Science.gov

Sample records for charged hydrogels prepared

  1. Macroporous modified poly (vinyl alcohol) hydrogels with charged groups for tissue engineering: Preparation and in vitro evaluation.

    PubMed

    Drozdova, Maria G; Zaytseva-Zotova, Daria S; Akasov, Roman A; Golunova, Anna S; Artyukhov, Alexander A; Udartseva, Olga O; Andreeva, Elena R; Lisovyy, Denis E; Shtilman, Michael I; Markvicheva, Elena A

    2017-06-01

    Poly(vinyl alcohol) (PVA) hydrogels are widely employed for various biomedical applications, including tissue engineering, due to their biocompatibility, high water solubility, low protein adsorption, and chemical stability. However, non-charged surface of PVA-based hydrogels is not optimal for cell adhesion and spreading. Here, cross-linked macroporous hydrogels based on low molecular weight acrylated PVA (Acr-PVA) was synthesized by modification of the pendant alcohol groups on the PVA with glycidyl methacrylate (GMA). To enhance cell affinity, charged groups were introduced to the hydrogel composition. For this purpose, Acr-PVA was copolymerized with either negatively charged acrylic acid (AA) or positively charged 2-(diethylamino) ethyl methacrylate (DEAEMA) monomers. A surface charge of the obtained hydrogels was found to be in function of the co-monomer type and content. Confocal microscopy observations confirmed that adhesion and spreading of both mouse fibroblasts (L929) and human mesenchymal stem cells (hMSC) on the modified Acr-PVA-AA and Acr-PVA-DEAEMA hydrogels were better than those on the non-modified Acr-PVA hydrogel. The increase of DEAEMA monomer content from 5 to 15mol% resulted in the enhancement of cell viability which was 1.5-fold higher for Acr-PVA-DEAEMA-15 hydrogel than that of the non-modified Acr-PVA hydrogel sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Dynamic loading stimulates chondrocyte biosynthesis when encapsulated in charged hydrogels prepared from poly(ethylene glycol) and chondroitin sulfate

    PubMed Central

    Villanueva, Idalis; Gladem, Sara K.; Kessler, Jeff; Bryant, Stephanie J.

    2009-01-01

    This study aimed to elucidate the role of charge in mediating chondrocyte response to loading by employing synthetic 3D hydrogels. Specifically, neutral poly(ethylene glycol) (PEG) hydrogels were employed where negatively charged chondroitin sulfate (ChS), one of the main extracellular matrix components of cartilage, was systematically incorporated into the PEG network at 0%, 20% or 40% to control the fixed charge density. PEG hydrogels were employed as a control environment for extracellular events which occur as a result of loading, but which are not associated with a charged matrix (e.g., cell deformation and fluid flow). Freshly isolated bovine articular chondrocytes were embedded in the hydrogels and subject to dynamic mechanical stimulation (0.3 Hz, 15% amplitude strains, 6 hours) and assayed for nitric oxide production, cell proliferation, proteoglycan synthesis, and collagen deposition. In the absence of loading, incorporation of charge inhibited cell proliferation by ~75%, proteoglycan synthesis by ~22–50% depending on ChS content, but had no affect on collagen deposition. Dynamic loading had no effect on cellular responses in PEG hydrogels. However, dynamically loading 20% ChS gels inhibited nitrite production by 50%, cell proliferation by 40%, but stimulated proteoglycan and collagen deposition by 162% and 565%, respectively. Dynamic loading of 40% ChS hydrogels stimulated nitrite production by 62% and proteoglycan synthesis by 123%, but inhibited cell proliferation by 54% and collagen deposition by 52%. Upon removing the load and culturing under free swelling conditions for 36 hrs, the enhanced matrix synthesis observed in the 20% ChS gels was not maintained suggesting that loading is necessary to stimulate matrix production. In conclusion, extracellular events associated with a charged matrix has a dramatic affect on how chondrocytes respond to mechanical stimulation within these artificial 3D matrices suggesting that streaming potentials and

  3. Xanthan hydrogel films: molecular conformation, charge density and protein carriers.

    PubMed

    Bueno, Vânia Blasques; Petri, Denise Freitas Siqueira

    2014-01-30

    In this article the molecular conformation of xanthan chains in hydrogel films was investigated by means of circular dichroism, showing substantial differences between xanthan hydrogel prepared in the absence (XNT) and in the presence of citric acid (XCA). The xanthan chains in XNT hydrogels films presented ordered conformation (helixes), while in XCA they were in the disordered conformation (coils), exposing a larger number of carboxylate groups than XNT. The large charge density in XCA hydrogels was evidenced by their behavior under variable ionic strength. Studies about the application of XNT and XCA for loading and delivering of bovine serum albumin (BSA) and lysozyme (LYZ) showed that both events are controlled by hydrogels and proteins net charge, which can be triggered by pH. The preservation of LYZ native conformation after hydrogel loading explained the substantial bactericidal activity of LYZ loaded hydrogels and enables their use as active wound dressings.

  4. Dynamic loading stimulates chondrocyte biosynthesis when encapsulated in charged hydrogels prepared from poly(ethylene glycol) and chondroitin sulfate.

    PubMed

    Villanueva, Idalis; Gladem, Sara K; Kessler, Jeff; Bryant, Stephanie J

    2010-01-01

    This study aimed to elucidate the role of charge in mediating chondrocyte response to loading by employing synthetic 3D hydrogels. Specifically, neutral poly(ethylene glycol) (PEG) hydrogels were employed where negatively charged chondroitin sulfate (ChS), one of the main extracellular matrix components of cartilage, was systematically incorporated into the PEG network at 0%, 20% or 40% to control the fixed charge density. PEG hydrogels were employed as a control environment for extracellular events which occur as a result of loading, but which are not associated with a charged matrix (e.g., cell deformation and fluid flow). Freshly isolated bovine articular chondrocytes were embedded in the hydrogels and subject to dynamic mechanical stimulation (0.3Hz, 15% amplitude strains, 6h) and assayed for nitric oxide production, cell proliferation, proteoglycan synthesis, and collagen deposition. In the absence of loading, incorporation of charge inhibited cell proliferation by approximately 75%, proteoglycan synthesis by approximately 22-50% depending on ChS content, but had no affect on collagen deposition. Dynamic loading had no effect on cellular responses in PEG hydrogels. However, dynamically loading 20% ChS gels inhibited nitrite production by 50%, cell proliferation by 40%, but stimulated proteoglycan and collagen deposition by 162% and 565%, respectively. Dynamic loading of 40% ChS hydrogels stimulated nitrite production by 62% and proteoglycan synthesis by 123%, but inhibited cell proliferation by 54% and collagen deposition by 52%. Upon removing the load and culturing under free-swelling conditions for 36h, the enhanced matrix synthesis observed in the 20% ChS gels was not maintained suggesting that loading is necessary to stimulate matrix production. In conclusion, extracellular events associated with a charged matrix have a dramatic affect on how chondrocytes respond to mechanical stimulation within these artificial 3D matrices suggesting that streaming

  5. Preparation and properties of regenerated cellulose hydrogels

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xie, F.; Li, H.; Li, W.; Li, W. J.; Li, Y. W.

    2017-02-01

    The regenerated cellulose (RCE) hydrogels were successfully prepared via an easy and green environmental method in N-methylmorpholine-N-oxide (NMMO) aqueous solution. The effect of cellulose content on the thermostability properties, swelling behavior and retention rate of hydrogels was investigated. The thermostability of RCE hydrogels was slightly enhanced with the addition of 8 wt% cellulose, the highest decomposition temperature rose from 335 °C to 352 °C, and the least heat loss is about 75.60%. The equilibrium swelling ratio increases from 394.12% for 3% cellulose hydrogels to 619.46% for 8% cellulose hydrogels. The retention ratio increases from 1.13% to 28.46%.

  6. Hydrogel: Preparation, characterization, and applications: A review

    PubMed Central

    Ahmed, Enas M.

    2013-01-01

    Hydrogel products constitute a group of polymeric materials, the hydrophilic structure of which renders them capable of holding large amounts of water in their three-dimensional networks. Extensive employment of these products in a number of industrial and environmental areas of application is considered to be of prime importance. As expected, natural hydrogels were gradually replaced by synthetic types due to their higher water absorption capacity, long service life, and wide varieties of raw chemical resources. Literature on this subject was found to be expanding, especially in the scientific areas of research. However, a number of publications and technical reports dealing with hydrogel products from the engineering points of view were examined to overview technological aspects covering this growing multidisciplinary field of research. The primary objective of this article is to review the literature concerning classification of hydrogels on different bases, physical and chemical characteristics of these products, and technical feasibility of their utilization. It also involved technologies adopted for hydrogel production together with process design implications, block diagrams, and optimized conditions of the preparation process. An innovated category of recent generations of hydrogel materials was also presented in some details. PMID:25750745

  7. Hydrogel: Preparation, characterization, and applications: A review.

    PubMed

    Ahmed, Enas M

    2015-03-01

    Hydrogel products constitute a group of polymeric materials, the hydrophilic structure of which renders them capable of holding large amounts of water in their three-dimensional networks. Extensive employment of these products in a number of industrial and environmental areas of application is considered to be of prime importance. As expected, natural hydrogels were gradually replaced by synthetic types due to their higher water absorption capacity, long service life, and wide varieties of raw chemical resources. Literature on this subject was found to be expanding, especially in the scientific areas of research. However, a number of publications and technical reports dealing with hydrogel products from the engineering points of view were examined to overview technological aspects covering this growing multidisciplinary field of research. The primary objective of this article is to review the literature concerning classification of hydrogels on different bases, physical and chemical characteristics of these products, and technical feasibility of their utilization. It also involved technologies adopted for hydrogel production together with process design implications, block diagrams, and optimized conditions of the preparation process. An innovated category of recent generations of hydrogel materials was also presented in some details.

  8. Enhancing biocompatibility of D-oligopeptide hydrogels by negative charges.

    PubMed

    Hyland, Laura L; Twomey, Julianne D; Vogel, Savannah; Hsieh, Adam H; Yu, Y Bruce

    2013-02-11

    Oligopeptide hydrogels are emerging as useful matrices for cell culture with commercial products on the market, but L-oligopeptides are labile to proteases. An obvious solution is to create D-oligopeptide hydrogels, which lack enzymatic recognition. However, D-oligopeptide matrices do not support cell growth as well as L-oligopeptide matrices. In addition to chiral interactions, many cellular activities are strongly governed by charge-charge interactions. In this work, the effects of chirality and charge on human mesenchymal stem cell (hMSC) behavior were studied using hydrogels assembled from oppositely charged oligopeptides. It was found that negative charges significantly improved hMSC viability and proliferation in D-oligopeptide gels but had little effect on their interactions with L-oligopeptide gels. This result points to the possibility of using charge and other factors to engineer biomaterials whose chirality is distinct from that of natural biomaterials, but whose performance is close to that of natural biomaterials.

  9. Magnetic hyaluronate hydrogels: preparation and characterization

    NASA Astrophysics Data System (ADS)

    Tóth, Ildikó Y.; Veress, Gábor; Szekeres, Márta; Illés, Erzsébet; Tombácz, Etelka

    2015-04-01

    A novel soft way of hyaluronate (HyA) based magnetic hydrogel preparation was revealed. Magnetite nanoparticles (MNPs) were prepared by co-precipitation. Since the naked MNPs cannot be dispersed homogenously in HyA-gel, their surface was modified with natural and biocompatible chondroitin-sulfate-A (CSA) to obtain CSA-coated MNPs (CSA@MNPs). The aggregation state of MNPs and that loaded with increasing amount of CSA up to 1 mmol/g was measured by dynamic light scattering at pH~6. Only CSA@MNP with ≥0.2 mmol/g CSA content was suitable for magnetic HyA-gel preparation. Rheological studies showed that the presence of CSA@MNP with up to 2 g/L did not affect the hydrogel's rheological behavior significantly. The results suggest that the HyA-based magnetic hydrogels may be promising formulations for future biomedical applications, e.g. as intra-articular injections in the treatment of osteoarthritis.

  10. Nanoparticle gel electrophoresis: bare charged spheres in polyelectrolyte hydrogels.

    PubMed

    Li, Fei; Hill, Reghan J

    2013-03-15

    Nanoparticle gel electrophoresis has recently emerged as an attractive means of separating and characterizing nanoparticles. Consequently, a theory that accounts for electroosmotic flow in the gel, and coupling of the nanoparticle and hydrogel electrostatics and hydrodynamics, is required, particularly for gels in which the mesh size is comparable to or smaller than the particle radii. Here, we present an electrokinetic model for charged, spherical colloidal particles undergoing electrophoresis in charged (polyelectrolyte) hydrogels: the gel-electrophoresis analogue of Henry's theory for electrophoresis in Newtonian electrolytes. We compare numerically exact solutions of the model with several independent asymptotic approximations, identifying regions in the parameter space where these approximations are accurate or break down. As previously assumed in the literature, Henry's formula, modified by the addition of a constant electroosmotic flow mobility, is accurate only for nanoparticles that are small compared to the hydrogel mesh size. We derived an exact analytical solution of the full model by judiciously modifying the theory of Allison et al. for uncharged gels, drawing on the superposition methodology of Doane et al. to account for hydrogel charge. This furnishes accurate and economical mobility predictions for the entire parameter space. The present model suggests that nanoparticle size separations (with diameters ≲40 nm) are optimal at low ionic strength, with a gel mesh size that is selected according to the particle charging mechanism. For weakly charged particles, optimal size separation is achieved when the Brinkman screening length is matched to the mean particle size.

  11. Hyperbranched polyglycerol hydrogels prepared through biomimetic mineralization.

    PubMed

    Postnova, Irina; Silant'ev, Vladimir; Kim, Min Hee; Song, Ga Young; Kim, Il; Ha, Chang-Sik; Shchipunov, Yury

    2013-03-01

    Hyperbranched polyglycerols find increasing usage in biomedicine owing to their excellent biocompatibility like polysaccharides. To prepare hydrogels, they are cross-linked mainly by treating with toxic epoxy reagents. Here we suggest a one-stage nontoxic procedure for the jellification of aqueous solutions that was previously developed for nongelable polysaccharides. It was carried out via the biomimicking mineralization. As the silica precursor, tetrakis(2-hydroxyethyl)orthosilicate containing ethylene glycol residues was employed. It could mineralize directly hydroxyl-containing macromolecules passing a stage of the sol formation. Jellification was performed in one stage in the neutral pH region at the ambient conditions. An organic solvent was not needed because of high hydrophilicity of both the precursor and polyglycerols. An as-prepared hydrogel is ready for applications because of the absence of toxic products. Its structure and mechanical properties were characterized by scanning and transmission electron microscopy as well as dynamic rheology. It was demonstrated that hyperbranched polyglycerols were encased into silica matrix that formed three-dimensional mesoporous network. A study of initial solutions of hyperbranched polyglycerols by the dynamic light scattering revealed their aggregation. This important result was confirmed by direct observations of aggregated macromolecules with high resolution scanning electron microscopy. Entrapped aggregates were also found in the silica matrix.

  12. Radiation-chemical preparation of poly(vinyl alcohol) hydrogels

    NASA Astrophysics Data System (ADS)

    Duflot, Anastasia V.; Kitaeva, Natalia K.; Duflot, Vladimir R.

    2015-02-01

    This work reports the usage of method of radiation-chemical synthesis to prepare cross-linked hydrogels from poly(vinyl alcohol) modified with glycidyl methacrylate. Synthesis kinetics of modified poly(vinyl alcohol) and properties of hydrogels were studied. The gel fraction, swelling, mechanical properties, and water content of the hydrogels were measured. It was found that gel fraction increases with increasing radiation dose, concentration of modified poly(vinyl alcohol), and reaches 60%. It was established by differential scanning calorimetry that a fraction of the "bound" water in hydrogels is 50-70% and independent of gel fraction content. In addition to "bound" and "free" states, water in hydrogels is also present in the intermediate state.

  13. A novel domperidone hydrogel: preparation, characterization, pharmacokinetic, and pharmacodynamic properties.

    PubMed

    Zhang, Chun-Hui; Zhao, Bing-Xiang; Huang, Yue; Wang, Ying; Ke, Xi-Yu; Zhao, Bo-Jun; Zhang, Xuan; Zhang, Qiang

    2011-01-01

    The purpose of the present study was to prepare a novel domperidone hydrogel. The domperidone dispersion was prepared by the solvent evaporation method. The characteristics of domperidone dispersion were measured by dynamic light scattering (DLS), scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffractometry, and solubility test, respectively. Domperidone hydrogel was prepared by directly incorporating the domperidone dispersion in Carbopol hydrogel to increase its mucoadhesive properties to gastrointestinal tract (GIT). The in vivo pharmacokinetic and pharmacodynamic studies were investigated to evaluate the relative oral bioavailability and the propulsion efficacy of domperidone hydrogel as compared with market domperidone tablet (Motilium tablet). The particle size of domperidone dispersion in distilled water was 454.0 nm. The results of DSC and X-ray indicated that domperidone in dispersion was in amorphous state. The solubility of domperidone in the dispersion in distilled water, pH of 1, 5, and 7 buffer solution was 45.7-, 63.9-, 13.1-, and 3.7-fold higher than that of raw domperidone, respectively. The area under the plasma concentration curve (AUC(0-24)) in domperidone hydrogel was 2.2-fold higher than that of tablet. The prolonged propulsion efficacy in the domperidone hydrogel group compared to that in tablet group was observed in the pharmacodynamic test.

