Chen, Liang; Mccrate, Joseph M.; Lee, James C-M.; Li, Hao
2011-01-01
The objective of this study is to evaluate the effect of hydroxyapatite (HAP) nanoparticles with different surface charges on the cellular uptake behavior and in vitro cell viability and proliferation of MC3T3-E1 cell lines (osteoblast). The nanoparticles surface charge was varied by the surface modification with two carboxylic acids: 12-aminododecanoic acid (positive) and dodecanedioic acid (negative). The untreated HAP nanoparticles and dodecanoic acid modified HAP nanoparticles (neutral) were used as the control. X-ray diffraction (XRD) revealed that surface modifications by the three carboxylic acids did not change the crystal structure of HAP nanoparticles; Fourier transform infrared spectroscopy (FTIR) confirmed the adsorption and binding of the carboxylic acids on HAP nanoparticle surface; and zeta potential measurement confirmed that the chemicals successfully modified the surface charge of HAP nanoparticles in water based solution. Transmission electron microscopy (TEM) images showed that positively charged, negatively charged and untreated HAP nanoparticles, with similar size and shape, all penetrated into the cells and cells had more uptake of HAP nanoparticles with positive charge compared to those with negative charge, which might be attributed to the attractive or repulsive interaction between the negatively charged cell membrane and positively/negatively charged HAP nanoparticles. The neutral HAP nanoparticles could not penetrate cell membrane due to the larger size. MTT assay and LDH assay results indicated that as compared with the polystyrene control, greater cell viability and cell proliferation were measured on MC3T3-E1 cells treated with the three kinds of the HAP nanoparticles (neutral, positive, and untreated), among which positively charged HAP nanoparticles shows strongest improvement for cell viability and cell proliferation. In summary, the surface charge of HAP nanoparticles can be modified to influence the cellular uptake of HAP nanoparticles and the different uptake also influence the behavior of cells. These in-vitro results may also provide useful information for investigations of HAP nanoparticles applications in the gene delivery and intracellular drug delivery. PMID:21289408
Kim, Hyung Hwan; Park, Jong Bo; Kang, Min Ji; Park, Young Hwan
2014-09-01
Silk fibroin/hydroxyapatite (SF/HAp) composite hydrogels were fabricated in this study, having different HAp contents (0-33 wt%) in SF matrix hydrogel. Surface modification of HAp nanoparticle with hyaluronic acid (HA)-dopamine (DA) conjugate improved a dispersibility of HAp in aqueous SF solution due to its negatively charged surface and therefore, fabrication of the SF composite hydrogel having HAp nanoparticles inside could be possible. Zeta potential of surface-modified HAP was examined by ELS. It demonstrates that surface of HAp was well modified to a negative charge with HA-DA. Morphological structure of SF hydrogel containing surface-modified HAp was examined by FE-SEM for analyzing pore structure of hydrogel and deposition of HAp nanoparticle in SF hydrogel. It was found that HAp nanoparticles were uniformly deposited on the pore wall of SF hydrogel. Structural characteristics of SF/HAp composite hydrogel was performed using X-ray diffraction and FT-IR analysis. It was found that β-sheet crystal conformation of SF was significantly influenced by the HAp content during gelation of a mixture of SF and HAp. As a result of MTT assay, the SF/HAp composite hydrogel showed excellent cell proliferation ability. Therefore, it is expected that SF hydrogel containing HAp nanoparticles has a high potential as bone regeneration scaffold. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Dengjun; Bradford, Scott A; Harvey, Ronald W; Gao, Bin; Cang, Long; Zhou, Dongmei
2012-03-06
Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The transport and retention kinetics of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated packed columns that encompassed a range of humic acid concentrations (HA, 0-10 mg L(-1)), fractional surface coverage of iron oxyhydroxide coatings on sand grains (λ, 0-0.75), and pH (6.0-10.5). HA was found to have a marked effect on the electrokinetic properties of ARS-nHAP, and on the transport and retention of ARS-nHAP in granular media. The transport of ARS-nHAP was found to increase with increasing HA concentration because of enhanced colloidal stability and the reduced aggregate size. When HA = 10 mg L(-1), greater ARS-nHAP attachment occurred with increasing λ because of increased electrostatic attraction between negatively charged nanoparticles and positively charged iron oxyhydroxides, although alkaline conditions (pH 8.0 and 10.5) reversed the surface charge of the iron oxyhydroxides and therefore decreased deposition. The retention profiles of ARS-nHAP exhibited a hyperexponential shape for all test conditions, suggesting some unfavorable attachment conditions. Retarded breakthrough curves occurred in sands with iron oxyhydroxide coatings because of time-dependent occupation of favorable deposition sites. Consideration of the above effects is necessary to improve remediation efficiency of nHAP for metals and actinides in soils and subsurface environments.
Wang, Dengjun; Bradford, Scott A.; Harvey, Ronald W.; Gao, Bin; Cang, Long; Zhou, Dongmei
2012-01-01
Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The transport and retention kinetics of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated packed columns that encompassed a range of humic acid concentrations (HA, 0–10 mg L–1), fractional surface coverage of iron oxyhydroxide coatings on sand grains (λ, 0–0.75), and pH (6.0–10.5). HA was found to have a marked effect on the electrokinetic properties of ARS-nHAP, and on the transport and retention of ARS-nHAP in granular media. The transport of ARS-nHAP was found to increase with increasing HA concentration because of enhanced colloidal stability and the reduced aggregate size. When HA = 10 mg L–1, greater ARS-nHAP attachment occurred with increasing λ because of increased electrostatic attraction between negatively charged nanoparticles and positively charged iron oxyhydroxides, although alkaline conditions (pH 8.0 and 10.5) reversed the surface charge of the iron oxyhydroxides and therefore decreased deposition. The retention profiles of ARS-nHAP exhibited a hyperexponential shape for all test conditions, suggesting some unfavorable attachment conditions. Retarded breakthrough curves occurred in sands with iron oxyhydroxide coatings because of time-dependent occupation of favorable deposition sites. Consideration of the above effects is necessary to improve remediation efficiency of nHAP for metals and actinides in soils and subsurface environments.
USDA-ARS?s Scientific Manuscript database
Hydroxyapatite nanoparticles (nHAP) are increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP in water-saturated granular media were investigated. Experiments were conducted over a range of ionic ...
Wang, Dengjun; Bradford, Scott A; Harvey, Ronald W; Hao, Xiuzhen; Zhou, Dongmei
2012-08-30
Hydroxyapatite nanoparticle (nHAP) is increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated granular media. Experiments were carried out over a range of ionic strength (I(c), 0-50mM NaCl) conditions in the presence of 10 mg L(-1) humic acid. The transport of ARS-nHAP was found to decrease with increasing suspension I(c) in part, because of enhanced aggregation and chemical heterogeneity. The retention profiles (RPs) of ARS-nHAP exhibited hyperexponential shapes (a decreasing rate of retention with increasing transport distance) for all test conditions, suggesting that some of the attachment was occurring under unfavorable conditions. Surface charge heterogeneities on the collector surfaces and especially within the ARS-nHAP population were contributing causes for the hyperexponential RPs. Consideration of the effect(s) of I(c) in the presence of HA is needed to improve the efficacy of nHAP for scavenging metals and actinides in real soils and groundwater environments. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Dengjun; Bradford, Scott A.; Harvey, Ronald W.; Hao, Xiuzhen; Zhou, Dongmei
2012-01-01
Hydroxyapatite nanoparticle (nHAP) is increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated granular media. Experiments were carried out over a range of ionic strength (Ic, 0–50 mM NaCl) conditions in the presence of 10 mg L−1 humic acid. The transport of ARS-nHAP was found to decrease with increasing suspension Ic in part, because of enhanced aggregation and chemical heterogeneity. The retention profiles (RPs) of ARS-nHAP exhibited hyperexponential shapes (a decreasing rate of retention with increasing transport distance) for all test conditions, suggesting that some of the attachment was occurring under unfavorable conditions. Surface charge heterogeneities on the collector surfaces and especially within the ARS-nHAP population were contributing causes for the hyperexponential RPs. Consideration of the effect(s) of Ic in the presence of HA is needed to improve the efficacy of nHAP for scavenging metals and actinides in real soils and groundwater environments.
USKOKOVIĆ, VUK; DESAI, TEJAL A.
2014-01-01
Nanoparticulate composites of hydroxyapatite (HAp) and chitosan were synthesized by ultrasound-assisted sequential precipitation and characterized for their microstructure at the atomic scale, surface charge, drug release properties, and combined antibacterial and osteogenic response. Crystallinity of HAp nanoparticles was reduced because of the interference of the surface layers of chitosan with the dissolution/reprecipitation-mediated recrystallization mechanism that conditions the transition from the as-precipitated amorphous calcium phosphate phase to the most thermodynamically stable one—HAp. Embedment of 5–10 nm sized, narrowly dispersed HAp nanoparticles within the polymeric matrix mitigated the burst release of the small molecule model drug, fluorescein, bound to HAp by physisorption, and promoted sustained-release kinetics throughout the 3 weeks of release time. The addition of chitosan to the particulate drug carrier formulation, however, reduced the antibacterial efficacy against S aureus. Excellent cell spreading and proliferation of osteoblastic MC3T3-E1 cells evidenced on microscopic conglomerates of HAp nanoparticles in vitro also markedly diminished on HAp/chitosan composites. Mitochondrial dehydrogenase activity exhibited normal values only for HAp/chitosan particle concentrations of up to 2 mg/cm2 and significantly dropped, by about 50%, at higher particle concentrations (4 and 8 mg/cm2). The gene expression of osteocalcin, a mineralization inductor, and the transcription factor Runx2 was downregulated in cells incubated in the presence of 3 mg/cm2 HAp/chitosan composite particles, whereas the expression of osteopontin, a potent mineralization inhibitor, was upregulated, further demonstrating the partially unfavorable osteoblastic cell response to the given particles. The peak in the expression of osteogenic markers paralleling the osteoblastic differentiation was also delayed most for the cell population incubated with HAp/chitosan particles. Overall, the positive effect of chitosan coating on the drug elution profile of HAp nanoparticles as carriers for the controlled delivery of antibiotics in the treatment of osteomyelitis was compensated for by the lower bacteriostatic efficiency and the comparatively unviable cell response to the composite material, especially at higher dosages. PMID:24382825
Hybrid Hydroxyapatite Nanoparticle Colloidal Gels are Injectable Fillers for Bone Tissue Engineering
Gu, Zhen; Jamal, Syed; Detamore, Michael S.
2013-01-01
Injectable bone fillers have emerged as an alternative to the invasive surgery often required to treat bone defects. Current bone fillers may benefit from improvements in dynamic properties such as shear thinning during injection and recovery of material stiffness after placement. Negatively charged inorganic hydroxyapatite (HAp) nanoparticles (NPs) were assembled with positively charged organic poly(d,l-lactic-co-glycolic acid) (PLGA) NPs to create a cohesive colloidal gel. This material is held together by electrostatic forces that may be disrupted by shear to facilitate extrusion, molding, or injection. Scanning electron micrographs of the dried colloidal gels showed a well-organized, three-dimensional porous structure. Rheology tests revealed that certain colloidal gels could recover after being sheared. Human umbilical cord mesenchymal stem cells were also highly viable when seeded on the colloidal gels. HAp/PLGA NP colloidal gels offer an attractive scheme for injectable filling and regeneration of bone tissue. PMID:23815275
Esfahani, Hamid; Prabhakaran, Molamma P; Salahi, Esmaeil; Tayebifard, Ali; Keyanpour-Rad, Mansour; Rahimipour, Mohamad Reza; Ramakrishna, Seeram
2015-04-01
Surface modification of electrospun polymeric membrane surfaces is a critical step towards the separation process including protein adsorption. In this study, the electrospun Nylon fibers was incorporated with positively charged zinc doped hydroxyapatite (HAp) nanoparticles to study the adsorption of negatively charged proteins, namely bovine serum albumin (BSA). Effects of zinc amount within the atomic structure of HAp (nZH; n=0, 4, 8 At.%) was evaluated on produced scaffolds and consequently protein adsorption. The results showed that the ability of Nylon membrane to adsorb BSA increased with incorporation of nZH nanoparticles within the nylon structure. This phenomenon is appeared to be relate to different electrostatic charge and not to physical characteristic of scaffolds. The incorporated membrane (N-4ZH) by nanoparticles with highest zeta (ξ) potential adsorbed the maximum amount of protein. The adsorption of BSA was best fitted with pseudo-second order kinetic model. The experimental isotherm data were further analyzed by using Langmuir and Freundlich equations. By comparing the correlation coefficients obtained for each linear transformation of isotherm analysis, it was found that the Langmuir equation was the best fit equilibrium model that described the adsorption of BSA on these membranes. Copyright © 2014 Elsevier Inc. All rights reserved.
Kandori, Kazuhiko; Kuroda, Tomohiko; Togashi, Shigenori; Katayama, Erika
2011-02-03
The calcium hydroxyapatite Ca(10)(PO(4))(6)(OH)(2) (Hap) nanoparticles were prepared by using microreactor and employed these Hap nanoparticles to clarify the adsorption behavior of proteins. The size of Hap particles produced by the microreactor reduced in the order of a hardness of the reaction conditions for mixing Ca(OH)(2) and H(3)PO(4) aqueous solutions, such as flow rates of both solutions and temperature. Finally, the size of the smallest Hap nanoparticle became 2 × 15 nm(2), similar to that of BSA molecule (4 × 14 nm(2)). It is noteworthy that the smallest Hap nanoparticles still possesses rodlike shape, suggesting that particles are grown along c-axis even though the reactants mixed very rapidly in narrow channels of the microreactors. The X-ray diffraction patterns of the Hap nanoparticles revealed that the crystallinity of the materials produced by the microreactor is low. The FTIR measurement indicated that the Hap nanoparticles produced by microreactor were carbonate-substituted type B Hap, where the carbonate ions replace the phosphate ions in the crystal lattice. All the adsorption isotherms of acidic bovine serum albumin (BSA), neutral myoglobin (MGB), and basic lysozyme (LSZ) onto Hap nanoparticles from 1 × 10(-4) mol/dm(3) KCl solution were the Langmuirian type. The saturated amounts of adsorbed BSA (n(S)(BSA)) for the Hap nanoparticles produced by microreactor were decreased with decrease in the mean particle length, and finally it reduced to zero for the smallest Hap nanoparticles. Similar results were observed for the adsorption of LSZ; the saturated amounts of adsorbed LSZ (n(S)(LSZ)) also reduced to zero for the smallest Hap nanoparticles. However, in the case of MGB, the saturated mounts of adsorbed MGB (n(S)(MGB)) are also depressed with decreased in their particle size, but about half of MGB molecules still adsorbed onto the smallest Hap nanoparticles. This difference in the protein adsorption behavior was explained by the difference in the size and flexibility of three kinds of proteins. The reduction of n(S)(BSA) is due to the decrease in the fraction of C sites on the side face of each Hap nanoparticle; i.e., there is not enough area left on the nanoparticle surface to adsorb large BSA molecules even though the BSA molecules are soft and their conformations are alterable. The reduction of n(S)(LSZ) was explained by the reduction of P sites. Further, rigidity of the LSZ molecules was given another possibility of the depression of n(S)(LSZ) for the Hap nanoparticles. However, MGB molecules with small and soft structure were adsorbed on the Hap nanoparticle surface by changing their conformation. We could control the amounts of adsorbed proteins by changing the particle size of Hap in the nanometer range and kinds of proteins. These obtained results may be useful for developing biomimetic materials for bone grafts and successful surgical devices in the biochemical field.
Ignjatović, Nenad; Uskoković, Vuk; Ajduković, Zorica; Uskoković, Dragan
2013-03-01
Cholecalciferol, vitamin D3, plays an important role in bonemetabolism by regulating extracellular levels of calcium. Presented here is a study on the effects of the local delivery of cholecalciferol (D3) using nanoparticulate carriers composed of hydroxyapatite (HAp) and poly(D,L-lactide-co-glycolide) (PLGA). Multifunctional nanoparticulate HAp-based powders were prepared for the purpose of: (a) either fast or sustained, local delivery of cholecalciferol, and (b) the secondary, osteoconductive and defect-filling effect of the carrier itself. Two types of HAp-based powders with particles of narrowly dispersed sizes in the nano range were prepared and tested in this study: HAp nanoparticles as direct cholecalciferol delivery agents and HAp nanoparticles coated with cholecalciferol-loaded poly(D,L)-lactide-co-glycolide (HAp/D3/PLGA). Satisfying biocompatibility of particulate systems, when incubated in contact with MC3T3-E1 osteoblastic cells in vitro, was observed for HAp/D3/PLGA and pure HAp. In contrast, an extensively fast release of cholecalciferol from the system comprising HAp nanoparticles coated with cholecalciferol (HAp/D3) triggered necrosis of the osteoblastic cells in vitro. Artificial defects induced in the osteoporotic bone of the rat mandible were successfully reconstructed following implantation of cholecalciferol-coated HAp nanoparticles as well as those comprising HAp nanoparticles coated with cholecalciferol-loaded PLGA (HAp/D3/PLGA). The greatest levels of enhanced angiogenesis, vascularization, osteogenesis and bone structure differentiation were achieved upon the implementation of HAp/D3/PLGA systems.
Kimura, Tsuyoshi; Nibe, Yoichi; Funamoto, Seiichi; Okada, Masahiro; Furuzono, Tsutomu; Ono, Tsutomu; Yoshizawa, Hidekazu; Fujisato, Toshiya; Nam, Kwangwoo; Kishida, Akio
2011-01-01
Our previous research showed that poly(vinyl alcohol) (PVA) nanoparticles incorporating DNA with hydrogen bonds obtained by high hydrostatic pressurization are able to deliver DNA without any significant cytotoxicity. To enhance transfection efficiency of PVA/DNA nanoparticles, we describe a novel method to prepare PVA/DNA nanoparticles encapsulating nanoscaled hydroxyapatites (HAps) prepared by high hydrostatic pressurization (980 MPa), which is designed to facilitate endosomal escape induced by dissolving HAps in an endosome. Scanning electron microscopic observation and dynamic light scattering measurement revealed that HAps were significantly encapsulated in PVA/HAp/DNA nanoparticles. The cytotoxicity, cellular uptake, and transgene expression of PVA/HAp/DNA nanoparticles were investigated using COS-7 cells. It was found that, in contrast to PVA/DNA nanoparticles, their internalization and transgene expression increased without cytotoxicity occurring. Furthermore, a similar level of transgene expression between plasmid DNA and PVA/HAp/DNA nanoparticles was achieved using in vivo hydrodynamic injection. Our results show a novel method of preparing PVA/DNA nanoparticles encapsulating HAp nano-crystals by using high hydrostatic pressure technology and the potential use of HAps as an enhancer of the transfection efficiency of PVA/DNA nanoparticles without significant cytotoxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dengjun; Su, Chuming; Liu, Chongxuan
Hydroxyapatite nanoparticle (nHAP) is being used to remediate soils and aquifers contaminated with metals and radionuclides; however, the mobility of nHAP is still poorly understood in subsurface granular environments. In this study, transport and retention kinetics of alizarin red S (ARS)-labeled nHAP were investigated in water-saturated quartz sand at low concentrations of surfactants: sodium dodecyl benzene sulfonate (SDBS, an anionic surfactant, 0–50 mg L–1) and cetyltrimethylammonium bromide (CTAB, a cationic surfactant, 0–5 mg L–1). Both surfactants were found to have a marked effect on the electrokinetic properties of ARS-nHAP and, consequently, on their transport and retention behaviors. Transport of nanoparticlesmore » (NPs) increased significantly with increasing SDBS concentration, largely because of enhanced colloidal stability and reduced aggregate size arising from enhanced electrostatic, osmotic, and elastic-steric repulsions between ARS-nHAP and sand grains. Conversely, transport decreased significantly in the presence of increasing CTAB concentrations due to reduced surface charge and consequential enhanced aggregation of the NPs. Osmotic and elastic-steric repulsions played only a minor role in enhancing the colloidal stability of ARS-nHAP in the presence of CTAB. Retention profiles of ARS-nHAP exhibited hyperexponential-shapes (decreasing rates of retention with increasing distance) for all conditions tested, and became more pronounced as CTAB concentration increased. The phenomenon was attributed to the aggregation and ripening of ARS-nHAP in the presence of surfactants, particularly CTAB. Overall, the present study suggests that surfactants at environmentally relevant concentrations may be an important consideration in employing nHAP for engineered in-situ remediation of certain metals and radionuclides in contaminated soils and aquifers.« less
Ignjatović, Nenad; Uskoković, Vuk; Ajduković, Zorica; Uskoković, Dragan
2013-01-01
Cholecalciferol, vitamin D3, plays an important role in bone metabolism by regulating extracellular levels of calcium. Presented here is a study on the effects of the local delivery of cholecalciferol (D3) using nanoparticulate carriers composed of hydroxyapatite (HAp) and poly(D,L-lactide-co-glycolide) (PLGA). Multifunctional nanoparticulate HAp-based powders were prepared for the purpose of: (a) either fast or sustained, local delivery of cholecalciferol, and (b) the secondary, osteoconductive and defect-filling effect of the carrier itself. Two types of HAp-based powders with particles of narrowly dispersed sizes in the nano range were prepared and tested in this study: HAp nanoparticles as direct cholecalciferol delivery agents and HAp nanoparticles coated with cholecalciferol-loaded poly(D,L)-lactide-co-glycolide (HAp/D3/PLGA). Satisfying biocompatibility of particulate systems, when incubated in contact with MC3T3-E1 osteoblastic cells in vitro, was observed for HAp/D3/PLGA and pure HAp. In contrast, an extensively fast release of cholecalciferol from the system comprising HAp nanoparticles coated with cholecalciferol (HAp/D3) triggered necrosis of the osteoblastic cells in vitro. Artificial defects induced in the osteoporotic bone of the rat mandible were successfully reconstructed following implantation of cholecalciferol-coated HAp nanoparticles as well as those comprising HAp nanoparticles coated with cholecalciferol-loaded PLGA (HAp/D3/PLGA). The greatest levels of enhanced angiogenesis, vascularization, osteogenesis and bone structure differentiation were achieved upon the implementation of HAp/D3/PLGA systems. PMID:25382938
Synthesis and Characterization of Composite Hydroxyapatite-Silver Nanoparticles
NASA Astrophysics Data System (ADS)
Charlena; Nuzulia, N. A.; Handika
2017-03-01
Hydroxyapatite (HAp) is commonly used as bone implant coating recently; however, the material has disadvantage such as lack of antibacterial properties, that can cause an bacterial infection. Addition of silver nanoparticles is expected to be able to provide antibacterial properties. Silver nanoparticles was obtained by reduction of AgNO3 using glucose monohydrate with microwave heating at 100p for 4 minutes. The composite of hydroxyapatite-silver nanoparticles was synthesized using chemical methods by coprecipitation suspension of Ca(OH)2 with (NH4)HPO4, followed by adding silver nanoparticles solution. The size of the synthesized silver nanoparticles was 30-50 nm and exhibited good antibacterial activity. Nevertheless, when it was composited with HAp to form HAp-AgNPs, there was no antibacterial activity due to very low concentration of silver nanoparticles. This was indicated by the absence of silver nanoparticles diffraction patterns. Infrared spectra indicated the presence of chemical shift and the results of scanning electron microscope showed size of the HAp-AgNPs composite was smaller than that of the HAp. This showed the interaction between HAp and the silver nanoparticles.
Qin, Jinli; Zhong, Zhenyu; Ma, Jun
2016-05-01
A biomimetic method was used to prepare hybrid hydroxyapatite (HAP) nanoparticles with chitosan/polyacrylic acid (CS-PAA) nanogel. The morphology, structure, crystallinity, thermal properties and biocompatibility of the obtained hybrid nanogel-HAP nanoparticles have been characterized. In addition, bovine serum albumin (BSA) was used as a model protein to study the loading and release behaviors of the hybrid nanogel-HAP nanoparticles. The results indicated that the obtained HAP nanoparticles were agglomerated and the nanogel could regulate the formation of HAP. When the nanogel concentration decreased, different HAP crystal shapes and agglomerate structures were obtained. The loading amount of BSA reached 67.6 mg/g for the hybrid nanoparticles when the mineral content was 90.4%, which decreased when the nanogel concentration increased. The release profile of BSA was sustained in neutral buffer. Meanwhile, an initial burst release was found at pH 4.5 due to the desorption of BSA from the surface, followed by a slow release. The hemolysis percentage of the hybrid nanoparticles was close to the negative control, and these particles were non-toxic to bone marrow stromal stem cells. The results suggest that these hybrid nanogel-HAP nanoparticles are promising candidate materials for biocompatible drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles
NASA Astrophysics Data System (ADS)
Yamini, D.; Devanand Venkatasubbu, G.; Kumar, J.; Ramakrishnan, V.
2014-01-01
The pure hydroxyapatite (HAP) nanoparticles (NPs) have been synthesized by wet chemical precipitation method. Raman spectral measurements have been made for pure HAP, pure Polyethylene glycol (PEG) 6000 and PEG coated HAP in different mass ratios (sample 1, sample 2 and sample 3). The peaks observed in Raman spectrum of pure HAP and the XRD pattern have confirmed the formation of HAP NPs. Vibrational modes have been assigned for pure HAP and pure PEG 6000. The observed variation in peak position of Raman active vibrational modes of PEG in PEG coated HAP has been elucidated in this work, in terms of intermolecular interactions between PEG and HAP. Further these results suggest that the functionalization of nanoparticles may be independent of PEG mass.
Maeda, Hayata; Okada, Masahiro; Fujii, Syuji; Nakamura, Yoshinobu; Furuzono, Tsutomu
2010-09-07
Multihollow hydroxyapatite (HAp)/poly(L-lactic acid) (PLLA) nanocomposite microspheres were readily fabricated by solvent evaporation from a "Pickering-type" water-in-(dichloromethane solution of PLLA)-in-water multiple emulsion stabilized with HAp nanoparticles. The multiple emulsion was stabilized with the aid of PLLA molecules used as a wettability modifier for HAp nanoparticles, although HAp nanoparticles did not work solely as particulate emulsifiers for Pickering-type emulsions consisting of pure dichloromethane and water. The interaction between PLLA and HAp nanoparticles at the oil-water interfaces plays a crucial role toward the preparation of stable multiple emulsion and multihollow microspheres.
Fujii, Syuji; Okada, Masahiro; Nishimura, Taiki; Maeda, Hayata; Sugimoto, Tatsuya; Hamasaki, Hiroyuki; Furuzono, Tsutomu; Nakamura, Yoshinobu
2012-05-15
Hydroxyapatite (HAp) nanoparticle-armored poly(ε-caprolactone) (PCL) microspheres were fabricated via a "Pickering-type" emulsion solvent evaporation method in the absence of any molecular surfactants. It was clarified that the interaction between carbonyl/carboxylic acid groups of PCL and the HAp nanoparticles at an oil-water interface played a crucial role in the preparation of the stable Pickering-type emulsions and the HAp nanoparticle-armored microspheres. The HAp nanoparticle-armored PCL microspheres were characterized in terms of size, size distribution, morphology, and chemical compositions using scanning electron microscopy, laser diffraction, energy dispersive X-ray microanalysis, and thermogravimetric analysis. The presence of HAp nanoparticles at the surface of the microspheres was confirmed by scanning electron microscopy and energy dispersive X-ray microanalysis. Pyrolysis of the PCL cores led to the formation of the corresponding HAp hollow microcapsules. Copyright © 2012 Elsevier Inc. All rights reserved.
Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles.
Yamini, D; Devanand Venkatasubbu, G; Kumar, J; Ramakrishnan, V
2014-01-03
The pure hydroxyapatite (HAP) nanoparticles (NPs) have been synthesized by wet chemical precipitation method. Raman spectral measurements have been made for pure HAP, pure Polyethylene glycol (PEG) 6000 and PEG coated HAP in different mass ratios (sample 1, sample 2 and sample 3). The peaks observed in Raman spectrum of pure HAP and the XRD pattern have confirmed the formation of HAP NPs. Vibrational modes have been assigned for pure HAP and pure PEG 6000. The observed variation in peak position of Raman active vibrational modes of PEG in PEG coated HAP has been elucidated in this work, in terms of intermolecular interactions between PEG and HAP. Further these results suggest that the functionalization of nanoparticles may be independent of PEG mass. Copyright © 2013 Elsevier B.V. All rights reserved.
Gopi, D; Kanimozhi, K; Bhuvaneshwari, N; Indira, J; Kavitha, L
2014-01-24
Hydroxyapatite [HAP, Ca10(PO4)6(OH)2] is the main inorganic component of natural bone and is widely used in various biomedical applications. In this paper, we have reported the synthesis of HAP nanoparticles by banana peel pectin mediated green template method. The pectin extracted from the peels of banana and its various concentrations were exploited in our study to achieve a controlled crystallinity, particle size as well as uniform morphology of HAP. The extracted pectin was characterized by spectral techniques like Fourier transform infrared spectroscopy (FTIR) for the functional group analysis, proton-1 nuclear magnetic resonance spectroscopy ((1)H NMR) and carbon-13 nuclear magnetic resonance spectroscopy ((13)C NMR) for the identification of H and C atoms in the extracted pectin, respectively. The HAP nanoparticles were synthesized using different concentrations of the as-extracted pectin. The purity, crystallinity and morphology of the as-synthesized HAP nanoparticles were evaluated by FTIR, X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDAX) and transmission electron microscopy (TEM), respectively. Moreover the antibacterial activity of HAP nanoparticles was evaluated against the gram positive and negative bacteria like Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. The experimental results revealed that the HAP nanoparticles synthesized in the presence of an optimized concentration of pectin are pure, low crystalline, spherical and discrete particles with reduced size. Also, the HAP sample derived in the presence of pectin showed an enhanced antibacterial activity than that of the HAP synthesized in the absence of pectin. Hence, the HAP nanoparticles synthesized using pectin as a green template can act as a good biomaterial for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gopi, D.; Kanimozhi, K.; Bhuvaneshwari, N.; Indira, J.; Kavitha, L.
2014-01-01
Hydroxyapatite [HAP, Ca10(PO4)6(OH)2] is the main inorganic component of natural bone and is widely used in various biomedical applications. In this paper, we have reported the synthesis of HAP nanoparticles by banana peel pectin mediated green template method. The pectin extracted from the peels of banana and its various concentrations were exploited in our study to achieve a controlled crystallinity, particle size as well as uniform morphology of HAP. The extracted pectin was characterized by spectral techniques like Fourier transform infrared spectroscopy (FTIR) for the functional group analysis, proton-1 nuclear magnetic resonance spectroscopy (1H NMR) and carbon-13 nuclear magnetic resonance spectroscopy (13C NMR) for the identification of H and C atoms in the extracted pectin, respectively. The HAP nanoparticles were synthesized using different concentrations of the as-extracted pectin. The purity, crystallinity and morphology of the as-synthesized HAP nanoparticles were evaluated by FTIR, X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDAX) and transmission electron microscopy (TEM), respectively. Moreover the antibacterial activity of HAP nanoparticles was evaluated against the gram positive and negative bacteria like Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. The experimental results revealed that the HAP nanoparticles synthesized in the presence of an optimized concentration of pectin are pure, low crystalline, spherical and discrete particles with reduced size. Also, the HAP sample derived in the presence of pectin showed an enhanced antibacterial activity than that of the HAP synthesized in the absence of pectin. Hence, the HAP nanoparticles synthesized using pectin as a green template can act as a good biomaterial for biomedical applications.
Jayabalan, M; Shalumon, K T; Mitha, M K; Ganesan, K; Epple, M
2010-03-01
The effect of hydroxyapatite (HAP) on the performance of nanocomposites of an unsaturated polyester, i.e., hydroxy-terminated high molecular weight poly(proplyene fumarate) (HT-PPFhm), was investigated. A thermoset nanocomposite was prepared with nanoparticles of calcined HAP (<100 nm, rod-like shape, filler content 30 wt.%), HT-PPFhm and N-vinyl pyrrolidone, dibenzoyl peroxide and N,N-dimethyl aniline. Two more nanocomposites were prepared with precipitated HAP nanoparticles (<100 nm rod-like shape) and commercially available HAP nanoparticles (<200 nm spherical shape), respectively. Calcined HAP nanoparticles resulted in very good crosslinking in the resin matrix with high crosslinking density and interfacial bonding with the polymer, owing to the rod-like shape of the nanoparticles; this gave improved biomechanical strength and modulus and also controlled degradation of the nanocomposite for scaffold formation. The tissue compatibility and osteocompatibility of the nanocomposite containing calcined HAP nanoparticles was evaluated. The tissue compatibility was studied by intramuscular implantation in a rabbit animal model for 3 months as per ISO standard 10993/6. The in vivo femoral bone repair was also carried out in the rabbit animal model as per ISO standard 10993/6. The nanocomposite containing calcined HAP nanoparticles is both biocompatible and osteocompatible. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Chen, Min-Hua; Yoshioka, Tomohiko; Ikoma, Toshiyuki; Hanagata, Nobutaka; Lin, Feng-Huei; Tanaka, Junzo
2014-10-01
Theranostic nanoparticles currently have been regarded as an emerging concept of 'personalized medicine' with diagnostic and therapeutic dual-functions. Eu 3+ doped hydroxyapatite (HAp) has been regarded as a promising fluorescent probe for in vivo imaging applications. Additionally, substitution of Ca 2+ with Fe 3+ in HAp crystal may endow the capability of producing heat upon exposure to a magnetic field. Here we report a preliminary study of doping mechanism and photoluminescence of Eu 3+ and Fe 3+ doped HAp nanoparticles (Eu/Fe:HAp). HAp with varied concentration of Eu 3+ and Fe 3+ doping are presented as Eu(10 mol%):HAp, Eu(7 mol%)-Fe(3 mol%):HAp, Eu(5 mol%)-Fe(5 mol%):HAp, Eu(3 mol%)-Fe(7 mol%):HAp, and Fe(10 mol%):HAp in the study. The results showed that the HAp particles, in nano-size with rod-like morphology, were successfully doped with Eu 3+ and Fe 3+ , and the particles can be well suspended in cell culture medium. Photoluminescence analysis revealed that particles have prominent emissions at 536 nm, 590 nm, 615 nm, 650 nm and 695 nm upon excitation at a wavelength of 397 nm. Moreover, these Eu/Fe:HAp nanoparticles belonged to B-type carbonated HAp, which has been considered an effective biodegradable and biocompatible drug/gene carrier in biological applications.
NASA Astrophysics Data System (ADS)
Chen, Min-Hua; Yoshioka, Tomohiko; Ikoma, Toshiyuki; Hanagata, Nobutaka; Lin, Feng-Huei; Tanaka, Junzo
2014-10-01
Theranostic nanoparticles currently have been regarded as an emerging concept of ‘personalized medicine’ with diagnostic and therapeutic dual-functions. Eu3+ doped hydroxyapatite (HAp) has been regarded as a promising fluorescent probe for in vivo imaging applications. Additionally, substitution of Ca2+ with Fe3+ in HAp crystal may endow the capability of producing heat upon exposure to a magnetic field. Here we report a preliminary study of doping mechanism and photoluminescence of Eu3+ and Fe3+ doped HAp nanoparticles (Eu/Fe:HAp). HAp with varied concentration of Eu3+ and Fe3+ doping are presented as Eu(10 mol%):HAp, Eu(7 mol%)-Fe(3 mol%):HAp, Eu(5 mol%)-Fe(5 mol%):HAp, Eu(3 mol%)-Fe(7 mol%):HAp, and Fe(10 mol%):HAp in the study. The results showed that the HAp particles, in nano-size with rod-like morphology, were successfully doped with Eu3+ and Fe3+, and the particles can be well suspended in cell culture medium. Photoluminescence analysis revealed that particles have prominent emissions at 536 nm, 590 nm, 615 nm, 650 nm and 695 nm upon excitation at a wavelength of 397 nm. Moreover, these Eu/Fe:HAp nanoparticles belonged to B-type carbonated HAp, which has been considered an effective biodegradable and biocompatible drug/gene carrier in biological applications.
Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles.
Kuśnieruk, Sylwia; Wojnarowicz, Jacek; Chodara, Agnieszka; Chudoba, Tadeusz; Gierlotka, Stanislaw; Lojkowski, Witold
2016-01-01
Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer's equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8-39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.
NASA Astrophysics Data System (ADS)
Mhin, Sung Wook; Ryu, Jeong Ho; Kim, Kang Min; Park, Gyeong Seon; Ryu, Han Wool; Shim, Kwang Bo; Sasaki, Takeshi; Koshizaki, Naoto
2009-08-01
Pulsed laser ablation (PLA) in liquid medium was successfully employed to synthesize hydroxyapatite (HAp) colloidal nanoparticles. The crystalline phase, particle morphology, size distribution and microstructure of the HAp nanoparticles were investigated in detail. The obtained HAp nanoparticles had spherical shape with sizes ranging from 5 to 20 nm. The laser ablation and the nanoparticle forming process were studied in terms of the explosive ejection mechanism by investigating the change of the surface morphology on target. The stoichiometry and bonding properties were studied by using XPS, FT-IR and Raman spectroscopy. A molar ratio of Ca/P of the prepared HAp nanoparticles was more stoichiometric than the value reported in the case of ablation in vacuum.
Hydroxylapatite nanoparticles: fabrication methods and medical applications
NASA Astrophysics Data System (ADS)
Okada, Masahiro; Furuzono, Tsutomu
2012-12-01
Hydroxylapatite (or hydroxyapatite, HAp) exhibits excellent biocompatibility with various kinds of cells and tissues, making it an ideal candidate for tissue engineering, orthopedic and dental applications. Nanosized materials offer improved performances compared with conventional materials due to their large surface-to-volume ratios. This review summarizes existing knowledge and recent progress in fabrication methods of nanosized (or nanostructured) HAp particles, as well as their recent applications in medical and dental fields. In section 1, we provide a brief overview of HAp and nanoparticles. In section 2, fabrication methods of HAp nanoparticles are described based on the particle formation mechanisms. Recent applications of HAp nanoparticles are summarized in section 3. The future perspectives in this active research area are given in section 4.
The biotoxicity of hydroxyapatite nanoparticles to the plant growth.
Jiang, Hao; Liu, Jin-Ku; Wang, Jian-Dong; Lu, Yi; Zhang, Min; Yang, Xiao-Hong; Hong, Dan-Jing
2014-04-15
In the present study, hydroxyapatite (HAP) nanoparticles of different particle sizes with high crystallinity and similiar structure were prepared by hydrothermal method. The crystal structure and particle size were characterized by X-ray diffraction pattern (XRD), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy. Mung bean sprouts were first used as experimental models. Instead of by MTT assay, the cytoxicity of HAP nanoparticles were proved and evaluated by measuring the hypocotyle length of mung bean sprouts in the culture media. The result showed that the inhibition effect to the growth of mung bean sprouts enhanced when HAP nanoparticles existed. Culture media of HAP nanoparticles with different concentrations and particle sizes was prepared to investigate the level of inhibition effect to the growth of mung bean sprouts. The result found that hypocotyl length of mung bean sprouts were the shortest cultured in 5mg/mL culture media in which the HAP nanoparticles were prepared by hydrothermal method for 24h. It was concluded the inhibition effect depended on the amount of intracellular HAP nanoparticles. The nanostructure and Ca(2+) concentration were considered as the main factors to cause cell apoptosis which was the reason of inhibition. The study provided a preliminary perspective about biotoxicity of HAP nanomaterials to the plant growth. Copyright © 2014 Elsevier B.V. All rights reserved.
Mondal, Sudip; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Nguyen, Van Tu; Kim, Hye Hyun; Nam, Seung Yun; Lee, Kang Dae; Oh, Junghwan
2017-12-04
Targeting cancer cells without injuring normal cells is the prime objective in treatment of cancer. In this present study, solvothermal and wet chemical precipitation techniques were employed to synthesize iron oxide (IO), hydroxyapatite (HAp), and hydroxyapatite coated iron oxide (IO-HAp) nanoparticles for magnetic hyperthermia mediated cancer therapy. The synthesized well dispersed spherical IO-HAp nanoparticles, magnetite, and apatite phases were confirmed by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Field emission transmission electron microscopy (FETEM) with Energy Dispersive X-ray spectroscopy (EDS). The non-toxic behavior of synthesized IO-HAp nanoparticles was confirmed by cytotoxicity assay (Trypan blue and MTT assay). The synthesized nanoparticles revealed a remarkable magnetic saturation of 83.2 emu/g for IO and 40.6 emu/g for IO-HAp nanoparticles in presence of 15,000 Oe (1.5 T) magnetic field at room temperature (300 K). The magnetic hyperthermia study that was performed with IO-HAp nanoparticles showed an excellent hyperthermia effect (SAR value 85 W/g) over MG-63 osteosarcoma cells. The in vitro hyperthermia temperature (~45 °C) was reached within 3 min, which shows a very high efficiency and kills nearly all of the experimental MG-63 osteosarcoma cells within 30 min exposure. These results could potentially open new perceptions for biomaterials that are aimed for anti-cancer therapies based on magnetic hyperthermia.
Mondal, Sudip; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Nguyen, Van Tu; Kim, Hye Hyun; Nam, Seung Yun; Lee, Kang Dae; Oh, Junghwan
2017-01-01
Targeting cancer cells without injuring normal cells is the prime objective in treatment of cancer. In this present study, solvothermal and wet chemical precipitation techniques were employed to synthesize iron oxide (IO), hydroxyapatite (HAp), and hydroxyapatite coated iron oxide (IO-HAp) nanoparticles for magnetic hyperthermia mediated cancer therapy. The synthesized well dispersed spherical IO-HAp nanoparticles, magnetite, and apatite phases were confirmed by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Field emission transmission electron microscopy (FETEM) with Energy Dispersive X-ray spectroscopy (EDS). The non-toxic behavior of synthesized IO-HAp nanoparticles was confirmed by cytotoxicity assay (Trypan blue and MTT assay). The synthesized nanoparticles revealed a remarkable magnetic saturation of 83.2 emu/g for IO and 40.6 emu/g for IO-HAp nanoparticles in presence of 15,000 Oe (1.5 T) magnetic field at room temperature (300 K). The magnetic hyperthermia study that was performed with IO-HAp nanoparticles showed an excellent hyperthermia effect (SAR value 85 W/g) over MG-63 osteosarcoma cells. The in vitro hyperthermia temperature (~45 °C) was reached within 3 min, which shows a very high efficiency and kills nearly all of the experimental MG-63 osteosarcoma cells within 30 min exposure. These results could potentially open new perceptions for biomaterials that are aimed for anti-cancer therapies based on magnetic hyperthermia. PMID:29207552
NASA Astrophysics Data System (ADS)
Jiang, Ruming; Liu, Meiying; Huang, Hongye; Huang, Long; Huang, Qiang; Wen, Yuanqing; Cao, Qian-yong; Tian, Jianwen; Zhang, Xiaoyong; Wei, Yen
2018-03-01
Hydroxyapatite (HAp), as an important biomaterial for the regeneration and reconstruction of bone tissue, has attracted more and more attention of researchers and scientists due to its unique structure and compositions. However, the preparation of fluorescent HAp with controllable morphology has achieved only limited success. In this work, we reported a novel strategy to construct the water dispersible fluorescent HAp nanorods via the combination of ligand exchange and metal-free atom transfer radical polymerization (ATRP). The Br-containing fluorescent HAp nanorods with controllable size and morphology were first prepared through hydrothermal treatment. A multifunctional organic molecule (named as PTH-Br) with aggregation-induced emission feature was immobilized on the surface of hydrophobic HAp nanorods through ligand exchange reaction. The PTH-Br could be used as the initiator and catalyst for surface-initiated metal-free ATRP using poly(ethylene glycol) methacrylate as monomer to obtain hydrophilic fluorescent HAp polymer nanoparticles. This strategy successfully endowed HAp nanorods excellent fluorescence properties and favorable water dispersibility but well preserved their regular morphology. Biological assays demonstrated that the HAp-PTH-poly(PEGMA) nanoparticles exhibited good biocompatibility and efficient cell uptake performance. Taken together, we have developed a rather facile strategy based on the surface ligand exchange reaction and metal-free photoATRP to fabricate fluorescent HAp with controllable size and morphology, high water dispersibility and biological properties. These HAp-PTH-poly(PEGMA) nanoparticles should be novel and promising candidates for biomedical applications.
NASA Astrophysics Data System (ADS)
Tank, Kashmira P.; Chudasama, Kiran S.; Thaker, Vrinda S.; Joshi, Mihir J.
2014-09-01
The structural, antimicrobial, and hemolytic properties and bioactivity have been studied of pure hydroxyapatite (HAP) and zinc doped hydroxyapatite (Zn-HAP) nano-particles for their medical applications. Pure HAP and Zn-HAP nano-particles were synthesized by the surfactant mediated approach. The doping of zinc was estimated by EDAX. The average particle size was determined by applying Scherrer's formula to powdered XRD patterns. The nano-particle morphology was studied by TEM and the presence of various functional groups was identified by FTIR spectroscopy. Good antimicrobial activity of nano-HAP and nano-Zn-HAP was found against five organisms, viz., Pseudomonas aeruginosa and Shigella flexneri as Gram negative as well as Micrococcus luteus, Staphylococcous aureus and Bacillus cereus as Gram positive. The ability of new apatite formation on the surface of pure and doped HAP samples was studied by using Simulated Body Fluid (SBF) in vitro. Hemolytic study indicated that all samples were non-hemolytic and suggesting potential application as bone implant material.
The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy.
Hou, Chun-Han; Hou, Sheng-Mou; Hsueh, Yu-Sheng; Lin, Jinn; Wu, Hsi-Chin; Lin, Feng-Huei
2009-08-01
Hyperthermia therapy for cancer has drawn more and more attention these days. In this study, we conducted an in vivo cancer hyperthermia study of the new magnetic hydroxyapatite nanoparticles by a mouse model. The magnetic hydroxyapatite nanoparticles were first made by co-precipitation method with the addition of Fe(2+). Then, magnetic-HAP powder (mHAP) or pure HAP powder (HAP) was mixed with phosphate buffer solution (PBS), respectively. The mixture was injected around the tumor. In order to achieve hyperthermia, the mice were placed into an inductive heater with high frequency and alternating magnetic field. Only the mice which were injected with mHAP and had been treated inside the magnetic field showed dramatic reduction of tumor volume, in the 15-day observation period. No local recurrence was noted. The blood test of mice proved that mHAP powders possessed good biocompatibility and little toxicity when injected subcutaneously. Therefore, our new magnetic hydroxyapatite nanoparticles have demonstrated therapeutic effect in a mouse model with little toxicity. Further study should be done before its application inside the human body.
Hafnium-doped hydroxyapatite nanoparticles with ionizing radiation for lung cancer treatment.
Chen, Min-Hua; Hanagata, Nobutaka; Ikoma, Toshiyuki; Huang, Jian-Yuan; Li, Keng-Yuan; Lin, Chun-Pin; Lin, Feng-Huei
2016-06-01
Recently, photodynamic therapy (PDT) is one of the new clinical options by generating cytotoxic reactive oxygen species (ROS) to kill cancer cells. However, the optical approach of PDT is limited by tissue penetration depth of visible light. In this study, we propose that a ROS-enhanced nanoparticle, hafnium-doped hydroxyapatite (Hf:HAp), which is a material to yield large quantities of ROS inside the cells when the nanoparticles are bombarded with high penetrating power of ionizing radiation. Hf:HAp nanoparticles are generated by wet chemical precipitation with total doping concentration of 15mol% Hf(4+) relative to Ca(2+) in HAp host material. The results show that the HAp particles could be successfully doped with Hf ions, resulted in the formation of nano-sized rod-like shape and with pH-dependent solubility. The impact of ionizing radiation on Hf:HAp nanoparticles is assessed by using in-vitro and in-vivo model using A549 cell line. The 2',7'-dichlorofluorescein diacetate (DCFH-DA) results reveal that after being exposed to gamma rays, Hf:HAp could significantly lead to the formation of ROS in cells. Both cell viability (WST-1) and cytotoxicity (LDH) assay show the consistent results that A549 lung cancer cell lines are damaged with changes in the cells' ROS level. The in-vivo studies further demonstrate that the tumor growth is inhibited owing to the cells apoptosis when Hf:HAp nanoparticles are bombarded with ionizing radiation. This finding offer a new therapeutic method of interacting with ionizing radiation and demonstrate the potential of Hf:HAp nanoparticles in tumor treatment, such as being used in a palliative treatment after lung surgical procedure. Photodynamic therapy (PDT) is one of the new clinical options by generating cytotoxic reactive oxygen species (ROS) to kill cancer cells. Unfortunately, the approach of PDT is usually limited to the treatment of systemic disease and deeper tumor, due to the limited tissue penetration depth of visible light (620-690nm). Here we report a ROS-enhanced nanoparticle, hafnium-doped hydroxyapatite (Hf:HAp), which can trigger ROS when particles are irradiated with high penetrating power of ionizing radiation. The present study provides quantitative data relating ROS generation and the therapeutic effect of Hf:HAp nanoparticles in lung cancer cells. As such, this material has opened an innovative window for deeper tumor and systemic disease treatment. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gopi, D.; Indira, J.; Kavitha, L.; Sekar, M.; Mudali, U. Kamachi
Hydroxyapatite (HAP) is the main inorganic component of bone material and is widely used in various biomedical applications due to its excellent bioactivity and biocompatibility. In this paper, we have reported the synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted mixed template directed method. In this method glycine-acrylic acid (GLY-AA) hollow spheres were used as an organic template which could be prepared by mixing of glycine with acrylic acid. The as-synthesized HAP nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and tunnelling electron microscope (TEM) to investigate the nature of bonding, crystallinity, size and shape. The thermal stability of as-synthesized nanoparticles was also investigated by the thermo gravimetric analysis (TGA). The effect of ultrasonic irradiation time on the crystallinity and size of the HAP nanoparticles in presence of glycine-acrylic acid hollow spheres template were investigated. From the inspection of the above results it is confirmed that the crystallinity and size of the HAP nanoparticles decrease with increasing ultrasonic irradiation time. Hence the proposed synthesis strategy provides a facile pathway to obtain nano sized HAP with high quality, suitable size and morphology.
Gopi, D; Indira, J; Kavitha, L; Sekar, M; Mudali, U Kamachi
2012-07-01
Hydroxyapatite (HAP) is the main inorganic component of bone material and is widely used in various biomedical applications due to its excellent bioactivity and biocompatibility. In this paper, we have reported the synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted mixed template directed method. In this method glycine-acrylic acid (GLY-AA) hollow spheres were used as an organic template which could be prepared by mixing of glycine with acrylic acid. The as-synthesized HAP nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and tunnelling electron microscope (TEM) to investigate the nature of bonding, crystallinity, size and shape. The thermal stability of as-synthesized nanoparticles was also investigated by the thermo gravimetric analysis (TGA). The effect of ultrasonic irradiation time on the crystallinity and size of the HAP nanoparticles in presence of glycine-acrylic acid hollow spheres template were investigated. From the inspection of the above results it is confirmed that the crystallinity and size of the HAP nanoparticles decrease with increasing ultrasonic irradiation time. Hence the proposed synthesis strategy provides a facile pathway to obtain nano sized HAP with high quality, suitable size and morphology. Copyright © 2012 Elsevier B.V. All rights reserved.
Furuzono, Tsutomu; Okazaki, Masatoshi; Azuma, Yoshinao; Iwasaki, Mitsunobu; Kogai, Yasumichi; Sawa, Yoshiki
2017-01-01
Thirteen patients with chlorhexidine-silver sulfadiazine-impregnated catheters have experienced serious anaphylactic shock in Japan. These adverse reactions highlight the lack of commercially available catheters impregnated with strong antibacterial chemical agents. A system should be developed that can control both biocompatibility and antibacterial activity. Hydroxyapatite (HAp) is biocompatible with bone and skin tissues. To provide antibacterial activity by using an external physical stimulus, titanium (Ti) ions were doped into the HAp structure. Highly dispersible, Ti-doped HAp (Ti-HAp) nanoparticles suitable as a coating material were developed. In 3 kinds of Ti-HAp [Ti/(Ca + Ti) = 0.05, 0.1, 0.2], the Ti content in the HAp was approximately 70% of that used in the Ti-HAp preparation, as determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). ICP-AES and X-ray diffraction showed Ti ions were well substituted into the HAp lattice. The nanoparticles were almost uniformly coated on a polyethylene (PE) sheet in a near-monolayer with a surface coverage ratio >95%. The antibacterial activity of the Ti-HAp nanoparticles containing 7.3% Ti ions and coating the sheet was evaluated by calculating the survival ratio of Pseudomonas aeruginosa on the coated sheet after ultraviolet (UV) irradiation. The Ti-HAp-coated sheet showed a 50% decrease in the number of P. aeruginosa compared with that on an uncoated control PE sheet after UV irradiation for 30 s. Key Messages: A system of biocompatibility and antibacterial activity with an on/off switch controlled by external UV stimulation was developed. The system is expected to be applicable in long-term implanted intravascular catheters. © 2017 S. Karger AG, Basel.
Process intensification for the production of hydroxyapatite nanoparticles
NASA Astrophysics Data System (ADS)
Castro, Filipa Juliana Fernandes
Precipitation processes are widely used in chemical industry for the production of particulate solids. In these processes, the chemical and physical nature of synthesized particles is of key importance. The traditional stirred tank batch reactors are affected by non-uniform mixing of reactants, often resulting in broad particle size distribution. The main objective of this thesis was to apply meso and microreactors for the synthesis of hydroxyapatite (HAp) nanoparticles under near-physiological conditions of pH and temperature, in order to overcome the limitations associated with stirred tank batch reactors. Meso and microreactors offer unique features in comparison with conventional chemical reactors. Their high surface-to-volume ratio enables enhanced heat and mass transfer, as well as rapid and efficient mixing. In addition to low consumption of reagents, meso and microreactors are usually operated in continuous flow, making them attractive tools for high throughput experimentation. Precipitation of HAp was first studied in a stirred tank batch reactor, mixing being assured by a novel metal stirrer. HAp was synthetized by mixing diluted aqueous solutions of calcium hydroxide and orthophosphoric acid at 37 °C. After process optimization, a suspension of HAp nanoparticles with pH close to 7 was obtained for a mixing molar ratio Ca/P=1.33. The precipitation process was characterized by three stages: precipitation of amorphous calcium phosphate, transformation of amorphous calcium phosphate into HAp and growth of HAp crystals. The reaction system was further characterized based on equilibrium equations. The resolution of the system, which was possible with the knowledge of three process variables (temperature, pH and calcium concentration), allowed identifying and quantifying all the chemical species present in solution. The proposed model was validated by comparing the experimental and theoretical conductivity. Precipitation of HAp was then investigated in a meso oscillatory flow reactor (meso-OFR). The mesoreactor was first operated batchwise in a vertical tube and experiments were performed under the same conditions of temperature, reactants concentration and power density applied in the stirred tank batch reactor. Despite hydrodynamic conditions being not directly comparable, it was possible to assess the effectiveness of both reactors in terms of mixing and quality of the precipitated particles. The experimental results show the advantages of the meso-OFR over the stirred tank due to the production, about four times faster, of smaller and more uniform HAp nanoparticles. Afterwards, continuous-flow precipitation of HAp was carried out in one meso-OFR and in a series of eight meso-OFRs. Experiments were carried out using fixed frequency (f) and amplitude (x0), varying only the residence time. HAp nanoparticles were successfully obtained in both systems, mean particle size and aggregation degree of the prepared HAp particles decreasing with decreasing residence time. In the present work continuous-flow precipitation of HAp was also investigated in two ultrasonic microreactors. Initially, the process was carried out in a tubular microreactor immersed in an ultrasonic bath, where single-phase (laminar) and gas-liquid flow experiments were both performed. Continuous-flow precipitation of HAp in single-phase flow was then done in a Teflon microreactor with integrated piezoelectric actuator. Rod-like shape HAp nanoparticles were yielded in both reactors under near-physiological conditions of pH and temperature. Further, particles showed improved characteristics, namely in terms of size, shape, particle aggregation and crystallinity. In summary, scale-down of the HAp precipitation process has resulted in the formation of HAp nanoparticles with improved characteristics when compared with HAp particles prepared in a stirred tank batch reactor. Therefore, we believe that the work developed can be a useful contribution to the development of a platform for the continuous production of high quality HAp nanoparticles.
Park, Su-Jung; Jang, Jae-Myung
2011-08-01
Electrochemical depositions of HAp nanoparticles onto Ultra-fine TiO2 nanotube layer were carried out by the electrochemical reaction in mixed electrolyte of 1.6 M (NH4)H2PO4 + 0.8 M NH4F containing 0.15 and 0.25 wt% HAp. The Ca/P ratios of the HAp nanoparticles were evaluated by EDS analysis and their values were 1.53 and 1.66 respectively. The distribution quantity of Ca and P were remained at the middle region of TiO2 nanotube, but the Ti element was mainly stayed at the bottom of barrier layer from the result of line scanning diagram. Especially, adsorbed phosphate ions facilitated nucleation of nanophase calcium phosphate material inside the TiO2 nanotubu layer that resulted in vertical growth of HAp nanoparticles. These surfaces and structures were all effective for biocompatibility from the SBF tests.
Polarization-induced surface charges in hydroxyapatite ceramics
NASA Astrophysics Data System (ADS)
Horiuchi, N.; Nakaguki, S.; Wada, N.; Nozaki, K.; Nakamura, M.; Nagai, A.; Katayama, K.; Yamashita, K.
2014-07-01
Calcium hydroxyapatite (HAp; Ca10(PO4)6(OH)2) is a well-known biomaterial that is the main inorganic component of bones and teeth. Control over the surface charge on HAp would be a key advance in the development of the material for tissue engineering. We demonstrate here that surface charge can be induced by an electrical poling process using the Kelvin method. Positive and negative charges were induced on the HAp surface in response to the applied electric field in the poling process. The surface charging is attributed to dipole polarization that is homogeneously distributed in HAp. Additionally, the surface charging is considered to originate from the organization of OH- ions into a polar phase in the structure.
NASA Astrophysics Data System (ADS)
Strąkowska, Paulina; Trojanowski, Michał; Gardas, Mateusz; Głowacki, Maciej J.; Kraszewski, Maciej; Strąkowski, Marcin R.
2015-03-01
Bio-ceramics such as hydroxyapatite (HAp) are widely used materials in medical applications, especially as an interface between implants and living tissues. There are many ways of creating structures from HAp like electrochemical assisted deposition, biomimetic, electrophoresis, pulsed laser deposition or sol-gel processing. Our research is based on analyzing the parameters of the sol-gel method for creating thin layers of HAp. In order to achieve this, we propose to use Optical Coherence Tomography (OCT) for non-destructive and non-invasive evaluation. Our system works in the IR spectrum range, which is helpful due to the wide range of nanocomposites being opaque in the VIS range. In order to use our method we need to measure two samples, one which is a reference HAp solution and second: a similar HAp solution with nanoparticles introduced inside. We use silver nanoparticles below 300 nm. The aim of this research is to analyze the concentration and dispersion of nanodopants in the bio-ceramic matrix. Furthermore, the quality of the HAp coating and deposition process repetition have been monitored. For this purpose the polarization sensitive OCT with additional spectroscopic analysis is being investigated. Despite the other methods, which are suitable for nanocomposite materials evaluation, the OCT with additional features seems to be one of the few which belong to the NDE/NDT group. Here we are presenting the OCT system for evaluation of the HAp with nano-particles, as well as HAp manufacturing process. A brief discussion on the usefulness of OCT for bio-ceramics materials examination is also being presented.
Furuzono, Tsutomu; Motaharul, Mazumder; Kogai, Yasumichi; Azuma, Yoshinao; Sawa, Yoshiki
2015-05-01
Dispersible hydroxyapatite (HAp) nanoparticles are very useful for applying a monolayer to implantable medical devices using the nano-coating technique. To improve tolerance to infection on implanted medical devices, silver-doped HAp (Ag-HAp) nanoparticles with dispersiblity and crystallinity were synthesized, avoiding calcination-induced sintering, and evaluated for antibacterial activity. The Ca10-xAgx(PO4)6(OH)2 with x = 0 and 0.2 were prepared by wet chemical processing at 100°C. Before calcination at 700°C for 2 h, two kinds of anti-sintering agents, namely a Ca(NO3)2 (Ca salt) and a polyacrylic acid/Ca salt mixture (PAA-Ca), were used. Escherichia coli was used to evaluate the antibacterial activity of the nanopowder. When PAA-Ca was used as an anti-sintering agent in calcination to prepare the dispersible nanoparticles, strong metallic Ag peaks were observed at 38.1° and 44.3° (2θ) in the X-ray diffraction (XRD) profile. However, the Ag peak was barely observed when Ca salt was used alone as the anti-sintering agent. Thus, using Ca salt alone was more effective for preparation of dispersible Ag-HAp than PAA-Ca. The particle average size of Ag-HAp with 0.5 mol% of Ag content was found to be 325 ± 70 nm when the formation of large particleaggregations was prevented, as determined by dynamic light scattering instrument. The antibacterial activity of the Ag-HAp nanoparticles possessing 0.5 mol% against E. coli was greater than 90.0%. Dispersible and crystalline nano Ag-HAp can be obtained by using Ca salt alone as an anti-sintering agent. The nanoparticles showed antibacterial activity.
Effect of electrical polarization of hydroxyapatite ceramics on new bone formation.
Itoh, S; Nakamura, S; Kobayashi, T; Shinomiya, K; Yamashita, K; Itoh, S
2006-03-01
Large surface charges can be induced on hydroxyapatite (HAp) ceramics by proton transport polarization, but this does not affect beta-tricalcium phosphate (TCP) because of its low polarizability. We wished to examine differences in osteogenic cell activity and new bone growth between positively or negatively surface-charged HAp and HAp/TCP plates using a calvarial bone defect model. In the first group of rats, test pieces were placed with their positively charged surfaces face down on the dura mater. In the second group, test pieces were placed with their negatively charged surfaces face down on the dura mater. A third group received noncharged test pieces. Histological examination, including enzymatic staining for osteoblasts and osteoclasts, was carried out. While no bone formation was observed at the pericranium, direct bone formation on the cranial bone debris and new bone growth expanded from the margins of the sites of injury to bridge across both the positively and negatively charged surfaces of HAp and HAp/TCP plates occurred. Electrical polarization of implanted plates, including positive charge, led to enhanced osteoblast activity, though decreased osteoclast activity was seen on the positively charged plate surface. Thus, polarization of HAp ceramics may modulate new bone formation and resorption.
Novel biosynthesis of Ag-hydroxyapatite: Structural and spectroscopic characterization
NASA Astrophysics Data System (ADS)
Ruíz-Baltazar, Álvaro de Jesús; Reyes-López, Simón Yobanny; Silva-Holguin, Pamela Nair; Larrañaga, Daniel; Estévez, Miriam; Pérez, Ramiro
2018-06-01
Silver-doped hydroxyapatite (Ag-HAP) was obtained by green synthesis route. The dopant silver nanoparticles (AgNPs) were obtained by biosynthesis based on Melissa officinalis extract. This research is focused on the characterization and the use of the nontoxic and environment-friendly Ag-HAP nanocomposite. The structural and morphological characterization of Ag-HAP nanocomposite was carried out by scanning electron microscopy (SEM), X-ray diffraction, Fourier-transform infrared (FT-IR) and Raman spectroscopy. The obtained nanoparticles exhibited a great interaction with the HAP matrix, performing an Ag-HAP nanocomposite. Changes in the structure of the Ag-HAP nanocomposite were corroborated by the different characterization techniques. Additionally, a homogeneous distribution of the AgNPs on the HAP structure was observed. The heterogeneous nucleation process employed to doping the HAP, offer a functional route to obtain a green composite with potentials applications in multiple fields, such as tissue engineering, bone repair as well as protein. These properties can be evaluated in subsequent studies.
NASA Astrophysics Data System (ADS)
Zhou, Ruchao; Si, Shaoxiong; Zhang, Qiyi
2012-02-01
A novel and effective method for the preparation of water-dispersible nano-hydroxyapatite (nHAp) particles was reported. nHAp was prepared in the presence of grape seed polyphenol (GSP) solution with different concentrations. Chemical precipitation method was adopted to produce pure nHAp and modified nHAp (nHAp-GSP) at 60 °C for 2 h. The chemical nature of the products was detected by Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis (TGA). Moreover, the crystal structure and morphology of particles was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicated that the spherical nHAp particles with a diameter of 20-50 nm could be synthesized at 60 °C. The zeta potential values of pure nHAp and nHAp-GSP are -0.36 mV and -26.1 mV respectively. According to the sedimentary time, the colloidal stability of nHAp-GSP in water could be improved dramatically with the increase of GSP content and the particles tended to exist as dispersive nanoparticles without aggregation. All the results indicated that GSP exhibited strong binding to nHAp and enhanced the colloidal stability of nHAp particles.
Ignjatović, Nenad; Vranješ Djurić, Sanja; Mitić, Zarko; Janković, Drina; Uskoković, Dragan
2014-10-01
In this study, we have investigated the synthesis of nanoparticles of hydroxyapatite (HAp) and hydroxyapatite coated with chitosan (HAp/Ch) and the chitosan-poly-d,l-lactide-co-glycolide polymer blend (HAp/Ch-PLGA) as an organ-targeting system. We have examined and defined the final destination, as well as the dynamics and the pathways of the synthesized particles following intravenous administration in vivo. The XRD, ZP, FT-IR and SEM analyses have confirmed that the hydroxyapatite nanoparticles with d50=72 nm are coated with polymers. Radioactive 125-Iodine ((125)I), a low energy gamma emitter, was used to develop a novel in situ method for the radiolabeling of particles and investigation of their biodistribution. (125)I-labeled particles exhibited high stability in saline and serum over the second day, which justified their use in the following in vivo studies. The biodistribution of (125)I-labeled particles after intravenous injection in rats differed significantly: HAp particles mostly targeted the liver, HAp/Ch the spleen and the liver, while HAp/Ch-PLGA targeted the lungs. Twenty-four hours post injection, HAp particles were excreted completely, while both (125)I-HAp/Ch and (125)I-HAp/Ch-PLGA were retained in the body for a prolonged period of time with more than 20% of radioactivity still found in different organs. Copyright © 2014 Elsevier B.V. All rights reserved.
Preparation of hydroxyapatite nanoparticles by sol-gel method with optimum processing parameters
NASA Astrophysics Data System (ADS)
Yusoff, Yusriha Mohd; Salimi, Midhat Nabil Ahmad; Anuar, Adilah
2015-05-01
Many studies have been carried out in order to prepare hydroxyapatite (HAp) by various methods. In this study, we focused on the preparation of HAp nanoparticles by using sol-gel technique in which few parameters are optimized which were stirring rate, aging time and sintering temperature. HAp nanoparticles were prepared by using precursors of calcium nitrate tetrahydrate, Ca(NO3)2.4H2O and phosphorous pentoxide, P2O5. Both precursors are mixed in ethanol respectively before they were mixed together in which it formed a stable sol. Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were used for its characterization in terms of functional group, phase composition, crystallite size and morphology of the nanoparticles produced. FTIR spectra showed that the functional groups that present in all five samples were corresponding to the formation of HAp. Besides, XRD shows that only one phase was formed which was hydroxyapatite. Meanwhile, SEM shows that the small particles combine together to form agglomeration.
Gopi, D; Kanimozhi, K; Kavitha, L
2015-04-15
In the present study, we have adapted a facile and efficient green route for the synthesis of HAP nanoparticles using pectin as a template which was extracted from the peel of prickly pear (Opuntia ficus indica) fruits. The concentration of pectin plays a major role in the behavior of crystallinity, purity, morphology as well as biological property of the as-synthesized HAP nanoparticles. The extracted pectin and the as-synthesized nanoparticles were characterized by various analytical techniques. The in vitro apatite formation on the surface of the as-synthesized nanoparticles in simulated body fluid (SBF) for various days showed an enhanced bioactivity. Also, the antimicrobial activity was investigated using various microorganisms. All the results revealed the formation of pure, low crystalline and discrete granular like HAP nanoparticles of size around 25 nm with enhanced biological and antimicrobial activities. Hence the as-synthesized nanoparticles can act as a better bone regenerating material in the field of biomedicine. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gopi, D.; Kanimozhi, K.; Kavitha, L.
2015-04-01
In the present study, we have adapted a facile and efficient green route for the synthesis of HAP nanoparticles using pectin as a template which was extracted from the peel of prickly pear (Opuntia ficus indica) fruits. The concentration of pectin plays a major role in the behavior of crystallinity, purity, morphology as well as biological property of the as-synthesized HAP nanoparticles. The extracted pectin and the as-synthesized nanoparticles were characterized by various analytical techniques. The in vitro apatite formation on the surface of the as-synthesized nanoparticles in simulated body fluid (SBF) for various days showed an enhanced bioactivity. Also, the antimicrobial activity was investigated using various microorganisms. All the results revealed the formation of pure, low crystalline and discrete granular like HAP nanoparticles of size around 25 nm with enhanced biological and antimicrobial activities. Hence the as-synthesized nanoparticles can act as a better bone regenerating material in the field of biomedicine.
USDA-ARS?s Scientific Manuscript database
Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The tr...
Hydrothermal Synthesis of Hydroxyapatite Nanorods for Rapid Formation of Bone-Like Mineralization
NASA Astrophysics Data System (ADS)
Hoai, Tran Thanh; Nga, Nguyen Kim; Giang, Luu Truong; Huy, Tran Quang; Tuan, Phan Nguyen Minh; Binh, Bui Thi Thanh
2017-08-01
Hydroxyapatite (HAp) is an excellent biomaterial for bone repair and regeneration. The biological functions of HAp particles, such as biomineralization, cell adhesion, and cell proliferation, can be enhanced when their size is reduced to the nanoscale. In this work, HAp nanoparticles were synthesized by the hydrothermal technique with addition of cetyltrimethylammonium bromide (CTAB). These particles were also characterized, and their size controlled by modifying the CTAB concentration and hydrothermal duration. The results show that most HAp nanoparticles were rod-like in shape, exhibiting the most uniform and smallest size (mean diameter and length of 39 nm and 125 nm, respectively) at optimal conditions of 0.64 g CTAB and hydrothermal duration of 12 h. Moreover, good biomineralization capability of the HAp nanorods was confirmed through in vitro tests in simulated body fluid. A bone-like mineral layer of synthesized HAp nanorods formed rapidly after 7 days. This study shows that highly bioactive HAp nanorods can be easily prepared by the hydrothermal method, being a potential nanomaterial for bone regeneration.
Factors influencing the stability and type of hydroxyapatite stabilized Pickering emulsion.
Zhang, Ming; Wang, Ai-Juan; Li, Jun-Ming; Song, Na; Song, Yang; He, Rui
2017-01-01
Hydroxyapatite (HAp) nanoparticle stabilized Pickering emulsion was fabricated with poly(l-lactic acid) dissolved in dichloromethane (CH 2 Cl 2 ) solution as oil phase and HAp aqueous dispersion as aqueous phase. Pickering emulsion was cured via in situ solvent evaporation method. Effect of PLLA concentrations, pH value, HAp concentrations, oil-water ratio, emulsification rates and times were studied on emulsion stability and emulsion type, etc. The results indicated emulsion stability increased with the increase of HAp concentration, emulsification rate and time; it is very stable when pH value of aqueous phase was adjusted to 10. Stable W/O and O/W emulsions were fabricated successfully using as-received HAp particles as stabilizer by adjusting the fabricating parameters. The interaction between HAp and PLLA played an important role to stabilize Pickering emulsions. SEM results indicated that both microsphere and porous materials were fabricated using emulsion stabilized by unmodified HAp nanoparticles, implying that both W/O and O/W emulsion type were obtained. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Juan; Lin, Dong-Yang; Yan, Xiao-Hui; Wang, Xiao-Xiang
2011-12-01
A homogeneous amorphous calcium phosphate (ACP) coating containing magnesium was achieved on titanium substrates by electrochemical deposition (ECD). Its amorphous structure is confirmed by transmission electron microscope (TEM) together with grazing reflection absorption infrared spectroscopy (IR) spectrometer. In the images of high-resolution transmission electron microscope (HRTEM), the ACP spheres are assembled by nano-particles with the diameter of 5-10 nm. In the alkaline environment, nucleation of hydroxyapatite (HAP) occurs on the surfaces of ACP spheres. By consuming the Ca and PO 4 ions inside the ACP spheres, the HAP nuclei grow outward. Confirmed by TEM, the ACP spheres converse to hollow HAP spheres composed of HAP nano-needles. The coating is finally constructed by the HAP nano-needles, which are themselves aggregated by numerous nano-particles.
NASA Astrophysics Data System (ADS)
Gopi, D.; Ansari, M. Thameem; Shinyjoy, E.; Kavitha, L.
