and functionalized graphdiyne (GDY) nanosheets. The dopants considered here include the light metals Li, Na, K, Ca, Sc and Ti, which have a uniform distribution over GDY even at high doping concentration due to their strong binding and charge transfer mechanism. Upon 11% of metal functionalization, GDY changes into a metallic state from being a small band-gap semiconductor. Such situations turn the dopants to a partial positive state, which is favorable for adsorption of H 2 molecules. The adsorption mechanism of H 2 on GDY has been studied and compared by different methods like generalized gradient approximation, van der Waals density functional and DFT-D3 functionals. It has been established that each functionalized system anchors multiple H 2 molecules with adsorption energies that fall into a suitable range regardless of the functional used for approximations. A significantly high H 2 storage capacity would guarantee that light metal-doped GDY nanosheets could serve as efficient and reversible H 2 storage materials.

  7. Periodic DFT study of acidic trace atmospheric gas molecule adsorption on Ca- and Fe-doped MgO(001) surface basic sites.

    PubMed

    Baltrusaitis, Jonas; Hatch, Courtney; Orlando, Roberto

    2012-08-02

    The electronic properties of undoped and Ca- or Fe-doped MgO(001) surfaces, as well as their propensity toward atmospheric acidic gas (CO2, SO2, and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, O(surf), using periodic density functional theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the O(surf) sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe-doped MgO(001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca-doped MgO(001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces.

  8. Periodic DFT study of acidic trace atmospheric gas molecule adsorption on Ca and Fe doped MgO (001) surface basic sites

    PubMed Central

    Hatch, Courtney; Orlando, Roberto

    2012-01-01

    The electronic properties of undoped and Ca or Fe doped MgO (001) surfaces, as well as their propensity towards atmospheric acidic gas (CO2, SO2 and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, Osurf, using periodic Density Functional Theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the Osurf sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe doped MgO (001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca doped MgO (001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces. PMID:22775293

  9. P-Doped NiCo2S4 nanotubes as battery-type electrodes for high-performance asymmetric supercapacitors.

    PubMed

    Lin, Jinghuang; Wang, Yiheng; Zheng, Xiaohang; Liang, Haoyan; Jia, Henan; Qi, Junlei; Cao, Jian; Tu, Jinchun; Fei, Weidong; Feng, Jicai

    2018-06-19

    NiCo2S4 is a promising electrode material for supercapacitors, due to its rich redox reactions and intrinsically high conductivity. Unfortunately, in most cases, NiCo2S4-based electrodes often suffer from low specific capacitance, low rate capability and fast capacitance fading. Herein, we have rationally designed P-doped NiCo2S4 nanotube arrays to improve the electrochemical performance through a phosphidation reaction. Characterization results demonstrate that the P element is successfully doped into NiCo2S4 nanotube arrays. Electrochemical results demonstrate that P-doped NiCo2S4 nanotube arrays exhibit better electrochemical performance than pristine NiCo2S4, e.g. higher specific capacitance (8.03 F cm-2 at 2 mA cm-2), good cycling stability (87.5% capacitance retention after 5000 cycles), and lower charge transfer resistance. More importantly, we also assemble an asymmetric supercapacitor using P-doped NiCo2S4 nanotube arrays and activated carbon on carbon cloth, which delivers a maximum energy density of 42.1 W h kg-1 at a power density of 750 W kg-1. These results demonstrate that the as-fabricated P-doped NiCo2S4 nanotube arrays on carbon cloth show great potential as a battery-type electrode for high-performance supercapacitors.

  10. Influences of neodymium doping on magnetic and electrochemical properties of Li3V2(PO4)3/C synthesized via a sol-gel method

    NASA Astrophysics Data System (ADS)

    Liu, Liying; Qiu, Yongbin; Mai, Yongzhi; Wu, Qibai; Zhang, Haiyan

    2015-11-01

    A series of neodymium doped Li3V2-xNdx(PO4)3/C cathode materials have been successfully synthesized by a citric acid assisted sol-gel method. Nd doped samples (x ≤ 0.10) have well developed monoclinic structure of Li3V2(PO4)3 with enlarged unit cell volume. All samples present typical characteristics of paramagnetism in 4 < T ≤ 300 K, but the magnetic susceptibilities of Nd doped samples increase with Nd content (except for x = 0.15). Nd doped composites show better electrochemical property than that of the undoped one. Among them, the Li3V1.95Nd0.05(PO4)3/C displays the highest capacity and best cycle stability. The Li3V1.95Nd0.05(PO4)3/C presents the first discharge capacity of 129.2 mAh g-1 at 1 C rate in the voltage range of 3.0-4.3 V, 21.7% higher than that of Li3V2(PO4)3/C. And no capacity loss occurs after 100 cycles. The high structural stability, low charge-transfer resistance and rapid Li+ diffusion due to the presence of Nd3+ are mainly responsible for the superior electrochemical performance of Nd doped Li3V2(PO4)3/C cathode materials.

  11. Fluctuating Charge-Order in Optimally Doped Bi- 2212 Revealed by Momentum-resolved Electron Energy Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Husain, Ali; Vig, Sean; Kogar, Anshul; Mishra, Vivek; Rak, Melinda; Mitrano, Matteo; Johnson, Peter; Gu, Genda; Fradkin, Eduardo; Norman, Michael; Abbamonte, Peter

    Static charge order is a ubiquitous feature of the underdoped cuprates. However, at optimal doping, charge-order has been thought to be completely suppressed, suggesting an interplay between the charge-ordering and superconducting order parameters. Using Momentum-resolved Electron Energy Loss Spectroscopy (M-EELS) we show the existence of diffuse fluctuating charge-order in the optimally doped cuprate Bi2Sr2CaCu2O8+δ (Bi-2212) at low-temperature. We present full momentum-space maps of both elastic and inelastic scattering at room temperature and below the superconducting transition with 4meV resolution. We show that the ``rods'' of diffuse scattering indicate nematic-like fluctuations, and the energy width defines a fluctuation timescale of 160 fs. We discuss the implications of fluctuating charge-order on the dynamics at optimal doping. This work was supported by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF-4542. An early prototype of the M-EELS instrument was supported by the DOE Center for Emergent Superconductivity under Award No. DE-AC02-98CH10886.

  12. Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x.

    PubMed

    Sterpetti, Edoardo; Biscaras, Johan; Erb, Andreas; Shukla, Abhay

    2017-12-12

    The phase diagram of hole-doped high critical temperature superconductors as a function of doping and temperature has been intensively studied with chemical variation of doping. Chemical doping can provoke structural changes and disorder, masking intrinsic effects. Alternatively, a field-effect transistor geometry with an electrostatically doped, ultra-thin sample can be used. However, to probe the phase diagram, carrier density modulation beyond 10 14  cm -2 and transport measurements performed over a large temperature range are needed. Here we use the space charge doping method to measure transport characteristics from 330 K to low temperature. We extract parameters and characteristic temperatures over a large doping range and establish a comprehensive phase diagram for one-unit-cell-thick BSCCO-2212 as a function of doping, temperature and disorder.

  13. Predicting the breakdown strength and lifetime of nanocomposites using a multi-scale modeling approach

    NASA Astrophysics Data System (ADS)

    Huang, Yanhui; Zhao, He; Wang, Yixing; Ratcliff, Tyree; Breneman, Curt; Brinson, L. Catherine; Chen, Wei; Schadler, Linda S.

    2017-08-01

    It has been found that doping dielectric polymers with a small amount of nanofiller or molecular additive can stabilize the material under a high field and lead to increased breakdown strength and lifetime. Choosing appropriate fillers is critical to optimizing the material performance, but current research largely relies on experimental trial and error. The employment of computer simulations for nanodielectric design is rarely reported. In this work, we propose a multi-scale modeling approach that employs ab initio, Monte Carlo, and continuum scales to predict the breakdown strength and lifetime of polymer nanocomposites based on the charge trapping effect of the nanofillers. The charge transfer, charge energy relaxation, and space charge effects are modeled in respective hierarchical scales by distinctive simulation techniques, and these models are connected together for high fidelity and robustness. The preliminary results show good agreement with the experimental data, suggesting its promise for use in the computer aided material design of high performance dielectrics.

  14. Enlightening the ultrahigh electrical conductivities of doped double-wall carbon nanotube fibers by Raman spectroscopy and first-principles calculations.

    PubMed

    Tristant, Damien; Zubair, Ahmed; Puech, Pascal; Neumayer, Frédéric; Moyano, Sébastien; Headrick, Robert J; Tsentalovich, Dmitri E; Young, Colin C; Gerber, Iann C; Pasquali, Matteo; Kono, Junichiro; Leotin, Jean

    2016-12-01

    Highly aligned, packed, and doped carbon nanotube (CNT) fibers with electrical conductivities approaching that of copper have recently become available. These fibers are promising for high-power electrical applications that require light-weight, high current-carrying capacity cables. However, a microscopic understanding of how doping affects the electrical conductance of such CNT fibers in a quantitative manner has been lacking. Here, we performed Raman spectroscopy measurements combined with first-principles calculations to determine the position of the average Fermi energy and to obtain the temperature of chlorosulfonic-acid-doped double-wall CNT fibers under high current. Due to the unique way in which double-wall CNT Raman spectra depend on doping, it is possible to use Raman data to determine the doping level quantitatively. The correspondence between the Fermi level shift and the carbon charge transfer is derived from a tight-binding model and validated by several calculations. For the doped fiber, we were able to associate an average Fermi energy shift of ∼-0.7 eV with a conductance increase by a factor of ∼5. Furthermore, since current induces heating, local temperature determination is possible. Through the Stokes-to-anti-Stokes intensity ratio of the G-band peaks, we estimated a temperature rise at the fiber surface of ∼135 K at a current density of 2.27 × 10 8 A m -2 identical to that from the G-band shift, suggesting that thermalization between CNTs is well achieved.

  15. Enhanced Charge Extraction of Li-Doped TiO₂ for Efficient Thermal-Evaporated Sb₂S₃ Thin Film Solar Cells.

    PubMed

    Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping

    2018-02-28

    We provided a new method to improve the efficiency of Sb₂S₃ thin film solar cells. The TiO₂ electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb₂S₃ solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO₂ films. Compared with the undoped TiO₂, Li-doped mesoporous TiO₂ dramatically improved the photo-voltaic performance of the thermal-evaporated Sb₂S₃ thin film solar cells, with the average power conversion efficiency ( PCE ) increasing from 1.79% to 4.03%, as well as the improved open-voltage ( V oc ), short-circuit current ( J sc ) and fill factors. The best device based on Li-doped TiO₂ achieved a power conversion efficiency up to 4.42% as well as a V oc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb₂S₃ solar cells. This study showed that Li-doping on TiO₂ can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb₂S₃-based solar cells.

  16. Charge distribution and response time for a modulation-doped extrinsic infrared detector

    NASA Technical Reports Server (NTRS)

    Hadek, Victor

    1987-01-01

    The electric charge distribution and response time of a modulation-doped extrinsic infrared detector are determined. First, it is demonstrated theoretically that the photoconductive layer is effectively depleted of ionized majority-impurity charges so that scattering is small and mobility is high for photogenerated carriers. Then, using parameters appropriate to an actual detector, the predicted response time is 10 to the -8th to about 10 to the -9th s, which is much faster than comparable conventional detectors. Thus, the modulation-doped detector design would be valuable for heterodyne applications.

  17. Modulation doping of quantum dot laser active area and its impact on lasing performance

    NASA Astrophysics Data System (ADS)

    Konoplev, S. S.; Savelyev, A. V.; Korenev, V. V.; Maximov, M. V.; Zhukov, A. E.

    2015-11-01

    We present a theoretical study of modulation doping of active region in the quantum dot (QD) laser and corresponding issues of QD charge neutrality violation, a band diagram of the laser and charge carriers distribution in the structure. Modulation doping is discussed as a possible technique to control laser output characteristics. It was shown that modulation doping leads to an increase of threshold current of lasing through excited QD optical transition together with power emission from QD ground state.

  18. Rare-Earth Doping and Co-Doping of GaN for Magnetic and Luminescent Applications

    DTIC Science & Technology

    2010-08-16

    The main focus of this project is the study of Gadolinium doped Gallium Nitride. Calculations were carried out to elucidate the origin of the reported...Ga vacancies in the triple negative charge state, which is the most likely charge state in semi-insulating samples, 1. REPORT DATE (DD-MM-YYYY) 4...applications Report Title ABSTRACT The main focus of this project is the study of Gadolinium doped Gallium Nitride. Calculations were carried out to

  19. Improved Cycling Stability and Fast Charge-Discharge Performance of Cobalt-Free Lithium-Rich Oxides by Magnesium-Doping.

    PubMed

    Yi, Ting-Feng; Li, Yan-Mei; Yang, Shuang-Yuan; Zhu, Yan-Rong; Xie, Ying

    2016-11-30

    Layered Li-rich, Co-free, and Mn-based cathode material, Li 1.17 Ni 0.25-x Mn 0.58 Mg x O 2 (0 ≤ x ≤ 0.05), was successfully synthesized by a coprecipitation method. All prepared samples have typical Li-rich layered structure, and Mg has been doped in the Li 1.17 Ni 0.25 Mn 0.58 O 2 material successfully and homogeneously. The morphology and the grain size of all material are not changed by Mg doping. All materials have a estimated size of about 200 nm with a narrow particle size distribution. The electrochemical property results show that Li 1.17 Ni 0.25-x Mn 0.58 Mg x O 2 (x = 0.01 and 0.02) electrodes exhibit higher rate capability than that of the pristine one. Li 1.17 Ni 0.25-x Mn 0.58 Mg x O 2 (x = 0.02) indicates the largest reversible capacity of 148.3 mAh g -1 and best cycling stability (capacity retention of 95.1%) after 100 cycles at 2C charge-discharge rate. Li 1.17 Ni 0.25-x Mn 0.58 Mg x O 2 (x = 0.02) also shows the largest discharge capacity of 149.2 mAh g -1 discharged at 1C rate at elevated temperature (55 °C) after 50 cycles. The improved electrochemical performances may be attributed to the decreased polarization, reduced charge transfer resistance, enhanced the reversibility of Li + ion insertion/extraction, and increased lithium ion diffusion coefficient. This promising result gives a new understanding for designing the structure and improving the electrochemical performance of Li-rich cathode materials for the next-generation lithium-ion battery with high rate cycling performance.

  20. Doping and defect-induced germanene: A superior media for sensing H2S, SO2, and CO2 gas molecules

    NASA Astrophysics Data System (ADS)

    Monshi, M. M.; Aghaei, S. M.; Calizo, I.

    2017-11-01

    First-principles calculations based on density functional theory (DFT) have been employed to investigate the structural, electronic, and gas-sensing properties of pure, defected, and doped germanene nanosheets. Our calculations have revealed that while a pristine germanene nanosheet adsorbs CO2 weakly, H2S moderately, and SO2 strongly, the introduction of vacancy defects increases the sensitivity significantly which is promising for future gas-sensing applications. Mulliken population analysis imparts that an appreciable amount of charge transfer occurs between gas molecules and a germanene nanosheet which supports our results for adsorption energies of the systems. The enhancement of the interactions between gas molecules and the germanene nanosheet has been further investigated by density of states. Projected density of states provides detailed insight of the gas molecule's contribution in the gas-sensing system. Additionally, the influences of substituted dopant atoms such as B, N, and Al in the germanene nanosheet have also been considered to study the impact on its gas sensing ability. There was no significant improvement found in the doped gas sensing capability of germanene over the vacancy defects, except for CO2 upon adsorption on N-doped germanene.

  1. Three-dimensional ruthenium-doped TiO 2 sea urchins for enhanced visible-light-responsive H 2 production

    DOE PAGES

    Nguyen-Phan, Thuy -Duong; Luo, Si; Vovchok, Dimitriy; ...

    2016-05-23

    Here, three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO 2 hierarchical architectures composed of radially aligned, densely-packed TiO 2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyzes the formation of the 3D urchin structure and drives the enhanced photocatalytic H 2 production under visible light irradiation, not possible on undoped and bulk rutile TiO 2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m 2 g –1 but alsomore » induces enhanced photoresponse in the regime of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti 3+, significantly below the conduction band of TiO 2, and ruthenium species act as electron donors/acceptors that accelerate the photogenerated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity.« less

  2. The performance of 3-D graphite doped anodes in microbial electrolysis cells

    NASA Astrophysics Data System (ADS)

    Yasri, Nael G.; Nakhla, George

    2017-02-01

    This study investigated the use of granular activated carbon (GAC) as high surface area 3-dimensional (3-D) anode in MECs systems. The interfacial anodes' charge transfer resistance of the doped GAC did not impact the overall performance of MECs. Based on our finding, the 3-D anode packed with GAC-doped with nonconductive calcium sulfide (CaS) outperformed the more conductive iron (II) sulfide (FeS), magnetite (Fe3O4), or GAC without doping. The results showed higher current densities for 3-D CaS (40.1 A/m3), as compared with 3-D FeS (34.4 A/m3), 3-D Fe3O4 (29.8 A/m3), and 3-D GAC (23.1 A/m3). The higher current density in the 3-D CaS translated to higher coulombic efficiency (96.7%), hydrogen yield (3.6 mol H2/mol acetate), and attached biomass per anode mass (54.01 mg COD biomass/g GAC). Although the 3-D MEC achieved similar hydrogen yield, hydrogen recovery efficiency, and COD removal rate to a conventional sandwich type MEC, the current density, coulombic efficiency, and overall energy efficiency were higher.

  3. Magnetic refrigeration capabilities of magnetocaloric Ni2Mn:75Cu:25Ga

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Jenkins, C. A.; Dubenko, I.; Samanta, T.; Ali, N.; Roy, S.

    2013-03-01

    Doping-driven competition between energetically similar ground states leads to many exciting materials phenomena such as the emergence of high-Tc superconductivity, diluted magnetic semiconductors, and colossal magnetoresistance. Doped Ni2MnGa Heusler alloy, which is a multifunctional ferromagnetic alloy with various exotic physical properties demonstrates this notion of rich phenomenology via modified ground spin states. Adopting this generic concept, here we will present a novel doped Ni2Mn.75Cu.25Ga alloy that offers unprecedented co-existence of the magnetocaloric effect and fully controlled ferromagnetism at room temperature. Application of site engineering enables us to manipulate the ground spin state that leads to the decrease in magnetic transition temperature and also increases the delocalization of the Mn magnetism. SQUID magnetometery suggests that Cu doping enhances the saturation magnetization, coercive field and clarity of magnetic hysteresis loops. By exploiting x-ray absorption techniques and measuring element specific magnetic hysteresis loops, here we will describe the microscopic origin of enhnaced magnetocaloric properties and d-d interaction driven charge transfer effects in Ni2Mn.75Cu.25Ga This work was supported by DOE Grant No. DE-FG02-06ER46291

  4. Development of high efficient visible light-driven N, S-codoped TiO2 nanowires photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Yanlin; Liu, Peihong; Wu, Honghai

    2015-02-01

    One-dimensional (1D) nanowire material (especially nonmetal doped 1D nanowires) synthesized by a facile way is of great significance and greatly desired as it has higher charge carrier mobility and lower carrier recombination rate. N, S-codoped TiO2 nanowires were synthesized using titanium sulfate as a precursor and isopropanol as a protective capping agent by a hydrothermal route. The obtained doped nanowires were characterized by XRD, SEM, HRTEM, SAED, XPS, BET and UV-vis absorption spectrum. The incorporation of N and S into TiO2 NWs can lead to the expansion of its lattice and remarkably lower its electron-transfer resistance. Photocatalytic activity measurement showed that the N, S-codoped TiO2 nanowires with high quantum efficiency revealed the best photocatalytic performance for atrazine degradation under visible light irradiation compared to N, S-codoped TiO2 nanoparticles and S-doped TiO2 nanowires, which was attributed to (i) the synergistic effect of N and S doping in narrowing the band gap, separating electron-hole pairs and increasing the photoinduced electrons, and (ii) extending the anatase-to-rutile transformation temperature above 600 °C.

  5. Poly-beta-pinene, a Novel Nonconjugated Conductive Polymer

    NASA Astrophysics Data System (ADS)

    Thakur, Mrinal; Vippa, Prakash; Rajagopalan, Harish

    2004-03-01

    Electrical conductivity in a novel nonconjugated conductive polymer, poly-beta-pinene, has been measured as a function of iodine doping. The conductivity increases about ten orders of magnitude to a maximum value ˜ 0.01 S/cm. The molar concentration of iodine corresponding to saturation is ˜ 0.8. The optical absorption measurements after light doping have shown two peaks: one at 4.1 eV and the other at 3.1 eV. The first peak is due to the radical cation and the second due the charge-transfer between the double bond and the dopant. As observed in other nonconjugated conductive polymers, the second peak becomes broader and undergoes a red-shift upon higher doping [1,2]. The FTIR spectroscopic studies have shown that the C=C stretching vibration at 1610 cm-1 and the =C-H bending vibration band at 728 cm-1 decrease upon doping as observed in other nonconjugated conductive polymers. Preliminary measurements have shown large quadratic electro-optic effects in this material. 1. M. Thakur, J. Macromol. Sci.-PAC,2001,A38(12),1337. 2. M. Thakur, S. Khatavkar and E.J. Parish, J. Macromol. Sci.-PAC,2003,A40(12),1397.

  6. Enhanced electron transfer and silver-releasing suppression in Ag-AgBr/titanium-doped Al2O3 suspensions with visible-light irradiation.

    PubMed

    Zhou, Xuefeng; Hu, Chun; Hu, Xuexiang; Peng, Tianwei

    2012-06-15

    Ag-AgBr was deposited onto mesoporous alumina (MA) and titanium-doped MA by a deposition-precipitation method. The photocatalytic activity and the dissolution of Ag(+) from different catalysts were investigated during the photodegradation of 2-chlorophenol (2-CP) and phenol in ultrapure water and tap water with visible-light irradiation. With the increase in doped titanium, the Ag(+) dissolution decreased with a decrease in the photocatalytic activity. Ag-AgBr/MA-Ti1 was considered the better catalyst for practical applications because its Ag(+) dissolution was minimal (0.4 mg L(-1) in ultrapure water and 5 μg L(-1) in tap water), although its photoactivity was slightly less than that of Ag-AgBr/MA. The dissolution of Ag(+) was related to a charge-transfer process based on the study of cyclic voltammetry analyses under a variety of experimental conditions. The results suggested that several types of anions in the water, including CO(3)(2-), SO(4)(2-), and Cl(-), could act as electron donors that trap the photogenerated holes on Ag nanoparticles to facilitate electron circulation; this would decrease the release of Ag(+). Our studies indicated that the catalyst had a higher activity and stability in water purification. Copyright © 2012. Published by Elsevier B.V.

  7. Effects of Excess Carriers on Charged Defect Concentrations in Wide Bandgap Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alberi, Kirstin M; Scarpulla, Michael A.

    Unintentional doping and doping limits in semiconductors are typically caused by compensating defects with low formation energies. Since the formation enthalpy of a charged defect depends linearly on the Fermi level, doping limits can be especially pronounced in wide bandgap semiconductors where the Fermi level can vary substantially. Introduction of non-equilibrium carrier concentrations during growth or processing alters the chemical potentials of band carriers and allows populations of charged defects to be modified in ways impossible at thermal equilibrium. We demonstrate that in the presence of excess carriers, the rates of carrier capture and emission involving a defect charge transitionmore » level determine the admixture of electron and hole quasi-Fermi levels involved in the formation enthalpy of non-zero charge defect states. To understand the range of possible responses, we investigate the behavior of a single donor-like defect as functions of extrinsic doping and charge transition level energy. We find that that excess carriers will increase the formation enthalpy of compensating defects for most values of the charge transition level in the bandgap. Thus, it may be possible to use non-equilibrium carrier concentrations to overcome limitations on doping imposed by native defects. Cases also exist in which the concentration of defects with the same charge polarity as the majority dopant is either left unchanged or actually increases. This surprising effect arises when emission rates are suppressed relative to the capture rates and is most pronounced in wide bandgap semiconductors. We provide guidelines for carrying out experimental tests of this model.« less

  8. Effects of excess carriers on charged defect concentrations in wide bandgap semiconductors

    NASA Astrophysics Data System (ADS)

    Alberi, Kirstin; Scarpulla, Michael A.

    2018-05-01

    Unintentional doping and doping limits in semiconductors are typically caused by compensating defects with low formation energies. Since the formation enthalpy of a charged defect depends linearly on the Fermi level, doping limits can be especially pronounced in wide bandgap semiconductors where the Fermi level can vary substantially. Introduction of non-equilibrium carrier concentrations during growth or processing alters the chemical potentials of band carriers and allows populations of charged defects to be modified in ways impossible at thermal equilibrium. We demonstrate that in the presence of excess carriers, the rates of carrier capture and emission involving a defect charge transition level determine the admixture of electron and hole quasi-Fermi levels involved in the formation enthalpy of non-zero charge defect states. To understand the range of possible responses, we investigate the behavior of a single donor-like defect as functions of extrinsic doping and charge transition level energy. We find that that excess carriers will increase the formation enthalpy of compensating defects for most values of the charge transition level in the bandgap. Thus, it may be possible to use non-equilibrium carrier concentrations to overcome limitations on doping imposed by native defects. Cases also exist in which the concentration of defects with the same charge polarity as the majority dopant is either left unchanged or actually increases. This surprising effect arises when emission rates are suppressed relative to the capture rates and is most pronounced in wide bandgap semiconductors. We provide guidelines for carrying out experimental tests of this model.

  9. Pentacene Schottky diodes studied by impedance spectroscopy: Doping properties and trap response

    NASA Astrophysics Data System (ADS)

    Pahner, Paul; Kleemann, Hans; Burtone, Lorenzo; Tietze, Max L.; Fischer, Janine; Leo, Karl; Lüssem, Björn

    2013-11-01

    We study doping properties and charge carrier trap distributions in pentacene Schottky diodes doped by the fluorinated fullerene derivate C60F36 and 2,2'-(perdiylidene)dimalononitrile (F6-TCNNQ) upon small signal excitation. We show that the charge carrier depletion zones present in these Schottky diodes are tunable by the applied bias and temperature. Mott-Schottky evaluations yield reduced doping efficiencies and dopant activation energies between 19 and 54 meV. In the low-frequency regime, we resolve additional capacitive contributions from inherent charge carrier traps. A Gaussian distributed trap center 0.6 eV above the hole transport level with a density in the range of 1016 cm-3 depending on the material purity is found to be an intrinsic feature of the pentacene matrix. Upon doping, the deep Gaussian trap center saturates in density and broad exponentially tailing trap distributions arise. Subsequent ultraviolet photoelectron spectroscopy measurements are conducted to inspect for energetic broadening due to doping.

  10. Millimeter-wave irradiation heating for operation of doped CeO2 electrolyte-supported single solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Che Abdullah, Salmie Suhana Binti; Teranishi, Takashi; Hayashi, Hidetaka; Kishimoto, Akira

    2018-01-01

    High operation temperature of solid oxide fuel cell (SOFC) results in high cell and operation cost, time consuming and fast cell degradation. Developing high performance SOFC that operates at lower temperature is required. Here we demonstrate 24 GHz microwave as a rapid heating source to replace conventional heating method for SOFC operation using 20 mol% Sm doped CeO2 electrolyte-supported single cell. The tested cell shows improvement of 62% in maximum power density at 630 °C under microwave heating. This improvement governs by bulk conductivity of the electrolyte. Investigation of ionic transference number reveals that the value is unchanged under microwave irradiation, confirming the charge carrier is dominated by oxygen ion species. This work shows a potential new concept of high performance as well as cost and energy effective SOFC.