  14. A Novel Domperidone Hydrogel: Preparation, Characterization, Pharmacokinetic, and Pharmacodynamic Properties

    PubMed Central

    Zhang, Chun-Hui; Zhao, Bing-Xiang; Huang, Yue; Wang, Ying; Ke, Xi-Yu; Zhao, Bo-Jun; Zhang, Xuan; Zhang, Qiang

    2011-01-01

    The purpose of the present study was to prepare a novel domperidone hydrogel. The domperidone dispersion was prepared by the solvent evaporation method. The characteristics of domperidone dispersion were measured by dynamic light scattering (DLS), scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffractometry, and solubility test, respectively. Domperidone hydrogel was prepared by directly incorporating the domperidone dispersion in Carbopol hydrogel to increase its mucoadhesive properties to gastrointestinal tract (GIT). The in vivo pharmacokinetic and pharmacodynamic studies were investigated to evaluate the relative oral bioavailability and the propulsion efficacy of domperidone hydrogel as compared with market domperidone tablet (Motilium tablet). The particle size of domperidone dispersion in distilled water was 454.0 nm. The results of DSC and X-ray indicated that domperidone in dispersion was in amorphous state. The solubility of domperidone in the dispersion in distilled water, pH of 1, 5, and 7 buffer solution was 45.7-, 63.9-, 13.1-, and 3.7-fold higher than that of raw domperidone, respectively. The area under the plasma concentration curve (AUC0–24) in domperidone hydrogel was 2.2-fold higher than that of tablet. The prolonged propulsion efficacy in the domperidone hydrogel group compared to that in tablet group was observed in the pharmacodynamic test. PMID:21490756

  15. Robust Self-Standing Chitin Nanofiber/Nanowhisker Hydrogels with Designed Surface Charges and Ultralow Mass Content via Gas Phase Coagulation.

    PubMed

    Liu, Liang; Wang, Rong; Yu, Juan; Jiang, Jie; Zheng, Ke; Hu, Lijiang; Wang, Zhiguo; Fan, Yimin

    2016-11-14

    Partially deacetylated α-chitin nanofibers/nanowhiskers mixtures (DEChNs) and TEMPO-oxidized α-chitin nanowhiskers (TOChNs) that had positive and negative charges, respectively, were transformed into hydrogels with mass concentrations of 0.2, 0.4, 0.6, 0.8, and 1.0% under ammonium hydroxide or hydrochloric acid "gas phase coagulation". To the best of our knowledge, 0.2% is the lowest mass content reported for the successful preparation of physical self-standing hydrogels based on chitin nanofibers/nanowhiskers. The even and uniform coagulation under "gas phase" is one of the key aspects of preparing hydrogels with quite low mass content. The storage modulus achieved the highest value of 8.35 and 3.73 KPa for DEChN and TOChN hydrogels, respectively, at the mass concentration of 1.0%, and these are known to be the highest values reported in the literature for hydrogels at the same mass concentration of chitin nanofibers/nanowhiskers. The equilibrium swelling ratio (ESR) of both DEChN and TOChN hydrogels decreased with increasing mass content at neutral pH. As the pH increased from 2 to 10, the swelling degree of DEChN hydrogels decreased from 268 to 130, whereas the swelling degree of TOChN hydrogels increased from 128 to 242. Additionally, due to the electrostatic attraction between the hydrogels and dyes, DEChN hydrogels had significant adsorption of Reactive Blue 19, while TOChN hydrogels had effective adsorption of Basic Green 4. The different pH-dependent swelling behavior and adsorption affinity of the DEChN and TOChN hydrogels were related to their designed opposite surface charges corresponding to the surface amino groups on the DEChNs and carboxyl groups on the TOChNs.

  16. Chitosan/agarose hydrogels: cooperative properties and microfluidic preparation.

    PubMed

    Zamora-Mora, Vanessa; Velasco, Diego; Hernández, Rebeca; Mijangos, Carmen; Kumacheva, Eugenia

    2014-10-13

    The preparation of composite biopolymer hydrogels offers the capability to produce biocompatible and biodegradable materials with cooperative properties. In this paper, two natural polymers, namely, chitosan and agarose were employed to prepare composite hydrogels with dual pH and temperature properties. The elastic modulus of the composite hydrogels increased with agarose concentration reaching the value of 1 kPa for the chitosan/agarose gel with a 2% (w/v) concentration of agarose. In addition, composite gels exhibited a higher stability in acidic aqueous solutions, in comparison with agarose gels. The drug release properties of the composite hydrogels were tested by loading a model anticancer drug, 5-Fluorouracil, in the hydrogel interior. At pH=7.4, the cumulative release of 5-FU was ∼ 50% within 96 h and decreased to ∼ 33% at pH = 5.2, which was attributed to the different solubility of 5-FU as a function of pH. The preparation of composite microgels with controllable dimensions in the range from 42 to 18 μm and with narrow size distribution (polidispersity not exceeding 1.5%) was achieved by the microfluidic emulsification of an aqueous mixture of chitosan and agarose and subsequent gelation of the precursor droplets by cooling.

  17. Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Zhai, Maolin; Li, Jiuqiang; Peng, Jing; Wu, Jilan

    2002-03-01

    Sodium carboxymethyl cellulose (CMC) is a kind of degraded polymer under γ-irradiation. However, in this work, it has been found that CMC crosslinks partially to form hydrogel by radiation technique at more than 20% CMC aqueous solution. The gel fraction increases with the dose. The crosslinking reaction of CMC is promoted in the presence of N 2 or N 2O due to the increase of free radicals on CMC backbone, but gel fraction of CMC hydrogel is not high (<40%). Some important values related to this kind of new CMC hydrogel synthesized under different conditions, such as radiation yield of crosslinking G( x), gelation dose Rg, number average molecular weight of network Mc were calculated according to the Charlesby-Pinner equation. The results indicated that although crosslinked CMC hydrogel could be prepared by radiation method, the rate of radiation degradation of CMC was faster than that of radiation crosslinking due to the character of CMC itself. Swelling dynamics of CMC hydrogel and its swelling behavior at different conditions, such as acidic, basic, inorganic salt as well as temperature were also investigated. Strong acidity, strong basicity, small amount of inorganic salts and lower temperature can reduce swelling ratio.

  18. Nanostructurally Controlled Hydrogel Based on Small‐Diameter Native Chitin Nanofibers: Preparation, Structure, and Properties

    PubMed Central

    Kochumalayil, Joby; Cervin, Nicholas Tchang; Zhou, Qi

    2016-01-01

    Abstract Chitin nanofibers of unique structure and properties can be obtained from crustacean and fishery waste. These chitin nanofibers have roughly 4 nm diameters, aspect ratios between 25–250, a high degree of acetylation and preserved crystallinity, and can be potentially applied in hydrogels. Hydrogels with a chitin nanofiber content of 0.4, 0.6, 0.8, 1.0, 2.0, and 3.0 wt % were successfully prepared. The methodology for preparation is new, environmentally friendly, and simple as gelation is induced by neutralization of the charged colloidal mixture, inducing precipitation and secondary bond interaction between nanofibers. Pore structure and pore size distributions of corresponding aerogels are characterized using auto‐porosimetry, revealing a substantial fraction of nanoscale pores. To the best of our knowledge, the values for storage (13 kPa at 3 wt %) and compression modulus (309 kPa at 2 wt %) are the highest reported for chitin nanofibers hydrogels. PMID:27061912

  19. Nanostructurally Controlled Hydrogel Based on Small-Diameter Native Chitin Nanofibers: Preparation, Structure, and Properties.

    PubMed

    Mushi, Ngesa Ezekiel; Kochumalayil, Joby; Cervin, Nicholas Tchang; Zhou, Qi; Berglund, Lars A

    2016-05-10

    Chitin nanofibers of unique structure and properties can be obtained from crustacean and fishery waste. These chitin nanofibers have roughly 4 nm diameters, aspect ratios between 25-250, a high degree of acetylation and preserved crystallinity, and can be potentially applied in hydrogels. Hydrogels with a chitin nanofiber content of 0.4, 0.6, 0.8, 1.0, 2.0, and 3.0 wt % were successfully prepared. The methodology for preparation is new, environmentally friendly, and simple as gelation is induced by neutralization of the charged colloidal mixture, inducing precipitation and secondary bond interaction between nanofibers. Pore structure and pore size distributions of corresponding aerogels are characterized using auto-porosimetry, revealing a substantial fraction of nanoscale pores. To the best of our knowledge, the values for storage (13 kPa at 3 wt %) and compression modulus (309 kPa at 2 wt %) are the highest reported for chitin nanofibers hydrogels. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Charge density is more important than charge polarity in enhancing osteoblast-like cell attachment on poly(ethylene glycol)-diacrylate hydrogel.

    PubMed

    Tan, Fei; Liu, Jie; Liu, Mengdong; Wang, Jiawei

    2017-07-01

    Two differently-charged monomers, namely, 2-(methacryloyloxy)ethyl-trimethylammonium chloride (MAETAC) and sodium methacrylate (SMA), were incorporated into poly(ethylene glycol)-diacrylate (PEGDA) hydrogels to investigate the effects of surface charge on the osteoblast-like cell attachment. The pKa of MAETAC and SMA was first determined, and then the physicochemical properties of the resultant polymers were characterized. Osteoblast-like MC3T3-E1 cells were also seeded on the hydrogels to evaluate the effect of charge polarity and charge density on the cell attachment. Results revealed that the pKa value of MAETAC and SMA was 9.4 and 4.8, respectively. Two charged monomers were incorporated into PEGDA. The zeta potential of hydrogels became positive or negative with the increasing concentration of MAETAC or SMA. Although different concentrations of charge monomer were incorporated into PEGDA hydrogel, no significant difference in surface morphology was found among each group. The swelling ratio and crosslinking density of modified hydrogels remained constant in phosphate-buffered saline. No difference was also observed on the contact angle between charged and non-charged hydrogels. However, more proteins were adsorbed on the charged hydrogels, irrespective of the charge polarity. The modification of hydrogels with charge monomer not only accelerated osteoblast-like cell attachment but also enhanced the expression of cell attachment-related genes. These findings indicated that charge density might be more important to affect the osteoblast-like cell attachment on the hydrogel in contrast to charge polarity. Through controlling the incorporation of charge monomer, designing the hydrogel and providing an opportunity to study the effect of charge on the cell behavior are possible. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Preparation of supramolecular hydrogel-enzyme hybrids exhibiting biomolecule-responsive gel degradation.

    PubMed

    Shigemitsu, Hajime; Fujisaku, Takahiro; Onogi, Shoji; Yoshii, Tatsuyuki; Ikeda, Masato; Hamachi, Itaru

    2016-09-01

    Hydrogelators are small, self-assembling molecules that form supramolecular nanofiber networks that exhibit unique dynamic properties. Development of supramolecular hydrogels that degrade in response to various biomolecules could potentially be used for applications in areas such as drug delivery and diagnostics. Here we provide a synthetic procedure for preparing redox-responsive supramolecular hydrogelators that are used to create hydrogels that degrade in response to oxidizing or reducing conditions. The synthesis takes ∼2-4 d, and it can potentially be carried out in parallel to prepare multiple hydrogelator candidates. This described solid-phase peptide synthesis protocol can be used to produce previously described hydrogelators or to construct a focused molecular library to efficiently discover and optimize new hydrogelators. In addition, we describe the preparation of redox-responsive supramolecular hydrogel-enzyme hybrids that are created by mixing aqueous solutions of hydrogelators and enzymes, which requires 2 h for completion. The resultant supramolecular hydrogel-enzyme hybrids exhibit gel degradation in response to various biomolecules, and can be rationally designed by connecting the chemical reactions of the hydrogelators with enzymatic reactions. Gel degradation in response to biomolecules as triggers occurs within a few hours. We also describe the preparation of hydrogel-enzyme hybrids arrayed on flat glass slides, enabling high-throughput analysis of biomolecules such as glucose, uric acid, lactate and so on by gel degradation, which is detectable by the naked eye. The protocol requires ∼6 h to prepare the hydrogel-enzyme hybrid array and to complete the biomolecule assay.

  2. Alginate/polyoxyethylene and alginate/gelatin hydrogels: preparation, characterization, and application in tissue engineering.

    PubMed

    Aroguz, Ayse Z; Baysal, Kemal; Adiguzel, Zelal; Baysal, Bahattin M

    2014-05-01

    Hydrogels are attractive biomaterials for three-dimensional cell culture and tissue engineering applications. The preparation of hydrogels using alginate and gelatin provides cross-linked hydrophilic polymers that can swell but do not dissolve in water. In this work, we first reinforced pure alginate by using polyoxyethylene as a supporting material. In an alginate/PEO sample that contains 20 % polyoxyethylene, we obtained a stable hydrogel for cell culture experiments. We also prepared a stable alginate/gelatin hydrogel by cross-linking a periodate-oxidized alginate with another functional component such as gelatin. The hydrogels were found to have a high fluid uptake. In this work, preparation, characterization, swelling, and surface properties of these scaffold materials were described. Lyophilized scaffolds obtained from hydrogels were used for cell viability experiments, and the results were presented in detail.

  3. Preparation and enhanced mechanical properties of hybrid hydrogels comprising ultralong hydroxyapatite nanowires and sodium alginate.

    PubMed

    Jiang, Ying-Ying; Zhu, Ying-Jie; Li, Heng; Zhang, Yong-Gang; Shen, Yue-Qin; Sun, Tuan-Wei; Chen, Feng

    2017-07-01

    Hydrogels with 3-dimentional cross-linked structures are widely used in various biomedical fields such as bone repair scaffolds, drug carriers and biosensors. However, the applications of hydrogels are usually restricted because of their poor mechanical properties. Currently, nanocomposites, double network systems, hydrophobic association, macromolecules, and nanoparticles are commonly adopted as cross-linking agents to enhance mechanical properties of hydrogels. In this work, ultralong hydroxyapatite nanowires (HANWs) with lengths of several hundred microns are prepared and used to enhance the mechanical properties of sodium alginate (SA)-based hydrogels. Using divalent calcium ions as the cross-linking agent, the hybrid HANWs/SA hydrogels containing various percentages of HANWs are obtained. The as-prepared HANWs/SA hybrid hydrogels have a porous structure with pore sizes ranging from about 200 to 500μm. The mechanical properties of SA hydrogels can be significantly improved by incorporating HANWs. The maximum compressive modulus (E50%) and tensile Young's modulus of the hybrid hydrogel (HANWs/SA=2:1) are as high as 0.123MPa and 0.994MPa, which are about 162% and 614% those of the pure SA hydrogel, respectively. Due to the enhanced mechanical properties and high biocompatibility, the as-prepared HANWs/SA hybrid hydrogels have promising applications in various biomedical fields such as bone defect repair.

  4. Investigation of Salecan/poly(vinyl alcohol) hydrogels prepared by freeze/thaw method.

    PubMed

    Qi, Xiaoliang; Hu, Xinyu; Wei, Wei; Yu, Hao; Li, Junjian; Zhang, Jianfa; Dong, Wei

    2015-03-15

    Salecan is a novel water-soluble extracellular-glucan produced by a new kind of salt-tolerant strain Agrobacterium sp. ZX09 and can be applied in food and medicine industries. In this work, Salecan (Sal) was incorporated into poly(vinyl alcohol) (PVA) to prepare novel Sal/PVA hybrid hydrogels by repeated freeze-thaw processing. Physicochemical and biological characteristics of the hydrogels were investigated to evaluate their potential as cell adhesion materials. By increasing the Salecan content in the hybrid hydrogels, their swelling capacity increased notably, while the compressive modulus decreased. Observed by SEM, Sal/PVA hydrogels had a homogeneous porous structure. The degradation rate of the hydrogels can be controlled by tailoring the composition ratio of Sal/PVA. Furthermore, cells could adhere well on the surface of Sal/PVA hydrogels. In conclusion, these results make Sal/PVA hydrogels attractive materials for biomedical applications.

  5. Kinetically stable metal ligand charge transfer complexes as crosslinks in nanogels/hydrogels: Physical properties and cytotoxicity.