2012-02-01
Nowadays magnetic hydroxyapatite (m-HAP) has potential applications in biomedicine more especially for bone cancer treatment. In this paper the functionalization of the hydroxyapatite (HAP) with magnetite nanoparticle (MNP) through ultrasonic irradiation technique is reported and its spectral investigation has been carried out. The ultrasonic irradiation with two different frequencies of 28 kHz and 35 kHz at the power of 150 and 320 W, respectively, was employed for the synthesis of m-HAP. The ultrasound irradiation of 35 kHz at 320 W shows the efficient diffusion of MNP to the HAP host matrix leads to the formation of m-HAP. The ultrasonic irradiation technique does not require stabilizers as in the case of coprecipitation method hence the final product of pure m-HAP is obtained. The X-ray diffraction pattern shows the formation of magnetite nanoparticles which are functionalized with hydroxyapatite host matrix. The vibrating sample magnetometer curve exhibits the super paramagnetic property of the samples and the saturation magnetization ( Ms) value of the functionalized magnetic hydroxyapatite. The Ms value is found to be much less than that of pure magnetite nanoparticle and this decrement in Ms is due to the hindrance of magnetic domain of the particles with HAP. The portrayed Raman spectra discriminate between the m-HAP and MNP with corresponding vibrational modes of frequencies. The transmission electron micrograph shows excellent morphology of functionalized m-HAP in nanometer range. The atomic force microscopic investigation shows the 3-dimensional view of crust and trench shape of m-HAP. All these results confirm the formation of magnetic hydroxyapatite nanocomposite with typical magnetic property for biological applications.
Gopi, D; Ansari, M Thameem; Shinyjoy, E; Kavitha, L
2012-02-15
Nowadays magnetic hydroxyapatite (m-HAP) has potential applications in biomedicine more especially for bone cancer treatment. In this paper the functionalization of the hydroxyapatite (HAP) with magnetite nanoparticle (MNP) through ultrasonic irradiation technique is reported and its spectral investigation has been carried out. The ultrasonic irradiation with two different frequencies of 28kHz and 35kHz at the power of 150 and 320W, respectively, was employed for the synthesis of m-HAP. The ultrasound irradiation of 35kHz at 320W shows the efficient diffusion of MNP to the HAP host matrix leads to the formation of m-HAP. The ultrasonic irradiation technique does not require stabilizers as in the case of coprecipitation method hence the final product of pure m-HAP is obtained. The X-ray diffraction pattern shows the formation of magnetite nanoparticles which are functionalized with hydroxyapatite host matrix. The vibrating sample magnetometer curve exhibits the super paramagnetic property of the samples and the saturation magnetization (M(s)) value of the functionalized magnetic hydroxyapatite. The M(s) value is found to be much less than that of pure magnetite nanoparticle and this decrement in M(s) is due to the hindrance of magnetic domain of the particles with HAP. The portrayed Raman spectra discriminate between the m-HAP and MNP with corresponding vibrational modes of frequencies. The transmission electron micrograph shows excellent morphology of functionalized m-HAP in nanometer range. The atomic force microscopic investigation shows the 3-dimensional view of crust and trench shape of m-HAP. All these results confirm the formation of magnetic hydroxyapatite nanocomposite with typical magnetic property for biological applications. Copyright © 2011 Elsevier B.V. All rights reserved.
Novel hydroxyapatite nanorods improve anti-caries efficacy of enamel infiltrants.
Andrade Neto, D M; Carvalho, E V; Rodrigues, E A; Feitosa, V P; Sauro, S; Mele, G; Carbone, L; Mazzetto, S E; Rodrigues, L K; Fechine, P B A
2016-06-01
Enamel resin infiltrants are biomaterials able to treat enamel caries at early stages. Nevertheless, they cannot prevent further demineralization of mineral-depleted enamel. Therefore, the aim of this work was to synthesize and incorporate specific hydroxyapatite nanoparticles (HAps) into the resin infiltrant to overcome this issue. HAps were prepared using a hydrothermal method (0h, 2h and 5h). The crystallinity, crystallite size and morphology of the nanoparticles were characterized through XRD, FT-IR and TEM. HAps were then incorporated (10wt%) into a light-curing co-monomer resin blend (control) to create different resin-based enamel infiltrants (HAp-0h, HAp-2h and HAp-5h), whose degree of conversion (DC) was assessed by FT-IR. Enamel caries lesions were first artificially created in extracted human molars and infiltrated using the tested resin infiltrants. Specimens were submitted to pH-cycling to simulate recurrent caries. Knoop microhardness of resin-infiltrated underlying and surrounding enamel was analyzed before and after pH challenge. Whilst HAp-0h resulted amorphous, HAp-2h and HAp-5h presented nanorod morphology and higher crystallinity. Resin infiltration doped with HAp-2h and HAp-5h caused higher enamel resistance against demineralization compared to control HAp-free and HAp-0h infiltration. The inclusion of more crystalline HAp nanorods (HAp-2h and HAp-5h) increased significantly (p<0.05) the DC. Incorporation of more crystalline HAp nanorods into enamel resin infiltrants may be a feasible method to improve the overall performance in the prevention of recurrent demineralization (e.g. caries lesion) in resin-infiltrated enamel. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
He, Junyong; Chen, Kai; Cai, Xingguo; Li, Yulian; Wang, Chengming; Zhang, Kaisheng; Jin, Zhen; Meng, Fanli; Wang, Xuguang; Kong, Lingtao; Liu, Jinhuai
2017-03-15
A biocompatible and novelly-defined adsorption membrane for rapid removal of fluoride was prepared. Both adsorption and membrane techniques were used in this research. Al(OH) 3 nanoparticles modified hydroxyapatite (Al-HAP) nanowires were developed and made into Al-HAP membrane. The adsorption data of Al-HAP adsorbent could be well described by Freundlich isotherm model while the adsorption kinetic followed pseudo-second-order model. The maximum of adsorption capacity was 93.84mg/g when the fluoride concentration was 200mg/L. The adsorption mechanism was anion exchanges and electrostatic interactions. The contribution rates of HAP nanowires and Al(OH) 3 nanoparticles in fluoride removal were 36.70% and 63.30%, respectively. The fixed-bed column test demonstrate that the Al-HAP was biocompatible and in a good stability during the process of water treatment. The fluoride removal abilities of Al-HAP membrane with 0.3mm thickness could reach 1568L/m 2 when fluoride concentrations were 5mg/L. This study indicated that the Al-HAP membrane could be developed into a very viable technology for highly effective removal of fluoride from drinking water. Copyright © 2016 Elsevier Inc. All rights reserved.
Keivani, F; Shokrollahi, P; Zandi, M; Irani, S; F Shokrolahi; Khorasani, S C
2016-11-01
Polycaprolactone (PCL)/hydroxyapatite nano-composites are among the best candidates for tissue engineering. However, interactions between nHAp and PCL are difficult to control leading to inhomogeneous dispersion of the bio-ceramic particles. Grafting of polymer chains at high density/chain length while promotes the phase compatibility may result in reduced HAp exposed surface area and therefore, bioactivity is compromised. This issue is addressed here by grafting PCL chains onto HAp nano-particles through ring opening polymerization of ε-caprolactone (PCL-g-HAp). FTIR and TGA analysis showed that PCL (6.9wt%), was successfully grafted on the HAp. PCL/PCL-g-HAp nano-fibrous scaffold showed up to 10 and 33% enhancement in tensile strength and modulus, respectively, compared to those of PCL/HAp. The effects of HAp on the in vitro HAp formation were investigated for both the PCL/HAp and PCL/PCL-g-HAp scaffolds. Precipitation of HAp on the nano-composite scaffolds observed after 15days incubation in simulated body fluid (SBF), as confirmed by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Human fibroblasts were seeded on PCL, PCL/HAp and PCL/PCL-g-HAp scaffolds. According to MTT assay, the highest cell proliferation was recorded for PCL/PCL-g-HAp nano-composite, at all time intervals (1-21days, P<0.001). Fluorescent microscopy (of DAPI stained samples) and electron microscopy images showed that all nano-fibrous scaffolds (PCL, PCL/HAp, and PCL/PCL-g-HAp), were non-toxic against cells, while more cell adhesion, and the most uniform cell distribution observed on the PCL/PCL-g-HAp. Overall, grafting of relatively short chains of PCL on the surface of HAp nano-particles stimulates fibroblasts adhesion and proliferation on the PCL/PCL-g-HAp nano-composite. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, Thiago A. R. M.; Ilavsky, Jan; Hammons, Joshua
Hydroxyapatite (HAP) scaffolds with a hierarchical porous architecture were prepared by a new dual-template (corn starch and cetyltrimethylammonium bromide (CTAB) surfactant) used to cast HAP nanoparticles and development scaffolds with size hierarchical porous distribution. The Powder X-Ray diffraction (XRD) results showed that only the HAP crystalline phase is present in the samples after calcination; the Scanning Electron Microscopy (SEM) combined with Small Angle (SAXS) and Ultra-Small Angle X-ray Scattering (USAXS) techniques showed that the porous arrangement is promoted by needle-like HAP nanoparticles, and that the pore size distributions depend on the drip-order of the calcium and the phosphate solutions duringmore » the template preparation stage.« less
Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite
NASA Astrophysics Data System (ADS)
Palanivelu, R.; Ruban Kumar, A.
2014-06-01
Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes.
Sassoni, Enrico; D’Amen, Eros; Roveri, Norberto
2018-01-01
To prevent soiling of marble exposed outdoors, the use of TiO2 nano-particles has been proposed in the literature by two main routes, both raising durability issues: (i) direct application to marble surface, with the risk of particle leaching by rainfall; (ii) particle incorporation into inorganic or organic coatings, with the risk of organic coating degradation catalyzed by TiO2 photoactivity. Here, we investigated the combination of nano-TiO2 and hydroxyapatite (HAP), previously developed for marble protection against dissolution in rain and mechanical consolidation. HAP-TiO2 combination was investigated by two routes: (i) sequential application of HAP followed by nano-TiO2 (“H+T”); (ii) simultaneous application by introducing nano-TiO2 into the phosphate solution used to form HAP (“HT”). The self-cleaning ability was evaluated before and after prolonged exposure to simulated rain. “H+T” and “HT” coatings exhibited much better resistance to nano-TiO2 leaching by rain, compared to TiO2 alone. In “H+T” samples, TiO2 nano-particles adhere better to HAP (having flower-like morphology and high specific surface area) than to marble. In “HT” samples, thanks to chemical bonds between nano-TiO2 and HAP, the particles are firmly incorporated in the HAP coating, which protects them from leaching by rain, without diminishing their photoactivity and without being degraded by them. PMID:29360789
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusoff, Yusriha Mohd; Salimi, Midhat Nabil Ahmad; Anuar, Adilah
Many studies have been carried out in order to prepare hydroxyapatite (HAp) by various methods. In this study, we focused on the preparation of HAp nanoparticles by using sol-gel technique in which few parameters are optimized which were stirring rate, aging time and sintering temperature. HAp nanoparticles were prepared by using precursors of calcium nitrate tetrahydrate, Ca(NO{sub 3}){sub 2}.4H{sub 2}O and phosphorous pentoxide, P{sub 2}O{sub 5}. Both precursors are mixed in ethanol respectively before they were mixed together in which it formed a stable sol. Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were used formore » its characterization in terms of functional group, phase composition, crystallite size and morphology of the nanoparticles produced. FTIR spectra showed that the functional groups that present in all five samples were corresponding to the formation of HAp. Besides, XRD shows that only one phase was formed which was hydroxyapatite. Meanwhile, SEM shows that the small particles combine together to form agglomeration.« less
Nasiri, Noushin; Ceramidas, Anthony; Mukherjee, Shayanti; Panneerselvan, Anitha; Nisbet, David R.; Tricoli, Antonio
2016-01-01
Orthopedic treatments are amongst the most common cause of surgery and are responsible for a large share of global healthcare expenditures. Engineering materials that can hasten bone integration will improve the quality of life of millions of patients per year and reduce associated medical costs. Here, we present a novel hierarchical biomimetic coating that mimics the inorganic constituent of mammalian bones with the aim of improving osseointegration of metallic implants. We exploit the thermally-driven self-organization of metastable core-shell nanoparticles during their aerosol self-assembly to rapidly fabricate robust, ultra-porous nanoparticle networks (UNN) of crystalline hydroxyapatite (HAp). Comparative analysis of the response of osteoblast cells to the ultra-porous nanostructured HAp surfaces and to the spin coated HAp surfaces revealed superior osseointegrative properties of the UNN coatings with significant cell and filopodia infiltration. This flexible synthesis approach for the engineering of UNN HAp coatings on titanium implants provides a platform technology to study the bone-implant interface for improved osseointegration and osteoconduction. PMID:27076035
Effect of silicon, tantalum, and tungsten doping and polarization on bioactivity of hydroxyapatite
NASA Astrophysics Data System (ADS)
Dhal, Jharana
Hydroxyapatite (HAp) ceramics has important applications as bone graft because of the structural and compositional similarities with bone tissue. However, inferior osteogenic capacity to bone and poor mechanical properties have been identified to be major disadvantages of synthetic HAp compared to the living bone tissue. The objective of the current study is to evaluate the effect of doping with higher valent cations (Tungsten, tantalum, and silicon) and polarization or combination of both on change in property of doped HAp and subsequent impact its bioactivity. In vitro study with human osteoblast cells was used to investigate the influences of doping and polarization on bone cell-materials interactions. The bioactivity of doped HAp was compared with pure HAp. Effect of doping and polarization on the change in HAp was investigated by monitoring change in mineral phases, stored charge, and activation energy of HAp. Activation energy of depolarization was used to explain the possible mechanism of polarization in doped samples. Bioactivity of HAp increased when doped with tantalum and tungsten. Polarization further increased the bioactivity of tungsten- and tantalum-doped samples. Increase in bioactivity on polarized and doped samples was attributed to increase in surface energy and increase in surface wettability. Whereas, an increase in bioactivity on doped unpolarized surface was attributed to change in microstructure. Polarized charge calculated from TSDC indicates that polarized charge decreases on tantalum- and tungsten-doped HAp. The decrease in polarized charge was attributed to the presence of significant amount of different phases that may hinder the ionic motion in doped samples. However, for silicon-doped HAp, TSDC study showed no difference in the mechanism of polarization between doped and undoped samples. Increase in silicon doping decreased the grain size though mechanism is not affected by grain size. Total stored charge decreased with increase in dopant concentration at a particular sintering temperature. Results of this study provide further evidence for use of higher valence cations to improve biological performance of HAp ceramics and to advance our understanding on mechanism of polarization in doped samples.
NASA Astrophysics Data System (ADS)
Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Le Coustumer, Phillippe; Constantin, Liliana Violeta; Predoi, Daniela
2012-06-01
Ag-doped nanocrystalline hydroxyapatite nanoparticles (Ag:HAp-NPs) (Ca10- x Ag x (PO4)6(OH)2, x Ag = 0.05, 0.2, and 0.3) with antibacterial properties are of great interest in the development of new products. Coprecipitation method is a promising route for obtaining nanocrystalline Ag:HAp with antibacterial properties. X-ray diffraction identified HAp as an unique crystalline phase in each sample. The calculated lattice constants of a = b = 9.435 Å, c = 6.876 Å for x Ag = 0.05, a = b = 9.443 Å, c = 6.875 Å for x Ag = 0.2, and a = b = 9.445 Å, c = 6.877 Å for x Ag = 0.3 are in good agreement with the standard of a = b = 9.418 Å, c = 6.884 Å (space group P63/m). The Fourier transform infrared and Raman spectra of the sintered HAp show the absorption bands characteristic to hydroxyapatite. The Ag:HAp nanoparticles are evaluated for their antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Providencia stuartii, Citrobacter freundii and Serratia marcescens. The results showed that the antibacterial activity of these materials, regardless of the sample types, was greatest against S. aureus, K. pneumoniae, P. stuartii, and C. freundii. The results of qualitative antibacterial tests revealed that the tested Ag:HAp-NPs had an important inhibitory activity on P. stuartii and C. freundii. The absorbance values measured at 490 nm of the P. stuartii and C. freundii in the presence of Ag:HAp-NPs decreased compared with those of organic solvent used (DMSO) for all the samples ( x Ag = 0.05, 0.2, and 0.3). Antibacterial activity increased with the increase of x Ag in the samples. The Ag:HAp-NP concentration had little influence on the bacterial growth ( P. stuartii).
Synthesis and thermal stability of selenium-doped hydroxyapatite with different substitutions
NASA Astrophysics Data System (ADS)
Liu, Yonghui; Ma, Jun; Zhang, Shengmin
2015-12-01
Selenium (Se) plays a specific role in human health, especially for its antitumor effect. Incorporation of selenium into biocompatible hydroxyapatite (HAP) may endow the materials with novel characteristics. In the current work, a series of seleniumdoped hydroxyapatite (Se-HAP) nanoparticles with different Se/P ratios were synthesized by a modified chemical precipitation. It was revealed that the powders with/without heattreatment were nano-sized needle-like HAP while the heat-treated samples have high crystallinity. The addition of selenium decreases the crystallinity of the synthesized apatite, and also takes a negative effect on the thermal stability of the as-prepared powders. The Se-HAP nanoparticles with Se/P molar ratio not more than 5% sintered at 900°C can achieve good crystallinity and thermal stability.
Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite.
Palanivelu, R; Ruban Kumar, A
2014-06-05
Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes. Copyright © 2014 Elsevier B.V. All rights reserved.
Ultrasonic-assisted conversion of limestone into needle-like hydroxyapatite nanoparticles.
Klinkaewnarong, Jutharatana; Utara, Songkot
2018-09-01
Needle-like hydroxyapatite nanoparticles were successfully synthesized via a reaction between calcium oxide (CaO) that was obtained from calcined limestone and orthophosphoric acid (H 3 PO 4 ) under ultrasonic irradiation at 25 °C. The reaction systems were exposed to ultrasonic waves of 20 kHz for various times ranging from 0 to 4 h. The initial and final pH values of the mixtures of CaO and H 3 PO 4 solution were continuously observed (pH < 4.0) after ultrasonic irradiation. The powder was then dried at 60 °C and calcined at 300 °C for 3 h (3 °C/min). The products were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The results showed that the formation of needle-like hydroxyapatite (HAp) nanoparticles was substantially accelerated compared with the reaction without ultrasonic irradiation. The HAp phase was increasingly visible with longer ultrasonic irradiation time compared with the monetite phase (CaHPO 4 ). This suggests that ultrasonic waved induced a phase transition from the monetite to HAp phase. A smaller needle-like structure of HAp (diameter ∼ 7.4 nm) with a lower contamination of monetite phase was obtained following sonication for 3 h. This study shows that Thai limestone can used as a starting material for synthesizing needle-like HAp nanoparticles with the aid of ultrasonic methods. Copyright © 2018 Elsevier B.V. All rights reserved.
Influence of Dispersant and Heat Treatment on the Morphology of Nanocrystalline Hydroxyapatite
NASA Astrophysics Data System (ADS)
Pan, Yusong; Xiong, Dangsheng
2010-10-01
Natural biological hard tissues are biocomposites of proteins and hydroxyapatite (HA) with superior strength. Nanometer scale HAp is the key material to manufacture bone substitute. In this work, nano-sized HA particles were synthesized by a wet method using orthophosphoric acid and calcium hydroxide as raw materials. The prepared nanocrystalline HAp was characterized for its phase purity and nano-scale morphological structure by XRD, TEM, and FTIR. The influences of heat treatment temperature and dispersant on the properties of HAp were also investigated. The results indicated that nano-particles were pure single-phase HAp with a diameter of 25-70 nm and length of 50-180 nm depending on heat treatment temperature. The morphology and crystallite size of HAp change with heat treatment temperature. After heat treating, the crystallinity of these nano-particles increased and its morphology transformed from needle-like to sphere-like structure. The dispersant is beneficial to prevent the growth of HA particles and provide a uniform particle size distribution. Moreover, the HAp tends to form small agglomerates in the absence of dispersant.
Jafari, Samira; Maleki-Dizaji, Nasrin; Barar, Jaleh; Barzegar-Jalali, Mohammad; Rameshrad, Maryam; Adibkia, Khosro
2016-08-25
The objective of this study was to improve the therapeutic efficacy of methylprednisolone acetate (MPA) in the treatment of rheumatoid arthritis (RA) by incorporating the drug into the hydroxyapatite (HAp) nanoparticles. The nanoparticles were synthesized using a chemical precipitation technique and their size and morphology were evaluated by dynamic light scattering and scanning electron microscopy (SEM). The solid-state behavior of the nanoparticles was also characterized by operating X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). The Brunauer-Emmett-Teller and Barrett-Joyner-Halenda N2 adsorption/desorption analyses were also performed to determine the surface area, Vm (the volume of the N2 adsorbed on the one gram of the HAp when the monolayer is complete) and the pore size of the samples. Furthermore, the therapeutic efficacy of the prepared nanoformulation on the adjuvant induced arthritic rats was assessed. HAp mesoporous nanoparticles with a particle size of 70.45nm, pore size of 2.71nm and drug loading of 44.53% were obtained. The specific surface area of HAp as well as the Vm values were decreased after the drug loading process. The nanoformulation revealed the slower drug release profile compared to the pure drug. The MTT assay indicated that the MPA-loaded nanoparticles had a lower cytotoxic effect on NIH-3T3 and CAOV-4 cell lines compared to the pure drug. Interestingly, the in vivo study confirmed that the drug-loaded nanoparticles could considerably decrease the paw volume and normalize the hematological abnormalities in the arthritic rats. Copyright © 2016 Elsevier B.V. All rights reserved.
Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo.
Chu, Sheng-Hua; Feng, Dong-Fu; Ma, Yan-Bin; Li, Zhi-Qiang
2012-01-01
Hydroxyapatite nanoparticles (nano-HAPs) have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU).
Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo
Chu, Sheng-Hua; Feng, Dong-Fu; Ma, Yan-Bin; Li, Zhi-Qiang
2012-01-01
Hydroxyapatite nanoparticles (nano-HAPs) have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). PMID:22888225
Zhang, Ming; Wang, Ai-Juan; Li, Jun-Ming; Song, Na
2017-10-01
Stearic acid (Sa) was used to modify the surface properties of hydroxyapatite (HAp) in different solvents (water, ethanol or dichloromethane(CH 2 Cl 2 )). Effect of different solvents on the properties of HAp particles (activation ratio, grafting ratio, chemical properties), emulsion properties (emulsion stability, emulsion type, droplet morphology) as well as the cured materials (morphology, average pore size) were studied. FT-IR and XPS results confirmed the interaction occurred between stearic acid and HAp particles. Stable O/W and W/O type Pickering emulsions were prepared using unmodified and Sa modified HAp nanoparticles respectively, which indicated a catastrophic inversion of the Pickering emulsion happened possibly because of the enhanced hydrophobicity of HAp particles after surface modification. Porous materials with different structures and pore sizes were obtained using Pickering emulsion as the template via in situ evaporation solvent method. The results indicated the microstructures of cured samples are different form each other when HAp was surface modified in different solvents. HAp particles fabricated using ethanol as solvent has higher activation ratio and grafting ratio. Pickering emulsion with higher stability and cured porous materials with uniform morphology were obtained compared with samples prepared using water and CH 2 Cl 2 as solvents. In conclusion, surface modification of HAp in different solvents played a very important role for its stabilized Pickering emulsion as well as the microstructure of cured samples. It is better to use ethanol as the solvent for Sa modified HAp particles, which could increase the stability of Pickering emulsion and obtain cured samples with uniform pore size. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pappus, S. Aurosman; Ekka, Basanti; Sahu, Swetapadma; Sabat, Debabrat; Dash, Priyabrat; Mishra, Monalisa
2017-04-01
The effects of oral intake of hydroxyapatite nanoparticles (HApNPs) were investigated on growth, development and behaviour of Drosophila. The Drosophila responses to various concentrations of HApNPs were compared. At lower concentrations, i.e. 5 mg L-1 more amount of oxidative stress was produced than that of highest concentration, i.e. 80 mg L-1. The increased amounts of oxidative stress reflect a higher amount of ROS production and increased cell damage within the larval gut. HApNPs was further shown to interfere with the calcium and phosphorus absorption pathway. Besides all these damage, HApNPs causes developmental delay in the late third instar larvae. The most significant anomaly was observed in pupae count, fly hatching after the feeding of HApNPs. Flies hatched from treated vials have decreased body weight with defective walking behaviour. Hatched flies have a phenotypic defect in the wing, eye and thorax of the bristles. Along with these changes, the adult fly becomes more prone towards stress. The findings hint that HApNPs persuade noxious effects and alter the development, structure, function and behaviour of the fly in a concentration-dependent manner.
2012-01-01
Ag-doped nanocrystalline hydroxyapatite nanoparticles (Ag:HAp-NPs) (Ca10-xAgx(PO4)6(OH)2, xAg = 0.05, 0.2, and 0.3) with antibacterial properties are of great interest in the development of new products. Coprecipitation method is a promising route for obtaining nanocrystalline Ag:HAp with antibacterial properties. X-ray diffraction identified HAp as an unique crystalline phase in each sample. The calculated lattice constants of a = b = 9.435 Å, c = 6.876 Å for xAg = 0.05, a = b = 9.443 Å, c = 6.875 Å for xAg = 0.2, and a = b = 9.445 Å, c = 6.877 Å for xAg = 0.3 are in good agreement with the standard of a = b = 9.418 Å, c = 6.884 Å (space group P63/m). The Fourier transform infrared and Raman spectra of the sintered HAp show the absorption bands characteristic to hydroxyapatite. The Ag:HAp nanoparticles are evaluated for their antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Providencia stuartii, Citrobacter freundii and Serratia marcescens. The results showed that the antibacterial activity of these materials, regardless of the sample types, was greatest against S. aureus, K. pneumoniae, P. stuartii, and C. freundii. The results of qualitative antibacterial tests revealed that the tested Ag:HAp-NPs had an important inhibitory activity on P. stuartii and C. freundii. The absorbance values measured at 490 nm of the P. stuartii and C. freundii in the presence of Ag:HAp-NPs decreased compared with those of organic solvent used (DMSO) for all the samples (xAg = 0.05, 0.2, and 0.3). Antibacterial activity increased with the increase of xAg in the samples. The Ag:HAp-NP concentration had little influence on the bacterial growth (P. stuartii). PMID:22721352
Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Le Coustumer, Phillippe; Constantin, Liliana Violeta; Predoi, Daniela
2012-06-21
Ag-doped nanocrystalline hydroxyapatite nanoparticles (Ag:HAp-NPs) (Ca10-xAgx(PO4)6(OH)2, xAg = 0.05, 0.2, and 0.3) with antibacterial properties are of great interest in the development of new products. Coprecipitation method is a promising route for obtaining nanocrystalline Ag:HAp with antibacterial properties. X-ray diffraction identified HAp as an unique crystalline phase in each sample. The calculated lattice constants of a = b = 9.435 Å, c = 6.876 Å for xAg = 0.05, a = b = 9.443 Å, c = 6.875 Å for xAg = 0.2, and a = b = 9.445 Å, c = 6.877 Å for xAg = 0.3 are in good agreement with the standard of a = b = 9.418 Å, c = 6.884 Å (space group P63/m). The Fourier transform infrared and Raman spectra of the sintered HAp show the absorption bands characteristic to hydroxyapatite. The Ag:HAp nanoparticles are evaluated for their antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Providencia stuartii, Citrobacter freundii and Serratia marcescens. The results showed that the antibacterial activity of these materials, regardless of the sample types, was greatest against S. aureus, K. pneumoniae, P. stuartii, and C. freundii. The results of qualitative antibacterial tests revealed that the tested Ag:HAp-NPs had an important inhibitory activity on P. stuartii and C. freundii. The absorbance values measured at 490 nm of the P. stuartii and C. freundii in the presence of Ag:HAp-NPs decreased compared with those of organic solvent used (DMSO) for all the samples (xAg = 0.05, 0.2, and 0.3). Antibacterial activity increased with the increase of xAg in the samples. The Ag:HAp-NP concentration had little influence on the bacterial growth (P. stuartii).
Hao, Xiaohong; Hu, Xixue; Zhang, Cuimiao; Chen, Shizhu; Li, Zhenhua; Yang, Xinjian; Liu, Huifang; Jia, Guang; Liu, Dandan; Ge, Kun; Liang, Xing-Jie; Zhang, Jinchao
2015-10-27
Potential bioaccumulation is one of the biggest limitations for silica nanodrug delivery systems in cancer therapy. In this study, a mesoporous silica nanoparticles/hydroxyapatite (MSNs/HAP) hybrid drug carrier, which enhanced the biodegradability of silica, was developed by a one-step method. The morphology and structure of the nanoparticles were characterized by TEM, DLS, FT-IR, XRD, N2 adsorption-desorption isotherms, and XPS, and the drug loading and release behaviors were tested. TEM and ICP-OES results indicate that the degradability of the nanoparticles has been significantly improved by Ca(2+) escape from the skeleton in an acid environment. The MSNs/HAP sample exhibits a higher drug loading content of about 5 times that of MSNs. The biological experiment results show that the MSNs/HAP not only exhibits good biocompatibility and antitumor effect but also greatly reduces the side effects of free DOX. The as-synthesized hybrid nanoparticles may act as a promising drug delivery system due to their good biocompatibility, high drug loading efficiency, pH sensitivity, and excellent biodegradability.
Kim, Gyeong-Man; Asran, Ashraf Sh; Michler, Georg H; Simon, Paul; Kim, Jeong-Sook
2008-12-01
Based on the biomimetic approaches the present work describes a straightforward technique to mimic not only the architecture (the morphology) but also the chemistry (the composition) of the lowest level of the hierarchical organization of bone. This technique uses an electrospinning (ES) process with polyvinyl alcohol (PVA) and hydroxyapatite (HAp) nanoparticles. To determine morphology, crystalline structures and thermal properties of the resulting electrospun fibers with the pure PVA and PVA/HAp nanocomposite (NC) before electrospinning various techniques were employed, including transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In addition, FT-IR spectroscopy was carried out to analyze the complex structural changes upon undergoing electrospinning as well as interactions between HAp and PVA. The morphological and crystallographic investigations revealed that the rod-like HAp nanoparticles exhibit a nanoporous morphology and are embedded within the electrospun fibers. A large number of HAp nanorods are preferentially oriented parallel to the longitudinal direction of the electrospun PVA fibers, which closely resemble the naturally mineralized hard tissues of bones. Due to abundant OH groups present in PVA and HAp nanorods, they strongly interact via hydrogen bonding within the electrospun PVA/HAp NC fibers, which results in improved thermal properties. The unique physiochemical features of the electrospun PVA/HAp NC nanofibers prepared by the ES process will open up a wide variety of future applications related to hard tissue replacement and regeneration (bone and dentin), not limited to coating implants.
In vitro and in vivo radiosensitization induced by hydroxyapatite nanoparticles
Chu, Sheng-Hua; Karri, Surya; Ma, Yan-Bin; Feng, Dong-Fu; Li, Zhi-Qiang
2013-01-01
Background Previous study showed that hydroxyapatite nanoparticles (nano-HAPs) inhibited glioma growth in vitro and in vivo; and in a drug combination, they could reduce adverse reactions. We investigated the possible enhancement of radiosensitivity induced by nano-HAPs. Methods In vitro radiosensitization of nano-HAPs was measured using a clonogenic survival assay in human glioblastoma U251 and breast tumor brain metastatic tumor MDA-MB-231BR cells. DNA damage and repair were measured using γH2AX foci, and mitotic catastrophe was determined by immunostaining. The effect of nano-HAPs on in vivo tumor radiosensitivity was investigated in a subcutaneous and an orthotopic model. Results Nano-HAPs enhanced each cell line's radiosensitivity when the exposure was 1 h before irradiation, and they had no significant effect on irradiation-induced apoptosis or on the activation of the G2 cell cycle checkpoint. The number of γH2AX foci per cell was significantly large at 24 h after the combination modality of nano-HAPs + irradiation compared with single treatments. Mitotic catastrophe was also significantly increased at an interval of 72 h in tumor cells receiving the combined modality compared with the individual treatments. In a subcutaneous model, nano-HAPs caused a larger than additive increase in tumor growth delay. In an orthotopic model, nano-HAPs significantly reduced tumor growth and extended the prolongation of survival induced by irradiation. Conclusions These results show that nano-HAPs can enhance the radiosensitivity of tumor cells in vitro and in vivo through the inhibition of DNA repair, resulting in an increase in mitotic catastrophe. PMID:23519742
In vitro and in vivo radiosensitization induced by hydroxyapatite nanoparticles.
Chu, Sheng-Hua; Karri, Surya; Ma, Yan-Bin; Feng, Dong-Fu; Li, Zhi-Qiang
2013-07-01
Previous study showed that hydroxyapatite nanoparticles (nano-HAPs) inhibited glioma growth in vitro and in vivo; and in a drug combination, they could reduce adverse reactions. We investigated the possible enhancement of radiosensitivity induced by nano-HAPs. In vitro radiosensitization of nano-HAPs was measured using a clonogenic survival assay in human glioblastoma U251 and breast tumor brain metastatic tumor MDA-MB-231BR cells. DNA damage and repair were measured using γH2AX foci, and mitotic catastrophe was determined by immunostaining. The effect of nano-HAPs on in vivo tumor radiosensitivity was investigated in a subcutaneous and an orthotopic model. Nano-HAPs enhanced each cell line's radiosensitivity when the exposure was 1 h before irradiation, and they had no significant effect on irradiation-induced apoptosis or on the activation of the G2 cell cycle checkpoint. The number of γH2AX foci per cell was significantly large at 24 h after the combination modality of nano-HAPs + irradiation compared with single treatments. Mitotic catastrophe was also significantly increased at an interval of 72 h in tumor cells receiving the combined modality compared with the individual treatments. In a subcutaneous model, nano-HAPs caused a larger than additive increase in tumor growth delay. In an orthotopic model, nano-HAPs significantly reduced tumor growth and extended the prolongation of survival induced by irradiation. These results show that nano-HAPs can enhance the radiosensitivity of tumor cells in vitro and in vivo through the inhibition of DNA repair, resulting in an increase in mitotic catastrophe.
Uskoković, Vuk; Odsinada, Roselyn; Djordjevic, Sonia; Habelitz, Stefan
2011-01-01
The concept of zeta-potential has been used for more than a century as a basic parameter in controlling the stability of colloidal suspensions, irrespective of the nature of their particulate ingredients – organic or inorganic. There are prospects that self-assembly of peptide species and the protein-mineral interactions related to biomineralization may be controlled using this fundamental physicochemical parameter. In this study, we have analyzed the particle size and zeta-potential of the full-length recombinant human amelogenin (rH174), the main protein of the developing enamel matrix, in the presence of calcium and phosphate ions and hydroxyapatite (HAP) particles. As calcium and phosphate salts are introduced to rH174 sols in increments, zeta-potential of the rH174 nanospheres is more affected by negatively charged ions, suggesting their tendency to locate within the double charge layer. Phosphate ions have a more pronounced effect on both the zeta-potential and aggregation propensity of rH174 nanospheres compared to calcium ions. The isoelectric point of amelogenin was independent on the ionic strength of the solution and the concentration of calcium and/or phosphate ions. Whereas rH174 shows a higher affinity for phosphate than for calcium, HAP attracts both of these ions to the shear plane of the double layer. The parallel size and zeta-potential analysis of HAP and rH174 colloidal mixtures indicated that at pH 7.4, despite both HAP and rH174 particles being negatively charged, rH174 adsorbs well onto HAP particles. The process is slower at pH 7.4 than at pH 4.5 when the HAP surface is negatively charged and the rH174 nanosphere carries an overall positive charge. The results presented hereby demonstrate that electrostatic interactions can affect the kinetics of the adsorption of rH174 onto HAP. PMID:21146151
Mohandes, Fatemeh; Salavati-Niasari, Masoud
2014-07-01
In this work, hydroxyapatite (HAP), Ca10(PO4)6(OH)2, nanostructures including nanorods, nanobundles and nanoparticles have been prepared via a simple precipitation method. In the present method, Ca(NO3)2·4H2O and (NH4)2HPO4 were used as calcium and phosphorus precursors, respectively. Besides, the Schiff bases derived from 2-hydroxyacetophenone and different diamines were used as complexing agents for the in situ formation of Ca(2+) complexes. The formation mechanism of 0-D and 1-D nanostructures of HAP was also considered. When the complexing agents could coordinate to the Ca(2+) ions through N and O atoms to form the [CaN2O2](2+) complexes, HAP nanoparticles were generated. On the other hand, nanorods and nanobundles of HAP were obtained by forming the [CaN2](2+) as well as [CaO2](2+) complexes in the reaction solution. This work is the first successful synthesis of pure HAP nanostructures in the presence of Schiff bases instead of using the common surfactants. Copyright © 2014 Elsevier B.V. All rights reserved.
Characterizing the inorganic/organic interface in cancer bone metastasis
NASA Astrophysics Data System (ADS)
Wu, Fei
Bone metastasis frequently occurs in patients with advanced breast cancer and remains a major source of mortality. At the molecular level, bone is a nanocomposite composed of inorganic bone mineral deposited within an organic extracellular matrix (ECM). Although the exact mechanisms of bone metastasis remain unclear, the nanoscale materials properties of bone mineral have been implicated in this process. Bone apatite is closely related to synthetic hydroxyapatite (HAP, Ca10(PO4)6(OH)2) in terms of structural and mechanical properties. Additionally, although the primary protein content of bone is collagen I, the glycoprotein fibronectin (Fn) is essential in maintaining the overall integrity of the bone matrix. Importantly, in vivo, neither breast cancer cells nor normal bone cells interact directly with the bone mineral but rather with the protein film adsorbed onto the mineral surface. Therefore, we hypothesized that breast cancer cell functions were regulated by differential fibronectin adsorption onto hydroxyapatite, which led to pathological remodeling of the bone matrix and sustained bone metastasis. Three model systems containing HAP and Fn were developed for this thesis. In model system I, a library of synthetic HAP nanoparticles were utilized to investigate the effect of mineral size, shape, and crystallinity on Fn conformation, using Forster resonance energy transfer (FRET) spectroscopy. In model system II, Fn-functionalized large geologic HAP crystals were used instead of HAP nanoparticles to avoid cellular uptake when investigating subsequent cell functions. Overall our FRET analysis (models I and II) revealed that Fn conformation depended on size, surface chemistry, and roughness of underlying HAP. When breast cancer cells were seeded on the Fn-coated HAP crystal facets (model II), our data indicated high secretion levels of proangiogenic and proinflammatory factors associated with the presence of unfolded Fn conformations, likely caused by differential engagement of cell receptors integrins with the underlying Fn. Finally, in model system III, Fn fibrillar structures (mimicking the bone matrix) were fabricated and characterized in presence of HAP nanoparticles, suggesting that the presence of microcalcifications found in tumorous/inflammed tissues affects both the structural and mechanical properties of the surrounding ECM. Collectively, our study of cellular behavior regulated by mineral/ECM interactions provides insights into the pathogenesis of breast cancer bone metastasis as well as other HAP-related inflammation.
ROS-induced HepG2 Cell Death from hyperthermia using Magnetic Hydroxyapatite Nanoparticles.
Yang, Chun-Ting; Li, Keng-Yuan; Meng, Fan-Qi; Lin, Jung-Feng; Young, In-Chi; Ivkov, Robert; Lin, Feng-Huei
2018-06-19
HepG2 cell death with magnetic hyperthermia (MHT) using hydroxyapatite nanoparticles (mHAPs) and alternating magnetic fields (AMF) was investigated in vitro. The mHAPs were synthesized as thermo-seeds by co-precipitation with the addition of Fe2+. The grain size of HAPs and iron oxide magnetic were 39.1 nm and 19.5 nm were calculated by the Scherrer formula. HepG2 cells were cultured with mHAPs and exposed to an AMF for 30 min yielding maximum temperatures of 43 ± 0.5°C. After heating, cell viability was reduced by 50% relative to controls, lactate dehydrogenase (LDH) concentrations measured in media were three-fold greater than those measured in all control groups. Readouts of toxicity by live/dead staining were consistent with cell viability and LDH assay results. Measured ROS in cells exposed to MHT was two-fold greater than in control groups. Results of cDNA microarray and Western blotting revealed tantalizing evidence of ATM and GADD45 downregulation with possible MKK3/MKK6 and ATF-2 of p38 MAPK inhibition upon exposure to mHAPs and AMF combinations. These results suggest that the combination of mHAPs and AMF can increase intracellular concentrations of reactive oxygen species (ROS) to cause DNA damage, which leads to cell death that complemented heat-stress related biological effects. © 2018 IOP Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagai, Daisuke; Kinemuchi, Yoshiaki, E-mail: y.kinemuchi@aist.go.jp; Suzuki, Kazuyuki
Alpha″-Fe{sub 16}N{sub 2} nanoparticles (NPs) with high magnetic crystalline anisotropy are useful for practical applications such as recording media. However, due to their strongly aggregated and/or sintered form, which occurs during synthesis, the utilization of the NPs has been limited thus far. Here, we report a method for synthesizing highly dispersive α″-Fe{sub 16}N{sub 2} NPs using hydroxyapatite (HAp). The chemically and thermally stable structure of the HAp coating results in the isolation of individual NPs, such that sintering is prevented during synthesis. Additionally, the acicular shape of the HAp crystal did not hinder gas diffusion during the gas reaction. Finally,more » HAp can be removed by a chelating agent without deteriorating the magnetic properties, resulting in highly dispersive α″-Fe{sub 16}N{sub 2} NPs. - Graphical abstract: Synthesis process of highly dispersive α″-Fe{sub 16}N{sub 2} particles using hydroxyapatite coating and SEM images of nanoparticles. - Highlights: • Highly dispersed α″-Fe{sub 16}N{sub 2} NPs were synthesized using hydroxyapatite (HAp). • HAp coating was stable chemically and thermally during gas reaction of α″-Fe{sub 16}N{sub 2} synthesis. • The magnetic property of the resultant Fe{sub 16}N{sub 2} NPs are M{sub s} of 170 emu/g and H{sub C} of 2450 Oe.« less
Shi, Xingxing; Zhou, Kai; Huang, Fei; Wang, Chen
2017-01-01
Nano-hydroxyapatite (nano-HAP) has been proposed as a better candidate for bone tissue engineering; however, the interactions of nano-HAP with endothelial cells are currently unclear. In this study, HAP nanoparticles (HANPs; 20 nm np20 and 80 nm np80) and micro-sized HAP particles (m-HAP; 12 μm) were employed to explore and characterize cellular internalization, subcellular distribution, effects of HANPs on endothelial cell function and underlying mechanisms using human umbilical vein endothelial cells (HUVECs) as an in vitro model. It was found that HANPs were able to accumulate in the cytoplasm, and both adhesion and uptake of the HANPs followed a function of time; compared to np80, more np20 had been uptaken at the end of the observation period. HANPs were mainly uptaken via clathrin- and caveolin-mediated endocytosis, while macropinocytosis was the main pathway for m-HAP uptake. Unexpectedly, exposure to HANPs suppressed the angiogenic ability of HUVECs in terms of cell viability, cell cycle, apoptosis response, migration and capillary-like tube formation. Strikingly, HANPs reduced the synthesis of nitric oxide (NO) in HUVECs, which was associated with the inhibition of phosphatidylinositol 3-kinase (PI3K) and phosphorylation of eNOS. These findings provide additional insights into specific biological responses as HANPs interface with endothelial cells. PMID:28848353
NASA Astrophysics Data System (ADS)
Jang, Jae-Myung; Kim, Seung-Dai; Park, Tae-Eon; Choe, Han-Cheol
2018-02-01
The biocompatibility structure of an implant surface is of great importance to the formation of new bone tissue around the dental implant and also has a significant chemical reaction in the osseointegration process. Thus, ultra-fine Pd-Ag-HAp nanoparticles have been electrodeposited on protruded TiO2 barrier layer in mixed electrolyte solutions. Unusual protrusions patterns, which are assigned to Pd-Ag-HAp nanoparticles, can be clearly differentiated from a TiO2 nanotube oxide layer formed by an anodizing process. In the chemical bonding state, the surface characteristics of Pd/Ag/HAp compounds have been investigated by FE-SEM, EDS mapping analysis, and XPS analysis. The mapping dots of the elements including Ti, Ca, Pd, Ag, and P showed a homogeneous distribution throughout the entire surface when deposited onto the protruded TiO2 barrier layer. The XPS spectra of Ti-2p, O-1S, Pd-3d, and Ag-3d have been investigated, with the major XPS peak indicating Pd-3d. The Ag-3d level was clearly observed with further scanning of the Ca-2p region. Based on the results of the chemical states, the structural properties of the protrusion patterns were also examined after being deposited onto the barrier oxide film, resulting in the representative protrusion patterns being mainly composed of Pd-Ag-HAp compounds. The results of the soaking evaluation showed that the protrusion patterns and the protruded TiO2 barrier layer were all effective in regards to biocompatibility.
NASA Astrophysics Data System (ADS)
Wang, Yu-Ying; Liu, Yu-Xue; Lu, Hao-Hao; Yang, Rui-Qin; Yang, Sheng-Mao
2018-05-01
A hydroxyapatite-biochar nanocomposite (HAP-BC) was successfully fabricated and its physicochemical properties characterized. The analyses showed that HAP nanoparticles were successfully loaded on the biochar surface. The adsorption of Pb(II), Cu(II), and Zn(II) by HAP-BC was systematically studied in single and ternary metal systems. The results demonstrated that pH affects the adsorption of heavy metals onto HAP-BC. Regarding the adsorption kinetics, the pseudo-second-order model showed the best fit for all three heavy metal ions on HAP-BC. In both single and ternary metal ion systems, the adsorption isotherm of Pb(II) by HAP-BC followed Langmuir model, while those of Cu(II) and Zn(II) fitted well with Freundlich model. The maximum adsorption capacity for each tested metal by HAP-BC was higher than that of pristine rice straw biochar (especially for Pb(II)) or those of other reported adsorbents. Therefore, HAP-BC could explore as a new material for future application in heavy metal removal.
Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu
2017-01-01
Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID). PMID:28079165
NASA Astrophysics Data System (ADS)
Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu
2017-01-01
Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID).
NASA Astrophysics Data System (ADS)
Udhayakumar, Gayathri; Muthukumarasamy, N.; Velauthapillai, Dhayalan; Santhosh, Shanthi Bhupathi
2017-10-01
Highly crystalline zinc incorporated hydroxyapatite (Zn-HAp) nanorods have been synthesized using microwave irradiation method. To improve bioactivity and crystallinity of pure HAp, zinc was incorporated into it. As-synthesized samples were characterized by Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction, field-emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX), high-resolution transmission electron microscopy (HRTEM), and the thermal and crystallinity behavior of Zn-HAp nanoparticle were studied by thermogravimetry (TGA) and differential scanning calorimetry (DSC). Antibacterial activity of the as-synthesized nanorods was evaluated against two prokaryotic strains ( Escherichia coli and Staphylococcus aureus). The FT-IR studies show the presence of hydroxide and phosphate functional groups. HRTEM and FESEM images showed highly crystalline rod-shaped nanoparticles with the diameter of about 50-60 nm. EDAX revealed the presence of Ca, Zn, P, and O in the prepared samples. The crystallinity and thermal stability were further confirmed by TGA-DSC analysis. The biocompatibility evaluation results promoted that the Zn-HAp nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopaedic application.
Frabicating hydroxyapatite nanorods using a biomacromolecule template
NASA Astrophysics Data System (ADS)
Zhu, Aiping; Lu, Yan; Si, Yunfeng; Dai, Sheng
2011-02-01
Rod-like hydroxyapatite (HAp) nanoparticles with various aspect ratios are synthesized by means of low-temperature hydrothermal method in the presence of a N-[(2-hydroxy-3-trimethylammonium) propyl]chitosan chloride (HTCC) template. The synthesized HAps were examined by X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR) and transmission electron microscopy (TEM) techniques. The results reveal that HAps are rod-like monocrystals, where the size and morphology can be tailored by varying synthesis conditions, such as pH, hydrothermal synthesis temperature and the ratio of PO43- to the quaternary ammonium in HTCC. The mechanism of HTCC template on HAp nanorod preparation is analyzed.
"Cleaning" the Surface of Hydroxyapatite Nanorods by a Reaction-Dissolution Approach.
Cao, Binrui; Yang, Mingying; Wang, Lin; Xu, Hong; Zhu, Ye; Mao, Chuanbin
2015-10-21
Synthetic nanoparticles are always terminated with coating molecules, which are often cytotoxic and not desired in biomedicine. Here we propose a novel reaction-dissolution approach to remove the cytotoxic coating molecules. A two-component solution is added to the nanoparticle solution; one component reacts with the coating molecules to form a salt whereas another is a solvent for dissolving and thus removing the salt. As a proof of concept, this work uses a NaOH-ethanol solution to remove the cytotoxic linoleic acid molecules coated on the hydroxyapatite nanorods (HAP-NRs). The removal of the coating molecules not only significantly improves the biocompatibility of HAP-NRs but also enables their oriented attachment into tightly-bound superstructures, which mimic the organized HAP crystals in bone and enamel and can promote the osteogenic differentiation of mesenchymal stem cells. Our reaction-dissolution approach can be extended to the surface "cleaning" of other nanomaterials.
Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism.
Mohandes, Fatemeh; Salavati-Niasari, Masoud; Fathi, Mohammadhossein; Fereshteh, Zeinab
2014-12-01
Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ((1)H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. Copyright © 2014 Elsevier B.V. All rights reserved.
Luminomagnetic Eu3+- and Dy3+-doped hydroxyapatite for multimodal imaging.
Tesch, Annemarie; Wenisch, Christoph; Herrmann, Karl-Heinz; Reichenbach, Jürgen R; Warncke, Paul; Fischer, Dagmar; Müller, Frank A
2017-12-01
Multimodal imaging has recently attracted much attention due to the advantageous combination of different imaging modalities, like photoluminescence (PL) and magnetic resonance imaging (MRI). In the present study, luminescent and magnetic hydroxyapatites (HAp) were prepared via doping with europium (Eu 3+ ) and dysprosium (Dy 3+ ), respectively. Co-doping of Eu 3+ and Dy 3+ was used to combine the desired physical properties. Both lanthanide ions were successfully incorporated in the HAp crystal lattice, where they preferentially occupied calcium(I) sites. While Eu-doped HAp (Eu:HAp) exhibits dopant concentration dependent persistent PL properties, Dy-doped HAp (Dy:HAp) shows paramagnetic behavior due to the high magnetic moment of Dy 3+ . Co-doped HAp (Eu:Dy:HAp) nanoparticles combine both properties in one single crystal. Remarkably, multimodal co-doped HAp features enhanced PL properties due to an energy transfer from Dy 3+ sensitizer to Eu 3+ activator ions. Eu:Dy:HAp exhibits strong transverse relaxation effects with a maximum transverse relaxivity of 83.3L/(mmol·s). Due to their tunable PL, magnetic properties and cytocompatibility Eu:-, Dy:- and Eu:Dy:HAp represent promising biocompatible ceramic materials for luminescence imaging that simultaneously may serve as a contrast agent for MRI in permanent implants or functional coatings. Copyright © 2017 Elsevier B.V. All rights reserved.
Govindan, Bharath; Swarna Latha, Beeseti; Nagamony, Ponpandian; Ahmed, Faheem; Saifi, Muheet Alam; Harrath, Abdel Halim; Alwasel, Saleh; Mansour, Lamjed; Alsharaeh, Edreese H.
2017-01-01
Superparamagnetic Fe3O4 nanoparticles on hydroxyapatite nanorod based nanostructures (Fe3O4/HAp) were synthesized using hydrothermal techniques at 180 °C for 12 h and were used as drug delivery nanocarriers for cancer cell therapeutic applications. The synthesized Fe3O4/HAp nanocomposites were characterized by X-ray diffraction analysis (XRD), Field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET)-analysis, and vibrating sample magnetometry (VSM). The morphologies of the Fe3O4/HAp nanocomposites show 15 nm Fe3O4 nanoparticles dispersed in the form of rods. The BET result shows that the synthesized samples have a high specific surface area of 80 m2 g−1 with mesoporous structures. Magnetic measurements revealed that the sample has high saturation magnetization of 18 emu/g with low coercivity. The Fe3O4/HAp nanocomposites had a large specific surface area (SSA), high mesoporous volume, and good magnetic property, which made it a suitable nanocarrier for targeted drug delivery systems. The chemotherapeutic agent, andrographolide, was used to investigate the drug delivery behavior of the Fe3O4/HAp nanocomposites. The human epidermoid skin cancer cells (A431) were used as the model targeting cell lines by treating with andrographolide loaded Fe3O4/HAp nanosystems and were further evaluated for their antiproliferative activities and the induction of apoptosis. Also, the present nanocomposite shows better biocompatibility, therefore it can be used as suitable drug vehicle for cancer therapy applications. PMID:28587317
Adsorption of Uranyl Ions at the Nano-hydroxyapatite and Its Modification
NASA Astrophysics Data System (ADS)
Skwarek, Ewa; Gładysz-Płaska, Agnieszka; Bolbukh, Yuliia
2017-04-01
Nano-hydroxyapatite and its modification, hydroxyapatite with the excess of phosphorus (P-HAP) and hydroxyapatite with the carbon ions built into the structure (C-HAP), were prepared by the wet method. They were studied by means of XRD, accelerated surface area and porosimetry (ASAP), and SEM. The size of crystallites computed using the Scherrer method was nano-hydroxyapatite (HAP) = 20 nm; P-HAP—impossible to determine; C-HAP = 22 nm; nano-HAP/U(VI) = 13.7 nm; P-HAP/U(VI)—impossible to determine, C-HAP/U(VI) = 11 nm. There were determined basic parameters characterizing the double electrical layer at the nano-HAP/electrolyte and P-HAP/electrolyte, C-HAP/electrolyte inter faces: density of the surface charge and zeta potential. The adsorption properties of nano-HAP sorbent in relation to U(VI) ions were studied by the batch technique. The adsorption processes were rapid in the first 60 min and reached the equilibrium within approximately 120 min (for P-HAP) and 300 min (for C-HAP and nano-HAP). The adsorption process fitted well with the pseudo-second-order kinetics. The Freundlich, Langmuir-Freundlich, and Dubinin-Radushkevich models of isotherms were examined for their ability to the equilibrium sorption data. The maximum adsorption capabilities ( q m ) were 7.75 g/g for P-HAP, 1.77 g/g for C-HAP, and 0.8 g/g for HAP at 293 K.
NASA Astrophysics Data System (ADS)
Santos, C.; Piedade, C.; Uggowitzer, P. J.; Montemor, M. F.; Carmezim, M. J.
2015-08-01
This work reports the one-step fabrication of a novel coating on ultra high purity magnesium using a parallel nano assembling process. The multifunctional biodegradable surface was obtained by adding hydroxyapatite nanoparticles (HapNP) plus graphene oxide (GO). The coating was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), micro-Raman spectroscopy. The thin phosphate coating (thickness of 1 μm) reveals a uniform coverage with cypress like structures. The incorporation of HapNP and GO promotes the hydrophilic behavior of the coating surface. The results revealed that the proposed coating can be used to tailor the surface properties such as wettability by adjusting the contents of HapNP and GO. The in vitro degradation rate of the coated magnesium suggests that the presence of HapNP and GO/HapNP in the phosphate coating decreased the current density compared to the single phosphate coating and uncoated magnesium. This study also reveals the HapNP/GO/phosphate coating induces apatite formation, showing suitable degradability that makes it a promising coating candidate for enhanced bone regeneration.
Influence of Thermal Treatment on the Antimicrobial Activity of Silver-Doped Biological Apatite
NASA Astrophysics Data System (ADS)
Popa, Cristina Liana; Ciobanu, Carmen Steluta; Voicu, Georgeta; Vasile, Eugenia; Chifiriuc, Mariana Carmen; Iconaru, Simona Liliana; Predoi, Daniela
2015-12-01
In this paper, we report the structural and morphological properties of silver-doped hydroxyapatite (AgHAp) with a silver concentration x Ag = 0.5 before and after being thermal treated at 600 and 1000 °C. The results obtained by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy suggest that the structure of the samples changes gradually, from hydroxyapatite (AgHAp_40) to a predominant β-TCP structure (AgHAp_1000), achieved when the thermal treatment temperature is 1000 °C. In the AgHAp_600 sample, the presence of two phases, HAp and β-TCP, was highlighted. Also, scanning electron microscopy studies suggest that the shape and dimension of the nanoparticles begin to change when the temperature increases. The antimicrobial activity of the obtained compounds was evaluated against Klebsiella pneumoniae, Staphylococcus aureus, and Candida albicans strains.
Synthesis of hydroxyapatite nanoparticles from egg shells by sol-gel method
NASA Astrophysics Data System (ADS)
Azis, Y.; Adrian, M.; Alfarisi, C. D.; Khairat; Sri, R. M.
2018-04-01
Hydroxyapatite, [Ca10(PO4)6(OH)2, (HAp)] is widely used in medical fields especially as a bone and teeth substitute. Hydroxyapatite nanoparticles have been succesfully synthesized from egg shells as a source of calcium by using sol-gel method. The egg shells were calcined, hydrated (slaking) and undergone carbonation to form Precipitated Calcium Carbonate (PCC).Then the PCC was added (NH4)2HPO4 to form HAp with variation the mole ratio Ca and P (1.57; 1.67 and 1.77), aging time (24, 48, and 72 hr) and under basic condition pH (9, 10 and 11). The formation of hydroxyapatite biomaterial was characterized using XRD, FTIR, SEM-EDX. The XRD patterns showed that the products were hydroxyapatite crystals. The best result was obtained at 24 hr aging time, pH 9 with hexagonal structure of hydroxyapatite. Particle size of HAp was 35-54 nm and the morphology of hydroxyapatite observed using SEM, it showed that the uniformity crystal of hydroxyapatite.
NASA Astrophysics Data System (ADS)
Deng, Shi-ting; Yu, Hong; Liu, Di; Bi, Yong-guang
2017-10-01
To investigate how a dual- or single-frequency ultrasonic reactor changes the morphology and phase composition of hydroxyapatite nanoparticles (nHAPs), we designed and constructed the preparation of nHAPs using dual- or single-frequency ultrasonic devices, i.e., the single frequency ultrasonic generator with ultrasonic horn (25 kHz), the ultrasonic bath (40 kHz) and the dual-frequency sonochemical systems combined with the ultrasonic horn and the ultrasonic bath simultaneously (25 + 40 kHz). The results showed that the sonicated samples displayed a more uniform shape with less agglomeration than non-sonicated sample. The rod-shaped particles with 1.66 stoichiometry and without a second phase were synthesized successfully in the ultrasonic bath or horn systems. The nHAPs obtained from the dual-frequency ultrasonic systems exhibited a regular rod-shaped structure with better dispersion and more uniform shapes than those of obtained in either ultrasonic bath or horn systems. Additionally, the size of rod-shaped particles obtained in the dual-frequency ultrasound with a mean width of 35 nm and a mean length of 64 nm was smaller than other samples. A possible mechanism is that the dual-frequency ultrasound significantly enhances the cavitation yield over single frequency ultrasound and thus improves the dispersion of particles and reduces the size of the crystals. In addition, irregular holes can be observed in the nanoparticles obtained in the dual-frequency ultrasound. Therefore, the dual-frequency ultrasonic systems are expected to become a convenient, efficient and environmentally friendly synthetic technology to obtain well-defined nHAPs for specific biomedical applications.
Kedem, Nir; Kulbak, Michael; Brenner, Thomas M; Hodes, Gary; Cahen, David
2017-02-22
Using several metals with different work functions as solar cell back contact we identify majority carrier type inversion in methylammonium lead bromide (MAPbBr3, without intentional doping) as the basis for the formation of a p-n junction. MAPbBr 3 films deposited on TiO 2 are slightly n-type, whereas in a full device they are strongly p-type. The charge transfer between the metal electrode and the halide perovskite (HaP) film is shown to determine the dominant charge carrier type of the HaP and, thus, also of the final cells. Usage of Pt, Au and Pb as metal electrodes shows the effects of metal work function on minority carrier diffusion length and majority carrier concentration in the HaP, as well as on built-in voltage, band bending, and open circuit voltage (V OC ) within a solar cell. V OC > 1.5 V is demonstrated. The higher the metal WF, the higher the carrier concentration induced in the HaP, as indicated by a narrower space charge region and a smaller minority carrier diffusion length. From the analysis of bias-dependent electron beam-induced currents, the HaP carrier concentrations are estimated to be ∼ 1 × 10 17 cm -3 with Au and 2-3 × 10 18 cm -3 with Pt. A model in which type-inversion stretches across the entire film width implies formation of the p-n junction away from the interface, near the back-contact metal electrode. This work highlights the importance of the contact metal on device performance in that contact engineering can also serve to control the carrier concentration in HaP.
Adsorption of Uranyl Ions at the Nano-hydroxyapatite and Its Modification.
Skwarek, Ewa; Gładysz-Płaska, Agnieszka; Bolbukh, Yuliia
2017-12-01
Nano-hydroxyapatite and its modification, hydroxyapatite with the excess of phosphorus (P-HAP) and hydroxyapatite with the carbon ions built into the structure (C-HAP), were prepared by the wet method. They were studied by means of XRD, accelerated surface area and porosimetry (ASAP), and SEM. The size of crystallites computed using the Scherrer method was nano-hydroxyapatite (HAP) = 20 nm; P-HAP-impossible to determine; C-HAP = 22 nm; nano-HAP/U(VI) = 13.7 nm; P-HAP/U(VI)-impossible to determine, C-HAP/U(VI) = 11 nm. There were determined basic parameters characterizing the double electrical layer at the nano-HAP/electrolyte and P-HAP/electrolyte, C-HAP/electrolyte inter faces: density of the surface charge and zeta potential. The adsorption properties of nano-HAP sorbent in relation to U(VI) ions were studied by the batch technique. The adsorption processes were rapid in the first 60 min and reached the equilibrium within approximately 120 min (for P-HAP) and 300 min (for C-HAP and nano-HAP). The adsorption process fitted well with the pseudo-second-order kinetics. The Freundlich, Langmuir-Freundlich, and Dubinin-Radushkevich models of isotherms were examined for their ability to the equilibrium sorption data. The maximum adsorption capabilities (q m ) were 7.75 g/g for P-HAP, 1.77 g/g for C-HAP, and 0.8 g/g for HAP at 293 K.
Proton transport polarization and depolarization of hydroxyapatite ceramics
NASA Astrophysics Data System (ADS)
Nakamura, Satoshi; Takeda, Hiroaki; Yamashita, Kimihiro
2001-05-01
Polarization of sintered hydroxyapatite (HAp) ceramics by application of an external dc field at higher temperature was analyzed by thermally stimulated depolarization current (TSDC) measurements. The mechanisms for the polarization and depolarization of HAp were discussed in relation to the instability of the protons in the hydroxide groups. The TSDC spectra consisted of broad peaks, while the ferroelectric substances such as the BaTiO3 ceramics exhibited a sharp peak. Although the maximum current density of 7.87 nA cm-2 for the HAp polarized at 400 °C under 1.0 kV cm-1 was approximately 1/12 lower than that of BaTiO3, the polarization charge of 14.9 μC cm-2 was almost twice as large as that of BaTiO3. Considering the activation energy of 0.72-0.89 eV for the depolarization, it was revealed that the polarization of HAp was ascribed to the migration of protons in the columnar OH- channels with a micrometer-order distance. It was also found that the polarization charge was large and long enough to enhance the biological reactivity of HAp ceramics for biomedical implants.
Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic
Poinern, GJE; Brundavanam, R; Le, X Thi; Djordjevic, S; Prokic, M; Fawcett, D
2011-01-01
Hydroxyapatite (HAP) is a widely used biocompatible ceramic in many biomedical applications and devices. Currently nanometer-scale forms of HAP are being intensely investigated due to their close similarity to the inorganic mineral component of the natural bone matrix. In this study nano-HAP was prepared via a wet precipitation method using Ca(NO3)2 and KH2PO4 as the main reactants and NH4OH as the precipitator under ultrasonic irradiation. The Ca/P ratio was set at 1.67 and the pH was maintained at 9 during the synthesis process. The influence of the thermal treatment was investigated by using two thermal treatment processes to produce ultrafine nano-HAP powders. In the first heat treatment, a conventional radiant tube furnace was used to produce nano-particles with an average size of approximately 30 nm in diameter, while the second thermal treatment used a microwave-based technique to produce particles with an average diameter of 36 nm. The crystalline structure and morphology of all nanoparticle powders produced were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). Both thermal techniques effectively produced ultrafine powders with similar crystalline structure, morphology and particle sizes. PMID:22114473
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathanael, A. Joseph; Department of Nanomaterials Engineering, Chungnam National University, Daejeon, 305-764; Mangalaraj, D., E-mail: dmraj800@yahoo.com
In this study, undoped and yttrium (Y) doped nanocrystalline hydroxyapatite crystals were synthesized by the hydrothermal method at 180 Degree-Sign C for 24 h. Highly ordered and oriented hydroxyapatite (HAp) nanorods were prepared by yttrium doping and their nanostructure and physical properties were compared with those of undoped HAp rods. FESEM images showed that the doping with Y ions reduced the diameter (from 25 nm to 15 nm) and increased the length (from 95 nm to 115 nm) of the synthesized rods. The aspect ratio of the undoped and Y-doped nanorods were calculated to be 4.303 (SD = 0.0959) andmore » 7.61 (SD = 0.0355), respectively. Specific surface area (SSA) analysis showed that SSA also increased from 66.74 m{sup 2}/g to 68.57 m{sup 2}/g with the addition of yttrium. Y-doped HAp nanorod reinforced HMWPE composites displayed the better mechanical performance than those reinforced with pure HAp nanorods. The possible strengthening of nanorods and the increase of SSA due to the reduction in the size of nanorods in the presence of yttrium may have contributed to the strengthening of Y-doped HAp/HMWPE composites. - Graphical Abstract: Highly ordered and oriented yttrium doped hydroxyapatite (HAp) nanorods were prepared by hydrothermal method. For undoped HAp the average length of the nanorod is 95 nm with mean diameter of 24 nm and for a Y doped nanorod the average length is {approx} 115 nm and the mean diameter is 15 nm. Mechanical analysis was carried out by polymer/nanoparticle composite method. Highlights: Black-Right-Pointing-Pointer Yttrium doped hydroxyapatite nanorods were prepared by hydrothermal method. Black-Right-Pointing-Pointer The nanorods have highly uniform size distribution. Black-Right-Pointing-Pointer Yttrium substitution and nanostructure formation was confirmed by careful analysis. Black-Right-Pointing-Pointer Mechanical strength was analyzed by polymer nanoparticle reinforcement method.« less
Predoi, Daniela; Iconaru, Simona Liliana; Buton, Nicolas; Badea, Monica Luminita; Marutescu, Luminita
2018-04-30
This study presents, for the first-time, the results of a study on the hydrodynamic diameter of essential oils (EOs) of basil and lavender in water, and solutions of EOs of basil (B) and lavender (L) and hydroxyapatite (HAp). The possible influence of basil and lavender EOs on the size of hydroxyapatite nanoparticles was analyzed by Scanning Electron Microscopy (SEM). We also investigated the in vitro antimicrobial activity of plant EOs and plant EOs hydroxyapatite respectively, against Gram-positive bacteria (methicillin-resistant Staphylococcus aureus 1144 (MRSA 1144) and S. aureus 1426) and Gram-negative bacteria ( Escherichia coli ATCC 25922 and Escherichia coli ESBL 4493). From the autocorrelation function, obtained by Dynamic Light Scattering (DLS) measurements it was observed that basil yielded one peak at an average hydrodynamic diameter of 354.16 nm, while lavender yielded one peak at an average hydrodynamic diameter of 259.76 nm. In the case of HAp nanoparticles coated with basil (HApB) and lavender (HApL) essential oil, the aggregation was minimal. We found that the lavender EO exhibited a very good inhibitory growth activity (MIC values ranging from <0.1% for E. coli reference strain to 0.78% for S. aureus strains). The biological studies indicated that HapL material displayed an enhanced antimicrobial activity, indicating the potential use of HAp as vehicle for low concentrations of lavender EO with antibacterial properties. Flow cytometry analysis (FCM) allowed us to determine some of the potential mechanisms of the antimicrobial activities of EOs, suggesting that lavender EO was active against E. coli by interfering with membrane potential, the membrane depolarization effect being increased by incorporation of the EOs into the microporous structure of HAp. These findings could contribute to the development of new antimicrobial agents that are urgently needed for combating the antibiotic resistance phenomena.
EPA is charged with assessing the risks of both acute and chronic exposures to hazardous air pollutants
(HAPs). The emissions from sources of HAPs are often characterized as temporally-averaged values,
however, patterns of exposure not captured in such measures may infl...
NASA Astrophysics Data System (ADS)
Rulis, Paul; Yao, Hongzhi; Ouyang, Lizhi; Ching, W. Y.
2007-12-01
Fluorapatite (FAP) and hydroxyapatite (HAP) are two very important bioceramic crystals. The (001) surfaces of FAP and HAP crystals are studied by ab initio density functional calculations using a supercell slab geometry. It is shown that in both crystals, the O-terminated (001) surface is more stable with calculated surface energies of 0.865 and 0.871J/m2 for FAP and HAP, respectively. In FAP, the two surfaces are symmetric. In HAP, the orientation of the OH group along the c axis reduces the symmetry such that the top and bottom surfaces are no longer symmetric. It is revealed that the atoms near the surface and subsurface are significantly relaxed especially in the case of HAP. The largest relaxations occurred via the lateral movements of the O ions at the subsurface level. The electronic structures of the surface models in the form of layer-by-layer resolved partial density of states for all the atoms show systematic variation from the surface region toward the bulk region. The calculated Mulliken effective charge on each type of atom and the bond order values between cations (Ca, P) and anions (O, F) show different charge transfers and bond strength variations from the bulk crystal values. Electron charge density calculations show that the surfaces of both FAP and HAP crystals are mostly positively charged due to the presence of Ca ions at the surface. The positively charged surfaces have implications for the absorption on apatite surfaces of water and other organic molecules in an aqueous environment which are an important part of its bioactivity. The x-ray absorption near-edge structure (XANES) spectra ( Ca-K , O-K , F-K , P-K , and P-L3 edges) of both the surface models and the bulk crystals are calculated and compared. The calculations use a supercell approach which takes into account the electron-core-hole interaction. It is shown that the site-specific XANES spectra show significant differences between atoms near the surface and in the bulk and are very sensitive to the local atomic environment of each atom. This information will be very valuable for characterizing the apatite materials and in the interpretation of experimental data. Comparisons of several sets of experimental data with the weighted sums of the calculated spectra at different sites for the same element show very good agreement.
Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand
USDA-ARS?s Scientific Manuscript database
Saturated packed column experiments were conducted to investigate the facilitated transport of Cu with hydroxyapatite nanoparticles (nHAP) at different pore water velocities (0.22-2.2 cm min–1), solution pH (6.2-9.0), and fraction of Fe oxide coating on grain surfaces (', 0-0.36). The facilitated tr...
Controllable self-assembly of mesoporous hydroxyapatite.
Chen, Jingdi; Wang, Zihao; Wen, Zhenliang; Yang, Shen; Wang, Jianhua; Zhang, Qiqing
2015-03-01
In this paper, mesoporous hydroxyapatite (HAp) of controllable pore size was tailored with the template of a biodegradable mono-alkyl phosphate (MAP) via a simple route by hydrothermal treatment. A serial study of the various experimental parameters on pore size of HAp was investigated. The additive amount of MAP and hydrothermal temperature were important factors for the pore structure and pore size. Powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption-desorption (BET, BJH) were used to characterize the structure and composition of the HAp samples. Both XRD and BJH results indicated that regular mesoporous HAp nanoparticles (with a mean pore size of 3.5nm) were successfully produced. As shown in transmission electron microscopy (TEM), orderly uniform pore structure appeared in the HAp particles. Because of the special structure of the MAP and the interaction between ionized MAP and other ions in solution, the product presents uniform mesoporous structure with well-defined pore size. Copyright © 2015 Elsevier B.V. All rights reserved.
Magnetic properties of Co-ferrite-doped hydroxyapatite nanoparticles having a core/shell structure
NASA Astrophysics Data System (ADS)
Petchsang, N.; Pon-On, W.; Hodak, J. H.; Tang, I. M.
2009-07-01
The magnetic properties of Co-ferrite-doped hydroxyapatite (HAP) nanoparticles of composition Ca 10-3xFe 2xCo x(PO 4) 6(OH) 2 (where x=0, 0.1, 0.2, 0.3, 0.4 and 0.5% mole) are studied. Transmission electron microscope micrograms show that the 90 nm size nanoparticles annealed at 1250 °C have a core/shell structure. Their electron diffraction patterns show that the shell is composed of the hydroxyapatite and the core is composed of the Co-ferrite, CoFe 2O 4. Electron spin resonance measurements indicate that the Co 2+ ions are being substituted into the Ca(1) sites in HAP lattice. X-ray diffraction studies show the formation of impurity phases as higher amounts of the Fe 3+/Co 2+ ions which are substituted into the HAP host matrix. The presence of two sextets (one for the A-site Fe 3+ and the other for the B-site Fe 3+) in the Mössbauer spectrum for all the doped samples clearly indicates that the CoFe 2O 4.cores are in the ferromagnetic state. Evidence of the impurity phases is seen in the appearance of doublet patterns in the Mössbauer spectrums for the heavier-doped ( x=0.4 and 0.5) specimens. The decrease in the saturation magnetizations and other magnetic properties of the nanoparticles at the higher doping levels is consistent with some of the Fe 3+ and Co 2+ which being used to form the CoO and Fe 2O 3 impurity phase seen in the XRD patterns.