  11. Luminescence Properties of Ca19Ce(PO4)14:A (A = Eu3+/Tb3+/Mn2+) Phosphors with Abundant Colors: Abnormal Coexistence of Ce4+/3+-Eu3+ and Energy Transfer of Ce3+ → Tb3+/Mn2+ and Tb3+-Mn2.

    PubMed

    Shang, Mengmeng; Liang, Sisi; Lian, Hongzhou; Lin, Jun

    2017-06-05

    A series of Eu 3+ /Tb 3+ /Mn 2+ -ion-doped Ca 19 Ce(PO 4 ) 14 (CCPO) phosphors have been prepared via the conventional high-temperature solid-state reaction process. Under UV radiation, the CCPO host presents a broad blue emission band from Ce 3+ ions, which are generated during the preparation process because of the formation of deficiency. The Eu 3+ -doped CCPO phosphors can exhibit magenta to red-orange emission as a result of the abnormal coexistence of Ce 3+ /Ce 4+ /Eu 3+ and the metal-metal charge-transfer (MMCT) effect between Ce 3+ and Eu 3+ . When Tb 3+ /Mn 2+ are doped into the hosts, the samples excited with 300 nm UV light present multicolor emissions due to energy transfer (ET) from the host (Ce 3+ ) to the activators with increasing activator concentrations. The emitting colors of CCPO:Tb 3+ phosphors can be tuned from blue to green, and the CCPO:Mn 2+ phosphors can emit red light. The ET mechanism from the host (Ce 3+ ) to Tb 3+ /Mn 2+ is demonstrated to be a dipole-quadrapole interaction for Ce 3+ → Tb 3+ and an exchange interaction for Ce 3+ → Mn 2+ in CCPO:Tb 3+ /Mn 2+ . Abundant emission colors containing white emission were obtained in the Tb 3+ - and Mn 2+ -codoped CCPO phosphors through control of the levels of doped Tb 3+ and Mn 2+ ions. The white-emitted CCPO:Tb 3+ /Mn 2+ phosphor exhibited excellent thermal stability. The photoluminescence properties have shown that these materials might have potential for UV-pumped white-light-emitting diodes.

  12. Monte Carlo Study on Carbon-Gradient-Doped Silica Aerogel Insulation.

    PubMed

    Zhao, Y; Tang, G H

    2015-04-01

    Silica aerogel is almost transparent for wavelengths below 8 µm where significant energy is transferred by thermal radiation. The radiative heat transfer can be restricted at high temperature if doped with carbon powder in silica aerogel. However, different particle sizes of carbon powder doping have different spectral extinction coefficients and the doped carbon powder will increase the solid conduction of silica aerogel. This paper presents a theoretical method for determining the optimal carbon doping in silica aerogel to minimize the energy transfer. Firstly we determine the optimal particle size by combining the spectral extinction coefficient with blackbody radiation and then evaluate the optimal doping amount between heat conduction and radiation. Secondly we develop the Monte Carlo numerical method to study radiative properties of carbon-gradient-doped silica aerogel to decrease the radiative heat transfer further. The results indicate that the carbon powder is able to block infrared radiation and thus improve the thermal insulating performance of silica aerogel effectively.

  13. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors

    NASA Astrophysics Data System (ADS)

    Kehayias, Christopher E.; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-01

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  14. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors.

    PubMed

    Kehayias, Christopher E; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-21

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  15. A highly sensitive chemical gas detecting device based on N-doped ZnO as a modified nanostructure media: A DFT+NBO analysis

    NASA Astrophysics Data System (ADS)

    Abbasi, Amirali; Sardroodi, Jaber Jahanbin

    2018-02-01

    We presented a density functional theory study of the adsorption of O3 and NO2 molecules on ZnO nanoparticles. Various adsorption geometries of O3 and NO2 over the nanoparticles were considered. For both O3 and NO2 adsorption systems, it was found that the adsorption on the N-doped nanoparticle is more favorable in energy than that on the pristine one. Therefore, the N-doped ZnO has a better efficiency to be utilized as O3 and NO2 detection device. For all cases, the binding sites were located on the zinc atoms of the nanoparticle. The charge analysis based on natural bond orbital (NBO) analysis indicates that charge was transferred from the surface to the adsorbed molecule. The projected density of states of the interacting atoms represent the formation of chemical bonds at the interface region. Molecular orbitals of the adsorption systems indicate that the HOMOs were mainly localized on the adsorbed O3 and NO2 molecules, whereas the electronic densities in the LUMOs were dominant at the ZnO nanocrystal surface. By examining the distribution of spin densities, we found that the magnetization was mainly located over the adsorbed molecules. For NO2 adsorbate, we found that the symmetric and asymmetric stretches were shifted to a lower frequency. The bending stretch mode was shifted to the higher frequency. Our DFT results thus provide a theoretical basis for why the adsorption of O3 and NO2 molecules on the N-doped ZnO nanoparticles may increase, giving rise to design and development of innovative and highly efficient sensor devices for O3 and NO2 recognition.

  16. Metal-Insulator Transition in Copper Oxides Induced by Apex Displacements

    NASA Astrophysics Data System (ADS)

    Acharya, Swagata; Weber, Cédric; Plekhanov, Evgeny; Pashov, Dimitar; Taraphder, A.; Van Schilfgaarde, Mark

    2018-04-01

    High temperature superconductivity has been found in many kinds of compounds built from planes of Cu and O, separated by spacer layers. Understanding why critical temperatures are so high has been the subject of numerous investigations and extensive controversy. To realize high temperature superconductivity, parent compounds are either hole doped, such as La2 CuO4 (LCO) with Sr (LSCO), or electron doped, such as Nd2 CuO4 (NCO) with Ce (NCCO). In the electron-doped cuprates, the antiferromagnetic phase is much more robust than the superconducting phase. However, it was recently found that the reduction of residual out-of-plane apical oxygen dramatically affects the phase diagram, driving those compounds to a superconducting phase. Here we use a recently developed first-principles method to explore how displacement of the apical oxygen (AO) in LCO affects the optical gap, spin and charge susceptibilities, and superconducting order parameter. By combining quasiparticle self-consistent GW (QS GW) and dynamical mean-field theory (DMFT), we show that LCO is a Mott insulator, but small displacements of the apical oxygen drive the compound to a metallic state through a localization-delocalization transition, with a concomitant maximum in d -wave order parameter at the transition. We address the question of whether NCO can be seen as the limit of LCO with large apical displacements, and we elucidate the deep physical reasons why the behavior of NCO is so different from the hole-doped materials. We shed new light on the recent correlation observed between Tc and the charge transfer gap, while also providing a guide towards the design of optimized high-Tc superconductors. Further, our results suggest that strong correlation, enough to induce a Mott gap, may not be a prerequisite for high-Tc superconductivity.

  17. Synthesis and characterization of novel Sm2O3/S-doped g-C3N4 nanocomposites with enhanced photocatalytic activities under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Jourshabani, Milad; Shariatinia, Zahra; Badiei, Alireza

    2018-01-01

    Novel Sm2O3/S-doped g-C3N4 (CNS) composites were synthesized with in situ method by simultaneous combining S doping in carbon nitride structure to produce CNS as well as hybridization of CNS with the Sm2O3 semiconductor. The obtained composite photocatalysts with different Sm2O3 contents were characterized by XRD, FT-IR, XPS, TEM, BET, DRS and PL techniques and their photocatalytic activities were investigated for the degradation of methylene blue (MB) as a model pollutant in aqueous solution under visible-light irradiation. The XRD structure phase and TEM morphology results showed that stacking degree of π-conjugated system in the CNS structure was disrupted in the precense of Sm2O3 particles. The optimal Sm2O3 loading value was determined to be 8.9 wt% and its corresponding MB photodegradation rate was about 93% after 150 min light irradiation, which was indeed greater compared with those of the individual CNS and Sm2O3 samples. This enhanced photocatalytic performance was originated from characteristics of the hybrid formed between the Sm2O3 and CNS so that it improved the effective charge transfer through interfacial interactions between both components. In addition, the CNS synthesized by S doping exhibited a significant enhancement in the photocatalytic activity relative to that of the pure g-C3N4; this was mostly caused by the increase in its visible light harvesting ability and charge mobility. The possible mechanism for the photocatalytic degradation of MB was suggested and discussed in detail based on the findings acquired from radical/hole trapping experiments.

  18. On the correct interpretation of the low voltage regime in intrinsic single-carrier devices.

    PubMed

    Röhr, Jason A; Kirchartz, Thomas; Nelson, Jenny

    2017-05-24

    We discuss the approach of determining the charge-carrier density of a single-carrier device by combining Ohm's law and the Mott-Gurney law. We show that this approach is seldom valid, due to the fact that whenever Ohm's law is applicable the Mott-Gurney law is usually not, and vice versa. We do this using a numerical drift-diffusion solver to calculate the current density-voltage curves and the charge-carrier density, with increasing doping concentration. As this doping concentration is increased to very large values, using Ohm's law becomes a sensible way of measuring the product of mobility and doping density in the sample. However, in the high-doping limit, the current is no longer governed by space-charge and it will no longer be possible to determine the charge-carrier mobility using the Mott-Gurney law. This leaves the value for the mobility as an unknown in the mobility-doping density product in Ohm's law. We also show that, when the charge-carrier mobility for an intrinsic semiconductor is known in advance, the carrier density is underestimated up to many orders of magnitude if Ohm's law is used. We finally seek to establish a window of conditions where the two methods can be combined to yield reasonable results.

  19. Low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene

    NASA Astrophysics Data System (ADS)

    Hu, Bo

    2015-08-01

    Based on semiclassical Boltzamnn transport theory in random phase approximation, we develop a theoretical model to investigate low-temperature carrier transport properties in relatively high doped bilayer graphene. In the presence of both electron-hole puddles and band gap induced by charged impurities, we calculate low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene. Our calculated conductivity results are in excellent agreement with published experimental data in all compensated gate voltage regime of study by using potential fluctuation parameter as only one free fitting parameter, indicating that both electron-hole puddles and band gap induced by charged impurities play an important role in carrier transport. More importantly, we also find that the conductivity not only depends strongly on the total charged impurity density, but also on the top layer charged impurity density, which is different from that obtained by neglecting the opening of band gap, especially for bilayer graphene with high top layer charged impurity density.

  20. Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells

    PubMed Central

    Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping

    2018-01-01

    We provided a new method to improve the efficiency of Sb2S3 thin film solar cells. The TiO2 electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb2S3 solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO2 films. Compared with the undoped TiO2, Li-doped mesoporous TiO2 dramatically improved the photo-voltaic performance of the thermal-evaporated Sb2S3 thin film solar cells, with the average power conversion efficiency (PCE) increasing from 1.79% to 4.03%, as well as the improved open-voltage (Voc), short-circuit current (Jsc) and fill factors. The best device based on Li-doped TiO2 achieved a power conversion efficiency up to 4.42% as well as a Voc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb2S3 solar cells. This study showed that Li-doping on TiO2 can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb2S3-based solar cells. PMID:29495612

  1. Electronic properties of B and Al doped graphane: A hybrid density functional study

    NASA Astrophysics Data System (ADS)

    Mapasha, R. E.; Igumbor, E.; Andriambelaza, N. F.; Chetty, N.

    2018-04-01

    Using a hybrid density functional theory approach parametrized by Heyd, Scuseria and Ernzerhof (HSE06 hybrid functional), we study the energetics, structural and electronic properties of a graphane monolayer substitutionally doped with the B (BCH) and Al (AlCH) atoms. The BCH defect can be integrated within a graphane monolayer at a relative low formation energy, without major structural distortions and symmetry breaking. The AlCH defect relaxes outward of the monolayer and breaks the symmetry. The density of states plots indicate that BCH doped graphane monolayer is a wide band gap semiconductor, whereas the AlCH defect introduces the spin dependent mid gap states at the vicinity of the Fermi level, revealing a metallic character with the pronounced magnetic features. We further examine the response of the Al dependent spin states on the multiple charge states doping. We find that the defect formation energy, structural and electronic properties can be altered via charge state modulation. The +1 charge doping opens an energy band gap of 1.75 eV. This value corresponds to the wavelength in the visible spectrum, suggesting an ideal material for solar cell absorbers. Our study fine tunes the graphane band gap through the foreign atom doping as well as via defect charge state modulation.

  2. Chemical sensors based on surface charge transfer

    NASA Astrophysics Data System (ADS)

    Mohtasebi, Amirmasoud; Kruse, Peter

    2018-02-01

    The focus of this review is an introduction to chemiresistive chemical sensors. The general concept of chemical sensors is briefly introduced, followed by different architectures of chemiresistive sensors and relevant materials. For several of the most common systems, the fabrication of the active materials used in such sensors and their properties are discussed. Furthermore, the sensing mechanism, advantages, and limitations of each group of chemiresistive sensors are briefly elaborated. Compared to electrochemical sensors, chemiresistive sensors have the key advantage of a simpler geometry, eliminating the need for a reference electrode. The performance of bulk chemiresistors can be improved upon by using freestanding ultra-thin films (nanomaterials) or field effect geometries. Both of those concepts have also been combined in a gateless geometry, where charge transport though a percolation network of nanomaterials is modulated via adsorbate doping.

  3. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaoyang; Frisbie, Daniel

    2017-03-31

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.

  4. A Facile Synthesis of a Palladium-Doped Polyaniline-Modified Carbon Nanotube Composites for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Giri, Soumen; Ghosh, Debasis; Malas, Asish; Das, Chapal Kumar

    2013-08-01

    Supercapacitors have evolved as the premier choice of the era for storing huge amounts of charge in the field of energy storage devices, but it is still necessary to enhance their performance to meet the increasing requirements of future systems. This could be achieved either through advancing the interfaces of the material at the nanoscale or by using novel material compositions. We report a high-performance material composition prepared by combining a transition metal (palladium)-doped conductive polymer with multiwalled carbon nanotubes (MWCNTs). MWCNTs/palladium-doped polyaniline (MWCNTs/Pd/PANI) composites and multiwalled carbon nanotube/polyaniline (MWCNTs/PANI) composites (for comparison) were prepared via in situ oxidative polymerization of aniline monomer. The reported composites were characterized by Fourier-transform infrared (FTIR), x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) studies. FESEM and TEM studies indicated the narrow size distribution of the π-conjugated polymer-protected palladium nanoparticles on the surface of the carbon nanotubes. All the electrochemical characterizations were executed using a three-electrode system in 1 M H2SO4 electrolyte. Cyclic voltammetry (CV) analysis was performed to observe the capacitive performance and redox behavior of the composites. The ion transfer behavior and cyclic stability of the composites were investigated by electrochemical impedance spectroscopy (EIS) analysis and cyclic charge-discharge (CCD) testing, respectively. The MWCNTs/Pd/PANI composite was found to exhibit an especially high specific capacitance value of 920 F/g at scan rate of 2 mV/s.

  5. EMR studies of the internal motion of Mn4+ ions in the Sr overdoped (La1-xSrx)(Ga1-yMny)O3 (x/y up to 8) supplemented by magnetic and optical spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Aleshkevych, Pavlo; Fink-Finowicki, Jan; Zayarnyuk, Tatiana; Radelytskyi, Igor; Berkowski, Marek; Rudowicz, Czeslaw; Gnutek, Pawel

    2015-06-01

    The effect of the Sr doping on electronic structure in single crystals of (La1-xSrx)(Ga1-yMny)O3 solid solutions (LSGM) is investigated by means of electron magnetic resonance (EMR). The EMR results are supplemented by magnetic susceptibility and optical spectroscopy measurements. The compositions with small concentration of Mn doping (y < 1%) and overdoped content of Sr (the ratio x(Sr)/y(Mn) up to 8) are used to maximally enhance the role of divalent doping. The experimental results provide evidence of the holes delocalization in the overdoped compound (x(Sr)/y(Mn) > 1). This delocalization is accompanied by appearance of the new charge transfer transitions in the optical spectrum and dynamical valence change of manganese atoms. Additionally we observe the thermally activated narrowing of resonance EMR lines due to the internal motion, which is characterized by the energy barrier depending strongly on the ratio x(Sr)/y(Mn). The energy barrier is found to be associated with the charge carrier (hole) self-trapped energy. Fitting the EMR spectra in three orthogonal planes to an orthorhombic spin Hamiltonian enables extracting the zero-field splitting (ZFS) parameters and the Zeeman g-factors for Mn4+ (S = 3/2) ions in LSGM. The experimental ZFS parameters are modeled using superposition model analysis based on an orthorhombic symmetry approximation.

  6. Interface Superconductivity in Cuprates Defies Fermi-Liquid Description

    DOE PAGES

    Radović, Zoran; Vanević, Mihajlo; Wu, Jie; ...

    2016-07-26

    La 2-xSr xCuO 4/La 2CuO 4 bilayers show interface superconductivity that originates from accumulation and depletion of mobile charge carriers across the interface. Surprisingly, the doping level can be varied broadly (within the interval 0.15 < x < 0.47) without affecting the transition temperature, which stays essentially constant and equal to that in optimally doped material, T c ≈ 40 K. Here we argue that this finding implies that doping up to the optimum level does not shift the chemical potential, unlike in ordinary Fermi liquids. Lastly, we discuss possible physical scenarios that can give doping-independent chemical potential in themore » pseudogap regime: electronic phase separation, formation of charge-density waves, strong Coulomb interactions, or self-trapping of mobile charge carriers.« less

  7. Synthesis and photoluminescence in Yb doped cerium phosphate CePO4

    NASA Astrophysics Data System (ADS)

    Bhonsule, S. U.; Wankhede, S. P.; Moharil, S. V.

    2018-05-01

    This paper presents the preparation of CePO4 and Yb doped CePO4 using simple solid state reaction method. PL measurements indicated significant energy transfer from Ce3+ to Yb3+ ions. Further evidence of energy transfer was provided by analysis of Luminescence Decay measurements. Energy transfer efficiency of 50% was obtained for 5%Yb doping. Energy transfer from Ce3+ to Yb3+ ions takes place by Cooperative energy transfer mechanism. Such phosphors can be used in white LED's, Lasers and energy saving fluorescent lamps.

  8. All-polymer solar cells with bulk heterojunction nanolayers of chemically doped electron-donating and electron-accepting polymers.

    PubMed

    Nam, Sungho; Shin, Minjung; Park, Soohyeong; Lee, Sooyong; Kim, Hwajeong; Kim, Youngkyoo

    2012-11-21

    We report the improved performance of all-polymer solar cells with bulk heterojunction nanolayers of an electron-donating polymer (poly(3-hexylthiophene) (P3HT)) and an electron-accepting polymer (poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT)), which were both doped with 4-ethylbenzenesulfonic acid (EBSA). To choose the doping ratio of P3HT for all-polymer solar cells, various EBSA doping ratios (0, 1, 3, 5, 10, 20 wt%) were tested by employing optical absorption spectroscopy, photoluminescence spectroscopy, photoelectron yield spectroscopy, and space-charge-limited current (SCLC) mobility measurement. The doping reaction of P3HT with EBSA was followed by observing the colour change in solutions. The final doping ratio for P3HT was chosen as 1 wt% from the best hole mobility measured in the thickness direction, while that for F8BT was fixed as 10 wt% (F8BT-EBSA). The polymer:polymer solar cells with bulk heterojunction nanolayers of P3HT-EBSA (EBSA-doped P3HT) and F8BT-EBSA (EBSA-doped F8BT) showed greatly improved short circuit current density (J(SC)) and open circuit voltage (V(OC)), compared to the undoped solar cells. As a result, the power conversion efficiency (PCE) was enhanced by ca. 300% for the 6 : 4 (P3HT-EBSA : F8BT-EBSA) composition and ca. 400% for the 8 : 2 composition. The synchrotron-radiation grazing incidence angle X-ray diffraction (GIXD) measurement revealed that the crystallinity of the doped nanolayers significantly increased by EBSA doping owing to the formation of advanced phase segregation morphology, as supported by the surface morphology change measured by atomic force microscopy. Thus the improved PCE can be attributed to the enhanced charge transport by the formation of permanent charges and better charge percolation paths by EBSA doping.

  9. Boosting Power Density of Microbial Fuel Cells with 3D Nitrogen‐Doped Graphene Aerogel Electrode

    PubMed Central

    Yang, Yang; Liu, Tianyu; Zhang, Feng; Ye, Dingding; Liao, Qiang

    2016-01-01

    A 3D nitrogen‐doped graphene aerogel (N‐GA) as an anode material for microbial fuel cells (MFCs) is reported. Electron microscopy images reveal that the N‐GA possesses hierarchical porous structure that allows efficient diffusion of both bacterial cells and electron mediators in the interior space of 3D electrode, and thus, the colonization of bacterial communities. Electrochemical impedance spectroscopic measurements further show that nitrogen doping considerably reduces the charge transfer resistance and internal resistance of GA, which helps to enhance the MFC power density. Importantly, the dual‐chamber milliliter‐scale MFC with N‐GA anode yields an outstanding volumetric power density of 225 ± 12 W m−3 normalized to the total volume of the anodic chamber (750 ± 40 W m−3 normalized to the volume of the anode). These power densities are the highest values report for milliliter‐scale MFCs with similar chamber size (25 mL) under the similar measurement conditions. The 3D N‐GA electrode shows great promise for improving the power generation of MFC devices. PMID:27818911

  10. A high-performance supercapacitor electrode based on N-doped porous graphene

    NASA Astrophysics Data System (ADS)

    Dai, Shuge; Liu, Zhen; Zhao, Bote; Zeng, Jianhuang; Hu, Hao; Zhang, Qiaobao; Chen, Dongchang; Qu, Chong; Dang, Dai; Liu, Meilin

    2018-05-01

    The development of high-performance supercapacitors (SCs) often faces some contradictory and competing requirements such as excellent rate capability, long cycling life, and high energy density. One effective strategy is to explore electrode materials of high capacitance, electrode architectures of fast charge and mass transfer, and electrolytes of wide voltage window. Here we report a facile and readily scalable strategy to produce high-performance N-doped graphene with a high specific capacitance (∼390 F g-1). A symmetric SC device with a wide voltage window of 3.5 V is also successfully fabricated based on the N-doped graphene electrode. More importantly, the as-assembled symmetric SC delivers a high energy density of 55 Wh kg-1 at a power density of 1800 W kg-1 while maintaining superior cycling life (retaining 96.6% of the initial capacitance after 20,000 cycles). Even at a power density as high as 8800 W kg-1, it still retains an energy density of 29 Wh kg-1, higher than those of previously reported graphene-based symmetric SCs.

  11. Liquid Phase Plasma Synthesis of Iron Oxide Nanoparticles on Nitrogen-Doped Activated Carbon Resulting in Nanocomposite for Supercapacitor Applications.

    PubMed

    Lee, Heon; Lee, Won-June; Park, Young-Kwon; Ki, Seo Jin; Kim, Byung-Joo; Jung, Sang-Chul

    2018-03-25

    Iron oxide nanoparticles supported on nitrogen-doped activated carbon powder were synthesized using an innovative plasma-in-liquid method, called the liquid phase plasma (LPP) method. Nitrogen-doped carbon (NC) was prepared by a primary LPP reaction using an ammonium chloride reactant solution, and an iron oxide/NC composite (IONCC) was prepared by a secondary LPP reaction using an iron chloride reactant solution. The nitrogen component at 3.77 at. % formed uniformly over the activated carbon (AC) surface after a 1 h LPP reaction. Iron oxide nanoparticles, 40~100 nm in size, were impregnated homogeneously over the NC surface after the LPP reaction, and were identified as Fe₃O₄ by X-ray photoelectron spectroscopy and X-ray diffraction. NC and IONCCs exhibited pseudo-capacitive characteristics, and their specific capacitance and cycling stability were superior to those of bare AC. The nitrogen content on the NC surface increased the compatibility and charge transfer rate, and the composites containing iron oxide exhibited a lower equivalent series resistance.

  12. Controlling the dual mechanisms of oxide interface doping

    NASA Astrophysics Data System (ADS)

    Dai, Weitao; Cen, Cheng

    The formation of two dimensional electron gas (2DEG) at LaAlO3/SrTiO3 interfaces involves multiple electronic and structural causes. The interplay between them makes the investigation of individual mechanism very challenging. Here we demonstrate the nanoscale selective control of two interface doping pathways: charge transfers from surface adsorbed protons and oxygen vacancies created in LaAlO3 layers. The selective control is achieved by combining intensive electric field generated by conducting AFM probe which controls both the creation/migration of oxygen vacancies and the surface proton density, with plasma assisted surface hydroxylation and solvent based proton solvation that act mainly on surface adsorbates. Robust nanoscale reversible metal-insulator transition was achieved at the interfaces with the LaAlO3 layer thicker than the critic thickness. Different combinations of the experimental methods and doping mechanisms enable highly flexible tuning of the 2DEG's carrier density, mobility and sensitivity to ambient environments. The reversible and independent controls of surface states and vacancies add to the fundamental material research capabilities and can benefit future exploration of designed 2DEG nanoelectronics.

  13. Cell attachment functionality of bioactive conducting polymers for neural interfaces.

    PubMed

    Green, Rylie A; Lovell, Nigel H; Poole-Warren, Laura A

    2009-08-01

    Bioactive coatings for neural electrodes that are tailored for cell interactions have the potential to produce superior implants with improved charge transfer capabilities. In this study synthetically produced anionically modified laminin peptides DEDEDYFQRYLI and DCDPGYIGSR were used to dope poly(3,4-ethylenedioxythiophene) (PEDOT) electrodeposited on platinum (Pt) electrodes. Performance of peptide doped films was compared to conventional polymer PEDOT/paratoluene sulfonate (pTS) films using SEM, XPS, cyclic voltammetry, impedance spectroscopy, mechanical hardness and adherence. Bioactivity of incorporated peptides and their affect on cell growth was assessed using a PC12 neurite outgrowth assay. It was demonstrated that large peptide dopants produced softer PEDOT films with a minimal decrease in electrochemical stability, compared to the conventional dopant, pTS. Cell studies revealed that the YFQRYLI ligand retained neurite outgrowth bioactivity when DEDEDYFQRYLI was used as a dopant, but the effect was strongly dependant on initial cell attachment. Alternate peptide dopant, DCDPGYIGSR was found to impart superior cell attachment properties when compared to DEDEDYFQRYLI, but attachment on both peptide doped polymers could be enhanced by coating with whole native laminin.

  14. Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces by charge-transfer-induced modulation doping

    NASA Astrophysics Data System (ADS)

    Chen, Y. Z.; Trier, F.; Wijnands, T.; Green, R. J.; Gauquelin, N.; Egoavil, R.; Christensen, D. V.; Koster, G.; Huijben, M.; Bovet, N.; Macke, S.; He, F.; Sutarto, R.; Andersen, N. H.; Sulpizio, J. A.; Honig, M.; Prawiroatmodjo, G. E. D. K.; Jespersen, T. S.; Linderoth, S.; Ilani, S.; Verbeeck, J.; van Tendeloo, G.; Rijnders, G.; Sawatzky, G. A.; Pryds, N.