    PubMed

    Wang, Rong; Both, Sanne K; Geven, Mike; Calucci, Lucia; Forte, Claudia; Dijkstra, Pieter J; Karperien, Marcel

    2015-10-01

    A terpyridine end-functionalized 8-arm poly(ethylene glycol) was prepared using the reaction of a 4'-aminopentanoxy substituted terpyridine with a p-nitrophenyl chloroformate activated PEG-(OH)8. Supramolecular complexation of the polymer terpyridine moieties by Fe(2+) ions was investigated using NMR, UV-Vis and dynamic light scattering experiments. At low concentrations addition of Fe(2+) ions to an aqueous solution of the polymer conjugate afforded nanogels with a single size distribution around 250 nm. At concentrations above 3 wt%, and at a 1:2 metal to ligand molar ratio, hydrogels were formed with increasing mechanical properties at increasing polymer concentrations. Using bovine chondrocytes, the biocompatibility and potential cytotoxicity of the polymer conjugate, nanogels and hydrogels were studied. The polymer conjugate with free ligands was toxic to the cells likely due to depletion of essential metal ions. When the terpyridine groups were complexed with Fe(2+) ions, both nanogel suspensions and hydrogels showed no cytotoxicity in direct contact with chondrocytes. Indirect contact of gels with chondrocytes using transwells revealed the absence of toxic components by leaching. A Live-Dead assay on chondrocytes encapsulated in the hydrogels indicated that the hydrogels are cytocompatible, revealing the potential use of these materials for biomedical and pharmaceutical applications. The binding between transition metal ions and ligands with multiple binding sites can be almost as strong as covalent bonds. This metal-ligand charge transfer (MLCT) complexation was used to crosslink water soluble polymers into hydrogels. This approach to novel materials may find applications in the biomedical and pharmaceutical fields. Transition metal ions are essential trace elements present in tissue but up to now no cytotoxicity data of free ligands are available. Data presented show that free ligands are toxic to cells likely by depletion of trace metal ions, whereas

  6. Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Guo, Haiying; Jiao, Tifeng; Zhang, Qingrui; Guo, Wenfeng; Peng, Qiuming; Yan, Xuehai

    2015-06-01

    Graphene oxide (GO) sheets exhibit superior adsorption capacity for removing organic dye pollutants from an aqueous environment. In this paper, the facile preparation of GO/polyethylenimine (PEI) hydrogels as efficient dye adsorbents has been reported. The GO/PEI hydrogels were achieved through both hydrogen bonding and electrostatic interactions between amine-rich PEI and GO sheets. For both methylene blue (MB) and rhodamine B (RhB), the as-prepared hydrogels exhibit removal rates within about 4 h in accordance with the pseudo-second-order model. The dye adsorption capacity of the hydrogel is mainly attributed to the GO sheets, whereas the PEI was incorporated to facilitate the gelation process of GO sheets. More importantly, the dye-adsorbed hydrogels can be conveniently separated from an aqueous environment, suggesting potential large-scale applications of the GO-based hydrogels for organic dye removal and wastewater treatment.

  7. Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment.

    PubMed

    Guo, Haiying; Jiao, Tifeng; Zhang, Qingrui; Guo, Wenfeng; Peng, Qiuming; Yan, Xuehai

    2015-12-01

    Graphene oxide (GO) sheets exhibit superior adsorption capacity for removing organic dye pollutants from an aqueous environment. In this paper, the facile preparation of GO/polyethylenimine (PEI) hydrogels as efficient dye adsorbents has been reported. The GO/PEI hydrogels were achieved through both hydrogen bonding and electrostatic interactions between amine-rich PEI and GO sheets. For both methylene blue (MB) and rhodamine B (RhB), the as-prepared hydrogels exhibit removal rates within about 4 h in accordance with the pseudo-second-order model. The dye adsorption capacity of the hydrogel is mainly attributed to the GO sheets, whereas the PEI was incorporated to facilitate the gelation process of GO sheets. More importantly, the dye-adsorbed hydrogels can be conveniently separated from an aqueous environment, suggesting potential large-scale applications of the GO-based hydrogels for organic dye removal and wastewater treatment.

  8. Characterization and behavior of composite hydrogel prepared from bamboo shoot cellulose and β-cyclodextrin.

    PubMed

    Liu, Shumin; Luo, Wenchao; Huang, Huihua

    2016-08-01

    Carboxymethyl cellulose was derived from bamboo shoot cellulose via chemical modification and was prepared into composite hydrogels by cross-linkage with β-cyclodextrin using epichlorohydrin as crossing agent. The structure of the prepared hydrogel was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. The results showed that the prepared composite hydrogel was sensitive to surrounding changes in pH value, temperature and ionic strength. Under the surroundings of low temperatures and high pH values, the prepared hydrogel had significant high swelling ratios (23338±988% at 15°C and 6937±112% at pH 8.0, respectively). In the solution of 0.1mol/L NaCl, the hydrogel showed the maximum water retention rate (48.73%). Sodium salicylate was used as the model drug to study the behaviors of hydrogel adsorption and release in simulated intestinal (at pH 7.4) and gastric liquid (at pH 1.8) surroundings. The prepared composite hydrogel exhibited higher drug release ratio in simulated intestinal liquid (63.09% after 380min) than in gastric liquid (22.09% after 400min). These pH responses of the prepared composite hydrogel showed its potential applications, especially as the drug carrier to attain control release of drugs under different surrounding conditions or organs in human body.

  9. Preparation and swelling behavior of chitosan-based superporous hydrogels for gastric retention application.

    PubMed

    Park, Hyojin; Park, Kinam; Kim, Dukjoon

    2006-01-01

    Chitosan and glycol chitosan hydrogels were prepared, and their swelling behaviors in acidic solution were studied to investigate their application for gastric retention device. The optimum preparation condition of superporous hydrogels was obtained from the gelation and blowing kinetics measured at varying acidic conditions. Both the swelling rate and swelling ratio of glycol chitosan hydrogels were higher than those of chitosan hydrogels. Swelling behaviors were significantly affected by not only foaming/drying methods but also crosslinking density, as the sizes and structures of pores generated were highly dependent on those preparation conditions. The prepared superporous hydrogels were highly sensitive to pH of swelling media, and showed reversible swelling and de-swelling behaviors maintaining their mechanical stability. The degradation kinetics in simulated gastric fluid was also studied.

  10. Metal adsorption of carboxymethyl cellulose/carboxymethyl chitosan blend hydrogels prepared by Gamma irradiation

    NASA Astrophysics Data System (ADS)

    Hiroki, A.; Tran, H. T.; Nagasawa, N.; Yagi, T.; Tamada, M.

    2009-12-01

    Blend hydrogels based on the carboxymethyl cellulose (CMC) and carboxymethyl chitosan (CMCts) were prepared by γ-irradiation of a high concentrated CMC/CMCts aqueous solution. Properties of the hydrogels, such as gel fraction, swelling ratio, gel strength, and metal adsorption for Pb and Au were investigated. The gel fraction increased with increasing dose, while the swelling ratio decreased with increasing it. The obtained blend hydrogels had high adsorption performance which was controlled by adjusting the composition of CMC/CMCts.

  11. A new vesicle-loaded hydrogel system suitable for topical applications: preparation and characterization.

    PubMed

    Carafa, Maria; Marianecci, Carlotta; Di Marzio, Luisa; Rinaldi, Federica; Meo, Chiara; Matricardi, Pietro; Alhaique, Franco; Coviello, Tommasina

    2011-01-01

    PURPOSE. Aim of this research was to prepare and study drug release from a new formulation consisting of non ionic surfactant vesicular structures, niosomes (NSVs), loaded with model molecules calcein (CALC), nile red (NR), ibuprofen (IBU) or caffeine (CAFF), and embedded in a hydrogel matrix. METHODS. The system locust bean gum/xanthan (1:1), prepared at 60 °C, was used to entrap the vesicles (Tween 20/cholesterol 1:1), loaded with guest molecules and the release profiles were detected at 32 °C. The hydrogel systems were characterized by means of scanning electron microscopy; niosomes were characterized by means of size and -potential measurements. RESULTS. Size measurements showed that a slight increase in vesicle dimensions occurs after inclusion of CALC or CAFF (hydrophilic molecules) in the vesicular structures. -potential measurements showed that the inclusion of these molecules did not significantly modify the surface charge of empty vesicles. This was probably related to an almost negligible drug adsorption on the vesicle surface. The release from the niosomes-gel systems of two probes (CALC and NR) showed that the diffusion of CALC through the gel was not affected by the niosome entrapment while for NR, the presence of vesicles was crucial. The release profiles from niosomes-gel systems and from the hydrogel alone of model drugs, CAFF and IBU, showed an appreciable difference between the two drugs: the more hydrophilic CAFF was released much faster than IBU. In all release studies turbidity, dimension and -potential analyses indicated that the loaded niosomes were released by the hydrogel matrix without being damaged. CONCLUSIONS. The reported in vitro experiments show the capability of the novel formulation to combine the qualities of both chosen single systems, i.e. the niosomes and the polymeric network. The hydrogel shows a protective effect on vesicle integrity and leads to a slow release of the loaded model molecules from the

  12. Nonlinear effects on electrophoresis of a charged dielectric nanoparticle in a charged hydrogel medium

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; De, Simanta

    2016-09-01

    The impact of the solid polarization of a charged dielectric particle in gel electrophoresis is studied without imposing a weak-field or a thin Debye length assumption. The electric polarization of a dielectric particle due to an external electric field creates a non-uniform surface charge density, which in turn creates a non-uniform Debye layer at the solid-gel interface. The solid polarization of the particle, the polarization of the double layer, and the electro-osmosis of mobile ions within the hydrogel medium create a nonlinear effect on the electrophoresis. We have incorporated those nonlinear effects by considering the electrokinetics governed by the Stokes-Brinkman-Nernst-Planck-Poisson equations. We have computed the governing nonlinear coupled set of equations numerically by adopting a finite volume based iterative algorithm. Our numerical method is tested for accuracy by comparing with several existing results on free-solution electrophoresis as well as results based on the Debye-Hückel approximation. Our computed result shows that the electrophoretic velocity decreases with the rise of the particle dielectric permittivity constant and attains a saturation limit at large values of permittivity. A significant impact of the solid polarization is found in gel electrophoresis compared to the free-solution electrophoresis.

  13. Preparation of size tunable giant vesicles from cross-linked dextran(ethylene glycol) hydrogels.

    PubMed

    López Mora, Néstor; Hansen, Jesper S; Gao, Yue; Ronald, Andrew A; Kieltyka, Roxanne; Malmstadt, Noah; Kros, Alexander

    2014-02-25

    We present a novel chemically cross-linked dextran-poly(ethylene glycol) hydrogel substrate for the preparation of dense vesicle suspensions under physiological ionic strength conditions. These vesicles can be easily diluted for individual study. Modulating the degree of cross-linking within the hydrogel network results in tuning of the vesicle size distribution.

  14. Porous Polyelectrolyte Hydrogels With Enhanced Swelling Properties Prepared Via Thermal Reverse Casting Technique

    NASA Astrophysics Data System (ADS)

    Salerno, Aurelio; Netti, Paolo A.

    2010-06-01

    In this work we investigated the preparation and characterization of porous polyelectrolyte hydrogels via thermal reverse casting technique. Polyacrylamide hydrogels were synthesized by free-radical crosslinking polymerization into the space of an agarose gel which, after the setting of the chemical gel, was removed to allow the formation of an interconnected porosity pathway. Two different monomer/agarose solution ratios were selected for the reverse casting process and, the resulting hydrogels characterized in terms of morphological, micro-structural and thermal properties, as well as swelling capability in solutions at different ionic strength. The results of this study demonstrated that proposed technique allowed the design of porous polyacrylamide hydrogels with well controlled pore structures. Furthermore, if compared to non porous polyacrylamide hydrogel, the as obtained hydrogels were characterized by enhanced swelling properties and that, these properties were fine tuned by the appropriate selection of the templating agent concentration.

  15. Controlled release of plasmid DNA from hydrogels prepared from gelatin cationized by different amine compounds.

    PubMed

    Kushibiki, Toshihiro; Tomoshige, Ryuji; Iwanaga, Kazunori; Kakemi, Masawo; Tabata, Yasuhiko

    2006-05-15

    This paper is an investigation to compare the in vivo controlled release of a plasmid DNA from biodegradable hydrogels prepared from gelatin cationized by different amine compounds, ethylenediamine, putrescine, spermidine, and spermine and the consequent profile of gene expression. Cationized gelatin prepared through the chemical introduction of each amine compound was crosslinked by various concentrations of glutaraldehyde to obtain cationized gelatin hydrogels for the carrier of plasmid DNA release. When the cationized gelatin hydrogels incorporating 125I-labeled plasmid DNA were implanted into the femoral muscle of mice, the radioactivity remaining decreased with time and the retention period of radioactivity prolonged with a decrease in the water content of hydrogels. When 125I-labeled cationized gelatin hydrogels with the higher water content was implanted, the radioactivity remaining was decreased faster with time. The remaining time profile of plasmid DNA radioactivity was in good accordance with that of hydrogel radioactivity, irrespective of the type of cationized gelatin. Following intramuscular implantation, any cationized gelatin hydrogel incorporating plasmid DNA enhanced the expression level of plasmid DNA to a significantly higher extent than the free plasmid DNA injection. In addition, prolonged time period of gene expression was observed although there was no significant difference in the expressed period between the cationized gelatin hydrogels. It was concluded that plasmid DNA of biological activity was released from every cationized gelatin hydrogel accompanied with the in vivo degradation, resulting in enhanced and prolonged gene expression.

  16. Hyaluronic acid/chondroitin sulfate-based hydrogel prepared by gamma irradiation technique.

    PubMed

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2014-02-15

    Gamma-ray irradiation of novel hydrogels was used to develop a biocompatible hydrogel system for skin tissue engineering. These novel hydrogels are composed of natural polymers including hyaluronic acid (HA) and chondroitin sulfate (CS), and the synthetic polymer, poly(vinyl alcohol) (PVA). The γ-ray irradiation method has advantages, such as relatively simple manipulation without need of any extra reagents for polymerization and cross-linking. We synthesized HA and CS derivatives with polymerizable residues. The HA/CS/PVA hydrogels with various compositions were prepared by using γ-ray irradiation technique and their physicochemical properties were investigated to evaluate the feasibility of their use as artificial skin substitutes. HA/CS/PVA hydrogels showed an 85-88% degree of gelation under 15 kGy radiation. All HA/CS/PVA hydrogels exhibited more than 90% water content and reached an equilibrium swelling state within 24h. Hydrogels with higher concentrations of hyaluronidase solution and HA/CS content had proportionally higher enzymatic degradation rates. The drug release behaviors from HA/CS/PVA hydrogels were influenced by the composition of the hydrogel and drug properties. Exposure of human keratinocyte (HaCaT) culture to the extracts of HA/CS/PVA hydrogels did not significantly affect the cell viability. All HaCaT cell cultures exposed to the extracts of HA/CS/PVA hydrogels exhibited greater than 92% cell viability. The HaCaT growth in HA/CS/PVA hydrogels gradually increased as a function of culture time. After 7 days, the HaCaT cells in all HA/CA/PVA hydrogels exhibited more than 80% viability compared to the control group HaCaT culture on a culture plate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Biodegradable DNA-enabled poly(ethylene glycol) hydrogels prepared by copper-free click chemistry.

    PubMed

    Barker, Karolyn; Rastogi, Shiva K; Dominguez, Jose; Cantu, Travis; Brittain, William; Irvin, Jennifer; Betancourt, Tania

    2016-01-01

    Significant research has focused on investigating the potential of hydrogels in various applications and, in particular, in medicine. Specifically, hydrogels that are biodegradable lend promise to many therapeutic and biosensing applications. Endonucleases are critical for mechanisms of DNA repair. However, they are also known to be overexpressed in cancer and to be present in wounds with bacterial contamination. In this work, we set out to demonstrate the preparation of DNA-enabled hydrogels that could be degraded by nucleases. Specifically, hydrogels were prepared through the reaction of dibenzocyclooctyne-functionalized multi-arm poly(ethylene glycol) with azide-functionalized single-stranded DNA in aqueous solutions via copper-free click chemistry. Through the use of this method, biodegradable hydrogels were formed at room temperature in buffered saline solutions that mimic physiological conditions, avoiding possible harmful effects associated with other polymerization techniques that can be detrimental to cells or other bioactive molecules. The degradation of these DNA-cross-linked hydrogels upon exposure to the model endonucleases Benzonase(®) and DNase I was studied. In addition, the ability of the hydrogels to act as depots for encapsulation and nuclease-controlled release of a model protein was demonstrated. This model has the potential to be tailored and expanded upon for use in a variety of applications where mild hydrogel preparation techniques and controlled material degradation are necessary including in drug delivery and wound healing systems.