Zhang, Juan; Wang, Chen
2018-01-01
Background As a potentially bioactive material, the widespread application of nanosized hydroxyapatite (nano-HAP) in the field of bone regeneration has increased the risk of human exposure. However, our understanding of the interaction between nano-HAP and stem cells implicated in bone repair remains incomplete. Methods Here, we characterized the adhesion and cellular internalization of HAP nanoparticles (HANPs) with different sizes (20 nm np20 and 80 nm np80) and highlighted the involved pathway in their uptake using human umbilical cord Wharton’s jelly-derived mesenchymal stem cells (hWJ-MSCs). In addition, the effects of HANPs on cell viability, apoptosis response, osteogenic differentiation, and underlying related mechanisms were explored. Results It was shown that both types of HANPs readily adhered to the cellular membrane and were transported into the cells compared to micro-sized HAP particles (m-HAP; 12 μm). Interestingly, the endocytic routes of np20 and np80 differed, although they exhibited similar kinetics of adhesion and uptake. Our study revealed involvement of clathrin- and caveolin-mediated endocytosis as well as macropinocytosis in the np20 uptake. However, for np80, clathrin-mediated endocytosis and some as-yet-unidentified important uptake routes play central roles in their internalization. HANPs displayed a higher preference to accumulate in the cytoplasm compared to m-HAP, and HANPs were not detected in the nucleolus. Exposure to np20 for 24 h caused a decrease in cell viability, while cells completely recovered with an exposure time of 72 h. Furthermore, HANPs did not influence apoptosis and necrosis of hWJ-MSCs. Strikingly, HANPs enhanced mRNA levels of osteoblast-related genes and stimulated calcium mineral deposition, and this directly correlated with the activation in c-Jun N-terminal kinases and p38 pathways. Conclusion Our data provide additional insight about the interactions of HANPs with MSCs and suggest their application potential in hard tissue regeneration. PMID:29559775
NASA Astrophysics Data System (ADS)
Sheikh, Faheem A.; Ju, Hyung Woo; Moon, Bo Mi; Park, Hyun Jung; Kim, Jung Ho; Lee, Ok Joo; Park, Chan Hum
2013-07-01
Electrospinning technique is commonly used to produce micro- and/or nanofibers, which utilizes electrical forces to produce polymeric fibers with diameters ranging from several micrometers down to few nanometers. Desirably, electrospun materials provide highly porous structure and appropriate pore size for initial cell attachment and proliferation and thereby enable the exchange of nutrients. Composite nanofibers consisting of silk and hydroxyapatite nanoparticles (HAp) (NPs) had been considered as an excellent choice due to their efficient biocompatibility and bone-mimicking properties. To prepare these nanofiber composites, it requires the use of acidic solutions which have serious consequences on the nature of both silk and HAp NPs. It is ideal to create these nanofibers using aqueous solutions in which the physicochemical nature of both materials can be retained. However, to create those nanofibers is often difficult to obtain because of the fact that aqueous solutions of silk and HAp NPs can precipitate before they can be ejected into fibers during the electrospinning process. In this work, we had successfully used a three-way stopcock connector to mix the two different solutions, and very shortly, this solution is ejected out to form nanofibers due to electric fields. Different blend ratios consisting HAp NPs had been electrospun into nanofibers. The physicochemical aspects of fabricated nanofiber had been characterized by different state of techniques like that of FE-SEM, EDS, TEM, TEM-EDS, TGA, FT-IR, and XRD. These characterization techniques revealed that HAp NPs can be easily introduced in silk nanofibers using a stopcock connector, and this method favorably preserves the intact nature of silk fibroin and HAp NPs. Moreover, nanofibers obtained by this strategy were tested for cell toxicity and cell attachment studies using NIH 3 T3 fibroblasts which indicated non-toxic behavior and good attachment of cells upon incubation in the presence of nanofibers.
USDA-ARS?s Scientific Manuscript database
Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0 to 100 mM) or CaCl2 (0.1 to 1.0 mM). The experimental breakthrough curves and retent...
Forero, Juan Carlos; Roa, Eduardo; Reyes, Juan G; Acevedo, Cristian; Osses, Nelson
2017-10-17
Ceramic and metallic nanoparticles can improve the mechanical and biological properties of polymeric scaffolds for bone tissue engineering (BTE). In this work, nanohydroxyapatite (nHAp) and nano-copper-zinc alloy (nCuZn) were added to a chitosan/gelatin (Ch/G) scaffold in order to investigate the effects on morphological, physical, and biocompatibility properties. Scaffolds were fabricated by a freeze-drying technique using different pre-freezing temperatures. Microstructure and morphology were studied by scanning electron microscopy (SEM), glass transition ( T g ) was studied using differential scanning calorimetry (DSC), cell growth was estimated by MTT assay, and biocompatibility was examined in vitro and in vivo by histochemistry analyses. Scaffolds and nanocomposite scaffolds presented interconnected pores, high porosity, and pore size appropriate for BTE. T g of Ch/G scaffolds was diminished by nanoparticle inclusion. Mouse embryonic fibroblasts (MEFs) cells loaded in the Ch/G/nHAp/nCuZn nanocomposite scaffold showed suitable behavior, based on cell adhesion, cell growth, alkaline phosphatase (ALP) activity as a marker of osteogenic differentiation, and histological in vitro cross sections. In vivo subcutaneous implant showed granulation tissue formation and new tissue infiltration into the scaffold. The favorable microstructure, coupled with the ability to integrate nanoparticles into the scaffold by freeze-drying technique and the biocompatibility, indicates the potential of this new material for applications in BTE.
NASA Astrophysics Data System (ADS)
Vijayalakshmi Natarajan, U.; Rajeswari, S.
2008-10-01
Nanosized hydroxyapatite (HAP) particles were prepared by sol-gel method from the water-based solution of calcium and phosphorus precursor. In this study, two calcium precursors such as calcium nitrate tetrahydrate and calcium acetate were chosen as calcium precursors. The influence of aging period, pH, viscosity and sintering temperature on crystallinity and morphology of the HAP particles were investigated for the two calcium precursors with triethyl phosphate precursor. The morphology of nano-HAP towards phosphorous precursor was dependent on the type of calcium precursor used. The HAP prepared from calcium nitrate and triethyl phosphate was spherically shaped whereas the one from calcium acetate was found to be fibrous in structure. Both HAPs were stable up to 1200 °C and their crystallinity increased with respect to the sintering temperature. The obtained sample was characterized through X-ray diffraction (XRD), P 31 nuclear magnetic resonance (NMR), scanning electronic microscopy (SEM) and TEM analysis. The sol derived from the optimized aging period for the two different calcium precursors was coated on 316L stainless-steel (SS) implant and its corrosion resistivity during long-term implantation was studied by cyclic polarization in Ringer's solution. Both HAPs have their own desirable qualities and were found to be corrosion resistive.
Optimization of physiological properties of hydroxyapatite as a vaccine adjuvant.
Hayashi, Masayuki; Aoshi, Taiki; Kogai, Yasumichi; Nomi, Daisuke; Haseda, Yasunari; Kuroda, Etsushi; Kobiyama, Kouji; Ishii, Ken J
2016-01-12
Various particles such as Alum or silica are known to act as an adjuvant if co-administered with vaccine antigens. Several reports have demonstrated that the adjuvanticity is strongly affected by the physicochemical properties of particles such as the size, shape and surface charge, although the required properties and its relationship to the adjuvanticity are still controversial. Hydroxyapatite particle (HAp) composed of calcium phosphate has been shown to work as adjuvant in mice. However, the properties of HAp required for the adjuvanticity have not been fully characterized yet. In this study, we examined the role of size or shape of HAps in the antibody responses after immunization with antigen. HAps whose diameter ranging between 100 and 400 nm provided significantly higher antibody responses than smaller or larger ones. By comparison between sphere and rod shaped HAps, rod shaped HAps induced stronger inflammasome-dependent IL-1β production than the sphere shaped ones in vitro. However, sphere- and rod-shaped HAp elicited comparable antibody response in WT mice. Vice versa, Nlrp3(-/-), Asc(-/-) or Caspase1(-/-) mice provided comparable level of antibody responses to HAp adjuvanted vaccination. Collectively, our results demonstrated that the size rather than shape is a more critical property, and IL-1β production via NLRP3 inflammasome is dispensable for the adjuvanticity of HAps in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.
Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles
Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela
2013-01-01
The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures. PMID:23509801
Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles.
Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela
2013-01-01
The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca(10-x)Ag(x)(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against gram-positive and gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures.
Choi, Sung-Wook; Zhang, Yu; Thomopoulos, Stavros; Xia, Younan
2010-01-01
Inverse opal scaffolds made of poly(D, L-lactide-co-glycolide) (PLGA) and hydroxyapatite (HAp) were fabricated using cubic-closed packed (ccp) lattices of uniform gelatin microspheres as templates and evaluated for bone tissue engineering. The scaffolds exhibited a uniform pore size (213 ± 4.4 μm), a porosity of ∼75%, and an excellent connectivity in three dimensions. Three different formulations were examined: pure PLGA, HAp-impregnated PLGA (PLGA/HAp), and apatite (Ap)-coated PLGA/HAp. After seeding with preosteoblasts (MC3T3-E1), the samples were cultured for different periods of time and then characterized by X-ray microcomputed tomography (micro-CT) and scanning electron microscopy to evaluate osteoinductivity in terms of the amount and spatial distribution of mineral secreted from the differentiated preosteoblasts. Our results indicate that preosteoblasts cultured in the Ap-coated PLGA/HAp scaffolds secreted the largest amount of mineral, which was also homogeneously distributed throughout the scaffolds. In contrast, the cells in the pure PLGA scaffolds secreted very little mineral, which was mainly deposited around the perimeter of the scaffolds. These results suggest that the uniform pore structure and favorable surface properties could facilitate the uniform secretion of extracellular matrix from cells throughout the scaffold. The Ap-coated PLGA/HAp scaffold with uniform pore structure could be a promising material for bone tissue engineering. PMID:20450216
Code of Federal Regulations, 2012 CFR
2012-07-01
... discrete venting episode that may be associated with a single unit operation. For example, a displacement of vapor resulting from the charging of a vessel with HAP will result in a discrete emission episode... of the charge. If the vessel is then heated, there will also be another discrete emission episode...
Code of Federal Regulations, 2014 CFR
2014-07-01
... discrete venting episode that may be associated with a single unit operation. For example, a displacement of vapor resulting from the charging of a vessel with HAP will result in a discrete emission episode... of the charge. If the vessel is then heated, there will also be another discrete emission episode...
Code of Federal Regulations, 2013 CFR
2013-07-01
... discrete venting episode that may be associated with a single unit operation. For example, a displacement of vapor resulting from the charging of a vessel with HAP will result in a discrete emission episode... of the charge. If the vessel is then heated, there will also be another discrete emission episode...
Code of Federal Regulations, 2011 CFR
2011-07-01
... discrete venting episode that may be associated with a single unit operation. For example, a displacement of vapor resulting from the charging of a vessel with HAP will result in a discrete emission episode... of the charge. If the vessel is then heated, there will also be another discrete emission episode...
Structure and properties of hydroxyapatite/hydroxyethyl cellulose acetate composite films.
Azzaoui, K; Mejdoubi, E; Lamhamdi, A; Zaoui, S; Berrabah, M; Elidrissi, A; Hammouti, B; Fouda, Moustafa M G; Al-Deyab, Salem S
2015-01-22
The main aim of this research work was to develop a new inorganic-organic film. Hydroxyapaptite (HAp) particles that represent the inorganic phase was mixed well with hydroxyethyl cellulose acetate (HECA), which representing the organic phase and then the inorganic-organic films were fabricated by evaporating of the solvent. The structure as well as the properties of the formed films were characterized using different analytical tools such as field emission scanning electron microscopy (FEG-SEM), thermo-gravimetric analysis (TGA), Fourier transform infra-red (FT-IR) spectroscopy. The obtained results revealed that, the HAp nanoparticles was well dispersed and well immobilized throughout the formed films. This can be attributed to the role of the nano- and micropores in the HECA substrate. In addition, a strong interaction occurred between HAp and HECA matrix. The results showed also good thermal stability and miscibility as well. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wu, Geng; Deng, Xuefeng; Song, Jinqi; Chen, Feiqiang
2018-01-01
The development of tailored nanofibrous scaffolds for tendon and ligament tissue engineering has been a goal of clinical research for current researchers. Here, we establish a formation of novel nanofibrous matrix with significant mechanical and biological properties by electro-spinning process. The fine fibrous morphology of the nanostructured hydroxyapatite (HAp) dispersed in the polycaprolactone/chitosan (HAp-PCL/CS) nanofibrous matrix was exhibited by microscopic (SEM and TEM) techniques. The favorable mechanical properties (load and modulus) were achieved. The load and modulus of the HAp-PCL/CS composite fibers was 250.1N and 215.5MPa, which is very similar to that of standard value of the human tendon and ligament tissues. The cellular responses and biocompatibility of HAp-PCL/CS nanofibrous scaffolds were investigated with human osteoblast (HOS) cells for tendon regeneration and examined the primary osteoblast mechanism by in vitro method. The morphological (FE-SEM and fluorescence) microscopic images clearly exhibited that HOS cells are well attached and flatted on the nanofibrous composites. The HAp dispersed PCL/CS nanofibrous scaffolds promoted higher adhesion and proliferation of HOS cells comparable to the nanofibrous scaffolds without HAp nanoparticles. The physic-chemical and biological properties of the synthesized nanofibrous scaffold were very close to that of normal ligament and tendon in human body. Over all, these studied results confirmed that the prepared nanofibrous scaffolds will be effective biomaterial of tendon ligament regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Structure and stability of charged colloid-nanoparticle mixtures
NASA Astrophysics Data System (ADS)
Weight, Braden M.; Denton, Alan R.
2018-03-01
Physical properties of colloidal materials can be modified by addition of nanoparticles. Within a model of like-charged mixtures of particles governed by effective electrostatic interactions, we explore the influence of charged nanoparticles on the structure and thermodynamic phase stability of charge-stabilized colloidal suspensions. Focusing on salt-free mixtures of particles of high size and charge asymmetry, interacting via repulsive Yukawa effective pair potentials, we perform molecular dynamics simulations and compute radial distribution functions and static structure factors. Analysis of these structural properties indicates that increasing the charge and concentration of nanoparticles progressively weakens correlations between charged colloids. We show that addition of charged nanoparticles to a suspension of like-charged colloids can induce a colloidal crystal to melt and can facilitate aggregation of a fluid suspension due to attractive van der Waals interactions. We attribute the destabilizing influence of charged nanoparticles to enhanced screening of electrostatic interactions, which weakens repulsion between charged colloids. This interpretation is consistent with recent predictions of an effective interaction theory of charged colloid-nanoparticle mixtures.
NASA Astrophysics Data System (ADS)
Kapoor, Seema; Batra, Uma; Kohli, Suchita
2011-12-01
Hydroxyapatite (HAP) ceramics have been recognized as substitute materials for bone and teeth in orthopedic and dentistry field due to their chemical and biological similarity to human hard tissue. The nanosized and nanocrystalline forms of HAP have great potential to revolutionize the hard tissue-engineering field, starting from bone repair and augmentation to controlled drug delivery systems. This paper reports the synthesis of biomimetic nano-hydroxyapatite (HAP) by sol-gel method using calcium nitrate tetrahydrate (CNT) and potassium dihydrogen phosphate (KDP) as calcium and phosphorus precursors, respectively to obtain a desired Ca/P ratio of 1.67. Deionized water was used as a diluting media for HAP sol preparation and ammonia was used to adjust the pH to 11. After aging, the HAP gel was dried at 55 °C and sintered to different temperatures (200 °C, 400 °C, 600 °C, 800 °C, 1000 °C and 1200 °C). The dried and sintered powders were characterized for phase composition using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The particle size and morphology was studied using transmission electron microscopy (TEM). The thermal behavior of the dried HAP nanopowder was studied in the temperature range of 55 °C to 1000 °C using thermal gravimetric analyser (TGA). The BET surface area of absorbance was determined by Nitrogen adsorption using Brunauer-Emmett-Teller (BET) method. The presence of characteristic peaks of the phosphate and OH groups in FTIR spectrums confirmed the formation of pure HAP in dried as well as sintered powders. XRD results also confirmed the formation of stoichiometric nano-HAP. Sintering revealed that with increase in temperature, both the crystallinity and crystallite size of nano-HAP particles increased. The synthesized nano-HAP powder was found to be stable upto 1000 °C without any additional phase other than HAP, whereas peak of β-TCP (tricalcium phosphate) was observed at 1200 °C. Photomicrograph of TEM showed that the nanopowder sintered at 600 °C is composed of hydroxyapatite nanoparticles (26.0-45.6 nm), which is well in agreement with the crystallite size calculated using XRD data. TGA study showed the thermal stability of the synthesized nano-HAP powder. The BET surface area decreased with increase in sintering temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapoor, Seema; Batra, Uma; Kohli, Suchita
Hydroxyapatite (HAP) ceramics have been recognized as substitute materials for bone and teeth in orthopedic and dentistry field due to their chemical and biological similarity to human hard tissue. The nanosized and nanocrystalline forms of HAP have great potential to revolutionize the hard tissue-engineering field, starting from bone repair and augmentation to controlled drug delivery systems. This paper reports the synthesis of biomimetic nano-hydroxyapatite (HAP) by sol-gel method using calcium nitrate tetrahydrate (CNT) and potassium dihydrogen phosphate (KDP) as calcium and phosphorus precursors, respectively to obtain a desired Ca/P ratio of 1.67. Deionized water was used as a diluting mediamore » for HAP sol preparation and ammonia was used to adjust the pH to 11. After aging, the HAP gel was dried at 55 deg. C and sintered to different temperatures (200 deg. C, 400 deg. C, 600 deg. C, 800 deg. C, 1000 deg. C and 1200 deg. C). The dried and sintered powders were characterized for phase composition using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The particle size and morphology was studied using transmission electron microscopy (TEM). The thermal behavior of the dried HAP nanopowder was studied in the temperature range of 55 deg. C to 1000 deg. C using thermal gravimetric analyser (TGA). The BET surface area of absorbance was determined by Nitrogen adsorption using Brunauer-Emmett-Teller (BET) method. The presence of characteristic peaks of the phosphate and OH groups in FTIR spectrums confirmed the formation of pure HAP in dried as well as sintered powders. XRD results also confirmed the formation of stoichiometric nano-HAP. Sintering revealed that with increase in temperature, both the crystallinity and crystallite size of nano-HAP particles increased. The synthesized nano-HAP powder was found to be stable upto 1000 deg. C without any additional phase other than HAP, whereas peak of {beta}-TCP (tricalcium phosphate) was observed at 1200 deg. C. Photomicrograph of TEM showed that the nanopowder sintered at 600 deg. C is composed of hydroxyapatite nanoparticles (26.0-45.6 nm), which is well in agreement with the crystallite size calculated using XRD data. TGA study showed the thermal stability of the synthesized nano-HAP powder. The BET surface area decreased with increase in sintering temperature.« less
Mesoscale crystallization of calcium phosphate nanostructures in protein (casein) micelles
NASA Astrophysics Data System (ADS)
Thachepan, Surachai; Li, Mei; Mann, Stephen
2010-11-01
Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in the casein micelles, as well as a possible synergistic effect associated with the multi-protein nature of the native aggregates, could account for the marked inhibition in mesoscale crystallization observed in the casein micelles compared with the single-component β-casein constructs.Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in the casein micelles, as well as a possible synergistic effect associated with the multi-protein nature of the native aggregates, could account for the marked inhibition in mesoscale crystallization observed in the casein micelles compared with the single-component β-casein constructs. Electronic supplementary information (ESI) available: Particle size histograms, TEM, EDX and electron diffraction data. See DOI: 10.1039/c0nr00158a
Carnal, Fabrice; Stoll, Serge
2011-10-27
Complex formation between a weak flexible polyelectrolyte chain and one positively charged nanoparticle in presence of explicit counterions and salt particles is investigated using Monte Carlo simulations. The influence of parameters such as the nanoparticle surface charge density, salt valency, and solution property such as the pH on the chain protonation/deprotonation process and monomer adsorption at the nanoparticle surface are systematically investigated. It is shown that the nanoparticle presence significantly modifies chain acid/base and polyelectrolyte conformational properties. The importance of the attractive electrostatic interactions between the chain and the nanoparticle clearly promotes the chain deprotonation leading, at high pH and nanoparticle charge density, to fully wrapped polyelectrolyte at the nanoparticle surface. When the nanoparticle bare charge is overcompensated by the polyelectrolyte charges, counterions and salt particles condense at the surface of the polyelectrolyte-nanoparticle complex to compensate for the excess of charges providing from the adsorbed polyelectrolyte chain. It is also shown that the complex formation is significantly affected by the salt valency. Indeed, with the presence of trivalent salt cations, competition is observed between the nanoparticle and the trivalent cations. As a result, the amount of adsorbed monomers is less important than in the monovalent and divalent case and chain conformations are different due to the collapse of polyelectrolyte segments around trivalent cations out of the nanoparticle adsorption layer.
Ignjatović, Nenad L; Penov-Gaši, Katarina M; Wu, Victoria M; Ajduković, Jovana J; Kojić, Vesna V; Vasiljević-Radović, Dana; Kuzmanović, Maja; Uskoković, Vuk; Uskoković, Dragan P
2016-12-01
In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1 H NMR and 13 C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d 50 =168nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46±2%), while simultaneously preserving high viability (83±3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Nanoparticle coagulation in fractionally charged and charge fluctuating dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunomura, Shota; Kondo, Michio; Shiratani, Masaharu
2008-08-15
The kinetics of nanoparticle coagulation has been studied in fractionally charged and charge fluctuating dusty plasmas. The coagulation occurs when the mutual collision frequency among nanoparticles exceeds their charging and decharging/neutralization frequency. Interestingly, the coagulation is suppressed while a fraction (several percent) of nanoparticles are negatively charged in a plasma, in which stochastic charging plays an important role. A model is developed to predict a phase diagram of the coagulation and its suppression.
Wahba, Sanaa M R; Darwish, Atef S; Kamal, Sara M
2016-08-01
This paper upraises delivery and therapeutic actions of galantamine drug (GAL) against Alzheimer's disease (AD) in rat brain through attaching GAL to ceria-containing hydroxyapatite (GAL@Ce-HAp) as well ceria-containing carboxymethyl chitosan-coated hydroxyapatite (GAL@Ce-HAp/CMC) nanocomposites. Physicochemical features of such nanocomposites were analyzed by XRD, FT-IR, Raman spectroscopy, UV-vis spectrophotometer, N2-BET, DLS, zeta-potential measurements, SEM, and HR-TEM. Limited interactions were observed in GAL@Ce-HAp with prevailed existence of dispersed negatively charged rod-like particles conjugated with ceria nanodots. On contrary, GAL@Ce-HAp/CMC was well-structured developing aggregates of uncharged tetragonal-shaped particles laden with accession of ceria quantum dots. Such nanocomposites were i.p. injected into ovariectomized AD albino-rats at galantamine dose of 2.5mg/kg/day for one month, then brain tissues were collected for biochemical and histological tests. GAL@Ce-HAp adopted as a promising candidate for AD curativeness, whereas oxidative stress markers were successfully upregulated, degenerated neurons in hippocampal and cerebral tissues were wholly recovered and Aβ-plaques were vanished. Also, optimizable in-vitro release for GAL and nanoceria were displayed from GAL@Ce-HAp, while delayed in-vitro release for those species were developed from GAL@Ce-HAp/CMC. This proof of concept work allow futuristic omnipotency of rod-like hydroxyapatite particles for selective delivery of GAL and nanoceria to AD affected brain areas. Copyright © 2016 Elsevier B.V. All rights reserved.
Uskoković, Vuk; Iyer, Maheshwar Adiraj; Wu, Victoria M.
2017-01-01
Although hydroxyapatite (HAp) has been doped with dozens of different ions, the quest for an ion imparting a combination of properties conducive to bone healing is still ongoing. Because of its protean potency and the similarity in size and shape to the phosphate tetrahedron, selenite ion presents a natural ionic substitute in HAp. The incorporation of selenite into synthetic HAp using two different methods – co-precipitation and ion-exchange sorption - was studied for its effect on crystal properties and on a triad of biological responses: antibacterial, anticancer and osteoinductive. Co-precipitation yielded HAp with higher selenite contents than sorption and the stoichiometry of HAp richest in selenite was represented as Ca9.75(PO4)5.75(SeO3)0.25(OH)1.75. Crystallinity of HAp decreased in direct proportion with the amount of selenite incorporated. Because of their lower selenite content, HAp powders prepared by ion-exchange exhibited a consistently higher crystallinity compared to the co-precipitated ones. Annealing partially recovered the crystallinity, yet the difference in crystallinity between powders prepared by co-precipitation and by ion-exchange remained, suggesting that the amorphization is mainly due to structural incorporation of selenite, not its effect on the crystal growth kinetics. The addition of selenite changed the morphology of HAp nanoparticles from acicular to rounded and affected the crystal lattice parameters in different ways depending on whether the powders were annealed or not. As for the annealed powders, the incorporation of selenite contracted the lattice in both a and c crystallographic directions. In the agar diffusion assay, the effectiveness of HAp was more dependent on the presence or absence of selenite in it than on its concentration and was highest against E. coli and S. aureus, moderately high against S. enteritidis and ineffective against P. aeruginosa. In liquid inoculation tests, on the other hand, the antibacterial activity of HAp was directly proportional to the amount of selenite contained in it. The viability of K7M2 osteosarcoma cells decreased in direct proportion with the amount of selenite in HAp and was significantly different from the untreated control and from pure HAp at contents equal to or higher than 1.9 wt.%. In contrast, no reduction was observed in the viability of primary fibroblasts treated with HAp incorporating different amounts of selenite ions, suggesting their potentially selective anticancer activity: lethal for the cancer cells and harmless for the healthy cells. Finally, mRNA expression of bone gamma-carboxyglutamate protein (BGLAP3) was higher in differentiated MC3T3-E1 osteoblastic cells treated with selenite-incorporated HAp particles than in cells treated with pure HAp. The osteoinductive effect was due to an overall higher metabolic activity of cells treated with the particles and not due to increased proliferation. In such a way, a triad of antibacterial, osteoinductive and anticancer activities was attributed to selenite-incorporated HAp. PMID:28944060
Chen, Xiaojie; Tieleman, D Peter; Liang, Qing
2018-02-01
The interactions between nanoparticles and lipid bilayers are critical in applications of nanoparticles in nanomedicine, cell imaging, toxicology, and elsewhere. Here, we investigate the interactions between nanoparticles coated with neutral and/or charged ligands and phase-separated lipid bilayers using coarse-grained molecular dynamics simulation. Both penetration and adsorption processes as well as the final distribution of the nanoparticles can be readily modulated by varying the ligand density and the surface charge of the nanoparticles. Completely hydrophobic (neutral) nanoparticles with larger size initially preferentially penetrate into the liquid-disordered region of the lipid bilayer and finally transfer into the liquid-ordered region; partially hydrophilic nanoparticles with low or moderate surface charge tend to either distribute in the liquid-disordered region or be adsorbed on the surface of the lipid bilayer, while strongly hydrophilic nanoparticles with high surface charge always reside on the surface of the lipid bilayer. Interactions of the nanoparticles with the lipid bilayers are affected by the surface charge of nanoparticles, hydrophobic mismatch, bending of the ligands, and the packing state of the lipids. Insight in these factors can be used to improve the efficiency of designing nanoparticles for specific applications.
Mesoscale crystallization of calcium phosphate nanostructures in protein (casein) micelles.
Thachepan, Surachai; Li, Mei; Mann, Stephen
2010-11-01
Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60°C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from ß-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35°C. The presence of Mg²(+) ions in the casein micelles, as well as a possible synergistic effect associated with the multi-protein nature of the native aggregates, could account for the marked inhibition in mesoscale crystallization observed in the casein micelles compared with the single-component b-casein constructs.
NASA Astrophysics Data System (ADS)
Prado, Jesus Antonio
Recent times have seen a large rise in the utilization of engineered nanomaterials (ENMs) within a wide variety of industries due to their unique properties. Consequently, the fabrication, application and disposal of ENMs will inevitably lead to their release to the environment. Once ENMs are in the environment, they may undergo atmospheric transformations, such the sorption of hazardous air pollutants (HAPs) or water vapor. These transformed ENMs may then affect the general public through inhalation -- or other pathways of exposure -- and those employed by the ever-growing nanotechnology sector are of particular vulnerability. As a result, it is important to evaluate the adsorption characteristics of a common carbon-based ENM under the presence of HAPs or water vapor which may adsorb onto them. This study investigated the unary and binary gas-phase adsorption of n-hexane, methanol and water vapor on super activated carbon nanoparticles (SACNPs) with a bench-scale adsorption system. Removal efficiencies, breakthrough tests, throughput ratios, adsorption capacities and kinetics modeling were completed to assess the adsorption behavior of the SACNPs.
NASA Astrophysics Data System (ADS)
Tran, Phong A.; Nguyen, Hiep T.; Fox, Kate; Tran, Nhiem
2018-03-01
Iron oxide magnetic nanoparticles have significant potential in biomedical applications such as in diagnosis, imaging and therapeutic agent delivery. The choice of stabilizers and surface functionalization is important as it is known to strongly influence the cytotoxicity of the nanoparticles. The present study aimed at investigating the effects of surface charges on the cytotoxicity of iron oxide nanoparticles. We used a co-precipitation method to synthesize iron oxide nanoparticles which were then stabilized with either chitosan (CS) or polyvinyl alcohol (PVA) which have net positive charge and zero charge at physiological pH, respectively. The nanoparticles were characterized in terms of size, charges and chemical oxidation state. Cytotoxicity of the nanoparticles was assessed using mouse fibroblast cells and was correlated with surface charges of the nanoparticles and their aggregation.
NASA Astrophysics Data System (ADS)
Wang, Lu; Malmstadt, Noah
2017-10-01
The surface chemistry of the cell membrane plays an important role in how cells interact with particulate species. These interactions are dictated in large part by lipid headgroup charge. To investigate the nature of electrostatic interactions between lipid bilayers and nanoparticles in solution, we studied nanoparticles interacting with the zwitterionic lipid 1,2-dioleoyl-glycero-3-phosphocholine (DOPC), and its inverted-headgroup analog DOCP. These interactions were investigated by fabricating giant unilamellar vesicles (GUVs) with DOPC lipids and DOCP lipids respectively, and introducing nanoparticles to suspensions of both. GUVs displayed various deformational modes depending on the charge and size of the nanoparticles as well as the compositions of the GUVs. The differences in the responses of the two lipid species illuminate how the phosphate and choline groups on the lipid interact with charged nanoparticles. This study suggests that the phosphate group dominates the lipid-nanoparticle electrostatic interaction. We speculate that the formation of water clathrate structures around the choline group inhibits interactions between negatively charged nanoparticles and the positively charged choline.
NASA Astrophysics Data System (ADS)
Abdal-hay, Abdalla; Amna, Touseef; Lim, Jae Kyoo
2013-04-01
The present study was aimed at designing a novel porous hydroxyapatite/poly(ɛ-caprolactone) (nHAp/PCL) hybrid nanocomposite matrix on a magnesium substrate with high and low porosity. The coated samples were prepared using a dip-coating technique in order to enhance the bioactivity and biocompatibility of the implant and to control the degradation rate of magnesium alloys. The mechanical and biocompatible properties of the coated and uncoated samples were investigated and an in vitro test for corrosion was conducted by electrochemical polarization and measurement of weight loss. The corrosion test results demonstrated that both the pristine PCL and nHAp/PCL composites showed good corrosion resistance in SBF. However, during the extended incubation time, the composite coatings exhibited more uniform and superior resistance to corrosion attack than pristine PCL, and were able to survive severe localized corrosion in physiological solution. Furthermore, the bioactivity of the composite film was determined by the rapid formation of uniform CaP nanoparticles on the sample surfaces during immersion in SBF. The mechanical integrity of the composite coatings displayed better performance (˜34% higher) than the uncoated samples. Finally, our results suggest that the nHAp incorporated with novel PCL composite membranes on magnesium substrates may serve as an excellent 3-D platform for cell attachment, proliferation, migration, and growth in bone tissue. This novel as-synthesized nHAp/PCL membrane on magnesium implants could be used as a potential material for orthopedic applications in the future.
2011-01-01
Synthesis of nanosized particle of Ag-doped hydroxyapatite with antibacterial properties is in the great interest in the development of new biomedical applications. In this article, we propose a method for synthesized the Ag-doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionized water. Other phase or impurities were not observed. Silver-doped hydroxyapatite nanoparticles (Ag:HAp) were performed by setting the atomic ratio of Ag/[Ag + Ca] at 20% and [Ca + Ag]/P as 1.67. The X-ray diffraction studies demonstrate that powders made by co-precipitation at 100°C exhibit the apatite characteristics with good crystal structure and no new phase or impurity is found. The scanning electron microscopy (SEM) observations suggest that these materials present a little different morphology, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O), and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) analysis. FT-IR and FT-Raman spectroscopies revealed that the presence of the various vibrational modes corresponds to phosphates and hydroxyl groups. The strain of Staphylococcus aureus was used to evaluate the antibacterial activity of the Ca10-xAgx(PO4)6(OH)2 (x = 0 and 0.2). In vitro bacterial adhesion study indicated a significant difference between HAp (x = 0) and Ag:HAp (x = 0.2). The Ag:Hap nanopowder showed higher inhibition. PMID:22136671
NASA Astrophysics Data System (ADS)
Ciobanu, Carmen Steluta; Massuyeau, Florian; Constantin, Liliana Violeta; Predoi, Daniela
2011-12-01
Synthesis of nanosized particle of Ag-doped hydroxyapatite with antibacterial properties is in the great interest in the development of new biomedical applications. In this article, we propose a method for synthesized the Ag-doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionized water. Other phase or impurities were not observed. Silver-doped hydroxyapatite nanoparticles (Ag:HAp) were performed by setting the atomic ratio of Ag/[Ag + Ca] at 20% and [Ca + Ag]/P as 1.67. The X-ray diffraction studies demonstrate that powders made by co-precipitation at 100°C exhibit the apatite characteristics with good crystal structure and no new phase or impurity is found. The scanning electron microscopy (SEM) observations suggest that these materials present a little different morphology, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O), and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) analysis. FT-IR and FT-Raman spectroscopies revealed that the presence of the various vibrational modes corresponds to phosphates and hydroxyl groups. The strain of Staphylococcus aureus was used to evaluate the antibacterial activity of the Ca10- x Ag x (PO4)6(OH)2 ( x = 0 and 0.2). In vitro bacterial adhesion study indicated a significant difference between HAp ( x = 0) and Ag:HAp ( x = 0.2). The Ag:Hap nanopowder showed higher inhibition.
Bhowmick, Arundhati; Banerjee, Sovan Lal; Pramanik, Nilkamal; Jana, Piyali; Mitra, Tapas; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban
2018-01-01
The objective of this study is to design biomimetic organically modified montmorillonite clay (OMMT) supported chitosan/hydroxyapatite-zinc oxide (CTS/HAP-ZnO) nanocomposites (ZnCMH I-III) with improved mechanical and biological properties compared to previously reported CTS/OMMT/HAP composite. Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy were used to analyze the composition and surface morphology of the prepared nanocomposites. Strong antibacterial properties against both Gram-positive and Gram-negative bacterial strains were established for ZnCMH I-III. pH and blood compatibility study revealed that ZnCMH I-III should be nontoxic to the human body. Cytocompatibility of these nanocomposites with human osteoblastic MG-63 cells was also established. Experimental findings suggest that addition of 5wt% of OMMT into CTS/HAP-ZnO (ZnCMH I) gives the best mechanical strength and water absorption capacity. Addition of 0.1wt% of ZnO nanoparticles into CTS-OMMT-HAP significantly enhanced the tensile strengths of ZnCMH I-III compared to previously reported CTS-OMMT-HAP composite. In absence of OMMT, control sample (ZnCH) also showed reduced tensile strength, antibacterial effect and cytocompatibility with osteoblastic cell compared to ZnCMH I. Considering all of the above-mentioned studies, it can be proposed that ZnCMH I nanocomposite has a great potential to be applied in bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.
Hu, Yimin; Chen, Jingdi; Fan, Tiantang; Zhang, Yujue; Zhao, Yao; Shi, Xuetao; Zhang, Qiqing
2017-09-01
Biomimetic mineralized hybrid scaffolds are widely used as natural bone substitute materials in tissue engineering by mimicking vital characters of extracellular matrix (ECM). However, the fabrication of hybrid scaffolds with suitable mechanical properties and good biocompatibility remains a challenge. To solve the problems mentioned above, biomimetic calcium phosphate mineralized organic-inorganic hybrid scaffold composed of nano hydroxyapatite (nHAP), Chitosan (CS), Chondroitin sulfate (CSA) and hyaluronic acid (HA) with hierarchical micro/nano structures was successfully developed. In this process, an efficient and easy-to-accomplish method combining in situ biomimetic synthesis with freeze-drying technology was applied. The chemical structure of the scaffolds was confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Surface morphology of scaffolds was characterized by Scanning electron microscopy (SEM). The nHAP/CS/CSA/HA hybrid scaffolds with a well-distributed pore size showed suitable mechanical strength which is not only due to the addition of the nHAP but also the interaction between the positively charged CS and the negatively charged CSA and HA. Simultaneously, the biocompatibility was evaluated by the MTT cytotoxicity assay, alkaline phosphatase (ALP) activity, Hoechst 33258 fluorescence staining. All those results proved that the scaffolds possess good biocompatibility and the components added have enhanced the proliferation and differentiation of osteoblast. Thus, it can be anticipated that the in situ biomimetic mineralized nHAP/CS/CAS/HA hybrid scaffolds will be promising candidates for bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.
Nanoscopic dynamics in hybrid hydroxyapatite-CTAB composite
NASA Astrophysics Data System (ADS)
Dubey, P. S.; Sharma, V. K.; Mitra, S.; Verma, G.; Hassan, P. A.; Dutta, B.; Johnson, M.; Mukhopadhyay, R.
2017-06-01
Synthetic hydroxyapatite (HAp) is an important material in biomedical engineering due to its excellent biocompatibility and bioactivity. HAp nanoparticles were synthesized by the co-precipitation method using cetyltrimethylammonium bromide (CTAB) micelles as a template and are characterized using x-ray diffraction, electron microscopy, and thermal gravimetric measurements. Transmission electron microscope (TEM) demonstrates the formation of rod-shaped HAp. Dynamics of CTAB in HAp-CTAB composite as studied by using quasielastic neutron scattering (QENS) technique is reported here. HAp-CTAB composite provides an ideal system for studying the dynamics of CTAB micelles without any aqueous media. QENS data indicate that the observed dynamics are reminiscent of localized motions in ionic micellar systems, consisting of segmental and fast torsional motions. Segmental dynamics has been described with a model, in which hydrogen atoms in the alkyl chain undergoes localized translation diffusion and the CH3 unit associated with the head group undergo 3-fold jump rotation. Within this model, the hydrogen atoms in the alkyl chain undergo diffusion within spherical domains having different radii and diffusivities. A simple linear distribution of the radius and diffusivity has been assumed, in which the CH2 unit nearest to the head group has the least value and the ones furthest from the head group, that is, at the end of the alkyl chain has the largest value. The fast torsional motion is described by a 2-fold jump rotation model. Quantitative estimate of the different parameters characterizing various dynamical motions active within the time scale of the instrument is also presented. We have provided a detailed description of the observed dynamical features in hybrid HAp-CTAB composite, a potential candidate for biomedical applications.
NASA Astrophysics Data System (ADS)
Wei, Wei; Yang, Lei; Zhong, Wenhui; Cui, Jing; Wei, Zhenggui
2015-03-01
In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (Xc = 0.23) and had better adsorption capacity for FA than those (Xc = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long term. Findings of the present work highlight the potential for using poorly crystalline HAP nanoparticles as an effective and recyclable adsorbent for FA removal from aqueous solution.
Cernohorsky, Ondrej; Grym, Jan; Yatskiv, Roman; ...
2016-08-13
We report on the formation of Pt nanoparticle monolayers by electrophoretic deposition from nonpolar solvents. First, the growth kinetics of Pt nanoparticles prepared by the reverse micelle technique are described in detail. Second, a model of nanoparticle charging in nonpolar media is discussed and methods to control the nanoparticle charging are proposed. Lastly, essential parameters of the electrophoretic deposition process to control the deposition of nanoparticle monolayers are discussed and mechanisms of their formation are analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cernohorsky, Ondrej; Grym, Jan; Yatskiv, Roman
We report on the formation of Pt nanoparticle monolayers by electrophoretic deposition from nonpolar solvents. First, the growth kinetics of Pt nanoparticles prepared by the reverse micelle technique are described in detail. Second, a model of nanoparticle charging in nonpolar media is discussed and methods to control the nanoparticle charging are proposed. Lastly, essential parameters of the electrophoretic deposition process to control the deposition of nanoparticle monolayers are discussed and mechanisms of their formation are analyzed.
Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Park, Hyun Jung; Kim, Jung-Ho; Lee, Ok Joo; Park, Chan Hum
2014-10-01
In this study, a good combination consisting of electrospun silk fibroin nanofibers incorporated with high-purity hydroxyapatite (HAp) nanoparticles (NPs) and silver NPs is introduced as antimicrobial for tissue engineering applications. The variable pressure field emission scanning electron microscope results confirmed randomly placed nanofibers are produced with highly dispersed HAp and silver NPs in nanofibers after electrospinning. The X-ray diffraction results demonstrated crystalline features of each of the three components used for electrospinning. Moreover, the TEM-EDS analysis confirmed the presence and chemical nature of each component over individual silk nanofiber. The FT-IR analyses was used confirm the different vibration modes caused due to functional groups present in silk fibroin, Hap, and silver NPs. The obtained nanofibers were checked for antimicrobial activity by using two model organisms Escherichia coli and Staphylococcus aureus. Subsequently, the antimicrobial tests have indicated that prepared nanofibers do possess good bactericidal activity. The ability of N,N-dimethylformamide and silk fibroin used to reduce silver nitrate into silver metal was evaluated using MTT assay. The nanofibers were grown in presence of NIH 3T3 fibroblasts, which revealed toxic behavior to fibroblasts at higher concentrations of silver nitrate used in this study. Furthermore, cell attachment studies on nanofibers for 3 and 12 days of incubation time were minutely observed and correlated with the results of MTT assay. The reported results confirmed the high amounts of silver nitrate can lead to toxic effects on viability of fibroblasts and had bad effect in cell attachment. © 2013 Wiley Periodicals, Inc.
On the origin of the halo stabilization.
Trulsson, Martin; Jönsson, Bo; Labbez, Christophe
2013-01-14
Monte Carlo simulations show that charge-regulation alone can cause highly charged zirconium nanoparticles to adsorb to a similarly charged or neutral silica particle and thereby stabilizing the latter. This mechanism, referred to as halo stabilization, is quite general and applicable in a range of systems provided that pH, van der Waals forces, and dissociation constants of the charge-regulating particles are properly chosen. In our modeling we see an overall attraction at low volume fractions of nanoparticles, while at higher a repulsive barrier is created, stabilizing the microparticles and protecting them from aggregation. The charge-regulation mechanism also turns the silica surface from positively charged, without nanoparticles, to negatively charged in the presence of nanoparticles.
Organic nanoparticles for photovoltaic and sensing applications
NASA Astrophysics Data System (ADS)
Venkatraman, B. Harihara
2011-12-01
Can organic semiconducting nanoparticles be used as building blocks for fabricating electronic devices? The first half of this dissertation focuses on addressing this question and the associated research challenges for attaining morphological control pertaining to organic photovoltaic devices by nanoparticle assembly. Conjugated polymer nanoparticles were synthesized using miniemulsion technique and their optical, charge transfer and charge transport properties were studied. Some degree of control in polymer chain packing within the nanoparticle was also demonstrated. The optical, charge transfer and charge transport properties of these nanoparticles were found to be similar to that of parent conjugated polymer irrespective of the surface charge. From the initial photovoltaic measurements, it is shown that these nanoparticles are potential candidates for fabricating future photovoltaic devices. The second half of this dissertation is focused on developing a novel and viable strategy for sensing aqueous based nitroaromatic compounds. Nitroaromatic compounds are commonly used as explosives and possess serious health hazards. Thiophene-based conjugated polymer nanoparticles were synthesized and were shown to effectively detect aqueous based nitroaromatic explosives.
NASA Astrophysics Data System (ADS)
Bhowal, Ashim Chandra; Kundu, Sarathi
2018-04-01
PEDOT:PSS is a water soluble conducting polymer consists of positively charged PEDOT and negatively charged PSS. However, this polymer suffers low conductivity problem which restrict its use. In this paper, electrical conductivity of PEDOT:PSS thin films is improved by using charged gold nanoparticles. The nanoparticles used are synthesized using lysozyme protein. The nanoparticles coated with lysozyme protein possess positive zeta potential. In the presence of gold nanoparticles due to electrostatic interaction between positively charged nanoparticles and negatively charged PSS chains, modification takes place in the surface morphology and electrical behaviors of PEDOT:PSS thin films. The changes in the polymer matrix conformations in the presence of nanoparticles are studied by Fourier transformed Infra-red (FTIR) spectroscopy, whereas the surface morphology of prepared thin films before and after interaction with nanoparticles is investigated through atomic force microscopy (AFM). Four probe method is used to measure the variation of electrical conductivity from I-V characteristics curves.
Cobalt-doped nanohydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies
NASA Astrophysics Data System (ADS)
Tank, Kashmira P.; Chudasama, Kiran S.; Thaker, Vrinda S.; Joshi, Mihir J.
2013-05-01
Hydroxyapatite (Ca10(PO4)6(OH)2; HAP) is a major mineral component of the calcified tissues, and it has various applications in medicine and dentistry. In the present investigation, cobalt-doped hydroxyapatite (Co-HAP) nanoparticles were synthesized by surfactant-mediated approach and characterized by different techniques. The EDAX was carried out to estimate the amount of doping in Co-HAP. The transmission electron microscopy result suggested the transformation of morphology from needle shaped to spherical type on increasing the doping concentration. The powder XRD study indicated the formation of a new phase of brushite for higher concentration of cobalt. The average particle size and strain were calculated using Williamson-Hall analysis. The average particle size was found to be 30-60 nm. The FTIR study confirmed the presence of various functional groups in the samples. The antimicrobial activity was evaluated against four organisms Pseudomonas aeruginosa and Shigella flexneri as Gram negative as well as Micrococcus luteus and Staphylococcus aureus as Gram positive. The hemolytic test result suggested that all samples were non-hemolytic. The photoluminescence study was carried out to identify its possible applicability as a fluorescent probe.
Nanoparticle halos: A new colloid stabilization mechanism
Tohver, Valeria; Smay, James E.; Braem, Alan; Braun, Paul V.; Lewis, Jennifer A.
2001-01-01
A new mechanism for regulating the stability of colloidal particles has been discovered. Negligibly charged colloidal microspheres, which flocculate when suspended alone in aqueous solution, undergo a remarkable stabilizing transition upon the addition of a critical volume fraction of highly charged nanoparticle species. Zeta potential analysis revealed that these microspheres exhibited an effective charge buildup in the presence of such species. Scanning angle reflectometry measurements indicated, however, that these nanoparticle species did not adsorb on the microspheres under the experimental conditions of interest. It is therefore proposed that highly charged nanoparticles segregate to regions near negligibly charged microspheres because of their repulsive Coulombic interactions in solution. This type of nanoparticle haloing provides a previously unreported method for tailoring the behavior of complex fluids. PMID:11447264
Loosli, Frédéric; Le Coustumer, Philippe; Stoll, Serge
2013-10-15
The behavior of manufactured TiO2 nanoparticles is studied in a systematic way in presence of alginate and Suwannee River humic acids at variable concentrations. TiO2 nanoparticles aggregation, disaggregation and stabilization are investigated using dynamic light scattering and electrophoretic experiments allowing the measurement of z-average hydrodynamic diameters and zeta potential values. Stability of the TiO2 nanoparticles is discussed by considering three pH-dependent electrostatic scenarios. In the first scenario, when pH is below the TiO2 nanoparticle point of zero charge, nanoparticles exhibit a positively charged surface whereas alginate and Suwannee River humic acids are negatively charged. Fast adsorption at the TiO2 nanoparticles occurs, promotes surface charge neutralization and aggregation. By increasing further alginate and Suwannee River humic acids concentrations charge inversion and stabilization of TiO2 nanoparticles are obtained. In the second electrostatic scenario, at the surface charge neutralization pH, TiO2 nanoparticles are rapidly forming aggregates. Adsorption of alginate and Suwannee River humic acids on aggregates leads to their partial fragmentation. In the third electrostatic scenario, when nanoparticles, alginate and Suwannee River humic acids are negatively charged, only a small amount of Suwannee River humic acids is adsorbed on TiO2 nanoparticles surface. It is found that the fate and behavior of individual and aggregated TiO2 nanoparticles in presence of environmental compounds are mainly driven by the complex interplay between electrostatic attractive and repulsive interactions, steric and van der Waals interactions, as well as concentration ratio. Results also suggest that environmental aquatic concentration ranges of humic acids and biopolymers largely modify the stability of aggregated or dispersed TiO2 nanoparticles. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sutha, S; Kavitha, K; Karunakaran, G; Rajendran, V
2013-10-01
A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58-1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. Copyright © 2013 Elsevier B.V. All rights reserved.
Selvakannan, Pr; Ramanathan, Rajesh; Plowman, Blake J; Sabri, Ylias M; Daima, Hemant K; O'Mullane, Anthony P; Bansal, Vipul; Bhargava, Suresh K
2013-08-21
The charge transfer-mediated surface enhanced Raman scattering (SERS) of crystal violet (CV) molecules that were chemically conjugated between partially polarized silver nanoparticles and optically smooth gold and silver substrates has been studied under off-resonant conditions. Tyrosine molecules were used as a reducing agent to convert silver ions into silver nanoparticles where oxidised tyrosine caps the silver nanoparticle surface with its semiquinone group. This binding through the quinone group facilitates charge transfer and results in partially oxidised silver. This establishes a chemical link between the silver nanoparticles and the CV molecules, where the positively charged central carbon of CV molecules can bind to the terminal carboxylate anion of the oxidised tyrosine molecules. After drop casting Ag nanoparticles bound with CV molecules it was found that the free terminal amine groups tend to bind with the underlying substrates. Significantly, only those CV molecules that were chemically conjugated between the partially polarised silver nanoparticles and the underlying gold or silver substrates were found to show SERS under off-resonant conditions. The importance of partial charge transfer at the nanoparticle/capping agent interface and the resultant conjugation of CV molecules to off resonant SERS effects was confirmed by using gold nanoparticles prepared in a similar manner. In this case the capping agent binds to the nanoparticle through the amine group which does not facilitate charge transfer from the gold nanoparticle and under these conditions SERS enhancement in the sandwich configuration was not observed.
NASA Astrophysics Data System (ADS)
Ghosh, Goutam; Panicker, Lata
2014-12-01
Human hemoglobin is an important metalloprotein. It has tetrameric structure with each subunit containing a `heme' group which carries oxygen and carbon dioxide in blood. In this work, we have investigated the interactions of human hemoglobin (Hb) with charged ligand-functionalized iron oxide nanoparticles and the effect of counterions, in aqueous medium. Several techniques like DLS and ζ-potential measurements, UV-vis, fluorescence, and CD spectroscopy have been used to characterize the interaction. The nanoparticle size was measured to be in the range of 20-30 nm. Our results indicated the binding of Hb with both positively as well as negatively charged ligand-functionalized iron oxide nanoparticles in neutral aqueous medium which was driven by the electrostatic and the hydrophobic interactions. The electrostatic binding interaction was not seen in phosphate buffer at pH 7.4. We have also observed that the `heme' groups of Hb remained unaffected on binding with charged nanoparticles, suggesting the utility of the charged ligand-functionalized nanoparticles in biomedical applications.
Thermoluminescence properties of gamma-irradiated nano-structure hydroxyapatite.
Shafaei, M; Ziaie, F; Sardari, D; Larijani, M M
2016-02-01
The suitability of nano-structured hydroxyapatite (HAP) for use as a thermoluminescence dosimeter was investigated. HAP samples were synthesized using a hydrolysis method. The formation of nanoparticles was confirmed by X-ray diffraction and average particle size was estimated to be ~30 nm. The glow curve exhibited a peak centered at around 200 °C. The additive dose method was applied and this showed that the thermoluminescence (TL) glow curves follow first-order kinetics due to the non-shifting nature of Tm after different doses. The numbers of overlapping peaks and related kinetic parameters were identified from Tm -Tstop through computerized glow curve deconvolution methods. The dependence of the TL responses on radiation dose was studied and a linear dose response up to 1000 Gy was observed for the samples. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Cruz, Marcos Antônio E.; Ruiz, Gilia C. M.; Faria, Amanda N.; Zancanela, Daniela C.; Pereira, Lourivaldo S.; Ciancaglini, Pietro; Ramos, Ana P.
2016-05-01
CaCO3 particles dispersed in liquid media have proven to be good inductors of hydroxyapatite (HAp) growth. However, the use of CaCO3 deposited as thin films for this propose is unknown. Here, we report the growth of CaCO3 continuous films on Langmuir-Blodgett (LB) modified titanium surfaces and its use as HAp growth inductor. The Ti surfaces were modified with two, four, and six layers of dihexadecylphosphate (DHP)-LB films containing Ca2+, exposed to CO2 (g) for 12 h. The modified surfaces were immersed in simulated body fluid (SBF) at 37 °C for 36 h and submitted to bioactivity studies. This procedure originates bioactive coatings composed by non-stoichiometric HAp as evidenced by Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The presence of the CaCO3 film as pre-coating diminished the time necessary to growth continuous and homogeneous HAp films using a biomimetic approach. The surface properties of the films regarding their roughness, composition, charge, wettability, and surface free energy (γs) were accessed. The presence of HAp increased the wettability and γs of the surfaces. The coatings are not toxic for osteoblasts as observed for cell viability assays obtained after 7 and 14 days of culture. Moreover, the CaCO3 thin films promote the recovery of the osteoblasts viability more than the Ti surfaces themselves.
NASA Astrophysics Data System (ADS)
Milliere, L.; Maskasheva, K.; Laurent, C.; Despax, B.; Boudou, L.; Teyssedre, G.
2016-01-01
The aim of this work is to limit charge injection from a semi-conducting electrode into low density polyethylene (LDPE) under dc field by tailoring the polymer surface using a silver nanoparticles-containing layer. The layer is composed of a plane of silver nanoparticles embedded in a semi-insulating organosilicon matrix deposited on the polyethylene surface by a plasma process. Size, density and surface coverage of the nanoparticles are controlled through the plasma process. Space charge distribution in 300 μm thick LDPE samples is measured by the pulsed-electroacoustic technique following a short term (step-wise voltage increase up to 50 kV mm-1, 20 min in duration each, followed by a polarity inversion) and a longer term (up to 12 h under 40 kV mm-1) protocols for voltage application. A comparative study of space charge distribution between a reference polyethylene sample and the tailored samples is presented. It is shown that the barrier effect depends on the size distribution and the surface area covered by the nanoparticles: 15 nm (average size) silver nanoparticles with a high surface density but still not percolating form an efficient barrier layer that suppress charge injection. It is worthy to note that charge injection is detected for samples tailored with (i) percolating nanoparticles embedded in organosilicon layer; (ii) with organosilicon layer only, without nanoparticles and (iii) with smaller size silver particles (<10 nm) embedded in organosilicon layer. The amount of injected charges in the tailored samples increases gradually in the samples ranking given above. The mechanism of charge injection mitigation is discussed on the basis of complementary experiments carried out on the nanocomposite layer such as surface potential measurements. The ability of silver clusters to stabilize electrical charges close to the electrode thereby counterbalancing the applied field appears to be a key factor in explaining the charge injection mitigation effect.
NASA Astrophysics Data System (ADS)
Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping
2017-04-01
We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.
Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles.
Asati, Atul; Santra, Santimukul; Kaittanis, Charalambos; Perez, J Manuel
2010-09-28
Cerium oxide nanoparticles (nanoceria) have shown great potential as antioxidant and radioprotective agents for applications in cancer therapy. Recently, various polymer-coated nanoceria preparations have been developed to improve their aqueous solubility and allow for surface functionalization of these nanoparticles. However, the interaction of polymer-coated nanoceria with cells, their uptake mechanism, and subcellular localization are poorly understood. Herein, we engineered polymer-coated cerium oxide nanoparticles with different surface charges (positive, negative, and neutral) and studied their internalization and toxicity in normal and cancer cell lines. The results showed that nanoceria with a positive or neutral charge enters most of the cell lines studied, while nanoceria with a negative charge internalizes mostly in the cancer cell lines. Moreover, upon entry into the cells, nanoceria is localized to different cell compartments (e.g., cytoplasm and lysosomes) depending on the nanoparticle's surface charge. The internalization and subcellular localization of nanoceria plays a key role in the nanoparticles' cytotoxicity profile, exhibiting significant toxicity when they localize in the lysosomes of the cancer cells. In contrast, minimal toxicity is observed when they localize into the cytoplasm or do not enter the cells. Taken together, these results indicate that the differential surface-charge-dependent localization of nanoceria in normal and cancer cells plays a critical role in the nanoparticles' toxicity profile.
Ayala, Vanessa; Herrera, Adriana P.; Latorre-Esteves, Magda; Torres-Lugo, Madeline
2013-01-01
Nanoparticle physicochemical properties such as surface charge are considered to play an important role in cellular uptake and particle–cell interactions. In order to systematically evaluate the role of surface charge on the uptake of iron oxide nanoparticles, we prepared carboxymethyl-substituted dextrans with different degrees of substitution, ranging from 38 to 5 groups per chain, and reacted them using carbodiimide chemistry with amine–silane-coated iron oxide nanoparticles with narrow size distributions in the range of 33–45 nm. Surface charge of carboxymethyl-substituted dextran-coated nano-particles ranged from −50 to 5 mV as determined by zeta potential measurements, and was dependent on the number of carboxymethyl groups incorporated in the dextran chains. Nanoparticles were incubated with CaCo-2 human colon cancer cells. Nanoparticle–cell interactions were observed by confocal laser scanning microscopy and uptake was quantified by elemental analysis using inductively coupled plasma mass spectroscopy. Mechanisms of internalization were inferred using pharmacological inhibitors for fluid-phase, clathrin-mediated, and caveola-mediated endocytosis. Results showed increased uptake for nanoparticles with greater negative charge. Internalization patterns suggest that uptake of the most negatively charged particles occurs via non-specific interactions. PMID:24470787
A reusable piezoelectric immunosensor using antibody-adsorbed magnetic nanocomposite.
Zhang, Yun; Wang, Hua; Yan, Bani; Zhang, Yuwei; Li, Jishan; Shen, Guoli; Yu, Ruqin
2008-03-20
This paper reports a simple, sensitive, and reusable piezoelectric immunosensor using magnetic hydroxyapatite (HAP)/gamma-Fe(2)O(3)/Au nanocomposite. Use of porous HAP nanocrystals embedded with gamma-Fe(2)O(3) and colloidal gold nanoparticles resulted in a multifunctional HAP/gamma-Fe(2)O(3)/Au nanocomposite. Under optimized conditions, the biocompatible nanocomposites were exploited for direct adsorption of large quantities of rabbit anti-human immunoglobulin G antibodies (anti-hIgG) with well-preserved immunoactivity. In a homogeneous bulk solution, the hIgG analytes were captured by the anti-hIgG-derivatized immunocomposites followed by magnetic separation/enrichment onto a bovine serum albumin (BSA)-sealed QCM probe before measuring. This QCM immunosensor can quantitatively determine concentrations of hIgG ranging from approximately 20 to 800 ng/ml, with a detection limit of approximately 15 ng/ml. Moreover, regeneration of the immunosensor can be simply realized by canceling the controllable magnetic field. With the possibility of performing the analysis automatically and considering its ease of use, high sensitivity, and good reusability, this magnetic separation-assisted QCM immunosensor may have great potential to be further tailored as a general and promising alternative for a broad range of practical applications.
Dissolving Hydroxyolite: A DNA Molecule into Its Hydroxyapatite Mold.
Bertran, Oscar; Revilla-López, Guillermo; Casanovas, Jordi; Del Valle, Luis J; Turon, Pau; Puiggalí, Jordi; Alemán, Carlos
2016-05-04
In spite of the clinical importance of hydroxyapatite (HAp), the mechanism that controls its dissolution in acidic environments remains unclear. Knowledge of such a process is highly desirable to provide better understanding of different pathologies, as for example osteoporosis, and of the HAp potential as vehicle for gene delivery to replace damaged DNA. In this work, the mechanism of dissolution in acid conditions of HAp nanoparticles encapsulating double-stranded DNA has been investigated at the atomistic level using computer simulations. For this purpose, four consecutive (multi-step) molecular dynamics simulations, involving different temperatures and proton transfer processes, have been carried out. Results are consistent with a polynuclear decalcification mechanism in which proton transfer processes, from the surface to the internal regions of the particle, play a crucial role. In addition, the DNA remains protected by the mineral mold and transferred proton from both temperature and chemicals. These results, which indicate that biomineralization imparts very effective protection to DNA, also have important implications in other biomedical fields, as for example in the design of artificial bones or in the fight against osteoporosis by promoting the fixation of Ca(2+) ions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Natural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release
Wang, Juan; Yin, Zhuping; Xue, Xiang; Kundu, Subhas C.; Mo, Xiumei; Lu, Shenzhou
2016-01-01
Natural silk protein nanoparticles are a promising biomaterial for drug delivery due to their pleiotropic properties, including biocompatibility, high bioavailability, and biodegradability. Chinese oak tasar Antheraea pernyi silk fibroin (ApF) nanoparticles are easily obtained using cations as reagents under mild conditions. The mild conditions are potentially advantageous for the encapsulation of sensitive drugs and therapeutic molecules. In the present study, silk fibroin protein nanoparticles are loaded with differently-charged small-molecule drugs, such as doxorubicin hydrochloride, ibuprofen, and ibuprofen-Na, by simple absorption based on electrostatic interactions. The structure, morphology and biocompatibility of the silk nanoparticles in vitro are investigated. In vitro release of the drugs from the nanoparticles depends on charge-charge interactions between the drugs and the nanoparticles. The release behavior of the compounds from the nanoparticles demonstrates that positively-charged molecules are released in a more prolonged or sustained manner. Cell viability studies with L929 demonstrated that the ApF nanoparticles significantly promoted cell growth. The results suggest that Chinese oak tasar Antheraea pernyi silk fibroin nanoparticles can be used as an alternative matrix for drug carrying and controlled release in diverse biomedical applications. PMID:27916946
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sima, Wenxia, E-mail: cqsmwx@cqu.edu.cn; Song, He; Yang, Qing
2015-12-15
Addition of nanoparticles of the ferromagnetic material Fe{sub 3}O{sub 4} can increase the positive impulse breakdown voltage of propylene carbonate by 11.65%. To further investigate the effect of ferromagnetic nanoparticles on the space charge distribution in the discharge process, the present work set up a Kerr electro-optic field mapping measurement system using an array photodetector to carry out time-continuous measurement of the electric field and space charge distribution in propylene carbonate before and after modification. Test results show that fast electrons can be captured by Fe{sub 3}O{sub 4} nanoparticles and converted into relatively slow, negatively charged particles, inhibiting the generationmore » and transportation of the space charge, especially the negative space charge.« less
Analysis of SiO2 nanoparticles binding proteins in rat blood and brain homogenate.
Shim, Kyu Hwan; Hulme, John; Maeng, Eun Ho; Kim, Meyoung-Kon; An, Seong Soo A
2014-01-01
A multitude of nanoparticles, such as titanium oxide (TiO2), zinc oxide, aluminum oxide, gold oxide, silver oxide, iron oxide, and silica oxide, are found in many chemical, cosmetic, pharmaceutical, and electronic products. Recently, SiO2 nanoparticles were shown to have an inert toxicity profile and no association with an irreversible toxicological change in animal models. Hence, exposure to SiO2 nanoparticles is on the increase. SiO2 nanoparticles are routinely used in numerous materials, from strengthening filler for concrete and other construction composites, to nontoxic platforms for biomedical application, such as drug delivery and theragnostics. On the other hand, recent in vitro experiments indicated that SiO2 nanoparticles were cytotoxic. Therefore, we investigated these nanoparticles to identify potentially toxic pathways by analyzing the adsorbed protein corona on the surface of SiO2 nanoparticles in the blood and brain of the rat. Four types of SiO2 nanoparticles were chosen for investigation, and the protein corona of each type was analyzed using liquid chromatography-tandem mass spectrometry technology. In total, 115 and 48 plasma proteins from the rat were identified as being bound to negatively charged 20 nm and 100 nm SiO2 nanoparticles, respectively, and 50 and 36 proteins were found for 20 nm and 100 nm arginine-coated SiO2 nanoparticles, respectively. Higher numbers of proteins were adsorbed onto the 20 nm sized SiO2 nanoparticles than onto the 100 nm sized nanoparticles regardless of charge. When proteins were compared between the two charges, higher numbers of proteins were found for arginine-coated positively charged SiO2 nanoparticles than for the negatively charged nanoparticles. The proteins identified as bound in the corona from SiO2 nanoparticles were further analyzed with ClueGO, a Cytoscape plugin used in protein ontology and for identifying biological interaction pathways. Proteins bound on the surface of nanoparticles may affect functional and conformational properties and distributions in complicated biological processes.
NASA Astrophysics Data System (ADS)
Uddin, Md Jamal; Middya, T. R.; Chaudhuri, B. K.
2015-02-01
Pure hydroxyappatite Ca10(PO4)6(OH)2 (or HAP) was prepared from eggshell and potassium dihydrogen phosphate (KH2PO4) by a simple self-chemical reaction method. The clean eggshell was heated at 800 °C in air giving the source of CaO. Appropriate amount of CaO was dissolved in KH2PO4 solution at 37°C for few days. The PH value decreases with increasing the duration of preparation of HAP. Silver nanoparticles derived from silver nitrate solution using black tea leaf extract had been introduced to hydroxyapatite due to its biocompatibility. The unique size- dependent properties of nanomaterials make them superior and indispensable. In this work, hydroxyapatite-silver nanoparticles/polyvinyl alcohol (PVA) composites with 4 different concentrations of hydroxyapatite (1-4 wt %) were prepared by bio-reduction method. Several techniques like XRD and SEM were used to characterize the prepared samples. Frequency dependent capacitance and conductance of the samples were measured using an impedance analyzer. The results showed a remarkable increase in dielectric permittivity (~5117) with low loss (~0.23) at1000 HZ and room temperature (300K) for 4wt% Hydroxapatie-Silver/PVA nanocomposite. Such nanocomposite might be directly applied in manufacturing clinical devices and also for embedding capacitor applications.
NASA Astrophysics Data System (ADS)
Ghosh, Goutam; Panicker, Lata; Barick, K. C.
2014-03-01
The conformation of proteins absorbed on nanoparticles surface plays a crucial role in applications of nanoparticles in biomedicine. The surface protein conformation depends on several factors, namely, nature of protein-nanoparticles interaction, chemical composition of the surface of nanoparticles etc. A model of the electrostatic binding of proteins on charged surface nanoparticles has been proposed earlier (Ghosh et al 2013 Colloids Surf. B 103 267). Also, the irreversible denaturation of the protein conformation due to binding of counterions was reported. In this paper, we have used this model, involving reverse charge parity, to show selective binding of proteins on charged surface iron oxide nanoparticles (IONPs). IONPs were surface functionalized with cetylpyridinium chloride (CPC), cetyl(trimethyl)ammonium bromide (CTAB) and cetylpyridinium iodide (CPI). The effect of counterions (Cl-, Br- and I-) on protein conformation has also been investigated. Several proteins such as α-lactalbumin (ALA), β-lactoglobulin (BLG), ovalbumin (OVA), bovin serum albumin (BSA) and HEWL were chosen for this investigation.
NASA Astrophysics Data System (ADS)
Srinivasan, A.; Rajendran, N.
2015-08-01
The effect of Si:Zr ratio on the in vitro bioactivity and electrochemical corrosion behavior of SiO2:ZrO2-mixed oxide-coated 316L stainless steel (SS) was evaluated in simulated body fluid (SBF) solution for 72, 120, and 168 h. Growth of Hydroxyapatite (HAp) was accelerated when Si content in the coating was increased. The Zr content in the coating improved the corrosion resistance of 316L SS rather than accelerating the HAp growth. When the Si:Zr ratio was 50:50, the coating exhibited significant improvement in corrosion resistance as well as HAp growth. The mechanism of HAp growth was proposed based on the change in surface zeta potential values of the coatings. Potentiodynamic polarization studies revealed about 10 and 5 times reduction in corrosion current density ( i corr) values for SiO2:ZrO2 (50:50)-coated 316L SS after 168 h of immersion compared to SiO2, ZrO2, and Si:Zr (70:30) coatings in SBF solutions thus confirming the superior corrosion resistance. The equivalent circuit parameters derived from electrochemical impedance spectroscopy studies further confirmed significant improvement in charge transfer resistance value even after 168 h of exposure.
Toxicity of silver nanoparticles towards tumoral human cell lines U-937 and HL-60.
Barbasz, Anna; Oćwieja, Magdalena; Roman, Maciej
2017-08-01
The toxicity of three types of silver nanoparticles towards histiocytic lymphoma (U-937) and human promyelocytic cells (HL-60) was studied. The nanoparticles were synthesized in a chemical reduction method using sodium borohydride. Trisodium citrate and cysteamine hydrochloride were used to generate a negative and positive nanoparticle surface charge. The evaluation of cell viability, membrane integrity, antioxidant activity and the induction of inflammation were used to evaluate the difference in cellular response to the nanoparticle treatment. The results revealed that the cysteamine-stabilized (positively charged) nanoparticles (SBATE) were the least toxic although they exhibited a similar ion release profile as the unmodified (negatively charged) nanoparticles obtained using sodium borohydride (SBNM). Citrate-stabilized nanoparticles (SBTC) induced superoxide dismutase (SOD) activity in the HL-60 cells and total antioxidant activity in the U-937 cells despite their resistance to oxidative dissolution. The toxicity of SBNM nanoparticles was manifested in the disruption of membrane integrity, decrease in the mitochondrial functions of cells and the induction of inflammation. These findings allowed to conclude that mechanism of silver nanoparticle cytotoxicity is the combination of effects coming from the surface charge of nanoparticles, released silver ions and biological activity of stabilizing agent molecules. Copyright © 2017 Elsevier B.V. All rights reserved.
Lai, Wenjia; Wang, Qingsong; Li, Lumeng; Hu, Zhiyuan; Chen, Jiankui; Fang, Qiaojun
2017-04-01
Determining how nanomaterials interact with plasma will assist in understanding their effects on the biological system. This work presents a systematic study of the protein corona formed from human plasma on 20nm silver and gold nanoparticles with three different surface modifications, including positive and negative surface charges. The results show that all nanoparticles, even those with positive surface modifications, acquire negative charges after interacting with plasma. Approximately 300 proteins are identified on the coronas, while 99 are commonly found on each nanomaterial. The 20 most abundant proteins account for over 80% of the total proteins abundance. Remarkably, the surface charge and core of the nanoparticles, as well as the isoelectric point of the plasma proteins, are found to play significant roles in determining the nanoparticle coronas. Albumin and globulins are present at levels of less than 2% on these nanoparticle coronas. Fibrinogen, which presents in the plasma but not in the serum, preferably binds to negatively charged gold nanoparticles. These observations demonstrate the specific plasma protein binding pattern of silver and gold nanoparticles, as well as the importance of the surface charge and core in determining the protein corona compositions. The potential downstream biological impacts of the corona proteins were also investigated. Copyright © 2017 Elsevier B.V. All rights reserved.