    2015-08-01

    Two-dimensional electron gases (2DEGs) formed at the interface of insulating complex oxides promise the development of all-oxide electronic devices. These 2DEGs involve many-body interactions that give rise to a variety of physical phenomena such as superconductivity, magnetism, tunable metal-insulator transitions and phase separation. Increasing the mobility of the 2DEG, however, remains a major challenge. Here, we show that the electron mobility is enhanced by more than two orders of magnitude by inserting a single-unit-cell insulating layer of polar La1-xSrxMnO3 (x = 0, 1/8, and 1/3) at the interface between disordered LaAlO3 and crystalline SrTiO3 produced at room temperature. Resonant X-ray spectroscopy and transmission electron microscopy show that the manganite layer undergoes unambiguous electronic reconstruction, leading to modulation doping of such atomically engineered complex oxide heterointerfaces. At low temperatures, the modulation-doped 2DEG exhibits Shubnikov-de Haas oscillations and fingerprints of the quantum Hall effect, demonstrating unprecedented high mobility and low electron density.

  15. Chemical Doping Effects in Multilayer MoS2 and its Application in Complementary Inverter.

    PubMed

    Yoo, Hocheon; Hong, Seongin; On, Sungmin; Ahn, Hyungju; Lee, Han-Koo; Hong, Young Ki; Kim, Sunkook; Kim, Jae-Joon

    2018-06-19

    Multilayer MoS2 has been gaining interests as a new semiconducting material for flexible displays, memory devices, chemical/bio sensors, and photodetectors. However, conventional multilayer MoS2 devices have exhibited limited performances due to the Schottky barrier (SB) and defects. Here, we demonstrate PDPP3T doping effects in multilayer MoS2, which results in improved electrical characteristics (~3.2X mobility compared to the baseline and a high current on/off ratio of 106). Synchrotron-based study using X-ray photoelectron spectroscopy (XPS) and grazing-incidence wide-angle X-ray diffraction (GIWAXD) provides mechanisms that align the edge-on crystallites (97.5 %) of the PDPP3T as well as a larger interaction with MoS2 that leads to dipole and charge transfer effects (at annealing temperature of 300 °C), which support the observed enhancement of the electrical characteristics. Furthermore, we demonstrate a hybrid CMOS inverter using the PDPP3T-doped MoS2 and organic DNTT transistors as n- and p-channels, respectively. The proposed hybrid inverter offers an ultra-high voltage gain of ~205 V/V.

  16. Vibration responses of h-BN sheet to charge doping and external strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wei; Yang, Yu; Zheng, Fawei

    2013-12-07

    Based on density functional theory and density functional perturbation theory calculations, we systematically investigate the vibration responses of h-BN sheet to charge doping and external strains. It is found that under hole doping, the phonon frequencies of the ZO and TO branches at different wave vector q shift linearly with different slopes. Under electron doping, although the phonon frequencies shift irregularly, the shifting values are different at different phonon wave vectors. Interestingly, we find that external strain can restrain the irregular vibration responses of h-BN sheet to electron doping. The critical factor is revealed to be the relative position ofmore » the nearly free electron and boron p{sub z} states of h-BN sheet. Under external strains, the vibration responses of h-BN sheet are also found to be highly dependent on the phonon branches. Different vibration modes at different q points are revealed to be responsible for the vibration responses of h-BN sheet to charge doping and external strain. Our results point out a new way to detect the doping or strain status of h-BN sheet by measuring the vibration frequencies at different wave vector.« less

  17. Site preference for luminescent activator ions in doped fluoroperovskite RbZnF3.

    PubMed

    Saroj, Sanjay Kumar; Nagarajan, Rajamani

    2018-08-05

    With the dual objective of investigating the site preferences of larger sized activator ions and to append luminescence property to the perovskite structured RbZnF 3 , doping of manganese(II), cerium(III), europium(III) and terbium(III) ions (5 mol%) was carried out. Although cubic symmetry of RbZnF 3 was preserved for all the doped samples, site preference of rare-earth ions for the A-site Rb + leading to an inverse perovskite arrangement has been noticed from careful analysis of lattice parameters from refinement of powder X-ray diffraction data. Undoped RbZnF 3 exhibited rod-like morphology in the transmission electron microscopic image. In addition to an intense band around 230 nm assignable to the charge transfer from ZnF 3 - to Rb + , typical transitions of respective dopant ions were observed in their UV-visible spectra. The doped samples showed luminescence in blue, green and red regions and time decay experiments suggested uniform dispersion of them without any clustering effect. The lower phonon energy of RbZnF 3 matrix by virtue of the presence of heavier rubidium at the A-site together with its doping with rare-earth ions resulting in an inverse perovskite like arrangement could favour their utility in various practical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Sol-flame synthesis of cobalt-doped TiO2 nanowires with enhanced electrocatalytic activity for oxygen evolution reaction.

    PubMed

    Cai, Lili; Cho, In Sun; Logar, Manca; Mehta, Apurva; He, Jiajun; Lee, Chi Hwan; Rao, Pratap M; Feng, Yunzhe; Wilcox, Jennifer; Prinz, Fritz B; Zheng, Xiaolin

    2014-06-28

    Doping nanowires (NWs) is of crucial importance for a range of applications due to the unique properties arising from both impurities' incorporation and nanoscale dimensions. However, existing doping methods face the challenge of simultaneous control over the morphology, crystallinity, dopant distribution and concentration at the nanometer scale. Here, we present a controllable and reliable method, which combines versatile solution phase chemistry and rapid flame annealing process (sol-flame), to dope TiO2 NWs with cobalt (Co). The sol-flame doping method not only preserves the morphology and crystallinity of the TiO2 NWs, but also allows fine control over the Co dopant profile by varying the concentration of Co precursor solution. Characterizations of the TiO2:Co NWs show that Co dopants exhibit 2+ oxidation state and substitutionally occupy Ti sites in the TiO2 lattice. The Co dopant concentration significantly affects the oxygen evolution reaction (OER) activity of TiO2:Co NWs, and the TiO2:Co NWs with 12 at% of Co on the surface show the highest OER activity with a 0.76 V reduction of the overpotential with respect to undoped TiO2 NWs. This enhancement of OER activity for TiO2:Co NWs is attributed to both improved surface charge transfer kinetics and increased bulk conductivity.

  19. Doping evolution of spin and charge excitations in the Hubbard model

    DOE PAGES

    Kung, Y. F.; Nowadnick, E. A.; Jia, C. J.; ...

    2015-11-05

    We shed light on how electronic correlations vary across the phase diagram of the cuprate superconductors, examining the doping evolution of spin and charge excitations in the single-band Hubbard model using determinant quantum Monte Carlo (DQMC). In the single-particle response, we observe that the effects of correlations weaken rapidly with doping, such that one may expect the random phase approximation (RPA) to provide an adequate description of the two-particle response. In contrast, when compared to RPA, we find that significant residual correlations in the two-particle excitations persist up to 40% hole and 15% electron doping (the range of dopings achievedmore » in the cuprates). Ultimately, these fundamental differences between the doping evolution of single- and multi-particle renormalizations show that conclusions drawn from single-particle processes cannot necessarily be applied to multi-particle excitations. Eventually, the system smoothly transitions via a momentum-dependent crossover into a weakly correlated metallic state where the spin and charge excitation spectra exhibit similar behavior and where RPA provides an adequate description.« less

  20. I-V curve hysteresis induced by gate-free charging of GaAs nanowires' surface oxide

    NASA Astrophysics Data System (ADS)

    Alekseev, P. A.; Geydt, P.; Dunaevskiy, M. S.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.

    2017-09-01

    The control of nanowire-based device performance requires knowledge about the transport of charge carriers and its limiting factors. We present the experimental and modeled results of a study of electrical properties of GaAs nanowires (NWs), considering their native oxide cover. Measurements of individual vertical NWs were performed by conductive atomic force microscopy (C-AFM). Experimental C-AFM observations with numerical simulations revealed the complex resistive behavior of NWs. A hysteresis of current-voltage characteristics of the p-doped NWs as-grown on substrates with different types of doping was registered. The emergence of hysteresis was explained by the trapping of majority carriers in the surface oxide layer near the reverse-biased barriers under the source-drain current. It was found that the accumulation of charge increases the current for highly doped p+-NWs on n+-substrates, while for moderately doped p-NWs on p+-substrates, charge accumulation decreases the current due to blocking of the conductive channel of NWs.

  1. Adsorption of DNA/RNA nucleobases onto single-layer MoS2 and Li-Doped MoS2: A dispersion-corrected DFT study

    NASA Astrophysics Data System (ADS)

    Sadeghi, Meisam; Jahanshahi, Mohsen; Ghorbanzadeh, Morteza; Najafpour, Ghasem

    2018-03-01

    The kind of sensing platform in nano biosensor plays an important role in nucleic acid sequence detection. It has been demonstrated that graphene does not have an intrinsic band gap; therefore, transition metal dichalcogenides (TMDs) are desirable materials for electronic base detection. In the present work, a comparative study of the adsorption of the DNA/RNA nucleobases [Adenine (A), Cytosine (C) Guanine (G), Thymine (T) and Uracil (U)] onto the single-layer molybdenum disulfide (MoS2) and Li-doped MoS2 (Li-MoS2) as a sensing surfaces was investigated by using Dispersion-corrected Density Functional Theory (D-DFT) calculations and different measure of equilibrium distances, charge transfers and binding energies for the various nucleobases were calculated. The results revealed that the interactions between the nucleobases and the MoS2 can be strongly enhanced by introducing metal atom, due to significant charge transfer from the Li atom to the MoS2 when Lithium is placed on top of the MoS2. Furthermore, the binding energies of the five nucleobases were in the range of -0.734 to -0.816 eV for MoS2 and -1.47 to -1.80 eV for the Li-MoS2. Also, nucleobases were adsorbed onto MoS2 sheets via the van der Waals (vdW) force. This high affinity and the renewable properties of the biosensing platform demonstrated that Li-MoS2 nanosheet is biocompatible and suitable for nucleic acid analysis.

  2. Photoinduced Charge Transfer from Titania to Surface Doping Site

    PubMed Central

    Inerbaev, Talgat; Hoefelmeyer, James D.; Kilin, Dmitri S.

    2013-01-01

    We evaluate a theoretical model in which Ru is substituting for Ti at the (100) surface of anatase TiO2. Charge transfer from the photo-excited TiO2 substrate to the catalytic site triggers the photo-catalytic event (such as water oxidation or reduction half-reaction). We perform ab-initio computational modeling of the charge transfer dynamics on the interface of TiO2 nanorod and catalytic site. A slab of TiO2 represents a fragment of TiO2 nanorod in the anatase phase. Titanium to ruthenium replacement is performed in a way to match the symmetry of TiO2 substrate. One molecular layer of adsorbed water is taken into consideration to mimic the experimental conditions. It is found that these adsorbed water molecules saturate dangling surface bonds and drastically affect the electronic properties of systems investigated. The modeling is performed by reduced density matrix method in the basis of Kohn-Sham orbitals. A nano-catalyst modeled through replacement defect contributes energy levels near the bottom of the conduction band of TiO2 nano-structure. An exciton in the nano-rod is dissipating due to interaction with lattice vibrations, treated through non-adiabatic coupling. The electron relaxes to conduction band edge and then to the Ru cite with faster rate than hole relaxes to the Ru cite. These results are of the importance for an optimal design of nano-materials for photo-catalytic water splitting and solar energy harvesting. PMID:23795229

  3. Photoinduced Charge Transfer from Titania to Surface Doping Site.

    PubMed

    Inerbaev, Talgat; Hoefelmeyer, James D; Kilin, Dmitri S

    2013-05-16

    We evaluate a theoretical model in which Ru is substituting for Ti at the (100) surface of anatase TiO 2 . Charge transfer from the photo-excited TiO 2 substrate to the catalytic site triggers the photo-catalytic event (such as water oxidation or reduction half-reaction). We perform ab-initio computational modeling of the charge transfer dynamics on the interface of TiO 2 nanorod and catalytic site. A slab of TiO 2 represents a fragment of TiO 2 nanorod in the anatase phase. Titanium to ruthenium replacement is performed in a way to match the symmetry of TiO 2 substrate. One molecular layer of adsorbed water is taken into consideration to mimic the experimental conditions. It is found that these adsorbed water molecules saturate dangling surface bonds and drastically affect the electronic properties of systems investigated. The modeling is performed by reduced density matrix method in the basis of Kohn-Sham orbitals. A nano-catalyst modeled through replacement defect contributes energy levels near the bottom of the conduction band of TiO 2 nano-structure. An exciton in the nano-rod is dissipating due to interaction with lattice vibrations, treated through non-adiabatic coupling. The electron relaxes to conduction band edge and then to the Ru cite with faster rate than hole relaxes to the Ru cite. These results are of the importance for an optimal design of nano-materials for photo-catalytic water splitting and solar energy harvesting.

  4. Low roll-off and high efficiency orange OLEDs using green and red dopants in an exciplex forming co-host

    NASA Astrophysics Data System (ADS)

    Lee, Sunghun; Kim, Kwon-Hyeon; Yoo, Seung-Jun; Park, Young-Seo; Kim, Jang-Joo

    2013-09-01

    We present high efficiency orange emitting OLEDs with low driving voltage and low roll-off of efficiency using an exciplex forming co-host by (1) co-doping of green and red emitting phosphorescence dyes in the host and (2) red and green phosphorescent dyes doped in the host as separate red and green emitting layers. The orange OLEDs achieved a low turn-on voltage of 2.4 V and high external quantum efficiencies (EQE) of 25.0% and 22.8%, respectively. Moreover, the OLEDs showed low roll-off of efficiency with an EQE of over 21% and 19.6% at 10,000 cd/m2, respectively. The devices displayed good orange color with very little color shift with increasing luminance. The transient electroluminescence of the OLEDs indicated that both energy transfer and direct charge trapping took place in the devices.

  5. Emerging superconductivity hidden beneath charge-transfer insulators

    PubMed Central

    Krockenberger, Yoshiharu; Irie, Hiroshi; Matsumoto, Osamu; Yamagami, Keitaro; Mitsuhashi, Masaya; Tsukada, Akio; Naito, Michio; Yamamoto, Hideki

    2013-01-01

    In many of today's most interesting materials, strong interactions prevail upon the magnetic moments, the electrons, and the crystal lattice, forming strong links between these different aspects of the system. Particularly, in two-dimensional cuprates, where copper is either five- or six-fold coordinated, superconductivity is commonly induced by chemical doping which is deemed to be mandatory by destruction of long-range antiferromagnetic order of 3d9 Cu2+ moments. Here we show that superconductivity can be induced in Pr2CuO4, where copper is four-fold coordinated. We induced this novel quantum state of Pr2CuO4 by realizing pristine square-planar coordinated copper in the copper-oxygen planes, thus, resulting in critical superconducting temperatures even higher than by chemical doping. Our results demonstrate new degrees of freedom, i.e., coordination of copper, for the manipulation of magnetic and superconducting order parameters in quantum materials. PMID:23887134

  6. Emission-photoactivity cross-processing of mesoporous interfacial charge transfer in Eu3+ doped titania.

    PubMed

    Leroy, Céline Marie; Wang, Hong Feng; Fargues, Alexandre; Cardinal, Thierry; Jubera, Véronique; Treguer-Delapierre, Mona; Boissière, Cédric; Grosso, David; Sanchez, Clément; Viana, Bruno; Pellé, Fabienne

    2011-07-07

    Periodic mesoporous Eu(3+) doped titania materials were obtained through the EISA (Evaporation Induced Self Assembly) process. Eu(3+) ions, entrapped within the semi-crystalline walls of the highly porous framework, appear to be advantageous during the probing of surface photochemical reactions. Its emission intensity is very sensitive to the presence of physisorbed molecules, in gas or liquid phase, that reside within the pores. In particular, strong fluctuations in intensity of the (5)D(0)→(7)F(2) transition were observed under UV light exposure on the time scale of tens of seconds. The emission modulation dynamics show a strong correlation with the crystallinity of the titania matrix. Correlation of the emission with the photocatalytic activity of the semiconductor for photodegradation of an organic molecule is observed. A model is proposed to describe the involved mechanisms. This journal is © the Owner Societies 2011

  7. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Photosensitivity of nanoporous glasses and polymers doped with Eu(fod)3 molecules

    NASA Astrophysics Data System (ADS)

    Gerasimova, V. I.; Zavorotnyi, Yu S.; Rybaltovskii, A. O.; Lemenovskii, Dmitrii A.; Timofeeva, V. A.

    2006-08-01

    The decay kinetics of photoluminescence (PL) of Eu3+ ions (the 5D0→7Fj transition) excited by UV radiation (in particular, by a laser) is studied in a Vycor nanoporous glass and transparent polymers doped with Eu(fod)3 molecules (where fod stands for 6,6,7,7,8,8,8-heptofluor-2,2-dimethyl-3,5-octadionate) using a solution of supercritical CO2. It is found that the decrease in the PL intensity is caused by the photoinduced transformation of the ligand component of the complex (fod), while the decay rate depends significantly on the type of the matrix. Models of mechanisms of photodissociation of the original complex related to excitation to the singlet absorption band of the ligand (S0→S1 transition) in one case and to the ligand—metal charge transfer band in the other case are proposed.

  8. Carbon monoxide sensing properties of B-, Al- and Ga-doped Si nanowires

    NASA Astrophysics Data System (ADS)

    de Santiago, F.; Trejo, A.; Miranda, A.; Salazar, F.; Carvajal, E.; Pérez, L. A.; Cruz-Irisson, M.

    2018-05-01

    Silicon nanowires (SiNWs) are considered as potential chemical sensors due to their large surface-to-volume ratio and their possible integration into arrays for nanotechnological applications. Detection of harmful gases like CO has been experimentally demonstrated, however, the influence of doping on the sensing capacity of SiNWs has not yet been reported. For this work, we theoretically studied the surface adsorption of a CO molecule on hydrogen-passivated SiNWs grown along the [111] crystallographic direction and compared it with the adsorption of other molecules such as NO, and O2. Three nanowire diameters and three dopant elements (B, Al and Ga) were considered, and calculations were done within the density functional theory framework. The results indicate that CO molecules are more strongly adsorbed on the doped SiNW than on the pristine SiNW. The following trend was observed for the CO adsorption energies: E A[B-doped] > E A[Al-doped] > E A[Ga-doped] > E A[undoped], for all diameters. The electronic charge transfers between the SiNWs and the adsorbed CO were estimated by using a Voronoi population analysis. The CO adsorbed onto the undoped SiNWs has an electron-acceptor character, while the CO adsorbed onto the B-, Al-, and Ga-doped SiNWs exhibits an electron-donor character. Comparing these results with the ones obtained for the NO and O2 adsorption, the larger CO adsorption energy on B-doped SiNWs indicates their good selectivity towards CO. These results suggest that SiNW-based sensors of toxic gases could represent a clear and advantageous application of nanotechnology in the improvement of human quality of life.

  9. Carbon monoxide sensing properties of B-, Al- and Ga-doped Si nanowires.

    PubMed

    de Santiago, F; Trejo, A; Miranda, A; Salazar, F; Carvajal, E; Pérez, L A; Cruz-Irisson, M

    2018-05-18

    Silicon nanowires (SiNWs) are considered as potential chemical sensors due to their large surface-to-volume ratio and their possible integration into arrays for nanotechnological applications. Detection of harmful gases like CO has been experimentally demonstrated, however, the influence of doping on the sensing capacity of SiNWs has not yet been reported. For this work, we theoretically studied the surface adsorption of a CO molecule on hydrogen-passivated SiNWs grown along the [111] crystallographic direction and compared it with the adsorption of other molecules such as NO, and O 2 . Three nanowire diameters and three dopant elements (B, Al and Ga) were considered, and calculations were done within the density functional theory framework. The results indicate that CO molecules are more strongly adsorbed on the doped SiNW than on the pristine SiNW. The following trend was observed for the CO adsorption energies: E A [B-doped] > E A [Al-doped] > E A [Ga-doped] > E A [undoped], for all diameters. The electronic charge transfers between the SiNWs and the adsorbed CO were estimated by using a Voronoi population analysis. The CO adsorbed onto the undoped SiNWs has an electron-acceptor character, while the CO adsorbed onto the B-, Al-, and Ga-doped SiNWs exhibits an electron-donor character. Comparing these results with the ones obtained for the NO and O 2 adsorption, the larger CO adsorption energy on B-doped SiNWs indicates their good selectivity towards CO. These results suggest that SiNW-based sensors of toxic gases could represent a clear and advantageous application of nanotechnology in the improvement of human quality of life.

  10. The influence of different alkaline earth oxides on the structural and optical properties of undoped, Ce-doped, Sm-doped, and Sm/Ce co-doped lithium alumino-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Othman, H. A.; Arzumanyan, G. M.; Möncke, D.

    2016-12-01

    Undoped, singly Sm doped, Ce doped, and Sm/Ce co-doped lithium alumino-phosphate glasses with different alkaline earth modifiers were prepared by melt quenching. The structure of the prepared glasses was investigated by FT-IR and Raman, as well as by optical spectroscopy. The effect of the optical basicity of the host glass matrix on the added active dopants was studied, as was the effect doping had on the phosphate structural units. The optical edge shifts toward higher wavelengths with an increase in the optical basicity due to the increased polarizability of the glass matrix, but also with increasing CeO2 concentration as a result of Ce3+/Ce4+ inter valence charge transfer (IV-CT) absorption. The optical band gap for direct and indirect allowed transitions was calculated for the undoped glasses. The glass sample containing Mg2+ modifier ions is found to have the highest value (4.16 eV) for the optical band gap while Ba2+ has the lowest value (3.61 eV). The change in the optical band gap arises from the structural changes and the overall polarizability (optical basicity). Refractive index, molar refractivity Rm and molar polarizability αm values increase with increasing optical basicity of the glasses. The characteristic absorption peaks of Sm3+ were also investigated. For Sm/Ce co-doped glasses, especially at high concentration of CeO2, the absorption of Ce3+ hinders the high energy absorption of Sm3+ and this effect becomes more obvious with increasing optical basicity.

  11. Metal-functionalized silicene for efficient hydrogen storage.

    PubMed

    Hussain, Tanveer; Chakraborty, Sudip; Ahuja, Rajeev

    2013-10-21

    First-principles calculations based on density functional theory are used to investigate the electronic structure along with the stability, bonding mechanism, band gap, and charge transfer of metal-functionalized silicene to envisage its hydrogen-storage capacity. Various metal atoms including Li, Na, K, Be, Mg, and Ca are doped into the most stable configuration of silicene. The corresponding binding energies and charge-transfer mechanisms are discussed from the perspective of hydrogen-storage compatibility. The Li and Na metal dopants are found to be ideally suitable, not only for strong metal-to-substrate binding and uniform distribution over the substrate, but also for the high-capacity storage of hydrogen. The stabilities of both Li- and Na-functionalized silicene are also confirmed through molecular dynamics simulations. It is found that both of the alkali metals, Li(+) and Na(+), can adsorb five hydrogen molecules, attaining reasonably high storage capacities of 7.75 and 6.9 wt %, respectively, with average adsorption energies within the range suitable for practical hydrogen-storage applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Multifunctional Organic-Semiconductor Interfacial Layers for Solution-Processed Oxide-Semiconductor Thin-Film Transistor.

    PubMed

    Kwon, Guhyun; Kim, Keetae; Choi, Byung Doo; Roh, Jeongkyun; Lee, Changhee; Noh, Yong-Young; Seo, SungYong; Kim, Myung-Gil; Kim, Choongik

    2017-06-01

    The stabilization and control of the electrical properties in solution-processed amorphous-oxide semiconductors (AOSs) is crucial for the realization of cost-effective, high-performance, large-area electronics. In particular, impurity diffusion, electrical instability, and the lack of a general substitutional doping strategy for the active layer hinder the industrial implementation of copper electrodes and the fine tuning of the electrical parameters of AOS-based thin-film transistors (TFTs). In this study, the authors employ a multifunctional organic-semiconductor (OSC) interlayer as a solution-processed thin-film passivation layer and a charge-transfer dopant. As an electrically active impurity blocking layer, the OSC interlayer enhances the electrical stability of AOS TFTs by suppressing the adsorption of environmental gas species and copper-ion diffusion. Moreover, charge transfer between the organic interlayer and the AOS allows the fine tuning of the electrical properties and the passivation of the electrical defects in the AOS TFTs. The development of a multifunctional solution-processed organic interlayer enables the production of low-cost, high-performance oxide semiconductor-based circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Optically active charge transfer in hybrids of Alq3 nanoparticles and MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Ghimire, Ganesh; Dhakal, Krishna P.; Neupane, Guru P.; Jo, Seong Gi; Kim, Hyun; Seo, Changwon; Lee, Young Hee; Joo, Jinsoo; Kim, Jeongyong

    2017-05-01

    Organic/inorganic hybrid structures have been widely studied because of their enhanced physical and chemical properties. Monolayers of transition metal dichalcogenides (1L-TMDs) and organic nanoparticles can provide a hybridization configuration between zero- and two-dimensional systems with the advantages of convenient preparation and strong interface interaction. Here, we present such a hybrid system made by dispersing π-conjugated organic (tris (8-hydroxyquinoline) aluminum(III)) (Alq3) nanoparticles (NPs) on 1L-MoS2. Hybrids of Alq3 NP/1L-MoS2 exhibited a two-fold increase in the photoluminescence of Alq3 NPs on 1L-MoS2 and the n-doping effect of 1L-MoS2, and these spectral and electronic modifications were attributed to the charge transfer between Alq3 NPs and 1L-MoS2. Our results suggested that a hybrid of organic NPs/1L-TMD can offer a convenient platform to study the interface interactions between organic and inorganic nano objects and to engineer optoelectronic devices with enhanced performance.

  14. Optically active charge transfer in hybrids of Alq3 nanoparticles and MoS2 monolayer.

    PubMed

    Ghimire, Ganesh; Dhakal, Krishna P; Neupane, Guru P; Gi Jo, Seong; Kim, Hyun; Seo, Changwon; Hee Lee, Young; Joo, Jinsoo; Kim, Jeongyong

    2017-05-05

    Organic/inorganic hybrid structures have been widely studied because of their enhanced physical and chemical properties. Monolayers of transition metal dichalcogenides (1L-TMDs) and organic nanoparticles can provide a hybridization configuration between zero- and two-dimensional systems with the advantages of convenient preparation and strong interface interaction. Here, we present such a hybrid system made by dispersing π-conjugated organic (tris (8-hydroxyquinoline) aluminum(III)) (Alq 3 ) nanoparticles (NPs) on 1L-MoS 2 . Hybrids of Alq 3 NP/1L-MoS 2 exhibited a two-fold increase in the photoluminescence of Alq 3 NPs on 1L-MoS 2 and the n-doping effect of 1L-MoS 2 , and these spectral and electronic modifications were attributed to the charge transfer between Alq 3 NPs and 1L-MoS 2 . Our results suggested that a hybrid of organic NPs/1L-TMD can offer a convenient platform to study the interface interactions between organic and inorganic nano objects and to engineer optoelectronic devices with enhanced performance.