  18. Characterization of Network Structure of Polyacrylamide Based Hydrogels Prepared By Radiation Induced Polymerization

    SciTech Connect

    Mahmudi, Naim; Sen, Murat; Gueven, Olgun; Rendevski, Stojan

    2007-04-23

    In this study network structure of polyacrylamide based hydrogels prepared by radiation induced polymerization has been investigated. Polyacrylamide based hydrogels in the rod form were prepared by copolymerization of acrylamide(AAm) with hydroxyl ethyl methacrylate(HEMA) and methyl acrylamide(MAAm) in the presence of cross-linking agent and water by gamma rays at ambient temperature. Molecular weight between cross-links and effective cross-link density of hydrogels were calculated from swelling as well as shear modulus data obtained from compression tests. The results have shown that simple compression analyses can be used for the determination of effective cross-link density of hydrogels without any need to some polymer-solvent based parameters as in the case of swelling based determinations. Diffusion of water into hydrogels was examined by analyzing water absorption kinetics and the effect of network, structure on the diffusion type and coefficient was discussed.

  19. Nitrile Oxide-Norbornene Cycloaddition as a Bioorthogonal Crosslinking Reaction for the Preparation of Hydrogels.

    PubMed

    Truong, Vinh X; Zhou, Kun; Simon, George P; Forsythe, John S

    2015-10-01

    This communication describes the first application of cycloaddition between an in situ generated nitrile oxide with norbornene leading to a polymer crosslinking reaction for the preparation of poly(ethylene glycol) hydrogels under physiological conditions. Hydrogels with high water content and robust physical strength are readily formed within 2-5 min by a simple two-solution mixing method which allows 3D encapsulation of neuronal cells. This bioorthogonal crosslinking reaction provides a simple yet highly effective method for preparation of hydrogels to be used in bioengineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hydrogels Prepared from Cross-Linked Nanofibrillated Cellulose

    Treesearch

    Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas

    2014-01-01

    Nanocomposite hydrogels were developed by cross-linking nanofibrillated cellulose with poly(methyl vinyl ether-co-maleic acid) and polyethylene glycol. The cross-linked hydrogels showed enhanced water absorption and gel content with the addition of nanocellulose. In addition, the thermal stability, mechanical strength, and modulus increased with an increase in the...

  1. Preparation and properties of novel hydrogel based on chitosan modified by poly(amidoamine) dendrimer.

    PubMed

    He, Guanghua; Zhu, Chao; Ye, Shengyang; Cai, Weiquan; Yin, Yihua; Zheng, Hua; Yi, Ying

    2016-10-01

    Currently, chitosan (CTS) or chitosan derivatives hydrogels are applied in different fields, such as biological materials, medical materials and hygiene materials. In this study, novel chitosan hydrogels were successfully prepared by chitosan and poly(amidoamine) (PAMAM) dendrimer with glutaraldehyde serving as a cross-linking agent. Fourier transform infrared spectroscopy (FTIR), (1)H nuclear magnetic resonance ((1)H NMR) and gel permeation chromatography (GPC) were performed to characterize PAMAM. The structure and morphology of hydrogels were characterized by FTIR, thermo gravimetry analysis (TGA), and scanning electron microscopy (SEM). The swelling properties of the hydrogels were investigated in solutions of pH 1.0 and 7.4. The hydrogels showed good swelling capacities and pH-sensitive swelling properties. Besides, the antibacterial activities of the hydrogels against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) were tested by optical density. Compared with the pure chitosan hydrogel, their antibacterial activities were significantly improved with the increase in the blending ratio of PAMAM. And with the increase in cross-linking agent and concentration of CTS, the antibacterial activities increased firstly and then slightly decreased. The hydrogel was expected to be a novel antibacterial material.

  2. Preparation and characterization of oil palm frond based cellulose hydrogel and its swelling properties

    NASA Astrophysics Data System (ADS)

    Selvakumaran, Nesha; Lazim, Mohd Azwani Shah bin Mat

    2016-11-01

    Malaysia is one of the largest producer of palm oil thus the quantity of biomass each year from this industry is very large. The oil palm frond from palm oil industry can be used as a source of cellulose which can be incorporated into hydrogel to be used as adsorbent. This research reported how to disperse 2 % cellulose in a `green-solution' prepared by using urea and sodium hydroxide. Polymerization is carried out between the monomers polyacrylamide and cellulose using microwave to form hydrogel. Hydrogel with 2 % cellulose have a swelling index of 1814 %. Meanwhile, zero hydrogel which is made with only polyacrylamide has swelling index of 15 %. Scanning electron microscope shows that cellulose hydrogel have a rough surface compared with zero hydrogel. This might attribute to the high swelling index for cellulose hydrogel compared with zero hydrogel. Meanwhile, FTIR shows that successful polymerization has occurred between polyacrylamide and cellulose with the characteristic band at 1657.99 cm-1 which is for N-H bond.

  3. Preparation of Hydrophilic Encapsulated Carbon Nanotubes with Polymer Brushes and Its Application in Composite Hydrogels.

    PubMed

    Li, Zili; Tang, Miao; Bai, Wei; Bai, Ruke

    2017-06-20

    Carbon nanotubes can be used as promising reinforcement materials to improve the mechanical properties of hydrogels, but their poor dispersibility in aqueous solution severely limits their application in preparation of composite hydrogels. Therefore, to develop method for modification of carbon nanotubes is still highly desired. In this paper, a facile approach for preparation of the hydrophilic carbon nanotube was reported. The encapsulated multiwalled carbon nanotubes (E-CNT-PAA) with cross-linked shell structure were obatined through the self-assembly of the amphipathic azide diblock copolymers poly(acrylic acid)-b-poly(4-vinylbenzyl azide-co-styrene) (PAA-b-(PVBA-co-PS)), and the cross-linking of inside azide groups under UV irradiation. The encapsulated MWCNT was characterized by FT-IR, Raman and TEM. It was demonstrated that the dispersibility of the hydrophilic encapsulated MWCNTs was related to the length of the poly(acrylic acid) brushes. Subsequently, thermal-responsive composite hydrogels (PNIPAM/E-CNT-PAA) were prepared by in situ polymerization of N-isopropylacrylamide (NIPAM) in the solution of dispersed E-CNT-PAA. The results showed that the composite hydrogels possessed high mechanical properties compared to the pure PNIPAM hydrogel. The tensile strength and elongation of the composite hydrogels were highly dependent on the content of the modified MWCNTs. The composite hydrogels with 0.46 wt % MWCNTs exhibited tensile strength of 97.7 kPa and elongation of 465%, which were at least 3.5× higher than those of the PNIPAM hydrogel. Moreover, the composite hydrogels displayed significant and reversible stimuli-responsiveness.

  4. Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration.

    PubMed

    Ma, Xin; He, Zhiwei; Han, Fengxuan; Zhong, Zhiyuan; Chen, Liang; Li, Bin

    2016-07-01

    Development of biomimetic scaffolds represents a promising direction in bone tissue engineering. In this study, we designed a two-step process to prepare a type of biomimetic hybrid hydrogels that were composed of collagen, hydroxyapatite (HAP) and alendronate (ALN), an anti-osteoporosis drug. First, water-soluble ALN-conjugated HAP (HAP-ALN) containing 4.0wt.% of ALN was synthesized by treating HAP particles with ALN. Hydrogels were then formed from HAP-ALN conjugate and collagen under physiological conditions using genipin (GNP) as the crosslinker. Depending on the ALN/collagen molar ratio and GNP concentration, the gelation time of hydrogels ranged from 5 to 37min. Notably, these hybrid hydrogels exhibited markedly improved mechanical property (storage modulus G'=38-187kPa), higher gel contents, and lower swelling ratios compared to the hydrogels prepared from collagen alone under similar conditions. Moreover, they showed tunable degradation behaviors against collagenase. The collagen/HAP-ALN hybrid hydrogels supported the adhesion and growth of murine MC3T3-E1 osteoblastic cells well. Such tough yet enzymatically degradable hybrid hydrogels hold potential as scaffolds for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Polyelectrolyte Complex Hydrogels: Self-assembly and the Influence of Charged and Neutral Blocks

    NASA Astrophysics Data System (ADS)

    Srivastava, Samanvaya; Goldfeld, David; Levi, Adam; Mao, Jun; Chen, Wei; Tirrell, Matthew

    Polyelectrolyte complexes (PEC) form when oppositely charged polyelectrolyte chains spontaneously associate and phase separate in aqueous mediums. Bulk phase separation of the PECs can be evaded by combining one or both of the polyelectrolytes with a neutral polymer, thus engineering pathways for self-assembled PEC micelles and hydrogels. The PEC domains in these assemblies can encapsulate therapeutics as well as genetic materials and thus have tremendous potential in drug delivery and tissue engineering applications. We will present insights on the equilibrium structure and self-assembly kinetics of PEC hydrogels with large-scale ordering of the nanoscale PEC domains through detailed structure characterization and rheology studies of self-assembled materials comprising of functionalized polyallyl glycidyl ethers (PAGE) connected to either single poly(ethylene glycol) (PEG) chain to form diblock copolymers or as functionalized end-groups on a triblock copolymer with a PEG midblock. The effect of key parameters such as polymer concentration, polymer block lengths, salt, ionic strength, and degree of charge mismatch on the equilibrium materials properties will be discussed, with a special emphasis on the structure-defining role of the charged blocks and the structure-directing role of neutral blocks. Additionally, interesting similarities, and differences between structures and dynamics of hydrogels comprising diblock and corresponding triblock polyelectrolytes, respectively, will be discussed.

  6. Novel hydrogel-based preparation-free EEG electrode.

    PubMed

    Alba, Nicolas Alexander; Sclabassi, Robert J; Sun, Mingui; Cui, Xinyan Tracy

    2010-08-01

    The largest obstacles to signal transduction for electroencephalography (EEG) recording are the hair and the epidermal stratum corneum of the skin. In typical clinical situations, hair is parted or removed, and the stratum corneum is either abraded or punctured using invasive penetration devices. These steps increase preparation time, discomfort, and the risk of infection. Cross-linked sodium polyacrylate gel swelled with electrolyte was explored as a possible skin contact element for a prototype preparation-free EEG electrode. As a superabsorbent hydrogel, polyacrylate can swell with electrolyte solution to a degree far beyond typical contemporary electrode materials, delivering a strong hydrating effect to the skin surface. This hydrating power allows the material to increase the effective skin contact surface area through wetting, and noninvasively decrease or bypass the highly resistive barrier of the stratum corneum, allowing for reduced impedance and improved electrode performance. For the purposes of the tests performed in this study, the polyacrylate was prepared both as a solid elastic gel and as a flowable paste designed to penetrate dense scalp hair. The gel can hold 99.2% DI water or 91% electrolyte solution, and the water content remains high after 29 h of air exposure. The electrical impedance of the gel electrode on unprepared human forearm is significantly lower than a number of commercial ECG and EEG electrodes. This low impedance was maintained for at least 8 h (the longest time period measured). When a paste form of the electrode was applied directly onto scalp hair, the impedance was found to be lower than that measured with commercially available EEG paste applied in the same manner. Time-frequency transformation analysis of frontal lobe EEG recordings indicated comparable frequency response between the polyacrylate-based electrode on unprepared skin and the commercial EEG electrode on abraded skin. Evoked potential recordings demonstrated

  7. An Injectable Hydrogel Prepared Using a PEG/Vitamin E Copolymer Facilitating Aqueous-Driven Gelation.

    PubMed

    Zhang, Jianfeng; Muirhead, Ben; Dodd, Megan; Liu, Lina; Xu, Fei; Mangiacotte, Nicole; Hoare, Todd; Sheardown, Heather

    2016-11-14

    Hydrogels have been widely explored for biomedical applications, with injectable hydrogels being of particular interest for their ability to precisely deliver drugs and cells to targets. Although these hydrogels have demonstrated satisfactory properties in many cases, challenges still remain for commercialization. In this paper, we describe a simple injectable hydrogel based on poly(ethylene glycol) (PEG) and a vitamin E (Ve) methacrylate copolymer prepared via simple free radical polymerization and delivered in a solution of low molecular weight PEG and Ve as the solvent instead of water. The hydrogel formed immediately in an aqueous environment with a controllable gelation time. The driving force for gelation is attributed to the self-assembly of hydrophobic Ve residues upon exposure to water to form a physically cross-linked polymer network via polymer chain rearrangement and subsequent phase separation, a spontaneous process with water uptake. The hydrogels can be customized to give the desired water content, mechanical strength, and drug release kinetics simply by formulating the PEGMA-co-Ve polymer with an appropriate solvent mixture or by varying the molecular weight of the polymer. The hydrogels exhibited no significant cytotoxicity in vitro using fibroblasts and good tissue compatibility in the eye and when injected subcutaneously. These polymers thus have the potential to be used in a variety of applications where injection of a drug or cell containing depot would be desirable.

  8. Preparation of biointeractive glycoprotein-conjugated hydrogels through metabolic oligosacchalide engineering.

    PubMed

    Iwasaki, Yasuhiko; Matsunaga, Aki; Fujii, Shuetsu

    2014-09-17

    In the current study, synthetic hydrogels containing metabolically engineered glycoproteins of mammalian cells were prepared for the first time and selectin-mediated cell adhesion on the hydrogel was demonstrated. A culture of HL-60 cells was supplemented with an appropriate volume of aqueous solution of N-methacryloyl mannosamine (ManMA) to give a final concentration of 5 mM. The cells were then incubated for 3 days to deliver methacryloyl groups to the glycoproteins of the cells. A transparent hydrogel was formed via redox radical polymerization of methacryloyl functionalized glycoproteins with 2-methacryloyloxyethyl phosphorylcholine and a cross-linker. Conjugation of the glycoproteins into the hydrogel was determined using Coomassie brilliant blue (CBB) and periodic acid-Schiff (PAS) staining. The surface density of P-selectin glycoprotein ligand-1 (PSGL-1) on the hydrogels was also detected using gold-colloid-labeled immunoassay. Finally, selectin-mediated cell adhesion on hydrogels containing glycoproteins was demonstrated. Selectin-mediated cell adhesion is considered an essential step in the progression of various diseases; therefore, hydrogels having glycoproteins could be useful in therapeutic and diagnostic applications.

  9. Preparation and antibacterial properties of O-carboxymethyl chitosan/lincomycin hydrogels.

    PubMed

    He, Guanghua; Chen, Xiang; Yin, Yihua; Cai, Weiquan; Ke, Wanwan; Kong, Yahui; Zheng, Hua

    2016-01-01

    In this study, O-carboxymethyl chitosan (O-CMCS) was synthesized from chitosan and monochloroacetic acid. Then O-CMCS hydrogel was prepared by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) in which the lincomycin was packaged. The Fourier transform infrared spectrum and scanning electron microscopy were adopted to characterize the structure and morphology of the product. The influences of dosage of EDC/NHS and concentration of O-CMCS on the swelling properties of the hydrogels were investigated. The hydrogels performed good swelling capacities and obvious pH-sensitive properties. The antibacterial activities of the hydrogels were tested against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). Compared with pure O-CMCS hydrogels, the antibacterial activities of O-CMCS/lincomycin hydrogels were significantly improved with the increase in the concentration of lincomycin against E. coli and S. aureus. With the increase in dosage of crosslinking agent or concentration of O-CMCS, the antibacterial activities both decreased gradually against the two bacteria. O-CMCS/lincomycin hydrogel was expected to be used for antibacterial material in view of its significant antibacterial activities.

  10. Preparation and physico-chemical properties of hydrogels from carboxymethyl cassava starch crosslinked with citric acid

    NASA Astrophysics Data System (ADS)

    Boonkham, Sasikan; Sangseethong, Kunruedee; Chatakanon, Pathama; Niamnuy, Chalida; Nakasaki, Kiyohiko; Sriroth, Klanarong

    2014-06-01

    Recently, environmentally friendly hydrogels prepared from renewable bio-based resources have drawn significant attention from both industrial and academic sectors. In this study, chemically crosslinked hydrogels have been developed from cassava starch which is a bio-based polymer using a non-toxic citric acid as a crosslinking agent. Cassava starch was first modified by carboxymethylation to improve its water absorbency property. The carboxymethyl cassava starch (CMCS) obtained was then crosslinked with citric acid at different concentrations and reaction times. The gel fraction of hydrogels increased progressively with increasing citric acid concentration. Free swelling capacity of hydrogels in de-ionized water, saline solution and buffers at various pHs as well as absorption under load were investigated. The results revealed that swelling behavior and mechanical characteristic of hydrogels depended on the citric acid concentration used in reaction. Increasing citric acid concentration resulted in hydrogels with stronger network but lower swelling and absorption capacity. The cassava starch hydrogels developed were sensitive to ionic strength and pH of surrounding medium, showing much reduced swelling capacity in saline salt solution and acidic buffers.