Abdelsayed, Victor; El-Shall, M Samy
2014-08-07
This work reports the direct observation and separation of size-selected aluminum nanoparticles acting as heterogeneous nuclei for the condensation of supersaturated vapors of both polar and nonpolar molecules. In the experiment, we study the condensation of supersaturated acetonitrile and n-hexane vapors on charged and neutral Al nanoparticles by activation of the metal nanoparticles to act as heterogeneous nuclei for the condensation of the organic vapor. Aluminum seed nanoparticles with diameters of 1 and 2 nm are capable of acting as heterogeneous nuclei for the condensation of supersaturated acetonitrile and hexane vapors. The comparison between the Kelvin and Fletcher diameters indicates that for the heterogeneous nucleation of both acetonitrile and hexane vapors, particles are activated at significantly smaller sizes than predicted by the Kelvin equation. The activation of the Al nanoparticles occurs at nearly 40% and 65% of the onset of homogeneous nucleation of acetonitrile and hexane supersaturated vapors, respectively. The lower activation of the charged Al nanoparticles in acetonitrile vapor is due to the charge-dipole interaction which results in rapid condensation of the highly polar acetonitrile molecules on the charged Al nanoparticles. The charge-dipole interaction decreases with increasing the size of the Al nanoparticles and therefore at low supersaturations, most of the heterogeneous nucleation events are occurring on neutral nanoparticles. No sign effect has been observed for the condensation of the organic vapors on the positively and negatively charged Al nanoparticles. The present approach of generating metal nanoparticles by pulsed laser vaporization within a supersaturated organic vapor allows for efficient separation between nucleation and growth of the metal nanoparticles and, consequently controls the average particle size, particle density, and particle size distribution within the liquid droplets of the condensing vapor. Strong correlation is found between the seed nanoparticle's size and the degree of the supersaturation of the condensing vapor. This result and the agreement among the calculated Kelvin diameters and the size of the nucleating Al nanoparticles determined by transmission electron microscopy provide strong proof for the development of a new approach for the separation and characterization of heterogeneous nuclei formed in organic vapors. These processes can take place in the atmosphere by a combination of several organic species including polar compounds which could be very efficient in activating charged nanoparticles and cluster ions of atmospheric relevance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelsayed, Victor; Samy El-Shall, M., E-mail: mselshal@vcu.edu
This work reports the direct observation and separation of size-selected aluminum nanoparticles acting as heterogeneous nuclei for the condensation of supersaturated vapors of both polar and nonpolar molecules. In the experiment, we study the condensation of supersaturated acetonitrile and n-hexane vapors on charged and neutral Al nanoparticles by activation of the metal nanoparticles to act as heterogeneous nuclei for the condensation of the organic vapor. Aluminum seed nanoparticles with diameters of 1 and 2 nm are capable of acting as heterogeneous nuclei for the condensation of supersaturated acetonitrile and hexane vapors. The comparison between the Kelvin and Fletcher diameters indicatesmore » that for the heterogeneous nucleation of both acetonitrile and hexane vapors, particles are activated at significantly smaller sizes than predicted by the Kelvin equation. The activation of the Al nanoparticles occurs at nearly 40% and 65% of the onset of homogeneous nucleation of acetonitrile and hexane supersaturated vapors, respectively. The lower activation of the charged Al nanoparticles in acetonitrile vapor is due to the charge-dipole interaction which results in rapid condensation of the highly polar acetonitrile molecules on the charged Al nanoparticles. The charge-dipole interaction decreases with increasing the size of the Al nanoparticles and therefore at low supersaturations, most of the heterogeneous nucleation events are occurring on neutral nanoparticles. No sign effect has been observed for the condensation of the organic vapors on the positively and negatively charged Al nanoparticles. The present approach of generating metal nanoparticles by pulsed laser vaporization within a supersaturated organic vapor allows for efficient separation between nucleation and growth of the metal nanoparticles and, consequently controls the average particle size, particle density, and particle size distribution within the liquid droplets of the condensing vapor. Strong correlation is found between the seed nanoparticle's size and the degree of the supersaturation of the condensing vapor. This result and the agreement among the calculated Kelvin diameters and the size of the nucleating Al nanoparticles determined by transmission electron microscopy provide strong proof for the development of a new approach for the separation and characterization of heterogeneous nuclei formed in organic vapors. These processes can take place in the atmosphere by a combination of several organic species including polar compounds which could be very efficient in activating charged nanoparticles and cluster ions of atmospheric relevance.« less
Nomani, Alireza; Haririan, Ismaeil; Rahimnia, Ramin; Fouladdel, Shamileh; Gazori, Tarane; Dinarvand, Rassoul; Omidi, Yadollah; Azizi, Ebrahim
2010-01-01
To gain a deeper understanding of the physicochemical phenomenon of self-assembled nanoparticles of different generations and ratios of poly (amidoamine) dendrimer (PAMAM) dendrimer and a short-stranded DNA (antisense oligonucleotide), multiple methods were used to characterize these nanoparticles including photon correlation spectroscopy (PCS); zeta potential measurement; and atomic force microscopy (AFM). PCS and AFM results revealed that, in contrast to larger molecules of DNA, smaller molecules produce more heterodisperse and large nanoparticles when they are condensed with a cationic dendrimer. AFM images also showed that such nanoparticles were spherical. The stability of the antisense content of the nanoparticles was investigated over different charge ratios using polyacrylamide gel electrophoresis. It was clear from such analyses that much more than charge neutrality point was required to obtain stable nanoparticles. For cell uptake, self-assembled nanoparticles were prepared with PAMAM G5 and 5’-FITC labeled antisense and the uptake experiment was carried out in T47D cell culture. This investigation also shows that the cytotoxicity of the nanoparticles was dependent upon the generation and charge ratio of the PAMAM dendrimer, and the antisense concentration had no significant effect on the cytotoxicity. PMID:20517481
Controllability of the Coulomb charging energy in close-packed nanoparticle arrays.
Duan, Chao; Wang, Ying; Sun, Jinling; Guan, Changrong; Grunder, Sergio; Mayor, Marcel; Peng, Lianmao; Liao, Jianhui
2013-11-07
We studied the electronic transport properties of metal nanoparticle arrays, particularly focused on the Coulomb charging energy. By comparison, we confirmed that it is more reasonable to estimate the Coulomb charging energy using the activation energy from the temperature-dependent zero-voltage conductance. Based on this, we systematically and comprehensively investigated the parameters that could be used to tune the Coulomb charging energy in nanoparticle arrays. We found that four parameters, including the particle core size, the inter-particle distance, the nearest neighboring number, and the dielectric constant of ligand molecules, could significantly tune the Coulomb charging energy.
Dynamics of bulk versus nanoscale W S2 : Local strain and charging effects
NASA Astrophysics Data System (ADS)
Luttrell, R. D.; Brown, S.; Cao, J.; Musfeldt, J. L.; Rosentsveig, R.; Tenne, R.
2006-01-01
We measured the infrared vibrational properties of bulk and nanoparticle WS2 in order to investigate the structure-property relations in these materials. In addition to the symmetry-breaking effects of local strain, nanoparticle curvature modifies the local charging environment of the bulk material. Performing a charge analysis on the xy -polarized E1u vibrational mode, we find an approximate 1.5:1 intralayer charge difference between the layered 2H material and inorganic fullerene-like (IF) nanoparticles. This effective charge difference may impact the solid-state lubrication properties of nanoscale metal dichalcogenides.
Dynamics of Bulk vs. Nanoscale WS2: Local Strain and Charging Effects
NASA Astrophysics Data System (ADS)
Musfeldt, J. L.; Brown, S.; Luttrell, R. D.; Cao, J.; Rosentsveig, R.; Tenne, R.
2006-03-01
We measured the infrared vibrational properties of bulk and nanoparticle WS2 in order to investigate the structure- property relations in these novel materials. In addition to the symmetry-breaking effects of local strain, nanoparticle curvature modifies the local charging environment of the bulk material. Performing a charge analysis on the xy-polarized E1u vibrational mode, we find an approximate 1.5:1 intralayer charge difference between the layered 2H material and inorganic fullerene-like (IF) nanoparticles. This effective charge difference may impact the solid-state lubrication properties of nanoscale metal dichalcogenides.
Nanoparticle assembly on patterned "plus/minus" surfaces from electrospray of colloidal dispersion.
Lenggoro, I Wuled; Lee, Hye Moon; Okuyama, Kikuo
2006-11-01
Selective deposition of metal (Au) and oxide (SiO2) nanoparticles with a size range of 10-30 nm on patterned silicon-silicon oxide substrate was performed using the electrospray method. Electrical charging characteristics of particles produced by the electrospray and patterned area created by contact charging of the electrical conductor with non- or semi-conductors were investigated. Colloidal droplets were electrosprayed and subsequently dried as individual nanoparticles which then were deposited on substrates, and observed using field emission-scanning electron microscopy. The number of elementary charge units on particles generated by the electrospray was 0.4-148, and patterned area created by contact charging contained sufficient negative charges to attract multiple charged particles. Locations where nanoparticles were (reversibly) deposited depended on voltage polarity applied to the spraying colloidal droplet and the substrate, and the existence of additional ions such as those from a stabilizer.
Interaction Between Cyanine Dye IR-783 and Polystyrene Nanoparticles in Solution.
Zhang, Yunzhi; Xu, Hui; Casabianca, Leah B
2018-05-17
The interactions between small molecule drugs or dyes and nanoparticles are important to the use of nanoparticles in medicine. Noncovalent adsorption of dyes on nanoparticle surfaces is also important to the development of nanoparticle dual-use imaging contrast agents. In the present work, solution-state NMR is used to examine the noncovalent interaction between a near-infrared cyanine dye and the surface of polystyrene nanoparticles in solution. Using 1D proton NMR, we can approximate the number of dye molecules that associate with each nanoparticle for different sized nanoparticles. Saturation-Transfer Difference (STD)-NMR was also used to show that protons near the positively-charged nitrogen in the dye are more strongly associated with the negatively-charged nanoparticle surface than protons near the negatively-charged sulfate groups of the dye. The methods described here can be used to study similar drug or dye molecules interacting with the surface of organic nanoparticles. This article is protected by copyright. All rights reserved.
Sakulkhu, Usawadee; Mahmoudi, Morteza; Maurizi, Lionel; Coullerez, Geraldine; Hofmann-Amtenbrink, Margarethe; Vries, Marcel; Motazacker, Mahdi; Rezaee, Farhad; Hofmann, Heinrich
2015-02-01
As nanoparticles (NPs) are increasingly used in many applications their safety and efficient applications in nanomedicine have become concerns. Protein coronas on nanomaterials' surfaces can influence how the cell "recognizes" nanoparticles, as well as the in vitro and in vivo NPs' behaviors. The SuperParamagnetic Iron Oxide Nanoparticle (SPION) is one of the most prominent agents because of its superparamagnetic properties, which is useful for separation applications. To mimic surface properties of different types of NPs, a core-shell SPION library was prepared by coating with different surfaces: polyvinyl alcohol polymer (PVA) (positive, neutral and negative), SiO2 (positive and negative), titanium dioxide and metal gold. The SPIONs with different surfaces were incubated at a fixed serum : nanoparticle surface ratio, magnetically trapped and washed. The tightly bound proteins were quantified and identified. The surface charge has a great impact on protein adsorption, especially on PVA and silica where proteins preferred binding to the neutral and positively charged surfaces. The importance of surface material on protein adsorption was also revealed by preferential binding on TiO2 and gold coated SPION, even negatively charged. There is no correlation between the protein net charge and the nanoparticle surface charge on protein binding, nor direct correlation between the serum proteins' concentration and the proteins detected in the coronas.
Controlling the net charge on a nanoparticle optically levitated in vacuum
NASA Astrophysics Data System (ADS)
Frimmer, Martin; Luszcz, Karol; Ferreiro, Sandra; Jain, Vijay; Hebestreit, Erik; Novotny, Lukas
2017-06-01
Optically levitated nanoparticles in vacuum are a promising model system to test physics beyond our current understanding of quantum mechanics. Such experimental tests require extreme control over the dephasing of the levitated particle's motion. If the nanoparticle carries a finite net charge, it experiences a random Coulomb force due to fluctuating electric fields. This dephasing mechanism can be fully excluded by discharging the levitated particle. Here, we present a simple and reliable technique to control the charge on an optically levitated nanoparticle in vacuum. Our method is based on the generation of charges in an electric discharge and does not require additional optics or mechanics close to the optical trap.
NASA Astrophysics Data System (ADS)
Kaur, Kulwinder; Singh, K. J.; Anand, Vikas; Bhatia, Gaurav; Nim, Lovedeep; Kaur, Manpreet; Arora, Daljit Singh
2017-05-01
Bioresorbable and bioactive scaffolds are promising materials for various biomedical applications including bone regeneration and drug delievrery. Authors present bioactive scaffolds prepared from 1, 6-diisocyanatohexane-extended poly (1, 4-butylene succinate) (PBSu-DCH) with different amount of hydroxyl apatite nanoparticles (nHAp) by solvent casting and particulate leaching techniques. Different weight ratios of nHAp (i.e. 0, 5 and 10 wt %) with fixed weight ratio (i.e. 10 wt %) of PBSu-DCH polymer have been prepared. Scaffolds have been assessed for their morphology, bioactivity, degradation, drug release and biological properties including cytotoxicity, cell attachment using MG-63 cell line and antimicrobial activity. Effectual drug release has been measured by incorporating gentamycin as an antibiotic in the scaffolds. The study is aimed at developing new biodegradable scaffolds to be used in skull, jaw and tooth socket for preserving bone mass.
Youn, Woong-Kyu; Kim, Chan-Soo; Hwang, Nong-Moon
2013-10-01
The generation of charged nanoparticles in the gas phase has been continually reported in many chemical vapor deposition processes. Charged silicon nanoparticles in the gas phase were measured using a differential mobility analyzer connected to an atmospheric-pressure chemical vapor deposition reactor at various nitrogen carrier gas flow rates (300-1000 standard cubic centimeter per minute) under typical conditions for silicon deposition at the reactor temperature of 900 degrees C. The carrier gas flow rate affected not only the growth behavior of nanostructures but also the number concentration and size distribution of both negatively and positively charged nanoparticles. As the carrier gas flow rate decreased, the growth behavior changed from films to nanowires, which grew without catalytic metal nanoparticles on a quartz substrate.
The Optoelectronic Properties of Nanoparticles from First Principles Calculations
NASA Astrophysics Data System (ADS)
Brawand, Nicholas Peter
The tunable optoelectronic properties of nanoparticles through the modification of their size, shape, and surface chemistry, make them promising platforms for numerous applications, including electronic and solar conversion devices. However, the rational design and optimization of nanostructured materials remain open challenges, e.g. due to difficulties in controlling and reproducing synthetic processes and in precise atomic-scale characterization. Hence, the need for accurate theoretical predictions, which can complement and help interpret experiments and provide insight into the underlying physical properties of nanostructured materials. This dissertation focuses on the development and application of first principles calculations to predict the optoelectronic properties of nanoparticles. Novel methods based on density functional theory are developed, implemented, and applied to predict both optical and charge transport properties. In particular, the generalization of dielectric dependent hybrid functionals to finite systems is introduced and shown to yield highly accurate electronic structure properties of molecules and nanoparticles, including photoemission and absorption properties. In addition, an implementation of constrained density functional theory is discussed, for the calculation of hopping transport in nanoparticle systems. The implementation was verified against literature results and compared against other methods used to compute transport properties, showing that some methods used in the literature give unphysical results for thermally disordered systems. Furthermore, the constrained density functional theory implementation was coupled to the self-consistent image charge method, making it possible to include image charge effects self-consistently when predicting charge transport properties of nanoparticles near interfaces. The methods developed in this dissertation were then applied to study the optoelectronic and transport properties of specific systems, in particular, silicon and lead chalcogenide nanoparticles. In the case of Si, blinking in oxidized Si nanoparticles was addressed. Si dangling bonds at the surface were found to introduce defect states which, depending on their charge and local stress conditions, may give rise to ON and OFF states responsible for exponential blinking statistics. We also investigated, engineering of band edge positions of nanoparticles through post-synthetic surface chemistry modification, with a focus on lead chalcogenides. In collaboration with experiment, we demonstrated how band edge positions of lead sulfide nanoparticles can be tuned by over 2.0 eV. We established a clear relationship between ligand dipole moments and nanoparticle band edge shifts which can be used to engineer nanoparticles for optoelectronic applications. Calculations of transport properties focused on charge transfer in silicon and lead chalcogenide nanoparticles. Si nanoparticles with deep defects and shallow impurities were investigated, showing that shallow defects may be more detrimental to charge transport than previously assumed. In the case of lead chalcogenide nanoparticles, hydrogen was found to form complexes with defects which can be used to remove potentially detrimental charge traps in nanoparticle solids. The methods and results presented in this dissertation are expected to help guide engineering of nanoparticles for future device applications.
Li, Huan; Liu, Xiangsheng; Huang, Nan; Ren, Kefeng; Jin, Qiao; Ji, Jian
2014-01-01
The acidic microenvironment of tumor tissues has proven to be one of the major differences from other normal tissues. The near-infrared (NIR) light irradiation of aggregated gold nanoparticles in a tumor acidic pH-induced manner could then provide an effect approach to treat solid tumors with the advantage of minimizing the undesired damage to normal tissues. Although it is well-known the aggregation of larger nanoparticles will result in a better NIR photothermal effect, the preparation of pH-sensitive gold nanoparticles in large sizes remains a big challenge because of their worse dispersive stability. In this paper, we introduce a facile way to endow large gold nanoparticles with tunable pH-aggregation behaviors by modifying the nanoparticle surface with mixed-charge self-assembly monolayers compromising positively and negatively charged thiol ligands. Four different size nanoparticles were used to study the general principle of tailoring the pH-induced aggregation behaviors of mixed-charge gold nanoparticles (MC-GNPs) by adjusting the surface ligand composition. With proper surface ligand composition, the MC-GNPs in four different sizes that all exhibited aggregation at tumor acidic pH were obtained. The biggest MC-GNPs showed the most encouraging aggregation-enhanced photothermal efficacy in vitro when they formed aggregates. The mixed-charge self-assembled monolayers were then proved as a facile method to design pH-induced aggregation of large gold nanoparticles for better NIR photothermal cancer therapy.
Kinetics of laser irradiated nanoparticles cloud
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Upadhyay Kahaly, M.; Misra, Shikha
2018-02-01
A comprehensive kinetic model describing the complex kinetics of a laser irradiated nanoparticle ensemble has been developed. The absorbed laser radiation here serves dual purpose, viz., photoenhanced thermionic emission via rise in its temperature and direct photoemission of electrons. On the basis of mean charge theory along with the equations for particle (electron) and energy flux balance over the nanoparticles, the transient processes of charge/temperature evolution over its surface and mass diminution on account of the sublimation (phase change) process have been elucidated. Using this formulation phenomenon of nanoparticle charging, its temperature rise to the sublimation point, mass ablation, and cloud disintegration have been investigated; afterwards, typical timescales of disintegration, sublimation and complete evaporation in reference to a graphite nanoparticle cloud (as an illustrative case) have been parametrically investigated. Based on a numerical analysis, an adequate parameter space describing the nanoparticle operation below the sublimation temperature, in terms of laser intensity, wavelength and nanoparticle material work function, has been identified. The cloud disintegration is found to be sensitive to the nanoparticle charging through photoemission; as a consequence, it illustrates that radiation operating below the photoemission threshold causes disintegration in the phase change state, while above the threshold, it occurs with the onset of surface heating.
Electromagnetic Field Redistribution in Metal Nanoparticle on Graphene.
Li, Keke; Liu, Anping; Wei, Dapeng; Yu, Keke; Sun, Xiaonan; Yan, Sheng; Huang, Yingzhou
2018-04-25
Benefiting from the induced image charge on metal film, the light energy is confined on a film surface under metal nanoparticle dimer, which is called electromagnetic field redistribution. In this work, electromagnetic field distribution of metal nanoparticle monomer or dimer on graphene is investigated through finite-difference time-domain method. The results point out that the electromagnetic field (EM) redistribution occurs in this nanoparticle/graphene hybrid system at infrared region where light energy could also be confined on a monolayer graphene surface. Surface charge distribution was analyzed using finite element analysis, and surface-enhanced Raman spectrum (SERS) was utilized to verify this phenomenon. Furthermore, the data about dielectric nanoparticle on monolayer graphene demonstrate this EM redistribution is attributed to strong coupling between light-excited surface charge on monolayer graphene and graphene plasmon-induced image charge on dielectric nanoparticle surface. Our work extends the knowledge of monolayer graphene plasmon, which has a wide range of applications in monolayer graphene-related film.
Matsumoto, Hideki; Nagao, Daisuke; Konno, Mikio
2010-03-16
Oppositely charged particles were repetitively heterocoagulated to fabricate highly monodisperse magnetic silica particles with high loading of magnetic nanoparticles. Positively charged magnetic nanoparticles prepared by surface modification with N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TSA) were used to heterocoagulate with silica particles under basic conditions to give rise to negative silica surface charge and prevent the oxidation of the magnetic nanoparticles. The resultant particles of silica core homogeneously coated with the magnetic nanoparticles were further coated with thin silica layer with sodium silicate in order to enhance colloidal stability and avoid desorption of the magnetic nanoparticles from the silica cores. Five repetitions of the heterocoagulation and the silica coating could increase saturation magnetization of the magnetic silica particles to 27.7 emu/g, keeping the coefficient of variation of particle sizes (C(V)) less than 6.5%. Highly homogeneous loading of the magnetic component was confirmed by measuring Fe-to-Si atomic ratios of individual particles with energy dispersive X-ray spectroscopy.
Surface charge effects in protein adsorption on nanodiamonds
NASA Astrophysics Data System (ADS)
Aramesh, M.; Shimoni, O.; Ostrikov, K.; Prawer, S.; Cervenka, J.
2015-03-01
Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids. Electronic supplementary information (ESI) available: The FTIR spectrum of nanodiamonds, QCM-D profiles of 50 nm nanodiamond adsorption on silica surfaces, QCM-D profiles of protein desorption after rinsing with water (rinsing experiment) and the full FTIR spectrum of proteins before and after adsorption on ND particles. See DOI: 10.1039/c5nr00250h
The influence of competing, similarly charged, inorganic ions on the size and charge behavior of suspended titanium-dioxide (nTiO2), silver (nAg) and fullerene (nC60) nanoparticles (NPs) was investigated. Under pH and ionic conditions similar to natural water bodies, Ca2+ induced...
Merely Measuring the UV-Visible Spectrum of Gold Nanoparticles Can Change Their Charge State.
Navarrete, Jose; Siefe, Chris; Alcantar, Samuel; Belt, Michael; Stucky, Galen D; Moskovits, Martin
2018-02-14
Metallic nanostructures exhibit a strong plasmon resonance at a wavelength whose value is sensitive to the charge density in the nanostructure, its size, shape, interparticle coupling, and the dielectric properties of its surrounding medium. Here we use UV-visible transmission and reflectance spectroscopy to track the shifts of the plasmon resonance in an array of gold nanoparticles buried under metal-oxide layers of varying thickness produced using atomic layer deposition (ALD) and then coated with bulk layers of one of three metals: aluminum, silver, or gold. A significant shift in the plasmon resonance was observed and a precise value of ω p , the plasmon frequency of the gold comprising the nanoparticles, was determined by modeling the composite of gold nanoparticles and metal-oxide layer as an optically homogeneous film of core-shell particles bounded by two substrates: one of quartz and the other being one of the aforementioned metals, then using a Maxwell-Garnett effective medium expression to extract ω p for the gold nanoparticles before and after coating with the bulk metals. Under illumination, the change in the charge density of the gold nanoparticles per particle determined from the change in the values of ω p is found to be some 50-fold greater than what traditional electrostatic contact electrification models compute based on the work function difference of the two conductive materials. Moreover, when using bulk gold as the capping layer, which should have resulted in a negligible charge exchange between the gold nanoparticles and the bulk gold, a significant charge transfer from the bulk gold layer to the nanoparticles was observed as with the other metals. We explain these observations in terms of the "plasmoelectric effect", recently described by Atwater and co-workers, in which the gold nanoparticles modify their charge density to allow their resonant wavelength to match that of the incident light, thereby achieving, a lower value of the chemical potential due to the entropy increase resulting from the conversion of the plasmon's energy to heat. We conclude that even the act of registering the spectrum of nanoparticles is at times sufficient to alter their charge densities and hence their UV-visible spectra.
Versatile organic (fullerene)-inorganic (CdTe nanoparticle) nanoensembles.
Guldi, Dirk M; Zilbermann, Israel; Anderson, Greg; Kotov, Nicholas A; Tagmatarchis, Nikos; Prato, Maurizio
2004-11-10
Novel organic (positively charged fullerene)-inorganic (negatively charged CdTe nanoparticle) nanoensembles were devised through electrostatic interactions and probed as versatile donor-acceptor hybrids. Photoirradiation of their homogeneous solutions, containing the electrostatically packed components, let to very long-lived (1.3 ms) charge separated states.
Al-maliky, Mohammed Abbood; Mahmood, Ali Shukur; Al-karadaghi, Tamara Sardar; Kurzmann, Christoph; Laky, Markus; Franz, Alexander; Moritz, Andreas
2014-01-01
The aim of this study was to evaluate a new treatment modality for the occlusion of dentinal tubules (DTs) via the combination of 10.6 µm carbon dioxide (CO2) laser and nanoparticle hydroxyapatite paste (n-HAp). Forty-six sound human molars were used in the current experiment. Ten of the molars were used to assess the temperature elevation during lasing. Thirty were evaluated for dentinal permeability test, subdivided into 3 groups: the control group (C), laser only (L−), and laser plus n-HAp (L+). Six samples, two per group, were used for surface and cross section morphology, evaluated through scanning electron microscope (SEM). The temperature measurement results showed that the maximum temperature increase was 3.2°C. Morphologically groups (L−) and (L+) presented narrower DTs, and almost a complete occlusion of the dentinal tubules for group (L+) was found. The Kruskal-Wallis nonparametric test for permeability test data showed statistical differences between the groups (P < 0.05). For intergroup comparison all groups were statistically different from each other, with group (L+) showing significant less dye penetration than the control group. We concluded that CO2 laser in moderate power density combined with n-HAp seems to be a good treatment modality for reducing the permeability of dentin. PMID:25386616
Role of magnesium on the biomimetic deposition of calcium phosphate
NASA Astrophysics Data System (ADS)
Sarma, Bimal K.; Sarma, Bikash
2016-10-01
Biomimetic depositions of calcium phosphate (CaP) are carried out using simulated body fluid (SBF), calcifying solution and newly developed magnesium containing calcifying solution. Calcium phosphate has a rich phase diagram and is well known for its excellent biocompatibility and bioactivity. The most common phase is hydroxyapatite (HAp), an integral component of human bone and tooth, widely used in orthopedic and dental applications. In addition, calcium phosphate nanoparticles show promise for the targeted drug delivery. The doping of calcium phosphate by magnesium, zinc, strontium etc. can change the protein uptake by CaP nanocrystals. This work describes the role of magnesium on the nucleation and growth of CaP on Ti and its oxide substrates. X-ray diffraction studies confirm formation of HAp nanocrystals which closely resemble the structure of bone apatite when grown using SBF and calcifying solution. It has been observed that magnesium plays crucial role in the nucleation and growth of calcium phosphate. A low magnesium level enhances the crystallinity of HAp while higher magnesium content leads to the formation of amorphous calcium phosphate (ACP) phase. Interestingly, the deposition of ACP phase is rapid when magnesium ion concentration in the solution is 40% of calcium plus magnesium ions concentration. Moreover, high magnesium content alters the morphology of CaP films.
Surface charge effects in protein adsorption on nanodiamonds.
Aramesh, M; Shimoni, O; Ostrikov, K; Prawer, S; Cervenka, J
2015-03-19
Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.
NASA Astrophysics Data System (ADS)
Gavvalapalli, Nagarjuna
All-polymer solar cells (APSC) are a class of organic solar cells in which hole and electron transporting phases are made of conjugated polymers. Unlike polymer/fullerene solar cell, photoactive material of APSC can be designed to have hole and electron transporting polymers with complementary absorption range and proper frontier energy level offset. However, the highest reported PCE of APSC is 5 times less than that of polymer/fullerene solar cell. The low PCE of APSC is mainly due to: i) low charge separation efficiency; and ii) lack of optimal morphology to facilitate charge transfer and transport; and iii) lack of control over the exciton and charge transport in each phase. My research work is focused towards addressing these issues. The charge separation efficiency of APSC can be enhanced by designing novel electron transporting polymers with: i) broad absorption range; ii) high electron mobility; and iii) high dielectric constant. In addition to with the above parameters chemical and electronic structure of the repeating unit of conjugated polymer also plays a role in charge separation efficiency. So far only three classes of electron transporting polymers, CN substituted PPV, 2,1,3-benzothiadiazole derived polymers and rylene diimide derived polymers, are used in APSC. Thus to enhance the charge separation efficiency new classes of electron transporting polymers with the above characteristics need to be synthesized. I have developed a new straightforward synthetic strategy to rapidly generate new classes of electron transporting polymers with different chemical and electronic structure, broad absorption range, and high electron mobility from readily available electron deficient monomers. In APSCs due to low entropy of mixing, polymers tend to micro-phase segregate rather than forming the more useful nano-phase segregation. Optimizing the polymer blend morphology to obtain nano-phase segregation is specific to the system under study, time consuming, and not trivial. Thus to avoid micro-phase segregation, nanoparticles of hole and electron transporters are synthesized and blended. But the PCE of nanoparticle blends are far less than those of polymer blends. This is mainly due to the: i) lack of optimal assembly of nanoparticles to facilitate charge transfer and transport processes; and ii) lack of control over the exciton and charge transport properties within the nanoparticles. Polymer packing within the nanoparticle controls the optoelectronic and charge transport properties of the nanoparticle. In this work I have shown that the solvent used to synthesize nanoparticles plays a crucial role in determining the assembly of polymer chains inside the nanoparticle there by affecting its exciton and charge transport processes. To obtain the optimal morphology for better charge transfer and transport, we have also synthesized nanoparticles of different radius with surfactants of opposite charge. We propose that depending on the radius and/or Coulombic interactions these nanoparticles can be assembled into mineral structure-types that are useful for photovoltaic devices.
Charge-reversal nanoparticles: novel targeted drug delivery carriers.
Chen, Xinli; Liu, Lisha; Jiang, Chen
2016-07-01
Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosage-controlled approaches. Charge-reversal nanoparticles can release their drug payload in response to specific stimuli that alter the charge on their surface. They can elude clearance from the circulation and be activated by protonation, enzymatic cleavage, or a molecular conformational change. In this review, we discuss the physiological basis for, and recent advances in the design of charge-reversal nanoparticles that are able to control drug biodistribution in response to specific stimuli, endogenous factors (changes in pH, redox gradients, or enzyme concentration) or exogenous factors (light or thermos-stimulation).
Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A; Li, Xinran; Zhu, Saijie; Cui, Zhengrong
2012-10-28
Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. Copyright © 2012 Elsevier B.V. All rights reserved.
SERS of semiconducting nanoparticles (TiO{sub 2} hybrid composites).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musumeci, A.; Gosztola, D.; Schiller, T.
Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules thatmore » lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.« less
SERS of semiconducting nanoparticles (TIO{sub 2} hybrid composites).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajh, T.; Musumeci, A.; Gosztola, D.
Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules thatmore » lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.« less
NASA Astrophysics Data System (ADS)
Guarnieri, Daniela; Malvindi, Maria Ada; Belli, Valentina; Pompa, Pier Paolo; Netti, Paolo
2014-02-01
Silica nanoparticles could be promising delivery vehicles for drug targeting or gene therapy. However, few studies have been undertaken to determine the biological behavior effects of silica nanoparticles on primary endothelial cells. Here we investigated uptake, cytotoxicity and angiogenic properties of silica nanoparticle with positive and negative surface charge and sizes ranging from 25 to 115 nm in primary human umbilical vein endothelial cells. Dynamic light scattering measurements and nanoparticle tracking analysis were used to estimate the dispersion status of nanoparticles in cell culture media, which was a key aspect to understand the results of the in vitro cellular uptake experiments. Nanoparticles were taken up by primary endothelial cells in a size-dependent manner according to their degree of agglomeration occurring after transfer in cell culture media. Functionalization of the particle surface with positively charged groups enhanced the in vitro cellular uptake, compared to negatively charged nanoparticles. However, this effect was contrasted by the tendency of particles to form agglomerates, leading to lower internalization efficiency. Silica nanoparticle uptake did not affect cell viability and cell membrane integrity. More interestingly, positively and negatively charged 25 nm nanoparticles did not influence capillary-like tube formation and angiogenic sprouting, compared to controls. Considering the increasing interest in nanomaterials for several biomedical applications, a careful study of nanoparticle-endothelial cells interactions is of high relevance to assess possible risks associated to silica nanoparticle exposure and their possible applications in nanomedicine as safe and effective nanocarriers for vascular transport of therapeutic agents.
Hu, Yiyu; Cao, Dapeng
2009-05-05
On the basis of the coarse grained model, we investigated the adsorption of nonuniformly charged fullerene-like nanoparticles on planar polyelectrolyte brushes (PEBs) in aqueous solution by using Brownian dynamics simulation. It is found that the electroneutral nanoparticles can be adsorbed by the PEB, which is attributed to the asymmetrical electrostatic interactions of the PEB with the positively charged sites and negatively charged sites of the fullerene-like nanoparticles. The simulation results indicated that the adsorption amount exhibits non-monotonic behavior with the dipole moment of nanoparticles. First, the adsorption amount increases with the dipole moment and then reaches the maximum at the dipole moment of micro = 10.45. Finally, the adsorption falls at the dipole moment of micro = 14.39. The reason may be that, at the extremely large dipole moment of micro = 14.39, the fullerene-like nanoparticles aggregate together to form a big cluster in the bulk phase, which can be confirmed by the extremely high peak in the radial distribution function between nanoparticles. Accordingly, it is difficult for nanoparticles to enter into the PEB at the dipole moment of micro = 14.39. In addition, it is also found that the brush grafting density is an important factor affecting the brush thickness.
Li, Ye; Qin, Zhenping; Guo, Hongxia; Yang, Hanxiao; Zhang, Guojun; Ji, Shulan; Zeng, Tingying
2014-01-01
In this work, the positively or negatively charged anatase TiO2 nanoparticles were synthesized via a low temperature precipitation-peptization process (LTPPP) in the presence of poly(ethyleneimine) (PEI) and poly(sodium4- styrenesulfonate) (PSS). X-ray diffraction (XRD) pattern and high-resolution transmission electron microscope (HRTEM) confirmed the anatase crystalline phase. The charges of the prepared TiO2, PEI-TiO2 and PSS-TiO2 nanoparticles were investigated by zeta potentials. The results showed that the zeta potentials of PEI-TiO2 nanoparticles can be tuned from +39.47 mV to +95.46 mV, and that of PSS-TiO2 nanoparticles can be adjusted from −56.63 mV to −119.32 mV. In comparison with TiO2, PSS-TiO2 exhibited dramatic adsorption and degradation of dye molecules, while the PEI modified TiO2 nanoparticles showed lower photocatalytic activity. The photocatalytic performances of these charged nanoparticles were elucidated by the results of UV-vis diffuse reflectance spectra (DRS) and the photoluminescence (PL) spectra, which indicated that the PSS-TiO2 nanoparticles showed a lower recombination rate of electron-hole pairs than TiO2 and PEI-TiO2. PMID:25506839
Park, Suehyun; Joo, Heesun; Kim, Jun Soo
2018-01-31
Directing the motion of molecules/colloids in any specific direction is of great interest in many applications of chemistry, physics, and biological sciences, where regulated positioning or transportation of materials is highly desired. Using Brownian dynamics simulations of coarse-grained models of a long, double-stranded DNA molecule and positively charged nanoparticles, we observed that the motion of a single nanoparticle bound to and wrapped by the DNA molecule can be directed along a gradient of DNA local flexibility. The flexibility gradient is constructed along a 0.8 kilobase-pair DNA molecule such that local persistence length decreases gradually from 50 nm to 40 nm, mimicking a gradual change in sequence-dependent flexibility. Nanoparticles roll over a long DNA molecule from less flexible regions towards more flexible ones as a result of the decreasing energetic cost of DNA bending and wrapping. In addition, the rolling becomes slightly accelerated as the positive charge of nanoparticles decreases due to a lower free energy barrier of DNA detachment from charged nanoparticle for processive rolling. This study suggests that the variation in DNA local flexibility can be utilized in constructing and manipulating supramolecular assemblies of DNA molecules and nanoparticles in structural DNA nanotechnology.
Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A.; Li, Xinran; Zhu, Saijie; Cui, Zhengrong
2012-01-01
Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged anoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. PMID:22921518
A variable pressure method for characterizing nanoparticle surface charge using pore sensors.
Vogel, Robert; Anderson, Will; Eldridge, James; Glossop, Ben; Willmott, Geoff
2012-04-03
A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.
Electrospray methodologies for characterization and deposition of nanoparticles
NASA Astrophysics Data System (ADS)
Modesto Lopez, Luis Balam
Electrospray is an aerosolization method that generates highly charged droplets from solutions or suspensions and, after a series of solvent evaporation -- droplet fission cycles, it results in particles carrying multiple charges. Highly charged particles are used in a variety of applications, including particle characterization, thin film deposition, nanopatterning, and inhalation studies among several others. In this work, a soft X-ray photoionization was coupled with an electrospray to obtain monodisperse, singly charged nanoparticles for applications in online size characterization with electrical mobility analysis. Photoionization with the soft X-ray charger enhanced the diffusion neutralization rate of the highly charged bacteriophages, proteins, and solid particles. The effect of nanoparticle surface charge and nanoparticle agglomeration in liquids on the electrospray process was studied experimentally and a modified expression to calculate the effective electrical conductivity of nanosuspensions was proposed. The effective electrical conductivity of TiO2 nanoparticle suspensions is strongly dependent on the electrical double layer and the agglomeration dynamics of the particles; and such dependence is more remarkable in liquids with low ionic strength. TiO2 nanoparticle agglomerates with nearly monodisperse sizes in the nanometer and submicrometer ranges were generated, by electrospraying suspensions with tuned effective electrical conductivity, and used to deposit photocatalytic films for water-splitting. Nanostructured films of iron oxide with uniform distribution of particles over the entire deposition area were formed with an electrospray system. The micro-Raman spectra of the iron oxide films showed that transverse and longitudinal optical modes are highly sensitive to the crystallize size of the electrospray-deposited films. The fabrication of films of natural light-harvesting complexes, with the aim of designing biohybrid photovoltaic devices, was explored with an electrospray. The ability to charge chlorosomes with large number of charges allowed their ballistic deposition onto TiO2 nanostructured columnar films simultaneously maintaining their light-harvesting properties. Single units of natural light-harvesting complexes were isolated in charged electrospray droplets for subsequent size characterization. The charge distribution of natural light-harvesting complexes, aerosolized with a collision nebulizer, was determined with tandem differential mobility analysis. It was found that nebulized light-harvesting complexes were multiply charged; hence they have potential applications in the deposition of functional films using electric fields. The studies conducted as part of this dissertation addressed fundamental issues in the characterization and deposition of nanoparticle suspensions and elucidated applications of the electrospray technique, particularly for solar energy utilization.
Tao, Xiaojun; Jin, Shu; Wu, Dehong; Ling, Kai; Yuan, Liming; Lin, Pingfa; Xie, Yongchao; Yang, Xiaoping
2015-01-01
We prepared two types of cholesterol hydrophobically modified pullulan nanoparticles (CHP) and carboxyethyl hydrophobically modified pullulan nanoparticles (CHCP) substituted with various degrees of cholesterol, including 3.11, 6.03, 6.91 and 3.46 per polymer, and named CHP−3.11, CHP−6.03, CHP−6.91 and CHCP−3.46. Dynamic laser light scattering (DLS) showed that the pullulan nanoparticles were 80–120 nm depending on the degree of cholesterol substitution. The mean size of CHCP nanoparticles was about 160 nm, with zeta potential −19.9 mV, larger than CHP because of the carboxyethyl group. A greater degree of cholesterol substitution conferred greater nanoparticle hydrophobicity. Drug-loading efficiency depended on nanoparticle hydrophobicity, that is, nanoparticles with the greatest degree of cholesterol substitution (6.91) showed the most drug encapsulation efficiency (90.2%). The amount of drug loading increased and that of drug release decreased with enhanced nanoparticle hydrophobicity. Nanoparticle surface-negative charge disturbed the amount of drug loading and drug release, for an opposite effect relative to nanoparticle hydrophobicity. The drug release in pullulan nanoparticles was higher pH 4.0 than pH 6.8 media. However, the changed drug release amount was not larger for negative-surface nanoparticles than CHP nanoparticles in the acid release media. Drug release of pullulan nanoparticles was further slowed with human serum albumin complexation and was little affected by nanoparticle hydrophobicity and surface negative charge. PMID:28344259
Nanoparticle engineering of colloidal suspension behavior
NASA Astrophysics Data System (ADS)
Chan, Angel Thanda
We investigate the effects of highly charged nanoparticles on the phase behavior, structure, and assembly of colloidal microsphere suspensions. Specifically, by selectively tuning the electrostatic interactions between silica microspheres and polystyrene nanoparticles, we study the behavior of four key systems: (i) strongly repulsive, (ii) haloing, (iii) weakly attractive, and (iv) strongly attractive systems. In each system, a combination of nanoparticle adsorption, zeta potential, and confocal microscopy measurements are carried out to systematically study the effects of nanoparticle volume fraction, microsphere/nanoparticle size ratios, and interparticle interactions on their behavior. Our observations indicate that minimal adsorption of highly charged nanoparticles occurs on like-charged and negligibly-charged microspheres, whereas their extent of association increases dramatically with increasing microsphere-nanoparticle attraction. A rich phase behavior emerges in these systems based on whether the nanoparticle species serve as depletants, haloing, or bridging species. The phase transitions in the haloing system occur at constant nanoparticle volume fractions, φnano, over a broad range of microsphere volume fractions, φmicro . By contrast, the observed transitions in the weakly and strongly attractive mixtures occur at a constant number ratio of nanoparticles per microsphere, Nnano/Nmicro. Important structural differences emerge, which can be exploited in the assembly of colloidal gels for direct ink writing and colloidal crystals on epitaxially patterned substrates. Finally, for the first time, we explore nanoparticle haloing as a new route for stabilizing hydrophobic colloidal drugs in aqueous suspensions media for preparation of injectable pharmaceuticals. These microsphere suspensions exhibit improved stability relative to their surfactant-stabilized counterparts after autoclaving, a critical processing step for this target applications. This research opens up a new avenue for stabilization of hydrophobic particles, when surfactant additions alone do not provide sufficient stabilization.
Aggregation in charged nanoparticles solutions induced by different interactions
NASA Astrophysics Data System (ADS)
Abbas, S.; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.
2016-05-01
Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction between nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.
Aggregation in charged nanoparticles solutions induced by different interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, S.; Kumar, Sugam; Aswal, V. K., E-mail: vkaswal@barc.gov.in
2016-05-23
Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction betweenmore » nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.« less
The impacts of surface polarity on the solubility of nanoparticle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jianzhuo; Su, Jiguo, E-mail: jiguosu@ysu.edu.cn; Ou, Xinwen
In order to study the dependence of water solubility and hydration behavior of nanoparticles on their surface polarity, we designed polar nanoparticles with varying surface polarity by assigning atomic partial charge to the surface of C60. The water solubility of the nanoparticle is enhanced by several orders of magnitude after the introduction of surface polarity. Nevertheless, when the atomic partial charge grows beyond a certain value (q{sub M}), the solubility continuously decreases to the level of nonpolar nanoparticle. It should be noted that such q{sub M} is comparable with atomic partial charge of a variety of functional groups. The hydrationmore » behaviors of nanoparticles were then studied to investigate the non-monotonic dependence of solubility on the surface polarity. The interaction between the polar nanoparticle and the hydration water is stronger than the nonpolar counterpart, which should facilitate the dissolution of the nanoparticles. On the other hand, the surface polarity also reduces the interaction of hydration water with the other water molecules and enhances the interaction between the nanoparticles which may hinder their dispersion. Besides, the introduction of surface polarity disturbs and even rearranges the hydration structure of nonpolar nanoparticle. Interestingly, the polar nanoparticle with less ordered hydration structure tends to have higher water solubility.« less
Jayaratne, E R; Ling, X; Morawska, L
2015-09-01
Overhead high-voltage power lines are known sources of corona ions. These ions rapidly attach to aerosols to form charged particles in the environment. Although the effect of ions and charged particles on human health is largely unknown, much attention has focused on the increasing exposure as a result of the expanding power network in urban residential areas. However, it is not widely known that a large number of charged particles in urban environments originate from motor vehicle emissions. In this study, for the first time, we compare the concentrations of charged nanoparticles near busy roads and overhead power lines. We show that large concentrations of both positive and negative charged nanoparticles are present near busy roadways and that these concentrations commonly exceed those under high-voltage power lines. We estimate that the concentration of charged nanoparticles found near two freeways carrying around 120 vehicles per minute exceeded the corresponding maximum concentrations under two corona-emitting overhead power lines by as much as a factor of 5. The difference was most pronounced when a significant fraction of traffic consisted of heavy-duty diesel vehicles which typically have high particle and charge emission rates. Copyright © 2015 Elsevier B.V. All rights reserved.
Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.
Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva
2008-11-01
Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.
Hydroxyl migration disorders the surface structure of hydroxyapatite nanoparticles
NASA Astrophysics Data System (ADS)
Cheng, Xiajie; Wu, Hong; Zhang, Li; Ma, Xingtao; Zhang, Xingdong; Yang, Mingli
2017-09-01
The surface structure of nano-hydroxyapatite (HAP) was investigated using a combined simulated annealing and molecular dynamics method. The stationary structures of nano-HAP with 4-7 nm in diameter and annealed under different temperatures were analyzed in terms of pair distribution function, structural factor, mean square displacement and atomic coordination number. The particles possess different structures from bulk crystal. A clear radial change in their atomic arrangements was noted. From core to surface the structures change from ordered to disordered. A three-shell model was proposed to describe the structure evolution of nano-HAP. Atoms in the core zone keep their arrangements as in crystal, while atoms in the surface shell are in short-range order and long-range disorder, adopting a typically amorphous structure. Atoms in the middle shell have small displacements and/or deflections but basically retain their original locations as in crystal. The disordered shell is about 1 nm in thickness, in agreement with experimental observations. The disordering mainly stems from hydroxyl migration during which hydroxyls move to the surface and bond with the exposed Ca ions, and their left vacancies bring about a rearrangement of nearby atoms. The disordering is to some extent different for particles unannealed under different temperatures, resulting from fewer number of migrated hydroxyls at lower temperatures. Particles with different sizes have similar surface structures, and their surface energy decreases with increasing size. Moreover, the surface energy is reduced by hydroxyl migration because the exposed Ca ions on the surface are ionically bonded with the migrated hydroxyls. Our calculations proposed a new structure model for nano-HAP, which indicates a surface structure with activities different from those without surface reorganization. This is particularly interesting because most bioactivities of biomaterials are dominated by their surface activity.
Hybrid scaffolds based on PLGA and silk for bone tissue engineering.
Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Lee, Ok Joo; Kim, Jung-Ho; Park, Hyun Jung; Kim, Dong Wook; Kim, Dong-Kyu; Jang, Ji Eun; Khang, Gilson; Park, Chan Hum
2016-03-01
Porous silk scaffolds, which are considered to be natural polymers, cannot be used alone because they have a long degradation rate, which makes it difficult for them to be replaced by the surrounding tissue. Scaffolds composed of synthetic polymers, such as PLGA, have a short degradation rate, lack hydrophilicity and their release of toxic by-products makes them difficult to use. The present investigations aimed to study hybrid scaffolds fabricated from PLGA, silk and hydroxyapatite nanoparticles (Hap NPs) for optimized bone tissue engineering. The results from variable-pressure field emission scanning electron microscopy (VP-FE-SEM), equipped with EDS, confirmed that the fabricated scaffolds had a porous architecture, and the location of each component present in the scaffolds was examined. Contact angle measurements confirmed that the introduction of silk and HAp NPs helped to change the hydrophobic nature of PLGA to hydrophilic, which is the main constraint for PLGA used as a biomaterial. Thermo-gravimetric analysis (TGA) and FT-IR spectroscopy confirmed thermal decomposition and different vibrations caused in functional groups of compounds used to fabricate the scaffolds, which reflected improvement in their mechanical properties. After culturing osteoblasts for 1, 7 and 14 days in the presence of scaffolds, their viability was checked by MTT assay. The fluorescent microscopy results revealed that the introduction of silk and HAp NPs had a favourable impact on the infiltration of osteoblasts. In vivo experiments were conducted by implanting scaffolds in rat calvariae for 4 weeks. Histological examinations and micro-CT scans from these experiments revealed beneficial attributes offered by silk fibroin and HAp NPs to PLGA-based scaffolds for bone induction. Copyright © 2015 John Wiley & Sons, Ltd.
Ignjatović, Nenad; Wu, Victoria; Ajduković, Zorica; Mihajilov-Krstev, Tatjana; Uskoković, Vuk; Uskoković, Dragan
2016-01-01
Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area. PMID:26706541
Kim, Kyoung-Min; Choi, Mun-Hyoung; Lee, Jong-Kwon; Jeong, Jayoung; Kim, Yu-Ri; Kim, Meyoung-Kon; Paek, Seung-Min; Oh, Jae-Min
2014-01-01
In this study, four types of standardized ZnO nanoparticles were prepared for assessment of their potential biological risk. Powder-phased ZnO nanoparticles with different particle sizes (20 nm and 100 nm) were coated with citrate or L-serine to induce a negative or positive surface charge, respectively. The four types of coated ZnO nanoparticles were subjected to physicochemical evaluation according to the guidelines published by the Organisation for Economic Cooperation and Development. All four samples had a well crystallized Wurtzite phase, with particle sizes of ∼30 nm and ∼70 nm after coating with organic molecules. The coating agents were determined to have attached to the ZnO surfaces through either electrostatic interaction or partial coordination bonding. Electrokinetic measurements showed that the surface charges of the ZnO nanoparticles were successfully modified to be negative (about −40 mV) or positive (about +25 mV). Although all the four types of ZnO nanoparticles showed some agglomeration when suspended in water according to dynamic light scattering analysis, they had clearly distinguishable particle size and surface charge parameters and well defined physicochemical properties. PMID:25565825
2010-01-01
Background Surface charge and oxidative stress are often hypothesized to be important factors in cytotoxicity of nanoparticles. However, the role of these factors is not well understood. Hence, the aim of this study was to systematically investigate the role of surface charge, oxidative stress and possible involvement of mitochondria in the production of intracellular reactive oxygen species (ROS) upon exposure of rat macrophage NR8383 cells to silicon nanoparticles. For this aim highly monodisperse (size 1.6 ± 0.2 nm) and well-characterized Si core nanoparticles (Si NP) were used with a surface charge that depends on the specific covalently bound organic monolayers: positively charged Si NP-NH2, neutral Si NP-N3 and negatively charged Si NP-COOH. Results Positively charged Si NP-NH2 proved to be more cytotoxic in terms of reducing mitochondrial metabolic activity and effects on phagocytosis than neutral Si NP-N3, while negatively charged Si NP-COOH showed very little or no cytotoxicity. Si NP-NH2 produced the highest level of intracellular ROS, followed by Si NP-N3 and Si NP-COOH; the latter did not induce any intracellular ROS production. A similar trend in ROS production was observed in incubations with an isolated mitochondrial fraction from rat liver tissue in the presence of Si NP. Finally, vitamin E and vitamin C induced protection against the cytotoxicity of the Si NP-NH2 and Si NP-N3, corroborating the role of oxidative stress in the mechanism underlying the cytotoxicity of these Si NP. Conclusion Surface charge of Si-core nanoparticles plays an important role in determining their cytotoxicity. Production of intracellular ROS, with probable involvement of mitochondria, is an important mechanism for this cytotoxicity. PMID:20831820
Ovanesyan, Zaven; Aljzmi, Amal; Almusaynid, Manal; Khan, Asrar; Valderrama, Esteban; Nash, Kelly L; Marucho, Marcelo
2016-01-15
One major source of complexity in the implementation of nanoparticles in aqueous electrolytes arises from the strong influence that biological environments has on their physicochemical properties. A key parameter for understanding the molecular mechanisms governing the physicochemical properties of nanoparticles is the formation of the surface charge density. In this article, we present an efficient and accurate approach that combines a recently introduced classical solvation density functional theory for spherical electrical double layers with a surface complexation model to account for ion-ion correlation and excluded volume effects on the surface titration of spherical nanoparticles. We apply the proposed computational approach to account for the charge-regulated mechanisms on the surface chemistry of spherical silica (SiO2) nanoparticles. We analyze the effects of the nanoparticle size, as well as pH level and electrolyte concentration of the aqueous solution on the nanoparticle's surface charge density and Zeta potential. We validate our predictions for 580Å and 200Å nanoparticles immersed in acid, neutral and alkaline mono-valent aqueous electrolyte solutions against experimental data. Our results on mono-valent electrolyte show that the excluded volume and ion-ion correlations contribute significantly to the surface charge density and Zeta potential of the nanoparticle at high electrolyte concentration and pH levels, where the solvent crowding effects and electrostatic screening have shown a profound influence on the protonation/deprotonation reactions at the liquid/solute interface. The success of this approach in describing physicochemical properties of silica nanoparticles supports its broader application to study other spherical metal oxide nanoparticles. Copyright © 2015 Elsevier Inc. All rights reserved.
Gold nanoparticles for high-throughput genotyping of long-range haplotypes
NASA Astrophysics Data System (ADS)
Chen, Peng; Pan, Dun; Fan, Chunhai; Chen, Jianhua; Huang, Ke; Wang, Dongfang; Zhang, Honglu; Li, You; Feng, Guoyin; Liang, Peiji; He, Lin; Shi, Yongyong
2011-10-01
Completion of the Human Genome Project and the HapMap Project has led to increasing demands for mapping complex traits in humans to understand the aetiology of diseases. Identifying variations in the DNA sequence, which affect how we develop disease and respond to pathogens and drugs, is important for this purpose, but it is difficult to identify these variations in large sample sets. Here we show that through a combination of capillary sequencing and polymerase chain reaction assisted by gold nanoparticles, it is possible to identify several DNA variations that are associated with age-related macular degeneration and psoriasis on significant regions of human genomic DNA. Our method is accurate and promising for large-scale and high-throughput genetic analysis of susceptibility towards disease and drug resistance.
Preparation of chitosan/nano hydroxyapatite organic-inorganic hybrid microspheres for bone repair.
Chen, Jingdi; Pan, Panpan; Zhang, Yujue; Zhong, Shengnan; Zhang, Qiqing
2015-10-01
In this work, we encapsulated icariin (ICA) into chitosan (CS)/nano hydroxyapatite (nHAP) composite microspheres to form organic-inorganic hybrid microspheres for drug delivery carrier. The composition and morphology of composite microspheres were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and differential scanning calorimetry- thermogravimetric analysis (DSC-TGA). Moreover, we further studied the performance of swelling properties, degradation properties and drug release behavior of the microspheres. ICA, the extract of traditional Chinese medicine-epimedium, was combined to study drug release properties of the microspheres. ICA loaded microspheres take on a sustained release behavior, which can be not only ascribed to electrostatic interaction between reactive negative hydroxyl (OH) of ICA and positive amine groups (NH₂) of CS, but also depended on the homogeneous dispersion of HAP nanoparticles inside CS organic matrix. In addition, the adhesion and morphology of osteoblasts were detected by inverted fluorescence microscopy. The biocompatibility of CS/nHAP/ICA microspheres was evaluated by the MTT cytotoxicity assay, Hoechst 33258 and PI fluorescence staining. These studies demonstrate that composite microspheres provide a suitable microenvironment for osteoblast attachment and proliferation. It can be speculated that the ICA loaded CS-based organic-inorganic hybrid microspheres might have potential applications in drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Cai, Zhu-Yun; Peng, Fan; Zi, Yun-Peng; Chen, Feng; Qian, Qi-Rong
2015-01-01
Synthetic calcium phosphate (CaP)-based materials have attracted much attention in the biomedical field. In this study, we have investigated the effect of pH values on CaP nanostructures prepared using a microwave-assisted hydrothermal method. The hierarchical nanosheet-assembled hydroxyapatite (HAP) nanostructure was prepared under weak acidic conditions (pH 5), while the HAP nanorod was prepared under neutral (pH 7) and weak alkali (pH 9) condition. However, when the pH value increases to 11, a mixed product of HAP nanorod and tri-calcium phosphate nanoparticle was obtained. The results indicated that the pH value of the initial reaction solution played an important role in the phase and structure of the CaP. Furthermore, the protein adsorption and release performance of the as-prepared CaP nanostructures were investigated by using hemoglobin (Hb) as a model protein. The sample that was prepared at pH = 11 and consisted of mixed morphologies of nanorods and nanoprisms showed a higher Hb protein adsorption capacity than the sample prepared at pH 5, which could be explained by its smaller size and dispersed structure. The results revealed the relatively high protein adsorption capacity of the as-prepared CaP nanostructures, which show promise for applications in various biomedical fields such as drug delivery and protein adsorption. PMID:28347064
Cai, Zhu-Yun; Peng, Fan; Zi, Yun-Peng; Chen, Feng; Qian, Qi-Rong
2015-07-31
Synthetic calcium phosphate (CaP)-based materials have attracted much attention in the biomedical field. In this study, we have investigated the effect of pH values on CaP nanostructures prepared using a microwave-assisted hydrothermal method. The hierarchical nanosheet-assembled hydroxyapatite (HAP) nanostructure was prepared under weak acidic conditions (pH 5), while the HAP nanorod was prepared under neutral (pH 7) and weak alkali (pH 9) condition. However, when the pH value increases to 11, a mixed product of HAP nanorod and tri-calcium phosphate nanoparticle was obtained. The results indicated that the pH value of the initial reaction solution played an important role in the phase and structure of the CaP. Furthermore, the protein adsorption and release performance of the as-prepared CaP nanostructures were investigated by using hemoglobin (Hb) as a model protein. The sample that was prepared at pH = 11 and consisted of mixed morphologies of nanorods and nanoprisms showed a higher Hb protein adsorption capacity than the sample prepared at pH 5, which could be explained by its smaller size and dispersed structure. The results revealed the relatively high protein adsorption capacity of the as-prepared CaP nanostructures, which show promise for applications in various biomedical fields such as drug delivery and protein adsorption.
NASA Astrophysics Data System (ADS)
Jiang, Cheng-Wei; Ni, I.-Chih; Tzeng, Shien-Der; Wu, Cen-Shawn; Kuo, Watson
2014-05-01
How the interparticle tunnelling affects the charge conduction of self-assembled gold nanoparticles is studied by three means: tuning the tunnel barrier width by different molecule modification and by substrate bending, and tuning the barrier height by high-dose electron beam exposure. All approaches indicate that the metal-Mott insulator transition is governed predominantly by the interparticle coupling strength, which can be quantified by the room temperature sheet resistance. The Hubbard gap, following the prediction of quantum fluctuation theory, reduces to zero rapidly as the sheet resistance decreases to the quantum resistance. At very low temperature, the fate of devices near the Mott transition depends on the strength of disorder. The charge conduction is from nearest-neighbour hopping to co-tunnelling between nanoparticles in Mott insulators whereas it is from variable-range hopping through charge puddles in Anderson insulators. When the two-dimensional nanoparticle network is under a unidirectional strain, the interparticle coupling becomes anisotropic so the average sheet resistance is required to describe the charge conduction.How the interparticle tunnelling affects the charge conduction of self-assembled gold nanoparticles is studied by three means: tuning the tunnel barrier width by different molecule modification and by substrate bending, and tuning the barrier height by high-dose electron beam exposure. All approaches indicate that the metal-Mott insulator transition is governed predominantly by the interparticle coupling strength, which can be quantified by the room temperature sheet resistance. The Hubbard gap, following the prediction of quantum fluctuation theory, reduces to zero rapidly as the sheet resistance decreases to the quantum resistance. At very low temperature, the fate of devices near the Mott transition depends on the strength of disorder. The charge conduction is from nearest-neighbour hopping to co-tunnelling between nanoparticles in Mott insulators whereas it is from variable-range hopping through charge puddles in Anderson insulators. When the two-dimensional nanoparticle network is under a unidirectional strain, the interparticle coupling becomes anisotropic so the average sheet resistance is required to describe the charge conduction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06627d
Manipulation of a neutral and nonpolar nanoparticle in water using a nonuniform electric field
NASA Astrophysics Data System (ADS)
Xu, Zhen; Wang, Chunlei; Sheng, Nan; Hu, Guohui; Zhou, Zhewei; Fang, Haiping
2016-01-01
The manipulation of nanoparticles in water is of essential importance in chemical physics, nanotechnology, medical technology, and biotechnology applications. Generally, a particle with net charges or charge polarity can be driven by an electric field. However, many practical particles only have weak and even negligible charge and polarity, which hinders the electric field to exert a force large enough to drive these nanoparticles directly. Here, we use molecular dynamics simulations to show that a neutral and nonpolar nanoparticle in liquid water can be driven directionally by an external electric field. The directed motion benefits from a nonuniform water environment produced by a nonuniform external electric field, since lower water energies exist under a higher intensity electric field. The nanoparticle spontaneously moves toward locations with a weaker electric field intensity to minimize the energy of the whole system. Considering that the distance between adjacent regions of nonuniform field intensity can reach the micrometer scale, this finding provides a new mechanism of manipulating nanoparticles from the nanoscale to the microscale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuto, M.; Kewalramani, S.; Wang, S.
2011-02-07
We report an experimental demonstration of a strategy for inducing two-dimensional (2D) crystallization of charged nanoparticles on oppositely charged fluid interfaces. This strategy aims to maximize the interfacial adsorption of nanoparticles, and hence their lateral packing density, by utilizing a combination of weakly charged particles and a high surface charge density on the planar interface. In order to test this approach, we investigated the assembly of cowpea mosaic virus (CPMV) on positively charged lipid monolayers at the aqueous solution surface, by means of in situ X-ray scattering measurements at the liquid-vapor interface. The assembly was studied as a function ofmore » the solution pH, which was used to vary the charge on CPMV, and of the mole fraction of the cationic lipid in the binary lipid monolayer, which set the interface charge density. The 2D crystallization of CPMV occurred in a narrow pH range just above the particle's isoelectric point, where the particle charge was weakly negative, and only when the cationic-lipid fraction in the monolayer exceeded a threshold. The observed 2D crystals exhibited nearly the same packing density as the densest lattice plane within the known 3D crystals of CPMV. The above electrostatic approach of maximizing interfacial adsorption may provide an efficient route to the crystallization of nanoparticles at aqueous interfaces.« less
Ingole, Vijay H; Hany Hussein, Kamal; Kashale, Anil A; Ghule, Kalyani; Vuherer, Tomaž; Kokol, Vanja; Chang, Jia-Yaw; Ling, Yong-Chien; Vinchurkar, Aruna; Dhakal, Hom N; Ghule, Anil V
2017-11-01
Nanostructured hydroxyapatite (HAp) is the most favorable candidate biomaterial for bone tissue engineering because of its bioactive and osteoconductive properties. Herein, we report for the first time ultrasound-assisted facile and economic approach for the synthesis of nanocrystalline hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) using recycled eggshell biowaste referred as EHAp. The process involves the reaction of eggshell biowaste as a source of calcium and ammonium dihydrogen orthophosphate as a phosphate source. Ultrasound-mediated chemical synthesis of hydroxyapatite (HAp) is also carried out using similar approach wherein commercially available calcium hydroxide and ammonium dihydrogen orthophosphate were used as calcium and phosphate precursors, respectively and referred as CHAp for better comparison. The prepared materials were characterized by X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy to determine crystal structure, particle morphology, and the presence of chemical functional groups. The nanocrystalline EHAp and CHAp were observed to have spherical morphology with uniform size distribution. Furthermore, mechanical properties such as Vickers hardness, fracture toughness, and compression tests have been studied of the EHAp and CHAp samples showing promising results. Mechanical properties show the influence of calcination at 600°C EHAp and CHAp material. After calcination, in the case of EHAp material an average hardness, mechanical strength, elastic modulus, and fracture toughness were found 552 MPa, 46.6 MPa, 2824 MPa, and 3.85 MPa m 1/2 , respectively, while in the case of CHAp 618 MPa, 47.5 MPa, 2071 MPa, and 3.13 MPa m 1/2 . In vitro cell studies revealed that the EHAp and CHAp nanoparticles significantly increased the attachment and proliferation of the hFOB cells. Here, we showed that EHAp and CHAp provide promising biocompatible materials that do not affect the cell viability and proliferation with enhancing the osteogenic activity of osteoblasts. Moreover, hFOB cells are found to express Osteocalcin, Osteopontin, Collagen I, Osteonectin, BMP-2 on the EHAp and CHAp bone graft. This study demonstrates the formation of pure nanocrystalline HAp with promising properties justifying the fact that the eggshell biowaste could be successfully used for the synthesis of HAp with good mechanical and osteogenic properties. These findings may have significant implications for designing of biomaterial for use in orthopedic tissue regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2935-2947, 2017. © 2017 Wiley Periodicals, Inc.
Fink, Doran L; Buscher, Amy Z; Green, Bruce; Fernsten, Phillip; St Geme, Joseph W
2003-03-01
The pathogenesis of non-typable Haemophilus influenzae disease begins with colonization of the nasopharynx and is facilitated by bacterial adherence to respiratory mucosa. The H. influenzae Hap autotransporter is a non-pilus adhesin that promotes adherence to epithelial cells and selected extracellular matrix proteins and mediates bacterial aggregation and microcolony formation. In addition, Hap has serine protease activity. Hap contains a 110 kDa internal passenger domain called HapS and a 45 kDa C-terminal translocator domain called Hapbeta. In the present study, we sought to define the structural basis for Hap adhesive activities. Based on experiments using a panel of monoclonal antibodies against HapS, a deletion derivative lacking most of HapS and a purified fragment of HapS, we established that adherence to epithelial cells is mediated by sequences within the C-terminal 311 residues of HapS. In additional experiments, we discovered that bacterial aggregation is also mediated by sequences within the C-terminal 311 residues of HapS and occurs via HapS-HapS interaction between molecules on neighbouring organisms. Finally, we found that adherence to fibronectin, laminin and collagen IV is mediated in part by sequences within the C-terminal 311 residues of HapS and in full by sequences within the C-terminal 511 residues of HapS. Taken together, these results demonstrate that all Hap adhesive activities reside in the C-terminal portion of HapS. Coupled with earlier observations, the current results establish that HapS adhesive activities and HapS protease activity are contained in separate modules of the protein.
Anaerobic Toxicity of Cationic Silver Nanoparticles
The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged p...
Single Nanoparticle Translocation Through Chemically Modified Solid Nanopore
NASA Astrophysics Data System (ADS)
Tan, Shengwei; Wang, Lei; Liu, Hang; Wu, Hongwen; Liu, Quanjun
2016-02-01
The nanopore sensor as a high-throughput and low-cost technology can detect single nanoparticle in solution. In the present study, the silicon nitride nanopores were fabricated by focused Ga ion beam (FIB), and the surface was functionalized with 3-aminopropyltriethoxysilane to change its surface charge density. The positively charged nanopore surface attracted negatively charged nanoparticles when they were in the vicinity of the nanopore. And, nanoparticle translocation speed was slowed down to obtain a clear and deterministic signal. Compared with previous studied small nanoparticles, the electrophoretic translocation of negatively charged polystyrene (PS) nanoparticles (diameter ~100 nm) was investigated in solution using the Coulter counter principle in which the time-dependent nanopore current was recorded as the nanoparticles were driven across the nanopore. A linear dependence was found between current drop and biased voltage. An exponentially decaying function ( t d ~ e -v/v0 ) was found between the duration time and biased voltage. The interaction between the amine-functionalized nanopore wall and PS microspheres was discussed while translating PS microspheres. We explored also translocations of PS microspheres through amine-functionalized solid-state nanopores by varying the solution pH (5.4, 7.0, and 10.0) with 0.02 M potassium chloride (KCl). Surface functionalization showed to provide a useful step to fine-tune the surface property, which can selectively transport molecules or particles. This approach is likely to be applied to gene sequencing.
NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Lv, Yuzhen; Li, Chengrong; Tu, Youping; Xiong, Jun
2018-06-01
The flashover phenomenon of the insulator is the main cause for insulating failure of GIS/GIL, and one of the most critical impacting factors is the accumulation of surface charge. The common methods to restrain the surface charge accumulation are reviewed in this paper. Through the reasonable comparison and analysis of these methods, nano-coatings for the insulator were selected as a way to restrain the surface charge accumulation. Based on this, six nano-coated epoxy resin samples with different concentrations of P25-TiO2 nanoparticles were produced. A high precision 3D surface charge measurement system was developed in this paper with a spatial resolution of 4.0 mm2 and a charge resolution of 0.01 µC (m2 · mV)‑1. The experimental results for the epoxy resin sample showed that with the concentration of nanoparticles of the coating material increasing, the surface charge density tended to first decrease and then increase. In the sample coated with 0.5% concentration of nanoparticles, the suppression effect is the optimum, leading to a 63.8% reduction of charge density under DC voltage. The application test for actual nano-coated GIS/GIL basin insulator indicated that the maximum suppression degree for the charge density under DC voltage could reach 48.3%, while it could reach 22.2% for switching impulse voltage and 12.5% for AC context. The control mechanism of nano-coatings on charge accumulation was proposed based on the analysis for surface morphology features and traps characteristics; the shallow traps dominate in the migration of charges while the deep traps operate on the charge accumulation. With the concentration of nanoparticles in nano-coating material mounting up, the density of shallow traps continuously increases, while for deep traps, it first decreases and then increases. For the sample with 0.5% concentration of nanoparticles coated, the competition between shallow traps and deep traps comes to the most balanced state, producing the most significant suppression impact on surface charge accumulation.
Young, John D.; Young, Lena; Wu, Cheng-Yeu; Young, Andrew
2009-01-01
Putative living entities called nanobacteria (NB) are unusual for their small sizes (50–500 nm), pleomorphic nature, and accumulation of hydroxyapatite (HAP), and have been implicated in numerous diseases involving extraskeletal calcification. By adding precipitating ions to cell culture medium containing serum, mineral nanoparticles are generated that are morphologically and chemically identical to the so-called NB. These nanoparticles are shown here to be formed of amorphous mineral complexes containing calcium as well as other ions like carbonate, which then rapidly acquire phosphate, forming HAP. The main constituent proteins of serum-derived NB are albumin, fetuin-A, and apolipoprotein A1, but their involvement appears circumstantial since so-called NB from different body fluids harbor other proteins. Accordingly, by passage through various culture media, the protein composition of these particles can be modulated. Immunoblotting experiments reveal that antibodies deemed specific for NB react in fact with either albumin, fetuin-A, or both, indicating that previous studies using these reagents may have detected these serum proteins from the same as well as different species, with human tissue nanoparticles presumably absorbing bovine serum antigens from the culture medium. Both fetal bovine serum and human serum, used earlier by other investigators as sources of NB, paradoxically inhibit the formation of these entities, and this inhibition is trypsin-sensitive, indicating a role for proteins in this inhibitory process. Fetuin-A, and to a lesser degree albumin, inhibit nanoparticle formation, an inhibition that is overcome with time, ending with formation of the so-called NB. Together, these data demonstrate that NB are most likely formed by calcium or apatite crystallization inhibitors that are somehow overwhelmed by excess calcium or calcium phosphate found in culture medium or in body fluids, thereby becoming seeds for calcification. The structures described earlier as NB may thus represent remnants and by-products of physiological mechanisms used for calcium homeostasis, a concept which explains the vast body of NB literature as well as explains the true origin of NB as lifeless protein-mineralo entities with questionable role in pathogenesis. PMID:19198665
NASA Astrophysics Data System (ADS)
Li, Ye; Yuan, Bing; Yang, Kai; Zhang, Xianren; Yan, Bing; Cao, Dapeng
2017-02-01
The nanoparticles (NPs) functionalized with charged ligands are of particular significance due to their potential drug/gene delivery and biomedical applications. However, the molecular mechanism of endocytosis of the charged NPs by cells, especially the effect of the NP-NP and NP-biomembrane interactions on the internalization pathways is still poorly understood. In this work, we systematically investigate the internalization behaviors of the positively charged NPs by combining experiment technology and dissipative particle dynamics (DPD) simulation. We experimentally find an interesting but highly counterintuitive phenomenon, i.e. the multiple positively charged NPs prefer to enter cells cooperatively although the like-charged NPs have obvious electrostatic repulsion. Furthermore, we adopt the DPD simulation to confirm the experimental findings, and reveal that the mechanism of the cooperative endocytosis between like-charged NPs is definitely caused by the interplay of particle size, the charged ligand density on particle surface and local concentration of NPs. Importantly, we not only observe the normal cooperative endocytosis of like-charged NPs in cell biomembrane like neutral NP case, but also predict the ‘bud’ cooperative endocytosis of like-charged NPs which is absence in the neutral NP case. The results indicate that electrostatic repulsion between the positively charged nanoparticles plays an important role in the ‘bud’ cooperative endocytosis of like-charged NPs.
Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells
Mura, Simona; Hillaireau, Herve; Nicolas, Julien; Le Droumaguet, Benjamin; Gueutin, Claire; Zanna, Sandrine; Tsapis, Nicolas; Fattal, Elias
2011-01-01
Background Because of the described hazards related to inhalation of manufactured nanoparticles, we investigated the lung toxicity of biodegradable poly (lactide-co-glycolide) (PLGA) nanoparticles displaying various surface properties on human bronchial Calu-3 cells. Methods Positively and negatively charged as well as neutral nanoparticles were tailored by coating their surface with chitosan, Poloxamer, or poly (vinyl alcohol), respectively. Nanoparticles were characterized in terms of size, zeta potential, and surface chemical composition, confirming modifications provided by hydrophilic polymers. Results Although nanoparticle internalization by lung cells was clearly demonstrated, the cytotoxicity of the nanoparticles was very limited, with an absence of inflammatory response, regardless of the surface properties of the PLGA nanoparticles. Conclusion These in vitro results highlight the safety of biodegradable PLGA nanoparticles in the bronchial epithelium and provide initial data on their potential effects and the risks associated with their use as nanomedicines. PMID:22114491
Magnetic Nanoparticle-Based Imaging of RNA Transcripts in Breast Cancer Cells
2008-06-30
control (Months 33 – 36). These studies have not yet commenced. KEY RESEARCH ACCOMPLISHMENTS: - Synthesized dextran-coated iron oxide NPs with...Size, charge, and concentration dependent uptake of iron oxide nanoparticles by non-phagocytic cells: a comparative study of USPIO, SSPIO, and MPIO...A. (2008) Size, charge, and concentration dependent uptake of iron oxide nanoparticles by non-phagocytic cells: a comparative study of USPIO, SSPIO
NASA Astrophysics Data System (ADS)
Mishin, Maxim V.; Vorobyev, Alexander A.; Kondrateva, Anastasia S.; Koroleva, Ekaterina Y.; Karaseov, Platon A.; Bespalova, Polina G.; Shakhmin, Alexander L.; Glukhovskoy, Anatoly V.; Wurz, Marc Christopher; Filimonov, Alexey V.