  15. Interface designed MoS2/GaAs heterostructure solar cell with sandwich stacked hexagonal boron nitride

    PubMed Central

    Lin, Shisheng; Li, Xiaoqiang; Wang, Peng; Xu, Zhijuan; Zhang, Shengjiao; Zhong, Huikai; Wu, Zhiqian; Xu, Wenli; Chen, Hongsheng

    2015-01-01

    MoS2 is a layered two-dimensional semiconductor with a direct band gap of 1.8 eV. The MoS2/bulk semiconductor system offers a new platform for solar cell device design. Different from the conventional bulk p-n junctions, in the MoS2/bulk semiconductor heterostructure, static charge transfer shifts the Fermi level of MoS2 toward that of bulk semiconductor, lowering the barrier height of the formed junction. Herein, we introduce hexagonal boron nitride (h-BN) into MoS2/GaAs heterostructure to suppress the static charge transfer, and the obtained MoS2/h-BN/GaAs solar cell exhibits an improved power conversion efficiency of 5.42%. More importantly, the sandwiched h-BN makes the Fermi level tuning of MoS2 more effective. By employing chemical doping and electrical gating into the solar cell device, PCE of 9.03% is achieved, which is the highest among all the reported monolayer transition metal dichalcogenide based solar cells. PMID:26458358

  16. Atomic scale real-space mapping of holes in YBa2Cu3O(6+δ).

    PubMed

    Gauquelin, N; Hawthorn, D G; Sawatzky, G A; Liang, R X; Bonn, D A; Hardy, W N; Botton, G A

    2014-07-15

    The high-temperature superconductor YBa2Cu3O(6+δ) consists of two main structural units--a bilayer of CuO2 planes that are central to superconductivity and a CuO(2+δ) chain layer. Although the functional role of the planes and chains has long been established, most probes integrate over both, which makes it difficult to distinguish the contribution of each. Here we use electron energy loss spectroscopy to directly resolve the plane and chain contributions to the electronic structure in YBa2Cu3O6 and YBa2Cu3O7. We directly probe the charge transfer of holes from the chains to the planes as a function of oxygen content, and show that the change in orbital occupation of Cu is large in the chain layer but modest in CuO2 planes, with holes in the planes doped primarily into the O 2p states. These results provide direct insight into the local electronic structure and charge transfers in this important high-temperature superconductor.

  17. Tunable photoluminescence and magnetic properties of Dy(3+) and Eu(3+) doped GdVO4 multifunctional phosphors.

    PubMed

    Liu, Yanxia; Liu, Guixia; Dong, Xiangting; Wang, Jinxian; Yu, Wensheng

    2015-10-28

    A series of Dy(3+) or/and Eu(3+) doped GdVO4 phosphors were successfully prepared by a simple hydrothermal method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectrometry (EDS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). The results indicate that the as-prepared samples are pure tetragonal phase GdVO4, taking on nanoparticles with an average size of 45 nm. Under ultraviolet (UV) light excitation, the individual Dy(3+) or Eu(3+) ion activated GdVO4 phosphors exhibit excellent emission properties in their respective regions. The mechanism of energy transfer from the VO4(3-) group and the charge transfer band (CTB) to Dy(3+) and Eu(3+) ions is proposed. Color-tunable emissions in GdVO4:Dy(3+),Eu(3+) phosphors are realized through adopting different excitation wavelengths or adjusting the appropriate concentration of Dy(3+) and Eu(3+) when excited by a single excitation wavelength. In addition, the as-prepared samples show paramagnetic properties at room temperature. This kind of multifunctional color-tunable phosphor has great potential applications in the fields of photoelectronic devices and biomedical sciences.

  18. Enhancing Mo:BiVO 4 Solar Water Splitting with Patterned Au Nanospheres by Plasmon-Induced Energy Transfer [Rational Nanopositioning for BiVO 4 Solar Water Splitting by Plasmon-induced Energy Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jung Kyu; Shi, Xinjian; Jeong, Myung Jin

    Here, plasmonic metal nanostructures have been extensively investigated to improve the performance of metal oxide photoanodes for photoelectrochemical (PEC) solar water splitting cells. Most of these studies have focused on the effects of those metal nanostructures on enhancing light absorption and enabling direct energy transfer via hot electrons. However, several recent studies have shown that plasmonic metal nanostructures can improve the PEC performance of metal oxide photoanodes via another mechanism known as plasmon–induced resonant energy transfer (PIRET). However, this PIRET effect has not yet been tested for the molybdenum–doped bismuth vanadium oxide (Mo:BiVO 4), regarded as one of the bestmore » metal oxide photoanode candidates. Here, this study constructs a hybrid Au nanosphere/Mo:BiVO 4 photoanode interwoven in a hexagonal pattern to investigate the PIRET effect on the PEC performance of Mo:BiVO 4. This study finds that the Au nanosphere array not only increases light absorption of the photoanode as expected, but also improves both its charge transport and charge transfer efficiencies via PIRET, as confirmed by time–correlated single photon counting and transient absorption studies. As a result, incorporating the Au nanosphere array increases the photocurrent density of Mo:BiVO 4 at 1.23 V versus RHE by ≈2.2–fold (2.83 mA cm –2).« less

  19. Enhancing Mo:BiVO 4 Solar Water Splitting with Patterned Au Nanospheres by Plasmon-Induced Energy Transfer [Rational Nanopositioning for BiVO 4 Solar Water Splitting by Plasmon-induced Energy Transfer

    DOE PAGES

    Kim, Jung Kyu; Shi, Xinjian; Jeong, Myung Jin; ...

    2017-10-04

    Here, plasmonic metal nanostructures have been extensively investigated to improve the performance of metal oxide photoanodes for photoelectrochemical (PEC) solar water splitting cells. Most of these studies have focused on the effects of those metal nanostructures on enhancing light absorption and enabling direct energy transfer via hot electrons. However, several recent studies have shown that plasmonic metal nanostructures can improve the PEC performance of metal oxide photoanodes via another mechanism known as plasmon–induced resonant energy transfer (PIRET). However, this PIRET effect has not yet been tested for the molybdenum–doped bismuth vanadium oxide (Mo:BiVO 4), regarded as one of the bestmore » metal oxide photoanode candidates. Here, this study constructs a hybrid Au nanosphere/Mo:BiVO 4 photoanode interwoven in a hexagonal pattern to investigate the PIRET effect on the PEC performance of Mo:BiVO 4. This study finds that the Au nanosphere array not only increases light absorption of the photoanode as expected, but also improves both its charge transport and charge transfer efficiencies via PIRET, as confirmed by time–correlated single photon counting and transient absorption studies. As a result, incorporating the Au nanosphere array increases the photocurrent density of Mo:BiVO 4 at 1.23 V versus RHE by ≈2.2–fold (2.83 mA cm –2).« less

  20. Direct Detection and Imaging of Low-Energy Electrons with Delta-Doped Charge-Coupled Devices

    NASA Technical Reports Server (NTRS)

    Nikzad, S.; Yu, Q.; Smith, A. L.; Jones, T. J.; Tombrello, T. A.; Elliott, S. T.

    1998-01-01

    We report the use fo delta-doped charge-coupled devices (CCDs) for direct detection of electrons in the 50-1500 eV energy range. These are the first measurements with a solid state device to detect electrons in this energy range.

  1. Nb and Ta layer doping effects on the interfacial energetics and electronic properties of LaAlO3/SrTiO3 heterostructure: first-principles analysis.

    PubMed

    Nazir, Safdar; Behtash, Maziar; Cheng, Jianli; Luo, Jian; Yang, Kesong

    2016-01-28

    The two-dimensional electron gas (2DEG) formed at the n-type (LaO)(+1)/(TiO2)(0) interface in the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) has emerged as a prominent research area because of its great potential for nanoelectronic applications. Due to its practical implementation in devices, desired physical properties such as high charge carrier density and mobility are vital. In this respect, 4d and 5d transition metal doping near the interfacial region is expected to tailor electronic properties of the LAO/STO HS system effectively. Herein, we studied Nb and Ta-doping effects on the energetics, electronic structure, interfacial charge carrier density, magnetic moment, and the charge confinements of the 2DEG at the n-type (LaO)(+1)/(TiO2)(0) interface of LAO/STO HS using first-principles density functional theory calculations. We found that the substitutional doping of Nb(Ta) at Ti [Nb(Ta)@Ti] and Al [Nb(Ta)@Al] sites is energetically more favorable than that at La [Nb(Ta)@La] and Sr [Nb(Ta)@Sr] sites, and under appropriate thermodynamic conditions, the changes in the interfacial energy of HS systems upon Nb(Ta)@Ti and Nb(Ta)@Al doping are negative, implying that the formation of these structures is energetically favored. Our calculations also showed that Nb(Ta)@Ti and Nb(Ta)@Al doping significantly improve the interfacial charge carrier density with respect to that of the undoped system, which is because the Nb(Ta) dopant introduces excess free electrons into the system, and these free electrons reside mainly on the Nb(Ta) ions and interfacial Ti ions. Hence, along with the Ti 3d orbitals, the Nb 4d and Ta 5d orbitals also contribute to the interfacial metallic states; accordingly, the magnetic moments on the interfacial Ti ions increase significantly. As expected, the Nb@Al and Ta@Al doped LAO/STO HS systems show higher interfacial charge carrier density than the undoped and other doped systems. In contrast, Nb@Ti and Ta@Ti doped systems may show higher charge carrier mobility because of the lower electron effective mass.

  2. High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping

    PubMed Central

    Baiutti, F.; Logvenov, G.; Gregori, G.; Cristiani, G.; Wang, Y.; Sigle, W.; van Aken, P. A.; Maier, J.

    2015-01-01

    The exploitation of interface effects turned out to be a powerful tool for generating exciting material properties. Such properties include magnetism, electronic and ionic transport and even superconductivity. Here, instead of using conventional homogeneous doping to enhance the hole concentration in lanthanum cuprate and achieve superconductivity, we replace single LaO planes with SrO dopant planes using atomic-layer-by-layer molecular beam epitaxy (two-dimensional doping). Electron spectroscopy and microscopy, conductivity measurements and zinc tomography reveal such negatively charged interfaces to induce layer-dependent superconductivity (Tc up to 35 K) in the space-charge zone at the side of the planes facing the substrate, where the strontium (Sr) profile is abrupt. Owing to the growth conditions, the other side exhibits instead a Sr redistribution resulting in superconductivity due to conventional doping. The present study represents a successful example of two-dimensional doping of superconducting oxide systems and demonstrates its power in this field. PMID:26481902

  3. Localization of holes near charged defects in orbitally degenerate, doped Mott insulators

    NASA Astrophysics Data System (ADS)

    Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter

    2018-05-01

    We study the role of charged defects, disorder and electron-electron (e-e) interactions in a multiband model for t2g electrons in vanadium perovskites R1-xCaxVO3 (R = La,…,Y). By means of unrestricted Hartree-Fock calculations, we find that the atomic multiplet structure persists up to 50% Ca doping. Using the inverse participation number, we explore the degree of localization and its doping dependence for all electronic states. The observation of strongly localized wave functions is consistent with our conjecture that doped holes form spin-orbital polarons that are strongly bound to the charged Ca2+ defects. Interestingly, the long-range e-e interactions lead to a discontinuity in the wave function size across the chemical potential, where the electron removal states are more localized than the addition states.

  4. Magnetic impurity effect on charge and magnetic order in doped La1.5Ca0.5CoO4

    NASA Astrophysics Data System (ADS)

    Horigane, K.; Hiraka, H.; Tomiyasu, K.; Ohoyama, K.; Louca, D.; Yamada, K.

    2012-02-01

    Neutron scattering experiments were performed on single crystals of magnetic impurity doped cobalt oxides La1.5Ca0.5CoO4 to characterize the charge and spin orders. We newly found contrasting impurity effects. Two types of magnetic peaks are observed at q = (0.5,0,L) with L = half-integer and integer in La1.5Ca0.5CoO4, while magnetic peak at L = half-integer (integer) was only observed in Mn (Fe)-substituted sample. Although Mn and Fe impurities degrade charge and magnetic order, Cr impurity stabilizes the ordering at x = 0.5. Based on the crystal structural analysis of Cr doped sample, we found that the excess oxygen and change of octahedron around Co3+ were realized in Cr doped sample.

  5. Real-space visualization of remnant Mott gap and magnon excitations.

    PubMed

    Wang, Y; Jia, C J; Moritz, B; Devereaux, T P

    2014-04-18

    We demonstrate the ability to visualize real-space dynamics of charge gap and magnon excitations in the Mott phase of the single-band Hubbard model and the remnants of these excitations with hole or electron doping. At short times, the character of magnetic and charge excitations is maintained even for large doping away from the Mott and antiferromagnetic phases. Doping influences both the real-space patterns and long timescales of these excitations with a clear carrier asymmetry attributable to particle-hole symmetry breaking in the underlying model. Further, a rapidly oscillating charge-density-wave-like pattern weakens, but persists as a visible demonstration of a subleading instability at half-filling which remains upon doping. The results offer an approach to analyzing the behavior of systems where momentum space is either inaccessible or poorly defined.

  6. Quantum simulation of an ultrathin body field-effect transistor with channel imperfections

    NASA Astrophysics Data System (ADS)

    Vyurkov, V.; Semenikhin, I.; Filippov, S.; Orlikovsky, A.

    2012-04-01

    An efficient program for the all-quantum simulation of nanometer field-effect transistors is elaborated. The model is based on the Landauer-Buttiker approach. Our calculation of transmission coefficients employs a transfer-matrix technique involving the arbitrary precision (multiprecision) arithmetic to cope with evanescent modes. Modified in such way, the transfer-matrix technique turns out to be much faster in practical simulations than that of scattering-matrix. Results of the simulation demonstrate the impact of realistic channel imperfections (random charged centers and wall roughness) on transistor characteristics. The Landauer-Buttiker approach is developed to incorporate calculation of the noise at an arbitrary temperature. We also validate the ballistic Landauer-Buttiker approach for the usual situation when heavily doped contacts are indispensably included into the simulation region.

  7. Self-Limiting Oxides on WSe2 as Controlled Surface Acceptors and Low-Resistance Hole Contacts.

    PubMed

    Yamamoto, Mahito; Nakaharai, Shu; Ueno, Keiji; Tsukagoshi, Kazuhito

    2016-04-13

    Transition metal oxides show much promise as effective p-type contacts and dopants in electronics based on transition metal dichalcogenides. Here we report that atomically thin films of under-stoichiometric tungsten oxides (WOx with x < 3) grown on tungsten diselenide (WSe2) can be used as both controlled charge transfer dopants and low-barrier contacts for p-type WSe2 transistors. Exposure of atomically thin WSe2 transistors to ozone (O3) at 100 °C results in self-limiting oxidation of the WSe2 surfaces to conducting WOx films. WOx-covered WSe2 is highly hole-doped due to surface electron transfer from the underlying WSe2 to the high electron affinity WOx. The dopant concentration can be reduced by suppressing the electron affinity of WOx by air exposure, but exposure to O3 at room temperature leads to the recovery of the electron affinity. Hence, surface transfer doping with WOx is virtually controllable. Transistors based on WSe2 covered with WOx show only p-type conductions with orders of magnitude better on-current, on/off current ratio, and carrier mobility than without WOx, suggesting that the surface WOx serves as a p-type contact with a low hole Schottky barrier. Our findings point to a simple and effective strategy for creating p-type devices based on two-dimensional transition metal dichalcogenides with controlled dopant concentrations.

  8. Toward Femtosecond Time-Resolved Studies of Solvent-Solute Energy Transfer in Doped Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Bacellar, C.; Ziemkiewicz, M. P.; Leone, S. R.; Neumark, D. M.; Gessner, O.

    2015-05-01

    Superfluid helium nanodroplets provide a unique cryogenic matrix for high resolution spectroscopy and ultracold chemistry applications. With increasing photon energy and, in particular, in the increasingly important Extreme Ultraviolet (EUV) regime, the droplets become optically dense and, therefore, participate in the EUV-induced dynamics. Energy- and charge-transfer mechanisms between the host droplets and dopant atoms, however, are poorly understood. Static energy domain measurements of helium droplets doped with noble gas atoms (Xe, Kr) indicate that Penning ionization due to energy transfer from the excited droplet to dopant atoms may be a significant relaxation channel. We have set up a femtosecond time-resolved photoelectron imaging experiment to probe these dynamics directly in the time-domain. Droplets containing 104 to 106 helium atoms and a small percentage (<10-4) of dopant atoms (Xe, Kr, Ne) are excited to the 1s2p Rydberg band by 21.6 eV photons produced by high harmonic generation (HHG). Transiently populated states are probed by 1.6 eV photons, generating time-dependent photoelectron kinetic energy distributions, which are monitored by velocity map imaging (VMI). The results will provide new information about the dynamic timescales and the different relaxation channels, giving access to a more complete physical picture of solvent-solute interactions in the superfluid environment. Prospects and challenges of the novel experiment as well as preliminary experimental results will be discussed.

  9. PCR-based detection of gene transfer vectors: application to gene doping surveillance.

    PubMed

    Perez, Irene C; Le Guiner, Caroline; Ni, Weiyi; Lyles, Jennifer; Moullier, Philippe; Snyder, Richard O

    2013-12-01

    Athletes who illicitly use drugs to enhance their athletic performance are at risk of being banned from sports competitions. Consequently, some athletes may seek new doping methods that they expect to be capable of circumventing detection. With advances in gene transfer vector design and therapeutic gene transfer, and demonstrations of safety and therapeutic benefit in humans, there is an increased probability of the pursuit of gene doping by athletes. In anticipation of the potential for gene doping, assays have been established to directly detect complementary DNA of genes that are top candidates for use in doping, as well as vector control elements. The development of molecular assays that are capable of exposing gene doping in sports can serve as a deterrent and may also identify athletes who have illicitly used gene transfer for performance enhancement. PCR-based methods to detect foreign DNA with high reliability, sensitivity, and specificity include TaqMan real-time PCR, nested PCR, and internal threshold control PCR.

  10. A study of spin fluctuations and superconductivity in the iron pnictides

    NASA Astrophysics Data System (ADS)

    Gooch, Melissa J.

    In early 2008, Hosono's group published results of their discovery of an iron-based layered superconductor, LaFeAsO1-- xFx (x = 0.11). Their discovery gave new life to condensed matter research, being that it was the first high Tc layered superconductor since the discovery of the cuprates. Within only- a few short months, three additional structures were added to the iron pnictide family. The pnictides share a similar layered structure to that of the cuprates, which sparked questions about what role charge doping plays in the superconductivity of the pnictides. An ideal candidate to investigate the physical properties as the doping varies is KxSr1--xFe 2As2, which forms a solid solution for 0 ≤ x ≤ 1. Upper critical fields, HC2, were investigated for select polycrystalline samples and revealed high HC 2 varies upwards to ˜ 100 T. Pressure measurements revealed similar doping dependent pressure coefficients to the cuprates; however, for the cuprates there is a well understood charge transfer that is induced with the application of pressure. This is not the case for the pnictides where a suppression of the magnetic fluctuations is seen. Resistivity and thermoelectric power measurements provide evidence for a possible hidden magnetic quantum critical point (MQCP). The effects of the MQCP extend up to ˜ 150K and were also seen for K xBa1--xFe 2As2, this suggests that magnetic spin fluctuations may play a crucial role in superconductivity for the pnictides. Superconductivity was seen for KFe2As2, as well as RbFe2As 2, CsFe2As2, and the metastable NaFe2As 2. LiFeAs is an undoped stoichiometric superconductor with a T c = 18 K, but it has been suggested that superconductivity arises from a Li deficiency. These conflicting statements prompted further investigation into the physical properties of LiFeAs. In conclusion, magnetic fluctuations may play a. key role in superconductivity of the pnictides and not charge doping.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanana, Anuja; Mahapatra, Santanu, E-mail: santanu@dese.iisc.ernet.in

    Investigation of a transition metal dichalcogenide (TMD)-metal interface is essential for the effective functioning of monolayer TMD based field effect transistors. In this work, we employ the Density Functional Theory calculations to analyze the modulation of the electronic structure of monolayer WS{sub 2} with chlorine doping and the relative changes in the contact properties when interfaced with gold and palladium. We initially examine the atomic and electronic structures of pure and doped monolayer WS{sub 2} supercell and explore the formation of midgap states with band splitting near the conduction band edge. Further, we analyze the contact nature of the puremore » supercell with Au and Pd. We find that while Au is physiosorbed and forms n-type contact, Pd is chemisorped and forms p-type contact with a higher valence electron density. Next, we study the interface formed between the Cl-doped supercell and metals and observe a reduction in the Schottky barrier height (SBH) in comparison to the pure supercell. This reduction found is higher for Pd in comparison to Au, which is further validated by examining the charge transfer occurring at the interface. Our study confirms that Cl doping is an efficient mechanism to reduce the n-SBH for both Au and Pd, which form different types of contact with WS{sub 2}.« less

  12. Peapod-like Li3 VO4 /N-Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for High-Energy Lithium-Ion Capacitors.

    PubMed

    Shen, Laifa; Lv, Haifeng; Chen, Shuangqiang; Kopold, Peter; van Aken, Peter A; Wu, Xiaojun; Maier, Joachim; Yu, Yan

    2017-07-01

    Lithium ion capacitors are new energy storage devices combining the complementary features of both electric double-layer capacitors and lithium ion batteries. A key limitation to this technology is the kinetic imbalance between the Faradaic insertion electrode and capacitive electrode. Here, we demonstrate that the Li 3 VO 4 with low Li-ion insertion voltage and fast kinetics can be favorably used for lithium ion capacitors. N-doped carbon-encapsulated Li 3 VO 4 nanowires are synthesized through a morphology-inheritance route, displaying a low insertion voltage between 0.2 and 1.0 V, a high reversible capacity of ≈400 mAh g -1 at 0.1 A g -1 , excellent rate capability, and long-term cycling stability. Benefiting from the small nanoparticles, low energy diffusion barrier and highly localized charge-transfer, the Li 3 VO 4 /N-doped carbon nanowires exhibit a high-rate pseudocapacitive behavior. A lithium ion capacitor device based on these Li 3 VO 4 /N-doped carbon nanowires delivers a high energy density of 136.4 Wh kg -1 at a power density of 532 W kg -1 , revealing the potential for application in high-performance and long life energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite p-n junction photoanode

    NASA Astrophysics Data System (ADS)

    Phuan, Yi Wen; Ibrahim, Elyas; Chong, Meng Nan; Zhu, Tao; Lee, Byeong-Kyu; Ocon, Joey D.; Chan, Eng Seng

    2017-01-01

    Nanostructured nickel oxide-hematite (NiO/α-Fe2O3) p-n junction photoanodes synthesized from in situ doping of nickel (Ni) during cathodic electrodeposition of hematite were successfully demonstrated. A postulation model was proposed to explain the fundamental mechanism of Ni2+ ions involved, and the eventual formation of NiO on the subsurface region of hematite that enhanced the potential photoelectrochemical water oxidation process. Through this study, it was found that the measured photocurrent densities of the Ni-doped hematite photoanodes were highly dependent on the concentrations of Ni dopant used. The optimum Ni dopant at 25 M% demonstrated an excellent photoelectrochemical performance of 7-folds enhancement as compared to bare hematite photoanode. This was attributed to the increased electron donor density through the p-n junction and thus lowering the energetic barrier for water oxidation activity at the optimum Ni dopant concentration. Concurrently, the in situ Ni-doping of hematite has also lowered the photogenerated charge carrier transfer resistance as measured using the electrochemical impedance spectroscopy. It is expected that the fundamental understanding gained through this study is helpful for the rational design and construction of highly efficient photoanodes for application in photoelectrochemical process.

  14. Theoretical Studies on InGaAs/InAlAs SAGCM Avalanche Photodiodes

    NASA Astrophysics Data System (ADS)

    Cao, Siyu; Zhao, Yue; ur Rehman, Sajid; Feng, Shuai; Zuo, Yuhua; Li, Chuanbo; Zhang, Lichun; Cheng, Buwen; Wang, Qiming

    2018-05-01

    In this paper, we provide a detailed insight on InGaAs/InAlAs separate absorption, grading, charge, and multiplication avalanche photodiodes (SAGCM APDs) and a theoretical model of APDs is built. Through theoretical analysis and two-dimensional (2D) simulation, the influence of charge layer and tunneling effect on the APDs is fully understood. The design of charge layer (including doping level and thickness) can be calculated by our predictive model for different multiplication thickness. We find that as the thickness of charge layer increases, the suitable doping level range in charge layer decreases. Compared to thinner charge layer, performance of APD varies significantly via several percent deviations of doping concentrations in thicker charge layer. Moreover, the generation rate ( G btt ) of band-to-band tunnel is calculated, and the influence of tunneling effect on avalanche field was analyzed. We confirm that avalanche field and multiplication factor ( M n ) in multiplication will decrease by the tunneling effect. The theoretical model and analysis are based on InGaAs/InAlAs APD; however, they are applicable to other APD material systems as well.

  15. High field charge order across the phase diagram of YBa2Cu3Oy

    NASA Astrophysics Data System (ADS)

    Laliberté, Francis; Frachet, Mehdi; Benhabib, Siham; Borgnic, Benjamin; Loew, Toshinao; Porras, Juan; Le Tacon, Mathieu; Keimer, Bernhard; Wiedmann, Steffen; Proust, Cyril; LeBoeuf, David

    2018-03-01

    In hole-doped cuprates there is now compelling evidence that inside the pseudogap phase, charge order breaks translational symmetry. In YBa2Cu3Oy charge order emerges in two steps: a 2D order found at zero field and at high temperature inside the pseudogap phase, and a 3D order that is superimposed below the superconducting transition Tc when superconductivity is weakened by a magnetic field. Several issues still need to be addressed such as the effect of disorder, the relationship between those charge orders and their respective impact on the Fermi surface. Here, we report high magnetic field sound velocity measurements of the 3D charge order in underdoped YBa2Cu3Oy in a large doping range. We found that the 3D charge order exists over the same doping range as its 2D counterpart, indicating an intimate connection between the two distinct orders. Moreover, our data suggest that 3D charge order has only a limited impact on low-lying electronic states of YBa2Cu3Oy.

  16. Modelling the competition between photo-darkening and photo-bleaching effects in high-power ytterbium-doped fibre amplifiers

    NASA Astrophysics Data System (ADS)

    Jolly, A.; Vinçont, C.; Pierre, Ch.; Boullet, J.

    2017-08-01

    We propose an innovative, fully space-time model to take into account the seed-dependent nature of ageing penalties in high-power ytterbium-doped fibre amplifiers. Ageing is shown to be based on the on-going competition between photo-darkening and photo-bleaching phenomena. Our approach is based on the natural interplay between the excited states of co-existing ytterbium pairs and colour centres in highly doped fibres, in the presence of thermal coupling between the closely spaced excited states. As initiated from IR photons, the excitation of colour centres up to the UV band is supposed to be governed by multi-photon absorption. The interactions of interest in the kinetics of photo-bleaching then take the form of highly efficient charge transfers, which imply the reduction of some fraction of the basically trivalent ions to their divalent state. Due to the activation of ytterbium pairs by means of energy transfer up-conversion, these interactions get more and more effective at elevated operating powers. Computational results using these principles actually help to fit our experimental data regarding seeding effects, as well as fully generic trends already evidenced in the literature. This gives a fine demonstration for the need to discriminate co-active pump and signal contributions. Our self-consistent, still simplified model then consists of a valuable tool to help for a deeper understanding of the ageing issues. Furthermore, considering higher-order ytterbium aggregates, this should open new routes towards more comprehensive models.

  17. Effect of magnetic ion Ni doping for Cu in the CuO 2 plane on electronic structure and superconductivity on Y123 cuprate

    NASA Astrophysics Data System (ADS)

    Cao, Shixun; Li, Pinglin; Cao, Guixin; Zhang, Jincang

    2003-05-01

    The YBa2Cu3-xNixO7-δ with x=0-0.4 have been studied using positron annihilation technique. The changes of positron annihilation parameters with the Ni substitution concentration x are given. From the change of electronic density ne and Tc, it would prove that the localized carriers (electron and hole) in Cu-O chain and CuO2 planes have enormous influence on superconductivity by affecting charge transfer between the reservoir layer and CuO2 planes.