  11. Preparation of monodisperse and size-controlled poly(ethylene glycol) hydrogel nanoparticles using liposome templates.

    PubMed

    An, Se Yong; Bui, Minh-Phuong Ngoc; Nam, Yun Jung; Han, Kwi Nam; Li, Cheng Ai; Choo, Jaebum; Lee, Eun Kyu; Katoh, Shigeo; Kumada, Yoichi; Seong, Gi Hun

    2009-03-01

    Liposomes were used as templates to prepare size-controlled and monodisperse poly(ethylene glycol) (PEG) hydrogel nanoparticles. The procedure for the preparation of PEG nanoparticles using liposomes consists of encapsulation of photopolymerizable PEG hydrogel solution into the cavity of the liposomes, extrusion through a membrane with a specific pore size, and photopolymerization of the contents inside the liposomes by UV irradiation. The size distributions of the prepared particles were 1.32+/-0.16 microm (12%), 450+/-62 nm (14%), and 94+/-12 nm (13%) after extrusion through membrane filters with pore sizes of 1 microm, 400 nm, and 100 nm, respectively. With this approach, it is also possible to modify the surface of the hydrogel nanoparticles with various functional groups in a one-step procedure. To functionalize the surface of a PEG nanoparticle, methoxy poly(ethylene glycol)-aldehyde was added as copolymer to the hydrogel-forming components and aldehyde-functionalized PEG nanoparticles could be obtained easily by UV-induced photopolymerization, following conjugation with poly-L-lysine-FITC through amine-aldehyde coupling. The prepared PEG particles showed strong fluorescence from FITC on the edge of the particles using confocal microscopy. The immobilization of biomaterials such as enzymes in hydrogel particles could be performed with loading beta-galactosidases during the hydration step for liposome preparation without additional procedures. The resorufin produced by applying resorufin beta-D-galactopyranoside as the substrate showed the fluorescence under the confocal microscopy.

  12. Chitosan-containing hydrogel wound dressings prepared by radiation technique

    NASA Astrophysics Data System (ADS)

    Mozalewska, Wiktoria; Czechowska-Biskup, Renata; Olejnik, Alicja K.; Wach, Radoslaw A.; Ulański, Piotr; Rosiak, Janusz M.

    2017-05-01

    The aim of the study was to develop an antimicrobial hydrogel wound dressing by means of radiation-initiated crosslinking of hydrophilic polymers, i.e. by well-established technology comprising gel manufacturing and its sterilization in one process. The approach included admixture of chitosan of relatively low molecular weight dissolved in lactic acid (LA) into the initial regular components of the conventional hydrogel dressing based on poly(N-vinyl pyrrolidone) (PVP) and agar. Molecular weight of chitosan was regulated by radiation-initiated degradation in the range of 39-132 kg mol-1. Optimum total concentration of LA in the resultant hydrogel dressing was evaluated as 0.05 mol dm-3, that is ca. 0.5%. Presence of LA in the system influenced essential radiation and technological parameters of hydrogel manufacturing. The setting temperature of the pre-hydrogel mixture, resulting from agar ability to congeal, was reduced with LA concentration, yet remained significantly above the room temperature. 0.5% of chitosan was effectively dissolved in aqueous solution of lactic acid due to its pH (lower than 5.5). Radiation parameters of PVP crosslinking in the presence of LA, as determined with generalized Charlesby-Pinner equation, were reflected in slight reduction of the maximum gel fraction and increase in gelation dose and in the factor comparing yields of scission to crosslinking. Nevertheless, essentially physical characteristics of the hydrogel was not affected, except for somewhat increased water uptake capacity, what in turn improves functionality of the dressing as extensive exudate for the wound can be efficiently absorbed. Preliminary microbiological studies showed antimicrobial character of the chitosan-containing hydrogel towards Gram-positive bacterial strain.

  13. First report of charge-transfer induced heat-set hydrogel. Structural insights and remarkable properties

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Subham; Maiti, Bappa; Bhattacharya, Santanu

    2016-05-01

    The remarkable ability of a charge-transfer (CT) complex prepared from a pyrene-based donor (Py-D) and a naphthalenediimide-based acceptor (NDI-A) led to the formation of a deep-violet in color, transparent hydrogel at room temperature (RT-gel). Simultaneously, the RT-gel was diluted beyond its critical gelator concentration (CGC) to obtain a transparent sol. Very interestingly, the resultant sol, on heating above 70 °C, transformed into a heat-set gel instantaneously with a hitherto unknown CGC value. Detailed studies revealed the smaller globular aggregates of the RT-gels fuse to form giant globules upon heating, which, in turn, resulted in heat-set gelation through further aggregation. The thermoresponsive property of Py-D alone and 1 : 1 Py-D : NDI-A CT complex was investigated in detail which revealed the hydrophobic collapse of the oxyethylene chains of the CT complex upon heating was mainly responsible for heat-set gelation. Thixotropy, injectability, as well as stimuli responsiveness of the RT-gels were also addressed. In contrast, heat-set gel did not show thixotropic behavior. The X-ray diffraction (XRD) patterns of the xerogel depicted lamellar packing of the CT stacks in the gel phase. Single crystal XRD studies further evidenced the 1 : 1 mixed CT stack formation in the lamellae and also ruled out orthogonal hydrogen bonding possibilities among the hydrazide unit in the CT gel although such interaction was observed in a single crystal of NDI-A alone. In addition, a Ag+-ion triggered metallogelation of NDI-A and nematic liquid-crystalline property of Py-D were also observed.The remarkable ability of a charge-transfer (CT) complex prepared from a pyrene-based donor (Py-D) and a naphthalenediimide-based acceptor (NDI-A) led to the formation of a deep-violet in color, transparent hydrogel at room temperature (RT-gel). Simultaneously, the RT-gel was diluted beyond its critical gelator concentration (CGC) to obtain a transparent sol. Very interestingly, the

  14. Preparation of keratin and chemically modified keratin hydrogels and their evaluation as cell substrate with drug releasing ability.

    PubMed

    Nakata, Ryo; Osumi, Yu; Miyagawa, Shoko; Tachibana, Akira; Tanabe, Toshizumi

    2015-07-01

    Keratin was extracted as a reduced form from wool, which was then subjected to acetamidation, carboxymethylation or aminoethylation at abundant free cysteine residues to give acetamidated keratin (AAK), carboxymethylated keratin (CMK) and aminoethylated keratin (AEK). Hydrogels were prepared from intact and three chemically modified keratins simply by concentrating their aqueous solution and subsequent cooling. The lowest concentration to form a hydrogel without fluidity was 110 mg/ml for AAK, 120 mg/ml for AEK, 130 mg/ml for keratin and 180 mg/ml for CMK. Comparing with a hydrogel just prepared (swelling ratio: 600-700), each hydrogel slightly shrank in an acidic solution. While AAK hydrogel little swelled in neutral and basic solutions, other hydrogels became swollen and CMK hydrogel reached to dissolution. Hydrogels of keratin, AAK and AEK were found to support cell proliferation, although cell elongation on AAK and AEK hydrogel was a little suppressed. On the other hand, CMK hydrogel did not seem to be suitable for a cell substrate because of its high swelling in culture medium. Evaluation of the hydrogels as a drug carrier showed that keratin and AAK hydrogels were good sustained drug release carriers, which showed the drug release for more than three days, while the release from AEK and CMK hydrogels completed within one day. Thus, keratin and chemically modified keratin hydrogels, especially keratin and AAK hydrogels, were promising biomaterials as a cell substrate and a sustained drug release carrier. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Preparation, fabrication and biocompatibility of novel injectable temperature-sensitive chitosan/glycerophosphate/collagen hydrogels.

    PubMed

    Song, Kedong; Qiao, Mo; Liu, Tianqing; Jiang, Bo; Macedo, Hugo M; Ma, Xuehu; Cui, Zhanfeng

    2010-10-01

    This paper introduces a novel type of injectable temperature-sensitive chitosan/glycerophosphate/collagen (C/GP/Co) hydrogel that possesses great biocompatibility for the culture of adipose tissue-derived stem cells. The C/GP/Co hydrogel is prepared by mixing 2.2% (v/v) chitosan with 50% (w/w) β-glycerophosphate at different proportions and afterwards adding 2 mg/ml of collagen. The gelation time of the prepared solution at 37°C was found to be of around 12 min. The inner structure of the hydrogel presented a porous spongy structure, as observed by scanning electron microscopy. Moreover, the osmolality of the medium in contact with the hydrogel was in the range of 310-330 mmol kg(-1). These analyses have shown that the C/GP/Co hydrogels are structurally feasible for cell culture, while their biocompatibility was further examined. Human adipose tissue-derived stem cells (ADSCs) were seeded into the developed C/GP and C/GP/Co hydrogels (The ratios of C/GP and C/GP/Co were 5:1 and 5:1:6, respectively), and the cellular growth was periodically observed under an inverted microscope. The proliferation of ADSCs was detected using cck-8 kits, while cell apoptosis was determined by a Live/Dead Viability/Cytotoxicity kit. After 7 days of culture, cells within the C/GP/Co hydrogels displayed a typical adherent cell morphology and good proliferation with very high cellular viability. It was thus demonstrated that the novel C/GP/Co hydrogel herein described possess excellent cellular compatibility, representing a new alternative as a scaffold for tissue engineering, with the added advantage of being a gel at the body's temperature that turns liquid at room temperature.

  16. Preparation and properties of collagen/modified hyaluronic acid hydrogel for biomedical application.

    PubMed

    Kim, Jae-Kyung; Lee, Jung-Soo; Jung, Hyo-Jung; Cho, Jin-Hui; Heo, Jee-In; Chang, Yoon-Ho

    2007-11-01

    Hydrogels composed of collagen and hyaluronic acid are types of crosslinked water-swellable polymers and possess vast potential for applications in the medical industry. Collagen (Co) is the major structural protein of connective tissues such as skin, tendon and cartilage. Hyaluronic acid (HA) is a non-immunogenic, non-adhesive glycosaminoglycan that has a high water absorption property and plays significant roles in several cellular processes. The purpose of this study is to prepare a collagen (Co)-modified hyaluronic acid (MHA) hydrogel and investigate its potential utility for biomedical products such as wound dressing materials. Collagen (Co, type I) was obtained from pig skin and mucopolysaccharide-HA was modified by a poly (ethylene glycol) diglycidyl ether (PEGDGE) crosslinker. Thermal stability, swelling behavior, and mechanical strength of Co-MHA hydrogel according to different mass ratios of Co and MHA in hydrogel networks were investigated. The physical properties of the hydrogel were measured by SEM, Differential Scanning Calorimetry (DSC), Thermal Gravity Analysis (TGA), and a Universal Testing Machine (UTM). The cell viability of Co-MHA hydrogel was also evaluated using an in vitro MTT assay.

  17. Semiconductor nanoparticle-based hydrogels prepared via self-initiated polymerization under sunlight, even visible light

    PubMed Central

    Zhang, Da; Yang, Jinhu; Bao, Song; Wu, Qingsheng; Wang, Qigang

    2013-01-01

    Since ancient times, people have used photosynthesized wood, bamboo, and cotton as building and clothing materials. The advantages of photo polymerization include the mild and easy process. However, the direct use of available sunlight for the preparation of materials is still a challenge due to its rather dilute intensity. Here, we show that semiconductor nanoparticles can be used for initiating monomer polymerization under sunlight and for cross-linking to form nanocomposite hydrogels with the aid of clay nanosheets. Hydrogels are an emerging multifunctional platform because they can be easily prepared using solar energy, retain semiconductor nanoparticle properties after immobilization, exhibit excellent mechanical strength (maximum compressive strength of 4.153 MPa and tensile strength 1.535 MPa) and high elasticity (maximum elongation of 2784%), and enable recyclable photodegradation of pollutants. This work suggests that functional nanoparticles can be immobilized in hydrogels for their collective application after combining their mechanical and physiochemical properties. PMID:23466566

  18. Semiconductor nanoparticle-based hydrogels prepared via self-initiated polymerization under sunlight, even visible light.

    PubMed

    Zhang, Da; Yang, Jinhu; Bao, Song; Wu, Qingsheng; Wang, Qigang

    2013-01-01

    Since ancient times, people have used photosynthesized wood, bamboo, and cotton as building and clothing materials. The advantages of photo polymerization include the mild and easy process. However, the direct use of available sunlight for the preparation of materials is still a challenge due to its rather dilute intensity. Here, we show that semiconductor nanoparticles can be used for initiating monomer polymerization under sunlight and for cross-linking to form nanocomposite hydrogels with the aid of clay nanosheets. Hydrogels are an emerging multifunctional platform because they can be easily prepared using solar energy, retain semiconductor nanoparticle properties after immobilization, exhibit excellent mechanical strength (maximum compressive strength of 4.153 MPa and tensile strength 1.535 MPa) and high elasticity (maximum elongation of 2784%), and enable recyclable photodegradation of pollutants. This work suggests that functional nanoparticles can be immobilized in hydrogels for their collective application after combining their mechanical and physiochemical properties.

  19. Dynamic Peptide Library for the Discovery of Charge Transfer Hydrogels.

    PubMed

    Berdugo, Cristina; Nalluri, Siva Krishna Mohan; Javid, Nadeem; Escuder, Beatriu; Miravet, Juan F; Ulijn, Rein V

    2015-11-25

    Coupling of peptide self-assembly to dynamic sequence exchange provides a useful approach for the discovery of self-assembling materials. In here, we demonstrate the discovery and optimization of aqueous, gel-phase nanostructures based on dynamically exchanging peptide sequences that self-select to maximize charge transfer of n-type semiconducting naphthalenediimide (NDI)-dipeptide bioconjugates with various π-electron-rich donors (dialkoxy/hydroxy/amino-naphthalene or pyrene derivatives). These gel-phase peptide libraries are characterized by spectroscopy (UV-vis and fluorescence), microscopy (TEM), HPLC, and oscillatory rheology and it is found that, of the various peptide sequences explored (tyrosine Y-NDI with tyrosine Y, phenylalanine F, leucine L, valine V, alanine A or glycine G-NH2), the optimum sequence is tyrosine-phenylalanine in each case; however, both its absolute and relative yield amplification is dictated by the properties of the donor component, indicating cooperativity of peptide sequence and donor/acceptor pairs in assembly. The methodology provides an in situ discovery tool for nanostructures that enable dynamic interfacing of supramolecular electronics with aqueous (biological) systems.

  20. Preparation of keratin hydrogel/hydroxyapatite composite and its evaluation as a controlled drug release carrier.

    PubMed

    Nakata, Ryo; Tachibana, Akira; Tanabe, Toshizumi

    2014-08-01

    Infection after artificial joint replacement is a serious problem, which requires the re-implantation of prosthesis. To aim at developing bone filling materials having both osteoconductivity and ability as a sustained drug release carrier, composites of wool keratin or carboxymethylated (CM) keratin hydrogels with hydroxyapatite were prepared and evaluated as a sustained drug release carrier. CM-keratin was prepared by the reaction of keratin extracted from wool with iodoacetic acid. Hydrogels were obtained by dropping keratin or CM-keratin solution into CaCl2 solution. The composites were obtained by immersing hydrogels in simulated body fluid (SBF). The introduction of carboxymethyl groups to keratin facilitated the deposition of hydroxyapatite on hydrogel. After 7 days of immersion in SBF, a 4-5 times higher amount of hydroxyapatite was accumulated on CM-keratin hydrogel than that on keratin hydrogel. When salicylic acid was loaded on keratin and CM-keratin hydrogels, a good sustained release was observed; that is, 90% of a drug was released up to 14 days after 60 and 45% of the initial burst in 1 day. On the other hand, initial release within 1 day was suppressed by forming a composite with hydroxyapatite and the release was almost ceased at 3 days when 60% of the drug was released. Although further improvement to prolong drug release might be necessary, CaKHA and CaCMKHA are expected to be a promising novel type of bone filling materials which has both osteoconductivity and sustained drug release ability. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Enzymatically prepared redox-responsive hydrogels as potent matrices for hepatocellular carcinoma cell spheroid formation.