2018-07-01
Photo-induced current through nanocomposite heterojunction structures consisting of a TiO2 coating activated with embedded gold nanoparticles on top of Si, SiO2, and columnar structured SiO2 is studied. The highest photo-activity in the visible part of the spectrum is found in the composite containing pillar-like silicon dioxide nanostructures. Experimental results were qualitatively explained on the basis of Franz-Keldysh effect taking into account the effects of electrical inhomogeneities appearing at charged nanoparticles. It is established that processes at the interface between silicon and noble metal nanoparticles play an important role in charge carrier photo-generation which opens a new opportunity to tune the photo-response of a nanocomposite via changing heterostructure topology.
Thermodynamics and Charging of Interstellar Iron Nanoparticles
NASA Astrophysics Data System (ADS)
Hensley, Brandon S.; Draine, B. T.
2017-01-01
Interstellar iron in the form of metallic iron nanoparticles may constitute a component of the interstellar dust. We compute the stability of iron nanoparticles to sublimation in the interstellar radiation field, finding that iron clusters can persist down to a radius of ≃4.5 Å, and perhaps smaller. We employ laboratory data on small iron clusters to compute the photoelectric yields as a function of grain size and the resulting grain charge distribution in various interstellar environments, finding that iron nanoparticles can acquire negative charges, particularly in regions with high gas temperatures and ionization fractions. If ≳10% of the interstellar iron is in the form of ultrasmall iron clusters, the photoelectric heating rate from dust may be increased by up to tens of percent relative to dust models with only carbonaceous and silicate grains.
NASA Astrophysics Data System (ADS)
Wang, Weiwang; Li, Shengtao; Min, Daomin
2016-04-01
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al2O3 nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al2O3 nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and the strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al2O3 nanodielectrics is improved.
NASA Astrophysics Data System (ADS)
Liu, Tsang-Pai; Wu, Si-Han; Chen, Yi-Ping; Chou, Chih-Ming; Chen, Chien-Tsu
2015-04-01
This study aimed to investigate how mesoporous silica nanoparticles (MSNs), especially focussing on their surface functional groups, interacted with Raw 264.7 macrophages, as well as with zebrafish embryos. Upon introducing nanoparticles into a biological milieu, adsorption of proteins and biomolecules onto the nanoparticle surface usually progresses rapidly. Nanoparticles bound with proteins can result in physiological and pathological changes, but the mechanisms remain to be elucidated. In order to evaluate how protein corona affected MSNs and the subsequent cellular immune responses, we experimented in both serum and serum-deprived conditions. Our findings indicated that the level of p-p38 was significantly elevated by the positively charged MSNs, whereas negatively charged MSNs resulted in marked ROS production. Most significantly, our experiments demonstrated that the presence of protein efficiently mitigated the potential nano-hazard. On the other hand, strongly positively charged MSNs caused 94% of the zebrafish embryos to die. In that case, the toxicity caused by the quaternary ammonium ligands on the surface of those nanoparticles was exerted in a dose-dependent manner. In summary, these fundamental studies here provide valuable insights into the design of better biocompatible nanomaterials in the future.This study aimed to investigate how mesoporous silica nanoparticles (MSNs), especially focussing on their surface functional groups, interacted with Raw 264.7 macrophages, as well as with zebrafish embryos. Upon introducing nanoparticles into a biological milieu, adsorption of proteins and biomolecules onto the nanoparticle surface usually progresses rapidly. Nanoparticles bound with proteins can result in physiological and pathological changes, but the mechanisms remain to be elucidated. In order to evaluate how protein corona affected MSNs and the subsequent cellular immune responses, we experimented in both serum and serum-deprived conditions. Our findings indicated that the level of p-p38 was significantly elevated by the positively charged MSNs, whereas negatively charged MSNs resulted in marked ROS production. Most significantly, our experiments demonstrated that the presence of protein efficiently mitigated the potential nano-hazard. On the other hand, strongly positively charged MSNs caused 94% of the zebrafish embryos to die. In that case, the toxicity caused by the quaternary ammonium ligands on the surface of those nanoparticles was exerted in a dose-dependent manner. In summary, these fundamental studies here provide valuable insights into the design of better biocompatible nanomaterials in the future. Electronic supplementary information (ESI) available: TEM image, size distribution histogram of as-synthesized wn-R-MSN@PEG. TGA measurements. Cellular uptake efficiency. WST-1 analysis. Western blot assays. Confocal images and zebrafish mortality. See DOI: 10.1039/c4nr07421a
Effect of preparation conditions on the nanostructure of hydroxyapatite and brushite phases
NASA Astrophysics Data System (ADS)
Mansour, S. F.; El-dek, S. I.; Ahmed, M. A.; Abd-Elwahab, S. M.; Ahmed, M. K.
2016-10-01
Hydroxyapatite (HAP) and dicalcium phosphate dihydrate (brushite) nanoparticles were prepared by co-precipitation method. The obtained products were characterized by X-ray powder diffraction (XRD), Fourier transformation infra-red spectroscopy (FTIR) and thermo-gravimetric analysis (TGA). Scanning electron microscopy (SEM) and transmission electron microscope (TEM) were used to investigate the morphology of the powdered samples as well as their microstructure, respectively. Brushite samples were obtained in a spherical shape, while hydroxyapatite was formed in a needle and rice shape depending on the pH value.
Formation of positively charged gold nanoparticle monolayers on silica sensors.
Oćwieja, Magdalena; Maciejewska-Prończuk, Julia; Adamczyk, Zbigniew; Roman, Maciej
2017-09-01
Formation of positively charged gold nanoparticle monolayers on the Si/SiO 2 was studied under in situ conditions using quartz microbalance (QCM). The gold nanoparticles were synthesized in a chemical reduction method using sodium borohydride as reducing agent. Cysteamine hydrochloride was applied to generate a positive surface charge of nanoparticles. The micrographs obtained from transmission electron microscopy (TEM) revealed that the average size of nanoparticles was equal to 12±3nm. The stability of nanoparticle suspensions under controlled pH and ionic strength was determined by dynamic light scattering (DLS). The electrophoretic mobility measurements showed that the zeta potential of nanoparticles was positive, decreasing with ionic strength and pH from 56mV at pH 4.2 and I=10 -4 M to 22mV at pH 8.3 and I=3×10 -3 M. The surface enhanced Raman spectroscopy (SERS) confirmed chemisorption of cysteamine on nanoparticles and the contribution of amine moieties in the generation of nanoparticle charge. The influence of suspension concentration, ionic strength and flow rate on the kinetics of nanoparticle deposition on the sensors was quantitatively determined. It was confirmed that the deposition for the low coverage regime is governed by the bulk mass transfer that results in a linear increase of the coverage with time. The significant increase in the maximum coverage of gold monolayers with ionic strength was interpreted as due to the decreasing range of the electrostatic interactions among deposited particles. Moreover, the hydratation of formed monolayers, their structure and the stability were determined by the comparison of the QCM results with those obtained by AFM and SEM. The experimental data were adequately interpreted in terms of the extended random sequential adsorption (eRSA) model that considers the bulk and surface transfer steps in a rigorous way. The obtained results are useful for a facile fabrication of gold nanoparticle-based biosensors capable to bind target molecules via available amine moieties. Copyright © 2017 Elsevier Inc. All rights reserved.
TiO2 nanoparticle induced space charge decay in thermal aged transformer oil
NASA Astrophysics Data System (ADS)
Lv, Yuzhen; Du, Yuefan; Li, Chengrong; Qi, Bo; Zhong, Yuxiang; Chen, Mutian
2013-04-01
TiO2 nanoparticle with good dispersibility and stability in transformer oil was prepared and used to modify insulating property of aged oil. It was found that space charge decay rate in the modified aged oil can be significantly enhanced to 1.57 times of that in the aged oil at first 8 s after polarization voltage was removed. The results of trap characteristics reveal that the modification of nanoparticle can not only greatly lower the shallow trap energy level in the aged oil but also increase the trap density, resulting in improved charge transportation via trapping and de-trapping process in shallower traps.
Modifications in nanoparticle-protein interactions by varying the protein conformation
NASA Astrophysics Data System (ADS)
Kumar, Sugam; Yadav, I.; Aswal, V. K.; Kohlbrecher, J.
2017-05-01
Small-angle neutron scattering has been used to study the interaction of silica nanoparticle with Bovine Serum Albumin (BSA) protein without and with a protein denaturing agent urea. The measurements have been carried out at pH 7 where both the components (nanoparticle and protein) are similarly charged. We show that the interactions in nanoparticle-protein system can be modified by changing the conformation of protein through the presence of urea. In the absence of urea, the strong electrostatic repulsion between the nanoparticle and protein prevents protein adsorption on nanoparticle surface. This non-adsorption, in turn gives rise to depletion attraction between nanoparticles. However, with addition of urea the depletion attraction is completely suppressed. Urea driven denaturation of protein is utilized to expose the positively charged patched of the BSA molecules which eventually leads to adsorption of BSA on nanoparticles eliminating the depletion interaction.
NASA Astrophysics Data System (ADS)
Lee, Keanchuan; Weis, Martin; Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2013-04-01
Effects of illumination on the carrier injection and transport due to photogenerated carriers were investigated in pentacene organic field-effect transistor (OFET). A plasmonic nanoparticles self-assembled monolayer (SAM) was incorporated in pentacene FET to act to enhance the photo-carrier generation. The influence of nanoparticles (NPs) on the photogeneration as well as on the charge trapping has been investigated using the current-voltage (I-V) and impedance spectroscopy (IS) measurements. The I-V results proved higher amount of photogenerated charge in presence of NPs even though this device has the contact resistance about two orders higher and effective mobility an order lower than the reference device without plasmonic NPs. The IS analysis of relaxation times verified strong influence of NPs on the charge trapping.
Pagnout, Christophe; Jomini, Stéphane; Dadhwal, Mandeep; Caillet, Céline; Thomas, Fabien; Bauda, Pascale
2012-04-01
The increasing production and use of titanium dioxide nanoparticles (NP-TiO(2)) has led to concerns about their possible impact on the environment. Bacteria play crucial roles in ecosystem processes and may be subject to the toxicity of these nanoparticles. In this study, we showed that at low ionic strength, the cell viability of Escherichia coli was more severely affected at pH 5.5 than at pH 7.0 and pH 9.5. At pH 5.5, nanoparticles (positively charged) strongly interacted with the bacterial cells (negatively charged) and accumulated on their surfaces. This phenomenon was observed in a much lower degree at pH 7.0 (NP-TiO(2) neutrally charged and cells negatively charged) and pH 9.5 (both NP-TiO(2) and cells negatively charged). It was also shown that the addition of electrolytes (NaCl, CaCl(2), Na(2)SO(4)) resulted in a gradual reduction of the NP-TiO(2) toxicity at pH 5.5 and an increase in this toxicity at pH 9.5, which was closely related to the reduction of the NP-TiO(2) and bacterial cell electrostatic charges. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Ekkapongpisit, Maneerat; Giovia, Antonino; Follo, Carlo; Caputo, Giuseppe; Isidoro, Ciro
2012-01-01
Background and methods Nanoparticles engineered to carry both a chemotherapeutic drug and a sensitive imaging probe are valid tools for early detection of cancer cells and to monitor the cytotoxic effects of anticancer treatment simultaneously. Here we report on the effect of size (10–30 nm versus 50 nm), type of material (mesoporous silica versus polystyrene), and surface charge functionalization (none, amine groups, or carboxyl groups) on biocompatibility, uptake, compartmentalization, and intracellular retention of fluorescently labeled nanoparticles in cultured human ovarian cancer cells. We also investigated the involvement of caveolae in the mechanism of uptake of nanoparticles. Results We found that mesoporous silica nanoparticles entered via caveolae-mediated endocytosis and reached the lysosomes; however, while the 50 nm nanoparticles permanently resided within these organelles, the 10 nm nanoparticles soon relocated in the cytoplasm. Naked 10 nm mesoporous silica nanoparticles showed the highest and 50 nm carboxyl-modified mesoporous silica nanoparticles the lowest uptake rates, respectively. Polystyrene nanoparticle uptake also occurred via a caveolae-independent pathway, and was negatively affected by serum. The 30 nm carboxyl-modified polystyrene nanoparticles did not localize in lysosomes and were not toxic, while the 50 nm amine-modified polystyrene nanoparticles accumulated within lysosomes and eventually caused cell death. Ovarian cancer cells expressing caveolin-1 were more likely to endocytose these nanoparticles. Conclusion These data highlight the importance of considering both the physicochemical characteristics (ie, material, size and surface charge on chemical groups) of nanoparticles and the biochemical composition of the cell membrane when choosing the most suitable nanotheranostics for targeting cancer cells. PMID:22904626
Spectroscopic studies of nanoparticle-sensitised photorefractive polymers
NASA Astrophysics Data System (ADS)
Aslam, Farzana; Binks, David J.; Daniels, Steve; Pickett, Nigel; O'Brien, Paul
2005-09-01
We report on the absorbance and photoluminescence spectra of photorefractive polymer composites sensitized by three different types of nanoparticles. Each nanoparticle is passivated by 1-hexadecylamine (HDA) and the composites also consist of the charge transporting matrix poly( N-vinylcarbazole) and the dye 1-(2'-ethylhexyloxy)-2,5-dimethyl-4-(4-nitrophenylazo) benzene. A strong spectral feature is observed that is attributed to a complex formed between the dye and HDA; elemental analysis indicates that the formation of this complex is determined by the metal content of the nanoparticle surface. The photoluminescence quantum yield for the complex is greatly reduced when the HDA is attached to the nanoparticle, indicating that a charge transfer occurs.
THERMODYNAMICS AND CHARGING OF INTERSTELLAR IRON NANOPARTICLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, Brandon S.; Draine, B. T., E-mail: brandon.s.hensley@jpl.nasa.gov
Interstellar iron in the form of metallic iron nanoparticles may constitute a component of the interstellar dust. We compute the stability of iron nanoparticles to sublimation in the interstellar radiation field, finding that iron clusters can persist down to a radius of ≃4.5 Å, and perhaps smaller. We employ laboratory data on small iron clusters to compute the photoelectric yields as a function of grain size and the resulting grain charge distribution in various interstellar environments, finding that iron nanoparticles can acquire negative charges, particularly in regions with high gas temperatures and ionization fractions. If ≳10% of the interstellar ironmore » is in the form of ultrasmall iron clusters, the photoelectric heating rate from dust may be increased by up to tens of percent relative to dust models with only carbonaceous and silicate grains.« less
Electrophoretic properties of BSA-coated quantum dots.
Bücking, Wendelin; Massadeh, Salam; Merkulov, Alexei; Xu, Shu; Nann, Thomas
2010-02-01
Low toxic InP/ZnS quantum dots (QDs), ZnS:Mn(2+)/ZnS nanocrystals and CdSe/ZnS nanoparticles were rendered water-dispersible by different ligand-exchange methods. Eventually, they were coated with bovine serum albumin (BSA) as a model protein. All particles were characterised by isotachophoresis (ITP), laser Doppler velocimetry (LDV) and agarose gel electrophoresis. It was found that the electrophoretic mobility and colloidal stability of ZnS:Mn(2+)/ZnS and CdSe/ZnS nanoparticles, which bore short-chain surface ligands, was primarily governed by charges on the nanoparticles, whereas InP/ZnS nanocrystals were not charged per se. BSA-coated nanoparticles showed lower electrophoretic mobility, which was attributed to their larger size and smaller overall charge. However, these particles were colloidally stable. This stability was probably caused by steric stabilisation of the BSA coating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Tanu, E-mail: chemtanu9@gmail.com; Tiwari, Sangeeta, E-mail: stiwari2@amity.edu; Mehta, Aarti, E-mail: aks302117@gmail.com
2016-04-13
Now a days, inorganic nanoparticles are gaining importance and are potential candidate in different organic electronic device application like (LEDs, PVs) due to their novel properties and confinement in Nano-dimensions. {sup [1,} {sup 2]} In the present work, we have compared the properties of titanium di oxide (TiO{sub 2}) nanoparticles (NPs) synthesized by using two different chemical routes aqueous and ethanol respectively. These synthesized TiO{sub 2} nanoparticles have been characterized by X-ray diffraction spectroscopy (XRD) for phase confirmation. It was observed that synthesized nanoparticles are in anatase phase for both preparation routes. Morphological information was collected by scanning electron microscopymore » (SEM) which confirms that particles are almost spherical in shape and distributed uniformly which is further ensured by transmission electron microscopy (TEM). Dynamic light scattering (DLS) technique was also used for further confirmation of size distribution of as-synthesized nanoparticles. Optical properties were also investigated by photoluminescence and UV-Vis spectroscopy and calculated bandgap was found to be in the range of 3.3-3.5eV for TiO{sub 2} (aq/eth) nanoparticles. The increase in bandgap values with respect to bulk (3.2 eV) confirms that as- synthesized nanoparticles are confined in nanodimensions. As synthesized nanoparticles were interacted with MEHPPV polymer (donor) matrix to make their respective MEHPPV: TiO{sub 2} nanocomposites and to confirm the charge transfer mechanism from polymer to nanoparticles. It can be observed from photoluminescence (PL) quenching experiments that continuous quenching obtained for respective nanocomposites confirms better charge transfer from polymer to inorganic TiO{sub 2} nanoparticles respectively. Because of, better quenching and simultaneously enhanced charge transfer of respective nanocomposites, ensures that these nanocomposites are greatly applicable for photovoltaics (PVs) especially in Hybrid Solar cells (HSCs).« less
Charging and exciton-mediated decharging of metal nanoparticles in organic semiconductor matrices
NASA Astrophysics Data System (ADS)
Ligorio, Giovanni; Vittorio Nardi, Marco; Christodoulou, Christos; Florea, Ileana; Monteiro, Nicolas-Crespo; Ersen, Ovidiu; Brinkmann, Martin; Koch, Norbert
2014-04-01
Gold nanoparticles (Au-NPs) were deposited on the surface of n- and p-type organic semiconductors to form defined model systems for charge storage based electrically addressable memory elements. We used ultraviolet photoelectron spectroscopy to study the electronic properties and found that the Au-NPs become positively charged because of photoelectron emission, evidenced by spectral shifts to higher binding energy. Upon illumination with light that can be absorbed by the organic semiconductors, dynamic charge neutrality of the Au-NPs could be re-established through electron transfer from excitons. The light-controlled charge state of the Au-NPs could add optical addressability to memory elements.
Electrokinetic motion of a rectangular nanoparticle in a nanochannel
NASA Astrophysics Data System (ADS)
Movahed, Saeid; Li, Dongqing
2012-08-01
This article presents a theoretical study of electrokinetic motion of a negatively charged cubic nanoparticle in a three-dimensional nanochannel with a circular cross-section. Effects of the electrophoretic and the hydrodynamic forces on the nanoparticle motion are examined. Because of the large applied electric field over the nanochannel, the impact of the Brownian force is negligible in comparison with the electrophoretic and the hydrodynamic forces. The conventional theories of electrokinetics such as the Poisson-Boltzmann equation and the Helmholtz-Smoluchowski slip velocity approach are no longer applicable in the small nanochannels. In this study, and at each time step, first, a set of highly coupled partial differential equations including the Poisson-Nernst-Plank equation, the Navier-Stokes equations, and the continuity equation was solved to find the electric potential, ionic concentration field, and the flow field around the nanoparticle. Then, the electrophoretic and hydrodynamic forces acting on the negatively charged nanoparticle were determined. Following that, the Newton second law was utilized to find the velocity of the nanoparticle. Using this model, effects of surface electric charge of the nanochannel, bulk ionic concentration, the size of the nanoparticle, and the radius of the nanochannel on the nanoparticle motion were investigated. Increasing the bulk ionic concentration or the surface charge of the nanochannel will increase the electroosmotic flow, and hence affect the particle's motion. It was also shown that, unlike microchannels with thin EDL, the change in nanochannel size will change the EDL field and the ionic concentration field in the nanochannel, affecting the particle's motion. If the nanochannel size is fixed, a larger particle will move faster than a smaller particle under the same conditions.
Physicochemical properties of protein-modified silver nanoparticles in seawater
NASA Astrophysics Data System (ADS)
Zhong, Hangyue
2013-10-01
This study investigated the physicochemical properties of silver nanoparticles stabilized with casein protein in seawater. UV?vis spectrometry, dynamic light scattering (DLS), and transmission electron microscopy (TEM) were applied to measure the stability of silver nanoparticles in seawater samples. The obtained results show an increased aggregation tendency of silver nanoparticles in seawater, which could be attributed its relatively high cation concentration that could neutralize the negatively charges adsorbed on the surface of silver nanoparticles and reduce the electrostatic repulsion forces between nanoparticles. Similarly, due to the surface charge screening process, the zeta potential of silver nanoparticles in seawater decreased. This observation further supported the aggregation behavior of silver nanoparticles. This study also investigated the dissolution of silver nanoparticles in seawater. Result shows that the silver nanoparticle dissolution in DI water is lower than in seawater, which is attributed to the high Cl? concentration present in seawater. As Cl? can react with silver and form soluble AgCl complex, dissolution of silver nanoparticles was enhanced. Finally, this study demonstrated that silver nanoparticles are destabilized in seawater condition. These results may be helpful in understanding the environmental risk of discharged silver nanoparticles in seawater conditions.
Kalathil, Shafeer; Lee, Jintae; Cho, Moo Hwan
2013-02-01
Oppan quantized style: By adding a gold precursor at its cathode, a microbial fuel cell (MFC) is demonstrated to form gold nanoparticles that can be used to simultaneously produce bioelectricity and hydrogen. By exploiting the quantized capacitance charging effect, the gold nanoparticles mediate the production of hydrogen without requiring an external power supply, while the MFC produces a stable power density. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The impact of capping agents and environmental conditions (pH, ionic strength, and background electrolytes) on surface charge and aggregation potential of silver nanoparticles (AgNPs) suspensions were investigated. Capping agents are chemicals used in the synthesis of nanopartic...
Fluorescent Nanocrystals Reveal Regulated Portals of Entry into and Between the Cells of Hydra
Tortiglione, Claudia; Quarta, Alessandra; Malvindi, Maria Ada; Tino, Angela; Pellegrino, Teresa
2009-01-01
Initially viewed as innovative carriers for biomedical applications, with unique photophysical properties and great versatility to be decorated at their surface with suitable molecules, nanoparticles can also play active roles in mediating biological effects, suggesting the need to deeply investigate the mechanisms underlying cell-nanoparticle interaction and to identify the molecular players. Here we show that the cell uptake of fluorescent CdSe/CdS quantum rods (QRs) by Hydra vulgaris, a simple model organism at the base of metazoan evolution, can be tuned by modifying nanoparticle surface charge. At acidic pH, amino-PEG coated QRs, showing positive surface charge, are actively internalized by tentacle and body ectodermal cells, while negatively charged nanoparticles are not uptaken. In order to identify the molecular factors underlying QR uptake at acidic pH, we provide functional evidence of annexins involvement and explain the QR uptake as the combined result of QR positive charge and annexin membrane insertion. Moreover, tracking QR labelled cells during development and regeneration allowed us to uncover novel intercellular trafficking and cell dynamics underlying the remarkable plasticity of this ancient organism. PMID:19888325
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weiwang; Li, Shengtao, E-mail: sli@xjtu.edu.cn; Min, Daomin
2016-04-15
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al{sub 2}O{sub 3} nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al{sub 2}O{sub 3} nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and themore » strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al{sub 2}O{sub 3} nanodielectrics is improved.« less
Mandal, Gopa; Bhattacharya, Sudeshna; Das, Subrata; Ganguly, Tapan
2012-01-01
Steady state and time resolved spectroscopic measurements were made at the ambient temperature on an organic dyad, 1-(4-Chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA), where the donor 1-methoxynaphthalene (1 MNT) is connected with the acceptor p-chloroacetophenone (PCA) by an unsaturated olefinic bond, in presence of Ag@TiO2 nanoparticles. Time resolved fluorescence and absorption measurements reveal that the rate parameters associated with charge separation, k(CS), within the dyad increases whereas charge recombination rate k(CR) reduces significantly when the surrounding medium is changed from only chloroform to mixture of chloroform and Ag@TiO2 (noble metal-semiconductor) nanocomposites. The observed results indicate that the dyad being combined with core-shell nanocomposites may form organic-inorganic nanocomposite system useful for developing light energy conversion devices. Use of metal-semiconductor nanoparticles may provide thus new ways to modulate charge recombination processes in light energy conversion devices. From comparison with the results obtained in our earlier investigations with only TiO2 nanoparticles, it is inferred that much improved version of light energy conversion device, where charge-separated species could be protected for longer period of time of the order of millisecond, could be designed by using metal-semiconductor core-shell nanocomposites rather than semiconductor nanoparticles only.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qing, E-mail: yangqing@cqu.edu.cn; Yu, Fei; Sima, Wenxia
Transformer oil-based nanofluids (NFs) with 0.03 g/L Fe{sub 3}O{sub 4} nanoparticle content exhibit 11.2% higher positive impulse breakdown voltage levels than pure transformer oils. To study the effects of the Fe{sub 3}O{sub 4} nanoparticles on the space charge in transformer oil and to explain why the nano-modified transformer oil exhibits improved impulse breakdown voltage characteristics, the traditional Kerr electro-optic field mapping technique is improved by increasing the length of the parallel-plate electrodes and by using a photodetector array as a high light sensitivity device. The space charge distributions of pure transformer oil and of NFs containing Fe{sub 3}O{sub 4} nanoparticlesmore » can be measured using the improved Kerr electro-optic field mapping technique. Test results indicate a significant reduction in space charge density in the transformer oil-based NFs with the Fe{sub 3}O{sub 4} nanoparticles. The fast electrons are captured by the nanoparticles and are converted into slow-charged particles in the NFs, which then reduce the space charge density and result in a more uniform electric field distribution. Streamer propagation in the NFs is also obstructed, and the breakdown strengths of the NFs under impulse voltage conditions are also improved.« less
Taking Charge: A Practical Guide for Leaders
1986-01-01
the stuff of everyday life in many large organizations. Leaders must ensure that they have the procedures and the institutional sup- port available to...represented the most powerful differences between people. The extrovert (E) thinks out loud in the world of people and things, while the introvert (1...to real life occurrences that actually hap- pened to him or his colleagues, by explaining how each case was handled, and by critiquing the ap
Single-molecule enzymology based on the principle of the Millikan oil drop experiment.
Leiske, Danielle L; Chow, Andrea; Dettloff, Roger; Farinas, Javier
2014-03-01
The ability to monitor the progress of single-molecule enzyme reactions is often limited by the need to use fluorogenic substrates. A method based on the principle of the Millikan oil drop experiment was developed to monitor the change in charge of substrates bound to a nanoparticle and offers a means of detecting single-enzyme reactions without fluorescence detection. As a proof of principle of the ability to monitor reactions that result in a change in substrate charge, polymerization on a single DNA template was detected. A custom oligonucleotide was synthesized that allowed for the attachment of single DNA templates to gold nanoparticles with a single polymer tether. The nanoparticles were then tethered to the surface of a microfluidic channel where the positions of the nanoparticles, subjected to an oscillating electric field, were monitored using dark field microscopy. With short averaging times, the signal-to-noise level was low enough to discriminate changes in charge of less than 1.2%. Polymerization of a long DNA template demonstrated the ability to use the system to monitor single-molecule enzymatic activity. Finally, nanoparticle surfaces were modified with thiolated moieties to reduce and/or shield the number of unproductive charges and allow for improved sensitivity. Copyright © 2013 Elsevier Inc. All rights reserved.
Single-Molecule Enzymology Based On The Principle Of The Millikan Oil Drop Experiment
Leiske, Danielle L.; Chow, Andrea; Dettloff, Roger; Farinas, Javier
2014-01-01
The ability to monitor the progress of single molecule enzyme reactions is often limited by the need to use fluorogenic substrates. A method based on the principle of the Millikan Oil Drop Experiment was developed to monitor the change in charge of substrates bound to a nanoparticle and offers a means of detecting single enzyme reactions without fluorescence detection. As a proof of principle of the ability to monitor reactions which result in a change in substrate charge, polymerization on a single DNA template was detected. A custom oligonucleotide was synthesized which allowed for the attachment of single DNA templates to gold nanoparticles with a single polymer tether. The nanoparticles were then tethered to the surface of a microfluidic channel where the positions of the nanoparticles, subjected to an oscillating electric field, were monitored using darkfield microscopy. With short averaging times, the signal-to-noise level was low enough to discriminate changes in charge of less than 1.2%. Polymerization of a long DNA template demonstrated the ability to use the system to monitor single molecule enzymatic activity. Finally, nanoparticle surfaces were modified with thiolated moieties in order to reduce and/or shield the number of unproductive charges and allow for improved sensitivity. PMID:24291542
Electrical control of Faraday rotation at a liquid-liquid interface.
Marinescu, Monica; Kornyshev, Alexei A; Flatté, Michael E
2015-01-01
A theory is developed for the Faraday rotation of light from a monolayer of charged magnetic nanoparticles at an electrified liquid-liquid interface. The polarization fields of neighboring nanoparticles enhance the Faraday rotation. At such interfaces, and for realistic sizes and charges of nanoparticles, their adsorption-desorption can be controlled with a voltage variation<1 V, providing electrovariable Faraday rotation. A calculation based on the Maxwell-Garnett theory predicts that the corresponding redistribution of 40 nm nanoparticles of yttrium iron garnet can switch a cavity with a quality factor larger than 10(4) for light of wavelength 500 nm at normal incidence.
Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels
NASA Astrophysics Data System (ADS)
Gogurla, Narendar; Sinha, Arun K.; Naskar, Deboki; Kundu, Subhas C.; Ray, Samit K.
2016-03-01
Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms.
Exfoliation restacking route to Au nanoparticle-clay nanohybrids
NASA Astrophysics Data System (ADS)
Paek, Seung-Min; Jang, Jae-Up; Hwang, Seong-Ju; Choy, Jin-Ho
2006-05-01
A novel gold-pillared aluminosilicate (Au-PILC) were synthesized with positively charged gold nanoparticles capped by mercaptoammonium and exfoliated silicate layers. Gold nanoparticles were synthesized by NaBH4 reduction of AuCl4- in the presence of N,N,N-Trimethyl (11-mercaptoundecyl)ammonium (HS(CH2)11NMe3+) protecting ligand in an aqueous solution, and purified by dialysis. The resulting positively charged and water-soluble gold nanoparticles were hybridized with exfoliated silicate sheets by electrostatic interaction. The formation of Au clay hybrids could be easily confirmed by the powder X-ray diffraction with the increased basal spacing of clay upon insertion of Au nanoparticles. TEM image clearly revealed that the Au particles with an average size of 4 nm maintain their structure even after intercalation. The Au nanoparticles supported by clay matrix were found to be thermally more stable, suggesting that the Au nanoparticles were homogeneously protected with clay nanoplates. The present synthetic route could be further applicable to various hybrid systems between metal nanoparticles and clays.
NASA Astrophysics Data System (ADS)
Guerrero-García, Guillermo Iván; González-Mozuelos, Pedro; de la Cruz, Mónica Olvera
2011-10-01
In a previous theoretical and simulation study [G. I. Guerrero-García, E. González-Tovar, and M. Olvera de la Cruz, Soft Matter 6, 2056 (2010)], it has been shown that an asymmetric charge neutralization and electrostatic screening depending on the charge polarity of a single nanoparticle occurs in the presence of a size-asymmetric monovalent electrolyte. This effect should also impact the effective potential between two macroions suspended in such a solution. Thus, in this work we study the mean force and the potential of mean force between two identical charged nanoparticles immersed in a size-asymmetric monovalent electrolyte, showing that these results go beyond the standard description provided by the well-known Derjaguin-Landau-Verwey-Overbeek theory. To include consistently the ion-size effects, molecular dynamics (MD) simulations and liquid theory calculations are performed at the McMillan-Mayer level of description in which the solvent is taken into account implicitly as a background continuum with the suitable dielectric constant. Long-range electrostatic interactions are handled properly in the simulations via the well established Ewald sums method and the pre-averaged Ewald sums approach, originally proposed for homogeneous ionic fluids. An asymmetric behavior with respect to the colloidal charge polarity is found for the effective interactions between two identical nanoparticles. In particular, short-range attractions are observed between two equally charged nanoparticles, even though our model does not include specific interactions; these attractions are greatly enhanced for anionic nanoparticles immersed in standard electrolytes where cations are smaller than anions. Practical implications of some of the presented results are also briefly discussed. A good accord between the standard Ewald method and the pre-averaged Ewald approach is attained, despite the fact that the ionic system studied here is certainly inhomogeneous. In general, good agreement between the liquid theory approach and MD simulations is also found.
Fink, Doran L.; St. Geme III, Joseph W.
2003-01-01
The Haemophilus influenzae Hap autotransporter is a nonpilus adhesin that promotes adherence to respiratory epithelial cells and selected extracellular matrix proteins and facilitates bacterial aggregation and microcolony formation. Hap consists of a 45-kDa outer membrane translocator domain called Hapβ and a 110-kDa extracellular passenger domain called HapS. All adhesive activity resides within HapS, which also contains protease activity and directs its own secretion from the bacterial cell surface via intermolecular autoproteolysis. In the present study, we sought to determine the relationship between the magnitude of Hap expression, the efficiency of Hap autoproteolysis, and the level of Hap-mediated adherence and aggregation. We found that a minimum threshold of Hap precursor was required for autoproteolysis and that this threshold approximated expression of Hap from a chromosomal allele, as occurs in H. influenzae clinical isolates. Chromosomal expression of wild-type Hap was sufficient to promote significant adherence to epithelial cells and extracellular matrix proteins, and adherence was enhanced substantially by inhibition of autoproteolysis. In contrast, chromosomal expression of Hap was sufficient to promote bacterial aggregation only when autoproteolysis was inhibited, indicating that the threshold for Hap-mediated aggregation is above the threshold for autoproteolysis. These results highlight the critical role of autoproteolysis and an intermolecular mechanism of cleavage in controlling the diverse adhesive activities of Hap. PMID:12591878
Polysaccharide-based Noncovalent Assembly for Targeted Delivery of Taxol
NASA Astrophysics Data System (ADS)
Yang, Yang; Zhang, Ying-Ming; Chen, Yong; Chen, Jia-Tong; Liu, Yu
2016-01-01
The construction of synthetic straightforward, biocompatible and biodegradable targeted drug delivery system with fluorescent tracking abilities, high anticancer activities and low side effects is still a challenge in the field of biochemistry and material chemistry. In this work, we constructed targeted paclitaxel (Taxol) delivery nanoparticles composed of permethyl-β-cyclodextrin modified hyaluronic acid (HApCD) and porphyrin modified paclitaxel prodrug (PorTaxol), through host-guest and amphiphilic interactions. The obtained nanoparticles (HATXP) were biocompatible and enzymatic biodegradable due to their hydrophilic hyaluronic acid (HA) shell and hydrophobic Taxol core, and exhibited specific targeting internalization into cancer cells via HA receptor mediated endocytosis effects. The cytotoxicity experiments showed that the HATXP exhibited similar anticancer activities to, but much lower side effects than commercial anticancer drug Taxol. The present work would provide a platform for targeted paclitaxel drug delivery and a general protocol for the design of advanced multifunctional nanoscale biomaterials for targeted drug/gene delivery.
40 CFR Table 4 to Subpart Uuuuu of... - Operating Limits for EGUs
Code of Federal Regulations, 2014 CFR
2014-07-01
...-mercury HAP metals (total HAP metals, for liquid oil-fired units), or individual non-mercury HAP metals... demonstrating compliance with the filterable PM, total non-mercury HAP metals (total HAP metals, for liquid oil-fired units), or individual non-mercury HAP metals (individual HAP metals including Hg, for liquid oil...
40 CFR Table 4 to Subpart Uuuuu of... - Operating Limits for EGUs
Code of Federal Regulations, 2013 CFR
2013-07-01
...-mercury HAP metals (total HAP metals, for liquid oil-fired units), or individual non-mercury HAP metals... demonstrating compliance with the filterable PM, total non-mercury HAP metals (total HAP metals, for liquid oil-fired units), or individual non-mercury HAP metals (individual HAP metals including Hg, for liquid oil...
Structure and Interaction in the pH-Dependent Phase Behavior of Nanoparticle-Protein Systems.
Yadav, Indresh; Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim
2017-02-07
The pH-dependent structure and interaction of anionic silica nanoparticles (diameter 18 nm) with two globular model proteins, lysozyme and bovine serum albumin (BSA), have been studied. Cationic lysozyme adsorbs strongly on the nanoparticles, and the adsorption follows exponential growth as a function of lysozyme concentration, where the saturation value increases as pH approaches the isoelectric point (IEP) of lysozyme. By contrast, irrespective of pH, anionic BSA does not show any adsorption. Despite having a different nature of interactions, both proteins render a similar phase behavior where nanoparticle-protein systems transform from being one-phase (clear) to two-phase (turbid) above a critical protein concentration (CPC). The measurements have been carried out for a fixed concentration of silica nanoparticles (1 wt %) with varying protein concentrations (0-5 wt %). The CPC is found to be much higher for BSA than for lysozyme and increases for lysozyme but decreases for BSA as pH approaches their respective IEPs. The structure and interaction in these systems have been examined using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The effective hydrodynamic size of the nanoparticles measured using DLS increases with protein concentration and is related to the aggregation of the nanoparticles above the CPC. The propensity of the nanoparticles to aggregate is suppressed for lysozyme and enhanced for BSA as pH approached their respective IEPs. This behavior is understood from SANS data through the interaction potential determined by the interplay of electrostatic repulsion with a short-range attraction for lysozyme and long-range attraction for BSA. The nanoparticle aggregation is caused by charge neutralization by the oppositely charged lysozyme and through depletion for similarly charged BSA. Lysozyme-mediated attractive interaction decreases as pH approaches the IEP because of a decrease in the charge on the protein. In the case of BSA, a decrease in the BSA-BSA repulsion enhances the depletion attraction between the nanoparticles as pH is shifted toward the IEP. The morphology of the nanoparticle aggregates is found to be mass fractal.
Fundamental and applied studies in nanoparticle biomedical imaging, stabilization, and processing
NASA Astrophysics Data System (ADS)
Pansare, Vikram J.
Nanoparticle carrier systems are gaining importance in the rapidly expanding field of biomedical whole animal imaging where they provide long circulating, real time imaging capability. This thesis presents a new paradigm in imaging whereby long wavelength fluorescent or photoacoustically active contrast agents are embedded in the hydrophobic core of nanocarriers formed by Flash NanoPrecipitation. The long wavelength allows for improved optical penetration depth. Compared to traditional contrast agents where fluorophores are placed on the surface, this allows for improved signal, increased stability, and molecular targeting capabilities. Several types of long wavelength hydrophobic dyes based on acene, cyanine, and bacteriochlorin scaffolds are utilized and animal results obtained for nanocarrier systems used in both fluorescent and photoacoustic imaging modes. Photoacoustic imaging is particularly promising due to its high resolution, excellent penetration depth, and ability to provide real-time functional information. Fundamental studies in nanoparticle stabilization are also presented for two systems: model alumina nanoparticles and charge stabilized polystyrene nanoparticles. Motivated by the need for stable suspensions of alumina-based nanocrystals for security printing applications, results are presented for the adsorption of various small molecule charged hydrophobes onto the surface of alumina nanoparticles. Results are also presented for the production of charge stabilized polystyrene nanoparticles via Flash NanoPrecipitation, allowing for the independent control of polymer molecular weight and nanoparticle size, which is not possible by traditional emulsion polymerization routes. Lastly, methods for processing nanoparticle systems are explored. The increasing use of nanoparticle therapeutics in the pharmaceutical industry has necessitated the development of scalable, industrially relevant processing methods. Ultrafiltration is particularly well suited for concentrating and purifying macromolecular suspensions. Processing parameters are defined and optimized for PEGylated nanoparticles, charge stabilized latices, and solutions of albumin. The fouling characteristics are compared and scale-up recommendations made. Finally, a pilot scale spray drying system to produce stable nanocrystalline powders of highly crystalline drugs which cannot be stably formulated by traditional spray drying methods is presented. To accomplish this, a novel mixing device was developed and implemented at pilot scale, demonstrating feasibility beyond the lab scale.
Liu, Yuexian; Li, Wei; Lao, Fang; Liu, Ying; Wang, Liming; Bai, Ru; Zhao, Yuliang; Chen, Chunying
2011-11-01
The fate of nanomaterials with different sizes and charges in mitotic cells is of great importance but seldom explored. Herein we investigate the intracellular fate of negatively charged carboxylated polystyrene (COOH-PS) and positively charged amino-modified polystyrene (NH(2)-PS) nanoparticles of three different diameters (50, 100 and 500 nm) on cancer HeLa cells and normal NIH 3T3 cells during the cell cycles. The results showed that all the fluorescent PS nanoparticles differing in size and/or charge did not interact with chromosome reorganization and cytoskeleton assembly during the mitotic process in live cells. They neither disturbed chromosome reorganization nor affected the cytoskeleton reassembly in both normal and cancer cells. However, NH(2)-PS at the size of 50 nm caused G1 phase delay and a decrease of cyclin (D, E) expression, respectively. Moreover, NH(2)-PS displayed higher cellular toxicity and NH(2)-PS of 50 nm disturbed the integrity of cell membranes. Both cationic and anionic PS nanoparticles had a more pronounced effect on normal NIH 3T3 cells than cancer HeLa cell. Our research provides insight into the dynamic fate, intracellular behavior, and the effects of nanoparticles on spindle and chromosomes during cell division, which will enable the optimization of design and selection of much safer nanoparticles for lower risk to human health and widely medical applications. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ma, Xiaomei; Zhou, Yongning; Chen, Min; Wu, Limin
2017-05-01
The development of environment-friendly and high-performance carbon materials for energy applications has remained a great challenge. Here, a novel and facile method for synthesis of olive-like nitrogen-doped carbon embedded with germanium (Ge) nanoparticles using widespread and nontoxic dopamine as carbon and nitrogen precursors is demonstrated, especially by understanding the tendency of pure GeO 2 nanoparticles forming ellipsoidal aggregation, and the chelating reaction of the catechol structure in dopamine with metal ions. The as-synthesized Ge/N-C composites show an olive-like porous carbon structure with a loading weight of as high as 68.5% Ge nanoparticles. A lithium ion battery using Ge/N-C as the anode shows 1042 mAh g -1 charge capacity after 2000 cycles (125 d) charge/discharge at C/2 (1C = 1600 mA g -1 ) with a capacity maintaining efficiency of 99.6%, significantly exceeding those of the previously reported Ge/C-based anode materials. This prominent cyclic charge/discharge performance of the Ge/N-C anode is attributed to the well-dispersed Ge nanoparticles in graphitic N-doped carbon matrix, which facilitates high rates (0.5-15 C) of charge/discharge and increases the anode structure integrity. The synthesis strategy presented here may be a very promising approach to prepare a series of active nanoparticle-carbon hybrid materials with nitrogen doping for more and important applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kwak, Kyuju; Kumar, S. Senthil; Lee, Dongil
2012-06-01
We report here the selective determination of dopamine (DA) using quantum-sized gold nanoparticles coated with charge selective ligands. Glutathione protected gold nanoparticles (GS-Au25) were synthesized and immobilized into a sol-gel matrix via thiol linkers. The GS-Au25 modified sol-gel electrode was found to show excellent electrocatalytic activity towards the oxidation of DA but no activity towards the oxidation of ascorbic acid. The role of electrostatic charge in the selective electrocatalytic activity of GS-Au25 was verified by voltammetry of redox markers carrying opposite charges. The pH dependent sensitivity for the determination of DA further confirmed the charge screening effect of GS-Au25. Mechanistic investigation revealed that the selectivity is attained by the selective formation of an electrostatic complex between the negatively charged GS-Au25 and DA cation. The GS-Au25 modified sol-gel electrode also showed excellent selectivity for DA in the presence of an interferent, ascorbic acid.We report here the selective determination of dopamine (DA) using quantum-sized gold nanoparticles coated with charge selective ligands. Glutathione protected gold nanoparticles (GS-Au25) were synthesized and immobilized into a sol-gel matrix via thiol linkers. The GS-Au25 modified sol-gel electrode was found to show excellent electrocatalytic activity towards the oxidation of DA but no activity towards the oxidation of ascorbic acid. The role of electrostatic charge in the selective electrocatalytic activity of GS-Au25 was verified by voltammetry of redox markers carrying opposite charges. The pH dependent sensitivity for the determination of DA further confirmed the charge screening effect of GS-Au25. Mechanistic investigation revealed that the selectivity is attained by the selective formation of an electrostatic complex between the negatively charged GS-Au25 and DA cation. The GS-Au25 modified sol-gel electrode also showed excellent selectivity for DA in the presence of an interferent, ascorbic acid. Electronic supplementary information (ESI) available: TEM image of GS-Au25, SWV of GS-Au25 in solution, effect of scan rate on the CV of GS-Au25ME, CVs of DA and AA at the bare GCE and CVs of GS-Au25ME at different pHs. See DOI: 10.1039/c2nr30481c
NASA Astrophysics Data System (ADS)
Bolintineanu, Dan S.; Lane, J. Matthew D.; Grest, Gary S.
2013-03-01
We report fully atomistic molecular dynamics simulations of alkanethiol coated gold nanoparticles solvated in water and decane. The structure of the coatings is analyzed as a function of various functional end groups, including amine and carboxyl groups in different neutralization states. We study the effects of charge in the end groups for two different chain lengths (10 and 18 carbons) and different counterions (mono- and divalent). For the longer alkanes we find significant local phase segregation of chains on the nanoparticle surface, which results in highly asymmetric coating structures. In general, the charged end groups attenuate this effect by enhancing the water solubility of the nanoparticles. Based on the coating structures and density profiles, we can qualitatively infer the overall solubility of the nanoparticles. The asymmetry in the alkanethiol coatings is also likely to have a significant effect on aggregation behavior. More importantly, our simulations suggest the ability to modulate end group charge states (e.g. by changing the pH of the solution) in order to control coating structure, and therefore control solubility and aggregation behavior.
Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms.
Dhas, Sindhu Priya; Shiny, Punalur John; Khan, Sudheer; Mukherjee, Amitava; Chandrasekaran, Natrajan
2014-09-01
Silver and zinc oxide nanoparticles (Ag and ZnO NPs) are widely used as antimicrobial agents. However, their potential toxicological impact on environmental microorganisms is largely unexplored. The aim of this work was to investigate the sensitivity and adaptability of five bacterial species isolated from sewage towards Ag and ZnO NPs. The bacterial species were exposed to increasing concentration of nanoparticles and the growth inhibitory effect, exopolysaccharides (EPSs) and extracellular proteins (ECPs) productions were determined. The involvement of surface charge in nanoparticles toxicity was also determined. The bacterial species were constantly exposed to nanoparticles to determine the adaptation behavior toward nanoparticles. The nanoparticles exhibited remarkable growth inhibitory effect on tested bacterial species. The toxicity of nanoparticles was found to be strongly dependent on surface charge effects. Though, these organisms are highly sensitive to Ag and ZnO NPs, the continuous exposure to these nanoparticles leads to moderate adaptation of bacterial species and the adapted bacterial species convert the highly toxic nano form to less toxic microform. Finally we predict that the continuing applications of nanoparticles in consumer products may lead to the development of nanoparticles resistant bacterial strains in future. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Klein, Stefanie; Wegmann, Marc; Distel, Luitpold V R; Neuhuber, Winfried; Kryschi, Carola
2018-04-15
Silicon nanoparticles with sizes between were synthesized through wet-chemistry procedures using diverse phase transfer reagents. On the other hand, the preparation of iron-doped silicon nanoparticles was carried out using the precursor Na 4 Si 4 containing 5% Fe. Biocompatibility of all silicon nanoparticle samples was achieved by surface-stabilizing with (3-aminopropyl)triethoxysilane. These surface structures provided positive surface charges which facilitated electrostatic binding to the negatively charged biological membranes. The mode of interaction with membranes, being either incorporation or just attachment, was found to depend on the nanoparticle size. The smallest silicon nanoparticles (ca. 1.5 nm) were embedded in the mitochondrial membrane in MCF-7 cells. When interacting with X-rays these silicon nanoparticles were observed to enhance the superoxide formation upon depolarizing the mitochondrial membrane. X-ray irradiation of MCF-7 cells loaded with the larger silicon nanoparticles was shown to increase the intracellular singlet oxygen generation. The doping of the silicon nanoparticles with iron led to additional production of hydroxyl radicals via the Fenton reaction. Copyright © 2018 Elsevier Inc. All rights reserved.
Spahich, Nicole A; Kenjale, Roma; McCann, Jessica; Meng, Guoyu; Ohashi, Tomoo; Erickson, Harold P; St Geme, Joseph W
2014-06-01
Haemophilus influenzae is a Gram-negative cocco-bacillus that initiates infection by colonizing the upper respiratory tract. Hap is an H. influenzae serine protease autotransporter protein that mediates adherence, invasion and microcolony formation in assays with human epithelial cells and is presumed to facilitate the process of colonization. Additionally, Hap mediates adherence to fibronectin, laminin and collagen IV, extracellular matrix (ECM) proteins that are present in the respiratory tract and are probably important targets for H. influenzae colonization. The region of Hap responsible for adherence to ECM proteins has been localized to the C-terminal 511 aa of the Hap passenger domain (HapS). In this study, we characterized the structural determinants of the interaction between HapS and fibronectin. Using defined fibronectin fragments, we established that Hap interacts with the fibronectin repeat fragment called FNIII(1-2). Using site-directed mutagenesis, we found a series of motifs in the C-terminal region of HapS that contribute to the interaction with fibronectin. Most of these motifs are located on the F1 and F3 faces of the HapS structure, suggesting that the F1 and F3 faces may be responsible for the HapS-fibronectin interaction. © 2014 The Authors.
Spahich, Nicole A.; Kenjale, Roma; McCann, Jessica; Meng, Guoyu; Ohashi, Tomoo; Erickson, Harold P.
2014-01-01
Haemophilus influenzae is a Gram-negative cocco-bacillus that initiates infection by colonizing the upper respiratory tract. Hap is an H. influenzae serine protease autotransporter protein that mediates adherence, invasion and microcolony formation in assays with human epithelial cells and is presumed to facilitate the process of colonization. Additionally, Hap mediates adherence to fibronectin, laminin and collagen IV, extracellular matrix (ECM) proteins that are present in the respiratory tract and are probably important targets for H. influenzae colonization. The region of Hap responsible for adherence to ECM proteins has been localized to the C-terminal 511 aa of the Hap passenger domain (HapS). In this study, we characterized the structural determinants of the interaction between HapS and fibronectin. Using defined fibronectin fragments, we established that Hap interacts with the fibronectin repeat fragment called FNIII(1–2). Using site-directed mutagenesis, we found a series of motifs in the C-terminal region of HapS that contribute to the interaction with fibronectin. Most of these motifs are located on the F1 and F3 faces of the HapS structure, suggesting that the F1 and F3 faces may be responsible for the HapS–fibronectin interaction. PMID:24687948
Son, Dong-Ick; Park, Dong-Hee; Choi, Won Kook; Cho, Sung-Hwan; Kim, Won-Tae; Kim, Tae Whan
2009-05-13
The bistable effects of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) (PMMA) polymer single layer by using flexible polyethylene terephthalate (PET) substrates were investigated. Transmission electron microscopy (TEM) images revealed that ZnO nanoparticles were formed inside the PMMA polymer layer. Current-voltage (I-V) measurement on the Al/ZnO nanoparticles embedded in an insulating PMMA polymer layer/ITO/PET structures at 300 K showed a nonvolatile electrical bistability behavior with a flat-band voltage shift due to the existence of the ZnO nanoparticles, indicative of trapping, storing, and emission of charges in the electronic states of the ZnO nanoparticles. The carrier transport mechanism of the bistable behavior for the fabricated organic bistable device (OBD) structures is described on the basis of the I-V results by analyzing the effect of space charge.
Chowdhury, Silvia; Yusof, Faridah; Salim, Wan Wardatul Amani Wan; Sulaiman, Nadzril; Faruck, Mohammad Omer
2016-11-01
Cancer is a complicated disease for which finding a cure presents challenges. In recent decades, new ways to treat cancer are being sought; one being nanomedicine, which manipulates nanoparticles to target a cancer and release drugs directly to the cancer cells. A number of cancer treatments based on nanomedicine are under way and mostly are in preclinical trials owing to challenges in administration, safety, and effectiveness. One alternative method for drug delivery is the use of photovoltaic nanoparticles, which has the potential to deliver drugs via light activation. The concepts are based on standard photovoltaic cell that holds opposite charges on its surfaces and releases drugs when charge intensity or polarity changes upon photo-stimulation such as from a laser source or sunlight. This review will cover some recent progress in cancer treatment using nanoparticles, including photovoltaic nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.
Acoustic emission and fatigue damage induced in plasma-sprayed hydroxyapatite coating layers.
Laonapakul, Teerawat; Otsuka, Yuichi; Nimkerdphol, Achariya Rakngarm; Mutoh, Yoshiharu
2012-04-01
In order to improve the adhesive strength of hydroxyapatite (HAp) coatings, grit blasting with Al(2)O(3) powder and then wet blasting with HAp/Ti mixed powders was carried out on a commercially pure Ti (cp-Ti) substrate. Subsequently, an HAp/Ti bond coat layer and HAp top coat layer were deposited by plasma spraying. Fatigue tests of the HAp-coated specimens were carried out under four-point bending. Acoustic emission (AE) signals during the entire fatigue test were monitored to investigate the fatigue cracking behavior of the HAp-coated specimens. The HAp-coated specimens could survive up to 10(7) cycles without spallation of the HAp coating layers at the stress amplitude of 120 MPa. The HAp-coated specimens without HAp/Ti bond coat layer showed shorter fatigue life and easy crack nucleation compared to the HAp-coated specimens with HAp/Ti bond coat layer. The delamination and spallation of the HAp top coat with HAp/Ti bond coat on cp-Ti was not observed until the crack propagated into the cp-Ti during the final fracture stage of the fatigue cycle. Therefore, the HAp/Ti bond coat layer was found to greatly improve the fatigue damage resistance of the HAp coating layer. Three stages of the fatigue failure behavior of the HAp top coat with HAp/Ti bond coat on a cp-Ti substrate can be clearly estimated by the AE monitoring technique. These stages are cracks nucleating and propagating in the coating layer, cracks propagating in the substrate, and cracks propagating unstably to final fracture. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baybas, Demet, E-mail: dbaybas@cumhuriyet.edu.tr; Ulusoy, Ulvi, E-mail: ulusoy@cumhuriyet.edu.tr
The composite of synthetically produced hydroxyapatite (HAP) and polyacrylamide was prepared (PAAm-HAP) and characterized by BET, FT-IR, TGA, XRD, SEM and PZC analysis. The adsorptive features of HAP and PAAm-HAP were compared for UO{sub 2}{sup 2+} and Th{sup 4+}. The entrapment of HAP into PAAm-HAP did not change the structure of HAP. Both structures had high affinity to the studied ions. The adsorption capacity of PAAm-HAP was than that of HAP. The adsorption dependence on pH and ionic intensity provided supportive evidences for the effect of complex formation on adsorption process. The adsorption kinetics was well compatible to pseudo secondmore » order model. The values of enthalpy and entropy changes were positive. Th{sup 4+} adsorption from the leachate obtained from a regional fluorite rock confirmed the selectivity of PAAm-HAP for this ion. In consequence, PAAm-HAP should be considered amongst favorite adsorbents for especially deposition of nuclear waste containing U and Th, and radionuclide at secular equilibrium with these elements. - Graphical abstract: SEM images of hydroxyapatite (HAP) and polyacrylamide-hydroxyapatite (PAAm-HAP), and the adsorption isotherms for Uranium and Thorium. Highlights: Black-Right-Pointing-Pointer Composite of PAAm-HAP was synthesized from hydroxyapatite and polyacrylamide. Black-Right-Pointing-Pointer The materials were characterized by BET, FT-IR, XRD, SEM, TGA and PZC analysis. Black-Right-Pointing-Pointer HAP and PAAm-HAP had high sorption capacity and very rapid uptake for UO{sub 2}{sup 2+} and Th{sup 4+}. Black-Right-Pointing-Pointer Super porous PAAm was obtained from PAAm-HAP after its removal of HAP content. Black-Right-Pointing-Pointer The composite is potential for deposition of U, Th and its associate radionuclides.« less
Shi, Feng; Liu, Yumei; Zhi, Wei; Xiao, Dongqin; Li, Hongyu; Duan, Ke; Qu, Shuxin; Weng, Jie
2017-06-06
Microstructure and chemical constitution are important factors affecting the biological activity of biomaterials. This study aimed to fabricate hydroxyapatite (HAp) particles with both micro/nanohybrid structure and Cu 2+ doping to promote osteogenic differentiation and antibacterial property. In the presence of inositol hexakisphosphate (IP6), micro/nano-structured and Cu 2+ -doped HAp (HAp-IP6-Cu) microspheres were successfully fabricated via hydrothermal method. Morphological observation showed that HAp-IP6-Cu microspheres with a diameter of 3.1-4.1 μm were chrysanthemum-like and composed of nano-flakes approximately 50 nm in thickness. Compared with the HAp micro-rods or IP6 modified HAp (HAp-IP6) microspheres, HAp-IP6-Cu microspheres had a larger specific surface area, better hydrophilicity and stronger ability to adsorb bovine serum albumin. To evaluate the synergistic effects of micro/nanohybrid structure and Cu 2+ on cell behavior, rat calvarial osteoblasts (RCOs) were cultured on HAp-IP6-Cu, HAp-IP6 and HAp layers as well as their extracts, respectively. Results demonstrated that HAp-IP6-Cu layer promoted the adhesion, proliferation and osteogenic differentiation of RCOs. The cells grew on HAp-IP6-Cu and HAp-IP6 layers exhibited greater spreading than those on HAp layer. In addition, quantitative test by the agar disk diffusion technique found that HAp-IP6-Cu microspheres were effectively against S taphylococcus aureus and E scherichia coli. These results demonstrated that HAp-IP6-Cu microspheres may be a potential candidate as a bioactive and anti-infective biomaterial for bone regeneration.
On the design of composite protein-quantum dot biomaterials via self-assembly.
Majithia, Ravish; Patterson, Jan; Bondos, Sarah E; Meissner, Kenith E
2011-10-10
Incorporation of nanoparticles during the hierarchical self-assembly of protein-based materials can impart function to the resulting composite materials. Herein we demonstrate that the structure and nanoparticle distribution of composite fibers are sensitive to the method of nanoparticle addition and the physicochemical properties of both the nanoparticle and the protein. Our model system consists of a recombinant enhanced green fluorescent protein-Ultrabithorax (EGFP-Ubx) fusion protein and luminescent CdSe-ZnS core-shell quantum dots (QDs), allowing us to optically assess the distribution of both the protein and nanoparticle components within the composite material. Although QDs favorably interact with EGFP-Ubx monomers, the relatively rough surface morphology of composite fibers suggests EGFP-Ubx-QD conjugates impact self-assembly. Indeed, QDs templated onto EGFP-Ubx film post-self-assembly can be subsequently drawn into smooth composite fibers. Additionally, the QD surface charge impacts QD distribution within the composite material, indicating that surface charge plays an important role in self-assembly. QDs with either positively or negatively charged coatings significantly enhance fiber extensibility. Conversely, QDs coated with hydrophobic moieties and suspended in toluene produce composite fibers with a heterogeneous distribution of QDs and severely altered fiber morphology, indicating that toluene severely disrupts Ubx self-assembly. Understanding factors that impact the protein-nanoparticle interaction enables manipulation of the structure and mechanical properties of composite materials. Since proteins interact with nanoparticle surface coatings, these results should be applicable to other types of nanoparticles with similar chemical groups on the surface.
Gu, Da Hwi; Jo, Seungki; Jeong, Hyewon; Ban, Hyeong Woo; Park, Sung Hoon; Heo, Seung Hwae; Kim, Fredrick; Jang, Jeong In; Lee, Ji Eun; Son, Jae Sung
2017-06-07
Electronically doped nanoparticles formed by incorporation of impurities have been of great interest because of their controllable electrical properties. However, the development of a strategy for n-type or p-type doping on sub-10 nm-sized nanoparticles under the quantum confinement regime is very challenging using conventional processes, owing to the difficulty in synthesis. Herein, we report the colloidal chemical synthesis of sub-10 nm-sized tellurium (Te)-doped Bismuth (Bi) nanoparticles with precisely controlled Te content from 0 to 5% and systematically investigate their low-temperature charge transport and thermoelectric properties. Microstructural characterization of nanoparticles demonstrates that Te ions are successfully incorporated into Bi nanoparticles rather than remaining on the nanoparticle surfaces. Low-temperature Hall measurement results of the hot-pressed Te-doped Bi-nanostructured materials, with grain sizes ranging from 30 to 60 nm, show that the charge transport properties are governed by the doping content and the related impurity and nanoscale grain boundary scatterings. Furthermore, the low-temperature thermoelectric properties reveal that the electrical conductivity and Seebeck coefficient expectedly change with the Te content, whereas the thermal conductivity is significantly reduced by Te doping because of phonon scattering at the sites arising from impurities and nanoscale grain boundaries. Accordingly, the 1% Te-doped Bi sample exhibits a higher figure-of-merit ZT by ∼10% than that of the undoped sample. The synthetic strategy demonstrated in this study offers the possibility of electronic doping of various quantum-confined nanoparticles for diverse applications.
Makama, Sunday; Kloet, Samantha K; Piella, Jordi; van den Berg, Hans; de Ruijter, Norbert C A; Puntes, Victor F; Rietjens, Ivonne M C M; van den Brink, Nico W
2018-03-01
In literature, varying and sometimes conflicting effects of physicochemical properties of nanoparticles (NPs) are reported on their uptake and effects in organisms. To address this, small- and medium-sized (20 and 50 nm) silver nanoparticles (AgNPs) with specified different surface coating/charges were synthesized and used to systematically assess effects of NP-properties on their uptake and effects in vitro. Silver nanoparticles were fully characterized for charge and size distribution in both water and test media. Macrophage cells (RAW 264.7) were exposed to these AgNPs at different concentrations (0-200 µg/ml). Uptake dynamics, cell viability, induction of tumor necrosis factor (TNF)-α, ATP production, and reactive oxygen species (ROS) generation were assessed. Microscopic imaging of living exposed cells showed rapid uptake and subcellular cytoplasmic accumulation of AgNPs. Exposure to the tested AgNPs resulted in reduced overall viability. Influence of both size and surface coating (charge) was demonstrated, with the 20-nm-sized AgNPs and bovine serum albumin (BSA)-coated (negatively charged) AgNPs being slightly more toxic. On specific mechanisms of toxicity (TNF-α and ROS production) however, the AgNPs differed to a larger extent. The highest induction of TNF-α was found in cells exposed to the negatively charged AgNP_BSA, both sizes (80× higher than control). Reactive oxygen species induction was only significant with the 20 nm positively charged AgNP_Chit.
Love, Sara A; Thompson, John W; Haynes, Christy L
2012-09-01
As nanoparticles have found increased use in both consumer and medical applications, corresponding increases in possible exposure to humans necessitate studies examining the impacts of these nanomaterials in biological systems. This article examines the effects of approximately 30-nm-diameter gold nanoparticles, with positively and negatively charged surface coatings in human blood. Here, we study the exposure effects, with up to 72 h of exposure to 5, 15, 25 and 50 µg/ml nanoparticles on hemolysis, reactive oxygen species (ROS) generation and platelet aggregation in subsets of cells from human blood. Assessing viability with hemolysis, results show significant changes in a concentration-dependent fashion. Rates of ROS generation were investigated using the dichlorofluorscein diacetate-based assay as ROS generation is a commonly suspected mechanism of nanoparticle toxicity; herein, ROS was not a significant factor. Optical monitoring of platelet aggregation revealed that none of the examined nanoparticles induced aggregation upon short-term exposure.
Biswas, Nupur; Bhattacharya, Rupak; Saha, Arindam; Jana, Nikhil R; Basu, Jaydeep K
2015-10-07
Understanding of nanoparticle-membrane interactions is useful for various applications of nanoparticles like drug delivery and imaging. Here we report on the studies of interaction between hydrophilic charged polymer coated semiconductor quantum dot nanoparticles with model lipid membranes. Atomic force microscopy and X-ray reflectivity measurements suggest that cationic nanoparticles bind and penetrate bilayers of zwitterionic lipids. Penetration and binding depend on the extent of lipid packing and result in the disruption of the lipid bilayer accompanied by enhanced lipid diffusion. On the other hand, anionic nanoparticles show minimal membrane binding although, curiously, their interaction leads to reduction in lipid diffusivity. It is suggested that the enhanced binding of cationic QDs at higher lipid packing can be understood in terms of the effective surface potential of the bilayers which is tunable through membrane lipid packing. Our results bring forth the subtle interplay of membrane lipid packing and electrostatics which determine nanoparticle binding and penetration of model membranes with further implications for real cell membranes.
Kinetics of aggregation in charged nanoparticle solutions driven by different mechanisms
NASA Astrophysics Data System (ADS)
Abbas, S.; Yadav, I.; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.
2017-05-01
The structure and kinetics during aggregation of anionic silica nanoparticles as induced through different mechanisms have been studied by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). Three different additives, namely an electrolyte (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) were used to initiate nanoparticle aggregation. Electrolyte induced aggregation can be explained by DLVO interaction, whereas depletion interaction (non-DLVO interaction) is found responsible for nanoparticle aggregation in case of non-ionic surfactant. Unlike these two cases, strong electrostatic attraction between nanoparticle and oppositely charged protein results into protein-mediated nanoparticle aggregation. The electrolyte induced aggregation show quite slow aggregation rate whereas protein mediated as well as surfactant induced aggregation takes place almost instantaneously. The significant differences observed in the kinetics are explained based on range of interactions responsible for the aggregation. In spite of differences in mechanism and kinetics, the nanoparticle clusters are found to have similar fractal morphology (fractal dimension ˜ 2.5) in all the three cases.
NASA Astrophysics Data System (ADS)
Madhavi, V.; Kondaiah, P.; Mohan Rao, G.
2018-04-01
Decreasing recombination of photogenerated charge carriers in photocatalysts is a critical issue for enhancing the efficiency of dye degradation. It is one of the greatest challenges to reduce the recombination of photo generated charge carriers in semiconductor. In this paper, we report that there is an enhancement of photocatalytic activity in presence of Sun light, by introducing Plasmon (silver nanoparticles (Ag)) onto the titanium oxide (TiO2) and nitrogen incorporated titanium oxide (N-TiO2) films. These silver nanoparticles facilitate the charge transport and separation of charge carriers. In this paper we find that the phase transformation accurse from rutile to anatase with increase of nitrogen flow rates. The FE-SEM analysis showed the micro structure changes to dense columnar growth with increase of nitrogen flow rates. XPS studies of the N-TiO2 thin films revealed that the substitution of N atoms within the O sites plays a crucial role in narrowing the band gap of the TiO2. This enables the absorption of visible light radiation and leads to operation of the film as a highly reactive and effective photocatalysis. The synergetic effect of silver nanoparticles on TiO2 and N-TiO2 films tailored the photocatalytic acitivity, charge transfer mechanism, and photocurrent studies. The silver nanoparticle loaded N-TiO2 films showed highest degradation of 95% compare to the N-TiO2 films. The photo degradation rate constant of Ag/N-TiO2 film was larger than the N-TiO2 films.
Gopika, G; Asha, A M; Sivakumar, N; Balakrishnan, A; Nair, S V; Subramanian, K R V
2015-09-01
In this paper, we have synthesized electrospun TiO2 nanofibers embedded with bimodal sized and prismatic gold nanoparticles. The surface plasmons generated in the gold nanoparticles were used to enhance the performance of photocatalysis. The photocatalytic conversion efficiencies of these bimodal sized/prismatic gold nanoparticles when embedded in electrospun TiO2 fibres showed an enhancement of upto 60% over bare fiber systems and also show higher efficiencies than electrospun fibrous systems embedded with unimodal sized gold nanoparticles. Anisotropic bimodal gold nanoparticles show the highest degree of photocatalytic activity. This may be attributed to greater density/concentration of nanoparticles with higher effective surface area and formation of a junction between the smaller and larger nanoparticles. Such a bimodally distributed range of nanoparticles could also lead to greater trapping of charge carriers at the TiO2 conduction band edge and promoting catalytic reactions on account of these trapped charges. This enhanced photocatalytic activity is explained by invoking different operating mechanisms such as improved surface area, greater trapping, coarse plasmon resonance and band effects. Thus, a useful applicability of the gold nanoparticles is shown in the area of photocatalysis.
Bhowmick, Arundhati; Jana, Piyali; Pramanik, Nilkamal; Mitra, Tapas; Banerjee, Sovan Lal; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban
2016-10-20
This paper reports the development of multifunctional zirconium oxide (ZrO2) doped nancomposites having chitosan (CTS), organically modified montmorillonite (OMMT) and nano-hydroxyapatite (HAP). Formation of these nanocomposites was confirmed by various characterization techniques such as Fourier transform infrared spectroscopy and powder X-ray diffraction. Scanning electron microscopy images revealed uniform distribution of OMMT and nano-HAP-ZrO2 into CTS matrix. Powder XRD study and TEM study revealed that OMMT has partially exfoliated into the polymer matrix. Enhanced mechanical properties in comparison to the reported literature were obtained after the addition of ZrO2 nanoparticle into the nanocomposites. In rheological measurements, CMZH I-III exhibited greater storage modulus (G') than loss modulus (G″). TGA results showed that these nanocomposites are thermally more stable compare to pure CTS film. Strong antibacterial zone of inhibition and the lowest minimum inhibition concentration (MIC) value of these nanocomposites against bacterial strains proved that these materials have the ability to prevent bacterial infection in orthopedic implants. Compatibility of these nanocomposites with pH and blood of human body was established. It was observed from the swelling study that the swelling percentage was increased with decreasing the hydrophobic OMMT content. Human osteoblastic MG-63 cell proliferations were observed on the nanocomposites and cytocompatibility of these nanocomposites was also established. Moreover, addition of 5wt% OMMT and 5wt% nano-HAP-ZrO2 into 90wt% CTS matrix provides maximum tensile strength, storage modulus, aqueous swelling and cytocompatibility along with strong antibacterial effect, pH and erythrocyte compatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.
Commodo, Mario; Sgro, Lee Anne; Minutolo, Patrizia; D'Anna, Andrea
2013-05-16
Photoelectric charging of particles is a powerful tool for online characterization of submicrometer aerosol particles. Indeed photoionization based techniques have high sensitivity and chemical selectivity. Moreover, they yield information on electronic properties of the material and are sensitive to the state of the surface. In the present study the photoionization charging efficiency, i.e., the ratio between the generated positive ions and the corresponding neutral ones, for different classes of flame-generated carbonaceous nanoparticles was measured. The fifth harmonics of a Nd:YAG laser, 213 nm (5.82 eV), was used as an ionization source for the combustion generated nanoparticles, whereas a differential mobility analyzer (DMA) coupled to a Faraday cup electrometer was used for particle classification and detection. Carbonaceous nanoparticles in the nucleation mode, i.e., sizes ranging from 1 to 10 nm, show a photoionization charging efficiency clearly dependent on the flame conditions. In particular, we observed that the richer the flame is, i.e., the higher the equivalent ratio is, the higher the photon charging efficiency is. We hypothesized that such an increase in the photoionization propensity of the carbonaceous nanoparticles from richer flame condition is associated to the presence within the particles of larger aromatic moieties. The results clearly show that photoionization is a powerful diagnostic tool for the physical-chemical characterization of combustion aerosol, and it may lead to further insights into the soot formation mechanism.
Gupta, Rakesh; Rai, Beena
2017-01-01
Molecular level understanding of permeation of nanoparticles through human skin establishes the basis for development of novel transdermal drug delivery systems and design and formulation of cosmetics. Recent experiments suggest that surface coated nano-sized gold nanoparticles (AuNPs) can penetrate the rat and human skin. However, the mechanisms by which these AuNPs penetrate are not well understood. In this study, we have carried out coarse grained molecular dynamics simulations to explore the permeation of dodecanethiol coated neutral hydrophobic AuNPs of different sizes (2–5 nm) and surface charges (cationic and anionic) through the model skin lipid membrane. The results indicate that the neutral hydrophobic AuNPs disrupted the bilayer and entered in it with in ~200 ns, while charged AuNPs were adsorbed on the bilayer headgroup. The permeation free energy calculation revealed that at the head group of the bilayer, a very small barrier existed for neutral hydrophobic AuNP while a free energy minimum was observed for charged AuNPs. The permeability was maximum for neutral 2 nm gold nanoparticle (AuNP) and minimum for 3 nm cationic AuNP. The obtained results are aligned with recent experimental findings. This study would be helpful in designing customized nanoparticles for cosmetic and transdermal drug delivery application. PMID:28349970
Anaerobic Toxicity of Cationic Silver Nanoparticles | Science ...
The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNps) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10-15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L-1, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L-1 as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag+. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L-1 as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. The current
Code of Federal Regulations, 2014 CFR
2014-07-01
... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... hydrogen halide and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this...) of this section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you...
Code of Federal Regulations, 2013 CFR
2013-07-01
... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... hydrogen halide and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this...) of this section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you...
Code of Federal Regulations, 2012 CFR
2012-07-01
... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... hydrogen halide and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this...) of this section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you...