  18. Microscopic signature of insulator-to-metal transition in highly doped semicrystalline conducting polymers in ionic-liquid-gated transistors

    NASA Astrophysics Data System (ADS)

    Tanaka, Hisaaki; Nishio, Satoshi; Ito, Hiroshi; Kuroda, Shin-ichi

    2015-12-01

    Electronic state of charge carriers, in particular, in highly doped regions, in thin-film transistors of a semicrystalline conducting polymer poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene), has been studied by using field-induced electron spin resonance (ESR) spectroscopy. By adopting an ionic-liquid gate insulator, a gate-controlled reversible electrochemical hole-doping of the polymer backbone is achieved, as confirmed from the change of the optical absorption spectra. The edge-on molecular orientation in the pristine film is maintained even after the electrochemical doping, which is clarified from the angular dependence of the g value. As the doping level increases, spin 1/2 polarons transform into spinless bipolarons, which is demonstrated from the spin-charge relation showing a spin concentration peak around 1%, contrasting to the monotonic increase in the charge concentration. At high doping levels, a drastic change in the linewidth anisotropy due to the generation of conduction electrons is observed, indicating the onset of metallic state, which is also supported by the temperature dependence of the spin susceptibility and the ESR linewidth. Our results suggest that semicrystalline conducting polymers become metallic with retaining their molecular orientational order, when appropriate doping methods are chosen.

  19. Photocatalytic hydrogen generation enhanced by band gap narrowing and improved charge carrier mobility in AgTaO3 by compensated co-doping.

    PubMed

    Li, Min; Zhang, Junying; Dang, Wenqiang; Cushing, Scott K; Guo, Dong; Wu, Nianqiang; Yin, Penggang

    2013-10-14

    The correlation of the electronic band structure with the photocatalytic activity of AgTaO3 has been studied by simulation and experiments. Doping wide band gap oxide semiconductors usually introduces discrete mid-gap states, which extends the light absorption but has limited benefit for photocatalytic activity. Density functional theory (DFT) calculations show that compensated co-doping in AgTaO3 can overcome this problem by increasing the light absorption and simultaneously improving the charge carrier mobility. N/H and N/F co-doping can delocalize the discrete mid-gap states created by sole N doping in AgTaO3, which increases the band curvature and the electron-to-hole effective mass ratio. In particular, N/F co-doping creates a continuum of states that extend the valence band of AgTaO3. N/F co-doping thus improves the light absorption without creating the mid-gap states, maintaining the necessary redox potentials for water splitting and preventing from charge carrier trapping. The experimental results have confirmed that the N/F-codoped AgTaO3 exhibits a red-shift of the absorption edge in comparison with the undoped AgTaO3, leading to remarkable enhancement of photocatalytic activity toward hydrogen generation from water.

  20. Colloidal Synthesis of Te-Doped Bi Nanoparticles: Low-Temperature Charge Transport and Thermoelectric Properties.

    PubMed

    Gu, Da Hwi; Jo, Seungki; Jeong, Hyewon; Ban, Hyeong Woo; Park, Sung Hoon; Heo, Seung Hwae; Kim, Fredrick; Jang, Jeong In; Lee, Ji Eun; Son, Jae Sung

    2017-06-07

    Electronically doped nanoparticles formed by incorporation of impurities have been of great interest because of their controllable electrical properties. However, the development of a strategy for n-type or p-type doping on sub-10 nm-sized nanoparticles under the quantum confinement regime is very challenging using conventional processes, owing to the difficulty in synthesis. Herein, we report the colloidal chemical synthesis of sub-10 nm-sized tellurium (Te)-doped Bismuth (Bi) nanoparticles with precisely controlled Te content from 0 to 5% and systematically investigate their low-temperature charge transport and thermoelectric properties. Microstructural characterization of nanoparticles demonstrates that Te ions are successfully incorporated into Bi nanoparticles rather than remaining on the nanoparticle surfaces. Low-temperature Hall measurement results of the hot-pressed Te-doped Bi-nanostructured materials, with grain sizes ranging from 30 to 60 nm, show that the charge transport properties are governed by the doping content and the related impurity and nanoscale grain boundary scatterings. Furthermore, the low-temperature thermoelectric properties reveal that the electrical conductivity and Seebeck coefficient expectedly change with the Te content, whereas the thermal conductivity is significantly reduced by Te doping because of phonon scattering at the sites arising from impurities and nanoscale grain boundaries. Accordingly, the 1% Te-doped Bi sample exhibits a higher figure-of-merit ZT by ∼10% than that of the undoped sample. The synthetic strategy demonstrated in this study offers the possibility of electronic doping of various quantum-confined nanoparticles for diverse applications.

  1. Molecular Photovoltaics in Nanoscale Dimension

    PubMed Central

    Burtman, Vladimir; Zelichonok, Alexander; Pakoulev, Andrei V.

    2011-01-01

    This review focuses on the intrinsic charge transport in organic photovoltaic (PVC) devices and field-effect transistors (SAM-OFETs) fabricated by vapor phase molecular self-assembly (VP-SAM) method. The dynamics of charge transport are determined and used to clarify a transport mechanism. The 1,4,5,8-naphthalene-tetracarboxylic diphenylimide (NTCDI) SAM devices provide a useful tool to study the fundamentals of polaronic transport at organic surfaces and to discuss the performance of organic photovoltaic devices in nanoscale. Time-resolved photovoltaic studies allow us to separate the charge annihilation kinetics in the conductive NTCDI channel from the overall charge kinetic in a SAM-OFET device. It has been demonstrated that tuning of the type of conductivity in NTCDI SAM-OFET devices is possible by changing Si substrate doping. Our study of the polaron charge transfer in organic materials proposes that a cation-radical exchange (redox) mechanism is the major transport mechanism in the studied SAM-PVC devices. The role and contribution of the transport through delocalized states of redox active surface molecular aggregates of NTCDI are exposed and investigated. This example of technological development is used to highlight the significance of future technological development of nanotechnologies and to appreciate a structure-property paradigm in organic nanostructures. PMID:21339983

  2. Voltage-Driven Magnetization Switching and Spin Pumping in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Kurebayashi, Daichi; Nomura, Kentaro

    2016-10-01

    We demonstrate electrical magnetization switching and spin pumping in magnetically doped Weyl semimetals. The Weyl semimetal is a three-dimensional gapless topological material, known to have nontrivial coupling between the charge and the magnetization due to the chiral anomaly. By solving the Landau-Lifshitz-Gilbert equation for a multilayer structure of a Weyl semimetal, an insulator and a metal while taking the charge-magnetization coupling into account, magnetization dynamics is analyzed. It is shown that the magnetization dynamics can be driven by the electric voltage. Consequently, switching of the magnetization with a pulsed electric voltage can be achieved, as well as precession motion with an applied oscillating electric voltage. The effect requires only a short voltage pulse and may therefore be energetically favorable for us in spintronics devices compared to conventional spin-transfer torque switching.

  3. Significant enhancement in volumetric and gravimetric capacitance of Cu-TiO2/PPY composite for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Purty, B.; Choudhary, R. B.

    2018-04-01

    Copper doped titanium dioxide-polypyrrole (Cu-TiO2/PPY) composite was successfully synthesized via chemical oxidative in-situ polymerization process. The structural and morphological properties of Cu-TiO2/PPY composite were investigated using X-ray diffractometer (XRD), field emission electron microscopy (FESEM) and transmission electron microscopy(TEM) techniques. The electrochemical properties of as-synthesized composite were studied using cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopic (EIS) techniques. The novel Cu-TiO2/PPY composite showed enhanced volumetric capacitance ˜714 F cm-1 and gravimetric capacitance ˜674 F g-1 at 1 A g-1. In addition an excellent coulombic efficiency and comparabley low charge transfer resistance than pure PPY suggests improved supercapacitive performance of Cu-TiO2/PPY composite as an electrode material.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talin, Albert Alec; Jones, Reese E.; Spataru, Dan Catalin

    Metal organic frameworks (MOFs) are extended, nanoporous crystalline compounds consisting of metal ions interconnected by organic ligands. Their synthetic versatility suggest a disruptive class of opto - electronic materials with a high degree of electrical tunability and without the property - degrading disorder of organic conductors. In this project we determined the factors controlling charge and energy transport in MOFs and evaluated their potential for thermoelectric energy conversion. Two strategies for a chieving electronic conductivity in MOFs were explored: 1) using redox active 'guest' molecules introduced into the pores to dope the framework via charge - transfer coupling (Guest@MOF), 2)more » metal organic graphene analogs (MOGs) with dispersive band structur es arising from strong electronic overlap between the MOG metal ions and its coordinating linker groups. Inkjet deposition methods were developed to facilitate integration of the guest@MOF and MOG materials into practical devices.« less

  5. UV-Vis-NIR spectroelectrochemical and in situ conductance studies of unusual stability of n- and p-doped poly(dimethyldioctylquaterthiophene-alt-oxadiazole) under high cathodic and anodic polarizations.

    PubMed

    Pomerantz, Z; Levi, M D; Salitra, G; Demadrille, R; Fisyuk, A; Zaban, A; Aurbach, D; Pron, A

    2008-02-21

    Combined CV studies and UV-Vis-NIR spectroelectrochemical investigations revealed an unusual stability of the p- and n-doped PMOThOD in the wide potential window of 4 V. The n-doping process occurs in this polymer down to -2.7 V (vs. Ag/Ag+) in a non-destructive way with the characteristic development of the omega3 transition as a function of the doping level. In situ electronic transport studies revealed a high conductivity of the n-doped polymer which implies high mobility of the negatively charged carriers in the freshly doped PMOThOD film electrodes. An increase in the cathodic polarization, long-term cycling of the film electrodes, especially of higher thickness, results in a growing contribution of the negatively charged carriers trapping to the redox properties of the PMOThOD. The trapping of the charged carriers reduces gradually the electronic conductance of the PMOThOD film, but its effect on the redox-capacity of the film (in a typical scan rates range up to 50 mV s(-1)) is only minor.

  6. Experimental evidence for importance of Hund's exchange interaction for incoherence of charge carriers in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Fink, J.; Rienks, E. D. L.; Thirupathaiah, S.; Nayak, J.; van Roekeghem, A.; Biermann, S.; Wolf, T.; Adelmann, P.; Jeevan, H. S.; Gegenwart, P.; Wurmehl, S.; Felser, C.; Büchner, B.

    2017-04-01

    Angle-resolved photoemission spectroscopy is used to study the scattering rates of charge carriers from the hole pockets near Γ in the iron-based high-Tc hole-doped superconductors KxBa1 -xFe2As2 , x =0.4 , and KxEu1 -xFe2As2 , x =0.55 , and the electron-doped compound Ba (Fe1-xCox) 2As2 , x =0.075 . The scattering rate for any given band is found to depend linearly on the energy, indicating a non-Fermi-liquid regime. The scattering rates in the hole-doped compound are considerably higher than those in the electron-doped compounds. In the hole-doped systems the scattering rate of the charge carriers of the inner hole pocket is about three times higher than the binding energy, indicating that the spectral weight is heavily incoherent. The strength of the scattering rates and the difference between electron- and hole-doped compounds signals the importance of Hund's exchange coupling for correlation effects in these iron-based high-Tc superconductors. The experimental results are in qualitative agreement with theoretical calculations in the framework of combined density functional dynamical mean-field theory.

  7. Optical Studies of Excitonic Effects at Two-Dimensional Nanostructure Interfaces

    NASA Astrophysics Data System (ADS)

    Ajayi, Obafunso Ademilolu

    Atomically thin two-dimensional nanomaterials such as graphene and transition metal dichalcogenides (TMDCs) have seen a rapid growth of exploration since the isolation of monolayer graphene. These materials provide a rich field of study for physics and optoelectronics applications. Many applications seek to combine a two dimensional (2D) material with another nanomaterial, either another two dimensional material or a zero (0D) or one dimensional (1D) material. The work in this thesis explores the consequences of these interactions from 0D to 2D. We begin in Chapter 2 with a study of energy transfer at 0D-2D interfaces with quantum dots and graphene. In our work we seek to maximize the rate of energy transfer by reducing the distance between the materials. We observe an interplay with the distance-dependence and surface effects from our halogen terminated quantum dots that affect our observed energy transfer. In Chapter 3 we study supercapacitance in composite graphene oxide-carbon nanotube electrodes. At this 2D-1D interface we observe a compounding effect between graphene oxide and carbon nanotubes. Carbon nanotubes increase the accessible surface area of the supercapacitors and improve conductivity by forming a conductive pathway through electrodes. In Chapter 4 we investigate effective means of improving sample quality in TMDCs and discover the importance of the monolayer interface. We observe a drastic improvement in photoluminescence when encapsulating our TMDCs with Boron Nitride. We measure spectral linewidths approaching the intrinsic limit due to this 2D-2D interface. We also effectively reduce excess charge and thus the trion-exciton ratio in our samples through substrate surface passivation. In Chapter 5 we briefly discuss our investigations on chemical doping, heterostructures and interlayer decoupling in ReS2. We observe an increase in intensity for p-doped MoS2 samples. We investigated the charge transfer exciton previously identified in heterostructures. Spectral observation of this interlayer exciton remained elusive in our work but provided the motivation for our work in Chapter 4. We also discuss our preliminary results on interlayer decoupling in ReS2.

  8. Titanium dioxide nanotube membranes for solar energy conversion: effect of deep and shallow dopants.

    PubMed

    Ding, Yuchen; Nagpal, Prashant

    2017-04-12

    Nanostructured titanium dioxide (TiO 2 ) has been intensively investigated as a material of choice for solar energy conversion in photocatalytic, photoelectrochemical, photovoltaic, and other photosensitized devices for converting light into chemical feedstocks or electricity. Towards management of light absorption in TiO 2 , while the nanotubular structure improves light absorption and simultaneous charge transfer to mitigate problems due to the indirect bandgap of the semiconductor, typically dopants are used to improve light absorption of incident solar irradiation in the wide bandgap of TiO 2 . While these dopants can be critical to the success of these solar energy conversion devices, their effect on photophysical and photoelectrochemical properties and detailed photokinetics are relatively under-studied. Here, we show the effect of deep and shallow metal dopants on the kinetics of photogenerated charged carriers in TiO 2 and the resulting effect on photocatalytic and photoelectrochemical processes using these nanotube membranes. We performed a detailed optical, electronic, voltammetry and electrochemical impedance study to understand the effect of shallow and deep metal dopants (using undoped and niobium- and copper-doped TiO 2 nanotubes) on light absorption, charge transport and charge transfer processes. Using wireless photocatalytic methylene blue degradation and carbon dioxide reduction, and wired photoelectrochemical device measurements, we elucidate the effect of different dopants on solar-to-fuel conversion efficiency and simultaneously describe the photokinetics using a model, to help design better energy conversion devices.

  9. Charge dynamics of 57Fe probe atoms in La2Li0.5Cu0.5O4

    NASA Astrophysics Data System (ADS)

    Presniakov, I. A.; Sobolev, A. V.; Rusakov, V. S.; Moskvin, A. S.; Baranov, A. V.

    2018-06-01

    The objective of this study is to characterize the electronic state and local surrounding of 57Fe Mössbauer probe atoms within iron-doped layered perovskite La2Li0.5Cu0.5O4 containing transition metal in unusual formal oxidation states "+3". An approach based on the qualitative energy diagrams analysis and the calculations within the cluster configuration interaction method have been developed. It was shown that a large amount of charge is transferred via Cu-O bonds from the O: 2p bands to the Cu: 3d orbitals and the ground state is dominated by the d9L configuration ("Cu2+-O-" state). The dominant d9L ground state for the (CuO6) sublattice induces in the environment of the 57Fe probe cations a charge transfer Fe3+ + O-(L) → Fe4+ + O2-, which transforms "Fe3+" into "Fe4+" state. The experimental spectra in the entire temperature range 77-300 K were described with the use of the stochastic two-level model based on the assumption of dynamic equilibrium between two Fe3+↔Fe4+ valence states related to the iron atom in the [Fe(1)O4]4- center. The relaxation frequencies and activation energies of the corresponding charge fluctuations were estimated based on Mössbauer data. The results are discussed assuming a temperature-induced change in the electronic state of the [CuO4]5- clusters in the layered perovskite.

  10. Charge trapping and current-conduction mechanisms of metal-oxide-semiconductor capacitors with La xTa y dual-doped HfON dielectrics

    NASA Astrophysics Data System (ADS)

    Cheng, Chin-Lung; Horng, Jeng-Haur; Chang-Liao, Kuei-Shu; Jeng, Jin-Tsong; Tsai, Hung-Yang

    2010-10-01

    Charge trapping and related current-conduction mechanisms in metal-oxide-semiconductor (MOS) capacitors with La xTa y dual-doped HfON dielectrics have been investigated under various post-deposition annealing (PDA). The results indicate that by La xTa y incorporation into HfON dielectric enhances electrical and reliability characteristics, including equivalent-oxide-thickness (EOT), stress-induced leakage current (SILC), and trap energy level. The mechanisms related to larger positive charge generation in the gate dielectric bulk can be attributed to La xTa y dual-doped HfON dielectric. The results of C- V measurement indicate that more negative charges are induced with increasing PDA temperature for the La xTa y dual-doped HfON dielectric. The charge current transport mechanisms through various dielectrics have been analyzed with current-voltage ( I- V) measurements under various temperatures. The current-conduction mechanisms of HfLaTaON dielectric at the low-, medium-, and high-electrical fields were dominated by Schottky emission (SE), Frenkel-Poole emission (F-P), and Fowler-Nordheim (F-N), respectively. A low trap energy level ( Φ trap) involved in Frenkel-Pool conduction in an HfLaTaON dielectric was estimated to be around 0.142 eV. Although a larger amount of positive charges generated in the HfLaTaON dielectric was obtained, the Φ trap of these positive charges in the HfLaTaON dielectric are shallow compared with HfON dielectric.

  11. Dual structure in the charge excitation spectrum of electron-doped cuprates

    NASA Astrophysics Data System (ADS)

    Bejas, Matías; Yamase, Hiroyuki; Greco, Andrés

    2017-12-01

    Motivated by the recent resonant x-ray scattering (RXS) and resonant inelastic x-ray scattering (RIXS) experiments for electron-doped cuprates, we study the charge excitation spectrum in a layered t -J model with the long-range Coulomb interaction. We show that the spectrum is not dominated by a specific type of charge excitations, but by different kinds of charge fluctuations, and is characterized by a dual structure in the energy space. Low-energy charge excitations correspond to various types of bond-charge fluctuations driven by the exchange term (J term), whereas high-energy charge excitations are due to usual on-site charge fluctuations and correspond to plasmon excitations above the particle-hole continuum. The interlayer coupling, which is frequently neglected in many theoretical studies, is particularly important to the high-energy charge excitations.

  12. Evaluation of H2S sensing characteristics of metals-doped graphene and metals-decorated graphene: Insights from DFT study

    NASA Astrophysics Data System (ADS)

    Khodadadi, Zahra

    2018-05-01

    The high tendency of graphene to adsorb H2S gas has made it a good choice for the purpose of separating H2S gas from industrial waste streams, and it can also be used as a good H2S sensor. In this research, the adsorption of H2S molecule on pristine, transition metal (Ni, Cu and Zn)-doped graphene and metal-decorated graphene nanosheets have been investigated via first-principles approach based on Density Functional Theory (DFT). The most stable adsorption geometry, rate of adsorption energy and charge transfer of H2S molecule on pristine, metal-doped, and metal-decorated graphene nanosheets have been discussed. The adsorption of H2S gas on several kinds of graphene nanosheets was studied by three different models. As H2S molecule adsorbed on metal-doped graphene nanosheets, we found that the configuration with two hydrogen atoms towards the metal-doped graphene nanosheet as most desirable situation. Moreover, the calculations show that the adsorption energy of H2S on Cu-doped graphene nanosheet is the highest among all the other metal-doped graphene nanosheet systems. We also investigated the H2S capability to bind to Ni, Cu and Zn-decorated graphene nanosheets. It was found that after adsorption, the configuration of the sulfur atom, which was located close to the metal-decorated graphene nanosheets was stable thermodynamically. The Ni-decorated graphene nanosheet with large adsorption energy and short binding distance is suitable for chemisorptions. The unfilled d-shells Ni-decorated graphene nanosheets are primarily responsible for increase in the reactivity.

  13. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering

    PubMed Central

    Feng, Simin; dos Santos, Maria Cristina; Carvalho, Bruno R.; Lv, Ruitao; Li, Qing; Fujisawa, Kazunori; Elías, Ana Laura; Lei, Yu; Perea-López, Nestor; Endo, Morinobu; Pan, Minghu; Pimenta, Marcos A.; Terrones, Mauricio

    2016-01-01

    As a novel and efficient surface analysis technique, graphene-enhanced Raman scattering (GERS) has attracted increasing research attention in recent years. In particular, chemically doped graphene exhibits improved GERS effects when compared with pristine graphene for certain dyes, and it can be used to efficiently detect trace amounts of molecules. However, the GERS mechanism remains an open question. We present a comprehensive study on the GERS effect of pristine graphene and nitrogen-doped graphene. By controlling nitrogen doping, the Fermi level (EF) of graphene shifts, and if this shift aligns with the lowest unoccupied molecular orbital (LUMO) of a molecule, charge transfer is enhanced, thus significantly amplifying the molecule’s vibrational Raman modes. We confirmed these findings using different organic fluorescent molecules: rhodamine B, crystal violet, and methylene blue. The Raman signals from these dye molecules can be detected even for concentrations as low as 10−11 M, thus providing outstanding molecular sensing capabilities. To explain our results, these nitrogen-doped graphene-molecule systems were modeled using dispersion-corrected density functional theory. Furthermore, we demonstrated that it is possible to determine the gaps between the highest occupied and the lowest unoccupied molecular orbitals (HOMO-LUMO) of different molecules when different laser excitations are used. Our simulated Raman spectra of the molecules also suggest that the measured Raman shifts come from the dyes that have an extra electron. This work demonstrates that nitrogen-doped graphene has enormous potential as a substrate when detecting low concentrations of molecules and could also allow for an effective identification of their HOMO-LUMO gaps. PMID:27532043

  14. Delta-Doped CCDs as Detector Arrays in Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Jones, Todd; Jewell, April; Sinha, Mahadeva

    2007-01-01

    In a conventional mass spectrometer, charged particles (ions) are dispersed through a magnetic sector onto an MCP at an output (focal) plane. In the MCP, the impinging charged particles excite electron cascades that afford signal gain. Electrons leaving the MCP can be read out by any of a variety of means; most commonly, they are post-accelerated onto a solid-state detector array, wherein the electron pulses are converted to photons, which, in turn, are converted to measurable electric-current pulses by photodetectors. Each step in the conversion from the impinging charged particles to the output 26 NASA Tech Briefs, February 2007 current pulses reduces spatial resolution and increases noise, thereby reducing the overall sensitivity and performance of the mass spectrometer. Hence, it would be preferable to make a direct measurement of the spatial distribution of charged particles impinging on the focal plane. The utility of delta-doped CCDs as detectors of charged particles was reported in two articles in NASA Tech Briefs, Vol. 22, No. 7 (July 1998): "Delta-Doped CCDs as Low-Energy-Particle Detectors" (NPO-20178) on page 48 and "Delta- Doped CCDs for Measuring Energies of Positive Ions" (NPO-20253) on page 50. In the present developmental miniature mass spectrometers, the above mentioned miniaturization and performance advantages contributed by the use of delta-doped CCDs are combined with the advantages afforded by the Mattauch-Herzog design. The Mattauch- Herzog design is a double-focusing spectrometer design involving an electric and a magnetic sector, where the ions of different masses are spatially separated along the focal plane of magnetic sector. A delta-doped CCD at the focal plane measures the signals of all the charged-particle species simultaneously at high sensitivity and high resolution, thereby nearly instantaneously providing a complete, high-quality mass spectrum. The simultaneous nature of the measurement of ions stands in contrast to that of a scanning mass spectrometer, in which abundances of different masses are measured at successive times.

  15. Fast photocatalytic degradation of sulforhodamine B using ZnO:Cu nanorods

    NASA Astrophysics Data System (ADS)

    Raji, R.; Gopchandran, K. G.

    2018-02-01

    In this work, ZnO:Cu nanorods with tunable Cu content were successfully synthesized via co-precipitation method and investigations were made on the use of these nanorods as photocatalyst by observing the photodegradation of a representative dye pollutant of sulforhodamine B (SRB) under sunlight. The X-ray diffraction analysis and high resolution transmission electron microscopy showed that ZnO:Cu nanorods possess wurtzite phase with preferential growth along (101) plane. The formation of additional defect levels in these nanorods on doping with Cu and its dependence on the concentration of Cu were studied using photoluminescence and X-ray photoelectron spectroscopy. ZnO:Cu nanorods results in faster degradation of dye as compared to the undoped ZnO and is found that Cu doping enhances the photodegradation activity significantly and is highly sensitive to Cu doping level. The fast photocatalytic degradation is attributed to the fact that Cu ions promote the interfacial charge transfer and favors the effective charge separation of photogenerated electrons and holes generated during sunlight irradiation, increasing the rate of production of reactive oxygen species needed for the degradation of the dye. The chemical oxygen demand analysis of the dye solution after sunlight irradiation indicates that rate of mineralization is slower than the decoloration. The possible mechanism for degradation of dye under sunlight irradiation is described with a schematic. Additionally, the photostability of the ZnO:Cu nanorods was also tested through three repetitive cycles. This work suggest that the prepared ZnO:Cu nanorods are suitable for cost-effective water purification.

  16. Center-iodized graphene as an advanced anode material to significantly boost the performance of lithium-ion batteries.

    PubMed

    Chen, Jie; Xu, Mao-Wen; Wu, Jinggao; Li, Chang Ming

    2018-05-17

    Iodine edge-doped graphene can improve the capacity and stability of lithium-ion batteries (LIBs). Our theoretical calculations indicate that center-iodization can further significantly enhance the anode catalytic process. To experimentally prove the theoretical prediction, iodine-doped graphene materials were prepared by one-pot hydrothermal and ball-milling approaches to realize different doping-sites. Results show that the center-iodinated graphene (CIG) anode exhibits a remarkably high reversible capacity (1121 mA h g-1 after 180 cycles at 0.5 A g-1), long-cycle life (0.01% decay per cycle over 300 cycles at 1 A g-1) and high-rate capacity (374 mA h g-1 after 800 cycles at 8 A g-1), which greatly improves the performance of the edge-iodinated graphene anode and these results are in good agreement with the theoretical analysis. More importantly, the CIG anode also delivers a high-rate capacity and excellent cycling stability (279 mA h g-1 after 500 cycles at 10 A g-1) in full-cells. Both the theoretical analysis and experimental investigation reveal the enhancement mechanism, in which the center-iodization increases the surface charge for fast electron transfer rate, improves the conductivity for charge transport and rationalizes the pore structure for enhanced mass transport and ion insertion/desertion, thus resulting in a high rate capacity and long cycle life. This work not only discloses the critical role of catalytic sites including both amounts and site positions but also offers great potential for high-power rechargeable LIB applications.