    PubMed

    Moriyama, Kousuke; Naito, Shono; Wakabayashi, Rie; Goto, Masahiro; Kamiya, Noriho

    2016-11-01

    Cellular spheroids have been received much attention in the biological and biomedical fields, especially as a base material for drug assays, regenerative medicine, and tissue engineering. Hydrogels have potential for scalable preparation of spheroids because they provide a spatial environment suitable for three-dimensional cell cultivation. Herein, the potential use of a redox-responsive hydrogel as a scaffold for preparation and recovery of spheroids is reported. A hydrogel composed of poly(ethylene glycol) (PEG), which can be degraded using cysteine as a reducing agent under mild conditions, is prepared by mixing an octa-thiolated PEG derivative (8-arm PEG-SH), horseradish peroxidase and a small phenolic compound (Glycyl-L-tyrosine). Human hepatocellular carcinoma cells (HepG2) are encapsulated in the hydrogel and cellular spheroids formed by proliferation within the scaffolds. After seven days of cultivation, the size of the HepG2 spheroids reached a diameter between ≈40 and 60 μm, depending on the 8-arm PEG-SH concentration. Liver-specific functions of the HepG2 spheroids such as albumin secretion and urea production are retained at higher levels than those of cells prepared from traditional two-dimensional mono layers. These results suggest that the system presented here has potential for preparation of cellular spheroids for tissue engineering applications.

  2. Preparation and adsorption property of xylan/poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent.

    PubMed

    Sun, Xiao-Feng; Liu, Baichen; Jing, Zhanxin; Wang, Haihong

    2015-03-15

    Adsorbents based on natural polysaccharides have attracted increasing interest because of their low-cost and biodegradability, particularly, polysaccharide-based nanocomposite adsorbents. In this study the xylan/poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent was prepared from wheat straw xylan and Fe3O4 nanoparticles, and its adsorption property was studied on methylene blue removal. The prepared hydrogel adsorbent had a semi-interpenetrating network structure and exhibited a macro-porous structure with interconnected porous channels. Super-paramagnetic characteristic behavior was observed from magnetic analysis using a vibrating sample magnetometer. The optimum condition for methylene blue adsorption on the adsorbent was found at pH 8 with an adsorbent dosage of 3g/L and an initial concentration of 400mg/L, and the removal percentage reached above 90%. The adsorption isotherm of methylene blue on the prepared hydrogel adsorbent was fitted to the Langmuir model, and the pseudo-second-order kinetic model could describe the adsorption process. All obtained results indicated that the prepared hydrogel adsorbent is promising for water treatment applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Preparation and properties of photo-crosslinkable hydrogel based on photopolymerizable chitosan derivative.

    PubMed

    Qi, Zaiqian; Xu, Juan; Wang, Zhiliang; Nie, Jun; Ma, Guiping

    2013-02-01

    Photopolymerizable chitosan derivative was synthesized by chitosan and methyl acroloyl glycine (MAG). The chemical structures and physical properties were characterized by FT-IR, (1)H NMR, XRD and TGA. The thermal stability of chitosan derivative was lower than chitosan. The chitosan derivative was amorphous compared with the high degree crystallization of chitosan. The hydrogels were prepared based on chitosan derivative via photopolymerization with different concentrations of photoinitiator 2959. The surface of hydrogel showed porous network and the pore size distribution tended to become homogeneous with the increase of the concentration of 2959, while the swelling property decreased due to more crosslinking. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Swelling and thermodynamic studies of temperature responsive 2-hydroxyethyl methacrylate/itaconic acid copolymeric hydrogels prepared via gamma radiation

    NASA Astrophysics Data System (ADS)

    Tomić, Simonida L. J.; Mićić, Maja M.; Filipović, Jovanka M.; Suljovrujić, Edin H.

    2007-08-01

    The copolymeric hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) were synthesized by gamma radiation induced radical polymerization. Swelling and thermodynamic properties of PHEMA and copolymeric P(HEMA/IA) hydrogels with different IA contents (2, 3.5 and 5 mol%) were studied in a wide pH and temperature range. Initial studies of so-prepared hydrogels show interesting pH and temperature sensitivity in swelling and drug release behavior. Special attention was devoted to temperature investigations around physiological temperature (37 °C), where small changes in temperature significantly influence swelling and drug release of these hydrogels. Due to maximum swelling of hydrogels around 40 °C, the P(HEMA/IA) hydrogel containing 5 mol% of IA without and with drug-antibiotic (gentamicin) were investigated at pH 7.40 and in the temperature range 25-42 °C, in order to evaluate their potential for medical applications.

  5. Preparation and characterization of nanosized P(NIPAM-MBA) hydrogel particles and adsorption of bovine serum albumin on their surface.

    PubMed

    Zhu, Xiaoli; Gu, Xiangling; Zhang, Lina; Kong, Xiang-Zheng

    2012-09-24

    Thermosensitive polymer hydrogel particles with size varying from 480 to 620 nm were prepared through precipitation copolymerization of N-isopropylacrylamide with N,N'-methylenebisacrylamide (MBA) in water with ammonium persulfate as the initiator. Only polymer hydrogels without any coagula were obtained when MBA concentration in the monomer mixture was kept between 2.5 and 10.0 wt%; with increased MBA concentration, the monomer conversion was enhanced, the size of the hydrogels was increased, and their shrinking was lessened when heated from 25°C to 40°C. Bovine serum albumin adsorption on the surface of the hydrogels of different MBA content was measured at different pH levels and under different temperatures. The results demonstrated that the adsorption of the protein on the hydrogels could be controlled by adjusting the pH, the temperature of adsorption, and the crosslinking in the hydrogels. The results were interpreted, and the mechanisms of the polymerization were proposed.

  6. Chitosan-based hydrogel for dye removal from aqueous solutions: Optimization of the preparation procedure

    NASA Astrophysics Data System (ADS)

    Gioiella, Lucia; Altobelli, Rosaria; de Luna, Martina Salzano; Filippone, Giovanni

    2016-05-01

    The efficacy of chitosan-based hydrogels in the removal of dyes from aqueous solutions has been investigated as a function of different parameters. Hydrogels were obtained by gelation of chitosan with a non-toxic gelling agent based on an aqueous basic solution. The preparation procedure has been optimized in terms of chitosan concentration in the starting solution, gelling agent concentration and chitosan-to-gelling agent ratio. The goal is to properly select the material- and process-related parameters in order to optimize the performances of the chitosan-based dye adsorbent. First, the influence of such factors on the gelling process has been studied from a kinetic point of view. Then, the effects on the adsorption capacity and kinetics of the chitosan hydrogels obtained in different conditions have been investigated. A common food dye (Indigo Carmine) has been used for this purpose. Noticeably, although the disk-shaped hydrogels are in the bulk form, their adsorption capacity is comparable to that reported in the literature for films and beads. In addition, the bulk samples can be easily separated from the liquid phase after the adsorption process, which is highly attractive from a practical point of view. Compression tests reveal that the samples do not breakup even after relatively large compressive strains. The obtained results suggest that the fine tuning of the process parameters allows the production of mechanical resistant and highly adsorbing chitosan-based hydrogels.

  7. Photoclick Hydrogels Prepared from Functionalized Cyclodextrin and Poly(ethylene glycol) for Drug Delivery and in Situ Cell Encapsulation.

    PubMed

    Shih, Han; Lin, Chien-Chi

    2015-07-13

    Polymers or hydrogels containing modified cyclodextrin (CD) are highly useful in drug delivery applications, as CD is a cytocompatible amphiphilic molecule that can complex with a variety of hydrophobic drugs. Here, we designed modular photoclick thiol-ene hydrogels from derivatives of βCD and poly(ethylene glycol) (PEG), including βCD-allylether (βCD-AE), βCD-thiol (βCD-SH), PEG-thiol (PEGSH), and PEG-norbornene (PEGNB). Two types of CD-PEG hybrid hydrogels were prepared using radical-mediated thiol-ene photoclick reactions. Specifically, thiol-allylether hydrogels were formed by reacting multiarm PEGSH and βCD-AE, and thiol-norbornene hydrogels were formed by cross-linking βCD-SH and multiarm PEGNB. We characterized the properties of these two types of thiol-ene hydrogels, including gelation kinetics, gel fractions, hydrolytic stability, and cytocompatibility. Compared with thiol-allylether hydrogels, thiol-norbornene photoclick reaction formed hydrogels with faster gelation kinetics at equivalent macromer contents. Using curcumin, an anti-inflammatory and anticancer hydrophobic molecule, we demonstrated that CD-cross-linked PEG-based hydrogels, when compared with pure PEG-based hydrogels, afforded higher drug loading efficiency and prolonged delivery in vitro. Cytocompatibility of these CD-cross-linked hydrogels were evaluated by in situ encapsulation of radical sensitive pancreatic MIN6 β-cells. All formulations and cross-linking conditions tested were cytocompatible for cell encapsulation. Furthermore, hydrogels cross-linked by βCD-SH showed enhanced cell proliferation and insulin secretion as compared to gels cross-linked by either dithiothreitol (DTT) or βCD-AE, suggesting the profound impact of both macromer compositions and gelation chemistry on cell fate in chemically cross-linked hydrogels.

  8. Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization

    PubMed Central

    Bencherif, Sidi A.; Siegwart, Daniel J.; Srinivasan, Abiraman; Horkay, Ferenc; Hollinger, Jeffrey O.; Washburn, Newell R.; Matyjaszewski, Krzysztof

    2012-01-01

    A new method to prepare nanostructured hybrid hydrogels by incorporating well-defined poly(oligo (ethylene oxide) monomethyl ether methacrylate) (POEO300MA) nanogels of sizes 110–120 nm into a larger three-dimensional (3D) matrix was developed for drug delivery scaffolds for tissue engineering applications. Rhodamine B isothiocyanate-labeled dextran (RITC-Dx) or fluorescein isothiocyanate-labeled dextran (FITC-Dx)-loaded POEO300MA nanogels with pendant hydroxyl groups were prepared by activators generated electron transfer atom transfer radical polymerization (AGET ATRP) in cyclohexane inverse miniemulsion. Hydroxyl-containing nanogels were functionalized with methacrylated groups to generate photoreactive nanospheres. 1H NMR spectroscopy confirmed that polymerizable nanogels were successfully incorporated covalently into 3D hyaluronic acid-glycidyl methacrylate (HAGM) hydrogels after free radical photo-polymerization (FRP). The introduction of disulfide moieties into the polymerizable groups resulted in a controlled release of nanogels from cross-linked HAGM hydrogels under a reducing environment. The effect of gel hybridization on the macroscopic properties (swelling and mechanics) was studied. It is shown that swelling and nanogel content are independent of scaffold mechanics. In-vitro assays showed the nanostructured hybrid hydrogels were cytocompatible and the GRGDS (Gly–Arg–Gly–Asp–Ser) contained in the nanogel structure promoted cell–substrate interactions within 4 days of incubation. These nanostructured hydrogels have potential as an artificial extracellular matrix (ECM) impermeable to low molecular weight biomolecules and with controlled pharmaceutical release capability. Moreover, the nanogels can control drug or biomolecule delivery, while hyaluronic acid based-hydrogels can act as a macroscopic scaffold for tissue regeneration and regulator for nanogel release. PMID:19592087

  9. Spatial Configuration and Composition of Charge Modulates Transport into a Mucin Hydrogel Barrier

    PubMed Central

    Li, Leon D.; Crouzier, Thomas; Sarkar, Aniruddh; Dunphy, Laura; Han, Jongyoon; Ribbeck, Katharina

    2013-01-01

    The mucus barrier is selectively permeable to a wide variety of molecules, proteins, and cells, and establishes gradients of these particulates to influence the uptake of nutrients, the defense against pathogens, and the delivery of drugs. Despite its importance for health and disease, the criteria that govern transport through the mucus barrier are largely unknown. Studies with uniformly functionalized nanoparticles have provided critical information about the relevance of particle size and net charge for mucus transport. However, these particles lack the detailed spatial arrangements of charge found in natural mucus-interacting substrates, such as certain viruses, which may have important consequences for transport through the mucus barrier. Using a novel, to our knowledge, microfluidic design that enables us to measure real-time transport gradients inside a hydrogel of mucins, the gel-forming glycoprotein component of mucus, we show that two peptides with the same net charge, but different charge arrangements, exhibit fundamentally different transport behaviors. Specifically, we show that certain configurations of positive and negative charges result in enhanced uptake into a mucin barrier, a remarkable effect that is not observed with either charge alone. Moreover, we show that the ionic strength within the mucin barrier strongly influences transport specificity, and that this effect depends on the detailed spatial arrangement of charge. These findings suggest that spatial charge distribution is a critical parameter to modulate transport through mucin-based barriers, and have concrete implications for the prediction of mucosal passage, and the design of drug delivery vehicles with tunable transport properties. PMID:24047986

  10. Preparation, characterization, and biocompatibility evaluation of poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid interpenetrating network hydrogels.

    PubMed

    Cui, Ning; Qian, Junmin; Xu, Weijun; Xu, Minghui; Zhao, Na; Liu, Ting; Wang, Hongjie

    2016-01-20

    In the present study, poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid (pLysAAm/HA) interpenetrating network (IPN) hydrogels were successfully fabricated through the combination of hydrazone bond crosslinking and photo-crosslinking reactions. The HA hydrogel network was first synthesized from 3,3'-dithiodipropionate hydrazide-modified HA and polyethylene glycol dilevulinate by hydrazone bond crosslinking. The pLysAAm hydrogel network was prepared from Nɛ-acryloyl-L-lysine and N,N'-bis(acryloyl)-(L)-cystine by photo-crosslinking. The resultant pLysAAm/HA hydrogels had a good shape recovery property after loading and unloading for 1.5 cycles (up to 90%) and displayed a highly porous microstructure. Their compressive moduli were at least 5 times higher than that of HA hydrogels. The pLysAAm/HA hydrogels had an equilibrium swelling ratio of up to 37.9 and displayed a glutathione-responsive degradation behavior. The results from in vitro biocompatibility evaluation with pre-osteoblasts MC3T3-E1 cells revealed that the pLysAAm/HA hydrogels could support cell viability and proliferation. Hematoxylin and eosin staining indicated that the pLysAAm/HA hydrogels allowed cell and tissue infiltration, confirming their good in vivo biocompatibility. Therefore, the novel pLysAAm/HA IPN hydrogels have great potential for bone tissue engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Preparation of graphene oxide/polyacrylamide composite hydrogel and its effect on Schwann cells attachment and proliferation.

    PubMed

    Li, Guicai; Zhao, Yinxin; Zhang, Luzhong; Gao, Ming; Kong, Yan; Yang, Yumin

    2016-07-01

    Various hydrogel materials have been developed for improving the regeneration of peripheral nerve. Among which the graphene related hydrogels with excellent mechanical properties have attracted great attention. However, the effect of these hydrogels on peripheral nerve regeneration is still unclear. In the present study, the graphene oxide/polyacrylamide (GO/PAM) composite hydrogels were fabricated by in-situ free radical polymerization. The morphology, wettability, composition, swelling ratio, mechanical property and degradation behavior of the prepared GO/PAM composite hydrogels were separately characterized. The effect of GO/PAM hydrogel on the attachment and proliferation of Schwann cells was evaluated. Moreover, the release of biofactors by Schwann cells and adsorption of matrix proteins were further measured. The results showed that the color of the hydrogel became darker with the increased GO concentration, while the surface pore structure also displayed large variation when GO concentration was increased. The hydrophobicity and mechanical properties of hydrogel were increased with the ascending GO concentration. In addition, the variation of GO concentration displayed no obvious influence on the degradation of the composite hydrogel in different medium. The GO/PAM composite hydrogel with 0.4% GO (G0.4) could effectively enhance the attachment and proliferation of Schwann cells. Furthermore, the cells on G0.4 hydrogel displayed higher biofactors release and larger matrix adsorption than other samples. The results demonstrated that GO with suitable concentration in PAM hydrogel could effectively promote Schwann cell growth. The study may provide an important experimental basis for the design and development of new nerve grafts with potential application for peripheral nerve regeneration.