NASA Astrophysics Data System (ADS)
Tang, Xiaolong; Cai, Shuyu; Zhang, Rongbo; Liu, Peng; Chen, Hongbo; Zheng, Yi; Sun, Leilei
2013-10-01
A system of novel nanoparticles of star-shaped cholic acid-core polylactide- d-α-tocopheryl polyethylene glycol 1000 succinate (CA-PLA-TPGS) block copolymer was developed for paclitaxel delivery for breast cancer treatment, which demonstrated superior in vitro and in vivo performance in comparison with paclitaxel-loaded poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles and linear PLA-TPGS nanoparticles. The paclitaxel- or couramin 6-loaded nanoparticles were fabricated by a modified nanoprecipitation method and then characterized in terms of size, surface charge, surface morphology, drug encapsulation efficiency, and in vitro drug release. The CA-PLA-TPGS nanoparticles were found to be spherical in shape with an average size of around 120 nm. The nanoparticles were found to be stable, showing no change in the particle size and surface charge during 90-day storage of the aqueous solution. The release profiles of the paclitaxel-loaded nanoparticles exhibited typically biphasic release patterns. The results also showed that the CA-PLA-TPGS nanoparticles have higher antitumor efficacy than the PLA-TPGS nanoparticles and PLGA nanoparticles in vitro and in vivo. In conclusion, such nanoparticles of star-shaped cholic acid-core PLA-TPGS block copolymer could be considered as a potentially promising and effective strategy for breast cancer treatment.
Role of Surface Charge Density in Nanoparticle-templated Assembly of Bromovirus Protein Cages
Daniel, Marie-Christine; Tsvetkova, Irina B.; Quinkert, Zachary T.; Murali, Ayaluru; De, Mrinmoy; Rotello, Vincent M.; Kao, C. Cheng; Dragnea, Bogdan
2010-01-01
Self-assembling icosahedral protein cages have potencially useful physical and chemical characteristics for a variety of nanotechnology applications, ranging from therapeutic or diagnostic vectors to building blocks for hierarchical materials. For application-specific functional control of protein cage assemblies, a deeper understanding of the interaction between the protein cage and its payload is necessary. Protein-cage encapsulated nanoparticles, with their well-defined surface chemistry, allow for systematic control over key parameters of encapsulation such as the surface charge, hydrophobicity, and size. Independent control over these variables allows experimental testing of different assembly mechanism models. Previous studies done with Brome mosaic virus capsids and negatively-charged gold nanoparticles indicated that the result of the self-assembly process depends on the diameter of the particle. However, in these experiments, the surface-ligand density was maintained at saturation levels, while the total charge and the radius of curvature remained coupled variables, making the interpretation of the observed dependence on the core size difficult. The current work furnishes evidence of a critical surface charge density for assembly through an analysis aimed at decoupling the surface charge the core size. PMID:20575505
NASA Astrophysics Data System (ADS)
Raliya, Ramesh; Tarafdar, J. C.
2014-02-01
In the present study, zinc (Zn), magnesium (Mg) and titanium (Ti) nanoparticles synthesized using fungus by employing various precursor salts of sulfate salts, nitrate salts, chloride salts and oxide salts. To access the nanoparticle production potential, over a hundreds of fungi were isolated from the soil and tested with precursor salts of the Zn, Mg and Ti. Out of which, only 14 fungal isolates were identified, having potential to reduce metal salt into metal nanoparticles. Upon molecular identification, six were identified as Aspergillus flavus, two each as Aspergillus terreus and Aspergillus tubingensis and one each as Aspergillus niger, Rhizoctonia bataticola, Aspergillus fumigatus, and Aspergillus oryzae. Factors responsible for more production of monodispersed Zn, Mg and Ti nanoparticles were optimized. It was concluded that 0.01 mM precursor salt concentration, 72 h of incubation at pH 5.5 and temperature 28 °C resulted smaller nanoparticles obtained. The biosynthesized functional Zn and Ti nanoparticles can be stored up to 90 days and Mg nanoparticles up to 105 days in its nanoform. Bio-transformed products were analyzed using valid characterization technique i.e. dynamic light scattering, transmission electron microscopy, atomic force microscopy, energy dispersive X-ray spectroscopy to confirm size, shape, surface morphology and elemental composition. It was found that the average size of developed nano Zn was 8.2 nm, with surface charge of -5.70 mV and 98 % particles were of Zn metal only. Similarly, the average size of Mg nanoparticles was 6.4 nm with surface charge of -6.66 and 97.4 % Mg metal yield, whereas, Ti nanoparticles size were found in the ranges between 1.5 and 30 nm with surface charge of -6.25 mV and 98.6 % Ti metal yield.
Abinaya Sindu, P; Kolanthai, Elayaraja; Suganthi, R V; Thanigai Arul, K; Manikandan, E; Catalani, Luiz H; Narayana Kalkura, S
2017-10-01
The aim of the current study is to synthesize nanosized silicon incorporated HAp (Si-HAP) using sodium metasilicate as the silicon source. The sol-gel derived samples were further subjected to microwave irradiation. Incorporation of Si into HAp did not alter the HAp phase, as confirmed by the X-ray diffraction analysis (XRD). Moreover, variation in the lattice parameters of the Si-incorporated HAp indicates that Si is substituted into the HAp lattice. The decrease in the intensity of the peaks attributed to hydroxyl groups, which appeared in the FTIR and Raman spectra of Si-HAp, further confirms the Si substitution in HAp lattices. The silicon incorporation enhanced the nanorods length by 70%, when compared to that of pure HAp. Microwave irradiation improved the crystallinity of Si-HAp when compared to as-synthesized Si-HAp samples. As-synthesized Si-incorporated HAp sample showed an intense blue emission under UV excitation. Microwave irradiation reduced the intensity of blue emission and exhibited red shift due to the reduction of defects in the Si-HAp crystal. The morphological change from rod to spherical and ribbon-like forms was observed with an increase in silicon content. Further, Si-HAp exhibited better bioactivity and low dissolution rate. Initially there was a burst release of amoxicillin from all the samples, subsequently it followed a sustained release. The microwave-irradiated HAp showed extended period of sustained release than that of as-synthesized HAp and Si-HAp. Similarly, the microwave-irradiated Si-incorporated samples exhibited prolonged drug release, as compared to that of the as-synthesized samples. Hence, Si-HAp is rapidly synthesized by a simple and cost effective method without inducing any additional phases, as compared to the conventional sintering process. This study provides a new insight into the rapid green synthesis of Si-HAp. Si-HAp could emerge as a promising material for the bone tissue replacement and as a drug delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Frederice, Rafael; Lencione, Diego; Gehlen, Marcelo H.
2017-03-01
The combination of a sensitizer and TiO2 nanoparticles forming a photocatalytic material is a central issue in many fields of applied photochemistry. The charge injection of emissive sensitizers into the conduction band of the semiconductor TiO2 may form a photoactive region that becomes dark, or it has a very low emission signal due to the generation of sensitizer radicals. However, by sequential coupling of a selected photoredox dye, such as resazurin, the dark region may become fluorescent at the interfaces where the charge injection has taken place due to the concomitant formation of fluorescent resorufin by cascade electron transfer. Using this strategy and a total internal reflection fluorescence microscopy (TIRFM) image, the charge injection in TiO2/CdS and SiO2/TiO2/CdS nanoparticles is investigated The method allows the charge injection efficiency of the excited CdS into TiO2 to be evaluated qualitatively, explaining the differences observed for these photocatalytic materials in H2 generation.
Frederice, Rafael; Lencione, Diego; Gehlen, Marcelo H
2017-02-10
The combination of a sensitizer and TiO 2 nanoparticles forming a photocatalytic material is a central issue in many fields of applied photochemistry. The charge injection of emissive sensitizers into the conduction band of the semiconductor TiO 2 may form a photoactive region that becomes dark, or it has a very low emission signal due to the generation of sensitizer radicals. However, by sequential coupling of a selected photoredox dye, such as resazurin, the dark region may become fluorescent at the interfaces where the charge injection has taken place due to the concomitant formation of fluorescent resorufin by cascade electron transfer. Using this strategy and a total internal reflection fluorescence microscopy (TIRFM) image, the charge injection in TiO 2 /CdS and SiO 2 /TiO 2 /CdS nanoparticles is investigated The method allows the charge injection efficiency of the excited CdS into TiO 2 to be evaluated qualitatively, explaining the differences observed for these photocatalytic materials in H 2 generation.
Liu, Dai-Fang; Mason, Kathryn W.; Mastri, Maria; Pazirandeh, Mehran; Cutter, David; Fink, Doran L.; St. Geme, Joseph W.; Zhu, Duzhang; Green, Bruce A.
2004-01-01
Nontypeable Haemophilus influenzae is a major causative agent of bacterial otitis media in children. H. influenzae Hap autotransporter protein is an adhesin composed of an outer membrane Hapβ region and a moiety of an extracellular internal 110-kDa passenger domain called HapS. The HapS moiety promotes adherence to human epithelial cells and extracellular matrix proteins, and it also mediates bacterial aggregation and microcolony formation. A recent work (D. L. Fink, A. Z. Buscher, B. A. Green, P. Fernsten, and J. W. St. Geme, Cell. Microbiol. 5:175-186, 2003) demonstrated that HapS adhesive activity resides within the C-terminal 311 amino acids (the cell binding domain) of the protein. In this study, we immunized mice subcutaneously with recombinant proteins corresponding to the C-terminal region of HapS from H. influenzae strains N187, P860295, and TN106 and examined the resulting immune response. Antisera against the recombinant proteins from all three strains not only recognized native HapS purified from strain P860295 but also inhibited H. influenzae Hap-mediated adherence to Chang epithelial cells. Furthermore, when mice immunized intranasally with recombinant protein plus mutant cholera toxin CT-E29H were challenged with strain TN106, they were protected against nasopharyngeal colonization. These observations demonstrate that the C-terminal region of HapS is capable of eliciting cross-reacting antibodies that reduce nasopharyngeal colonization, suggesting utility as a vaccine antigen for the prevention of nontypeable H. influenzae diseases. PMID:15557618
Modeling the interaction of seven bisphosphonates with the hydroxyapatite(100) face.
Chen, Chunyu; Xia, Mingzhu; Wu, Lei; Zhou, Chao; Wang, Fengyun
2012-09-01
The interaction of seven pamidronate bisphosphonate (Pami-BPs) and its analogs with the hydroxyapatite (HAP) (100) surface was studied using density functional theory (DFT) and molecular dynamic (MD) methods. Partial Mulliken oxygen atomic charges in protonated structures were calculated at the level of B3LYP/6-31G*. The MD simulation was performed using the Discover module of Material Studio by compass force field. The results indicate the abilities of donating electrons of the oxygen atoms of the phosphate groups that are closely associated with the antiresorptive potency. The binding energies, including vdw and electrostatic, are used to discuss the mechanism of antiresorption. The results of calculations show that the strength of interaction of the HAP (100) face with the bisphosphonates is N(4) > N(6) > N(7) > N(5) > N(3) > N(2) > N(1) according to their experimental pIC(50) values.
NASA Astrophysics Data System (ADS)
Li, Jian; Zhang, Zhao-Tao; Zou, Ping; Du, Bin; Liao, Rui-Jin
2012-06-01
Insulating vegetable oils are considered environment-friendly and fire-resistant substitutes for insulating mineral oils. This paper presents the lightning impulse breakdown characteristic of insulating vegetable oil and insulating vegetable oil-based nanofluids. It indicates that Fe3O4 nanoparticles can increase the negative lightning impulse breakdown voltages of insulating vegetable oil by 11.8% and positive lightning impulse breakdown voltages by 37.4%. The propagation velocity of streamer is reduced by the presence of nanoparticles. The propagation velocities of streamer to positive and negative lightning impulse breakdown in the insulating vegetable oil-based nanofluids are 21.2% and 14.4% lesser than those in insulating vegetable oils, respectively. The higher electrical breakdown strength and lower streamer velocity is explained by the charging dynamics of nanoparticles in insulating vegetable oil. Space charge build-up and space charge distorted filed in point-sphere gap is also described. The field strength is reduced at the streamer tip due to the low mobility of negative nanoparticles.
Zhang, Xuefei; Yates, Matthew Z
2018-05-23
Fast recombination of photogenerated charge carriers in titanium dioxide (TiO 2 ) remains a challenging issue, limiting the photocatalytic activity. This study demonstrates increased photocatalytic performance of TiO 2 nanoparticles supported on electrically polarized hydroxyapatite (HA) films. Dense and thermally stable yttrium and fluorine co-doped HA films with giant internal polarization were synthesized as photocatalyst supports. TiO 2 nanoparticles deposited on the support were then used to catalyze the photochemical reduction of aqueous silver ions to produce silver nanoparticles. It was found that significantly more silver nanoparticles were produced on polarized HA supports than on depolarized HA supports. In addition, the photodegradation of methyl orange with TiO 2 nanoparticles on polarized HA supports was found to be much faster than with TiO 2 nanoparticles on depolarized HA supports. It is proposed that separation of photogenerated electrons and holes in TiO nanoparticles is promoted by the internal polarization of the HA support, and consequently, the recombination of charge carriers is mitigated. The results imply that materials with large internal polarization can be used in strategies for enhancing quantum efficiency of photocatalysts.
Liu, Xiangsheng; Li, Huan; Chen, Yangjun; Jin, Qiao; Ren, Kefeng; Ji, Jian
2014-09-01
Mixed-charge zwitterionic surface modification shows great potential as a simple strategy to fabricate nanoparticle (NP) surfaces that are nonfouling. Here, the in vivo fate of 16 nm mixed-charge gold nanoparticles (AuNPs) is investigated, coated with mixed quaternary ammonium and sulfonic groups. The results show that mixed-charge AuNPs have a much longer blood half-life (≈30.6 h) than do poly(ethylene glycol) (PEG, M¯w = 2000) -coated AuNPs (≈6.65 h) and they accumulate in the liver and spleen far less than do the PEGylated AuNPs. Using transmission electron microscopy, it is further confirmed that the mixed-charge AuNPs have much lower uptake and different existing states in liver Kupffer cells and spleen macrophages one month after injection compared with the PEGylated AuNPs. Moreover, these mixed-charge AuNPs do not cause appreciable toxicity at this tested dose to mice in a period of 1 month as evidenced by histological examinations. Importantly, the mixed-charge AuNPs have higher accumulation and slower clearance in tumors than do PEGylated AuNPs for times of 24-72 h. Results from this work show promise for effectively designing tumor-targeting NPs that can minimize reticuloendothelial system clearance and circulate for long periods by using a simple mixed-charge strategy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Predoi, Daniela; Popa, Cristina Liana; Chapon, Patrick; Groza, Andreea; Iconaru, Simona Liliana
2016-01-01
The inhibitory and antimicrobial effects of silver particles have been known since ancient times. In the last few years, a major health problem has arisen due to pathogenic bacteria resistance to antimicrobial agents. The antibacterial activities of new materials including hydroxyapatite (HAp), silver-doped hydroxyapatite (Ag:HAp) and various types of antibiotics such as tetracycline (T-HAp and T-Ag:HAp) or ciprofloxacin (C-HAp and C-Ag:HAp) have not been studied so far. In this study we reported, for the first time, the preparation and characterization of various thin films based on hydroxyapatite and silver-doped hydroxyapatite combined with tetracycline or ciprofloxacin. The structural and chemical characterization of hydroxyapatite and silver-doped hydroxyapatite thin films has been evaluated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The morphological studies of the HAp, Ag:HAp, T-HAp, T-Ag:HAp, C-HAp and C-Ag:HAp thin solid films were performed using scanning electron microscopy (SEM). In order to study the chemical composition of the coatings, energy dispersive X-ray analysis (EDX) and glow discharge optical emission spectroscopy (GDOES) measurements have been used, obtaining information on the distribution of the elements throughout the film. These studies have confirmed the purity of the prepared hydroxyapatite and silver-doped hydroxyapatite thin films obtained from composite targets containing Ca10−xAgx(PO4)6(OH)2 with xAg = 0 (HAp) and xAg = 0.2 (Ag:HAp). On the other hand, the major aim of this study was the evaluation of the antibacterial activities of ciprofloxacin and tetracycline in the presence of HAp and Ag:HAp thin layers against Staphylococcus aureus and Escherichia coli strains. The antibacterial activities of ciprofloxacin and tetracycline against Staphylococcus aureus and Escherichia coli test strains increased in the presence of HAp and Ag:HAp thin layers. PMID:28773899
NASA Astrophysics Data System (ADS)
Fajri Alif, Matlal; Aprillia, Wandha; Arief, Syukri
2018-01-01
Hydroxyapatite (HAP) were synthesized from Pensi (Corbicula moltkiana) sheels by hydrothermal method and used as adsorbent for peat water purification. Batch adsorption experiments were performed to investigate the effects of various factors such as contact time, adsorbent dosage, and pH. The obtained materials were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM). Results showed that HAP calcined at 900°C (HAP900) and 1000°C (HAP1000) have a poorly crystalline shape. HAP900 also contain Tetracalsium Phosphate (TTCP) with a Ca/P molar ratio 2.18, while HAP 1000 contain HAp with a Ca/P molar ratio 1.67. Optimum condition for peat water purification with HAP900 and HAP1000 were both achieved at 1 hours, 1 grams adsorben mass at pH 2. SEM micrographs show that after purification, the surface of HAP were covered by organic compounds from peat water.
NASA Astrophysics Data System (ADS)
Baybaş, Demet; Ulusoy, Ulvi
2012-10-01
The composite of synthetically produced hydroxyapatite (HAP) and polyacrylamide was prepared (PAAm-HAP) and characterized by BET, FT-IR, TGA, XRD, SEM and PZC analysis. The adsorptive features of HAP and PAAm-HAP were compared for UO22+ and Th4+. The entrapment of HAP into PAAm-HAP did not change the structure of HAP. Both structures had high affinity to the studied ions. The adsorption capacity of PAAm-HAP was than that of HAP. The adsorption dependence on pH and ionic intensity provided supportive evidences for the effect of complex formation on adsorption process. The adsorption kinetics was well compatible to pseudo second order model. The values of enthalpy and entropy changes were positive. Th4+ adsorption from the leachate obtained from a regional fluorite rock confirmed the selectivity of PAAm-HAP for this ion. In consequence, PAAm-HAP should be considered amongst favorite adsorbents for especially deposition of nuclear waste containing U and Th, and radionuclide at secular equilibrium with these elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujinaga, Ryutaro; Takeshita, Yukio; Yoshioka, Kazuhiro
2011-07-15
The stigmoid body (STB) is a cytoplasmic inclusion containing huntingtin-associated protein 1 (HAP1), and HAP1/STB formation is induced by transfection of the HAP1 gene into cultured cells. In the present study, we examined the intracellular colocalization of HAP1/STBs with steroid hormone receptors (SHRs), including the androgen receptor (AR), estrogen receptor, glucocorticoid receptor (GR), and mineralocorticoid receptor, in COS-7 cells cotransfected with HAP1 and each receptor. We found that C-terminal ligand-binding domains of all SHRs had potential for colocalization with HAP1/STBs, whereas only AR and GR were clearly colocalized with HAP1/STBs when each full-length SHR was coexpressed with HAP1. In addition,more » it appeared that HAP1/STBs did not disrupt GR and AR functions because the receptors on HAP1/STBs maintained nuclear translocation activity in response to their specific ligands. When the cells were treated with a proteasome inhibitor, GR and AR localized outside HAP1/STBs translocated into the nucleus, whereas the receptors colocalized with HAP1/STBs persisted in their colocalization even after treatment with their ligands. Therefore, HAP1/STBs may be involved in cytoplasmic modifications of the nuclear translocation of GR and AR in a ubiquitin-proteasome system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mene, Ravindra U.; School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, M.S.; Mahabole, Megha P.
Highlights: • We report improved gas sensing and dielectric characteristics of Fe ion exchanged HAp films. • Fe doped HAp film shows maximum gas response at relatively lower temperature. • Response and gas uptake capacity of sensors is improved for appropriate amount of Fe ions in HAp matrix. • Fe-HAp films exhibit remarkable improvement in dielectric properties compared to pure HAp. • Fe doped HAp films show significant improvement in gas sensing as well as in dielectric properties. - Abstract: In the present work Fe doped hydroxyapatite (Fe-HAp) thick films has been successfully utilized to improve the gas sensing asmore » well as its dielectric properties. Initially, HAp nano powder is synthesized by chemical precipitation process and later on Fe ions are doped in HAp by ion exchange process. Structural and morphological modifications are observed by means of X-ray diffraction and scanning electron microscopy analysis. The sensing parameters such as operating temperature, response/recovery time and gas uptake capacity are experimentally determined. The Fe-HAp (0.05 M) film shows improved CO and CO{sub 2} gas sensing capacity at lower operating temperature compared to pure HAp. Moreover, variation of dielectric constant and dielectric loss for pure and Fe-HAp thick films are studied as a function of frequency in the range of 10 Hz–1 MHz. The study reveals that Fe doped HAp thick films improve the sensing and dielectric characteristics as compared to pure HAp.« less
Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng
2016-01-01
Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds. PMID:27075233
NASA Astrophysics Data System (ADS)
Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng
2016-04-01
Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds.
Manatunga, Danushika C; de Silva, Rohini M; de Silva, K M Nalin; de Silva, Nuwan; Bhandari, Shiva; Yap, Yoke Khin; Costha, N Pabakara
2017-08-01
Developing a drug carrier system which could perform targeted and controlled release over a period of time is utmost concern in the pharmaceutical industry. This is more relevant when designing drug carriers for poorly water soluble drug molecules such as curcumin and 6-gingerol. Development of a drug carrier system which could overcome these limitations and perform controlled and targeted drug delivery is beneficial. This study describes a promising approach for the design of novel pH sensitive sodium alginate, hydroxyapatite bilayer coated iron oxide nanoparticle composite (IONP/HAp-NaAlg) via the co-precipitation approach. This system consists of a magnetic core for targeting and a NaAlg/HAp coating on the surface to accommodate the drug molecules. The nanocomposite was characterized using FT-IR spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis. The loading efficiency and loading capacity of curcumin and 6-gingerol were examined. In vitro drug releasing behavior of curcumin and 6-gingerol was studied at pH 7.4 and pH 5.3 over a period of seven days at 37°C. The mechanism of drug release from the nanocomposite of each situation was studied using kinetic models and the results implied that, the release is typically via diffusion and a higher release was observed at pH 5.3. This bilayer coated system can be recognized as a potential drug delivery system for the purpose of curcumin and 6-gingerol release in targeted and controlled manner to treat diseases such as cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
Bo, Zhang; Avsar, Saziye Yorulmaz; Corliss, Michael K; Chung, Minsub; Cho, Nam-Joon
2017-10-05
As the worldwide usage of nanoparticles in commercial products continues to increase, there is growing concern about the environmental risks that nanoparticles pose to biological systems, including potential damage to cellular membranes. A detailed understanding of how different types of nanoparticles behave in environmentally relevant conditions is imperative for predicting and mitigating potential membrane-associated toxicities. Herein, we investigated the adsorption of two popular nanoparticles (silver and buckminsterfullerene) onto biomimetic supported lipid bilayers of varying membrane charge (positive and negative). The quartz crystal microbalance-dissipation (QCM-D) measurement technique was employed to track the adsorption kinetics. Particular attention was focused on understanding how natural organic matter (NOM) coatings affect nanoparticle-bilayer interactions. Both types of nanoparticles preferentially adsorbed onto the positively charged bilayers, although NOM coatings on the nanoparticle and lipid bilayer surfaces could either inhibit or promote adsorption in certain electrolyte conditions. While past findings showed that NOM coatings inhibit membrane adhesion, our findings demonstrate that the effects of NOM coatings are more nuanced depending on the type of nanoparticle and electrolyte condition. Taken together, the results demonstrate that NOM coatings can modulate the lipid membrane interactions of various nanoparticles, suggesting a possible way to improve the environmental safety of nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.
Lei, Yong; Xu, Zhengliang; Ke, Qinfei; Yin, Wenjing; Chen, Yixuan; Zhang, Changqing; Guo, Yaping
2017-03-01
For the clinical application of bone tissue engineering with the combination of biomaterials and mesenchymal stem cells (MSCs), bone scaffolds should possess excellent biocompatibility and osteoinductivity to accelerate the repair of bone defects. Herein, strontium hydroxyapatite [SrHAP, Ca 10-x Sr x (PO 4 ) 6 (OH) 2 ]/chitosan (CS) nanohybrid scaffolds were fabricated by a freeze-drying method. The SrHAP nanocrystals with the different x values of 0, 1, 5 and 10 are abbreviated to HAP, Sr1HAP, Sr5HAP and Sr10HAP, respectively. With increasing x values from 0 to 10, the crystal cell volumes and axial lengths of SrHAP become gradually large because of the greater ion radius of Sr 2+ than Ca 2+ , while the crystal sizes of SrHAP decrease from 70.4nm to 46.7nm. The SrHAP/CS nanohybrid scaffolds exhibits three-dimensional (3D) interconnected macropores with pore sizes of 100-400μm, and the SrHAP nanocrystals are uniformly dispersed within the scaffolds. In vitro cell experiments reveal that all the HAP/CS, Sr1HAP/CS, Sr5HAP/CS and Sr10HAP/CS nanohybrid scaffolds possess excellent cytocompatibility with the favorable adhesion, spreading and proliferation of human bone marrow mesenchymal stem cells (hBMSCs). The Sr5HAP nanocrystals in the scaffolds do not affect the adhesion, spreading of hBMSCs, but they contribute remarkably to cell proliferation and osteogenic differentiation. As compared with the HAP/CS nanohybrid scaffold, the released Sr 2+ ions from the SrHAP/CS nanohybrid scaffolds enhance alkaline phosphatase (ALP) activity, extracellular matrix (ECM) mineralization and osteogenic-related COL-1 and ALP expression levels. Especially, the Sr5HAP/CS nanohybrid scaffolds exhibit the best osteoinductivity among four groups because of the synergetic effect between Ca 2+ and Sr 2+ ions. Hence, the Sr5HAP/CS nanohybrid scaffolds with excellent cytocompatibility and osteogenic property have promising application for bone tissue engineering. Copyright © 2016. Published by Elsevier B.V.
Jiang, Pei; Ran, Jiabing; Yan, Pan; Zheng, Lingyue; Shen, Xinyu; Tong, Hua
2018-02-01
Bacterial cellulose/hydroxyapatite (BC/HAp) composite had favourable bioaffinity but its poor mechanical strength limited its widespread applications in bone tissue engineering (BTE). Silk fibroin, which possesses special crystalline structure, has been widely used as organic reinforcing material, and different SFs have different amino acid sequences, which exhibit different bioaffinity and mechanical properties. In this regard, bacterial cellulose-Antheraea yamamai silk fibroin/hydroxyapatite (BC-AYSF/HAp), bacterial cellulose-Bombyx mori silk fibroin/hydroxyapatite (BC-BMSF/HAp), and BC/HAp nano-composites were synthesized via a novel in situ hybridization method. Compared with BC/HAp and BC-BMSF/HAp, the BC-AYSF/HAp exhibited better interpenetration, which may benefit for the transportation of nutrients and wastes, the adhesion of cells as well. Additionally, the BC-AYSF/HAp also presented superior thermal stability than the other two composites revealed by differential thermal analysis (DTA) and thermogravimetric analysis (TGA). Compression testing indicated that the mechanical strength of BC-BMSF/HAp was greatly reinforced compared with BC/HAp and was even a little higher than that of BC-AYSF/HAp. Tensile testing showed that BC-AYSF/HAp possesses extraordinary mechanical properties with a higher elastic modulus at low strain and higher fracture strength simultaneously than the other two composites. In vitro cell culture exhibited that MC3T3-E1 cells on the BC-AYSF/HAp membrane took on higher proliferative potential than those on the BC-BMSF/HAp membrane. These results suggested that compared with BC-BMSF/HAp, the BC-AYSF/HAp composite was more appropriate as an ideal bone scaffold platform or biomedical membrane to be used in BTE.
Crystal structure and tartrate inhibition of Legionella pneumophila histidine acid phosphatase.
Dhatwalia, Richa; Singh, Harkewal; Reilly, Thomas J; Tanner, John J
2015-11-01
Histidine acid phosphatases (HAPs) utilize a nucleophilic histidine residue to catalyze the transfer of a phosphoryl group from phosphomonoesters to water. HAPs function as protein phosphatases and pain suppressors in mammals, are essential for Giardia lamblia excystation, and contribute to virulence of the category A pathogen Francisella tularensis. Herein we report the first crystal structure and steady-state kinetics measurements of the HAP from Legionella pneumophila (LpHAP), also known as Legionella major acid phosphatase. The structure of LpHAP complexed with the inhibitor l(+)-tartrate was determined at 2.0 Å resolution. Kinetics assays show that l(+)-tartrate is a 50-fold more potent inhibitor of LpHAP than of other HAPs. Electrostatic potential calculations provide insight into the basis for the enhanced tartrate potency: the tartrate pocket of LpHAP is more positive than other HAPs because of the absence of an ion pair partner for the second Arg of the conserved RHGXRXP HAP signature sequence. The structure also reveals that LpHAP has an atypically expansive active site entrance and lacks the nucleotide substrate base clamp found in other HAPs. These features imply that nucleoside monophosphates may not be preferred substrates. Kinetics measurements confirm that AMP is a relatively inefficient in vitro substrate of LpHAP. Copyright © 2015 Elsevier Inc. All rights reserved.
Oda, Saori; Yurimoto, Hiroya; Nitta, Nobuhisa; Sasano, Yu
2015-01-01
We identified genes encoding components of the Hap complex, CbHAP2, CbHAP3, and CbHAP5, as transcription factors regulating methanol-inducible gene expression in the methylotrophic yeast Candida boidinii. We found that the Cbhap2Δ, Cbhap3Δ, and Cbhap5Δ gene-disrupted strains showed severe growth defects on methanol but not on glucose and nonfermentable carbon sources such as ethanol and glycerol. In these disruptants, the transcriptional activities of methanol-inducible promoters were significantly decreased compared to those of the wild-type strain, indicating that CbHap2p, CbHap3p, and CbHap5p play indispensable roles in methanol-inducible gene expression. Further molecular and biochemical analyses demonstrated that CbHap2p, CbHap3p, and CbHap5p localized to the nucleus and bound to the promoter regions of methanol-inducible genes regardless of the carbon source, and heterotrimer formation was suggested to be necessary for binding to DNA. Unexpectedly, distinct from Saccharomyces cerevisiae, the Hap complex functioned in methanol-specific induction rather than glucose derepression in C. boidinii. Our results shed light on a novel function of the Hap complex in methanol-inducible gene expression in methylotrophic yeasts. PMID:25595445
Forest, Valérie; Pourchez, Jérémie
2017-01-01
The internalization of nanoparticles by cells (and more broadly the nanoparticle/cell interaction) is a crucial issue both for biomedical applications (for the design of nanocarriers with enhanced cellular uptake to reach their intracellular therapeutic targets) and in a nanosafety context (as the internalized dose is one of the key factors in cytotoxicity). Many parameters can influence the nanoparticle/cell interaction, among them, the nanoparticle physico-chemical features, and especially the surface charge. It is generally admitted that positive nanoparticles are more uptaken by cells than neutral or negative nanoparticles. It is supposedly due to favorable electrostatic interactions with negatively charged cell membrane. However, this theory seems too simplistic as it does not consider a fundamental element: the nanoparticle protein corona. Indeed, once introduced in a biological medium nanoparticles adsorb proteins at their surface, forming a new interface defining the nanoparticle "biological identity". This adds a new level of complexity in the interactions with biological systems that cannot be any more limited to electrostatic binding. These interactions will then influence cell behavior. Based on a literature review and on an example of our own experience the parameters involved in the nanoparticle protein corona formation as well as in the nanoparticle/cell interactions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Qing; Liu, Mengna; Sima, Wenxia; Jin, Yang
2017-11-01
The combined effect mechanism of electrode materials and Al2O3 nanoparticles on the insulating characteristics of transformer oil was investigated. Impulse breakdown tests of pure transformer oil and Al2O3 nano-modified transformer oil of varying concentrations with different electrode materials (brass, aluminum and stainless steel) showed that the breakdown voltage of Al2O3 nano-modified transformer oil is higher than that of pure transformer oil and there is a there is an optimum concentration for Al2O3 nanoparticles when the breakdown voltage reaches the maximum. In addition, the breakdown voltage was highest with the brass electrode, followed by that with stainless steel and then aluminum, irrespective of the concentration of nanoparticles in the transformer oil. This is explained by the charge injection patterns from different electrode materials according to the results of space charge measurements in pure and nano-modified transformer oil using the Kerr electro-optic system. The test results indicate that there are electrode-dependent differences in the charge injection patterns and quantities and then the electric field distortion, which leads to the difference breakdown strength in result. As for the nano-modified transformer oil, due to the Al2O3 nanoparticle’s ability of shielding space charges of different polarities and the charge injection patterns of different electrodes, these two factors have different effects on the electric field distribution and breakdown process of transformer oil between different electrode materials. This paper provides a feasible approach to exploring the mechanism of the effect of the electrode material and nanoparticles on the breakdown strength of liquid dielectrics and analyzing the breakdown process using the space charge distribution.
Structure and organization of phospholipid/polysaccharide nanoparticles
NASA Astrophysics Data System (ADS)
Gerelli, Y.; Di Bari, M. T.; Deriu, A.; Cantù, L.; Colombo, P.; Como, C.; Motta, S.; Sonvico, F.; May, R.
2008-03-01
In recent years nanoparticles and microparticles composed of polymeric or lipid material have been proposed as drug carriers for improving the efficacy of encapsulated drugs. For the production of these systems different materials have been proposed, among them phospholipids and polysaccharides due to their biocompatibility, biodegradability, low cost and safety. We report here a morphological and structural investigation, performed using cryo-TEM, static light scattering and small angle neutron and x-ray scattering, on phospholipid/saccharide nanoparticles loaded with a lipophilic positively charged drug (tamoxifen citrate) used in breast cancer therapy. The lipid component was soybean lecithin; the saccharide one was chitosan that usually acts as an outer coating increasing vesicle stability. The microscopy and scattering data indicate the presence of two distinct nanoparticle families: uni-lamellar vesicles with average radius 90 Å and multi-lamellar vesicles with average radius 440 Å. In both families the inner core is occupied by the solvent. The presence of tamoxifen gives rise to a multi-lamellar structure of the lipid outer shell. It also induces a positive surface charge into the vesicles, repelling the positively charged chitosan molecules which therefore do not take part in nanoparticle formation.
Charging of nanoparticles in stationary plasma in a gas aggregation cluster source
NASA Astrophysics Data System (ADS)
Blažek, J.; Kousal, J.; Biederman, H.; Kylián, O.; Hanuš, J.; Slavínská, D.
2015-10-01
Clusters that grow into nanoparticles near the magnetron target of the gas aggregation cluster source (GAS) may acquire electric charge by collecting electrons and ions or through other mechanisms like secondary- or photo-electron emissions. The region of the GAS close to magnetron may be considered as stationary plasma. The steady state charge distribution on nanoparticles can be determined by means of three possible models—fluid model, kinetic model and model employing Monte Carlo simulations—of cluster charging. In the paper the mathematical and numerical aspects of these models are analyzed in detail and close links between them are clarified. Among others it is shown that Monte Carlo simulation may be considered as a particular numerical technique of solving kinetic equations. Similarly the equations of the fluid model result, after some approximation, from averaged kinetic equations. A new algorithm solving an in principle unlimited set of kinetic equations is suggested. Its efficiency is verified on physical models based on experimental input data.
Aqueous Assembly of Oxide and Fluoride Nanoparticles into 3D Microassemblies.
Cui, Shanying; Guan, Xin N; Ghantous, Eliana; Vajo, John J; Lucas, Matthew; Hsiao, Ming-Siao; Drummy, Lawrence F; Collins, Joshua; Juhl, Abigail; Roper, Christopher S; Gross, Adam F
2018-06-28
We demonstrate rapid [∼mm 3 /(h·L)] organic ligand-free self-assembly of three-dimensional, >50 μm single-domain microassemblies containing up to 10 7 individual aligned nanoparticles through a scalable aqueous process. Organization and alignment of aqueous solution-dispersed nanoparticles are induced by decreasing their pH-dependent surface charge without organic ligands, which could be temperature-sensitive or infrared light absorbing. This process is exhibited by transforming both dispersed iron oxide hydroxide nanorods and lithium yttrium fluoride nanoparticles into high packing density microassemblies. The approach is generalizable to nanomaterials with pH-dependent surface charge (e.g., oxides, fluorides, and sulfides) for applications requiring long-range alignment of nanostructures as well as high packing density.
Local Charge Injection and Extraction on Surface-Modified Al2O3 Nanoparticles in LDPE.
Borgani, Riccardo; Pallon, Love K H; Hedenqvist, Mikael S; Gedde, Ulf W; Haviland, David B
2016-09-14
We use a recently developed scanning probe technique to image with high spatial resolution the injection and extraction of charge around individual surface-modified aluminum oxide nanoparticles embedded in a low-density polyethylene (LDPE) matrix. We find that the experimental results are consistent with a simple band structure model where localized electronic states are available in the band gap (trap states) in the vicinity of the nanoparticles. This work offers experimental support to a previously proposed mechanism for enhanced insulating properties of nanocomposite LDPE and provides a powerful experimental tool to further investigate such properties.
Supercapacitor electrodes based on polyaniline-silicon nanoparticle composite
NASA Astrophysics Data System (ADS)
Liu, Qiang; Nayfeh, Munir H.; Yau, Siu-Tung
A composite material formed by dispersing ultrasmall silicon nanoparticles in polyaniline has been used as the electrode material for supercapacitors. Electrochemical characterization of the composite indicates that the nanoparticles give rise to double-layer capacitance while polyaniline produces pseudocapacitance. The composite shows significantly improved capacitance compared to that of polyaniline. The enhanced capacitance results in high power (220 kW kg -1) and energy-storage (30 Wh kg -1) capabilities of the composite material. A prototype supercapacitor using the composite as the charge storage material has been constructed. The capacitor showed the enhanced capacitance and good device stability during 1000 charging/discharging cycles.
Impact of environmental conditions on aggregation kinetics of hematite and goethite nanoparticles
NASA Astrophysics Data System (ADS)
Xu, Chen-yang; Deng, Kai-ying; Li, Jiu-yu; Xu, Ren-kou
2015-10-01
Hematite and goethite nanoparticles were used as model minerals to investigate their aggregation kinetics under soil environmental conditions in the present study. The hydrodynamic diameters of hematite and goethite nanoparticles were 34.4 and 66.3 nm, respectively. The positive surface charges and zeta potential values for goethite were higher than for hematite. The effective diameter for goethite was much larger than for hematite due to anisotropic sticking of needle-shaped goethite during aggregation. Moreover, the critical coagulation concentration (CCC) values of nanoparticles in solutions of NaNO3, NaCl, NaF, and Na2SO4 were 79.2, 75.0, 7.8, and 0.5 mM for hematite and they were 54.7, 62.6, 5.5, and 0.2 mM for goethite, respectively. The disparity of anions in inducing hematite or goethite aggregation lay in the differences in interfacial interactions. NO3 - and Cl- could decrease the zeta potential and enhance aggregation mainly through increasing ionic strength and compressing electric double layers of hematite and goethite nanoparticles. F- and SO4 2- highly destabilized the suspensions of nanoparticles mainly through specific adsorption and then neutralizing the positive surface charges of nanoparticles. Specific adsorption of cations could increase positive surface charges and stabilize hematite and goethite nanoparticles. The Hamaker constants of hematite and goethite nanoparticles were calculated to be 2.87 × 10-20 and 2.29 × 10-20 J-1, respectively. The predicted CCC values based on DLVO theory were consistent well with the experimentally determined CCC values in NaNO3, NaCl, NaF, and Na2SO4 systems, which demonstrated that DLVO theory could successfully predict the aggregation kinetics even when specific adsorption of ions occurred.
Huang, Yong; Ding, Qiongqiong; Han, Shuguang; Yan, Yajing; Pang, Xiaofeng
2013-08-01
This work elucidated the corrosion resistance and in vitro bioactivity of electroplated manganese-doped hydroxyapatite (MnHAp) film on NaOH-treated titanium (Ti). The NaOH treatment process was performed on Ti surface to enhance the adhesion of the MnHAp coating on Ti. Scanning electron microscopy images showed that the MnHAp coating had needle-like apatite crystals, and the approximately 10 μm thick layer was denser than HAp. Energy-dispersive X-ray spectroscopy analysis revealed that the MnHAp crystals were Ca-deficient and the Mn/P molar ratio was 0.048. X-ray diffraction confirmed the presence of single-phase MnHAp, which was aligned vertically to the substrate. Fourier transform infrared spectroscopy indicated the presence of phosphate bands ranging from 500 to 650 and 900 to 1,100 cm(-1), and a hydroxyl band at 3,571 cm(-1), which was characteristic of HAp. Bond strength test revealed that adhesion for the MnHAp coating was more enhanced than that of the HAp coating. Potentiodynamic polarisation test showed that the MnHAp-coated surface exhibited superior corrosion resistance over the HAp single-coated surface. Bioactivity test conducted by immersing the coatings in simulated body fluid showed that MnHAp coating can rapidly induce bone-like apatite nucleation and growth. Osteoblast cellular tests revealed that the MnHAp coating was better at improving the in vitro biocompatibility of Ti than the HAp coating.
NASA Astrophysics Data System (ADS)
Mieloch, Adam A.; Krecisz, Monika; Rybka, Jakub D.; Strugała, Aleksander; Krupiński, Michał; Urbanowicz, Anna; Kozak, Maciej; Skalski, Bohdan; Figlerowicz, Marek; Giersig, Michael
2018-03-01
Virus-like particles (VLPs) have sparked a great interest in the field of nanobiotechnology and nanomedicine. The introduction of superparamagnetic nanoparticles (SPIONs) as a core, provides potential use of VLPs in the hyperthermia therapy, MRI contrast agents and magnetically-powered delivery agents. Magnetite NPs also provide a significant improvement in terms of VLPs stability. Moreover employing viral structural proteins as self-assembling units has opened a new paths for targeted therapy, drug delivery systems, vaccines design, and many more. In many cases, the self-assembly of a virus strongly depends on electrostatic interactions between positively charged groups of the capsid proteins and negatively charged nucleic acid. This phenomenon imposes the negative net charge as a key requirement for the core nanoparticle. In our experiments, Brome mosaic virus (BMV) capsid proteins isolated from infected plants Hordeum vulgare were used. Superparamagnetic iron oxide nanoparticles (Fe3O4) with 15 nm in diameter were synthesized by thermal decomposition and functionalized with COOH-PEG-PL polymer or dihexadecylphosphate (DHP) in order to provide water solubility and negative charge required for the assembly. Nanoparticles were characterized by Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), Zeta Potential, Fourier Transformed Infrared Spectroscopy (FTIR) and Superconducting Quantum Interference Device (SQUID) magnetometry. TEM and DLS study were conducted to verify VLPs creation. This study demonstrates that the increase of negative surface charge is not a sufficient factor determining successful assembly. Additional steric interactions provided by longer ligands are crucial for the assembly of BMV SPION VLPs and may enhance the colloidal stability.
Monson, Todd C; Hollars, Christopher W; Orme, Christine A; Huser, Thomas
2011-04-01
The dispersion of CdTe tetrapods in a conducting polymer and the resulting charge transfer is studied using a combination of confocal fluorescence microscopy and atomic force microscopy (AFM). The results of this work show that both the tetrapod dispersion and charge transfer between the CdTe and conducting polymer (P3HT) are greatly enhanced by exchanging the ligands on the surface of the CdTe and by choosing proper solvent mixtures. The ability to experimentally probe the relationship between particle dispersion and charge transfer through the combination of AFM and fluorescence microscopy provides another avenue to assess the performance of polymer/semiconductor nanoparticle composites. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Gao, Song; Huang, Hao; Wu, Aimin; Yu, Jieyi; Gao, Jian; Dong, Xinglong; Liu, Chunjing; Cao, Guozhong
2016-10-01
A direct current arc-discharge method was applied to prepare the Sn-M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn-M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn-Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g-1/366.6 mA h g-1) and optimal cycle stability (a specific reversible capacity of 240 mA h g-1 maintained after 20 cycles) compared with others. Large differences in the electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process.
Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates
Phuong, NguyenThi; Andisetiawan, Anugrah; Van Lam, Do; Kim, Jeong Hwan; Choi, Doo-Sun; Whang, Kyung-Hyun; Nham, Jeasun; Lee, Yun Jung; Yoo, Yeong-Eun; Yoon, Jae Sung
2016-01-01
Since the ancient Egyptians had used sand as filter media for water purification, its principle has been inherited through generations and it is still being used now in industries. The sand filter consists of sand literally, and the voids within the sand bed are the pores for filtration. Here we present a filtration principle using nanoparticles, so that the voids between the nanoparticles can be considered as effective pores in nanoscale dimension. Anodic aluminum oxide (AAO) membrane has been used as the working template, and the nanoparticles have been injected and embedded within the pores of the AAO template. Nanoparticles with multiple sizes have been used in order to obtain smaller voids. Moreover, the nanoparticles have been functionalized, or electrically charged, with arginine/phenylalanine (RF) peptide group. In this way, filtration performance for charged particles or molecules, such as methylene blue, has been enhanced. Consequently, this study is expected to provide a new principle for fabrication of nano voids, or nano pores, and for filtration in nanoscale dimension. PMID:27876886
Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates.
Phuong, NguyenThi; Andisetiawan, Anugrah; Van Lam, Do; Kim, Jeong Hwan; Choi, Doo-Sun; Whang, Kyung-Hyun; Nham, Jeasun; Lee, Yun Jung; Yoo, Yeong-Eun; Yoon, Jae Sung
2016-11-23
Since the ancient Egyptians had used sand as filter media for water purification, its principle has been inherited through generations and it is still being used now in industries. The sand filter consists of sand literally, and the voids within the sand bed are the pores for filtration. Here we present a filtration principle using nanoparticles, so that the voids between the nanoparticles can be considered as effective pores in nanoscale dimension. Anodic aluminum oxide (AAO) membrane has been used as the working template, and the nanoparticles have been injected and embedded within the pores of the AAO template. Nanoparticles with multiple sizes have been used in order to obtain smaller voids. Moreover, the nanoparticles have been functionalized, or electrically charged, with arginine/phenylalanine (RF) peptide group. In this way, filtration performance for charged particles or molecules, such as methylene blue, has been enhanced. Consequently, this study is expected to provide a new principle for fabrication of nano voids, or nano pores, and for filtration in nanoscale dimension.
Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates
NASA Astrophysics Data System (ADS)
Phuong, Nguyenthi; Andisetiawan, Anugrah; van Lam, Do; Kim, Jeong Hwan; Choi, Doo-Sun; Whang, Kyung-Hyun; Nham, Jeasun; Lee, Yun Jung; Yoo, Yeong-Eun; Yoon, Jae Sung
2016-11-01
Since the ancient Egyptians had used sand as filter media for water purification, its principle has been inherited through generations and it is still being used now in industries. The sand filter consists of sand literally, and the voids within the sand bed are the pores for filtration. Here we present a filtration principle using nanoparticles, so that the voids between the nanoparticles can be considered as effective pores in nanoscale dimension. Anodic aluminum oxide (AAO) membrane has been used as the working template, and the nanoparticles have been injected and embedded within the pores of the AAO template. Nanoparticles with multiple sizes have been used in order to obtain smaller voids. Moreover, the nanoparticles have been functionalized, or electrically charged, with arginine/phenylalanine (RF) peptide group. In this way, filtration performance for charged particles or molecules, such as methylene blue, has been enhanced. Consequently, this study is expected to provide a new principle for fabrication of nano voids, or nano pores, and for filtration in nanoscale dimension.
Doxorubicin Loaded Chitosan-W18 O49 Hybrid Nanoparticles for Combined Photothermal-Chemotherapy.
Yuan, Shanmei; Hua, Jisong; Zhou, Yinyin; Ding, Yin; Hu, Yong
2017-08-01
Combined treatment is more effective than single treatment against most forms of cancer. In this work, doxorubicin loaded chitosan-W 18 O 49 nanoparticles combined with the photothermal therapy and chemotherapy are fabricated through the electrostatic interaction between positively charged chitosan and negatively charged W 18 O 49 nanoparticles. The in vitro and in vivo behaviors of these nanoparticles are examined by dynamic light scattering, transmission electron microscopy, cytotoxicity, near-infrared fluorescence imaging, and tumor growth inhibition experiment. These nanoparticles have a mean size around 110 nm and show a pH sensitive drug release behavior. After irradiation by the 980 nm laser, these nanoparticles show more pronounced cytotoxicity against HeLa cells than that of free doxorubicin or photothermal therapy alone. The in vivo experiments confirm that their antitumor ability is significantly improved, resulting in superior efficiency in impeding tumor growth and extension of the lifetime of mice. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Byers, Chad P.; Zhang, Hui; Swearer, Dayne F.; Yorulmaz, Mustafa; Hoener, Benjamin S.; Huang, Da; Hoggard, Anneli; Chang, Wei-Shun; Mulvaney, Paul; Ringe, Emilie; Halas, Naomi J.; Nordlander, Peter; Link, Stephan; Landes, Christy F.
2015-01-01
The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications. PMID:26665175
pH-Switchable Interaction of a Carboxybetaine Ester-Based SAM with DNA and Gold Nanoparticles.
Filip, Jaroslav; Popelka, Anton; Bertok, Tomas; Holazova, Alena; Osicka, Josef; Kollar, Jozef; Ilcikova, Marketa; Tkac, Jan; Kasak, Peter
2017-07-11
We describe a self-assembled monolayer (SAM) on a gold surface with a carboxybetaine ester functionality to control the interaction between DNA and gold nanoparticles via pH. The negatively charged phosphate backbone of DNA interacts with and adsorbs to the positively charged carboxybetaine esters on the SAM. DNA release can be achieved by the hydrolysis of carboxybetaine ester (CBE) to a zwitterionic carboxybetaine state. Furthermore, the adsorption of negatively charged citrate-capped gold nanoparticles to a SAM-modified plain gold surface can be controlled by the pH. The SAM based on carboxybetaine ester allows for the homogeneous adsorption of particles, whereas the SAM after hydrolysis at high pH repels AuNP adsorption. The antifouling surface properties of the surface modified with carboxybetaine were investigated with protein samples.
Complexation between sodium dodecyl sulfate and amphoteric polyurethane nanoparticles.
Qiao, Yong; Zhang, Shifeng; Lin, Ouya; Deng, Liandong; Dong, Anjie
2007-09-27
The complexation between negatively charged sodium dodecyl sulfate (SDS) and positively charged amphoteric polyurethane (APU) self-assembled nanoparticles (NPs) containing nonionic hydrophobic segments is studied by dynamic light scattering, pyrene fluorescent probing, zeta-potential, and transmission electron microscopy (TEM) in the present paper. With increasing the mol ratio of SDS to the positive charges on the surface of APU NPs, the aqueous solution of APU NPs presents precipitation at pH 2, around stoichiometric SDS concentration, and then the precipitate dissociates with excess SDS to form more stable nanoparticles of ionomer complexes. Three stages of the complexation process are clearly shown by the pyrene I1/I3 variation of the complex systems, which only depends on the ratio of SDS/APU, and demonstrate that the process is dominated by electrostatic attraction and hydrophobic aggregation.
Direct recognition of superparamagnetic nanocrystals by macrophage scavenger receptor SR-AI.
Chao, Ying; Karmali, Priya P; Mukthavaram, Rajesh; Kesari, Santosh; Kouznetsova, Valentina L; Tsigelny, Igor F; Simberg, Dmitri
2013-05-28
Scavenger receptors (SRs) are molecular pattern recognition receptors that have been shown to mediate opsonin-independent uptake of therapeutic and imaging nanoparticles, underlying the importance of SRs in nanomedicine. Unlike pathogens, engineered nanomaterials offer great flexibility in control of surface properties, allowing addressing specific questions regarding the molecular mechanisms of nanoparticle recognition. Recently, we showed that SR-type AI/II mediates opsonin-independent internalization of dextran superparamagnetic iron oxide (SPIO) nanoparticles via positively charged extracellular collagen-like domain. To understand the mechanism of opsonin-independent SPIO recognition, we tested the binding and uptake of nanoparticles with different surface coatings by SR-AI. SPIO coated with 10 kDa dextran was efficiently recognized and taken up by SR-AI transfected cells and J774 macrophages, while SPIO with 20 kDa dextran coating or cross-linked dextran hydrogel avoided the binding and uptake. Nanoparticle negative charge density and zeta-potential did not correlate with SR-AI binding/uptake efficiency. Additional experiments and computer modeling revealed that recognition of the iron oxide crystalline core by the positively charged collagen-like domain of SR-AI is sterically hindered by surface polymer coating. Importantly, the modeling revealed a strong complementarity between the surface Fe-OH groups of the magnetite crystal and the charged lysines of the collagen-like domain of SR-AI, suggesting a specific recognition of SPIO crystalline surface. These data provide an insight into the molecular recognition of nanocrystals by innate immunity receptors and the mechanisms whereby polymer coatings promote immune evasion.
NASA Astrophysics Data System (ADS)
Arifin, M.; Nurlaeny, N.; Devnita, R.; Fitriatin, B. N.; Sandrawati, A.; Supriatna, Y.
2018-02-01
Andisols has a great potential as agriculture land, however, it has a high phosphorus retention, variable charge characteristics and high value of zero net charge or pH0. The research is aimed to study the effects of nanoparticles of rock phosphate (NPRP) and biofertilizer (phosphate solubilizing bacteria/PSB) on soil pH, pHo (zero point of charge, ZPC) and organic-C in one subgroup of Andisols, namely Acrudoxic Durudands, Ciater Region West Java. The research was conducted from October 2016 to February 2017 in Soil Physics Laboratory and Laboratory of Soil Chemistry and Fertility, Soil Science Department, Faculty of Agriculture, Universitas Padjadjaran. This experiment used a completely randomized factorial design, consisting of two factors and three replications. The first factor was nanoparticles of rock phosphate consist of 4 doses 0; 25; 50 and 75 g/1 kg soil and the second factor was biofertilizer dose consist of g/1 kg soil and without biofertilizer. Total treatment combinations were 8 with 3 replications, so there were 24 experimental plots. The results showed that in general NPRR and biofertilizer will decrease the value of soil pH throughout the incubation periods. There is an interaction between nanoparticles of rock phosphate and biofertilizer in decreasing pHo in the first month of incubation, but after 4-month incubation period, NPRP increased. Interaction between 75 g nanoparticles of rock phosphate with 1 g biofertilizer/1 kg soil in fourth months of incubation decreased soil organic-C to 3.35%.
Mackenzie, Kimberly D; Lim, Yoon; Duffield, Michael D; Chataway, Timothy; Zhou, Xin-Fu; Keating, Damien J
2017-07-01
Huntingtin-associated protein 1 (HAP1) was initially identified as a binding partner of huntingtin, mutations in which underlie Huntington's disease. Subcellular localization and protein interaction data indicate that HAP1 may be important in vesicle trafficking, cell signalling and receptor internalization. In this study, a proteomics approach was used for the identification of novel HAP1-interacting partners to attempt to shed light on the physiological function of HAP1. Using affinity chromatography with HAP1-GST protein fragments bound to Sepharose columns, this study identified a number of trafficking-related proteins that bind to HAP1. Interestingly, many of the proteins that were identified by mass spectrometry have trafficking-related functions and include the clathrin light chain B and Sec23A, an ER to Golgi trafficking vesicle coat component. Using co-immunoprecipitation and GST-binding assays the association between HAP1 and clathrin light chain B has been validated in vitro. This study also finds that HAP1 co-localizes with clathrin light chain B. In line with a physiological function of the HAP1-clathrin interaction this study detected a dramatic reduction in vesicle retrieval and endocytosis in adrenal chromaffin cells. Furthermore, through examination of transferrin endocytosis in HAP1 -/- cortical neurons, this study has determined that HAP1 regulates neuronal endocytosis. In this study, the interaction between HAP1 and Sec23A was also validated through endogenous co-immunoprecipitation in rat brain homogenate. Through the identification of novel HAP1 binding partners, many of which have putative trafficking roles, this study provides us with new insights into the mechanisms underlying the important physiological function of HAP1 as an intracellular trafficking protein through its protein-protein interactions. Copyright © 2017 Elsevier Inc. All rights reserved.
[Study on transient absorption spectrum of tungsten nanoparticle with HepG2 tumor cell].
Cao, Lin; Shu, Xiao-Ning; Liang, Dong; Wang, Cong
2014-07-01
Significance of this study lies in tungsten nano materials can be used as a preliminary innovative medicines applied basic research. This paper investigated the inhibition of tungsten nanoparticles which effected on human hepatoma HepG2 cells by MTT. The authors use transient absorption spectroscopy (TAS) technology absorption and emission spectra characterization of charge transfer between nanoparticles and tumor cell. The authors discussed the role of the tungsten nanoparticles in the tumor early detection of the disease and its anti-tumor properties. In the HepG2 experiments system, 100-150 microg x mL(-1) is the best drug concentration of anti-tumor activity which recact violently within 6 hours and basically completed in 24 hours. The results showed that transient absorption spectroscopy can be used as tumor detection methods and characterization of charge transfer between nano-biosensors and tumor cells. Tungsten nanoparticles have potential applications as anticancer drugs.
Ion transport controlled by nanoparticle-functionalized membranes.
Barry, Edward; McBride, Sean P; Jaeger, Heinrich M; Lin, Xiao-Min
2014-12-17
From proton exchange membranes in fuel cells to ion channels in biological membranes, the well-specified control of ionic interactions in confined geometries profoundly influences the transport and selectivity of porous materials. Here we outline a versatile new approach to control a membrane's electrostatic interactions with ions by depositing ligand-coated nanoparticles around the pore entrances. Leveraging the flexibility and control by which ligated nanoparticles can be synthesized, we demonstrate how ligand terminal groups such as methyl, carboxyl and amine can be used to tune the membrane charge density and control ion transport. Further functionality, exploiting the ligands as binding sites, is demonstrated for sulfonate groups resulting in an enhancement of the membrane charge density. We then extend these results to smaller dimensions by systematically varying the underlying pore diameter. As a whole, these results outline a previously unexplored method for the nanoparticle functionalization of membranes using ligated nanoparticles to control ion transport.
NASA Astrophysics Data System (ADS)
Novak, Brian; Astete, Carlos; Sabliov, Cristina; Moldovan, Dorel
2012-02-01
Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable polymer. Nanoparticles of PLGA are commonly used for drug delivery applications. The interaction of the nanoparticles with the cell membrane may influence the rate of their uptake by cells. Both PLGA and cell membranes are negatively charged, so adding positively charged polymers such as trimethyl chitosan (TMC) which adheres to the PLGA particles improves their cellular uptake. The interaction of 3 nm PLGA and TMC-modified-PLGA nanoparticles with lipid bilayers composed of mixtures of phosphatidylcholine and phosphatidylserine lipids was studied using molecular dynamics simulations. The free energy profiles as function of nanoparticles position along the normal direction to the bilayers were calculated, the distribution of phosphatidylserine lipids as a function of distance of the particle from the bilayer was calculated, and the time scale for particle motion in the directions parallel to the bilayer surface was estimated.
Ion transport controlled by nanoparticle-functionalized membranes
NASA Astrophysics Data System (ADS)
Barry, Edward; McBride, Sean P.; Jaeger, Heinrich M.; Lin, Xiao-Min
2014-12-01
From proton exchange membranes in fuel cells to ion channels in biological membranes, the well-specified control of ionic interactions in confined geometries profoundly influences the transport and selectivity of porous materials. Here we outline a versatile new approach to control a membrane’s electrostatic interactions with ions by depositing ligand-coated nanoparticles around the pore entrances. Leveraging the flexibility and control by which ligated nanoparticles can be synthesized, we demonstrate how ligand terminal groups such as methyl, carboxyl and amine can be used to tune the membrane charge density and control ion transport. Further functionality, exploiting the ligands as binding sites, is demonstrated for sulfonate groups resulting in an enhancement of the membrane charge density. We then extend these results to smaller dimensions by systematically varying the underlying pore diameter. As a whole, these results outline a previously unexplored method for the nanoparticle functionalization of membranes using ligated nanoparticles to control ion transport.
Photocatalytic activity of Ag3PO4 nanoparticle/TiO2 nanobelt heterostructures
NASA Astrophysics Data System (ADS)
Liu, Ruoyu; Hu, Peiguang; Chen, Shaowei
2012-10-01
Heterostructures based on Ag3PO4 nanoparticles and TiO2 nanobelts were prepared by a coprecipitation method. The crystalline structures were characterized by X-ray diffraction measurements. Electron microscopic studies showed that the Ag3PO4 nanoparticles and TiO2 nanobelts were in intimate contact which might be exploited to facilitate charge transfer between the two semiconductor materials. In fact, the heterostructures exhibited markedly enhanced photocatalytic activity as compared with unmodified TiO2 nanobelts or commercial TiO2 colloids in the photodegradation of methyl orange under UV irradiation. This was accounted for by the improved efficiency of interfacial charge separation thanks to the unique alignments of their band structures. Remarkably, whereas the photocatalytic activity of the heterostructure was comparable to that of Ag3PO4 nanoparticles alone, the heterostructures exhibited significantly better stability and reusability in repeated tests than the Ag3PO4 nanoparticles.
Experimental investigation of the influence of nanoparticles on water-based mud
NASA Astrophysics Data System (ADS)
Dhiman, Paritosh; Cheng, Yaoze; Zhang, Yin; Patil, Shirish
2018-03-01
This study has investigated the influence of nanoparticles including nanoparticle concentration, size, and type on water-based mud (WBM) properties including rheology, filtration, and lubricity through experimental tests, while the influence of temperature and aging on these properties have been investigated. It has been found that adding SiO2 nanoparticles increase the plastic viscosity and decrease the yield points and gel strengths with the increase of nanoparticle concentration. At fixed 0.5 wt%, the plastic viscosity decreases with the increase of TiO2 nanoparticle size, but the influence of TiO2 nanoparticle size on yield points and gel strengths is not monotonous. In general, adding negative charged SiO2 nanoparticles reduce the yield points and gel strengths, while adding positively charged TiO2, Al2O3, and Fe3O4 nanoparticles increase yield points and gel strengths. Adding lower concentrations (< 0.05 wt%) of SiO2 nanoparticles improved mud filtration and lubricity properties, but higher concentrations are adverse to these properties and adding 0.5 wt% TiO2, Al2O3 and Fe3O4 nanoparticles impaired these properties. Besides, it is found that there is no consistent influence of aging on mud properties and adding nanoparticles cannot improve aging resistance of mud. Although adding nanoparticles can significantly affect WBM properties, their influences are not consistency, depending on the integrated impact of the nanoparticle properties, such as surface electrical property, specific surface area, concentration, and size.
Kadam, Rajendra S.; Bourne, David W. A.
2012-01-01
The aim of this study was to investigate the contribution of reduced apparent clearance to the enhanced exposure reported for biodegradable nanoparticles after extravascular and intravascular routes of administration. Plasma concentration profiles for drug and nanoparticle formulations after administration by intravenous, intraduodenal, and oral routes were extracted from the literature. Data were fit to pharmacokinetic models using BOOMER. The compartmental pharmacokinetic analysis of literature data for six drugs (camptothecin, 9-nitrocamptothecin, epirubicin, vinpocetine, clozapine, and cyclosporine) showed that the encapsulation of drug molecules in nanoparticles significantly reduced the apparent clearance and prolonged the apparent circulation half-life compared with those for the plain drug. Positively charged nanoparticles assessed in this study had lower apparent clearance, lower elimination rate constant values, and longer apparent circulation half-life than neutral and negatively charged nanoparticles. After oral administration, a reduction in apparent clearance contributed substantially to elevations in plasma drug exposure with nanoparticles. For the drugs and delivery systems examined, the nano-advantage in drug delivery enhancement can be explained, in part, by reduced clearance. PMID:22498894
NASA Astrophysics Data System (ADS)
Thanh Ngo, Vo Ke; Phuong Uyen Nguyen, Hoang; Phat Huynh, Trong; Nguyen Pham Tran, Nguyen; Lam, Quang Vinh; Dat Huynh, Thanh
2015-09-01
Gold nanoparticles (AuNPs) of 15-20 nm size range have attracted attention for producing smart sensing devices as diagnostic tools in biomedical sciences. Citrate capped AuNPs are negatively charged, which can be exploited for electrostatic interactions with some positively charged biomolecules like antibodies. In this paper we describe a method for the low cost synthesis of gold nanoparticles using sodium citrate (Na3Ct) reduction in chloroauric acid (HAuCl4.3H2O) by microwave heating (diameter about 13-15 nm). Gold nanoparticles were functionalized with surface activation by 3-mercaptopropionic acid for attaching antibody. These nanoparticles were then reacted with anti-E. coli O157:H7, using N-hydroxy succinimide (NHS) and carbondimide hydrochloride (EDC) coupling chemistry. The product was characterized with UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and zeta potential. In addition, the binding of antibody-gold nanoparticles conjugates to E. coli O157:H7 was demonstrated using transmission electron microscopy (TEM).
On the work function and the charging of small ( r ≤ 5 nm) nanoparticles in plasmas
NASA Astrophysics Data System (ADS)
Kalered, E.; Brenning, N.; Pilch, I.; Caillault, L.; Minéa, T.; Ojamäe, L.
2017-01-01
The growth of nanoparticles (NPs) in plasmas is an attractive technique where improved theoretical understanding is needed for quantitative modeling. The variation of the work function W with size for small NPs, rN P≤ 5 nm, is a key quantity for modeling of three NP charging processes that become increasingly important at a smaller size: electron field emission, thermionic electron emission, and electron impact detachment. Here we report the theoretical values of the work function in this size range. Density functional theory is used to calculate the work functions for a set of NP charge numbers, sizes, and shapes, using copper for a case study. An analytical approximation is shown to give quite accurate work functions provided that rN P > 0.4 nm, i.e., consisting of about >20 atoms, and provided also that the NPs have relaxed close to spherical shape. For smaller sizes, W deviates from the approximation, and also depends on the charge number. Some consequences of these results for nanoparticle charging are outlined. In particular, a decrease in W for NP radius below about 1 nm has fundamental consequences for their charge in a plasma environment, and thereby on the important processes of NP nucleation, early growth, and agglomeration.
Structural Characterization and Antifungal Studies of Zinc-Doped Hydroxyapatite Coatings.
Iconaru, Simona Liliana; Prodan, Alina Mihaela; Buton, Nicolas; Predoi, Daniela
2017-04-09
The present study is focused on the synthesis, characterization and antifungal evaluation of zinc-doped hydroxyapatite (Zn:HAp) coatings. The Zn:HAp coatings were deposited on a pure Si (Zn:HAp_Si) and Ti (Zn:HAp_Ti) substrate by a sol-gel dip coating method using a zinc-doped hydroxyapatite nanogel. The nature of the crystal phase was determined by X-ray diffraction (XRD). The crystalline phase of the prepared Zn:HAp composite was assigned to hexagonal hydroxyapatite in the P6 3/m space group. The colloidal properties of the resulting Zn:HAp (x Zn = 0.1) nanogel were analyzed by Dynamic Light Scattering (DLS) and zeta potential. Scanning Electron Microscopy (SEM) was used to investigate the morphology of the zinc-doped hydroxyapatite (Zn:HAp) nanogel composite and Zn:HAp coatings. The elements Ca, P, O and Zn were found in the Zn:HAp composite. According to the EDX results, the degree of Zn substitution in the structure of Zn:HAp composite was 1.67 wt%. Moreover, the antifungal activity of Zn:HAp_Si and Zn:HAp_Ti against Candida albicans ( C. albicans ) was evaluated. A decrease in the number of surviving cells was not observed under dark conditions, whereas under daylight and UV light illumination a major decrease in the number of surviving cells was observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Guangyao; Luo, Honglin; School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin 300072
Graphene oxide (GO) and hydroxyapatite (HAp) are frequently used as reinforcements in polymers to improve mechanical and biological properties. In this work, novel porous hybrid nanocomposites consisting of GO, HAp, and sodium alginate (SA) have been prepared by facile solution mixing and freeze drying in an attempt to obtain a scaffold with desirable mechanical and biological properties. The as-prepared porous GO/HAp/SA hybrid nanocomposites were characterized by SEM, XRD, FTIR, TGA, and mechanical testing. In addition, preliminary cell behavior was assessed by CCK8 assay. It is found that the GO/HAp/SA nanocomposites show improved compressive strength and modulus over neat SA andmore » HAp/SA nanocomposites. CCK8 results reveal that the GO/HAp/SA nanocomposites show enhanced cell proliferation over neat SA and GO/SA nanocomposite. It has been demonstrated that GO/HAp20/SA holds promise in bone tissue engineering. - Graphical abstract: Display Omitted - Highlights: • Graphene oxide (GO), hydroxyapatite (HAp), and alginate (SA) nanocomposites were fabricated. • The novel porous composites were prepared by solution mixture and freeze drying. • The GO/HAp/SA had porous structure with porosity > 85% and pore size > 150 μm. • The GO/HAp/SA exhibited improved mechanical properties over HAp/SA counterparts. • The GO/HAp/SA showed enhanced cell proliferation over GO/SA counterparts.« less
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.
2013-06-01
The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).
Supported Silver Nanoparticle and Near-Interface Solution Dynamics in a Deep Eutectic Solvent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammons, Joshua A.; Ustarroz, Jon; Muselle, Thibault
2016-01-28
Type III deep eutectic solvents (DES) have attracted significant interest as both environmentally friendly and functional solvents that are, in some ways, advantageous to traditional aqueous systems. While these solvents continue to produce remarkable thin films and nanoparticle assemblies, their interactions with metallic surfaces are complex and difficult to manipulate. In this study, the near-surface region (2–600 nm) of a carbon surface is investigated immediately following silver nanoparticle nucleation and growth. This is accomplished, in situ, using a novel grazing transmission small-angle X-ray scattering approach with simultaneous voltammetry and electrochemical impedance spectroscopy. With this physical and electrochemical approach, the timemore » evolution of three distinct surface interaction phenomena is observed: aggregation and coalescence of Ag nanoparticles, multilayer perturbations induced by nonaggregated Ag nanoparticles, and a stepwise transport of dissolved Ag species from the carbon surface. The multilayer perturbations contain charge-separated regions of positively charged choline-ethylene and negatively charged Ag and Cl species. Both aggregation-coalescence and the stepwise decrease in Ag precursor near the surface are observed to be very slow (~2 h) processes, as both ion and particle transport are significantly impeded in a DES as compared to aqueous electrolytes. Finally, altogether, this study shows how the unique chemistry of the DES changes near the surface and in the presence of nanoparticles that adsorb the constituent species.« less
Enhanced absorption of light by charged nanoparticles.
Rosenkrantz, Etai; Arnon, Shlomi
2010-04-15
We found that various charged nanoparticles (NPs) can raise the attenuation of electromagnetic (EM) radiation over 30 times more efficiently during resonance in comparison to equivalent noncharged particles for a given set of parameters. A condition that indicates a state of resonance between the incident EM radiation and the NP surface excitations is mathematically derived. Our results shed light on the mechanism responsible for the strong absorption of light by such charged NPs. The outcome of this research could help to design a new generation of communication devices as well as a new technique for biological cell imaging.
Exchange bias effect in Au-Fe 3O 4 dumbbell nanoparticles induced by the charge transfer from gold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feygenson, Mikhail; Bauer, John C; Gai, Zheng
2015-08-10
We have studied the origin of the exchange bias effect in the Au-Fe 3O 4 dumbbell nanoparticles in two samples with different sizes of the Au seed nanoparticles (4.1 and 2.7 nm) and same size of Fe 3O 4 nanoparticles (9.8 nm). The magnetization, small-angle neutron scattering, synchrotron x-ray diffraction and scanning transmission electron microscope measurements determined the antiferromagnetic FeO wüstite phase within Fe 3O 4 nanoparticles, originating at the interface with the Au nanoparticles. The interface between antiferromagnetic FeO and ferrimagnetic Fe 3O 4 is giving rise to the exchange bias effect. The strength of the exchange bias fieldsmore » depends on the interfacial area and lattice mismatch between both phases. We propose that the charge transfer from the Au nanoparticles is responsible for a partial reduction of the Fe 3O 4 into FeO phase at the interface with Au nanoparticles. The Au-O bonds are formed across the interface to accommodate an excess of oxygen released during the reduction of magnetite.« less
Exchange bias effect in Au-Fe3O4 dumbbell nanoparticles induced by the charge transfer from gold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feygenson, Mikhail; Bauer, John C.; Gai, Zheng
2015-08-10
We have studied the origin of the exchange bias effect in the Au-Fe3O4 dumbbell nanoparticles in two samples with different sizes of the Au seed nanoparticles (4.1 and 2.7 nm) and same size of Fe3O4 nanoparticles (9.8 nm). The magnetization, small-angle neutron-scattering, synchrotron x-ray diffraction, and scanning transmission electron microscope measurements determined the antiferromagnetic FeO wustite phase within Fe3O4 nanoparticles, originating at the interface with the Au nanoparticles. The interface between antiferromagnetic FeO and ferrimagnetic Fe3O4 is giving rise to the exchange bias effect. The strength of the exchange bias fields depends on the interfacial area and lattice mismatch betweenmore » both phases. We propose that the charge transfer from the Au nanoparticles is responsible for a partial reduction of the Fe3O4 into the FeO phase at the interface with Au nanoparticles. The Au-O bonds are formed, presumably across the interface to accommodate an excess of oxygen released during the reduction of magnetite« less
NASA Astrophysics Data System (ADS)
Islam, Mohammad A.; Zuba, Mateusz; DeBiase, Vincent; Noviasky, Nicholas; Hawley, Christopher J.