  17. Frontiers of controlling energy levels at interfaces

    NASA Astrophysics Data System (ADS)

    Koch, Norbert

    The alignment of electron energy levels at interfaces between semiconductors, dielectrics, and electrodes determines the function and efficiency of all electronic and optoelectronic devices. Reliable guidelines for predicting the level alignment for a given material combination and methods to adjust the intrinsic energy landscape are needed to enable efficient engineering approaches. These are sufficiently understood for established electronic materials, e.g., Si, but for the increasing number of emerging materials, e.g., organic and 2D semiconductors, perovskites, this is work in progress. The intrinsic level alignment and the underlying mechanisms at interfaces between organic and inorganic semiconductors are discussed first. Next, methods to alter the level alignment are introduced, which all base on proper charge density rearrangement at a heterojunction. As interface modification agents we use molecular electron acceptors and donors, as well as molecular photochromic switches that add a dynamic aspect and allow device multifunctionality. For 2D semiconductors surface transfer doping with molecular acceptors/donors transpires as viable method to locally tune the Fermi-level position in the energy gap. The fundamental electronic properties of a prototypical 1D interface between intrinsic and p-doped 2D semiconductor regions are derived from local (scanning probe) and area-averaged (photoemission) spectroscopy experiments. Future research opportunities for attaining unsurpassed interface control through charge density management are discussed.

  18. Photon up-conversion production in Tb{sup 3+}–Yb{sup 3+} co-doped CaF{sub 2} phosphors prepared by combustion synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakov, Nikifor, E-mail: nikifor.gomez@univasf.edu.br; Guimarães, Renato B.; Maciel, Glauco S., E-mail: glauco@if.uff.br

    2016-02-15

    Graphical abstract: Up-conversion luminescence from Tb{sup 3+} obtained by energy transfer from Yb{sup 3+} pairs in CaF{sub 2} powder prepared by combustion synthesis. - Highlights: • Calcium fluoride (CaF{sub 2}) powders were prepared by combustion synthesis. • Rare-earth ions doped in this material were found in interstitial sites. • Cooperative up-conversion was observed in Tb{sup 3+}:Yb{sup 3+}:CaF{sub 2} powder. • Energy transfer between Tb{sup 3+} and pairs of Yb{sup 3+} was analyzed using rate equations. - Abstract: Calcium fluoride (CaF{sub 2}) crystalline powders were successfully prepared by the combustion synthesis method. The powder material containing luminescent rare-earth ions, more specificallymore » terbium (Tb{sup 3+}) and ytterbium (Yb{sup 3+}), was studied by X-ray diffraction, scanning electronic microscopy and optical spectroscopy. These ions are allocated in charge compensated interstitial positions of tetragonal (C{sub 4v}) and trigonal (C{sub 3v}) symmetry sites of the cubic (O{sub h}) CaF{sub 2} lattice. Up-conversion (UC) luminescence in Tb{sup 3+} was achieved using a low power diode laser operating at 975 nm. Tb{sup 3+} is insensitive to near-infrared radiation but UC can be achieved via energy transfer from pairs of Yb{sup 3+} ions to Tb{sup 3+} ions. The UC luminescence dynamics of Tb{sup 3+} was used to study the energy transfer mechanism.« less

  19. Signatures of pair-density wave order via measurement of the current-phase relation in La2-xBaxCuO4 Josephson junctions

    NASA Astrophysics Data System (ADS)

    Hamilton, David; Weis, Adam; Gu, Genda; van Harlingen, Dale

    La2-xBaxCuO4 (LBCO) exhibits a sharp drop in the transition temperature near x = 1 / 8 doping. In this regime, charge, spin and superconducting orders are intertwined and superconductivity is believed to exist in a pair-density wave (PDW) state, an ordered stripe phase characterized by sign changes in the superconducting order parameter between adjacent stripes. We present direct measurements of the current-phase relation (CPR) of Josephson junctions patterned onto crystals of LBCO at x = 1 / 8 and x = 0 . 155 (optimal doping) using a phase-sensitive Josephson interferometry technique. In contrast to the approximately sinusoidal CPR observed at optimal doping, we find the proportion of higher harmonics in the CPR increases at x = 1 / 8 doping, consistent with the formation of a PDW state. In parallel, we are carrying out measurements of the resistance noise in thin films of LBCO of various doping levels to identify features that signify the onset of charge order and changes in the dynamics of charge stripes.

  20. Change of carrier density at the pseudogap critical point of a cuprate superconductor.

    PubMed

    Badoux, S; Tabis, W; Laliberté, F; Grissonnanche, G; Vignolle, B; Vignolles, D; Béard, J; Bonn, D A; Hardy, W N; Liang, R; Doiron-Leyraud, N; Taillefer, Louis; Proust, Cyril

    2016-03-10

    The pseudogap is a partial gap in the electronic density of states that opens in the normal (non-superconducting) state of cuprate superconductors and whose origin is a long-standing puzzle. Its connection to the Mott insulator phase at low doping (hole concentration, p) remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate doping is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 tesla to show that Fermi-surface reconstruction by charge order in the cuprate YBa2Cu3Oy ends sharply at a critical doping p = 0.16 that is distinctly lower than the pseudogap critical point p* = 0.19 (ref. 11). This shows that the pseudogap and charge order are separate phenomena. We find that the change in carrier density n from n = 1 + p in the conventional metal at high doping (ref. 12) to n = p at low doping (ref. 13) starts at the pseudogap critical point. This shows that the pseudogap and the antiferromagnetic Mott insulator are linked.

  1. What's on the Surface? Physics and Chemistry of Delta-Doped Surfaces

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael

    2011-01-01

    Outline of presentation: 1. Detector surfaces and the problem of stability 2. Delta-doped detectors 3. Physics of Delta-doped Silicon 4. Chemistry of the Si-SiO2 Interface 5. Physics and Chemistry of Delta-doped Surfaces a. Compensation b. Inversion c. Quantum exclusion. Conclusions: 1. Quantum confinement of electrons and holes dominates the behavior of delta-doped surfaces. 2. Stability of delta-doped detectors: Delta-layer creates an approx 1 eV tunnel barrier between bulk and surface. 3. At high surface charge densities, Tamm-Shockley states form at the surface. 4. Surface passivation by quantum exclusion: Near-surface delta-layer suppresses T-S trapping of minority carriers. 5. The Si-SiO2 interface compensates the surface 6. For delta-layers at intermediate depth, surface inversion layer forms 7. Density of Si-SiO2 interface charge can be extremely high (>10(exp 14)/sq cm)

  2. Influence of Co2+ on electrical and optical behavior of Mn2+-doped ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Sakthivel, P.; Muthukumaran, S.

    2018-07-01

    Co2+-doped Zn0.98Mn0.02S quantum dots with various concentrations of Co2+ from 0% to 4% have been successfully synthesized by a simple co-precipitation method. X-ray diffraction (XRD) pattern confirmed the acquirement of cubic structure and phase purity in all the samples. The average crystallite size of the particles was ∼3 nm observed from XRD result. Surface morphology of the samples was studied using scanning electron microscope (SEM). TEM study was also taken to know the structural parameters of the samples. Fourier transform infrared (FTIR) spectra proved the presence of Co2+ and Mn2+ in ZnS host lattice. Energy dispersive X-ray (EDX) analysis confirmed the elemental composition with their normal stoichiometric ratio. In the dielectric study, dielectric dispersion and dielectric loss were increased with Co2+ composition due to the increase of carrier concentration. From the AC conductivity measurement, the maximum conductivity was observed for Co2+ = 2% due to their higher charge carrier density and it was decreased for Co2+ = 4% due to the scattering of charge carriers. Because of the low dielectric constant at higher frequency, these materials can be used for high-frequency applications. The variation of peak intensity and wavelength shifting in UV-vis absorption and transmittance were discussed on the basis of formation of secondary phase and variation of charge carrier density. The continuous red shift of energy gap by Co2+-doping is attributed to the direct energy transfer between excited states and 3d levels of Co2+ ions. Photoluminescence spectra showed the strong and broad blue emission bands between 468 nm and 483 nm. Since higher transmittance was observed for Co2+ = 2% addition, this material can be selected for optimum applications of optoelectronic devices.

  3. Sensitive optical bio-sensing of p-type WSe2 hybridized with fluorescent dye attached DNA by doping and de-doping effects

    NASA Astrophysics Data System (ADS)

    Han, Kyu Hyun; Kim, Jun Young; Jo, Seong Gi; Seo, Changwon; Kim, Jeongyong; Joo, Jinsoo

    2017-10-01

    Layered transition metal dichalcogenides, such as MoS2, WSe2 and WS2, are exciting two-dimensional (2D) materials because they possess tunable optical and electrical properties that depend on the number of layers. In this study, the nanoscale photoluminescence (PL) characteristics of the p-type WSe2 monolayer, and WSe2 layers hybridized with the fluorescent dye Cy3 attached to probe-DNA (Cy3/p-DNA), have been investigated as a function of the concentration of Cy3/DNA by using high-resolution laser confocal microscopy. With increasing concentration of Cy3/p-DNA, the measured PL intensity decreases and its peak is red-shifted, suggesting that the WSe2 layer has been p-type doped with Cy3/p-DNA. Then, the PL intensity of the WSe2/Cy3/p-DNA hybrid system increases and the peak is blue-shifted through hybridization with relatively small amounts of target-DNA (t-DNA) (50-100 nM). This effect originates from charge and energy transfer from the Cy3/DNA to the WSe2. For t-DNA detection, our systems using p-type WSe2 have the merit in terms of the increase of PL intensity. The p-type WSe2 monolayers can be a promising nanoscale 2D material for sensitive optical bio-sensing based on the doping and de-doping responses to biomaterials.

  4. Gradient doping - a case study with Ti-Fe2O3 towards an improved photoelectrochemical response.

    PubMed

    Srivastav, Anupam; Verma, Anuradha; Banerjee, Anamika; Khan, Saif A; Gupta, Mukul; Satsangi, Vibha Rani; Shrivastav, Rohit; Dass, Sahab

    2016-12-07

    The present study investigates the effect of gradient doping on modifying the photoelectrochemical response of Ti-doped Fe 2 O 3 photoanodes for their use in sunlight based water splitting for hydrogen evolution. The deposition of a thin film over the ITO (tin doped indium oxide) substrate was carried out using a spray pyrolysis method. The concentration of dopant was varied from 0.5-8.0 at% and two sets of samples were also prepared with low to high (0.5-8%) and high to low (8-0.5%) dopant concentrations in the direction towards the substrate. The prepared thin films were characterized using X-ray Diffractometry (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX) Spectroscopy, Secondary Ion Mass Spectroscopy (SIMS), X-ray Photoelectron Spectroscopy (XPS) and UV-visible Spectroscopy. The photoelectrochemical studies revealed that the deposition of dopant layers with a low to high concentration towards the substrate exhibited a highly improved photoresponse (200 times) in comparison to the pristine sample and a two fold enhancement in comparison to 2% Ti-doped Fe 2 O 3 . The improvement in the photoresponse has been attributed to the values of a high flat band potential, low resistance, high open circuit voltage, carrier separation efficiency, applied bias photon-to-current conversion efficiency (ABPE), and incident photon-to-current conversion efficiency (IPCE). A reduced charge transfer resistance has been demonstrated with Nyquist plots.

  5. Insight into the Role of Size Modulation on Tuning the Band Gap and Photocatalytic Performance of Semiconducting Nitrogen-Doped Graphene.

    PubMed

    Yang, Mei-Ling; Zhang, Nan; Lu, Kang-Qiang; Xu, Yi-Jun

    2017-04-04

    Considerable attention has been focused on transforming graphene (GR) into semiconducting GR by diverse strategies, which can perform as one type of promising photocatalyst toward various photoredox reactions. Herein, we report a facile alkali-assisted hydrothermal method for simultaneous tailoring of the lateral size of GR and nitrogen (N) doping into the GR matrix, by which small-sized N-doped GR (S-NGR) can be obtained. For comparison, large-sized N-doped GR (L-NGR) has also been achieved through the same hydrothermal treatment except for the addition of alkali. The photocatalytic activity test shows that S-NGR exhibits much higher activity than L-NGR toward the degradation of organic pollutants under visible-light irradiation. Structure-photoactivity correlation analysis and characterization suggest that the underlying origin for the significantly enhanced visible-light photoactivity of S-NGR in comparison with L-NGR can be assigned to the lateral size decrease in the NGR sheet, which is able to tune the band gap of semiconducting NGR, to facilitate the separation and transfer of photogenerated charge carriers, and to improve the adsorption capacity of NGR toward the reactant. It is expected that this work will cast new light on the judicious utilization of semiconducting GR with controlled size modulation and heteroatom doping to tune its physicochemical properties, thereby advancing further developments in the rational design of more efficient semiconducting GR materials for diverse applications in photocatalysis.

  6. Nano-sized Ni-doped carbon aerogel for supercapacitor.

    PubMed

    Lee, Yoon Jae; Jung, Ji Chul; Park, Sunyoung; Seo, Jeong Gil; Baeck, Sung-Hyeon; Yoon, Jung Rag; Yi, Jongheop; Song, In Kyu

    2011-07-01

    Carbon aerogel was prepared by polycondensation of resorcinol with formaldehyde using sodium carbonate as a catalyst in ambient conditions. Nano-sized Ni-doped carbon aerogel was then prepared by a precipitation method in an ethanol solvent. In order to elucidate the effect of nickel content on electrochemical properties, Ni-doped carbon aerogels (21, 35, 60, and 82 wt%) were prepared and their performance for supercapacitor electrode was investigated. Electrochemical properties of Ni-doped carbon aerogel electrodes were measured by cyclic voltammetry at a scan rate of 10 mV/sec and charge/discharge test at constant current of 1 A/g in 6 M KOH electrolyte. Among the samples prepared, 35 wt% Ni-doped carbon aerogel (Ni/CA-35) showed the highest capacitance (110 F/g) and excellent charge/discharge behavior. The enhanced capacitance of Ni-doped carbon aerogel was attributed to the faradaic redox reactions of nano-sized nickel oxide. Moreover, Ni-doped carbon aerogel exhibited quite stable cyclability, indicating long-term electrochemical stability.

  7. Fabrication and characterization of physically defined quantum dots on a boron-doped silicon-on-insulator substrate

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Seiya; Shimatani, Naoki; Kobayashi, Mizuki; Makino, Takaomi; Yamaoka, Yu; Kodera, Tetsuo

    2018-04-01

    We study hole transport properties in physically defined p-type silicon quantum dots (QDs) on a heavily doped silicon-on-insulator (SOI) substrate. We observe Coulomb diamonds using single QDs and estimate the charging energy as ∼1.6 meV. We obtain the charge stability diagram of double QDs using single QDs as a charge sensor. This is the first demonstration of charge sensing in p-type heavily doped silicon QDs. For future time-resolved measurements, we apply radio-frequency reflectometry using impedance matching of LC circuits to the device. We observe the resonance and estimate the capacitance as ∼0.12 pF from the resonant frequency. This value is smaller than that of the devices with top gates on nondoped SOI substrate. This indicates that high-frequency signals can be applied efficiently to p-type silicon QDs without top gates.

  8. Metal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes.

    PubMed

    Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I; Maruyama, Shigeo; Matsuo, Yutaka

    2016-08-16

    Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via 'sandwich transfer', and MoOx thermal doping via 'bridge transfer'. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%).

  9. Probing the electronic structure and photoactivation process of nitrogen-doped TiO2 using DRS, PL, and EPR.

    PubMed

    Zhang, Zizhong; Long, Jinlin; Xie, Xiuqiang; Lin, Huan; Zhou, Yangen; Yuan, Rusheng; Dai, Wenxin; Ding, Zhengxin; Wang, Xuxu; Fu, Xianzhi

    2012-04-23

    The electronic structure and photoactivation process in N-doped TiO(2) is investigated. Diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and electron paramagnetic resonance (EPR) are employed to monitor the change of optical absorption ability and the formation of N species and defects in the heat- and photoinduced N-doped TiO(2) catalyst. Under thermal treatment below 573 K in vacuum, no nitrogen dopant is removed from the doped samples but oxygen vacancies and Ti(3+) states are formed to enhance the optical absorption in the visible-light region, especially at wavelengths above 500 nm with increasing temperature. In the photoactivation processes of N-doped TiO(2), the DRS absorption and PL emission in the visible spectral region of 450-700 nm increase with prolonged irradiation time. The EPR results reveal that paramagnetic nitrogen species (N(s)·, oxygen vacancies with one electron (V(o)·), and Ti(3+) ions are produced with light irradiation and the intensity of N(s)· species is dependent on the excitation light wavelength and power. The combined characterization results confirm that the energy level of doped N species is localized above the valence band of TiO(2) corresponding to the main absorption band at 410 nm of N-doped TiO(2), but oxygen vacancies and Ti(3+) states as defects contribute to the visible-light absorption above 500 nm in the overall absorption of the doped samples. Thus, a detailed picture of the electronic structure of N-doped TiO(2) is proposed and discussed. On the other hand, the transfer of charge carriers between nitrogen species and defects is reversible on the catalyst surface. The presence of oxygen-vacancy-related defects leads to quenching of paramagnetic N(s)· species but they stabilize the active nitrogen species N(s)(-). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A facile green antisolvent approach to Cu2+-doped ZnO nanocrystals with visible-light-responsive photoactivities.

    PubMed

    Lu, Yi-Hsuan; Lin, Wei-Hao; Yang, Chao-Yao; Chiu, Yi-Hsuan; Pu, Ying-Chih; Lee, Min-Han; Tseng, Yuan-Chieh; Hsu, Yung-Jung

    2014-08-07

    An environmentally benign antisolvent method has been developed to prepare Cu(2+)-doped ZnO nanocrystals with controllable dopant concentrations. A room temperature ionic liquid, known as a deep eutectic solvent (DES), was used as the solvent to dissolve ZnO powders. Upon the introduction of the ZnO-containing DES into a bad solvent which shows no solvation to ZnO, ZnO was precipitated and grown due to the dramatic decrease of solubility. By adding Cu(2+) ions to the bad solvent, the growth of ZnO from the antisolvent process was accompanied by Cu(2+) introduction, resulting in the formation of Cu(2+)-doped ZnO nanocrystals. The as-prepared Cu(2+)-doped ZnO showed an additional absorption band in the visible range (400-800 nm), which conduced to an improvement in the overall photon harvesting efficiency. Time-resolved photoluminescence spectra, together with the photovoltage information, suggested that the doped Cu(2+) may otherwise trap photoexcited electrons during the charge transfer process, inevitably depressing the photoconversion efficiency. The photoactivity of Cu(2+)-doped ZnO nanocrystals for photoelectrochemical water oxidation was effectively enhanced in the visible region, which achieved the highest at 2.0 at% of Cu(2+). A further increase in the Cu(2+) concentration however led to a decrease in the photocatalytic performance, which was ascribed to the significant carrier trapping caused by the increased states given by excessive Cu(2+). The photocurrent action spectra illustrated that the enhanced photoactivity of the Cu(2+)-doped ZnO nanocrystals was mainly due to the improved visible photon harvesting achieved by Cu(2+) doping. These results may facilitate the use of transition metal ion-doped ZnO in other photoconversion applications, such as ZnO based dye-sensitized solar cells and magnetism-assisted photocatalytic systems.

  11. Metal Composition and Polyethylenimine Doping Capacity Effects on Semiconducting Metal Oxide-Polymer Blend Charge Transport.

    PubMed

    Huang, Wei; Guo, Peijun; Zeng, Li; Li, Ran; Wang, Binghao; Wang, Gang; Zhang, Xinan; Chang, Robert P H; Yu, Junsheng; Bedzyk, Michael J; Marks, Tobin J; Facchetti, Antonio

    2018-04-25

    Charge transport and film microstructure evolution are investigated in a series of polyethylenimine (PEI)-doped (0.0-6.0 wt%) amorphous metal oxide (MO) semiconductor thin film blends. Here, PEI doping generality is broadened from binary In 2 O 3 to ternary (e.g., In+Zn in IZO, In+Ga in IGO) and quaternary (e.g., In+Zn+Ga in IGZO) systems, demonstrating the universality of this approach for polymer electron doping of MO matrices. Systematic comparison of the effects of various metal ions on the electronic transport and film microstructure of these blends are investigated by combined thin-film transistor (TFT) response, AFM, XPS, XRD, X-ray reflectivity, and cross-sectional TEM. Morphological analysis reveals that layered MO film microstructures predominate in PEI-In 2 O 3 , but become less distinct in IGO and are not detectable in IZO and IGZO. TFT charge transport measurements indicate a general coincidence of a peak in carrier mobility (μ peak ) and overall TFT performance at optimal PEI doping concentrations. Optimal PEI loadings that yield μ peak values depend not only on the MO elemental composition but also, equally important, on the metal atomic ratios. By investigating the relationship between the MO energy levels and PEI doping by UPS, it is concluded that the efficiency of PEI electron-donation is highly dependent on the metal oxide matrix work function in cases where film morphology is optimal, as in the IGO compositions. The results of this investigation demonstrate the broad generality and efficacy of PEI electron doping applied to electronically functional metal oxide systems and that the resulting film microstructure, morphology, and energy level modifications are all vital to understanding charge transport in these amorphous oxide blends.

  12. Effect of tetravalent dopants on hematite nanostructure for enhanced photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Subramanian, Arunprabaharan; Gracia-Espino, Eduardo; Annamalai, Alagappan; Lee, Hyun Hwi; Lee, Su Yong; Choi, Sun Hee; Jang, Jum Suk

    2018-01-01

    In this paper, the influence of tetravalent dopants such as Si4+, Sn4+, Ti4+, and Zr4+ on the hematite (α-Fe2O3) nanostructure for enhanced photoelectrochemical (PEC) water splitting are reported. The tetravalent doping was performed on hydrothermally grown akaganeite (β-FeOOH) nanorods on FTO (fluorine-doped tin-oxide) substrates via a simple dipping method for which the respective metal-precursor solution was used, followed by a high-temperature (800° C) sintering in a box furnace. The photocurrent density for the pristine (hematite) photoanode is ∼0.81 mA/cm2 at 1.23 VRHE, with an onset potential of 0.72 VRHE; however, the tetravalent dopants on the hematite nanostructures alter the properties of the pristine photoanode. The Si4+-doped hematite photoanode showed a slight photocurrent increment without a changing of the onset potential of the pristine photoanode. The Sn4+- and Ti4+-doped hematite photoanodes, however, showed an anodic shift of the onset potential with the photocurrent increment at a higher applied potential. Interestingly, the Zr4+-doped hematite photoanode exhibited an onset potential that is similar to those of the pristine and Si4+-doped hematite, but a larger photocurrent density that is similar to those of the Sn4+- and Ti4+-doped photoanodes was recorded. The photoactivity of the doped photoanodes at 1.23 VRHE follows the order Zr > Sn > Ti > Si. The onset-potential shifts of the doped photoanodes were investigated using the Ab initio calculations that are well correlated with the experimental data. X-ray diffraction (XRD) and scanning-electron microscopy (FESEM) revealed that both the crystalline phase of the hematite and the nanorod morphology were preserved after the doping procedure. X-ray photoelectron spectroscopy (XPS) confirmed the presence of the tetravalent dopants on the hematite nanostructure. The charge-transfer resistance at the various interfaces of the doped photoanodes was studied using impedance spectroscopy. The doping on the hematite photoanodes was confirmed using the Mott-Schottky (MS) analysis.

  13. Suppression of the Hall number due to charge density wave order in high-Tc cuprates

    NASA Astrophysics Data System (ADS)

    Sharma, Girish; Nandy, S.; Taraphder, A.; Tewari, Sumanta

    2018-05-01

    Understanding the pseudogap phase in hole-doped high-temperature cuprate superconductors remains a central challenge in condensed-matter physics. From a host of recent experiments there is now compelling evidence of translational-symmetry-breaking charge density wave (CDW) order in a wide range of doping inside this phase. Two distinct types of incommensurate charge order, bidirectional at zero or low magnetic fields and unidirectional at high magnetic fields close to the upper critical field Hc 2, have been reported so far in approximately the same doping range between p ≃0.08 and p ≃0.16 . In concurrent developments, recent high-field Hall experiments have also revealed two indirect but striking signatures of Fermi surface reconstruction in the pseudogap phase, namely, a sign change of the Hall coefficient to negative values at low temperatures in the intermediate range of hole doping and a rapid suppression of the positive Hall number without a change in sign near optimal doping p ˜0.19 . We show that the assumption of a unidirectional incommensurate CDW (with or without a coexisting weak bidirectional order) at high magnetic fields near optimal doping and the coexistence of both types of orders of approximately equal magnitude at high magnetic fields in the intermediate range of doping may help explain the striking behavior of the low-temperature Hall effect in the entire pseudogap phase.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lingyan, E-mail: l.y.wang@mail.xjtu.edu.cn, E-mail: wren@mail.xjtu.edu.cn; Ren, Wei, E-mail: l.y.wang@mail.xjtu.edu.cn, E-mail: wren@mail.xjtu.edu.cn; Shi, Peng

    Lead-free ferroelectric un-doped and doped K{sub 0.5}Na{sub 0.5}NbO{sub 3} (KNN) films with different amounts of manganese (Mn) were prepared by a chemical solution deposition method. The thicknesses of all films are about 1.6 μm. Their phase, microstructure, leakage current behavior, and electrical properties were investigated. With increasing the amounts of Mn, the crystallinity became worse. Fortunately, the electrical properties were improved due to the decreased leakage current density after Mn-doping. The study on leakage behaviors shows that the dominant conduction mechanism at low electric field in the un-doped KNN film is ohmic mode and that at high electric field is space-charge-limitedmore » and Pool-Frenkel emission. After Mn doping, the dominant conduction mechanism at high electric field of KNN films changed single space-charge-limited. However, the introduction of higher amount of Mn into the KNN film would lead to a changed conduction mechanism from space-charge-limited to ohmic mode. Consequently, there exists an optimal amount of Mn doping of 2.0 mol. %. The 2.0 mol. % Mn doped KNN film shows the lowest leakage current density and the best electrical properties. With the secondary ion mass spectroscopies and x-ray photoelectron spectroscopy analyses, the homogeneous distribution in the KNN films and entrance of Mn element in the lattice of KNN perovskite structure were also confirmed.« less

  15. Molecular Doping the Topological Dirac Semimetal Na3Bi across the Charge Neutrality Point with F4-TCNQ.

    PubMed

    Edmonds, Mark T; Hellerstedt, Jack; O'Donnell, Kane M; Tadich, Anton; Fuhrer, Michael S

    2016-06-29

    We perform low-temperature transport and high-resolution photoelectron spectroscopy on 20 nm thin film topological Dirac semimetal Na3Bi grown by molecular beam epitaxy. We demonstrate efficient electron depletion ∼10(13) cm(-2) of Na3Bi via vacuum deposition of molecular F4-TCNQ without degrading the sample mobility. For samples with low as-grown n-type doping (1 × 10(12) cm(-2)), F4-TCNQ doping can achieve charge neutrality and even a net p-type doping. Photoelectron spectroscopy and density functional theory are utilized to investigate the behavior of F4-TCNQ on the Na3Bi surface.

  16. Enhanced specific heat jump in electron-doped CaMnO3: Spin ordering driven by charge separation

    NASA Astrophysics Data System (ADS)

    Moritomo, Y.; Machida, A.; Nishibori, E.; Takata, M.; Sakata, M.

    2001-12-01

    Temperature variation of the magnetic susceptibility χ, resistivity ρ, specific heat C, and lattice constants has been investigated in electron-doped CaMnO3. The parent CaMnO3 is an antiferromagnetic band insulator, and shows an insulator-metal crossover with electron doping, together with an enhanced ferromagnetic component. We have found an enhancement of the specific heat jump ΔC at the spin-ordering temperature Tspin and interpreted the enhancement in terms of the intrinsic charge separation.