  12. Microscale solution manipulation using photopolymerized hydrogel membranes and induced charge electroosmosis micropumps

    NASA Astrophysics Data System (ADS)

    Paustian, Joel Scott

    Microfluidic technology is playing an ever-expanding role in advanced chemical and biological devices, with diverse applications including medical diagnostics, high throughput research tools, chemical or biological detection, separations, and controlled particle fabrication. Even so, local (microscale) modification of solution properties within microchannels, such as pressure, solute concentration, and voltage remains a challenge, and improved spatiotemporal control would greatly enhance the capabilities of microfluidics. This thesis demonstrates and characterizes two microfluidic tools to enhance local solution control. I first describe a microfluidic pump that uses an electrokinetic effect, Induced-Charge Electroosmosis (ICEO), to generate pressure on-chip. In ICEO, steady flows are driven by AC fields along metal-electrolyte interfaces. I design and microfabricate a pump that exploits this effect to generate on-chip pressures. The ICEO pump is used to drive flow along a microchannel, and the pressure is measured as a function of voltage, frequency, and electrolyte composition. This is the first demonstration of chip-scale flows driven by ICEO, which opens the possibility for ICEO pumping in self-contained microfluidic devices. Next, I demonstrate a method to create thin local membranes between microchannels, which enables local diffusive delivery of solute. These ``Hydrogel Membrane Microwindows'' are made by photopolymerizing a hydrogel which serves as a local ``window'' for solute diffusion and electromigration between channels, but remains a barrier to flow. I demonstrate three novel experimental capabilities enabled by the hydrogel membranes: local concentration gradients, local electric currents, and rapid diffusive composition changes. I conclude by applying the hydrogel membranes to study solvophoresis, the migration of particles in solvent gradients. Solvent gradients are present in many chemical processes, but migration of particles within these

  13. Preparation and characterization of chitosan-polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin.

    PubMed

    Zu, Yuangang; Zhang, Ying; Zhao, Xiuhua; Shan, Chang; Zu, Shuchong; Wang, Kunlun; Li, Yong; Ge, Yunlong

    2012-01-01

    Chitosan (CS)-polyvinyl alcohol (PVA) blend hydrogels were prepared using glutaraldehyde as the cross-linking agent. The obtained hydrogels, which have the advantages of both PVA and CS, can be used as a material for the transdermal drug delivery (TDD) of insulin. The nano-insulin-loaded hydrogels were prepared under the following conditions: 1.2g of polyethylene glycol, 1.5 g of CS, 1.2 g of PVA, 1.2 mL of 1% glutaraldehyde solution, 16 mL of water, and 40 mg of nano-insulin with 12 min of mixing time and 3 min of cross-linking time. The nano-insulin-loaded hydrogels were characterized using scanning electron microscopy, energy dispersive spectrometry, Fourier-transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, and its mechanical properties were analyzed. The results show that all molecules in the hydrogel have good compatibility and they formed a honeycomb-like structure. The hydrogel also showed good mechanical and thermal properties. The in vitro drug release of the hydrogel showed that the nano-insulin accorded with Fick's first law of diffusion and it has a high permeation rate (4.421 μg/(cm(2)h)). These results suggest that the nano-insulin-loaded hydrogels are a promising non-invasive TDD system for diabetes chemotherapy. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Combined Skin Moisturization of Liposomal Serine Incorporated in Hydrogels Prepared with Carbopol ETD 2020, Rhesperse RM 100 and Hyaluronic Acid.

    PubMed

    Kim, Hyeongmin; Ro, Jieun; Barua, Sonia; Hwang, Deuk Sun; Na, Seon-Jeong; Lee, Ho Sung; Jeong, Ji Hoon; Woo, Seulki; Kim, Hyewon; Hong, Bomi; Yun, Gyiae; Kim, Joong-Hark; Yoon, Young-Ho; Park, Myung-Gyu; Kim, Jia; Sohn, Uy Dong; Lee, Jaehwi

    2015-11-01

    We investigated the combined moisturizing effect of liposomal serine and a cosmeceutical base selected in this study. Serine is a major amino acid consisting of natural moisturizing factors and keratin, and the hydroxyl group of serine can actively interact with water molecules. Therefore, we hypothesized that serine efficiently delivered to the stratum corneum (SC) of the skin would enhance the moisturizing capability of the skin. We prepared four different cosmeceutical bases (hydrogel, oil-in-water (O/W) essence, O/W cream, and water-in-oil (W/O) cream); their moisturizing abilities were then assessed using a Corneometer®. The hydrogel was selected as the optimum base for skin moisturization based on the area under the moisture content change-time curves (AUMCC) values used as a parameter for the water hold capacity of the skin. Liposomal serine prepared by a reverse-phase evaporation method was then incorporated in the hydrogel. The liposomal serine-incorporated hydrogel (serine level=1%) showed an approximately 1.62~1.77 times greater moisturizing effect on the skin than those of hydrogel, hydrogel with serine (1%), and hydrogel with blank liposome. However, the AUMCC values were not dependent on the level of serine in liposomal serine-loaded hydrogels. Together, the delivery of serine to the SC of the skin is a promising strategy for moisturizing the skin. This study is expected to be an important step in developing highly effective moisturizing cosmeceutical products.

  15. Combined Skin Moisturization of Liposomal Serine Incorporated in Hydrogels Prepared with Carbopol ETD 2020, Rhesperse RM 100 and Hyaluronic Acid

    PubMed Central

    Kim, Hyeongmin; Ro, Jieun; Barua, Sonia; Hwang, Deuk Sun; Na, Seon-Jeong; Lee, Ho Sung; Jeong, Ji Hoon; Woo, Seulki; Kim, Hyewon; Hong, Bomi; Yun, Gyiae; Kim, Joong-Hark; Yoon, Young-Ho; Park, Myung-Gyu; Kim, Jia; Sohn, Uy Dong

    2015-01-01

    We investigated the combined moisturizing effect of liposomal serine and a cosmeceutical base selected in this study. Serine is a major amino acid consisting of natural moisturizing factors and keratin, and the hydroxyl group of serine can actively interact with water molecules. Therefore, we hypothesized that serine efficiently delivered to the stratum corneum (SC) of the skin would enhance the moisturizing capability of the skin. We prepared four different cosmeceutical bases (hydrogel, oil-in-water (O/W) essence, O/W cream, and water-in-oil (W/O) cream); their moisturizing abilities were then assessed using a Corneometer®. The hydrogel was selected as the optimum base for skin moisturization based on the area under the moisture content change-time curves (AUMCC) values used as a parameter for the water hold capacity of the skin. Liposomal serine prepared by a reverse-phase evaporation method was then incorporated in the hydrogel. The liposomal serine-incorporated hydrogel (serine level=1%) showed an approximately 1.62~1.77 times greater moisturizing effect on the skin than those of hydrogel, hydrogel with serine (1%), and hydrogel with blank liposome. However, the AUMCC values were not dependent on the level of serine in liposomal serine-loaded hydrogels. Together, the delivery of serine to the SC of the skin is a promising strategy for moisturizing the skin. This study is expected to be an important step in developing highly effective moisturizing cosmeceutical products. PMID:26557021

  16. Sodium hydroxide-mediated hydrogel of citrus pectin for preparation of fluorescent carbon dots for bioimaging.

    PubMed

    Zhao, Xi Juan; Zhang, Wen Lin; Zhou, Zhi Qin

    2014-11-01

    The citrus process industry produces annually a huge amount of pomace, which is a rich source of citrus pectin. Here, we report the hydrogel of citrus pectin mediated by sodium hydroxide can be used to prepare fluorescent carbon dots (CDs). The introduction of hydrogel can not only make the temperature of the hydrothermal reaction down to 100 °C, but also avoid visually carbonized precipitates in the synthesis process even up to 180 °C. The as-synthesized CDs are well dispersed in water with an average size of 2.7 nm and show cyan fluorescence with high photostability, good biocompatibility. Furthermore, the CDs can act as a potential fluorescent probe for cell imaging. Citrus pectin as a non-toxic carbonaceous precursor for preparation of fluorescent CDs provides a new approach for the efficient utilization of citrus germplasm in future. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Preparation and multiple antitumor properties of AuNRs/spinach extract/PEGDA composite hydrogel.

    PubMed

    Wang, Yunlong; Zhang, Buchang; Zhu, Lin; Li, Yanjie; Huang, Fangzhi; Li, Shikuo; Shen, Yuhua; Xie, Anjian

    2014-09-10

    In this study, a novel composite hydrogel that contains spinach extract (SE), gold nanorods (AuNRs), and poly(ethylene glycol) double acrylates (PEGDA) is prepared through a one-step in situ photopolymerization under noninvasive 660 nm laser irradiation for localized antitumor activity. SE plays a role as a photoinitiator for initiating the formation of the PEGDA hydrogel and as an excellent photosensitizer for generating cytotoxic singlet oxygen ((1)O2) with oxygen to kill tumor cells. AuNRs can be used as a photoabsorbing agent to generate heat from optical energy. Moreover, the introduction of AuNRs is conducive to the formation of the hydrogel and accelerates the rate of (1)O2 generation. The composite hydrogel shell, which has good biocompatibility on tumor cells, can prevent the photosensitizer from migrating to normal tissue and maintains a high concentration on lesions, thereby enhancing the curative effect. The combination of NIR light-triggered mild photothermal heating of AuNRs, the photodynamic treatment using SE, and localized gelation by photopolymerization exhibits a synergistic effect for the destruction of cancer cells.

  18. Off-line sample preparation by electrophoretic concentration using a micropipette and hydrogel.

    PubMed

    Wuethrich, Alain; Haddad, Paul R; Quirino, Joselito P

    2014-11-21

    An off-line electrophoretic sample concentration technique for charged analytes in aqueous samples is presented. As a demonstration, nine anions including inorganic ions, a dye and benzenesulfonate derivatives were enriched from a 10 mL sample solution into 20 μL electrolyte inside a glass micropipette. A hydrogel was placed at one end of the micropipette while the other end was immersed in the sample. The electric field caused the movement and concentration of anions into the high conductivity electrolyte. The technique was applied to purified, drinking and river water and was optimised by changing applied voltage and voltage application time. The LODs after analysis by capillary electrophoresis was 1-19 ng/mL, 4-133 ng/mL and 18-80 ng/mL for purified, drinking and river water, respectively. The linear range was 0.002-0.048 to 0.1-2.4 μg/mL (R(2) of 0.993-0.999), 0.02-0.24 to 1.0-24 μg/mL (R(2) of 0.995-0.999) and 0.02-0.24 to 1.0-24 μg/mL (R(2) of 0.998-1.000), correspondingly. The intraday and interday repeatability (%RSD, n=6) was ≤7.4% and 14.0%, respectively. The concentration factor was from one to two orders of magnitude. The technique was directly compatible with a liquid phase analytical technique, thus eliminated the additional steps (e.g., evaporation, elution and/or reconstitution) which are typically performed in sample preparation (e.g., liquid and solid phase extraction). Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  19. Low viscosity hydrogel of guar gum: preparation and physicochemical characterization.

    PubMed

    Cunha, Pablyana L R; Castro, Rondinelle R; Rocha, Francisco A C; de Paula, Regina C M; Feitosa, Judith P A

    2005-10-30

    Guar gum was cross-linked with glutaraldehyde and characterized by GPC, rheology, WADX, SEM and TGA. This guar gum is a galactomannan polysaccharide, that contains small amount of arabinose, glucose and uronic acid, besides galactose and mannose. The polymer has high molar mass, with Mw, Mn and Mv values of 2.0x10(6), 1.2x10(6) and 1.9x10(6)g/mol, respectively. The reticulation follows a slow process and lead to a viscosity increase of 40 times compared with the original gum solution. The final viscosity was similar to that of Hylan G-F 20, a hyaluronate derivative, commercially used in viscosupplementation treatment. The gel contains 95.6% of water and the amount of residual glutaraldehyde is much lower than the LD-50. Porous structure was detected by SEM and thermal stability was improved by the cross-linking. The low viscosity, the small amount of remained glutaraldehyde, and the thermal stability indicates that the guar hydrogel has potential to be applied as biomaterial with specific rheological requirements.

  20. Performance of fuel cell using calcium phosphate hydrogel membrane prepared from waste incineration fly ash and chicken bone powder.

    PubMed

    Fukui, Kunihiro; Arimitsu, Naoki; Jikihara, Kenji; Yamamoto, Tetsuya; Yoshida, Hideto

    2009-09-15

    Waste incineration fly ash and bone powder could be successfully recycled to calcium phosphate hydrogel, a type of fast proton conductor. The electric conductivity of the crystallized hydrogel from them was compared with that from calcium carbonate reagent. It was found that the conductivity of the hydrogel from bone powder is almost equal to that from calcium carbonate reagent, which is higher than that from incineration fly ash. Because the crystallized hydrogel from incineration ash has a lower crystallinity than that from bone powder and calcium carbonate reagent. However, the difference of the conductivity among them can be hardly observed above 100 degrees C. The fuel cell with membrane electrode assembly (MEA) using the calcium phosphate hydrogel membrane prepared from incineration fly ash and bone powder was observed to generate electricity. The performance of fuel cells having the hydrogel membrane obtained from all raw materials increases with the cell temperature, and the fuel cell containing the hydrogel membrane from incineration fly ash has the highest dependence of the fuel cell performance. For this reason, the difference in the cell performance among them can be hardly observed above 120 degrees C. This tendency agrees with the change in the electric conductivity with the temperature. Further, the performance of all fuel cells with the hydrogel membrane is superior to that of the fuel cell with perfluorosulfonic polymer membrane at temperatures greater than approximately 85 degrees C.

  1. Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior.

    PubMed

    Rui-Hong, Xie; Peng-Gang, Ren; Jian, Hui; Fang, Ren; Lian-Zhen, Ren; Zhen-Feng, Sun

    2016-03-15

    In this study, graphene oxide reinforced regenerated cellulose/polyvinyl alcohol (GO-RCE/PVA) ternary hydrogels were successfully prepared via a repeated freezing and thawing method in NaOH/urea aqueous solution. The effect of GO content on the mechanical properties, swelling behavior, water content of composite hydrogels was investigated. It was found that the mechanical properties of GO-RCE/PVA ternary hydrogels were largely enhanced relative to RCE/PVA hydrogels. With the addition of 1.0wt% GO, the tensile strength was increased by 40.4% from 0.52MPa to 0.73MPa, accompanied by the increase of the elongation at break (from 103% to 238%). Meanwhile, GO-RCE/PVA ternary hydrogels performed the excellent pH-sensitivity, and the higher pH leaded to higher swelling ratio. With 0.8wt% GO loading, the swelling ratio of GO-RCE/PVA ternary hydrogel was improved from 150% (pH=2) to 310% (pH=14). In addition, a slight increase in the water content of the ternary hydrogel was achieved with increasing concentrations of GO. It is believed that this novel ternary hydrogels is a promising material in the application of biomedical engineering and intelligent devices.

  2. Smart poly(oligo(propylene glycol) methacrylate) hydrogel prepared by gamma radiation

    NASA Astrophysics Data System (ADS)

    Suljovrujic, E.; Micic, M.

    2015-01-01

    The synthesis of poly(oligo(propylene glycol) methacrylate) (POPGMA) from functionalised oligo(propylene glycol) methacrylate (OPGMA) monomers by gamma radiation-induced radical polymerisation is reported for the first time; POPGMA homopolymeric hydrogel with oligo(propylene glycol) (OPG) pendant chains, as a non-linear PPGMA-analogue, was synthesised from an monomer-solvent (OPGMA375-water/ethanol) mixture at different irradiation doses (5, 10, 25, and 40 kGy). Determination of the gel fraction was conducted after synthesis. The swelling properties of the POPGMA hydrogel were preliminarily investigated over wide pH (2.2-9.0) and temperature (4-70 °C) ranges. Additional characterisation of structure and properties was conducted by UV-vis and Fourier transform infrared (FTIR) spectroscopy as well as by differential scanning calorimetry (DSC). In order to evaluate the potential for biomedical applications, biocompatibility (cytocompatibility and haemolytic activity) studies were performed as well. Sol-gel conversion was relatively high for all irradiation doses, indicating radiation-induced synthesis as a good method for fabricating this hydrogel. Thermoresponsiveness and variations in swelling capacity as a result of thermosensitive OPG pendant chains with a lower critical solution temperature (LCST) were mainly observed below room temperature; thus, the volume phase transition temperature (VPTT) of POPGMA homopolymeric hydrogel is about 15 °C. Furthermore, POPGMA has satisfactory biocompatibility. The results indicate that the hydrogels with propylene glycol pendant chains can be easily prepared by gamma radiation and have potential for different applications as smart and biocompatible polymers.

  3. Polyvinyl pyrrolidone/carrageenan blend hydrogels with nanosilver prepared by gamma radiation for use as an antimicrobial wound dressing.

    PubMed

    Singh, Durgeshwer; Singh, Antaryami; Singh, Rita

    2015-01-01

    Hydrogels were prepared using polyvinyl pyrrolidone (PVP) blended with carrageenan by gamma irradiation at different doses of 25 and 40 kGy. Gel fraction of hydrogels prepared using 10 and 15% PVP in combination with 0.25 and 0.5% carrageenan was evaluated. Based on gel fraction, 15% PVP in combination with 0.25% carrageenan and radiation dose of 25 kGy was selected for the preparation of hydrogels with nanosilver. Radiolytic synthesis of silver nanoparticles within the PVP hydrogel was carried out. The hydrogels with silver nanoparticles were assessed for antimicrobial effectiveness and physical properties of relevance to clinical performance. Fluid handling capacity (FHC) for PVP/carrageenan was 2.35 ± 0.39-6.63 ± 0.63 g/10 cm(2) in 2-24 h. No counts for Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, and Candida albicans were observed in the presence of hydrogels containing 100 ppm nanosilver after 3-6 h. The release of silver from hydrogels containing 100 ppm nanosilver was 20.42 ± 1.98 ppm/100 cm(2) in 24 h. Hydrogels containing 100 ppm nanosilver with efficient FHC demonstrated potential microbicidal activity (≥3 log10 decrease in CFU/ml) against wound pathogens, P. aeruginosa, S. aureus, E. coli, and C. albicans. PVP/carrageenan hydrogels containing silver nanoparticles can be used as wound dressings to control infection and facilitate the healing process for burns and other skin injuries.