2018-02-01
Cobalt nanoparticle thin films were electrophoretically deposited on copper current collectors and were annealed into thin films of hollow Co3O4 nanoparticles. These thin films were directly used as the anodes of lithium ion batteries (LIBs) without the addition of conducting carbons and bonding agents. LIBs thus fabricated show high gravimetric capacities and long cycle lives. For ≈1.0 μm thick Co3O4 nanoparticle films the gravimetric capacities of the batteries were more than 800 mAh g-1 at a current rate of C/15, which is about 90% of the theoretical maximum. Additionally, the batteries were able to undergo 200 charge/discharge cycles at a relatively fast rate of C/5 and maintain 50% of the initial capacity. In order to understand the electrochemistry of lithiation in the context of nanoparticles, Raman spectra were collected at different stages of the electrode cycles to determine the chemical and structural changes in the nanomaterials. Our results indicate that initially the electrode nanoparticles were under significant strain and as the battery underwent many cycles of charging/discharging the nanoparticles experienced progressive strain relaxation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... accordance with the applicable weight-percent, TOC concentration, or organic HAP concentration requirement in... rate, regulated organic HAP concentration, total organic HAP or TOC concentration, heating value, and... volumetric flow rate, regulated organic HAP concentration, total organic HAP or TOC concentration, and any...
24 CFR 891.560 - HAP contract.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false HAP contract. 891.560 Section 891... Assistance § 891.560 HAP contract. (a) HAP contract. The housing assistance payments contract sets forth.... (b) HAP contract execution. (1) Upon satisfactory completion of the project, the Borrower and HUD...
Faria, D; Abreu, C S; Buciumeanu, M; Dourado, N; Carvalho, O; Silva, F S; Miranda, G
2018-05-01
This work presents a novel texture design for implants surface functionalization, through the creation of line-shaped textures on Ti6Al4V surfaces and subsequent sintering of hydroxyapatite (HAp) powder into the designated locations. HAp-rich locations were designed to avoid HAp detachment during insertion, thus guaranteeing an effective osseointegration. This process starts by creating textured lines using a Nd:YAG laser, filling these lines with HAp powder and sintering HAp using a CO 2 laser. The adhesion of HAp is known to be influenced by HAp sintering parameters, especially laser power and scanning speed and also by the textured lines manufacturing. Different laser parameters combinations were used to assess the sintering and adhesion of HAp to the textured lines. HAp adhesion was assessed by performing high energy ultrasonic cavitation tests and sliding tests mimicking an implant insertion, with Ti6Al4V/HAp specimens sliding against animal bone. The HAp content retained after these tests was measured and results showed that an excellent HAp sintering and adhesion was achieved when using a scan speed of 1 mm/s and laser power between 9 and 9.6 W. It is important to emphasize that results indicated that the HAp bioactivity was maintained when using these conditions, validating this functionalization process for the production of hip prosthesis with improved bioactivity. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1534-1545, 2018. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potkar, Rewati; Recla, Jill; Busov, Victor, E-mail: vbusov@mtu.edu
2013-02-15
Highlights: ► We show a novel microRNA-mediated mechanism for control of bud dormancy in trees. ► ptr-MIR169a and PtrHAP2–5 gene showed inverse expression during dormancy period. ► The PtrHAP2–5 decline in abundance correlated with high ptr-MIR169a levels. ► PtrHAP2–5 cleavage occurred at the miR169 site during PtrHAP2–5 transcript decline. ► Our results show that miR169 attenuates PtrHAP2–5 transcript during dormancy. -- Abstract: Dormancy is a mechanism evolved in woody perennial plants to survive the winter freezing and dehydration stress via temporary suspension of growth. We have identified two aspen microRNAs (ptr-MIR169a and ptr-MIR169h) which were highly and specifically expressed inmore » dormant floral and vegetative buds. ptr-MIR169a and its target gene PtrHAP2–5 showed inverse expression patterns during the dormancy period. ptr-MIR169a transcript steadily increased through the first half of the dormancy period and gradually declined with the approach of active growing season. PtrHAP2–5 abundance was higher in the beginning of the dormancy period but rapidly declined thereafter. The decline of PtrHAP2–5 correlated with the high levels of ptr-MIR169a accumulation, suggesting miR169-mediated attenuation of the target PtrHAP2–5 transcript. We experimentally verified the cleavage of PtrHAP2–5 at the predicted miR169a site at the time when PtrHAP2–5 transcript decline was observed. HAP2 is a subunit of a nuclear transcription factor Y (NF-Y) complex consisting of two other units, HAP3 and HAP5. Using digital expression profiling we show that poplar HAP2 and HAP5 are preferentially detected in dormant tissues. Our study shows that microRNAs play a significant and as of yet unknown and unstudied role in regulating the timing of bud dormancy in trees.« less
Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko
2010-01-01
Abstract Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. PMID:20409479
Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko
2010-04-21
Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Khalili, Malihe; Abedi, Mohammad; Amoli, Hossein Salar; Mozaffari, Seyed Ahmad
2017-11-01
In commercialization of liquid dye-sensitized solar cells (DSSCs), whose leakage, evaporation and toxicity of organic solvents are limiting factors, replacement of organic solvents with water-based gel electrolyte is recommended. This work reports on utilizing and comparison of chitosan and chitosan nanoparticle as different gelling agents in preparation of water-based gel electrolyte in fabrication of dye sensitized solar cells. All photovoltaic parameters such as open circuit voltage (V oc ), fill factor (FF), short circuit current density (J sc ) and conversion efficiency (η) were measured. For further characterization, electrochemical impedance spectroscopy (EIS) was used to study the charge transfer at Pt/electrolyte interface and charge recombination and electron transport at TiO 2 /dye/electrolyte interface. Significant improvements in conversion efficiency and short circuit current density of DSSCs fabricated by chitosan nanoparticle were observed that can be attributed to the higher mobility of I 3 - due to the lower viscosity and smaller size of chitosan nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Smectite clay--inorganic nanoparticle mixed suspensions: phase behaviour and rheology.
Bailey, Louise; Lekkerkerker, Henk N W; Maitland, Geoffrey C
2015-01-14
Smectite clay minerals and their suspensions have long been of both great scientific and applications interest and continue to display a remarkable range of new and interesting behaviour. Recently there has been an increasing interest in the properties of mixed suspensions of such clays with nanoparticles of different size, shape and charge. This review aims to summarize the current status of research in this area focusing on phase behaviour and rheological properties. We will emphasize the rich range of data that has emerged for these systems and the challenges they present for future investigations. The review starts with a brief overview of the behaviour and current understanding of pure smectite clays and their suspensions. We then cover the work on smectite clay-inorganic nanoparticle mixed suspensions according to the shape and charge of the nanoparticles - spheres, rods and plates either positively or negatively charged. We conclude with a summary of the overarching trends that emerge from these studies and indicate where gaps in our understanding need further research for better understanding the underlying chemistry and physics.
Electron beam patterning for writing of positively charged gold colloidal nanoparticles
NASA Astrophysics Data System (ADS)
Zafri, Hadar; Azougi, Jonathan; Girshevitz, Olga; Zalevsky, Zeev; Zitoun, David
2018-02-01
Synthesis at the nanoscale has progressed at a very fast pace during the last decades. The main challenge today lies in precise localization to achieve efficient nanofabrication of devices. In the present work, we report on a novel method for the patterning of gold metallic nanoparticles into nanostructures on a silicon-on-insulator (SOI) wafer. The fabrication makes use of relatively accessible equipment, a scanning electron microscope (SEM), and wet chemical synthesis. The electron beam implants electrons into the insulating material, which further anchors the positively charged Au nanoparticles by electrostatic attraction. The novel fabrication method was applied to several substrates useful in microelectronics to add plasmonic particles. The resolution and surface density of the deposition were tuned, respectively, by the electron energy (acceleration voltage) and the dose of electronic irradiation. We easily achieved the smallest written feature of 68 ± 18 nm on SOI, and the technique can be extended to any positively charged nanoparticles, while the resolution is in principle limited by the particle size distribution and the scattering of the electrons in the substrate. [Figure not available: see fulltext.
Potential of mean force between like-charged nanoparticles: Many-body effect
NASA Astrophysics Data System (ADS)
Zhang, Xi; Zhang, Jin-Si; Shi, Ya-Zhou; Zhu, Xiao-Long; Tan, Zhi-Jie
2016-03-01
Ion-mediated interaction is important for the properties of polyelectrolytes such as colloids and nucleic acids. The effective pair interactions between two polyelectrolytes have been investigated extensively, but the many-body effect for multiple polyelectrolytes still remains elusive. In this work, the many-body effect in potential of mean force (PMF) between like-charged nanoparticles in various salt solutions has been comprehensively examined by Monte Carlo simulation and the nonlinear Poisson-Boltzmann theory. Our calculations show that, at high 1:1 salt, the PMF is weakly repulsive and appears additive, while at low 1:1 salt, the additive assumption overestimates the repulsive many-body PMF. At low 2:2 salt, the pair PMF appears weakly repulsive while the many-body PMF can become attractive. In contrast, at high 2:2 salt, the pair PMF is apparently attractive while the many-body effect can cause a weaker attractive PMF than that from the additive assumption. Our microscopic analyses suggest that the elusive many-body effect is attributed to ion-binding which is sensitive to ion concentration, ion valence, number of nanoparticles and charges on nanoparticles.
The responses of immune cells to iron oxide nanoparticles.
Xu, Yaolin; Sherwood, Jennifer A; Lackey, Kimberly H; Qin, Ying; Bao, Yuping
2016-04-01
Immune cells play an important role in recognizing and removing foreign objects, such as nanoparticles. Among various parameters, surface coatings of nanoparticles are the first contact with biological system, which critically affect nanoparticle interactions. Here, surface coating effects on nanoparticle cellular uptake, toxicity and ability to trigger immune response were evaluated on a human monocyte cell line using iron oxide nanoparticles. The cells were treated with nanoparticles of three types of coatings (negatively charged polyacrylic acid, positively charged polyethylenimine and neutral polyethylene glycol). The cells were treated at various nanoparticle concentrations (5, 10, 20, 30, 50 μg ml(-1) or 2, 4, 8, 12, 20 μg cm(-2)) with 6 h incubation or treated at a nanoparticle concentration of 50 μg ml(-1) (20 μg cm(-2)) at different incubation times (6, 12, 24, 48 or 72 h). Cell viability over 80% was observed for all nanoparticle treatment experiments, regardless of surface coatings, nanoparticle concentrations and incubation times. The much lower cell viability for cells treated with free ligands (e.g. ~10% for polyethylenimine) suggested that the surface coatings were tightly attached to the nanoparticle surfaces. The immune responses of cells to nanoparticles were evaluated by quantifying the expression of toll-like receptor 2 and tumor necrosis factor-α. The expression of tumor necrosis factor-α and toll-like receptor 2 were not significant in any case of the surface coatings, nanoparticle concentrations and incubation times. These results provide useful information to select nanoparticle surface coatings for biological and biomedical applications. Copyright © 2016 John Wiley & Sons, Ltd.
Sricharoen, Phitchan; Limchoowong, Nunticha; Areerob, Yonrapach; Nuengmatcha, Prawit; Techawongstien, Suchila; Chanthai, Saksit
2017-07-01
Fe 3 O 4 /hydroxyapatite/graphene quantum dots (Fe 3 O 4 /HAP/GQDs) nanocomposite was synthesized and used as a novel magnetic adsorbent. This nanocomposite was characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and magnetization property. The Fe 3 O 4 /HAP/GQDs was applied to pre-concentrate copper residues in Thai food ingredients (so-called "Tom Yum Kung") prior to determination by inductively coupled plasma-atomic emission spectrometry. Based on ultrasound-assisted extraction optimization, various parameters affecting the magnetic solid-phase extraction, such as solution pH, amount of magnetic nanoparticles, adsorption and desorption time, and type of elution solvent and its concentration were evaluated. Under optimal conditions, the linear range was 0.05-1500ngmL -1 (R 2 >0.999), limit of detection was 0.58ngmL -1 , and limit of quantification was 1.94ngmL -1 . The precision, expressed as the relative standard deviation of the calibration curve slope (n=5), for intra-day and inter-day analyses was 0.87% and 4.47%, respectively. The recovery study of Cu for real samples was ranged between 83.5% and 104.8%. This approach gave the enrichment factor of 39.2, which guarantees trace analysis of Cu residues. Therefore, Fe 3 O 4 /HAP/GQDs can be a potential and suitable candidate for the pre-concentration and separation of Cu from food samples. It can easily be reused after treatment with deionized water. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Carles, R.; Bayle, M.; Bonafos, C.
2018-04-01
Hybrid structures combing silver nanoparticles and few-layer graphene have been synthetized by combining low-energy ion beam synthesis and stencil techniques. A single plane of metallic nanoparticles plays the role of an embedded plasmonic enhancer located in dedicated areas at a controlled nanometer distance from deposited graphene layers. Optical imaging, reflectance and Raman scattering mapping are used to measure the enhancement of electronic and vibrational properties of these layers. In particular electronic Raman scattering is shown as notably efficient to analyze the optical transfer of charge carriers between the systems and the presence of intrinsic and extrinsic defects.
Carles, R; Bayle, M; Bonafos, C
2018-04-27
Hybrid structures combing silver nanoparticles and few-layer graphene have been synthetized by combining low-energy ion beam synthesis and stencil techniques. A single plane of metallic nanoparticles plays the role of an embedded plasmonic enhancer located in dedicated areas at a controlled nanometer distance from deposited graphene layers. Optical imaging, reflectance and Raman scattering mapping are used to measure the enhancement of electronic and vibrational properties of these layers. In particular electronic Raman scattering is shown as notably efficient to analyze the optical transfer of charge carriers between the systems and the presence of intrinsic and extrinsic defects.
Intersystem Interference Reduction for Overlaid HAPS-Terrestrial CDMA System
NASA Astrophysics Data System (ADS)
Huang, Jeng-Ji; Wang, Wei-Ting; Li, Mingfu; Shiung, David; Ferng, Huei-Wen
In this letter, we propose that directional antennas, combined with power management, be incorporated to reduce intersystem interference in a shared band overlaid high altitude platform station (HAPS)-terrestrial code division multiple access (CDMA) system. To eliminate the HAPS to terrestrial interference, the HAPS is accessed only via directional antennas under the proposed scheme. By doing so, the uplink power to the HAPS can accordingly be increased, so that the terrestrial to HAPS interference is also effectively suppressed.
Chiu, Szu-Yu; Shinonaga, Yukari; Abe, Yoko; Harada, Kyoko; Arita, Kenji
2017-01-03
Glass-ionomer-cement (GIC) is helpful in Minimal Intervention Dentistry because it releases fluoride ions and is highly biocompatible. The aim of this study is to investigate the mechanisms by which hydroxyapatite (HAp) improves the mechanical strength and bioactive functioning of GIC when these materials are combined to make apatite ionomer cement (AIC). A conventional GIC powder was mixed with porous, spherical-HAp particles (HApS), crystalline HAp (HAp200) or one of two types of cellulose. The micro-compressive strengths of the additive particles were measured, and various specimens were evaluated with regard to their compressive strengths (CS), fluoride release concentrations (fluoride electrode) and multi-element release concentrations. The AIC was found to release higher concentrations of fluoride (1.2 times) and strontium ions (1.5 times) compared to the control GIC. It was detected the more release of calcium originated from HApS than HAp200 in AIC. The CS of the AIC incorporating an optimum level of HAp was also significantly higher than that of the GIC. These results suggest that adding HAp can increase the release concentration of ions required for remineralization while maintaining the CS of the GIC. This effect does not result from a physical phenomenon, but rather from chemical reactions between the HAp and polyacrylic acid of GIC.
Tabatabaee Bafroee, Akram Sadat; Siadat, Seyed Davar; Mousavi, Seyed Fazlollah; Aghasadeghi, Mohammad Reza; Khorsand, Hashem; Nejati, Mehdi; Sadat, Seyed Mehdi; Mahdavi, Mehdi
2016-09-01
Hap, an auto-transporter protein, is an antigenically conserved adhesion protein which is present on both typeable and nontypeable Haemophilus influenzae. This protein has central role in bacterial attachment to respiratory tract epithelial cells. A 1000bp C-terminal fragment of Hap passenger domain (HapS) from nontypeable Haemophilus influenzae was cloned into a prokaryotic expression vector, pET-24a. BALB/c mice were immunized subcutaneously with purified rC-HapS. Serum IgG responses to purified rC-HapS, serum IgG subclasses were determined by ELISA and functional activity of antibodies was examined by Serum Bactericidal Assay. The output of rC-HapS was approximately 62% of the total bacterial proteins. Serum IgG responses were significantly increased in immunized group with rC-HapS mixed with Freund's adjuvant in comparison with control groups. Analysis of the serum IgG subclasses showed that the IgG1 subclass was predominant after subcutaneous immunization in BALB/c mice (IgG2a/IgG1 < 1). The sera from rC-HapS immunized animals were strongly bactericidal against nontypeable Haemophilus influenzae. These results suggest that rC-HapS may be a potential vaccine candidate for nontypeable Haemophilus influenzae. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chiu, Szu-Yu; Shinonaga, Yukari; Abe, Yoko; Harada, Kyoko; Arita, Kenji
2017-01-01
Glass-ionomer-cement (GIC) is helpful in Minimal Intervention Dentistry because it releases fluoride ions and is highly biocompatible. The aim of this study is to investigate the mechanisms by which hydroxyapatite (HAp) improves the mechanical strength and bioactive functioning of GIC when these materials are combined to make apatite ionomer cement (AIC). A conventional GIC powder was mixed with porous, spherical-HAp particles (HApS), crystalline HAp (HAp200) or one of two types of cellulose. The micro-compressive strengths of the additive particles were measured, and various specimens were evaluated with regard to their compressive strengths (CS), fluoride release concentrations (fluoride electrode) and multi-element release concentrations. The AIC was found to release higher concentrations of fluoride (1.2 times) and strontium ions (1.5 times) compared to the control GIC. It was detected the more release of calcium originated from HApS than HAp200 in AIC. The CS of the AIC incorporating an optimum level of HAp was also significantly higher than that of the GIC. These results suggest that adding HAp can increase the release concentration of ions required for remineralization while maintaining the CS of the GIC. This effect does not result from a physical phenomenon, but rather from chemical reactions between the HAp and polyacrylic acid of GIC. PMID:28772386
24 CFR 983.202 - Purpose of HAP contract.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Purpose of HAP contract. 983.202... DEVELOPMENT PROJECT-BASED VOUCHER (PBV) PROGRAM Housing Assistance Payments Contract § 983.202 Purpose of HAP contract. (a) Requirement. The PHA must enter into a HAP contract with the owner. The HAP contract must be...
24 CFR 891.590 - Notice upon HAP contract expiration.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Notice upon HAP contract expiration... Handicapped-Section 8 Assistance § 891.590 Notice upon HAP contract expiration. (a) Notice required. The HAP contract will provide that the Borrower will, at least one year before the end of the HAP contract term...
HapZipper: sharing HapMap populations just got easier.
Chanda, Pritam; Elhaik, Eran; Bader, Joel S
2012-11-01
The rapidly growing amount of genomic sequence data being generated and made publicly available necessitate the development of new data storage and archiving methods. The vast amount of data being shared and manipulated also create new challenges for network resources. Thus, developing advanced data compression techniques is becoming an integral part of data production and analysis. The HapMap project is one of the largest public resources of human single-nucleotide polymorphisms (SNPs), characterizing over 3 million SNPs genotyped in over 1000 individuals. The standard format and biological properties of HapMap data suggest that a dedicated genetic compression method can outperform generic compression tools. We propose a compression methodology for genetic data by introducing HapZipper, a lossless compression tool tailored to compress HapMap data beyond benchmarks defined by generic tools such as gzip, bzip2 and lzma. We demonstrate the usefulness of HapZipper by compressing HapMap 3 populations to <5% of their original sizes. HapZipper is freely downloadable from https://bitbucket.org/pchanda/hapzipper/downloads/HapZipper.tar.bz2.
The Haemophilus influenzae Hap Autotransporter Binds to Fibronectin, Laminin, and Collagen IV
Fink, Doran L.; Green, Bruce A.; St. Geme III, Joseph W.
2002-01-01
Nontypeable Haemophilus influenzae (NTHI) initiates infection by colonizing the upper respiratory tract mucosa. NTHI disease frequently occurs in the context of respiratory tract inflammation, where organisms encounter damaged epithelium and exposed basement membrane. In this study, we examined interactions between the H. influenzae Hap adhesin and selected extracellular matrix proteins. Hap is an autotransporter protein that undergoes autoproteolytic cleavage, with release of the adhesive passenger domain, Haps, from the bacterial cell surface. We found that Hap promotes bacterial adherence to purified fibronectin, laminin, and collagen IV and that Hap-mediated adherence is enhanced by inhibition of autoproteolysis. Adherence is inhibited by pretreatment of bacteria with a polyclonal antiserum recognizing Haps. Purified Haps binds with high affinity to fibronectin, laminin, and collagen IV but not to collagen II. Binding of Haps to fibronectin involves interaction with the 45-kDa gelatin-binding domain but not the 30-kDa heparin-binding domain of fibronectin. Taken together, these observations suggest that interactions between Hap and extracellular matrix proteins may play an important role in NTHI colonization of the respiratory tract. PMID:12183535
Mechanical properties and corrosion behavior of Mg-HAP composites.
Campo, R Del; Savoini, B; Muñoz, A; Monge, M A; Garcés, G
2014-11-01
Mg and Mg-HAP composites containing 5, 10 and 15 wt% of hydroxyapatite have been produced following a powder metallurgy route that consists of mixing raw powders and consolidation by extrusion. The microstructure, texture, mechanical behavior and resistance to corrosion under a PBS solution have been studied. Addition of HAP increases the microhardness of the composites, however the yield strength under compression slightly decreases. Texture analyses reveal a fiber texture for pure Mg that is weakened increasing the HAP fraction. This texture promotes twinning and softening of Mg and Mg-5HAP during the initial deformation stages. Mg-10HAP and Mg-15HAP present a strain-hardening dependence showing no softening. The volume fraction of HAP particles weakens the texture and favors the activation of secondary slip systems. Corrosion experiments in PBS solution have shown that Mg-5HAP exhibits the best resistance to corrosion. Texture and porosity appear to be the main material features controlling the corrosion rates of Mg-HAP composites under the present conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Continuous Production of Discrete Plasmid DNA-Polycation Nanoparticles Using Flash Nanocomplexation.
Santos, Jose Luis; Ren, Yong; Vandermark, John; Archang, Maani M; Williford, John-Michael; Liu, Heng-Wen; Lee, Jason; Wang, Tza-Huei; Mao, Hai-Quan
2016-12-01
Despite successful demonstration of linear polyethyleneimine (lPEI) as an effective carrier for a wide range of gene medicine, including DNA plasmids, small interfering RNAs, mRNAs, etc., and continuous improvement of the physical properties and biological performance of the polyelectrolyte complex nanoparticles prepared from lPEI and nucleic acids, there still exist major challenges to produce these nanocomplexes in a scalable manner, particularly for lPEI/DNA nanoparticles. This has significantly hindered the progress toward clinical translation of these nanoparticle-based gene medicine. Here the authors report a flash nanocomplexation (FNC) method that achieves continuous production of lPEI/plasmid DNA nanoparticles with narrow size distribution using a confined impinging jet device. The method involves the complex coacervation of negatively charged DNA plasmid and positive charged lPEI under rapid, highly dynamic, and homogeneous mixing conditions, producing polyelectrolyte complex nanoparticles with narrow distribution of particle size and shape. The average number of plasmid DNA packaged per nanoparticles and its distribution are similar between the FNC method and the small-scale batch mixing method. In addition, the nanoparticles prepared by these two methods exhibit similar cell transfection efficiency. These results confirm that FNC is an effective and scalable method that can produce well-controlled lPEI/plasmid DNA nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrostatic assembly of binary nanoparticle superlattices using protein cages
NASA Astrophysics Data System (ADS)
Kostiainen, Mauri A.; Hiekkataipale, Panu; Laiho, Ari; Lemieux, Vincent; Seitsonen, Jani; Ruokolainen, Janne; Ceci, Pierpaolo
2013-01-01
Binary nanoparticle superlattices are periodic nanostructures with lattice constants much shorter than the wavelength of light and could be used to prepare multifunctional metamaterials. Such superlattices are typically made from synthetic nanoparticles, and although biohybrid structures have been developed, incorporating biological building blocks into binary nanoparticle superlattices remains challenging. Protein-based nanocages provide a complex yet monodisperse and geometrically well-defined hollow cage that can be used to encapsulate different materials. Such protein cages have been used to program the self-assembly of encapsulated materials to form free-standing crystals and superlattices at interfaces or in solution. Here, we show that electrostatically patchy protein cages--cowpea chlorotic mottle virus and ferritin cages--can be used to direct the self-assembly of three-dimensional binary superlattices. The negatively charged cages can encapsulate RNA or superparamagnetic iron oxide nanoparticles, and the superlattices are formed through tunable electrostatic interactions with positively charged gold nanoparticles. Gold nanoparticles and viruses form an AB8fcc crystal structure that is not isostructural with any known atomic or molecular crystal structure and has previously been observed only with large colloidal polymer particles. Gold nanoparticles and empty or nanoparticle-loaded ferritin cages form an interpenetrating simple cubic AB structure (isostructural with CsCl). We also show that these magnetic assemblies provide contrast enhancement in magnetic resonance imaging.
Continuous Production of Discrete Plasmid DNA-Polycation Nanoparticles Using Flash Nanocomplexation
Santos, Jose Luis; Ren, Yong; Vandermark, John; Archang, Maani M.; Williford, John-Michael; Liu, Heng-wen; Lee, Jason; Wang, Tza-Huei; Mao, Hai-Quan
2016-01-01
Despite successful demonstration of linear polyethyleneimine (lPEI) as an effective carrier for a wide range of gene medicine, including DNA plasmids, small interfering RNAs, mRNAs, etc., and continuous improvement of the physical properties and biological performance of the polyelectrolyte complex nanoparticles prepared from lPEI and nucleic acids, there still exist major challenges to produce these nanocomplexes in a scalable manner, particularly for lPEI/DNA nanoparticles. This has significantly hindered the progress towards clinical translation of these nanoparticle-based gene medicine. Here we report a flash nanocomplexation (FNC) method that achieves continuous production of lPEI/plasmid DNA nanoparticles with narrow size distribution using a confined impinging jet device. The method involves the complex coacervation of negatively charged DNA plasmid and positive charged lPEI under rapid, highly dynamic, and homogeneous mixing conditions, producing polyelectrolyte complex nanoparticles with narrow distribution of particle size and shape. The average number of plasmid DNA packaged per nanoparticles and its distribution are similar between the FNC method and the small-scale batch mixing method. In addition, the nanoparticles prepared by these two methods exhibit similar cell transfection efficiency. These results confirm that FNC is an effective and scalable method that can produce well-controlled lPEI/plasmid DNA nanoparticles. PMID:27717227
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Song; Huang, Hao, E-mail: huanghao@dlut.edu.cn; Wu, Aimin
2016-10-15
A direct current arc-discharge method was applied to prepare the Sn–M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn–M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn–Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g{sup −1}/366.6 mA h g{sup −1}) and optimal cycle stability (a specific reversible capacity of 240 mA h g{sup −1} maintained after 20 cycles) compared with others. Large differences in themore » electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process. - Graphical abstract: The growth mechanism and electrochemical performance of Sn-based alloy nanoparticles. - Highlights: • Thermodynamic analyses of oxides on Sn-M nanoparticles surface. • The relationship between chemical components and electrochemical responses. • Sn-Fe nanoparticles show excellent electrode performance.« less
Trapping effect of metal nanoparticle mono- and multilayer in the organic field-effect transistor
NASA Astrophysics Data System (ADS)
Lee, Keanchuan; Weis, Martin; Lin, Jack; Taguchi, Dai; Majková, Eva; Manaka, Takaaki; Iwamoto, Mitsumasa
2011-03-01
The effect of silver nanoparticles self-assembled monolayer (Ag NPs SAM) on charge transport in pentacene organic field-effect transistors (OFET) was investigated by both steady-state and transient-state methods, which are current-voltage measurements in steady-state and time-resolved microscopic (TRM) second harmonic generation (SHG) in transient-state, respectively. The analysis of electronic properties revealed that OFET with SAM exhibited significant charge trapping effect due to the space-charge field formed by immobile charges. Lower transient-state mobility was verified by the direct probing of carrier motion by TRM-SHG technique. It was shown that the trapping effect rises together with increase of SAM layers suggesting the presence of traps in the bulk of NP films. The model based on the electrostatic charge barrier is suggested to explain the phenomenon.
Gossmann, R; Fahrländer, E; Hummel, M; Mulac, D; Brockmeyer, J; Langer, K
2015-06-01
The behavior of nanosized drug carrier systems under cell culture conditions and therefore also the destiny in the body are highly influenced by the protein corona, which is formed upon entering a biological environment. Some of the adsorbed proteins, named opsonins, lead to a shortened plasma circulation half-life of the nanoparticles. Others are attributed to promote the transport of nanoparticles into other compartments of the body, just to mention two examples. Hence, detailed knowledge concerning the composition of the protein corona is of great importance. The aim of this work was to investigate the influence of the nanoparticle starting material and the surface modification on the composition of the adsorbed serum proteins in a cell culture environment. Therefore, positively charged nanoparticles based on the biodegradable polymer poly(dl-lactide-co-glycolide) (PLGA) stabilized with didodecyldimethylammonium bromide (DMAB) and negatively charged nanoparticles based on human serum albumin (HSA) were prepared and modified with hydrophilic polymers. By incubating the nanoparticles with fetal bovine serum (FBS) the adsorption of serum proteins on the colloidal system was investigated. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) a semi-quantitative analysis of the protein corona was performed and after enzymatic in-solution-digestion the adsorbed proteins were identified using high resolution LC-MS. Our study accentuates the influence of the core material, surface charge, and surface modification on the amount and nature of the adsorbed proteins. The combination of SDS-PAGE and LC-MS turns out to be a simple and reliable method to investigate the protein corona of nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.
Space charge effects on the dielectric response of polymer nanocomposites
NASA Astrophysics Data System (ADS)
Shen, Zhong-Hui; Wang, Jian-Jun; Zhang, Xin; Lin, Yuanhua; Nan, Ce-Wen; Chen, Long-Qing; Shen, Yang
2017-08-01
Adding high-κ ceramic nanoparticles into polymers is a general strategy to improve the performances in energy storage. Classic effective medium theories may fail to predict the effective permittivity in polymer nanocomposites wherein the space charge effects are important. In this work, a computational model is developed to understand the space charge effects on the frequency-dependent dielectric properties including the real permittivity and the loss for polymer nanocomposites with both randomly distributed and aggregated nanoparticle fillers. It is found that the real permittivity of the SrTiO3/polyethylene (12% SrTiO3 in volume fraction) nanocomposite can be increased to as high as 60 when there is nanoparticle aggregation and the ion concentration in the bulk polymer is around 1016 cm-3. This model can be employed to quantitatively predict the frequency-dependent dielectric properties for polymer nanocomposites with arbitrary microstructures.
Surfactant free nickel sulphide nanoparticles for high capacitance supercapacitors
NASA Astrophysics Data System (ADS)
Nandhini, S.; Muralidharan, G.
2018-04-01
The surfactant free nickel sulphide nanoparticles were synthesized via facile hydrothermal method towards supercapacitor applications. The formation of crystalline spherical nanoparticles was confirmed through structural and morphological studies. Electrochemical behaviour of the electrode was analyzed using cyclic voltammetry (CV), galvanostatic charge-discharge studies (GCD) and electrochemical impedance spectroscopy (EIS). The CV studies imply that specific capacitance of the electrode arises from a combination of surface adsorption and Faradic reaction. The NiS electrode delivered a specific capacitance of about 529 F g-1 at a current density of 2 A g-1 (GCD measurements). A profitable charge transfer resistance of 0.5 Ω was obtained from EIS. The 100 % of capacity retention even after 2000 repeated charge-discharge cycles could be observed in 2 M KOH electrolyte at a much larger rate of 30 A g-1. The experimental results suggest that nickel sulphide is a potential candidate for supercapacitor applications.
Thiol antioxidant-functionalized CdSe/ZnS quantum dots: Synthesis, Characterization, Cytotoxicity
Zheng, Hong; Mortensen, Luke J.; DeLouise, Lisa A.
2016-01-01
Nanotechnology is a growing industry with wide ranging applications in consumer product and technology development. In the biomedical field, nanoparticles are finding increasing use as imaging agents for biomolecular labeling and tumor targeting. The nanoparticle physiochemical properties must be tailored for the specific application but chemical and physical stability in the biological milieu (no oxidation, aggregation, agglomeration or toxicity) are often required. Nanoparticles used for biomolecular fluorescent imaging should also have high quantum yield (QY). The aim of this paper is to examine the QY, stability, and cell toxicity of a series of positive, negative and neutral surface charge quantum dot (QD) nanoparticles. Simple protocols are described to prepare water soluble QDs by modifying the surface with thiol containing antioxidant ligands and polymers keeping the QD core/shell composition constant. The ligands used to produce negatively charged QDs include glutathione (GSH), N-acetyl-L-cysteine (NAC), dihydrolipoic acid (DHLA), tiopronin (TP), bucilliamine (BUC), and mercaptosuccinic acid (MSA). Ligands used to produce positively charged QDs include cysteamine (CYS) and polyethylenimine (PEI). Dithiothreitol (DTT) was used to produce neutral charged QDs. Commercially available nonaqueous octadecylamine (ODA) capped QDs served as the starting material. Our results suggest that QD uptake and cytotoxicity are both dependent on surface ligand coating composition. The negative charged GSH coated QDs show superior performance exhibiting low cytotoxicity, high stability, high QY and therefore are best suited for bioimaging applications. PEI coated QD also show superior performance exhibiting high QY and stability. However, they are considerably more cytotoxic due to their high positive charge which is an advantageous property that can be exploited for gene transfection and/or tumor targeting applications. The synthetic procedures described are straightforward and can be easily adapted in most laboratory settings. PMID:23620993
NASA Astrophysics Data System (ADS)
Bau, Sébastien; Bémer, Denis; Grippari, Florence; Appert-Collin, Jean-Christophe; Thomas, Dominique
2014-10-01
Increasing numbers of workers are exposed to airborne nanoparticles, the health effects of which remain difficult to evaluate. Effective density is considered to be a key characteristic of airborne nanoparticles due to its role in particle deposition in the human respiratory tract and in the conversion of number distributions to mass distributions. Because effective density cannot be measured directly, in this study the electrical mobility and aerodynamic equivalent diameters of airborne nanoparticles were measured simultaneously (tandem DMA/ELPI). Test aerosols consisted of spherical Di-Ethyl-Hexyl-Sebacate nanoparticles produced by nebulization (PALAS AGK 2000). To take into account the presence of multiple-charged particles at the DMA outlet, a theoretical model was developed in which the successive mechanisms undergone by particles are accounted for. Using this model, it is possible to determine the proportion of each population exiting the DMA ( p = 1, 2,…,5 elementary charges) in each channel of the overall ELPI signal. Thus, particle effective density can be estimated for each population. The results indicate that using the ELPI signal alone could lead to significant misevaluation of particle effective density, with biases up to 150 %. However, when the proportion of each population is taken into account, particle effective density is determined within ±15 % of the theoretical value.
Jung, Youngsoo; Son, You-Hwan; Lee, Jung-Kun; Phuoc, Tran X; Soong, Yee; Chyu, Minking K
2011-09-01
Two different types of clay nanoparticle hybrid, iron oxide nanoparticle clay hybrid (ICH) and Al(2)O(3)-SiO(2) nanoparticle clay hybrid (ASCH), were synthesized and their effects on the rheological properties of aqueous bentonite fluids in steady state and dynamic state were explored. When ICH particles were added, bentonite particles in the fluid cross-link to form relatively well-oriented porous structure. This is attributed to the development of positively charged edge surfaces in ICH that leads to strengthening of the gel structure of the bentonite susensions. The role of ASCH particles on the interparticle association of the bentonite fluids is different from that of ICH and sensitive to pH. As pH of ASCH-added bentonite suspensions increased, the viscosity, yield stress, storage modulus, and flow stress decreased. In contrast, at low pH, the clay suspensions containing ASCH additives were coagulated and their rheological properties become close to those of ICH added bentonite fluids. A correlation between the net surface charge of the hybrid additives and the rheological properties of the fluids indicates that the embedded nanoparticles within the interlayer space control the variable charge of the edge surfaces of the platelets and determine the particles association behavior of the clay fluids.
Gene delivery in conjunction with gold nanoparticle and tumor treating electric field
NASA Astrophysics Data System (ADS)
Tiwari, Pawan K.; Soo Lee, Yeon
2013-08-01
The advances in electrotherapy to treat the diseased biological cell instigate its extension in gene therapy through the delivery of gene into the nucleus. The objective of this study is to investigate the application of moderate intensity alternating electric field, also known as tumor treating electric field on a carrier system consisting of a charged gene complex conjugated to the surface of a gold nanoparticle. The gene delivery mechanism relies on the magnitude and direction of the induced electric field inside the cytoplasm in presence of carrier system. The induced electric field strength is significant in breaking the gene complex-gold nanoparticle bonding, and exerting an electric force pushing the charged gene into the nucleus. The electric force orientation is dependent on the aspect ratio (AR) of the gold nanoparticle and a relationship between them is studied via Maxwell two-dimensional (2D) finite element simulation analyzer. The development of charge density on the surface of carrier system and the required electric field strength to break the bonding are investigated utilizing the Gouy-Chapman-Grahame-Stern (GCGS) theoretical model. A carrier system having the aspect ratio of the gold nanoparticle in the range 1 < AR ≤ 5 and AR = 1 are substantial delivering cationic and anionic genes into the nucleus, respectively.
Stookey, Jodi D; Evans, Jane; Chan, Curtis; Tao-Lew, Lisa; Arana, Tito; Arthur, Susan
2017-12-19
North Carolina Nutrition and Physical Activity Self-Assessment for Child Care (NAP SACC) resources improve child body mass index (BMI) when the resources are introduced by nurses to child care providers, and offered with workshops and incentives. In San Francisco, public health and child care agencies partnered to adapt NAP SACC resources into an annual "Healthy Apple" quality improvement program (HAP). This cluster randomized controlled trial pilot-tested integration of the HAP with bi-annual public health screenings by nurses. All child care centers that participated in Child Care Health Program (CCHP) screenings in San Francisco in 2011-2012 were offered routine services plus HAP in 2012-2013 (CCHP + HAP, n = 19) or routine services with delayed HAP in 2014-2015 (CCHP + HAP Delayed, n = 24). Intention-to-treat analyses (robust SE or mixed models) used 4 years of screening data from 12 to 17 CCHP + HAP and 17 to 20 CCHP + HAP Delayed centers, regarding 791 to 945 children ages 2 to 5y, annually. Year-specific, child level models tested if children in CCHP + HAP centers had greater relative odds of exposure to 3 index best practices and smaller Autumn-to-Spring changes in BMI percentile and z-score than children in CCHP + HAP Delayed centers, controlling for age, sex, and Autumn status. Multi-year, child care center level models tested if HAP support modified year-to-year changes (2013-2014 and 2014-2015 vs 2011-2012) in child care center annual mean Autumn-to-Spring BMI changes. In 2011-2012, the CCHP + HAP and CCHP + HAP Delayed centers had similar index practices (<15% of children were exposed to a physical activity curriculum, staff joining in active play, and drinking water pitchers) and annual BMI changes. In 2013-2014: 60% of children in CCHP + HAP centers were exposed to the 3 index practices vs 19% in CCHP + HAP Delayed centers; Mean (SE) child BMI percentile (-2.6 (0.9), p = 0.003) and z-score (-0.08 (0.03), p = 0.007) decreased more in CCHP + HAP vs CCHP + HAP Delayed centers. In 2014-2015, after all centers were offered HAP, the index practices and BMI changes were improved for all centers vs 2011-2012. Integration of the HAP with existing public health nursing services was associated with significantly more children exposed to best practices and improvement in child BMI change. The results warrant continued integration of HAP into local public health infrastructure. ISRCTN18857356 (24/04/2015) Retrospectively registered.
Skwarek, Ewa; Goncharuk, Olena; Sternik, Dariusz; Janusz, Wladyslaw; Gdula, Karolina; Gun'ko, Vladimir M
2017-12-01
A series of composites based on nanohydroxyapatite (nHAp) and natural polysaccharides (PS) (nHAp/agar, nHAp/chitosan, nHAp/pectin FB300, nHAp/pectin APA103, nHAp/sodium alginate) was synthesized by liquid-phase two-step method and characterized using nitrogen adsorption-desorption, DSC, TG, FTIR spectroscopy, and SEM. The analysis of nitrogen adsorption-desorption data shows that composites with a nHAp: PS ratio of 4:1 exhibit a sufficiently high specific surface area from 49 to 82 m 2 /g. The incremental pore size distributions indicate mainly mesoporosity. The composites with the component ratio 1:1 preferably form a film-like structure, and the value of S BET varies from 0.3 to 43 m 2 /g depending on the nature of a polysaccharide. Adsorption of Sr(II) on the composites from the aqueous solutions has been studied. The thermal properties of polysaccharides alone and in nHAp/PS show the influence of nHAp, since there is a shift of characteristic DSC and DTG peaks. FTIR spectroscopy data confirm the presence of functional groups typical for nHAp as well as polysaccharides in composites. Structure and morphological characteristics of the composites are strongly dependent on the ratio of components, since nHAp/PS at 4:1 have relatively large S BET values and a good ability to adsorb metal ions. The comparison of the adsorption capacity with respect to Sr(II) of nHAp, polysaccharides, and composites shows that it of the latter is higher than that of nHAp (per 1 m 2 of surface).
Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite.
Neelgund, Gururaj M; Oki, Aderemi R
2016-12-15
Herein we present a successful strategy for enhancement of photothermal efficiency of hydroxyapatite (HAP) by its conjugation with carbon nanotubes (CNTs) and graphene nanosheets (GR). Owing to excellent biocompatibility with human body and its non-toxicity, implementation of HAP based nanomaterials in photothermal therapy (PTT) provides non-replaceable benefits over PTE agents. Therefore, in this report, it has been experimentally exploited that the photothermal effect (PTE) of HAP has significantly improved by its assembly with CNTs and GR. It is found that the type of carbon nanomaterial used to conjugate with HAP has influence on its PTE in such a way that the photothermal efficiency of GR-HAP was higher than CNTs-COOH-HAP under exposure to 980nm near-infrared (NIR) laser. The temperature attained by aqueous dispersions of both CNTs-COOH-HAP and GR-HAP after illuminating to NIR radiations for 7min was found to be above 50°C, which is beyond the temperature tolerance of cancer cells. So that the rise in temperature shown by both CNTs-COOH-HAP and GR-HAP is enough to induce the death of tumoral or cancerous cells. Overall, this approach in modality of HAP with CNTs and GR provide a great potential for development of future nontoxic PTE agents. Copyright © 2016 Elsevier Inc. All rights reserved.
Sebei, Haroun; Pham Minh, Doan; Lyczko, Nathalie; Sharrock, Patrick; Nzihou, Ange
2017-10-01
Hydroxyapatite (HAP) is highly considered as good sorbent for the removal of metals from the aqueous phase. However, soluble metals co-exist with organic pollutants in wastewaters. But little work has been devoted to investigate the reactivity of HAP for the removal of organic compounds. The main objective of this work is to study the reactivity of HAP-based sorbents for the removal of catechol as a model organic pollutant from an aqueous solution. Thus, HAP sorbents were firstly synthesized using calcium carbonate and potassium dihydrogen phosphate under moderate conditions (25-80°C, atmospheric pressure). A zinc-doped HAP was also used as sorbent, which was obtained from the contact of HAP with an aqueous solution of zinc nitrate. All the sorbents were characterized by different standard physico-chemical techniques. The sorption of catechol was carried out in a batch reactor under stirring at room temperature and pressure. Zinc-doped HAP sorbent was found to be more reactive than non-doped HAP sorbents for the fixation of catechol. The highest sorption capacity was of 15 mg of C per gram of zinc-doped HAP sorbent. The results obtained suggest the reaction scheme of HAP sorbents with metals and organic pollutants when HAP sorbents were used for the treatment of complex wastewaters.
40 CFR 63.5335 - How do I determine the actual HAP loss?
Code of Federal Regulations, 2011 CFR
2011-07-01
... to the leather; (iii) Mass fraction of HAP in each applied finish; (iv) Date of the recorded entry... recorded finish usage by the corresponding mass fraction of HAP in the finish. The result is the HAP loss... the pounds of each recorded finish usage by the corresponding mass fraction of HAP in the finish. The...
24 CFR 983.204 - When HAP contract is executed.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false When HAP contract is executed. 983... When HAP contract is executed. (a) PHA inspection of housing. (1) Before execution of the HAP contract... into a HAP contract for any contract unit until the PHA has determined that the unit complies with the...
24 CFR 891.565 - Term of HAP contract.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Term of HAP contract. 891.565... 8 Assistance § 891.565 Term of HAP contract. The term of the HAP contract for assisted units shall be 20 years. If the project is completed in stages, the term of the HAP contract for assisted units...
Jacobson, Kurt H.; Gunsolus, Ian L.; Kuech, Thomas R.; ...
2015-07-24
We report that design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations, and assessment of the potential implications of nanoparticle release into the environment require understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the lipid-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) andmore » second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. Association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Lastly, our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides.« less
Huang, Baolin; Yuan, Yuan; Ding, Sai; Li, Jianbo; Ren, Jie; Feng, Bo; Li, Tong; Gu, Yuantong; Liu, Changsheng
2015-11-01
Highly efficient loading of bone morphogenetic protein-2 (BMP-2) onto carriers with desirable performance is still a major challenge in the field of bone regeneration. Till now, the nanoscaled surface-induced changes of the structure and bioactivity of BMP-2 remains poorly understood. Here, the effect of nanoscaled surface on the adsorption and bioactivity of BMP-2 was investigated with a series of hydroxyapatite surfaces (HAPs): HAP crystal-coated surface (HAP), HAP crystal-coated polished surface (HAP-Pol), and sintered HAP crystal-coated surface (HAP-Sin). The adsorption dynamics of recombinant human BMP-2 (rhBMP-2) and the accessibility of the binding epitopes of adsorbed rhBMP-2 for BMP receptors (BMPRs) were examined by a quartz crystal microbalance with dissipation. Moreover, the bioactivity of adsorbed rhBMP-2 and the BMP-induced Smad signaling were investigated with C2C12 model cells. A noticeably high mass-uptake of rhBMP-2 and enhanced recognition of BMPR-IA to adsorbed rhBMP-2 were found on the HAP-Pol surface. For the rhBMP-2-adsorbed HAPs, both ALP activity and Smad signaling increased in the order of HAP-Sin
Double heterojunction nanowire photocatalysts for hydrogen generation.
Tongying, P; Vietmeyer, F; Aleksiuk, D; Ferraudi, G J; Krylova, G; Kuno, M
2014-04-21
Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core/shell nanowires and their Pt nanoparticle-decorated counterparts. Femtosecond transient differential absorption measurements reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. In turn, we unravel the role of surface passivation, charge separation at semiconductor interfaces and charge transfer to metal co-catalysts in determining photocatalytic H2 generation efficiencies. This allows us to rationalize why Pt nanoparticle decorated CdSe/CdS NWs, a double heterojunction system, performs best with H2 generation rates of ∼434.29 ± 27.40 μmol h(-1) g(-1) under UV/Visible irradiation. In particular, we conclude that the CdS shell of this double heterojunction system serves two purposes. The first is to passivate CdSe NW surface defects, leading to long-lived charges at the CdSe/CdS interface capable of carrying out reduction chemistries. Upon photoexcitation, we also find that CdS selectively injects charges into Pt NPs, enabling simultaneous reduction chemistries at the Pt NP/solvent interface. Pt nanoparticle decorated CdSe/CdS NWs thus enable reduction chemistries at not one, but rather two interfaces, taking advantage of each junction's optimal catalytic activities.
40 CFR 63.3531 - How do I demonstrate initial compliance with the emission limitations?
Code of Federal Regulations, 2012 CFR
2012-07-01
... fraction of organic HAP for each material. Determine the mass fraction of organic HAP for each coating and... coating. Wc,i = Mass fraction of organic HAP in coating, i, kg organic HAP per kg coating. m = Number of...,j = Density of thinner, j, kg per liter. Wt,j = Mass fraction of organic HAP in thinner, j, kg...
40 CFR 63.4151 - How do I demonstrate initial compliance with the emission limitations?
Code of Federal Regulations, 2012 CFR
2012-07-01
... option. (a) Determine the mass fraction of organic HAP for each material. Determine the mass fraction of... coating per liter coating. Wc,i = mass fraction of organic HAP in coating, i, kg organic HAP per kg... thinner per liter thinner. Wt,j = mass fraction of organic HAP in thinner, j, kg organic HAP per kg...
40 CFR 63.3531 - How do I demonstrate initial compliance with the emission limitations?
Code of Federal Regulations, 2014 CFR
2014-07-01
... fraction of organic HAP for each material. Determine the mass fraction of organic HAP for each coating and... coating. Wc,i = Mass fraction of organic HAP in coating, i, kg organic HAP per kg coating. m = Number of...,j = Density of thinner, j, kg per liter. Wt,j = Mass fraction of organic HAP in thinner, j, kg...
40 CFR 63.3531 - How do I demonstrate initial compliance with the emission limitations?
Code of Federal Regulations, 2013 CFR
2013-07-01
... fraction of organic HAP for each material. Determine the mass fraction of organic HAP for each coating and... coating. Wc,i = Mass fraction of organic HAP in coating, i, kg organic HAP per kg coating. m = Number of...,j = Density of thinner, j, kg per liter. Wt,j = Mass fraction of organic HAP in thinner, j, kg...
40 CFR 63.4151 - How do I demonstrate initial compliance with the emission limitations?
Code of Federal Regulations, 2014 CFR
2014-07-01
... option. (a) Determine the mass fraction of organic HAP for each material. Determine the mass fraction of... coating per liter coating. Wc,i = mass fraction of organic HAP in coating, i, kg organic HAP per kg... thinner per liter thinner. Wt,j = mass fraction of organic HAP in thinner, j, kg organic HAP per kg...
Vozzi, G; Corallo, C; Carta, S; Fortina, M; Gattazzo, F; Galletti, M; Giordano, N
2014-05-01
The application of porous hydroxyapatite (HAp)-collagen as a bone tissue engineering scaffold represents a new trend of mimicking the specific bone extracellular matrix (ECM). The use of HAp in reconstructive surgery has shown that it is slowly invaded by host tissue. Therefore, implant compatibility may be augmented by seeding cells before implantation. Human primary osteoblasts were seeded onto innovative collagen-gelatin-genipin (GP)-HAp scaffolds containing respectively 10%, 20%, and 30% HAp. Cellular adhesion, proliferation, alkaline phosphatase (ALP) activity, osteopontin (OPN), and osteocalcin (OC) expressions were evaluated after 3, 7, 15, and 21 days. The three types of scaffolds showed increased cellular proliferation over time in culture (maximum at 21 days) but the highest was recorded in 10% HAp scaffolds. ALP activity was the highest in 10% HAp scaffolds in all the times of evaluation. OC and OPN resulted in higher concentration in 10% HAp scaffolds compared to 20% and 30% HAp (maximum at 21 days). Finally, scanning electron microscopy analysis showed progressive scaffolds adhesion and colonization from the surface to the inside from day 3 to day 21. In vitro attachment, proliferation, and colonization of human primary osteoblasts on collagen-GP-HAp scaffolds with different percentages of HAp (10%, 20%, and 30%) all increased over time in culture, but comparing different percentages of HAp, they seem to increase with decreasing of HAp component. Therefore, the mechanical properties (such as the stiffness due to the HAp%) coupled with a good biomimetic component (collagen) are the parameters to set up in composite scaffolds design for bone tissue engineering. Copyright © 2013 Wiley Periodicals, Inc.
Microwave-induced production of boron-doped HAp (B-HAp) and B-HAp coated composite scaffolds.
Tunçay, Ekin Ö; Demirtaş, T Tolga; Gümüşderelioğlu, Menemşe
2017-03-01
The aim of the present study is to produce boron (B) doped hydroxyapatite (B-HAp), which has an osteoinductive property, and investigate in-vitro osteogenesis potential of B-HAp coated chitosan (B-HAp/Ch) scaffolds. At first, B-HAp was produced by the interaction of ions within the concentrated synthetic body fluid containing boron (B-SBF) with microwave energy. Boron incorporation into HAp structure was performed by the substitution of borate ions with phosphate and hydroxyl ions. Experiments were carried out with different microwave powers and exposure times, and optimum conditions for the production of B-HAp were determined. B-HAp precipitated from B-SBF by 600W microwave power has 1.15±0.11% (w/w) B, 1.40 (w/w) Ca/P ratio, 4.30±0.07% (w/w) carbonate content, 30±4nm rod-like morphology and bone-like amorphous structure. Then, chitosan scaffolds that were prepared by freeze-drying were coated with B-HAp by performing microwave-assisted precipitation in the presence of scaffolds to improve their bioactivities and mechanical properties. The formation of apatite layer and the penetration of apatites into the pores were observed by scanning electron microscopy (SEM). Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD) analysis also confirmed the presence of B-HAp layer. As control, hydroxyapatite coated chitosan scaffolds (HAp/Ch) produced at the same conditions were used. The results of cell culture studies indicated that B releasing from scaffolds enhances proliferation and osteoblastic differentiation of MC3T3-E1 cells. This work emphasized the importance of the use of B within the scaffolds for enhancing in-vitro bone tissue engineering applications. Copyright © 2017 Elsevier GmbH. All rights reserved.
Kumar, Arun; Sahoo, Bishwabhusan; Montpetit, Alison; Behera, Sumita; Lockey, Richard F; Mohapatra, Shyam S
2007-06-01
Novel hybrid nanoparticles comprised of hyaluronic acid (HA) and iron oxide were synthesized and characterized for the first time with the average diameter of less than 160 nm. The iron oxide (Fe2O3) particles are hybridized between HA layers by electrostatic interactions between the positive surface charge of the Fe2O3 nanoparticles and the negative charge of the carboxylate groups of HA, forming a corral-like structure. The particles were also characterized by FTIR and NMR to verify the hybridization. The particles were tested for their ability to deliver peptides to the cells using HEK293 and A549 cells. Results show that these particles delivered peptides at about 100% level. These HA-iron oxide nanoparticles are expected to be useful in developing effective tissue and cell targeting systems.
Simulation study of charged nanoparticles confined in a rectangular tube with discrete wall charges.
Yuet, Pak K
2006-03-28
The development of novel nanomaterials has been a subject of intense interest in recent years. An interesting structure among these materials is the so-called "pea pods" (i.e., nanoparticles confined in nanotubes). To facilitate the development and commercialization of these materials, it is important that we have an in-depth understanding of their behavior. The study of confined charged particles is particularly challenging because of the long-ranged nature of electrostatic interaction, and both interparticle and particle-confinement interactions are likely to play a role in determining the system behavior. The primary objective of this study is to develop a better understanding of the behavior of charged nanoparticles in a charged tubular confinement using Monte Carlo simulation, with particular focus on the effect of electrostatic interactions on the structure of the particles. Simulation results have shown that (i) the structuring of confined particles is associated with the asymmetry of the long-ranged interaction and (ii) factors such as confinement geometry and particle charge and size asymmetry can be manipulated to produce different particle structures. The present study represents the first step in an attempt to gain further insight into the behavior of confined nanosystems, with the ultimate objective of exploiting these characteristics, particularly the interactions between the confined particles and their external environment, in developing novel nanomaterials.
NASA Astrophysics Data System (ADS)
Ovanesyan, Zaven
Highly charged cylindrical and spherical objects (macroions) are probably the simplest structures for modeling nucleic acids, proteins and nanoparticles. Their ubiquitous presence within biophysical systems ensures that Coulomb forces are among the most important interactions that regulate the behavior of these systems. In these systems, ions position themselves in a strongly correlated manner near the surface of a macroion and form electrical double layers (EDLs). These EDLs play an important role in many biophysical and biochemical processes. For instance, the macroion's net charge can change due to the binding of many multivalent ions to its surface. Thus, proper description of EDLs near the surface of a macroion may reveal a counter-intuitive charge inversion behavior, which can generate attraction between like-charged objects. This is relevant for the variety of fields such as self-assembly of DNA and RNA folding, as well as for protein aggregation and neurodegenerative diseases. Certainly, the key factors that contribute to these phenomena cannot be properly understood without an accurate solvation model. With recent advancements in computer technologies, the possibility to use computational tools for fundamental understanding of the role of EDLs around biomolecules and nanoparticles on their physical and chemical properties is becoming more feasible. Establishing the impact of the excluded volume and ion-ion correlations, ionic strength and pH of the electrolyte on the EDL around biomolecules and nanoparticles, and how changes in these properties consequently affect the Zeta potential and surface charge density are still not well understood. Thus, modeling and understanding the role of these properties on EDLs will provide more insights on the stability, adsorption, binding and function of biomolecules and nanoparticles. Existing mean-field theories such as Poisson Boltzmann (PB) often neglect the ion-ion correlations, solvent and ion excluded volume effects, which are important details for proper description of EDL properties. In this thesis, we implement an efficient and accurate classical solvation density functional theory (CDSFT) for EDLs of spherical macroions and cylindrical polyelectrolytes embedded in aqueous electrolytes. This approach extends the capabilities of mean field approximations by taking into account electrostatic ion-ion correlations, size asymmetry and excluded volume effects without compromising the computational cost. We apply the computational tool to study the structural and thermodynamic properties of the ionic atmosphere around B-DNA and spherical nanoparticles. We demonstrate that the presence of solvent molecules at experimental concentration and size values has a significant impact on the layering of ions. This layering directly influences the integrated charge and mean electrostatic potential in the diffuse region of the spherical electrical double layer (SEDL) and have a noticeable impact on the behavior of zeta potential (ZP). Recently, we have extended the aforementioned CSDFT to account for the charge-regulated mechanisms of the macroion surface on the structural and thermodynamic properties of spherical EDLs. In the approach, the CSDFT is combined with a surface complexation model to account for ion correlation and excluded volume effects on the surface titration of spherical macroions. We apply the proposed computational approach to describe the role that the ion size and solvent excluded volume play on the surface titration properties of silica nanoparticles. We analyze the effects of the nanoparticle size, pH and salt concentration of the aqueous solution on the nanoparticle's surface charge and zeta potential. The results reveal that surface charge density and zeta potential significantly depend on excluded volume and ion-ion correlation effects as well as on pH for monovalent ion species at high salt concentrations. Overall, our results are in good agreement with Monte Carlo simulations and available experimental data. We discuss future directions of this work, which includes extension of the solvation model for studying the flexibility properties of rigid peptides and globular proteins, and describes benefits that this research can potentially bring to scientific and non scientific communities.
Huang, Yide; Yu, Huizhen; Lv, Huafei; Zhang, Hong; Ma, Dongdong; Yang, Hongqin; Xie, Shusen; Peng, Yiru
2016-12-01
A novel series of nanoparticles formed via an electrostatic interaction between the periphery of negatively charged 1-2 generation aryl benzyl ether dendrimer zinc (II) phthalocyanines and positively charged poly(L-lysin) segment of triblock copolymer, poly(L-lysin)-block-poly(ethylene glycol)-block-poly(L-lysin), was developed for the use as an effective photosensitizers in photodynamic therapy. The dynamic light scattering, atomic force microscopy showed that two nanoparticles has a relevant size of 80-150nm. The photophysical properties and singlet oxygen quantum yields of free dendrimer phthalocyanines and nanoparticles exhibited generation dependence. The intracellular uptake of dendrimer phthalocyanines in Hela cells was significantly elevated as they were incorporated into the micelles, but was inversely correlated with the generation of dendrimer phthalocyanines. The photocytotoxicity of dendrimer phthalocyanines incorporated into polymeric micelles was also increased. The presence of nanoparticles induced efficient cell death. Using a mitochondrial-sepcific dye rhodamine 123 (Rh123), our fluorescence microscopic result indicated that nanoparticles localized to the mitochondria. Copyright © 2016 Elsevier B.V. All rights reserved.
Tunable-Porosity Membranes From Discrete Nanoparticles
Marchetti, Patrizia; Mechelhoff, Martin; Livingston, Andrew G.
2015-01-01
Thin film composite membranes were prepared through a facile single-step wire-wound rod coating procedure in which internally crosslinked poly(styrene-co-butadiene) polymer nanoparticles self-assembled to form a thin film on a hydrophilic ultrafiltration support. This nanoparticle film provided a defect-free separation layer 130–150 nm thick, which was highly permeable and able to withstand aggressive pH conditions beyond the range of available commercial membranes. The nanoparticles were found to coalesce to form a rubbery film when heated above their glass transition temperature (Tg). The retention properties of the novel membrane were strongly affected by charge repulsion, due to the negative charge of the hydroxyl functionalized nanoparticles. Porosity was tuned by annealing the membranes at different temperatures, below and above the nanoparticle Tg. This enabled fabrication of membranes with varying performance. Nanofiltration properties were achieved with a molecular weight cut-off below 500 g mol−1 and a low fouling tendency. Interestingly, after annealing above Tg, memory of the interstitial spaces between the nanoparticles persisted. This memory led to significant water permeance, in marked contrast to the almost impermeable films cast from a solution of the same polymer. PMID:26626565
Controlling the charge state of supported nanoparticles in catalysis: lessons from model systems.
Pacchioni, Gianfranco; Freund, Hans-Joachim
2018-04-26
Model systems are very important to identify the working principles of real catalysts, and to develop concepts that can be used in the design of new catalytic materials. In this review we report examples of the use of model systems to better understand and control the occurrence of charge transfer at the interface between supported metal nanoparticles and oxide surfaces. In the first part of this article we concentrate on the nature of the support, and on the basic difference in metal/oxide bonding going from a wide-gap non-reducible oxide material to reducible oxide semiconductors. The roles of oxide nanostructuring, bulk and surface defectiveness, and doping with hetero-atoms are also addressed, as they are all aspects that severely affect the metal/oxide interaction. Particular attention is given to the experimental measures of the occurrence of charge transfer at the metal/oxide interface. In this respect, systems based on oxide ultrathin films are particularly important as they allow the use of scanning probe spectroscopies which, often in combination with other measurements and with first principles theoretical simulations, allow full characterization of small supported nanoparticles and their charge state. In a few selected cases, a precise count of the electrons transferred between the oxide and the supported nanoparticle has been possible. Charge transfer can occur through thin, two-dimensional oxide layers also thanks to their structural flexibility. The flow of charge through the oxide film and the formation of charged adsorbates are accompanied in fact by a substantial polaronic relaxation of the film surface which can be rationalized based on electrostatic arguments. In the final part of this review the relationships between model systems and real catalysts are addressed by discussing some examples of how lessons learned from model systems have helped in rationalizing the behavior of real catalysts under working conditions.
NASA Astrophysics Data System (ADS)
Huang, Yanhui; Wu, Ke; Bell, Michael; Oakes, Andrew; Ratcliff, Tyree; Lanzillo, Nicholas A.; Breneman, Curt; Benicewicz, Brian C.; Schadler, Linda S.
2016-08-01
This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO2 and ZrO2 nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (˜1017 cm-3). The charge trapping is found to have the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO2 filled composites and is likely caused by impact excitation due to the low excitation energy of TiO2 compared to ZrO2. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO2 may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO2 composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S.; Wu, Ke
This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO{sub 2} and ZrO{sub 2} nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (∼10{sup 17} cm{sup −3}). The charge trapping is found to havemore » the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO{sub 2} filled composites and is likely caused by impact excitation due to the low excitation energy of TiO{sub 2} compared to ZrO{sub 2}. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO{sub 2} may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO{sub 2} composites.« less
Unfolding and inactivation of proteins by counterions in protein-nanoparticles interaction.
Ghosh, Goutam; Gaikwad, Pallavi S; Panicker, Lata; Nath, Bimalendu B; Mukhopadhyaya, Rita
2016-09-01
In this work, the structure and activity of proteins; such as, hen egg lysozyme (HEWL) and calf intestine alkaline phosphatase (CIAP); have been investigated after incubation with surface coated iron oxide nanoparticles (IONPs) in water. IONPs were coated with counterions bound charge-ligands and were named as the charge-ligand counterions iron oxide nanoparticles (CLC-IONPs). The coating was done with tri-lithium citrate (TLC) and tri-potassium citrate (TKC) to have negative surface charge of CLC-IONPs and Li(+) and K(+), respectively, as counterions. To have positive surface charge, IONPs were coated with cetylpyridinium chloride (CPC) and cetylpyridinium iodide (CPI) having Cl(-) and I(-), respectively, as counterions. The secondary structure of proteins was measured using far ultraviolet circular dichroism (CD) spectroscopy which showed that both proteins were irreversibly unfolded after incubation with CLC-IONPs. The unfolded proteins were seen to be functionally inactive, as confirmed through their activity assays, i.e., HEWL with Escherichia coli (E. coli) and CIAP with para-nitrophenyl phosphate (pNPP). Additionally, we have observed that monomeric hemoglobin (Hb) from radio-resistant insect Chironomus ramosus (ChHb) was also partially unfolded upon interaction with CLC-IONPs. This work clearly shows the role of counterions in protein inactivation via protein-nanoparticles interaction and, therefore, CLC-IONPs could be used for therapeutic purpose. Copyright © 2016 Elsevier B.V. All rights reserved.
24 CFR 891.580 - HAP contract administration.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false HAP contract administration. 891... Handicapped-Section 8 Assistance § 891.580 HAP contract administration. HUD is responsible for the administration of the HAP contract. ...
Kim, Sun Hwa; Jeong, Ji Hoon; Chun, Ki Woo; Park, Tae Gwan
2005-09-13
Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles with anionic surface charge were surface coated with cationic di-block copolymer, poly(L-lysine)-poly(ethylene glycol)-folate (PLL-PEG-FOL) conjugate, for enhancing their site-specific intracellular delivery against folate receptor overexpressing cancer cells. The PLGA nanoparticles coated with the conjugate were characterized in terms of size, surface charge, and change in surface composition by XPS. By employing the flow cytometry method and confocal image analysis, the extent of cellular uptake was comparatively evaluated under various conditions. PLL-PEG-FOL coated PLGA nanoparticles demonstrated far greater extent of cellular uptake to KB cells, suggesting that they were mainly taken up by folate receptor-mediated endocytosis. The enhanced cellular uptake was also observed even in the presence of serum proteins, possibly due to the densely seeded PEG chains. The PLL-PEG-FOL coated PLGA nanoparticles could be potentially applied for cancer cell targeted delivery of various therapeutic agents.
Mohammad Shiri, Hamid; Ehsani, Ali; Jalali Khales, Mina
2017-11-01
A novel electrosynthetic method was introduced to synthesize of Sm 2 O 3 nanoparticles and furthermore, for improving the electrochemical performance of conductive polymer, hybrid POAP/Sm 2 O 3 films have then been fabricated by POAP electropolymerization in the presence of Sm 2 O 3 nanoparticles as active electrodes for electrochemical supercapacitors. The structure, morphology, chemical composition of Sm 2 O 3 nanoparticles was examined. Surface and electrochemical analyses have been used for characterization of Sm 2 O 3 and POAP/Sm 2 O 3 composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. The supercapacity behavior of the composite film was attributed to the (i) high active surface area of the composite, (ii) charge transfer along the polymer chain due to the conjugation form of the polymer and finally (iii) synergism effect between conductive polymer and Sm 2 O 3 nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.
The effects of plasma inhomogeneity on the nanoparticle coating in a low pressure plasma reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourali, N.; Foroutan, G.
2015-10-15
A self-consistent model is used to study the surface coating of a collection of charged nanoparticles trapped in the sheath region of a low pressure plasma reactor. The model consists of multi-fluid plasma sheath module, including nanoparticle dynamics, as well as the surface deposition and particle heating modules. The simulation results show that the mean particle radius increases with time and the nanoparticle size distribution is broadened. The mean radius is a linear function of time, while the variance exhibits a quadratic dependence. The broadening in size distribution is attributed to the spatial inhomogeneity of the deposition rate which inmore » turn depends on the plasma inhomogeneity. The spatial inhomogeneity of the ions has strong impact on the broadening of the size distribution, as the ions contribute both in the nanoparticle charging and in direct film deposition. The distribution width also increases with increasing of the pressure, gas temperature, and the ambient temperature gradient.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Emission Limits for Hydrogen Halide and... to Subpart FFFF of Part 63—Emission Limits for Hydrogen Halide and Halogen HAP Emissions or HAP... following table that applies to your process vents that contain hydrogen halide and halogen HAP emissions or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Emission Limits for Hydrogen Halide and... to Subpart FFFF of Part 63—Emission Limits for Hydrogen Halide and Halogen HAP Emissions or HAP... following table that applies to your process vents that contain hydrogen halide and halogen HAP emissions or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... Compliance Requirements § 63.2465 What requirements must I meet for process vents that emit hydrogen halide... section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you must...
14 CFR Appendix A to Part 420 - Method for Defining a Flight Corridor
Code of Federal Regulations, 2010 CFR
2010-01-01
... impact range factor [IP(Hap)] and a dispersion factor [DISP(Hap)] as shown below: (A) An applicant shall... maximum apogee altitude (Hap) multiplied by the impact range factor as shown below: ER19OC00.048 where: IP(Hap) = 0.4 for an apogee less than 100 km; and IP(Hap) = 0.7 for an apogee 100 km or greater. (B) An...
14 CFR Appendix A to Part 420 - Method for Defining a Flight Corridor
Code of Federal Regulations, 2011 CFR
2011-01-01
... impact range factor [IP(Hap)] and a dispersion factor [DISP(Hap)] as shown below: (A) An applicant shall... maximum apogee altitude (Hap) multiplied by the impact range factor as shown below: ER19OC00.048 where: IP(Hap) = 0.4 for an apogee less than 100 km; and IP(Hap) = 0.7 for an apogee 100 km or greater. (B) An...
Wada, Susumu; Kitamura, Nobuto; Nonoyama, Takayuki; Kiyama, Ryuji; Kurokawa, Takayuki; Gong, Jian Ping; Yasuda, Kazunori
2016-10-15
We have developed a novel hydroxyapatite (HAp)-coated double-network (DN) hydrogel (HAp/DN gel). The purpose of this study was to determine details of the cell and tissue responses around the implanted HAp/DN gel and to determine how quickly and strongly the HAp/DN gel bonds to the bone in a rabbit osteochondral defect model. Immature osteoid tissue was formed in the space between the HAp/DN gel and the bone at 2weeks, and the osteoid tissue was mineralized at 4weeks. The push-out load of the HAp/DN gel averaged 37.54N and 42.15N at 4 and 12weeks, respectively, while the push-out load of the DN gel averaged less than 5N. The bonding area of the HAp/DN gel to the bone was above 80% by 4weeks, and above 90% at 12weeks. This study demonstrated that the HAp/DN gel enhanced osseointegration at an early stage after implantation. The presence of nanoscale structures in addition to osseointegration of HAp promoted osteoblast adhesion onto the surface of the HAp/DN gel. The HAp/DN gel has the potential to improve the implant-tissue interface in next-generation orthopaedic implants such as artificial cartilage. Recent studies have reported the development of various hydrogels that are sufficiently tough for application as soft supporting tissues. However, fixation of hydrogels on bone surfaces with appropriate strength is a great challenge. We have developed a novel, tough hydrogel hybridizing hydroxyapatite (HAp/DN gel), which is directly bondable to the bone. The present study demonstrated that the HAp/DN gel enhanced osseointegration in the early stage after implantation. The presence of nanoscale structures in addition to the osseointegration ability of hydroxyapatite promoted osteoblast adhesion onto the surface of the HAp/DN gel. The HAp/DN gel has the potential to improve the implant-tissue interface in next-generation orthopaedic implants such as artificial cartilage. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Williams, George M [Portland, OR; Schut, David M [Philomath, OR; Stonas, Andreas [Albany, OR
2011-08-09
A photovoltaic device has nanoparticles sandwiched between a conductive substrate and a charge selective transport layer. Each of the nanoparticles has a ligand shell attached to the nanoparticle core. A first type of ligand is electron rich and attached to one hemisphere of the nanoparticle core, while a second type of ligand is electron poor and attached to an opposite hemisphere of the core. Consequently, the ligand shell induces an electric field within the nanoparticle, enhancing the photovoltaic effect. The arrangement of ligands types on different sides of the nanoparticle is obtained by a process involving ligand substitution after adhering the nanoparticles to the conductive substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jing; Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu; Zhang, Jun-ying
Highlights: • Overexpression of HAP1 gene promotes apoptosis in MCF-7 cells after irradiation. • HAP1 reduces tumor volume in nude mice xenograft models after irradiation. • HAP1 increases radiosensitivity of breast cancer cells in vitro and vivo. - Abstract: Objectives: The purpose of this study was to investigate the relationship between huntingtin-associated protein1 (HAP1) gene and radiation therapy of breast cancer cells. Methods: HAP1 gene was transfected into breast cancer MCF-7 cells, which was confirmed by quantitative reverse transcription-polymerase chain reaction analysis (qRT-PCR) and Western blot in vitro. The changes of cell radiosensitivity were assessed by colony formation assay. Apoptosismore » were examined by flow cytometry. The expressions of two radiation-induced genes were evaluated by Western blot. Tumor growth was investigated in nude mice xenograft models in vivo. Results: Our data showed that HAP1 gene expression was significantly increased in HAP1-transfected MCF-7 cells in comparison with the parental cells or negative control cells. The survival rate in MCF-7/HAP1 cells was significantly decreased after irradiation (0, 2, 4, 6, 8 Gy), compared to cells in MCF-7 and MCF-7/Pb groups in vitro. HAP1 gene increased apoptosis in MCF-7 cells after irradiation. Additionally, the tumor volume and weight in MCF-7/HAP1 + RT group were observably lower than in MCF-7/HAP1 group and MCF-7/Pb + RT group. Conclusion: The present study indicated that HAP1 gene expression was related to the radiosensitivity of breast cancer cells and may play an important role in the regulation of cellular radiosensitivity.« less
Rodríguez-Torres, Maria del Pilar; Díaz-Torres, Luis Armando; Romero-Servin, Sergio
2014-01-01
Reactive and pharmaceutical-grade heparins were used as biologically compatible reducing and stabilizing agents to photochemically synthesize colloidal gold nanoparticles. Aggregates and anisotropic shapes were obtained photochemically under UV black-light lamp irradiation (λ = 366 nm). Heparin-functionalized gold nanoparticles were characterized by Scanning Electron Microscopy and UV-Vis spectroscopy. The negatively charged colloids were used for the Surface Enhanced Raman Spectroscopy (SERS) analysis of differently charged analytes (dyes). Measurements of pH were taken to inspect how the acidity of the medium affects the colloid-analyte interaction. SERS spectra were taken by mixing the dyes and the colloidal solutions without further functionalization or addition of any aggregating agent. PMID:25342319
Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility
NASA Astrophysics Data System (ADS)
Mačković, M.; Hoppe, A.; Detsch, R.; Mohn, D.; Stark, W. J.; Spiecker, E.; Boccaccini, A. R.