  17. Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors

    NASA Astrophysics Data System (ADS)

    Dong, Jinyang; Lu, Gang; Wu, Fan; Xu, Chenxi; Kang, Xiaohong; Cheng, Zhiming

    2018-01-01

    A flower-like MnO2 nanocomposite embedded in nitrogen-doped graphene (NG-MnO2) is fabricated by a hydrothermal method. It is a mesoporous nanomaterial with a pore size of approximately 0.765 cm3 g-1 and specific surface area of 201.8 m2 g-1. NG-MnO2 exhibits a superior average specific capacitance of 220 F g-1 at 0.5 A g-1 and a preferable capacitance of 189.1 F g-1, even at 10 A g-1. After 1000 cycles, over 98.3% of the original specific capacitance retention of the NG-MnO2 electrode is maintained, and it can even activate a red light emitting diode (LED) after being charged, which indicates that it has excellent cycling stability as an electrode material. This prominent electrochemical performance is primarily attributed to the nitrogen doping and mesoporous structures of NG-MnO2, which can be attributed to its numerous electroactive sites as well as faster ion and electron transfer for redox reactions than general graphene-MnO2 nanocomposites (G-MnO2).

  18. A Ni-Doped Carbon Nanotube Sensor for Detecting Oil-Dissolved Gases in Transformers

    PubMed Central

    Lu, Jia; Zhang, Xiaoxing; Wu, Xiaoqing; Dai, Ziqiang; Zhang, Jinbin

    2015-01-01

    C2H2, C2H4, and C2H6 are important oil-dissolved gases in power transformers. Detection of the composition and content of oil-dissolved gases in transformers is very significant in the diagnosis and assessment of the state of transformer operations. The commonly used oil-gas analysis methods have many disadvantages, so this paper proposes a Ni-doped carbon nanotube (Ni-CNT) gas sensor to effectively detect oil-dissolved gases in a transformer. The gas-sensing properties of the sensor to C2H2, C2H4, and C2H6 were studied using the test device. Based on the density functional theory (DFT) the adsorption behaviors of the three gases on intrinsic carbon nanotubes (CNTs) and Ni-CNTs were calculated. The adsorption energy, charge transfer, and molecular frontier orbital of the adsorption system were also analyzed. Results showed that the sensitivity of the CNT sensor to the three kinds of gases was in the following order: C2H2 > C2H4 > C2H6. Moreover, the doped Ni improved the sensor response, and the sensor response and gas concentration have a good linear relationship. PMID:26066989

  19. A Ni-Doped Carbon Nanotube Sensor for Detecting Oil-Dissolved Gases in Transformers.

    PubMed

    Lu, Jia; Zhang, Xiaoxing; Wu, Xiaoqing; Dai, Ziqiang; Zhang, Jinbin

    2015-06-09

    C2H2, C2H4, and C2H6 are important oil-dissolved gases in power transformers. Detection of the composition and content of oil-dissolved gases in transformers is very significant in the diagnosis and assessment of the state of transformer operations. The commonly used oil-gas analysis methods have many disadvantages, so this paper proposes a Ni-doped carbon nanotube (Ni-CNT) gas sensor to effectively detect oil-dissolved gases in a transformer. The gas-sensing properties of the sensor to C2H2, C2H4, and C2H6 were studied using the test device. Based on the density functional theory (DFT) the adsorption behaviors of the three gases on intrinsic carbon nanotubes (CNTs) and Ni-CNTs were calculated. The adsorption energy, charge transfer, and molecular frontier orbital of the adsorption system were also analyzed. Results showed that the sensitivity of the CNT sensor to the three kinds of gases was in the following order: C2H2 > C2H4 > C2H6. Moreover, the doped Ni improved the sensor response, and the sensor response and gas concentration have a good linear relationship.

  20. Low Dark-Current, High Current-Gain of PVK/ZnO Nanoparticles Composite-Based UV Photodetector by PN-Heterojunction Control.

    PubMed

    Lee, Sang-Won; Cha, Seung-Hwan; Choi, Kyung-Jae; Kang, Byoung-Ho; Lee, Jae-Sung; Kim, Sae-Wan; Kim, Ju-Seong; Jeong, Hyun-Min; Gopalan, Sai-Anand; Kwon, Dae-Hyuk; Kang, Shin-Won

    2016-01-07

    We propose a solution-processable ultraviolet (UV) photodetector with a pn-heterojunction hybrid photoactive layer (HPL) that is composed of poly-n-vinylcarbazole (PVK) as a p-type polymer and ZnO nanoparticles (NPs) as an n-type metal oxide. To observe the effective photo-inducing ability of the UV photodetector, we analyzed the optical and electrical properties of HPL which is controlled by the doping concentration of n-type ZnO NPs in PVK matrix. Additionally, we confirmed that the optical properties of HPL dominantly depend on the ZnO NPs from the UV-vis absorption and the photoluminescence (PL) spectral measurements. This HPL can induce efficient charge transfer in the localized narrow pn-heterojunction domain and increases the photocurrent gain. It is essential that proper doping concentration of n-type ZnO NPs in polymer matrix is obtained to improve the performance of the UV photodetector. When the ZnO NPs are doped with the optimized concentration of 3.4 wt.%, the electrical properties of the photocurrent are significantly increased. The ratio of the photocurrent was approximately 10³ higher than that of the dark current.

  1. Low Dark-Current, High Current-Gain of PVK/ZnO Nanoparticles Composite-Based UV Photodetector by PN-Heterojunction Control

    PubMed Central

    Lee, Sang-Won; Cha, Seung-Hwan; Choi, Kyung-Jae; Kang, Byoung-Ho; Lee, Jae-Sung; Kim, Sae-Wan; Kim, Ju-Seong; Jeong, Hyun-Min; Gopalan, Sai-Anand; Kwon, Dae-Hyuk; Kang, Shin-Won

    2016-01-01

    We propose a solution-processable ultraviolet (UV) photodetector with a pn-heterojunction hybrid photoactive layer (HPL) that is composed of poly-n-vinylcarbazole (PVK) as a p-type polymer and ZnO nanoparticles (NPs) as an n-type metal oxide. To observe the effective photo-inducing ability of the UV photodetector, we analyzed the optical and electrical properties of HPL which is controlled by the doping concentration of n-type ZnO NPs in PVK matrix. Additionally, we confirmed that the optical properties of HPL dominantly depend on the ZnO NPs from the UV-vis absorption and the photoluminescence (PL) spectral measurements. This HPL can induce efficient charge transfer in the localized narrow pn-heterojunction domain and increases the photocurrent gain. It is essential that proper doping concentration of n-type ZnO NPs in polymer matrix is obtained to improve the performance of the UV photodetector. When the ZnO NPs are doped with the optimized concentration of 3.4 wt.%, the electrical properties of the photocurrent are significantly increased. The ratio of the photocurrent was approximately 103 higher than that of the dark current. PMID:26751453

  2. Structural, Morphological, Optical and Photocatalytic Properties of Y, N-Doped and Codoped TiO2 Thin Films

    PubMed Central

    Hamden, Zeineb; Conceição, David; Boufi, Sami; Vieira Ferreira, Luís Filipe; Bouattour, Soraa

    2017-01-01

    Pure TiO2, Y-N single-doped and codoped TiO2 powders and thin films deposited on glass beads were successfully prepared using dip-coating and sol-gel methods. The samples were analyzed using grazing angle X-ray diffraction (GXRD), Raman spectroscopy, time resolved luminescence, ground state diffuse reflectance absorption and scanning electron microscopy (SEM). According to the GXRD patterns and micro-Raman spectra, only the anatase form of TiO2 was made evident. Ground state diffuse reflectance absorption studies showed that doping with N or codoping with N and Y led to an increase of the band gap. Laser induced luminescence analysis revealed a decrease in the recombination rate of the photogenerated holes and electrons. The photocatalytic activity of supported catalysts, toward the degradation of toluidine, revealed a meaningful enhancement upon codoping samples at a level of 2% (atomic ratio). The photocatalytic activity of the material and its reactivity can be attributed to a reduced, but significant, direct photoexcitation of the semiconductor by the halogen lamp, together with a charge-transfer-complex mechanism, or with the formation of surface oxygen vacancies by the N dopant atoms. PMID:28772962

  3. Structural, Morphological, Optical and Photocatalytic Properties of Y, N-Doped and Codoped TiO₂ Thin Films.

    PubMed

    Hamden, Zeineb; Conceição, David; Boufi, Sami; Vieira Ferreira, Luís Filipe; Bouattour, Soraa

    2017-05-31

    Pure TiO₂, Y-N single-doped and codoped TiO₂ powders and thin films deposited on glass beads were successfully prepared using dip-coating and sol-gel methods. The samples were analyzed using grazing angle X-ray diffraction (GXRD), Raman spectroscopy, time resolved luminescence, ground state diffuse reflectance absorption and scanning electron microscopy (SEM). According to the GXRD patterns and micro-Raman spectra, only the anatase form of TiO₂ was made evident. Ground state diffuse reflectance absorption studies showed that doping with N or codoping with N and Y led to an increase of the band gap. Laser induced luminescence analysis revealed a decrease in the recombination rate of the photogenerated holes and electrons. The photocatalytic activity of supported catalysts, toward the degradation of toluidine, revealed a meaningful enhancement upon codoping samples at a level of 2% (atomic ratio). The photocatalytic activity of the material and its reactivity can be attributed to a reduced, but significant, direct photoexcitation of the semiconductor by the halogen lamp, together with a charge-transfer-complex mechanism, or with the formation of surface oxygen vacancies by the N dopant atoms.

  4. Electrolyte-gated transistors based on phenyl-C61-butyric acid methyl ester (PCBM) films: bridging redox properties, charge carrier transport and device performance.

    PubMed

    Lan, Tian; Soavi, Francesca; Marcaccio, Massimo; Brunner, Pierre-Louis; Sayago, Jonathan; Santato, Clara

    2018-05-24

    The n-type organic semiconductor phenyl-C61-butyric acid methyl ester (PCBM), a soluble fullerene derivative well investigated for organic solar cells and transistors, can undergo several successive reversible, diffusion-controlled, one-electron reduction processes. We exploited such processes to shed light on the correlation between electron transfer properties, ionic and electronic transport as well as device performance in ionic liquid (IL)-gated transistors. Two ILs were considered, based on bis(trifluoromethylsulfonyl)imide [TFSI] as the anion and 1-ethyl-3-methylimidazolium [EMIM] or 1-butyl-1-methylpyrrolidinium [PYR14] as the cation. The aromatic structure of [EMIM] and its lower steric hindrance with respect to [PYR14] favor a 3D (bulk) electrochemical doping. As opposed to this, for [PYR14] the doping seems to be 2D (surface-confined). If the n-doping of the PCBM is pursued beyond the first electrochemical process, the transistor current vs. gate-source voltage plots in [PYR14][TFSI] feature a maximum that points to the presence of finite windows of high conductivity in IL-gated PCBM transistors.

  5. Lag and light-transfer characteristics of amorphous selenium photoconductive film with tellurium-doped layer

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2016-07-01

    Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) films have been used for highly sensitive imaging devices. To study a-Se HARP films for a solid-state image sensor, current-voltage, lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films are investigated. Also, to clarify a suitable Te-doped a-Se layer thickness in the a-Se photoconductor, we considered the effects of Te-doped layer thickness on the lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films. The threshold field, at which avalanche multiplication occurs in the a-Se HARP targets, decreases when the Te-doped layer thickness increases. The lag of 0.4-µm-thick a-Se HARP targets with Te-doped layers is higher than that of the target without Te doping. The lag of the targets with Te-doped layers is caused by the electrons trapped in the Te-doped layers within the 0.4-µm-thick a-Se HARP films. From the results of the spectral response measurement of about 15 min, the 0.4-µm-thick a-Se HARP targets with Te-doped layers of 90 and 120 nm are observed to be unstable owing to the electrons trapped in the Te-doped a-Se layer. From the light-transfer characteristics of 0.4-µm-thick a-Se HARP targets, as the slope at the operating point of signal current-voltage characteristics in the avalanche mode increases, the γ of the a-Se HARP targets decreases. Considering the effects of dark current on the lag and spectral response characteristics, a Te-doped layer of 60 nm is suitable for 0.4-µm-thick a-Se HARP films.

  6. Quantum dot sensitized solar cells fabricated by means of a novel inorganic spinel nanoparticle

    NASA Astrophysics Data System (ADS)

    Jalali-Moghadam, Elnaz; Shariatinia, Zahra

    2018-05-01

    A novel inorganic spinel compound with formula Zn0.5184La0.7859Ce0.3994Al1.0026O4 (ZLCA) was synthesized by the gel combustion method and its exact formula was approved by the XPS analysis. The TEM image exhibited that the ZLCA NPs were very fine, spherical and slightly agglomerated particles with their particle size changed in the range of ∼5-20 nm. Then, several quantum dot-sensitized solar cells (QDSSCs) were fabricated using this new compound which was doped into the TiO2 pastes of photoanodes and subsequently the CdS, CdS and ZnS layers were deposited on the ZLCA-doped TiO2 layer by the SILAR and the CBD methods. Results indicated that the photovoltaic parameters of the optimized cell (η = 3.50%, JSC = 11.690 mA·cm-2) were boosted compared with those of the reference cell which was free of ZLCA NPs (η = 2.14%, JSC = 7.075 mA·cm-2) indicating rather high improvements of approximately 64 and 65% in the efficiency and short-circuit current density, respectively. The UV-Vis absorption spectra of all nanocomposite photoanodes revealed broad absorption bands between ∼320 and 600 nm. The lowest intensity of the photoluminescence peak for the CdSe cell fabricated using 0.6%ZLCA suggested that it had the least charge recombination and the easiest electron transfer which was confirmed by the J-V and efficiency results. The Electrochemical impedance spectra (EIS) illustrated that the charge transfer resistances (RCT) of cells were dropped by addition of the ZLCA into the TiO2 compared with that of the cell made without using ZLCA NPs. The RCT resistance was 1900 Ω for pure TiO2 but it was decreased to 81.6 Ω in the optimized cell containing 0.6%wt of ZLCA. Thus, it could be decided that doping 0.6%wt ZLCA was appropriate to attain suitable photocurrent efficiency for the QDSSCs because it was used in a minimum quantity to accelerate the electron transport, decrease the recombination and increase the cell efficiency.

  7. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques.

    PubMed

    Bolker, Asaf; Saguy, Cecile; Kalish, Rafi

    2014-09-26

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND's size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

  8. Conductive Boron-Doped Graphene as an Ideal Material for Electrocatalytically Switchable and High-Capacity Hydrogen Storage.

    PubMed

    Tan, Xin; Tahini, Hassan A; Smith, Sean C

    2016-12-07

    Electrocatalytic, switchable hydrogen storage promises both tunable kinetics and facile reversibility without the need for specific catalysts. The feasibility of this approach relies on having materials that are easy to synthesize, possessing good electrical conductivities. Graphitic carbon nitride (g-C 4 N 3 ) has been predicted to display charge-responsive binding with molecular hydrogen-the only such conductive sorbent material that has been discovered to date. As yet, however, this conductive variant of graphitic carbon nitride is not readily synthesized by scalable methods. Here, we examine the possibility of conductive and easily synthesized boron-doped graphene nanosheets (B-doped graphene) as sorbent materials for practical applications of electrocatalytically switchable hydrogen storage. Using first-principle calculations, we find that the adsorption energy of H 2 molecules on B-doped graphene can be dramatically enhanced by removing electrons from and thereby positively charging the adsorbent. Thus, by controlling charge injected or depleted from the adsorbent, one can effectively tune the storage/release processes which occur spontaneously without any energy barriers. At full hydrogen coverage, the positively charged BC 5 achieves high storage capacities up to 5.3 wt %. Importantly, B-doped graphene, such as BC 49 , BC 7 , and BC 5 , have good electrical conductivity and can be easily synthesized by scalable methods, which positions this class of material as a very good candidate for charge injection/release. These predictions pave the route for practical implementation of electrocatalytic systems with switchable storage/release capacities that offer high capacity for hydrogen storage.

  9. H2S adsorption and dissociation on NH-decorated graphene: A first principles study

    NASA Astrophysics Data System (ADS)

    Faye, Omar; Eduok, Ubong; Szpunar, Jerzy; Samoura, Almoustapha; Beye, Aboubaker

    2018-02-01

    The removal of H2S gas poses an emerging environmental concern because of the lack of knowledge of an efficient adsorbent. A detailed theoretical study of H2S adsorption and dissociation on NH-doped graphene (GNH) has been carried out by means of density theory calculations. Our results reveal that the adsorption of H2S molecule on GNH composite is enhanced by the presence of active site such as the NH radicals. These NH radical sites formed NHsbnd H bonds and increase the charge transfer from H2S to GNH. The dissociation of the adsorbed H2S molecule leads the chemisorption of SH radical via H-transfer to GNH, while the formation of GNH2 at a weight percent of 3.76 wt% of NH radical is an endothermic process with an energy of 0.299 eV and 0.358 eV for ortho and para-position respectively. However, at 7.25 wt% NH radical, we observed a complete dissociation of H2S molecule with an energy released of 0.711 eV for the chemisorbed S atom on GN2H4. Moreover, the H-transfer of the second H atom of H2S molecule at 3.76 wt% was energetic unfavorable. The trend of predicted results within this study reveals that NH-doped graphene (GNH) successfully adsorbed and eliminated of H2S molecule; this work unveils definitive theoretical procedures which can be tested and validated experimentally.

  10. Effects of emission layer doping on the spatial distribution of charge and host recombination rate density in organic light emitting devices: A numerical study

    NASA Astrophysics Data System (ADS)

    Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo; Peng, Yingquan

    2013-12-01

    Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs.

  11. Electronic structure of charge- and spin-controlled Sr(1-(x+y))La(x+y)Ti(1-x)Cr(x)O3.

    PubMed

    Iwasawa, H; Yamakawa, K; Saitoh, T; Inaba, J; Katsufuji, T; Higashiguchi, M; Shimada, K; Namatame, H; Taniguchi, M

    2006-02-17

    We present the electronic structure of Sr(1-(x+y))La(x+y)Ti(1-x)Cr(x)O3 investigated by high-resolution photoemission spectroscopy. In the vicinity of the Fermi level, it was found that the electronic structure was composed of a Cr 3d local state with the t(2g)3 configuration and a Ti 3d itinerant state. The energy levels of these Cr and Ti 3d states are well interpreted by the difference of the charge-transfer energy of both ions. The spectral weight of the Cr 3d state is completely proportional to the spin concentration x irrespective of the carrier concentration y, indicating that the spin density can be controlled by x as desired. In contrast, the spectral weight of the Ti 3d state is not proportional to y, depending on the amount of Cr doping.

  12. Structural and electronic phase transitions of MoTe2 induced by Li ionic gating

    NASA Astrophysics Data System (ADS)

    Hwang, Jeongwoon; Zhang, Chenxi; Cho, Kyeongjae

    2017-12-01

    Monolayer MoTe2 has semiconducting and semimetallic phases with small energy difference, and the relative stability is readily reversed by gating. By first-principles calculations, we investigate the changes in atomic structure, electronic structure, and relative stability of two phases induced by Li ionic gating. To model Li ionic gating, we employ two approaches; one is direct adsorption of Li on MoTe2 and the other is introducing non-contacting Li plate over MoTe2. We show phonon instability in H-phase of MoTe2 with increasing the amount of charge transfer from Li, which implies a large electron-phonon coupling in the system resulting in a charge density wave state. Structural distortion is also observed in highly doped T d phase. The transition energy barrier from distorted H phase to distorted T d phase is reduced considerably compared to that of pristine MoTe2.

  13. Mobility enhancement in graphene transistors on low temperature pulsed laser deposited boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uddin, Md Ahsan, E-mail: uddin2@email.sc.edu, E-mail: gkoley@clemson.edu; Koley, Goutam, E-mail: uddin2@email.sc.edu, E-mail: gkoley@clemson.edu; Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208

    2015-11-16

    Low temperature pulsed laser deposited (PLD) ultrathin boron nitride (BN) on SiO{sub 2} was investigated as a dielectric for graphene electronics, and a significant enhancement in electrical transport properties of graphene/PLD BN compared to graphene/SiO{sub 2} has been observed. Graphene synthesized by chemical vapor deposition and transferred on PLD deposited and annealed BN exhibited up to three times higher field effect mobility compared to graphene on the SiO{sub 2} substrate. Graphene field effect transistor devices fabricated on 5 nm BN/SiO{sub 2} (300 nm) yielded maximum hole and electron mobility of 4980 and 4200 cm{sup 2}/V s, respectively. In addition, significant improvement in carriermore » homogeneity and reduction in extrinsic doping in graphene on BN has been observed. An average Dirac point of 3.5 V and residual carrier concentration of 7.65 × 10{sup 11 }cm{sup −2} was observed for graphene transferred on 5 nm BN at ambient condition. The overall performance improvement on PLD BN can be attributed to dielectric screening of charged impurities, similar crystal structure and phonon modes, and reduced substrate induced doping.« less

  14. Exploration of sensing of nitrogen dioxide and ozone molecules using novel TiO2/Stanene heterostructures employing DFT calculations

    NASA Astrophysics Data System (ADS)

    Abbasi, Amirali; Sardroodi, Jaber Jahanbin

    2018-06-01

    Based on the density functional theory (DFT) calculations, we explored the sensing capabilities and electronic structures of TiO2/Stanene heterostructures as novel and highly efficient materials for detection of toxic NO2 and O3 molecules in the environment. Studied gas molecules were positioned at different sites and orientations towards the nanocomposite, and the adsorption process was examined based on the most stable structures. We found that both of these molecules are chemically adsorbed on the TiO2/Stanene heterostructures. The calculations of the adsorption energy indicate that the fivefold coordinated titanium sites of the TiO2/Stanene are the most stable sites for the adsorption of NO2 and O3 molecules. The side oxygen atoms of the gas molecules were found to be chemically bonded to these titanium atoms. The adsorption of gas molecules is an exothermic process, and the adsorption on the pristine nanocomposite is more favorable in energy than that on the nitrogen-doped nanocomposite. The effects of van der Waals interactions were taken into account, which indicate the adsorption energies were increased for the most sable configurations. The gas sensing response and charge transfers were analyzed in detail. The pristine nanocomposites have better sensing response than the doped ones. The spin density distribution plots indicate that the magnetization was mainly located over the adsorbed gas molecules. Mulliken charge analysis reveals that both NO2 and O3 molecules behave as charge acceptors, as evidenced by the accumulation of electronic charges on the adsorbed molecules predicted by charge density difference calculations. Our DFT results provide a theoretical basis for an innovative gas sensor system designed from a sensitive TiO2/Stanene heterostructures for efficient detection of harmful air pollutants such as NO2 and O3.

  15. Electrostatic modification of novel materials

    NASA Astrophysics Data System (ADS)

    Ahn, C. H.; Bhattacharya, A.; di Ventra, M.; Eckstein, J. N.; Frisbie, C. Daniel; Gershenson, M. E.; Goldman, A. M.; Inoue, I. H.; Mannhart, J.; Millis, Andrew J.; Morpurgo, Alberto F.; Natelson, Douglas; Triscone, Jean-Marc

    2006-10-01

    Application of the field-effect transistor principle to novel materials to achieve electrostatic doping is a relatively new research area. It may provide the opportunity to bring about modifications of the electronic and magnetic properties of materials through controlled and reversible changes of the carrier concentration without modifying the level of disorder, as occurs when chemical composition is altered. As well as providing a basis for new devices, electrostatic doping can in principle serve as a tool for studying quantum critical behavior, by permitting the ground state of a system to be tuned in a controlled fashion. In this paper progress in electrostatic doping of a number of materials systems is reviewed. These include structures containing complex oxides, such as cuprate superconductors and colossal magnetoresistive compounds, organic semiconductors, in the form of both single crystals and thin films, inorganic layered compounds, single molecules, and magnetic semiconductors. Recent progress in the field is discussed, including enabling experiments and technologies, open scientific issues and challenges, and future research opportunities. For many of the materials considered, some of the results can be anticipated by combining knowledge of macroscopic or bulk properties and the understanding of the field-effect configuration developed during the course of the evolution of conventional microelectronics. However, because electrostatic doping is an interfacial phenomenon, which is largely an unexplored field, real progress will depend on the development of a better understanding of lattice distortion and charge transfer at interfaces in these systems.

  16. Role of Cu-Ion Doping in Cu-α-MnO 2 Nanowire Electrocatalysts for the Oxygen Reduction Reaction

    DOE PAGES

    Davis, Danae J.; Lambert, Timothy N.; Vigil, Julian A.; ...

    2014-07-09

    The role of Cu-ion doping in α-MnO 2 electrocatalysts for the oxygen reduction reaction in alkaline electrolyte was investigated. Copper doped α-MnO 2 nanowires (Cu-α-MnO 2) were prepared with varying amounts of Cu 2+ using a solvothermal method. The electrocatalytic dataindicates that Cu-α-MnO 2 nanowires have higher terminal current densities, enhanced kinetic rate constants, and improved charge transfer resistances that trend with Cu-content, exceeding values attained by α-MnO 2 alone. The observed improvement in catalytic behavior correlates with an increase in Mn 3+ content for the Cu-α-MnO 2 nanowires. The Mn 3+/Mn 4+ couple is themediator for the rate-limiting redoxmore » driven O 2 -/OH - exchange. It is proposed that O 2 adsorbs viaan axial site (the e g orbital on the Mn 3+ d 4 ion) at the surface, or at edge defects, of the nanowireand that the increase in covalent nature of the nanowire with Cu-ion doping leads to stabilization of O 2 adsorbates and faster rates of reduction. This work is applicable to other manganese oxide electrocatalysts and shows for the first time there is a correlation for manganese oxides between electrocatalytic activity for the ORR in alkaline electrolyte and an increase in Mn 3+ character of the oxide.« less

  17. Gutzwiller charge phase diagram of cuprates, including electron–phonon coupling effects

    DOE PAGES

    Markiewicz, R. S.; Seibold, G.; Lorenzana, J.; ...

    2015-02-01

    Besides significant electronic correlations, high-temperature superconductors also show a strong coupling of electrons to a number of lattice modes. Combined with the experimental detection of electronic inhomogeneities and ordering phenomena in many high-T c compounds, these features raise the question as to what extent phonons are involved in the associated instabilities. Here we address this problem based on the Hubbard model including a coupling to phonons in order to capture several salient features of the phase diagram of hole-doped cuprates. Charge degrees of freedom, which are suppressed by the large Hubbard U near half-filling, are found to become active atmore » a fairly low doping level. We find that possible charge order is mainly driven by Fermi surface nesting, with competition between a near-(π, π) order at low doping and antinodal nesting at higher doping, very similar to the momentum structure of magnetic fluctuations. The resulting nesting vectors are generally consistent with photoemission and tunneling observations, evidence for charge density wave order in YBa₂Cu₃O 7-δ including Kohn anomalies, and suggestions of competition between one- and two-q-vector nesting.« less

  18. Quantum dot laser optimization: selectively doped layers

    NASA Astrophysics Data System (ADS)

    Korenev, Vladimir V.; Konoplev, Sergey S.; Savelyev, Artem V.; Shernyakov, Yurii M.; Maximov, Mikhail V.; Zhukov, Alexey E.