2012-07-01
Bioactive glasses represent important biomaterials being investigated for the repair and reconstruction of diseased bone tissues, as they exhibit outstanding bonding properties to human bone. In this study, bioactive glass (type 45S5) nanoparticles (nBG) with a mean particle size in the range of 20-60 nm, synthesised by flame spray synthesis, are investigated in relation to in vitro bioreactivity in simulated body fluid (SBF) and response to osteoblast cells. The structure and kinetics of hydroxyapatite formation in SBF were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) revealing a very rapid transformation (after 1 day) of nBG to nanocrystalline bone-like carbonated HAp. Additionally, calcite is formed after 1 day of SBF immersion because of the high surface reactivity of the nBG particles. In the initial state, nBG particles were found to exhibit chain-like porous agglomerates of amorphous nature which are transformed on immersion in SBF into compact agglomerates covered by hydroxyapatite with a reduced size of the primary nanoparticles. In vitro studies revealed high cytocompatibility of nBG with human osteoblast cells, indicated through high lactatedehydrogenase (LDH) and mitochondrial activity as well as alkaline phosphatase activity. Hence, this study contributes to the understanding of the structure and bioactivity of bioactive glass (type 45S5) nanoparticles, providing insights to the phenomena occurring at the nanoscale after immersion in SBF. The results are relevant in relation to the understanding of the nanoparticles' bioreactivity required for applications in bone tissue engineering.
Physiochemical charge stabilization of silver nanoparticles and its antibacterial applications
NASA Astrophysics Data System (ADS)
Vanitha, G.; Rajavel, K.; Boopathy, G.; Veeravazhuthi, V.; Neelamegam, P.
2017-02-01
Environmental standardization and stabilization of surface charges of silver nanoparticles (AgNPs) is important in biological systems and interest in bio-interfacial interaction. Different synthesized AgNPs in chemical reduced (AgNO3 (0.01, 0.1 and 0.5 M); NaBH4 and Na3C6H5O7) garnered for analysis of physico-chemical charge stabilization by means of different pH (1-13) and ionic interferences (NaCl, Ca(NO3)2, Na2CO3 and NaNO3). The uniform sized (size: ∼22 nm) and highly charged (zeta potential: -37.9 mV) AgNPs with uniform dispersion remains unaltered in high ionic interferences. Highest antifungal activity of AgNPs against Candida albicans and moderate activity against Staphylococcus aureus are correlated.
NASA Astrophysics Data System (ADS)
Deymier-Black, Alix Christine
Synchrotron high-energy X-ray diffraction was employed to investigate the strains in the hydroxyapatite (HAP) platelets and mineralized collagen fibrils in bovine dentin and cortical bone. The HAP and the fibrillar apparent moduli, defined as the applied stress divided by the phase strain, in dentin were measured as 27+/-7.2 and 16+/-4.9 GPa. The HAP apparent modulus ( EHAPapp ) is less than the lower bound calculated for EHAPapp from the Voigt model. This discrepancy is probably due to stress concentrators or decreases in the HAP Young's modulus due to size or composition effects. EHAPapp and Efibapp in dentin vary significantly within a single tooth in both the apical-cervical direction and the buccal-lingual direction. However, the variation between teeth is minimal. The HAP and fibrillar apparent moduli are not affected by freezing in dentin or by X-ray irradiation in bone and dentin. X-ray irradiation causes a decrease in HAP residual strain in bone. This decrease suggests the presence of HAP-collagen interfacial damage. It was determined from the HAP 00.2 peak broadening that irradiation damage mostly affects the HAP unit cells which are under the highest strain. From this it was theorized that irradiation may damage highly-strained bonds at stress concentrators and/or calcium-mediated electrostatic bonds. The fact that the apparent modulus does not change with irradiation suggests that the interfacial damage must be reversible. Bone and dentin both undergo creep when loaded to high stresses. At low irradiation doses, both the fibrillar and HAP strains increase with creep time indicating that load is being transferred from the matrix to the HAP. However, at high doses, the strain on the HAP decreases with creep time. This supports the interfacial damage theory which would allow the HAP to release its elastic load upon interfacial debonding. At -80 MPa, beyond a dose of 50 kGy, the rate of change in HAP strain with time begins to increase, becoming positive at ˜115 kGy. After 300 kGy the HAP strain rate decreases and plateaus probably due to stiffening of the matrix through cross-linking. The HAP and fibrillar strain rate in irradiated bone and dentin samples increase with increased temperature and applied load.
Cheng, Chin-Fu; Hung, Shao-Wen; Chang, Yung-Chung; Chen, Ming-Hui; Chang, Chen-Hsuan; Tsou, Li-Tse; Tu, Ching-Yu; Lin, Yu-Hsing; Liu, Pan-Chen; Lin, Shiun-Long; Wang, Way-Shyan
2012-01-01
Hemagglutinating proteins (HAPs) were purified from Poker-chip Venus (Meretrix lusoria) and Corbicula clam (Corbicula fluminea) using gel-filtration chromatography on a Sephacryl S-300 column. The molecular weights of the HAPs obtained from Poker-chip Venus and Corbicula clam were 358 kDa and 380 kDa, respectively. Purified HAP from Poker-chip Venus yielded two subunits with molecular weights of 26 kDa and 29 kDa. However, only one HAP subunit was purified from Corbicula clam, and its molecular weight was 32 kDa. The two Poker-chip Venus HAPs possessed hemagglutinating ability (HAA) for erythrocytes of some vertebrate animal species, especially tilapia. Moreover, HAA of the HAP purified from Poker-chip Venus was higher than that of the HAP of Corbicula clam. Furthermore, Poker-chip Venus HAPs possessed better HAA at a pH higher than 7.0. When the temperature was at 4°C-10°C or the salinity was less than 0.5‰, the two Poker-chip Venus HAPs possessed better HAA compared with that of Corbicula clam.
Wang, Kai; Yi, Chao; Liu, Chang; ...
2015-03-18
The price of energy to separate tightly bound electron-hole pair (or charge-transfer state) and extract freely movable charges from low-mobility materials represents fundamental losses for many low-cost photovoltaic devices. In bulk heterojunction (BHJ) polymer solar cells (PSCs), approximately 50% of the total efficiency lost among all energy loss pathways is due to the photogenerated charge carrier recombination within PSCs and low charge carrier mobility of disordered organic materials. To address these issues, we introduce magnetic nanoparticles (MNPs) and orientate these MNPS within BHJ composite by an external magnetostatic field. Over 50% enhanced efficiency was observed from BHJ PSCs incorporated withmore » MNPs and an external magnetostatic field alignment when compared to the control BHJ PSCs. The optimization of BHJ thin film morphology, suppression of charge carrier recombination, and enhancement in charge carrier collection result in a greatly increased short-circuit current density and fill factor, as a result, enhanced power conversion efficiency.« less
Xiang, Jun; Ge, Feijie; Yu, Bing; Yan, Qiang; Shi, Feng; Zhao, Yue
2018-06-07
A new approach to encapsulating charged cargo molecules into a nanovector and subsequently using near-infrared (NIR) light to trigger the release is demonstrated. NIR light-responsive nanovector was prepared through electrostatic interaction-driven complexation between negatively charged silica-coated upconversion nanoparticles (UCNP@silica, 87 nm hydrodynamic diameter, polydispersity index ∼0.05) and a positively charged UV-labile polyelectrolyte bearing pendants of poly(ethylene glycol) and o-nitrobenzyl side groups; whereas charged fluorescein (FLU) was loaded through a co-complexation process. By controlling the amount of polyelectrolyte, UCNP@silica can be covered by the polymer, whereas remaining dispersed in aqueous solution. Under 980 nm laser excitation, UV light emitted by UCNP is absorbed by photolytic side groups within polyelectrolyte, which results in cleavage of o-nitrobenzyl groups and formation of carboxylic acid groups. Such NIR light-induced partial reversal of positive charge to negative charge on the polyelectrolyte layer disrupts the equilibrium among UCNP@silica, polyelectrolyte, and FLU and, consequently, leads to release of FLU molecules.
Transparent Flexible Electronics By Directed Integration of Inorganic Micro and Nanomaterials
NASA Astrophysics Data System (ADS)
Cole, Jesse J.
This thesis focuses on nanomanufacturing processes for the heterogeneous integration of nanomaterials. Our approaches involved local adjustment of electrostatics at the surfaces to control material flux. Templating of surface electrostatics was implemented differently for three broad concepts resulting in control over nanomaterial synthesis, deposition, and printing. These three general concepts are: (A) Tailored ZnO nanowire synthesis and integration out of the liquid phase; (B) Arc discharge synthesis and continuous nanocluster deposition from the gas phase; (C) Contact electrification and xerographic printing of nanoparticles from the gas phase. Concept (A): We report a method to fabricate and transfer crystalline ZnO with control over location, orientation, size, and shape. The process uses an oxygen plasma treatment in combination with a photoresist pattern on Magnesium-doped GaN substrates to define narrow nucleation regions and attachment points with 100 nanometer scale dimensions. Lateral epitaxial overgrowth follows nucleation to produce single crystalline ZnO which were fabricated into LEDs and photovoltaic cells. Concept (B): We report a gas phase nanoparticle deposition system which shares characteristics with liquid phase electrodeposition. Clusters of charged nanoparticles selectively deposit onto electrically grounded surfaces. Similar to electroplating, the continued deposition of Au nanoparticles onto underlying resistive traces increased overall line conductivity. Alternatively, semiconducting ZnO and Ge nanomaterial sequentially deposited between interdigitated electrodes and served as addressable sensor active areas. Concept (C): We report patterned transfer of charge between conformal material interfaces through a concept referred to as nanocontact electrification. Nanocontacts of different size and shape are formed between surface functionalized polydimethylsiloxane (PDMS) stamps and other dielectric materials (PMMA, SiO 2). Forced delamination and cleavage of the interface yields a well defined charge pattern with a minimal feature size of 100 nm. The process produces charged surfaces and associated fields that exceed the breakdown strength of air leading to strong long range adhesive forces and force distance curves which are recorded over macroscopic distances. The process is applied to fabricate charge patterned surfaces for nanoxerography demonstrating 200 nm resolution nanoparticle prints and applied to thin film electronics where the patterned charges are used to shift the threshold voltages of underlying transistors by over 500 mV.
Transistor and memory devices based on novel organic and biomaterials
NASA Astrophysics Data System (ADS)
Tseng, Jia-Hung
Organic semiconductor devices have aroused considerable interest because of the enormous potential in many technological applications. Organic electroluminescent devices have been extensively applied in display technology. Rapid progress has also been made in transistor and memory devices. This thesis considers aspects of the transistor based on novel organic single crystals and memory devices using hybrid nanocomposites comprising polymeric/inorganic nanoparticles, and biomolecule/quantum dots. Organic single crystals represent highly ordered structures with much less imperfections compared to amorphous thin films for probing the intrinsic charge transport in transistor devices. We demonstrate that free-standing, thin organic single crystals with natural flexing ability can be fabricated as flexible transistors. We study the surface properties of the organic crystals to determine a nearly perfect surface leading to high performance transistors. The flexible transistors can maintain high performance under reversible bending conditions. Because of the high quality crystal technique, we further develop applications on organic complementary circuits and organic single crystal photovoltaics. In the second part, two aspects of memory devices are studied. We examine the charge transfer process between conjugated polymers and metal nanoparticles. This charge transfer process is essential for the conductance switching in nanoseconds to induce the memory effect. Under the reduction condition, the charge transfer process is eliminated as well as the memory effect, raising the importance of coupling between conjugated systems and nanoparticle accepters. The other aspect of memory devices focuses on the interaction of virus biomolecules with quantum dots or metal nanoparticles in the devices. We investigate the impact of memory function on the hybrid bio-inorganic system. We perform an experimental analysis of the charge storage activation energy in tobacco mosaic virus with platinum nanoparticles. It is established that the effective barrier height in the materials systems needs to be further engineered in order to have sufficiently long retention times. Finally other novel architectures such as negative differential resistance devices and high density memory arrays are investigated for their influence on memory technology.
Sun, Minjie; Sun, Bin; Liu, Yun; Shen, Qun-Dong; Jiang, Shaojun
2016-01-01
Rapid growth in biological applications of nanomaterials brings about pressing needs for exploring nanomaterial-cell interactions. Cationic blue-emissive and anionic green-emissive conjugated polymers are applied as dual-color fluorescence probes to the surface of negatively charged magnetic nanoparticles through sequentially electrostatic adsorption. These conjugated polymers have large extinction coefficients and high fluorescence quantum yield (82% for PFN and 62% for ThPFS). Thereby, one can visualize trace amount (2.7 μg/mL) of fluorescence-labeled nanoparticles within cancer cells by confocal laser scanning microscopy. Fluorescence labeling by the conjugated polymers is also validated for quantitative determination of the internalized nanoparticles in each individual cell by flow cytometry analysis. Extensive overlap of blue and green fluorescence signals in the cytoplasm indicates that both conjugated polymer probes tightly bind to the surface of the nanoparticles during cellular internalization. The highly charged and fluorescence-labeled nanoparticles non-specifically bind to the cell membranes, followed by cellular uptake through endocytosis. The nanoparticles form aggregates inside endosomes, which yields a punctuated staining pattern. Cellular internalization of the nanoparticles is dependent on the dosage and time. Uptake efficiency can be enhanced three-fold by application of an external magnetic field. The nanoparticles are low cytotoxicity and suitable for simultaneously noninvasive fluorescence and magnetic resonance imaging application. PMID:26931282
Morphological changes of the red blood cells treated with metal oxide nanoparticles.
Kozelskaya, A I; Panin, A V; Khlusov, I A; Mokrushnikov, P V; Zaitsev, B N; Kuzmenko, D I; Vasyukov, G Yu
2016-12-01
The toxic effect of Al 2 O 3 , SiО 2 and ZrО 2 nanoparticles on red blood cells of Wistar rats was studied in vitro using the atomic force microscopy and the fluorescence analysis. Transformation of discocytes into echinocytes and spherocytes caused by the metal oxide nanoparticles was revealed. It was shown that only extremely high concentration of the nanoparticles (2mg/ml) allows correct estimating of their effect on the cell morphology. Besides, it was found out that the microviscosity changes of red blood cell membranes treated with nanoparticles began long before morphological modifications of the cells. On the contrary, the negatively charged ZrO 2 and SiO 2 nanoparticles did not affect ghost microviscosity up to concentrations of 1μg/ml and 0.1mg/ml, correspondingly. In its turn, the positively charged Al 2 O 3 nanoparticles induced structural changes in the lipid bilayer of the red blood cells already at a concentration of 0.05μg/ml. A decrease in microviscosity of the erythrocyte ghosts treated with Al 2 O 3 and SiO 2 nanoparticles was shown. It was detected that the interaction of ZrO 2 nanoparticles with the cells led to an increase in the membrane microviscosity and cracking of swollen erythrocytes. Copyright © 2016 Elsevier B.V. All rights reserved.
Remediation of lead contaminated soil by biochar-supported nano-hydroxyapatite.
Yang, Zhangmei; Fang, Zhanqiang; Zheng, Liuchun; Cheng, Wen; Tsang, Pokeung Eric; Fang, Jianzhang; Zhao, Dongye
2016-10-01
In this study, a high efficiency and low cost biochar-supported nano-hydroxyapatite (nHAP@BC) material was used in the remediation of lead (Pb)-contaminated soil. The remediation effect of nHAP@BC on Pb-contaminated soil was evaluated through batch experiments. The stability, bioaccessibility of Pb in the soil and the change in soil characteristics are discussed. Furthermore, the effects of the amendments on the growth of cabbage mustard seedlings and the accumulation of Pb were studied. The results showed that the immobilization rates of Pb in the soil were 71.9% and 56.8%, respectively, after a 28 day remediation using 8% nHAP and nHAP@BC materials, and the unit immobilization amount of nHAP@BC was 5.6 times that of nHAP, indicating that nHAP@BC can greatly reduce the cost of remediation of Pb in soil. After the nHAP@BC remediation, the residual fraction Pb increased by 61.4%, which greatly reduced the bioaccessibility of Pb in the soil. Moreover, nHAP@BC could effectively reduce the accumulation of Pb in plants by 31.4%. Overall, nHAP@BC can effectively remediate Pb-contaminated soil and accelerate the recovery of soil fertility. Copyright © 2016 Elsevier Inc. All rights reserved.
Liu, Cuilian; Zhai, Halei; Zhang, Zhisen; Li, Yaling; Xu, Xurong; Tang, Ruikang
2016-11-09
Hydroxyapatite (HAP) nanocrystallites in all types of bones are distinguished by their ultrathin characteristics, which are uniaxially oriented with fibrillar collagen to uniquely expose the (100) faces. We speculate that living organisms prefer the specific crystal morphology and orientation of HAP because of the interactions between cells and crystals at the mineral-cell interface. Here, bone-like platy HAP (p-HAP) and two different rod-like HAPs were synthesized to investigate the ultrathin mineral modulating effect on cell bioactivity and bone generation. Cell viability and osteogenic differentiation of mesenchymal stem cells (MSCs) were significantly promoted by the platy HAP with (100) faces compared to rod-like HAPs with (001) faces as the dominant crystal orientation, which indicated that MSCs can recognize the crystal face and prefer the (100) HAP faces. This face-specific preference is dependent on the selective adsorption of fibronectin (FN), a plasma protein that plays a central role in cell adhesion, on the HAP surface. This selective adsorption is further confirmed by molecule dynamics (MD) simulation. Our results demonstrate that it is an intelligent choice for cells to use ultrathin HAP with a large (100) face as a basic building block in the hierarchical structure of bone, which is crucial to the promotion of MSCs osteoinductions during bone formation.
Kowsari, Mohammad H; Ebrahimi, Soraya
2018-05-16
Comprehensive molecular dynamics simulations are performed to study the average single-particle dynamics and the transport properties of 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], and 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, [bmim][FAP], ionic liquids (ILs) at 400 K. We applied one of the most widely used nonpolarizable all-atom force fields for ILs, both with the original unit (±1) charges on each ion and with the partial charges uniformly scaled to 80-85%, taking into account the average polarizability and tracing the experimentally compatible transport properties. In all simulations, [bmim]+ was considered to be flexible, while the effect of a flexible vs. rigid structure of the anions and the effect of two applied charge sets on the calculated properties were separately investigated in detail. The simulation results showed that replacing [PF6]- with [FAP]-, considering anion flexibility, and applying the charge-scaled model significantly enhanced the ionic self-diffusion, ionic conductivity, inverse viscosity, and hyper anion preference (HAP). Both of the calculated self-diffusion coefficients from the long-time linear slope of the mean-square displacement (MSD) and from the integration of the velocity autocorrelation function (VACF) for the centers of mass of the ions were used for evaluation of the ionic transference number, HAP, ideal Nernst-Einstein ionic conductivity (σNE), and the Stokes-Einstein viscosity. In addition, for quantification of the degree of complicated ionic association (known as the Nernst-Einstein deviation parameter, Δ) and ionicity phenomena in the two studied ILs, the ionic conductivity was determined more rigorously by the Green-Kubo integral of the electric-current autocorrelation function (ECACF), and then the σGK/σNE ratio was evaluated. It was found that the correlated motion of the (cationanion) neighbors in [bmim][FAP] is smaller than in [bmim][PF6]. The relaxation times of the normalized reorientational autocorrelation functions were computed to gain a deep, molecular-level insight into the rotational motion of the ions. The geometric shape of the ion is a key factor in determining its reorientational dynamics. [bmim]+ shows faster translational and slower rotational dynamics in contrast to [PF6]-.
Hosseinzadeh, Hosniyeh; Atyabi, Fatemeh; Varnamkhasti, Behrang Shiri; Hosseinzadeh, Reza; Ostad, Seyed Nasser; Ghahremani, Mohammad Hossein; Dinarvand, Rassoul
2017-06-30
Combination of chemotherapy and photothermal therapy has been proposed for better treatment of metastatic colon cancer. In this study SN38, a highly potent cytotoxic agent, was conjugated to negatively charged hyaluronic acid (HA), which was deposited on the surface of the positively charged gold nanoparticles via electrostatic interaction. The drug conjugation and its interaction with gold nanoparticles were verified by 1 H NMR and UV-vis spectroscopies, respectively. The prepared SN38-HA gold NPs are negatively charged spherical nanoparticles with an average size of 75±10nm. In vitro release study revealed that drug release in acidic conditions (pH 5.2) was faster than that in physiological pH. Red light emitting diode (LED, 630nm, 30mW) was used as a light source for photothermal experiments. The drug release in acidic conditions was increased up to 30% using red LED illumination (6min) in comparison with experiment carried out indark. The cytotoxicity study on MUC1 positive HT29, SW480 colon cancer cells and MUC1 negative CHO cells, showed higher toxicity of the nanoparticles on HT29 and SW480 cell lines compared to CHO cells. Confocal microscopy images along with flow cytometry analysis confirm the cytotoxicity results. The incubation time for reaching IC50 decreases from 48h to 24h by LED illumination after nanoparticle treatment. Migratory potential of the HT29 and SW480 cell lines was reduced by co-application of SN38-HA gold NPs and LED radiation. Also anti-proliferative study indicates that LED radiation has increased the cytotoxicity of the nanoparticles and this effect is remained up to 8days. Copyright © 2017 Elsevier B.V. All rights reserved.
Hydroxyapatite/collagen bone-like nanocomposite.
Kikuchi, Masanori
2013-01-01
Our group has succeeded to synthesize material with bone-like nanostructure and bone-like inorganic and organic composition via self-organization mechanism between them using simultaneous titration method under controlled pH and temperature. The hydroxyapatite/collagen (HAp/Col) bone-like nanocomposite completely incorporated into bone remodeling process to be substituted by new bone. Cells cultured on the HAp/Col revealed very interesting reactions. Osteoblast-like MG63 cells showed upregulation of alkaline phosphatase >3 times greater than MG63 cells cultured on tissue culture polystyrene (TCPS). MG63 cells 3-dimensionally cultured in a "HAp/Col sponge," a porous HAp/Col having sponge-like viscoelasticity, accumulated calcium phosphate nodules on extracellular matrices they secreted. Bone marrow cells co-cultured with osteoblasts on HAp/Col differentiated to osteoclasts without differentiation supplements. This phenomenon is not found in cells cultured on hydroxyapatite ceramics and TCPS, and rarely in cells cultured on dentin. These results suggest that HAp/Col is a good candidate for tissue engineering of bone as well as bone filler. In a clinical test as a bone filler, the HAp/Col sponge was significantly better than porous β-tricalcium phosphate. The HAp/Col sponge has been approved by the Japanese government and will be used as greatly needed bone filler in patients. In addition to the above, HAp/Col coating on titanium revealed higher osteo-conductivity than HAp-coated titanium and bare titanium and improved direct bonding between titanium and newly formed bone. The HAp/Col coating may be used for metal devices requiring osseointegration.
Zhou, Zheng; Hu, Taishan; Zhou, Xue; Wildum, Steffen; Garcia-Alcalde, Fernando; Xu, Zhiheng; Wu, Daitze; Mao, Yi; Tian, Xiaojun; Zhou, Yuan; Shen, Fang; Zhang, Zhisen; Tang, Guozhi; Najera, Isabel; Yang, Guang; Shen, Hong C.; Young, John A. T.; Qin, Ning
2017-01-01
Heteroaryldihydropyrimidine (HAP) and sulfamoylbenzamide (SBA) are promising non-nucleos(t)ide HBV replication inhibitors. HAPs are known to promote core protein mis-assembly, but the molecular mechanism of abnormal assembly is still elusive. Likewise, the assembly status of core protein induced by SBA remains unknown. Here we show that SBA, unlike HAP, does not promote core protein mis-assembly. Interestingly, two reference compounds HAP_R01 and SBA_R01 bind to the same pocket at the dimer-dimer interface in the crystal structures of core protein Y132A hexamer. The striking difference lies in a unique hydrophobic subpocket that is occupied by the thiazole group of HAP_R01, but is unperturbed by SBA_R01. Photoaffinity labeling confirms the HAP_R01 binding pose at the dimer-dimer interface on capsid and suggests a new mechanism of HAP-induced mis-assembly. Based on the common features in crystal structures we predict that T33 mutations generate similar susceptibility changes to both compounds. In contrast, mutations at positions in close contact with HAP-specific groups (P25A, P25S, or V124F) only reduce susceptibility to HAP_R01, but not to SBA_R01. Thus, HAP and SBA are likely to have distinctive resistance profiles. Notably, P25S and V124F substitutions exist in low-abundance quasispecies in treatment-naïve patients, suggesting potential clinical relevance. PMID:28205569
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guyot-Sionnest, Philippe; Keuleyan, Sean E.; Lhuillier, Emmanuel
2016-04-19
Nanoparticles, methods of manufacture, devices comprising the nanoparticles, methods of their manufacture, and methods of their use are provided herein. The nanoparticles and devices having photoabsorptions in the range of 1.7 .mu.m to 12 .mu.m and can be used as photoconductors, photodiodes, phototransistors, charge-coupled devices (CCD), luminescent probes, lasers, thermal imagers, night-vision systems, and/or photodetectors.
NASA Astrophysics Data System (ADS)
Zhang, Fengqi; Huang, Lin; Zou, Jiasui; Yang, Jun; Kang, Xiongwu; Chen, Shaowei
2017-09-01
Ruthenium nanoparticles (2.06 ± 0.46 nm in diameter) stabilized by 1-hexyl-4-isocyanobenzene (CNBH), denoted as RuCNBH, were prepared by the self-assembly of isonitrile molecules onto the surface of "bare" Ru colloids by virtue of the formation of Ru=C=N- interfacial bonds. FTIR measurements showed that the stretching vibration of the terminal -N≡C bonds at 2119 cm-1 for the monomeric ligands disappeared and concurrently three new bands at 2115, 2043, and 1944 cm-1 emerged with RuCNBH nanoparticles, which was ascribed to the transformation of -N≡C to Ru=C=N- by back donation of Ru-d electrons to the π* orbital of the organic ligands. Metathesis reaction of RuCNBH with vinyl derivatives further corroborated the nature of the Ru=C interfacial bonds. When 1-isocyanopyrene (CNPy) was bounded onto the Ru nanoparticles surface through Ru=C=N interfacial bond (denoted as RuCNPy), the emission maximum was found to red-shift by 27 nm, as compared to that of the CNPy monomers, along with a reduced fluorescence lifetime, due to intraparticle charge delocalization that arose from the conjugated Ru=C=N- interfacial bonds. The results of this study further underline the significance of metal-organic interfacial bonds in the control of intraparticle charge-transfer dynamics and the optical and electronic properties of metal nanoparticles. [Figure not available: see fulltext.
Hamlekhan, Azhang; Moztarzadeh, Fathollah; Mozafari, Masoud; Azami, Mahmoud; Nezafati, Nader
2011-01-01
In this research, new bioactive nanocomposite scaffolds were successfully developed using poly(ε-caprolactone) (PCL), cross-linked gelatin and nanoparticles of hydroxyapatite (HAp) after testing different solvents and methods. First, HAp powder was synthesized via a chemical precipitation technique and characterized. Then, the nanocomposites were prepared through layer solvent casting combined with freeze-drying and lamination techniques. According to the results, the increasing of the PCL weight in the scaffolds led to the improvement of the mechanical properties. The amount of ultimate stress, stiffness and also elastic modulus increased from 8 MPa for 0% wt PCL to 23.5 MPa for 50% wt PCL. The biomineralization study revealed the formation of an apatite layer on the scaffolds after immersion in simulated body fluid (SBF). The Ca-P ratios were in accordance to nonstoichiometric biological apatite, which was approximately 1.67. The in vitro biocompatibility and cytocompatibility of the scaffolds were tested using mesenchymal stem cells (MSCs), and the results indicated no sign of toxicity, and cells were found to be attached to the scaffold walls. The in vivo biocompatibility and osteogenesis of these scaffolds in the animal experiments is also under investigation, and the result will be published at the end of the study. PMID:23507731
Bao, Wei-Guo; Guiard, Bernard; Fang, Zi-An; Donnini, Claudia; Gervais, Michel; Passos, Flavia M. Lopes; Ferrero, Iliana; Fukuhara, Hiroshi; Bolotin-Fukuhara, Monique
2008-01-01
The HAP1 (CYP1) gene product of Saccharomyces cerevisiae is known to regulate the transcription of many genes in response to oxygen availability. This response varies according to yeast species, probably reflecting the specific nature of their oxidative metabolism. It is suspected that a difference in the interaction of Hap1p with its target genes may explain some of the species-related variation in oxygen responses. As opposed to the fermentative S. cerevisiae, Kluyveromyces lactis is an aerobic yeast species which shows different oxygen responses. We examined the role of the HAP1-equivalent gene (KlHAP1) in K. lactis. KlHap1p showed a number of sequence features and some gene targets (such as KlCYC1) in common with its S. cerevisiae counterpart, and KlHAP1 was capable of complementing the hap1 mutation. However, the KlHAP1 disruptant showed temperature-sensitive growth on glucose, especially at low glucose concentrations. At normal temperature, 28°C, the mutant grew well, the colony size being even greater than that of the wild type. The most striking observation was that KlHap1p repressed the expression of the major glucose transporter gene RAG1 and reduced the glucose uptake rate. This suggested an involvement of KlHap1p in the regulation of glycolytic flux through the glucose transport system. The ΔKlhap1 mutant showed an increased ability to produce ethanol during aerobic growth, indicating a possible transformation of its physiological property to Crabtree positivity or partial Crabtree positivity. Dual roles of KlHap1p in activating respiration and repressing fermentation may be seen as a basis of the Crabtree-negative physiology of K. lactis. PMID:18806211
Matson, Liana M; Grahame, Nicholas J
2013-11-01
Multiple lines of high alcohol-preferring (HAP) mice were selectively bred for their intake of 10% ethanol (v/v) during 24-hour daily access over a 4-week period, with the highest drinking lines exhibiting intakes in excess of 20 g/kg/day. We observed circadian drinking patterns and resulting blood ethanol concentrations (BECs) in the HAP lines. We also compared the drinking rhythms and corresponding BECs of the highest drinking HAP lines to those of the C57BL/6J (B6) inbred strain. Adult male and female crossed HAP (cHAP), HAP replicate lines 1, 2, 3 and B6 mice had free-choice access to 10% ethanol and water for 3 weeks prior to bi-hourly assessments of intake throughout the dark portion of the light-dark cycle. All HAP lines reached and maintained a rate of alcohol intake above the rate at which HAP1 mice metabolize alcohol, and BECs were consistent with this finding. Further, cHAP and HAP1 mice maintained an excessive level of intake throughout the dark portion of the cycle, accumulating mean BEC levels of 261.5 ± 18.09 and 217.9 ± 25.02 mg/dl, respectively. B6 mice drank comparatively modestly, and did not accumulate high BEC levels (53.63 + 8.15 mg/dl). Free-choice drinking demonstrated by the HAP1 and cHAP lines may provide a unique opportunity for modeling the excessive intake that often occurs in alcohol-dependent individuals, and allow for exploration of predisposing factors for excessive consumption, as well as the development of physiological, behavioral and toxicological outcomes following alcohol exposure. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.
40 CFR Table 3 to Subpart Vvvv of... - MACT Model Point Value Formulas for Open Molding Operations 1
Code of Federal Regulations, 2010 CFR
2010-07-01
..., tooling resin a. Atomized 0.014 × (Resin HAP%)2.425 b. Atomized, plus vacuum bagging with roll-out 0.01185 × (Resin HAP%)2.425 c. Atomized, plus vacuum bagging without roll-out 0.00945 × (Resin HAP%)2.425 d. Nonatomized 0.014 × (Resin HAP%)2.275 e. Nonatomized, plus vaccum bagging with roll-out 0.0110 × (Resin HAP%)2...
Hazardous Air Pollutant Free Replacement for Specification A-A-1936A Contact Adhesive
2014-02-01
volatile organic compound (VOC). Six alternative low-HAP or HAP-free commercial adhesives were evaluated using high-pressure decorative plastic laminate... compounds (VOCs) (5). The HAPs are petroleum distillate, n-hexane, and toluene. Also, this product contains cyclohexane (VOC), and acetone (HAP and...vinyl, drywall , wood, and plywood (19). This product contains toluene HAP/VOC at 1–5 wt.% (20). 4 3. Experimental Method 3.1 Edge Lift Test
Material influence on hot spot distribution in the nanoparticle heterodimer on film
NASA Astrophysics Data System (ADS)
Chen, Fang; Huang, Yingzhou; Wei, Hua; Wang, Shuxia; Zeng, Xiping; Cao, Wenbin; Wen, Weijia
2018-04-01
The metal nanoparticle aggregated on film, as an effective plasma enhancement pathway, has been widely used in various surface plasmon-related fields. In this study, the hot spots on the metal nanoparticle dimer composed of different materials (Agsbnd Au, Agsbnd Pd, and Agsbnd Cu) on metal (Au) film were investigated with finite element method. Based on the results, the hot spot distribution affected by the material can be confirmed by the electric field distribution of the metal nanoparticle dimer on the film. The aggregation effects of Au and Ag nanoparticles in Ausbnd Ag dimer system are not significant. However, for the Pdsbnd Ag dimer system, the hot spot aggregation effect is slightly larger than that of the Pd nanoparticle under the Ag nanoparticle. Besides, the non-uniform hot spots would bring about the light focusing phenomenon that the light intensity under Ag nanoparticle is almost 100 times greater than that under Cu nanoparticle in Agsbnd Cu dimer system. These results were further confirmed by the surface charge distribution, and analyzed based on the plasmonic hybridization theory. The data about the nanoparticle dimer on the dielectric (Si) film demonstrate the importance of induced image charges on the film surface in such a light focusing phenomenon. Our findings can enhance the understanding of the surface plasmon coupling in different materials, which may have great application prospects in surface plasmon-related fields, such as SERS, plasmonic enhanced solar cell, and plasmonic sensoring, etc.
Modeling thermionic emission from laser-heated nanoparticles
Mitrani, J. M.; Shneider, M. N.; Stratton, B. C.; ...
2016-02-01
An adjusted form of thermionic emission is applied to calculate emitted current from laser-heated nanoparticles and to interpret time-resolved laser-induced incandescence (TR-LII) signals. This adjusted form of thermionic emission predicts significantly lower values of emitted current compared to the commonly used Richardson-Dushman equation, since the buildup of positive charge in a laser-heated nanoparticle increases the energy barrier for further emission of electrons. Thermionic emission influences the particle's energy balance equation, which can influence TR-LII signals. Additionally, reports suggest that thermionic emission can induce disintegration of nanoparticle aggregates when the electrostatic Coulomb repulsion energy between two positively charged primary particles ismore » greater than the van der Waals bond energy. Furthermore, since the presence and size of aggregates strongly influences the particle's energy balance equation, using an appropriate form of thermionic emission to calculate emitted current may improve interpretation of TR-LII signals.« less
Terminal Supraparticle Assemblies from Similarly Charged Protein Molecules and Nanoparticles
Park, Jai Il; Nguyen, Trung Dac; de Queirós Silveira, Gleiciani; Bahng, Joong Hwan; Srivastava, Sudhanshu; Sun, Kai; Zhao, Gongpu; Zhang, Peijun; Glotzer, Sharon C.; Kotov, Nicholas A.
2015-01-01
Self-assembly of proteins and inorganic nanoparticles into terminal assemblies makes possible a large family of uniformly sized hybrid colloids. These particles can be compared in terms of utility, versatility and multifunctionality to other known types of terminal assemblies. They are simple to make and offer theoretical tools for designing their structure and function. To demonstrate such assemblies, we combine cadmium telluride nanoparticles with cytochrome C protein and observe spontaneous formation of spherical supraparticles with a narrow size distribution. Such self-limiting behaviour originates from the competition between electrostatic repulsion and non-covalent attractive interactions. Experimental variation of supraparticle diameters for several assembly conditions matches predictions obtained in simulations. Similar to micelles, supraparticles can incorporate other biological components as exemplified by incorporation of nitrate reductase. Tight packing of nanoscale components enables effective charge and exciton transport in supraparticles as demonstrated by enzymatic nitrate reduction initiated by light absorption in the nanoparticle. PMID:24845400
Development of albumin-based nanoparticles for the delivery of abacavir.
Wilson, Barnabas; Paladugu, Latishkumar; Priyadarshini, S R Brahmani; Jenita, J Josephine Leno
2015-11-01
The study was designed to prepare and evaluate albumin nanoparticles containing antiviral drug abacavir sulphate. Various batches of albumin nanoparticles containing abacavir sulphate were prepared by desolvation method. The abacavir loaded particles were characterized for their yield, percentage of drug loading, surface morphology, particle size, surface charge, pattern of in vitro drug release and release mechanism studies. Drug loading ranged from 1.2 to 5.9%w/w. The mean particle size and the surface charge were 418.2nm and -40.8mV respectively. The in vitro drug release varied between 38.73 and 51.36%w/w for 24h. The n value for Korsmeyer-Peppas was 0.425 indicating Fickian type drug release. The preliminary findings indicated that albumin nanoparticles of abacavir can be prepared by desolvation method with good yield, high drug loading and sustained release. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Sheng; Shao, Yuyan; Yin, Geping
2010-03-20
Carbon nanotubes (CNTs) are noncovalently functionalized with poly(allylamine hydrochloride) (PAH) and then employed as the support of Pt nanoparticles. X-Ray photoelectron spectroscopy confirms the successful functionalization of CNTs with PAH. The negatively charged Pt precursors are adsorbed on positively charged PAH-wrapping CNTs surface via electrostatic self-assembly and then in situ reduced in ethylene glycol. X-Ray diffraction and transmission electron microscope images reveal that Pt nanoparticles with an average size of 2.6 nm are uniformly dispersed on CNT surface. Pt/PAH-CNTs exhibit unexpectedly high activity towards oxygen reduction reaction, which can be attributed to the large electrochemical surface area of Pt nanoparticles.more » It also shows enhanced electrochemical stability due to the structural integrity of PAH-CNTs. This provides a facile approach to synthesize CNTs-based nanoelectrocatalysts.« less
Li, Ge; Huang, Jian-ming; Aoki, Hideki; Li, Yan; Zhang, Rong; Deng, Bi-fang
2007-09-01
To study the influence of a discrete nano-hydroxyapatite crystal (nano-HAp) on lymphatic leukemia P388 behavior by in vivo techniques. A nano-HAp was prepared by a neutralization reaction of 0.1 mol calcium hydroxide suspension and 0.06 mol phosphoric acid solutions at room temperature over pH7. The various doses of the nano-HAp only and the nano-HAp mixture with cyclophosphamide (CY) were injected into mice inoculated with solid tumor lymphatic leukemia P388 and dispersed into PRMI 1640 media harvested the leukemia P388 cells. Sixty P388 BALB/C mice were randomly grouped; 36 of them were used as nano-HAp treated groups and 24 mice as the control groups. The leukemia growth in the mice was examined morphologically, histopathologically and under a transmission electron microscope (TEM). The nano-HAp was identified as a hydroxyapatite by an X-ray diffractometry (XRD) and a Fourier transform infrared spectroscopy (FTIR). The morphology and sizes were observed under a TEM. The tissue growth inhibition ratio (weight%) of solid lymphatic leukemia P388 bearing mice treated with nano-HAp at doses 35 mg/kg, 53 mg/kg and nano-HAp (53 mg/kg) combined with CY (35 mg/kg) in 3 consecutive days via intraperitineal injections were 14.95%, 32.67% and 60.45% respectively. Apoptosis of P388 cell cocultured with nano-HAp was confirmed by TEM. The tissue growth restriction of solid tumor lymphatic leukemia P388 was greater after an injection of nano-HAp only or nano-HAp mixed with CY than that obtained after injection with physiological saline solution as a control (P < 0.01), and the tissue growth restriction of solid tumor after an injection of nano-HAp combined with CY was greater than that obtained after nano-HAp or CY injection only (P < 0.01).
Nanoscale hydroxyapatite particles for bone tissue engineering.
Zhou, Hongjian; Lee, Jaebeom
2011-07-01
Hydroxyapatite (HAp) exhibits excellent biocompatibility with soft tissues such as skin, muscle and gums, making it an ideal candidate for orthopedic and dental implants or components of implants. Synthetic HAp has been widely used in repair of hard tissues, and common uses include bone repair, bone augmentation, as well as coating of implants or acting as fillers in bone or teeth. However, the low mechanical strength of normal HAp ceramics generally restricts its use to low load-bearing applications. Recent advancements in nanoscience and nanotechnology have reignited investigation of nanoscale HAp formation in order to clearly define the small-scale properties of HAp. It has been suggested that nano-HAp may be an ideal biomaterial due to its good biocompatibility and bone integration ability. HAp biomedical material development has benefited significantly from advancements in nanotechnology. This feature article looks afresh at nano-HAp particles, highlighting the importance of size, crystal morphology control, and composites with other inorganic particles for biomedical material development. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Hepatitis B virus core protein allosteric modulators can distort and disrupt intact capsids.
Schlicksup, Christopher John; Wang, Joseph Che-Yen; Francis, Samson; Venkatakrishnan, Balasubramanian; Turner, William W; VanNieuwenhze, Michael; Zlotnick, Adam
2018-01-29
Defining mechanisms of direct-acting antivirals facilitates drug development and our understanding of virus function. Heteroaryldihydropyrimidines (HAPs) inappropriately activate assembly of hepatitis B virus (HBV) core protein (Cp), suppressing formation of virions. We examined a fluorophore-labeled HAP, HAP-TAMRA. HAP-TAMRA induced Cp assembly and also bound pre-assembled capsids. Kinetic and spectroscopic studies imply that HAP-binding sites are usually not available but are bound cooperatively. Using cryo-EM, we observed that HAP-TAMRA asymmetrically deformed capsids, creating a heterogeneous array of sharp angles, flat regions, and outright breaks. To achieve high resolution reconstruction (<4 Å), we introduced a disulfide crosslink that rescued particle symmetry. We deduced that HAP-TAMRA caused quasi-sixfold vertices to become flatter and fivefold more angular. This transition led to asymmetric faceting. That a disordered crosslink could rescue symmetry implies that capsids have tensegrity properties. Capsid distortion and disruption is a new mechanism by which molecules like the HAPs can block HBV infection. © 2017, Schlicksup et al.
Hepatitis B virus core protein allosteric modulators can distort and disrupt intact capsids
Schlicksup, Christopher John; Wang, Joseph Che-Yen; Francis, Samson; Venkatakrishnan, Balasubramanian; Turner, William W; VanNieuwenhze, Michael
2018-01-01
Defining mechanisms of direct-acting antivirals facilitates drug development and our understanding of virus function. Heteroaryldihydropyrimidines (HAPs) inappropriately activate assembly of hepatitis B virus (HBV) core protein (Cp), suppressing formation of virions. We examined a fluorophore-labeled HAP, HAP-TAMRA. HAP-TAMRA induced Cp assembly and also bound pre-assembled capsids. Kinetic and spectroscopic studies imply that HAP-binding sites are usually not available but are bound cooperatively. Using cryo-EM, we observed that HAP-TAMRA asymmetrically deformed capsids, creating a heterogeneous array of sharp angles, flat regions, and outright breaks. To achieve high resolution reconstruction (<4 Å), we introduced a disulfide crosslink that rescued particle symmetry. We deduced that HAP-TAMRA caused quasi-sixfold vertices to become flatter and fivefold more angular. This transition led to asymmetric faceting. That a disordered crosslink could rescue symmetry implies that capsids have tensegrity properties. Capsid distortion and disruption is a new mechanism by which molecules like the HAPs can block HBV infection. PMID:29377794
Basic nursing care to prevent nonventilator hospital-acquired pneumonia.
Quinn, Barbara; Baker, Dian L; Cohen, Shannon; Stewart, Jennifer L; Lima, Christine A; Parise, Carol
2014-01-01
Nonventilator hospital-acquired pneumonia (NV-HAP) is an underreported and unstudied disease, with potential for measurable outcomes, fiscal savings, and improvement in quality of life. The purpose of our study was to (a) identify the incidence of NV-HAP in a convenience sample of U.S. hospitals and (b) determine the effectiveness of reliably delivered basic oral nursing care in reducing NV-HAP. A descriptive, quasi-experimental study using retrospective comparative outcomes to determine (a) the incidence of NV-HAP and (b) the effectiveness of enhanced basic oral nursing care versus usual care to prevent NV-HAP after introduction of a basic oral nursing care initiative. We used the International Statistical Classification of Diseases and Related Problems (ICD-9) codes for pneumonia not present on admission and verified NV-HAP diagnosis using the U.S. Centers for Disease Control and Prevention diagnostic criteria. We completed an evidence-based gap analysis and designed a site-specific oral care initiative designed to reduce NV-HAP. The intervention process was guided by the Influencer Model (see Figure) and participatory action research. We found a substantial amount of unreported NV-HAP. After we initiated our oral care protocols, the rate of NV-HAP per 100 patient days decreased from 0.49 to 0.3 (38.8%). The overall number of cases of NV-HAP was reduced by 37% during the 12-month intervention period. The avoidance of NV-HAP cases resulted in an estimated 8 lives saved, $1.72 million cost avoided, and 500 extra hospital days averted. The extra cost for therapeutic oral care equipment was $117,600 during the 12-month intervention period. Cost savings resulting from avoided NV-HAP was $1.72 million. Return on investment for the organization was $1.6 million in avoided costs. NV-HAP should be elevated to the same level of concern, attention, and effort as prevention of ventilator-associated pneumonia in hospitals. Nursing needs to lead the way in the design and implementation of policies that allow for adequate time, proper oral care supplies, ease of access to supplies, clear procedures, and outcome monitoring ensuring that patients are protected from NV-HAP. © 2013 Sigma Theta Tau International.
Direct measurement of electrostatic fields using single Teflon nanoparticle attached to AFM tip
2013-01-01
Abstract A single 210-nm Teflon nanoparticle (sTNP) was attached to the vertex of a silicon nitride (Si3N4) atomic force microscope tip and charged via contact electrification. The charged sTNP can then be considered a point charge and used to measure the electrostatic field adjacent to a parallel plate condenser using 30-nm gold/20-nm titanium as electrodes. This technique can provide a measurement resolution of 250/100 nm along the X- and Z-axes, and the minimum electrostatic force can be measured within 50 pN. PACS 07.79.Lh, 81.16.-c, 84.37. + q PMID:24314111
Applicability of canisters for sample storage in the determination of hazardous air pollutants
NASA Astrophysics Data System (ADS)
Kelly, Thomas J.; Holdren, Michael W.
This paper evaluates the applicability of canisters for storage of air samples containing volatile organic compounds listed among the 189 hazardous air pollutants (HAPs) in the 1990 U.S. Clean Air Act Amendments. Nearly 100 HAPs have sufficient vapor pressure to be considered volatile compounds. Of those volatile organic HAPs, 52 have been tested previously for stability during storage in canisters. The published HAP stability studies are reviewed, illustrating that for most of the 52 HAPs tested, canisters are an effective sample storage approach. However, the published stability studies used a variety of canister types and test procedures, and generally considered only a few compounds in a very small set of canisters. A comparison of chemical and physical properties of the HAPs has also been conducted, to evaluate the applicability of canister sampling for other HAPs, for which canister stability testing has never been conducted. Of 45 volatile HAPs never tested in canisters, this comparison identifies nine for which canisters should be effective, and 17 for which canisters are not likely to be effective. For the other 19 HAPs, no clear decision can be reached on the likely applicability of air sample storage in canisters.
Cheng, Chin-Fu; Hung, Shao-Wen; Chang, Yung-Chung; Chen, Ming-Hui; Chang, Chen-Hsuan; Tsou, Li-Tse; Tu, Ching-Yu; Lin, Yu-Hsing; Liu, Pan-Chen; Lin, Shiun-Long; Wang, Way-Shyan
2012-01-01
Hemagglutinating proteins (HAPs) were purified from Poker-chip Venus (Meretrix lusoria) and Corbicula clam (Corbicula fluminea) using gel-filtration chromatography on a Sephacryl S-300 column. The molecular weights of the HAPs obtained from Poker-chip Venus and Corbicula clam were 358 kDa and 380 kDa, respectively. Purified HAP from Poker-chip Venus yielded two subunits with molecular weights of 26 kDa and 29 kDa. However, only one HAP subunit was purified from Corbicula clam, and its molecular weight was 32 kDa. The two Poker-chip Venus HAPs possessed hemagglutinating ability (HAA) for erythrocytes of some vertebrate animal species, especially tilapia. Moreover, HAA of the HAP purified from Poker-chip Venus was higher than that of the HAP of Corbicula clam. Furthermore, Poker-chip Venus HAPs possessed better HAA at a pH higher than 7.0. When the temperature was at 4°C–10°C or the salinity was less than 0.5‰, the two Poker-chip Venus HAPs possessed better HAA compared with that of Corbicula clam. PMID:22666167
Thompson, Kyle J; Nazari, Shayan S; Jacobs, W Carl; Grahame, Nicholas J; McKillop, Iain H
2017-11-01
This study sought to compare mice bred to preferentially consume high amounts of alcohol (crossed-high alcohol preferring, cHAP) to c57BL/6 (C57) mice using a chronic-binge ethanol ingestion model to induce alcoholic liver disease (ALD). Male C57 and cHAP mice were randomized to a Lieber-DeCarli control (LDC) diet, Lieber-DeCarli 5% (v/v) ethanol (LDE) diet or free-choice between 10% (v/v) ethanol in drinking water (EtOH-DW) and DW. After 4 weeks mice were gavaged with either 9 g/kg maltose-dextrin (LDC+MD) or 5 g/kg EtOH (LDE+Binge, EtOH-DW+Binge). Nine hours later tissue and serum were collected and analyzed. cHAP mice on EtOH-DW consumed significantly more ethanol than cHAP or C57 mice maintained on LDE. However, cHAP and C57 mice on the LDE+Binge regiment had greater hepatosteatosis and overall degree of liver injury compared to EtOH-DW+Binge. Changes in pro-inflammatory gene expression was more pronounced in cHAP mice than C57 mice. Analysis of liver enzymes revealed a robust induction of CYP2E1 in C57 and cHAP mice maintained on EtOH-DW+Binge or LDE+Binge. However, while C57 mice exhibited higher basal hepatic glutathione than cHAP mice, these mice appeared more susceptible to oxidative stress following LDE+Binge than cHAP counterparts. Despite cHAP mice consuming more total ethanol prior to gavage when maintained on EtOH-DW, LDE followed by gavage created a more severe model of ALD in both C57 and cHAP mice. These data suggest factors other than total amount of alcohol consumed affect degree of ALD development in the chronic-binge model in cHAP mice. cHAP mice voluntarily consume high amounts of ethanol and exhibited hepatic injury when subject to chronic-binge ethanol feeding with the Lieber-DeCarli diet. However, hepatic injury was reduced in cHAP mice in a chronic-binge model following voluntary high ethanol consumption in drinking water. © The Author 2017. Medical Council on Alcohol and Oxford University Press. All rights reserved.
Polyakov, Pavel D; Duval, Jérôme F L
2014-02-07
We report a comprehensive theory to evaluate the kinetics of complex formation between metal ions and charged spherical nanoparticles. The latter consist of an ion-impermeable core surrounded by a soft shell layer characterized by a discrete axisymmetric 2D distribution of charged sites that bind metal ions. The theory explicitly integrates the conductive diffusion of metal ions from bulk solution toward the respective locations of the reactive sites within the particle shell volume. The kinetic constant k for outer-sphere nanoparticle-metal association is obtained from the sum of the contributions stemming from all reactive sites, each evaluated from the corresponding incoming flux of metal ions derived from steady-state Poisson-Nernst-Planck equations. Illustrations are provided to capture the basic intertwined impacts of particle size, overall particle charge, spatial heterogeneity in site distribution, type of particle (hard, core-shell or porous) and concentration of the background electrolyte on k. As a limit, k converges with predictions from previously reported analytical expressions derived for porous particles with low and high charge density, cases that correspond to coulombic and mean-field (smeared-out) electrostatic treatments, respectively. The conditions underlying the applicability of these latter approaches are rigorously identified in terms of (i) the extent of overlap between electric double layers around charged neighbouring sites, and (ii) the magnitude of the intraparticulate metal concentration gradient. For the first time, the proposed theory integrates the differentiated impact of the local potential around the charged binding sites amidst the overall particle field, together with that of the so-far discarded intraparticulate flux of metal ions.
Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles.
Cheow, Wean Sin; Hadinoto, Kunn
2011-07-01
Lipid-polymer hybrid nanoparticles are polymeric nanoparticles enveloped by lipid layers that combine the highly biocompatible nature of lipids with the structural integrity afforded by polymeric nanoparticles. Recognizing them as attractive drug delivery vehicles, antibiotics are encapsulated in the present work into hybrid nanoparticles intended for lung biofilm infection therapy. Modified emulsification-solvent-evaporation methods using lipid as surfactant are employed to prepare the hybrid nanoparticles. Biodegradable poly (lactic-co-glycolic acid) and phosphatidylcholine are used as the polymer and lipid models, respectively. Three fluoroquinolone antibiotics (i.e. levofloxacin, ciprofloxacin, and ofloxacin), which vary in their ionicity, lipophilicity, and aqueous solubility, are used. The hybrid nanoparticles are examined in terms of their drug encapsulation efficiency, drug loading, stability, and in vitro drug release profile. Compared to polymeric nanoparticles prepared using non-lipid surfactants, hybrid nanoparticles in general are larger and exhibit higher drug loading, except for the ciprofloxacin-encapsulated nanoparticles. Hybrid nanoparticles, however, are unstable in salt solutions, but the stability can be conferred by adding TPGS into the formulation. Drug-lipid ionic interactions and drug lipophilicity play important roles in the hybrid nanoparticle preparation. First, interactions between oppositely charged lipid and antibiotic (i.e. ciprofloxacin) during preparation cause failed nanoparticle formation. Charge reversal of the lipid facilitated by adding counterionic surfactants (e.g. stearylamine) must be performed before drug encapsulation can take place. Second, drug loading and the release profile are strongly influenced by drug lipophilicity, where more lipophilic drug (i.e. levofloxacin) exhibit a higher drug loading and a sustained release profile attributed to the interaction with the lipid coat. Copyright © 2011 Elsevier B.V. All rights reserved.
24 CFR 982.607 - Congregate housing: Lease and HAP contract.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Congregate housing: Lease and HAP... Types Congregate Housing § 982.607 Congregate housing: Lease and HAP contract. For congregate housing, there is a separate lease and HAP contract for each assisted family. ...
Plasmonic Landau damping in active environments
NASA Astrophysics Data System (ADS)
Thakkar, Niket; Montoni, Nicholas P.; Cherqui, Charles; Masiello, David J.
2018-03-01
Optical manipulation of charge on the nanoscale is of fundamental importance to an array of proposed technologies from selective photocatalysis to nanophotonics. Open plasmonic systems where collective electron oscillations release energy and charge to their environments offer a potential means to this end as plasmons can rapidly decay into energetic electron-hole pairs; however, isolating this decay from other plasmon-environment interactions remains a challenge. Here we present an analytic theory of noble-metal nanoparticles that quantitatively models plasmon decay into electron-hole pairs, demonstrates that this decay depends significantly on the nanoparticle's dielectric environment, and disentangles this effect from competing decay pathways. Using our approach to incorporate embedding material and substrate effects on plasmon-electron interaction, we show that predictions from the model agree with four separate experiments. Finally, examination of coupled nanoparticle-emitter systems further shows that the hybridized in-phase mode more efficiently decays to photons whereas the out-of-phase mode more efficiently decays to electron-hole pairs, offering a strategy to tailor open plasmonic systems for charge manipulation.
NASA Astrophysics Data System (ADS)
Valizadeh, S.; Rasoulifard, M. H.; Dorraji, M. S. Seyed
2014-11-01
The magnetite-hydroxyapatite (M-HAP) nanocomposites were prepared by a chemical co- precipitation procedure and characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance spectra (DRS). The ability of the synthesized catalyst for photocatalytic degradation of Acid Blue 25 (AB25), as an organic dye, under UV irradiation was studied. The catalyst was modified employing transition metals (Mn, Fe, Co, Ni, Cu and Zn) trying to improve the catalytic performance of HAP in absence of UV irradiation and in the presence of hydrogen peroxide i.e. a Fenton like reaction. The best results obtained for Cu and Co modified M-HAPs and the effect of operational parameters such pH, amount of catalyst and hydrogen peroxide concentration was studied. In order to investigate the performance of HAP based photocatalyst in visible light region, M-HAP was modified with silver ions. At the end, Langmuir-Hinshelwood kinetic expression used to evaluate and compare the catalytic systems. The strongest degradation activity was observed for Ag-M-HAP/Vis system because of Ag3PO4 formation. Apparent reaction rate constant (Kapp) by Ag-M-HAP/Vis was 63, 36 and 19 times faster than Cu-M-HAP(II)/H2O2, Co-M-HAP(II)/H2O2 and M-HAP (I)/UV systems, respectively.
Physicochemical properties of nanocomposite: Hydroxyapatite in reduced graphene oxide.
Rajesh, A; Mangamma, G; Sairam, T N; Subramanian, S; Kalavathi, S; Kamruddin, M; Dash, S
2017-07-01
Graphene oxide (GO) based nanocomposites have gained considerable attention in the field of material science due to their excellent physicochemical and biological properties. Incorporation of nanomaterials into GO sheets prevents the formation of π-π stacking bond thereby giving rise to composites that show the improved properties compared to their individual counterparts. In this work, reduced graphene oxide (rGO) - hydroxyapatite (HAP) nanocomposites were synthesized by ultrasonic method. Increasing the c/a ratio of HAP in the diffraction pattern of rGO/HAP nanocomposites indicates the c-axis oriented grown HAP nanorods interacting with rGO layers. Shift in wavenumber (15cm -1 ) and increase of full width at half maximum (45cm -1 ) of G band in Raman spectra of the rGO/HAP nanocomposites are observed and attributed to the tensile strain induced due to the intercalated HAP nanorods between the rGO layers. Atomic force microscopy (AFM) and phase imaging studies revealed the intercalation of HAP nanorod with diameter 30nm and length 110-120nm in rGO sheets was clearly perceived along with improved elasticity compared to pristine HAP. 13 C-NMR results proved the synergistic interaction between both components in rGO/HAP nanocomposite. The novel properties observed and the microscopic mechanism responsible for this are a result of the structural modification in rGO layers brought about by the intercalation of HAP nanorods. Copyright © 2017. Published by Elsevier B.V.
Structural Determinants of Autoproteolysis of the Haemophilus influenzae Hap Autotransporter▿
Kenjale, Roma; Meng, Guoyu; Fink, Doran L.; Juehne, Twyla; Ohashi, Tomoo; Erickson, Harold P.; Waksman, Gabriel; St. Geme, Joseph W.
2009-01-01
Haemophilus influenzae is a gram-negative bacterium that initiates infection by colonizing the upper respiratory tract. The H. influenzae Hap autotransporter protein mediates adherence, invasion, and microcolony formation in assays with respiratory epithelial cells and presumably facilitates colonization. The serine protease activity of Hap is associated with autoproteolytic cleavage and extracellular release of the HapS passenger domain, leaving the Hapβ C-terminal domain embedded in the outer membrane. Cleavage occurs most efficiently at the LN1036-37 peptide bond and to a lesser extent at three other sites. In this study, we utilized site-directed mutagenesis, homology modeling, and assays with a peptide library to characterize the structural determinants of Hap proteolytic activity and cleavage specificity. In addition, we used homology modeling to predict the S1, S2, and S4 subsite residues of the Hap substrate groove. Our results indicate that the P1 and P2 positions at the Hap cleavage sites are critical for cleavage, with leucine preferred over larger hydrophobic residues or other amino acids in these positions. The substrate groove is formed by L263 and N274 at the S1 subsite, R264 at the S2 subsite, and E265 at the S4 subsite. This information may facilitate design of approaches to block Hap activity and interfere with H. influenzae colonization. PMID:19687208
A human health assessment of hazardous air pollutants in Portland, OR.
Tam, B N; Neumann, C M
2004-11-01
Ambient air samples collected from five monitoring sites in Portland, OR during July 1999 to August 2000 were analyzed for 43 hazardous air pollutants (HAP). HAP concentrations were compared to carcinogenic and non-carcinogenic benchmark levels. Carcinogenic benchmark concentrations were set at a risk level of one-in-one-million (1x10(-6)). Hazard ratios of 1.0 were used when comparing HAP concentrations to non-carcinogenic benchmarks. Emission sources (point, area, and mobile) were identified and a cumulative cancer risk and total hazard index were calculated for HAPs exceeding these health benchmark levels. Seventeen HAPs exceeded a cancer risk level of 1x10(-6) at all five monitoring sites. Nineteen HAPs exceeded this level at one or more site. Carbon tetrachloride, 1,3-butadiene, formaldehyde, and 1,1,2,2-tetrachloroethane contributed more than 50% to the upper-bound lifetime cumulative cancer risk of 2.47x10(-4). Acrolein was the only non-carcinogenic HAP with hazard ratios that exceeded 1.0 at all five sites. Mobile sources contributed the greatest percentage (68%) of HAP emissions. Additional monitoring and health assessments for HAPs in Portland, OR are warranted, including addressing issues that may have overestimated or underestimated risks in this study. Abatement strategies for HAPs that exceeded health benchmarks should be implemented to reduce potential adverse health risks.
Pallela, Ramjee; Venkatesan, Jayachandran; Janapala, Venkateswara Rao; Kim, Se-Kwon
2012-02-01
Tricomponent scaffold systems prepared by natural materials especially of marine origin are gaining much attention nowadays for the application in bone tissue engineering. A novel scaffold (Chi-HAp-MSCol) containing chitosan (Chi), hydroxyapatite (HAp) derived from Thunnus obesus bone and marine sponge (Ircinia fusca) collagen (MSCol) was prepared using freeze-drying and lyophilization method. This biomimetic scaffold, along with the Chi and Chi-HAp scaffolds were characterized biophysicochemically for their comparative significance in bone grafting applications. The structural composition of the chitosan, Chi-Hap, and Chi-HAp-MSCol scaffolds were characterized by Fourier Transform Infrared spectroscopy. The porosity, water uptake, and retention abilities of the composite scaffolds decreased, whereas Thermogravimetric and Differential Thermal Analyses results revealed the increase in thermal stability in the scaffold because of the highly stable HAp and MSCol. Homogeneous dispersion of HAp and MSCol in chitosan matrix with interconnected porosity of 60-180 μm (Chi-HAp) and 50-170 μm (Chi-HAp-MSCol) was observed by Scanning Electron Microscopy, X-ray diffraction, and optical microscopy. Cell proliferation in composite scaffolds was relatively higher than pure chitosan when observed by MTT assay and Hoechst staining in vitro using MG-63 cell line. These observations suggest that the novel Chi-HAp-MSCol composite scaffolds are promising biomaterials for matrix-based bone repair and bone augmentation. Copyright © 2011 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nian, Qiong; Cheng, Gary J., E-mail: gjcheng@purdue.edu; School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906
2014-09-15
There has been increasing needs for cost-effective and high performance thin film deposition techniques for photovoltaics. Among all deposition techniques, roll-to-roll printing of nanomaterials has been a promising method. However, the printed thin film contains many internal imperfections, which reduce the charge-collection performance. Here, direct pulse laser crystallization (DPLC) of photoactive nanoparticles-inks is studied to meet this challenge. In this study, copper indium selenite (CIS) nanoparticle-inks is applied as an example. Enhanced crystallinity, densified structure in the thin film is resulted after DLPC under optimal conditions. It is found that the decreased film internal imperfections after DPLC results in reducingmore » scattering and multi-trapping effects. Both of them contribute to better charge-collection performance of CIS absorber material by increasing extended state mobility and carrier lifetime, when carrier transport and kinetics are coupled. Charge carrier transport was characterized after DPLC, showing mobility increased by 2 orders of magnitude. Photocurrent under AM1.5 illumination was measured and shown 10 times enhancement of integrated power density after DPLC, which may lead to higher efficiency in photo-electric energy conversion.« less
NASA Astrophysics Data System (ADS)
Prezas, P. R.; Melo, B. M. G.; Costa, L. C.; Valente, M. A.; Lança, M. C.; Ventura, J. M. G.; Pinto, L. F. V.; Graça, M. P. F.
2017-12-01
Bone grafting and surgical interventions related with orthopaedic disorders consist in a big business, generating large revenues worldwide every year. There is a need to replace the biomaterials that currently still dominate this market, i.e., autografts and allografts, due to their disadvantages, such as limited availability, need for additional surgeries and diseases transmission possibilities. The most promising replacement materials are biomaterials with bioactive properties, such as the calcium phosphate-based bioceramics group. The bioactivity of these materials, i.e., the rate at which they promote the growth and directly bond with the new host biological bone, can be enhanced through their electrical polarization. In the present work, the electrical polarization features of pure hydroxyapatite (Hap), pure β-tricalcium phosphate (β-TCP) and biphasic hydroxyapatite/β-tricalcium phosphate composites (HTCP) were analyzed by measuring thermally stimulated depolarization currents (TSDC). The samples were thermoelectrically polarized at 500 °C under a DC electric field with a magnitude of 5 kV/cm. The biphasic samples were also polarized under electric fields with different magnitudes: 2, 3, 4 and 5 kV/cm. Additionally, the depolarization processes detected in the TSDC measurements were correlated with dielectric relaxation processes observed in impedance spectroscopy (IS) measurements. The results indicate that the β-TCP crystalline phase has a considerable higher ability to store electrical charge compared with the Hap phase. This indicates that it has a suitable composition and structure for ionic conduction and establishment of a large electric charge density, providing great potential for orthopaedic applications.
Saravanan, S; Balachandran, V
2015-03-05
The experimental and theoretical study on the structures and vibrations of 4-hexylacetophenone (abbreviated as 4HAP) are presented. The FT-IR and FT-Raman spectra of the title compound have been recorded in the region 4000-400cm(-1) and 3500-100cm(-1) respectively. The molecular structures, vibrational wavenumbers, infrared intensities and Raman activities were calculated using DFT (B3LYP and LSDA) method with 6-311++G(d,p) basis set. The most stable conformer of 4HAP is identified from the computational results. The assignments of the vibrational spectra have been carried out with the aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMEF). The linear polarizability (α) and the first hyperpolarizability (βtot) values of the investigated molecule have been computed using B3LYP and LSDA with 6-311++G(d,p) basis set. Stability of the molecule arising from hyper conjugative interaction and charge transfer delocalization has been analyzed using natural bond orbital (NBO) analysis. The molecule orbital contributions are studied by density of energy states (DOSs). UV-Vis spectrum and effects of solvents have been discussed effects of solvents have been discussed and the electronic properties such as HOMO and LUMO energies were determined by time-dependent TD-DFT approach. Fukui function and Mulliken analysis on atomic charges of the title compound have been calculated. Finally, electrophilic and nucleophilic descriptors of the title molecule have been calculated. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Bin; Ding, Yanping; Zhao, Xiaozheng; Han, Xuexiang; Yang, Na; Zhang, Yinlong; Zhao, Ying; Zhao, Xiao; Taleb, Mohammad; Miao, Qing Robert; Nie, Guangjun
2018-08-01
Nogo-B receptor (NgBR) plays fundamental roles in regulating angiogenesis, vascular development, and the epithelial-mesenchymal transition (EMT) of cancer cells. However, the therapeutic effect of NgBR blockade on tumor vasculature and malignancy is unknown, investigations on which requires an adequate delivery system for small interfering RNA against NgBR (NgBR siRNA). Here a surface charge switchable polymeric nanoparticle that was sensitive to the slightly acidic tumor microenvironment was developed for steady delivery of NgBR siRNA to tumor tissues. The nanoformulation was constructed by conjugating 2, 3-dimethylmaleic anhydride (DMMA) molecules to the surface amines of micelles formed by cationic co-polymer poly(lactic-co-glycolic acid) 2 -poly(ethylenimine) and subsequent absorption of NgBR siRNAs. The nanoparticles remained negatively charged in physiological condition and smartly converted to positive surface charge due to tumor-acidity-activated shedding of DMMA. The charge conversion facilitated cellular uptake of siRNAs and in turn efficiently depleted the expression of NgBR in tumor-bearing tissues. Silencing of NgBR suppressed endothelial cell migration and tubule formation, and reverted the EMT process of breast cancer cells. Delivery of the nanoformulation to mice bearing orthotopic breast carcinoma showed no effect on tumor growth, but led to remarkable decrease of distant metastasis by normalizing tumor vessels and suppressing the EMT of breast cancer cells. This study demonstrated that NgBR is a promising therapeutic target in abnormal tumor vasculature and aggressive cancer cells, and the tumor-responsive nanoparticle with the feature of charge transformation offers great potential for tumor-specific delivery of gene therapeutics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zinc oxide nanoparticles and monocytes: Impact of size, charge and solubility on activation status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prach, Morag; Stone, Vicki; Proudfoot, Lorna, E-mail: l.proudfoot@napier.ac.uk
2013-01-01
Zinc oxide (ZnO) particle induced cytotoxicity was dependent on size, charge and solubility, factors which at sublethal concentrations may influence the activation of the human monocytic cell line THP1. ZnO nanoparticles (NP; average diameter 70 nm) were more toxic than the bulk form (< 44 μm mesh) and a positive charge enhanced cytotoxicity of the NP despite their relatively high dissolution. A positive charge of the particles has been shown in other studies to have an influence on cell viability. Centrifugal filtration using a cut off of 5 kDa and Zn element analysis by atomic absorption spectroscopy confirmed that exposuremore » of the ZnO particles and NP to 10% foetal bovine serum resulted in a strong association of the Zn{sup 2+} ion with protein. This association with protein may influence interaction of the ZnO particles and NP with THP1 cells. After 24 h exposure to the ZnO particles and NP at sublethal concentrations there was little effect on immunological markers of inflammation such as HLA DR and CD14, although they may induce a modest increase in the adhesion molecule CD11b. The cytokine TNFα is normally associated with proinflammatory immune responses but was not induced by the ZnO particles and NP. There was also no effect on LPS stimulated TNFα production. These results suggest that ZnO particles and NP do not have a classical proinflammatory effect on THP1 cells. -- Highlights: ► ZnO is cytotoxic to THP-1 monocytes. ► ZnO nanoparticles are more toxic than the bulk form. ► Positive charge enhances ZnO nanoparticle cytotoxicity. ► Sublethal doses of ZnO particles do not induce classical proinflammatory markers.« less
AQUEOUS PROTONATION PROPERTIES OF AMPHOTERIC NANOPARTICLES
A divergence is predicted between the acidity behavior of charged sites on micron sized colloidal particles and nanoparticles. Utilizing the approximate analytical solution to the Poisson-Boltzmann equation published by Ohshima et al. (1982), findings from the work included: 1):...
40 CFR 63.1326 - Batch process vents-recordkeeping provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... single highest-HAP recipe. (3) Total annual uncontrolled TOC or organic HAP emissions, determined at the...): (i) For an incinerator or non-combustion control device, the percent reduction of organic HAP or TOC... percent reduction of organic HAP or TOC achieved, as determined using the procedures specified in § 63...
40 CFR 65.64 - Group determination procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... used to determine group status. (b)(1) Sampling site. For purposes of determining TOC or HAP... inches) in nominal inside diameter. (c) TOC or HAP concentration. The TOC or HAP concentrations used for... appropriate concentration in table 1 of this subpart, TOC or HAP concentration shall be determined based on...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Table 1B to this subpart Reduce emissions of total HAP, measured as THC, by 90 percent Total HAP... 1B to this subpart Limit emissions of total HAP, measured as THC, to 20 ppmvd The average total HAP...