    2016-08-01

    Edge emitting quantum dot (QD) lasers are discussed. It has been recently proposed to use modulation p-doping of the layers that are adjacent to QD layers in order to control QD's charge state. Experimentally it has been proven useful to enhance ground state lasing and suppress the onset of excited state lasing at high injection. These results have been also confirmed with numerical calculations involving solution of drift-diffusion equations. However, deep understanding of physical reasons for such behavior and laser optimization requires analytical approaches to the problem. In this paper, under a set of assumptions we provide an analytical model that explains major effects of selective p-doping. Capture rates of elections and holes can be calculated by solving Poisson equations for electrons and holes around the charged QD layer. The charge itself is ruled by capture rates and selective doping concentration. We analyzed this self-consistent set of equations and showed that it can be used to optimize QD laser performance and to explain underlying physics.

  19. Luminescent properties and energy transfer of luminescent carbon dots assembled mesoporous Al(2)O(3): Eu(3) co-doped materials for temperature sensing.

    PubMed

    He, Youling; He, Jiangling; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu

    2017-06-15

    Owning to the hydrogen-band interactions, blue-light-emitting luminescent carbon dots (CDs) synthesized by one-pot hydrothermal treatment were successfully assembled into Eu 3+ doped mesoporous aluminas (MAs). Interesting, dual-emissive CDs/MAs co-doped materials with higher quantum yield (QY), long-term stability, mesoporous structure, high thermal stability, and large surface areas were obtained. Furthermore, the obtained CDs/MAs co-doped materials possessed tunable color, and excellent temperature sensitivity due to the existing of energy transfer between CDs and Eu 3+ ion. The energy transfer efficiency (η) and energy transfer probability (P) for CDs/Eu 3+ co-doped materials possessed a monotonous tendency with the change of Eu 3+ content. More importantly, the dual-emissive colors can be regularly adjusted through regulating their excitation wavelength or relative mass ratio. In addition, the emission intensity of the CDs/MAs co-doped materials gradually decreased with increasing temperature showing the clear temperature dependence, this dual-emissive thermometer was with high sensitivity, owning a great fitted curve in the range from 100 to 360K under a single wavelength excitation. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A Novel Green TiO2 Photocatalyst with a Surface Charge-Transfer Complex of Ti and Hydrazine Groups.

    PubMed

    Tian, Lihong; Xu, Jilian; Alnafisah, Abrar; Wang, Ran; Tan, Xinyu; Oyler, Nathan A; Liu, Lei; Chen, Xiaobo

    2017-04-19

    The optical property of TiO 2 plays an important role in its various and promising photocatalytic applications. Previous efforts in improving its optical properties include doping with various metal and/or non-metal elements, coupling with other colorful semiconductors or molecules, and hydrogenating to crystalline/disordered core/shell nanostructures. Here, we report a beautiful green TiO 2 achieved by forming the charge-transfer complex of colorless hydrazine groups and surface Ti 4+ , which extends the optical absorption into the near infrared region (≈1100 nm, 1.05 eV). It shows an enhanced photocatalytic performance in hydrogen generation under simulated sunlight, and degradation of organic pollution under visible light due to an impurity state (about 0.28 eV) resulting in fast electron-hole separation and injection of electrons from the ligand to the conduction band of TiO 2 . This study demonstrates an alternative approach to tune the optical, impurity state and photocatalytic properties of TiO 2 nanoparticles and we believe this will spur a wide interest in related materials and applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. BiVO4/WO3/SnO2 Double-Heterojunction Photoanode with Enhanced Charge Separation and Visible-Transparency for Bias-Free Solar Water-Splitting with a Perovskite Solar Cell.

    PubMed

    Baek, Ji Hyun; Kim, Byeong Jo; Han, Gill Sang; Hwang, Sung Won; Kim, Dong Rip; Cho, In Sun; Jung, Hyun Suk

    2017-01-18

    Coupling dissimilar oxides in heterostructures allows the engineering of interfacial, optical, charge separation/transport and transfer properties of photoanodes for photoelectrochemical (PEC) water splitting. Here, we demonstrate a double-heterojunction concept based on a BiVO 4 /WO 3 /SnO 2 triple-layer planar heterojunction (TPH) photoanode, which shows simultaneous improvements in the charge transport (∼93% at 1.23 V vs RHE) and transmittance at longer wavelengths (>500 nm). The TPH photoanode was prepared by a facile solution method: a porous SnO 2 film was first deposited on a fluorine-doped tin oxide (FTO)/glass substrate followed by WO 3 deposition, leading to the formation of a double layer of dense WO 3 and a WO 3 /SnO 2 mixture at the bottom. Subsequently, a BiVO 4 nanoparticle film was deposited by spin coating. Importantly, the WO 3 /(WO 3 +SnO 2 ) composite bottom layer forms a disordered heterojunction, enabling intimate contact, lower interfacial resistance, and efficient charge transport/transfer. In addition, the top BiVO 4 /WO 3 heterojunction layer improves light absorption and charge separation. The resultant TPH photoanode shows greatly improved internal quantum efficiency (∼80%) and PEC water oxidation performance (∼3.1 mA/cm 2 at 1.23 V vs RHE) compared to the previously reported BiVO 4 /WO 3 photoanodes. The PEC performance was further improved by a reactive-ion etching treatment and CoO x electrocatalyst deposition. Finally, we demonstrated a bias-free and stable solar water-splitting by constructing a tandem PEC device with a perovskite solar cell (STH ∼3.5%).

  2. Doping-dependent anisotropic superconducting gap in Na1-δ(Fe1-xCox)As from London penetration depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Kyuil; Tanatar, Makariy A.; Spyrison, Nicholas

    2012-07-30

    The London penetration depth was measured in single crystals of self-doped Na1-δFeAs (from under doping to optimal doping, Tc from 14 to 27 K) and electron-doped Na(Fe1-xCox)As with x ranging from undoped, x=0, to overdoped, x=0.1. In all samples, the low-temperature variation of the penetration depth exhibits a power-law dependence, Δλ(T)=ATn, with the exponent that varies in a domelike fashion from n˜1.1 in the underdoped, reaching a maximum of n˜1.9 in the optimally doped, and decreasing again to n˜1.3 on the overdoped side. While the anisotropy of the gap structure follows a universal domelike evolution, the exponent at optimal doping,more » n˜1.9, is lower than in other charge-doped Fe-based superconductors (FeSCs). The full-temperature range superfluid density, ρs(T)=λ(0)/λ(T)2, at optimal doping is also distinctly different from other charge-doped FeSCs but is similar to isovalently substituted BaFe2(As1-xPx)2, believed to be a nodal pnictide at optimal doping. These results suggest that the superconducting gap in Na(Fe1-xCox)As is highly anisotropic even at optimal doping.« less

  3. Large photorefractive effect in a thermally decomposed polymer compared with that in molecularly doped systems

    NASA Astrophysics Data System (ADS)

    Yokoyama, Kenji; Arishima, Koichi; Sukegawa, Ken

    1994-07-01

    Photorefractive polymers with the same electro-optic effect were fabricated to investigate the photorefractive effects in different photoconductive systems. The photoconduction in the polymers was varied by the addition of squarylium dye to diethylaminobenzaldehyde-diphenylhydrazone (DEH), by the formation of a charge-transfer complex between tetracyanoquinodimethane and DEH, and by the thermal decomposition of DEH. The largest photorefractive effect was observed in the thermally decomposed polymer among these polymers. A diffraction efficiency of 1.1% and a beam-coupling gain coefficient of 10 cm-1 were achieved in a 34.9 V/μm dc electric field.

  4. Increased electronic coupling in silicon nanocrystal networks doped with F4-TCNQ.

    PubMed

    Carvalho, Alexandra; Oberg, Sven; Rayson, Mark J; Briddon, Patrick R

    2013-02-01

    The modification of the electronic structure of silicon nanocrystals using an organic dopant, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), is investigated using first-principles calculations. It is shown that physisorbed F4-TCNQ molecules have the effect of oxidizing the nanocrystal, attracting the charge density towards the F4-TCNQ-nanocrystal interface, and decreasing the excitation energy of the system. In periodic F4-TCNQ/nanocrystal superlattices, F4-TCNQ is suggested to enhance exciton separation, and in the presence of free holes, to serve as a bridge for electron/hole transfer between adjacent nanocrystals.

  5. Controlling Molecular Doping in Organic Semiconductors.

    PubMed

    Jacobs, Ian E; Moulé, Adam J

    2017-11-01

    The field of organic electronics thrives on the hope of enabling low-cost, solution-processed electronic devices with mechanical, optoelectronic, and chemical properties not available from inorganic semiconductors. A key to the success of these aspirations is the ability to controllably dope organic semiconductors with high spatial resolution. Here, recent progress in molecular doping of organic semiconductors is summarized, with an emphasis on solution-processed p-type doped polymeric semiconductors. Highlighted topics include how solution-processing techniques can control the distribution, diffusion, and density of dopants within the organic semiconductor, and, in turn, affect the electronic properties of the material. Research in these areas has recently intensified, thanks to advances in chemical synthesis, improved understanding of charged states in organic materials, and a focus on relating fabrication techniques to morphology. Significant disorder in these systems, along with complex interactions between doping and film morphology, is often responsible for charge trapping and low doping efficiency. However, the strong coupling between doping, solubility, and morphology can be harnessed to control crystallinity, create doping gradients, and pattern polymers. These breakthroughs suggest a role for molecular doping not only in device function but also in fabrication-applications beyond those directly analogous to inorganic doping. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    PubMed

    Thandavan, Tamil Many K; Gani, Siti Meriam Abdul; San Wong, Chiow; Md Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.

  7. Energy Migration Upconversion in Manganese(II)-Doped Nanoparticles.

    PubMed

    Li, Xiyan; Liu, Xiaowang; Chevrier, Daniel M; Qin, Xian; Xie, Xiaoji; Song, Shuyan; Zhang, Hongjie; Zhang, Peng; Liu, Xiaogang

    2015-11-02

    We report the synthesis and characterization of cubic NaGdF4:Yb/Tm@NaGdF4:Mn core-shell structures. By taking advantage of energy transfer through Yb→Tm→Gd→Mn in these core-shell nanoparticles, we have realized upconversion emission of Mn(2+) at room temperature in lanthanide tetrafluoride based host lattices. The upconverted Mn(2+) emission, enabled by trapping the excitation energy through a Gd(3+) lattice, was validated by the observation of a decreased lifetime from 941 to 532 μs in the emission of Gd(3+) at 310 nm ((6)P(7/2)→(8)S(7/2)). This multiphoton upconversion process can be further enhanced under pulsed laser excitation at high power densities. Both experimental and theoretical studies provide evidence for Mn(2+) doping in the lanthanide-based host lattice arising from the formation of F(-) vacancies around Mn(2+) ions to maintain charge neutrality in the shell layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. T-Shaped Indan-1,3-dione derivatives as promising electron donors for bulk heterojunction small molecule solar cell

    NASA Astrophysics Data System (ADS)

    Adhikari, Tham; Solanke, Parmeshwar; Pathak, Dinesh; Wagner, Tomas; Bureš, Filip; Reed, Tyler; Nunzi, Jean-Michel

    2017-07-01

    We report on the photovoltaic performance of novel T-Shaped Indan-1,3-dione derivatives as donors in a solution processed bulk heterojunction solar cells. Small molecule bulk heterojunction solar cells of these molecules with [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) were fabricated and characterized. The preliminary characterization of these devices yielded a PCE of 0.24% and 0.33% for two separate derivatives. These low power conversion efficiencies were attributed to a high surface roughness with a large number of dewetting spots. Doping with 10% Polystyrene in the Indan-1,3-dione derivatives decreases surface roughness and dewetting spots thereby improving the efficiency of the devices. Efficiency of the devices was found as 0.39% and 0.51% for two derivatives after doping with polystyrene. The charge transfer mechanism was studied with photoluminescence quenching. The morphology and packing behavior of molecules were further studied using Atomic Force Microscopy (AFM) and X-ray diffraction (XRD).

  9. Synergetic antibacterial activity of reduced graphene oxide and boron doped diamond anode in three dimensional electrochemical oxidation system

    PubMed Central

    Qi, Xiujuan; Wang, Ting; Long, Yujiao; Ni, Jinren

    2015-01-01

    A 100% increment of antibacterial ability has been achieved due to significant synergic effects of boron-doped diamond (BDD) anode and reduced graphene oxide (rGO) coupled in a three dimensional electrochemical oxidation system. The rGO, greatly enhanced by BDD driven electric field, demonstrated strong antibacterial ability and even sustained its excellent performance during a reasonable period after complete power cut in the BDD-rGO system. Cell damage experiments and TEM observation confirmed much stronger membrane stress in the BDD-rGO system, due to the faster bacterial migration and charge transfer by the expanded electro field and current-carrying efficiency by quantum tunnel. Reciprocally the hydroxyl-radical production was eminently promoted with expanded area of electrodes and delayed recombination of the electron–hole pairs in presence of the rGO in the system. This implied a huge potential for practical disinfection with integration of the promising rGO and the advanced electrochemical oxidation systems. PMID:25994309

  10. Light metal decoration on nitrogen/sulfur codoped graphyne: An efficient strategy for designing hydrogen storage media

    NASA Astrophysics Data System (ADS)

    Mohajeri, Afshan; Shahsavar, Azin

    2018-07-01

    Nitrogen/sulfur dual doped carbon materials have attracted a great deal of interest due to their fascinating applications in lithium ion batteries, hydrogen storage, and oxygen reduction reactions. Here, the hydrogen storage capacity of NS dual-doped graphyne (GYNS) decorated with Li or Na is theoretically explored. The NS-codoping leads to greater charge transfer and stronger binding between the alkali metal and graphyne surface giving rise to enhanced hydrogen storage capacity. We showed that the NS-codoping increases the hydrogen storage capacities of Li-decorated and Na-decorated GY by almost 30% and 60%, respectively. At high NS concentration, the hydrogen uptake capacities can reach to 8.98 wt% and 9.34 wt% for double-side Li- decorated GYNS and Na-decorated GYNS. Moreover, the average adsorption energies per H2 are -0.27 eV for 2Li/GYNS(33.3%) and -0.26 eV for 2Na/GYNS(33.3%) which lie in desirable range for practical applications at ambient conditions.

  11. Three-dimensional nitrogen doped holey reduced graphene oxide framework as metal-free counter electrodes for high performance dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Zhang, Jindan; Li, Songmei; Meng, Yanbing; Liu, Jianhua

    2016-03-01

    Three-dimensional nitrogen doped holey reduced graphene oxide framework (NHGF) with hierarchical porosity structure was developed as high-performance metal-free counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). With plenty of exposed active sites, efficient electron and ion transport pathways as well as a high surface hydrophilicity, NHGF-CE exhibits good electrocatalytic performances for I- /I3- redox couple and a low charge transfer resistance (Rct). The Rct of NHGF-CE is 1.46 Ω cm2, which is much lower than that of Pt-CE (4.02 Ω cm2). The DSSC with NHGF-CE reaches a power conversion efficiency of 5.56% and a fill factor of 65.5%, while those of the DSSC with Pt-CE are only 5.45% and 62.3%, respectively. The achievement of the highly efficient 3D structure presents a potential way to fabricate low-cost and metal-free counter electrodes with excellent performance.

  12. Polarization study on doped lanthanum gallate electrolyte using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gong, Wenquan; Gopalan, Srikanth; Pal, Uday B.

    2004-06-01

    Alternating current complex impedance spectroscopy studies were conducted on symmetrical cells of the type [gas, electrode/La1-x Sr x Ga1-y Mg y O3 (LSGM) electrolyte/electrode, gas]. The electrode materials were slurry-coated on both sides of the LSGM electrolyte support. The electrodes selected for this investigation are candidate materials for solid oxide fuel cell (SOFC) electrodes. Cathode materials include La1-x Sr x MnO3 (LSM), La1-x Sr x Co y Fe1-y O3 (LSCF), a two-phase particulate composite consisting of LSM and doped-lanthanum gallate (LSGM), and LSCF + LSGM. Pt metal electrodes were also used for the purpose of comparison. Anode material investigated was the Ni + Ce0.85Gd0.15O2 composite. The study revealed important details pertaining to the charge-transfer reactions that occur in such electrodes. The information obtained can be used to design electrodes for intermediate temperature SOFCs based on LSGM electrolytes.

  13. Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podhorodecki, A.; Banski, M.; Misiewicz, J.

    Gallium oxide and more particularly {beta}-Ga{sub 2}O{sub 3} matrix is an excellent material for new generation of devices electrically or optically driven as it is known as the widest band gap transparent conductive oxide. In this paper, the optical properties of neodymium doped gallium oxide films grown by magnetron sputtering have been analyzed. The influence of the Nd ions concentration on the excitation/emission mechanisms of Nd ions and the role of gallium oxide matrix have been investigated. The grain size reduction into gallium oxide films have been observed when concentration of Nd increases. It has been found for all samplesmore » that the charge transfer is the main excitation mechanism for Nd ions where defect states play an important role as intermediate states. As a consequence Nd emission efficiency increases with temperature giving rise to most intensive emission at 1087 nm at room temperature.« less

  14. Revealing the Coulomb interaction strength in a cuprate superconductor

    DOE PAGES

    Yang, S. -L.; Sobota, J. A.; He, Y.; ...

    2017-12-08

    Here, we study optimally doped Bi 2 Sr 2 Ca 0.92 Y 0.08 Cu 2 O 8 + δ (Bi2212) using angle-resolved two-photon photoemission spectroscopy. Three spectral features are resolved near 1.5, 2.7, and 3.6 eV above the Fermi level. By tuning the photon energy, we determine that the 2.7-eV feature arises predominantly from unoccupied states. The 1.5- and 3.6-eV features reflect unoccupied states whose spectral intensities are strongly modulated by the corresponding occupied states. These unoccupied states are thus consistent with the prediction from a cluster perturbation theory based on the single-band Hubbard model. Through this comparison, amore » Coulomb interaction strength U of 2.7 eV is extracted. Our study complements equilibrium photoemission spectroscopy and provides a direct spectroscopic measurement of the unoccupied states in cuprates. The determined Coulomb U indicates that the charge-transfer gap of optimally doped Bi2212 is 1.1 eV.« less

  15. Structure assignment, electronic properties, and magnetism quenching of endohedrally doped neutral silicon clusters, Si(n)Co (n = 10-12).

    PubMed

    Li, Yejun; Tam, Nguyen Minh; Claes, Pieterjan; Woodham, Alex P; Lyon, Jonathan T; Ngan, Vu Thi; Nguyen, Minh Tho; Lievens, Peter; Fielicke, André; Janssens, Ewald

    2014-09-18

    The structures of neutral cobalt-doped silicon clusters have been assigned by a combined experimental and theoretical study. Size-selective infrared spectra of neutral Si(n)Co (n = 10-12) clusters are measured using a tunable IR-UV two-color ionization scheme. The experimental infrared spectra are compared with calculated spectra of low-energy structures predicted at the B3P86 level of theory. It is shown that the Si(n)Co (n = 10-12) clusters have endohedral caged structures, where the silicon frameworks prefer double-layered structures encapsulating the Co atom. Electronic structure analysis indicates that the clusters are stabilized by an ionic interaction between the Co dopant atom and the silicon cage due to the charge transfer from the silicon valence sp orbitals to the cobalt 3d orbitals. Strong hybridization between the Co dopant atom and the silicon host quenches the local magnetic moment on the encapsulated Co atom.

  16. Nitrogen-doped partially reduced graphene oxide rewritable nonvolatile memory.

    PubMed

    Seo, Sohyeon; Yoon, Yeoheung; Lee, Junghyun; Park, Younghun; Lee, Hyoyoung

    2013-04-23

    As memory materials, two-dimensional (2D) carbon materials such as graphene oxide (GO)-based materials have attracted attention due to a variety of advantageous attributes, including their solution-processability and their potential for highly scalable device fabrication for transistor-based memory and cross-bar memory arrays. In spite of this, the use of GO-based materials has been limited, primarily due to uncontrollable oxygen functional groups. To induce the stable memory effect by ionic charges of a negatively charged carboxylic acid group of partially reduced graphene oxide (PrGO), a positively charged pyridinium N that served as a counterion to the negatively charged carboxylic acid was carefully introduced on the PrGO framework. Partially reduced N-doped graphene oxide (PrGODMF) in dimethylformamide (DMF) behaved as a semiconducting nonvolatile memory material. Its optical energy band gap was 1.7-2.1 eV and contained a sp2 C═C framework with 45-50% oxygen-functionalized carbon density and 3% doped nitrogen atoms. In particular, rewritable nonvolatile memory characteristics were dependent on the proportion of pyridinum N, and as the proportion of pyridinium N atom decreased, the PrGODMF film lost memory behavior. Polarization of charged PrGODMF containing pyridinium N and carboxylic acid under an electric field produced N-doped PrGODMF memory effects that followed voltage-driven rewrite-read-erase-read processes.

  17. Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions

    DOE PAGES

    Dissanayake, D. M. N. M.; Ashraf, A.; Dwyer, D.; ...

    2016-02-12

    Scalable and low-cost doping of graphene could improve technologies in a wide range of fields such as microelectronics, optoelectronics, and energy storage. While achieving strong p-doping is relatively straightforward, non-electrostatic approaches to n-dope graphene, such as chemical doping, have yielded electron densities of 9.5 × 10 12 e/cm 2 or below. Furthermore, chemical doping is susceptible to degradation and can adversely affect intrinsic graphene’s properties. Here we demonstrate strong (1.33 × 10 13 e/cm 2), robust, and spontaneous graphene n-doping on a soda-lime-glass substrate via surface-transfer doping from Na without any external chemical, high-temperature, or vacuum processes. Remarkably, the n-dopingmore » reaches 2.11 × 10 13 e/cm 2 when graphene is transferred onto a p-type copper indium gallium diselenide (CIGS) semiconductor that itself has been deposited onto soda-lime-glass, via surface-transfer doping from Na atoms that diffuse to the CIGS surface. Using this effect, we demonstrate an n-graphene/p-semiconductor Schottky junction with ideality factor of 1.21 and strong photo-response. As a result, the ability to achieve strong and persistent graphene n-doping on low-cost, industry-standard materials paves the way toward an entirely new class of graphene-based devices such as photodetectors, photovoltaics, sensors, batteries, and supercapacitors.« less

  18. Broadband down-conversion based near infrared quantum cutting in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} for crystalline silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Yuping, E-mail: yupingtai@126.com; Zheng, Guojun, E-mail: zhengguojun88@126.com; Wang, Hui, E-mail: huiwang@nwu.edu.cn

    2015-03-15

    Near infrared (NIR) quantum cutting involving the down conversion of an absorbed visible photon to emission of two NIR photons was achieved in SrAl{sub 2}O{sub 4}:0.01Eu{sup 2+}, xYb{sup 3+} (x=0, 1, 2, 5, 10, 20, 30 mol%) samples. The photoluminescence properties of samples in visible and NIR regions were measured to verify the energy transfer (ET) from Eu{sup 2+} to Yb{sup 3+}. The results demonstrated that Eu{sup 2+} was an efficient sensitizer for Yb{sup 3+} in the SrAl{sub 2}O{sub 4} host lattice. According to Gaussian fitting analysis and temperature-dependent luminescence experiments, the conclusion was drawn that the cooperative energy transfermore » (CET) process dominated the ET process and the influence of charge transfer state (CTS) of Yb{sup 3+} could be negligible. As a result, the high energy transfer efficiency (ETE) and quantum yield (QY) have been acquired, the maximum value approached 73.68% and 147.36%, respectively. Therefore, this down-conversion material has potential application in crystalline silicon solar cells to improve conversion efficiency. - Graphical abstract: Near infrared quantum cutting was achieved in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} samples. The cooperative energy transfer process dominated energy transfer process and high energy transfer efficiency was acquired. - Highlights: • The absorption spectrum of Eu{sup 2+} ion is strong in intensity and broad in bandwidth. • The spectra of Eu{sup 2+} in SrAl{sub 2}O{sub 4} lies in the strongest region of solar spectrum. • The cooperative energy transfer (CET) dominated the energy transfer process. • The domination of CET is confirmed by experimental analysis. • SrAl{sub 2}O{sub 4}:Eu{sup 2+},Yb{sup 3+} show high energy transfer efficiency and long lifetime.« less

  19. Size-Dependent Optoelectronic Properties and Controlled Doping of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Engel, Jesse Hart

    Given a rapidly developing world, the need exists for inexpensive renewable energy alternatives to help avoid drastic climate change. Photovoltaics have the potential to fill the energy needs of the future, but significant cost decreases are necessary for widespread adoption. Semiconductor nanocrystals, also known as quantum dots, are a nascent technology with long term potential to enable inexpensive and high efficiency photovoltaics. When deposited as a film, quantum dots form unique nanocomposites whose electronic and optical properties can be broadly tuned through manipulation of their individual constituents. The contents of this thesis explore methods to understand and optimize the optoelectronic properties of PbSe quantum dot films for use in photovoltaic applications. Systematic optimization of photovoltaic performance is demonstrated as a function of nanocrystal size, establishing the potential for utilizing extreme quantum confinement to improve device energetics and alignment. Detailed investigations of the mechanisms of electrical transport are performed, revealing that electronic coupling in quantum dot films is significantly less than often assumed based on optical shifts. A method is proposed to employ extended regions of built-in electrical field, through controlled doping, to sidestep issues of poor transport. To this end, treatments with chemical redox agents are found to effect profound and reversible doping within nanocrystal films, sufficient to enable their use as chemical sensors, but lacking the precision required for optoelectronic applications. Finally, a novel doping method employing "redox buffers" is presented to enact precise, stable, and reversible charge-transfer doping in porous semiconductor films. An example of oxidatively doping PbSe quantum dot thin films is presented, and the future potential for redox buffers in photovoltaic applications is examined.

  20. Synthesis and Photoluminescence Properties of BaWO4:RE3+ (RE = Eu or Sm) Phosphors

    NASA Astrophysics Data System (ADS)

    Cho, Shinho

    2018-04-01

    BaWO4:RE3+ (RE = Eu or Sm) phosphor powders were prepared with different doping concentrations of the activator ion by using the conventional solid-state reaction method. The dependences in the crystal structure, luminescence intensity, and morphology on the Eu3+ and the Sm3+ concentrations in BaWO4 were investigated using X-ray diffraction (XRD), photoluminescence spectrophotometry, and scanning electron microscopy (SEM), respectively. XRD analysis showed tetragonal BaWO4 structures for all the phosphors synthesized, regardless of the type and the doping concentration of the activator ion. SEM images indicated that as the concentration of activator ions was increased, the crystalline particles showed an increasing tendency to agglomerate irregularly. The room temperature excitation spectra of Eu3+- or Sm3+-doped BaWO4 phosphors consisted of a broad charge transfer band in the ultraviolet region and several sharp 4 f-4 f transitions. When Eu3+-doped BaWO4 phosphors were excited at 274 nm, the emission spectra exhibited sharp bands due to inner shell transitions occurring from the excited energy state 5 D 0 to the lower energy levels 7 F J ( J = 1, 2, 3, and 4). For Sm3+-doped BaWO4 phosphors, three intense emission peaks at 568, 603, and 649 nm and a very weak line at 712 nm were observed. The highest asymmetry ratio-the intensity ratio of the 4 G 5/2 → 6 H 9/2 electric dipole to the 4 G 5/2 → 6 H 5/2 magnetic dipole transitions-was obtained for 1 mol% doping of Sm3+, indicating that the Sm3+ ions occupied the non-inversion symmetry sites.

Top