  4. Vascular-like network prepared using hollow hydrogel microfibers.

    PubMed

    Takei, Takayuki; Kitazono, Zyunpei; Ozuno, Yoshihiro; Yoshinaga, Takuma; Nishimata, Hiroto; Yoshida, Masahiro

    2016-03-01

    One major challenge in the field of tissue engineering was the creation of volumetric tissues and organs in vitro. To achieve this goal, the development of a three-dimensional vascular-like network that extended throughout the tissue-engineered construct was essential to supply sufficient oxygen and nutrients to all of the cells in the constructs. For sufficient oxygenation and nutrition of the tissue-engineered constructs, the distance between each microvessel-like channel in the network should ideally be within 100-200 μm. In addition, the medium or blood should be perfused through the microchannels as soon as possible after the seeding of cells into the templates (scaffolds) of the constructs. In the present study, we proposed a novel technique for fabricating an engineered vascular-like network that satisfied these two requirements. The network comprised assembled hollow alginate hydrogel microfibers with mammalian cells enclosed in the gel portions. We controlled the distance between each flow microchannel (hollow core portions and interspace of the microfibers) to be within 150 μm by using microfibers with a gel thickness of approximately 50 μm. Furthermore, we confirmed that medium could be perfused into the flow channels quickly (within 10 min) after immobilization of the cells in the assembly. A human hepatoblastoma cell line (HepG2) proliferated in the gel portions of the microfibers and maintained their specific function during perfusion culture for 7 days. These results showed that the novel vascular-like networks fabricated here had the potential to allow the creation of volumetric tissues in vitro. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Facile preparation of nitrogen/sulfur co-doped and hierarchical porous graphene hydrogel for high-performance electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Li, Jinhui; Zhang, Guoping; Fu, Chaopeng; Deng, Libo; Sun, Rong; Wong, Ching-Ping

    2017-03-01

    Nitrogen/sulfur co-doped and hierarchical porous graphene hydrogels (DHGHs) are prepared by facile self-assembly process. The results show that the pH values of preparation process significantly affect the microstructures and electrochemical properties of DHGHs and the mechanism has been discussed. The as-prepared DHGHs can be directly used as binder-free electrodes to assemble full-cell supercapacitor devices. It is surprising that the DHGHs prepared at basic condition (DHGH-12) delivers a specific capacitance of 251 F g-1 (0.5 A g-1). Moreover, the DHGH-12 shows rectangular cyclic voltammetry shape at a high scan rate of 3000 mV s-1 and symmetrical galvanostatic charge/discharge curves at 100 A g-1 which exhibits a specific capacitance of 136.5 F g-1, a high energy density of 4.74 Wh kg-1 and high power density of 25.47 kW kg-1. Additionally, DHGH-12 presents superior cycling stability (96.8% retention after 2000 cycles at 20 A g-1) in 6 M KOH solution. Therefore, the novel DHGHs can be considered as promising candidate for high energy density supercapacitors at high rates.

  6. Preparation of hydrogels for atopic dermatitis containing natural herbal extracts by gamma-ray irradiation

    NASA Astrophysics Data System (ADS)

    Lim, Youn-Mook; An, Sung-Jun; Kim, Hae-Kyoung; Kim, Yun-Hye; Youn, Min-Ho; Gwon, Hui-Jeong; Shin, Junhwa; Nho, Young-Chang

    2009-07-01

    Atopic dermatitis (AD) is a familial and chronic inflammatory pruritic skin disease that affects a large number of children and adults in industrialized countries. It is known that one of the prominent features of AD and chronic pruritus is partially due to the histamine released from mast cell. In this work, hydrogel patches with natural herbal extracts were prepared by "freezing and thawing", and a gamma irradiation. It showed eminent healing results as a consequence of long-term moisturizing effects and natural herbal extracts on atopic wounds. Besides its non-toxicity and human harmlessness, it can be easily attached to or detached from the skin without any trace and help patients to feel refreshment when attached. Based on this work, the hydrogel patches we made can be potentially used as an alternative remedy for not only pruritus in AD, but other dermatitis.

  7. Preparation of fucoidan-chitosan hydrogel and its application as burn healing accelerator on rabbits.

    PubMed

    Sezer, Ali Demir; Cevher, Erdal; Hatipoğlu, Fatih; Oğurtan, Zeki; Baş, Ahmet Levent; Akbuğa, Jülide

    2008-12-01

    Treatment of dermal wounds with macromolecular agents such as natural polymers is one of the research areas of the biomaterial science. Fucoidan is a sulphated polysaccharide which is commonly obtained from seaweeds. The great number of studies on the different pharmacological properties of fucoidan is present, but there is limited information about using of fucoidan in the treatment of dermal burns. The aim of this study was to prepare fucoidan-chitosan hydrogels and to investigate their treatment efficiency on dermal burns. Hydrogels were prepared by swelling the polymers in acidic solution and their swelling, mechanical (hardness, cohesiveness and adhesiveness) and bioadhesive properties were investigated. The viscosity and water absorption capacity of formulations increased with increase in the polymer concentration. In contrast to the cohesiveness results, the adhesiveness of hydrogels increased with the polymer concentration. The bioadhesion was changed between 0.012-0.142 mJ x cm(-2) and enhanced with addition of fucoidan into gel formulations. It was formed dermal burns on seven adult male New Zealand white rabbits and the optimum gel formulation applied on the wounds. Control and treatment group biopsy samples were taken on days 7, 14 and 21 and each burn wound site was evaluated histopathologically. No edema was seen in tested groups except control after 3 d treatment. After 7 d treatment, fibroplasia and scar were fixed on wounds treated with fucoidan-chitosan gel and fucoidan solution. The best regeneration on dermal papillary formation and the fastest closure of the wounds were observed in fucoidan-chitosan hydrogels after 14 d treatment.

  8. In situ forming chitosan hydrogels prepared via ionic/covalent co-cross-linking.

    PubMed

    Moura, M José; Faneca, H; Lima, M Pedroso; Gil, M Helena; Figueiredo, M Margarida

    2011-09-12

    In situ forming chitosan hydrogels have been prepared via coupled ionic and covalent cross-linking. Thus, different amounts of genipin (0.05, 0.10, 0.15, and 0.20% (w/w)), used as a chemical cross-linker, were added to a solution of chitosan that was previously neutralized with a glycerol-phosphate complex (ionic cross-linker). In this way, it was possible to overcome the pH barrier of the chitosan solution, to preserve its thermosensitive character, and to enhance the extent of cross-linking in the matrix simultaneously. To investigate the contributions of the ionic cross-linking and the chemical cross-linking, separately, we prepared the hydrogels without the addition of either genipin or the glycerol-phosphate complex. The addition of genipin to the neutralized solution disturbs the ionic cross-linking process and the chemical cross-linking becomes the dominant process. Moreover, the genipin concentration was used to modulate the network structure and performance. The more promising formulations were fully characterized, in a hydrated state, with respect to any equilibrium swelling, the development of internal structure, the occurrence of in vitro degradability and cytotoxicity, and the creation of in vivo injectability. Each of the hydrogel systems exhibited a notably high equilibrium water content, arising from the fact that their internal structure (examined by conventional SEM, and environmental SEM) was highly porous with interconnecting pores. The porosity and the pore size distribution were quantified by mercury intrusion porosimetry. Although all gels became degraded in the presence of lysozyme, their degradation rate greatly depended on the genipin load. Through in vitro viability tests, the hydrogel-based formulations were shown to be nontoxic. The in vivo injection of a co-cross-linking formulation revealed that the gel was rapidly formed and localized at the injection site, remaining in position for at least 1 week.

  9. Protease-modulating polyacrylate-based hydrogel stimulates wound bed preparation in venous leg ulcers – a randomized controlled trial

    PubMed Central

    Humbert, P; Faivre, B; Véran, Y; Debure, C; Truchetet, F; Bécherel, P-A; Plantin, P; Kerihuel, J-C; Eming, SA; Dissemond, J; Weyandt, G; Kaspar, D; Smola, H; Zöllner, P

    2014-01-01

    Background Stringent control of proteolytic activity represents a major therapeutic approach for wound-bed preparation. Objectives We tested whether a protease-modulating polyacrylate- (PA-) containing hydrogel resulted in a more efficient wound-bed preparation of venous leg ulcers when compared to an amorphous hydrogel without known protease-modulating properties. Methods Patients were randomized to the polyacrylate-based hydrogel (n = 34) or to an amorphous hydrogel (n = 41). Wound beds were evaluated by three blinded experts using photographs taken on days 0, 7 and 14. Results After 14 days of treatment there was an absolute decrease in fibrin and necrotic tissue of 37.6 ± 29.9 percentage points in the PA-based hydrogel group and by 16.8 ± 23.0 percentage points in the amorphous hydrogel group. The absolute increase in the proportion of ulcer area covered by granulation tissue was 36.0 ± 27.4 percentage points in the PA-based hydrogel group and 14.5 ± 22.0 percentage points in the control group. The differences between the groups were significant (decrease in fibrin and necrotic tissue P = 0.004 and increase in granulation tissue P = 0.0005, respectively). Conclusion In particular, long-standing wounds profited from the treatment with the PA-based hydrogel. These data suggest that PA-based hydrogel dressings can stimulate normalization of the wound environment, particularly in hard-to-heal ulcers. PMID:24612304

  10. Adsorption of Heavy Metals by Graphene Oxide/Cellulose Hydrogel Prepared from NaOH/Urea Aqueous Solution

    PubMed Central

    Chen, Xiong; Zhou, Sukun; Zhang, Liming; You, Tingting; Xu, Feng

    2016-01-01

    By taking advantage of cellulose, graphene oxide (GO), and the process for crosslinking using epichlorohydrin (ECH), we propose a simple and novel method to prepare GO/cellulose hydrogel with good potential to adsorb metal ions. GO nanosheets containing carboxyl and hydroxyl groups were introduced into the surface of the cellulose hydrogel with retention of the gel structure and its nanoporous property. Due to the introduction of GO, the GO/cellulose composite hydrogels exhibited good compressive strength. Adsorption capacity of Cu2+ significantly increases with an increase in the GO/cellulose ratio and GO/cellulose hydrogel showed high adsorption rates. The calculated adsorption capacities at equilibrium (qecal) for GO/cellulose hydrogel (GO:cellulose = 20:100 in weight) was up to 94.34 mg·g−1, which was much higher than that of the pristine cellulose hydrogels. Furthermore, GO/cellulose hydrogel exhibited high efficient regeneration and metal ion recovery, and high adsorption capacity for Zn2+, Fe3+, and Pb2+. PMID:28773705

  11. Characterization of pH-Responsive Hydrogels of Poly(Itaconic acid-g-Ethylene Glycol) Prepared by UV-Initiated Free Radical Polymerization as Biomaterials for Oral Delivery of Bioactive Agents

    PubMed Central

    Betancourt, Tania; Pardo, Juan; Soo, Ken; Peppas, Nicholas A.

    2009-01-01

    Effective oral delivery of proteins is impeded by steep pH gradients and proteolytic enzymes in the gastrointestinal tract, as well as low absorption of the proteins into the bloodstream due to their size, charge or solubility. In the present work, pH-responsive complexation hydrogels of poly(itaconic acid) with poly(ethylene glycol) grafts were synthesized for applications in oral drug delivery. These hydrogels were expected to be in collapsed configuration at low pH due to hydrogen bonding between poly(itaconic acid) carboxyl groups and poly(ethylene glycol), and to swell with increasing pH because of charge repulsion between deprotonated carboxylic acid groups. Hydrogels were prepared by UV-initiated free radical polymerization using tetraethylene glycol as the crosslinking agent and Irgacure® 2959 as the initiator. The effect of monomer ratios, crosslinking ratio and solvent amount on the properties of the hydrogels were investigated. The composition of the hydrogels was confirmed by FTIR. Equilibrium swelling studies in the pH range of 1.2 to 7 revealed that the extent of swelling increased with increasing pH up to a pH of about 6, when no further carboxylic acid deprotonation occurred. Studies in Caco-2 colorectal carcinoma cells confirmed the cytocompatibility of these materials at concentrations of up to 5 mg/ml. PMID:19536838

  12. Preparation of high toughness nanocomposite hydrogel with UV protection performance and self-healing property

    NASA Astrophysics Data System (ADS)

    He, Xiaoyan; Wang, Meng; Zhang, Caiyun; Liu, Liqin

    2017-07-01

    An ultraviolet shielding hydrogel of P(NaSS-co-MPTC)/TiO2 was prepared by introducing TiO2 nanoparticles (TiO2 NPS) into polyampholyte matrix through photo-initiated radical copolymerization of cationic monomer of 3-(methacrylamide) propyltrimethylammonium chloride (MPTC) and anionic monomer of sodium 4-vinylbenzenesulfonate (NaSS) in the aqueous solution of sodium chloride (NaCl). FTIR, XPS, TEM, XRD, and SEM were used to characterize the morphology and structure of hydrogel of P(NaSS-co-MPTC)/TiO2. The result showed that anatase TiO2 NPS with the size about 15 20 nm were not just acted as ultraviolet shielding agent and general photo-initiator, they also could be crosslinked in polyampholyte matrix by hydrogen bonding between hydroxyl groups on the surface of TiO2 NPS and sulfonate groups on the polymer chains. Based on two kinds of reversible weak bonds of hydrogen bond and ionic bond, the P(NaSS-co-MPTC)/TiO2 hydrogel exhibited excellent mechanical properties and self-healing ability at ambient conditions, which will greatly increase its service life being a UV inhibitor.

  13. Preparation of alginate hydrogels through solution extrusion and the release behavior of different drugs.

    PubMed

    Liu, Guiting; Zhou, Hongxun; Wu, Hong; Chen, Rong; Guo, Shaoyun

    2016-10-07

    Homogeneous alginate hydrogels were facilely fabricated through solution extrusion process. CaCO3 and D-glucono-δ-lactone (GDL) were used as the gelation agents. The slow gelation of alginate was realized by the in-situ release of Ca(2+) from CaCO3 particles induced by hydrolysis of GDL to reduce pH. Slight gelation during the extrusion caused the enhanced strength of the alginate solutions, leading to the extrudability of the blends. This method enables to produce alginate hydrogels in a single step via extrusion, which is economically advantageous to conventional lab-scale preparation for mass production. Three different drugs, ibuprofen, acetaminophen, and methylthionine chloride, were used as model drugs to evaluate the drug release behavior of the alginate hydrogels. It was demonstrated that the drug release behavior was significantly adjusted by both the drug solubility and the ionic interaction between alginate and the drug molecule. It was shown that solution extrusion process is a feasible method to produce alginate-based drug delivery systems.

  14. Electrostatics effects on normal load capacity of two like-charge hydrogels

    NASA Astrophysics Data System (ADS)

    Erbas, Aykut; Zwanikken, Jos; Olvera de La Cruz, Monica; Olvera de la Cruz Team

    2015-03-01

    In mammalian joints, an effective lubrication mechanism is maintained under extremely high pressures due to charged polymeric structures coating the surfaces of the relatively moving tissues. Equally low frictional forces are also observed experimentally in the shear motion of polyelectrolyte gel and brush bilayers. The lubrication capabilities of these systems are attributed to either a polymer-free zone, separating the bilayers or hydration layers that can dissolve polymeric segments. Previous hypothesis have stated that the separation zone should decrease the polymer-polymer physical contact, and hence, result in only viscous friction of the liquid filling this layer. In this study, using extensive Molecular Dynamics simulations and analytical tools, we investigate the separation zone under compression at high electrostatic strengths. We show that Coulombic interactions significantly change the thickness of the separation zone as well as the normal pressure that a hydrogel bilayer can support upon strain-control deformations. We observe that under high pressures the separation zone completely disappears. As a result, the number of polymer-polymer contacts increases. We speculate that the frictional forces between polymer segments can reduce the efficiency of the lubrication

  15. Preparation and properties of a novel thermo-sensitive hydrogel based on chitosan/hydroxypropyl methylcellulose/glycerol.

    PubMed

    Wang, Tao; Chen, Liman; Shen, Tingting; Wu, Dayang

    2016-12-01

    Chitosan-based thermosensitive hydrogels are known as injectable in situ gelling thermosensitive polymer solutions which are suitable for biomaterials. In this study, a novel thermosensitive hydrogel gelling under physiological conditions was prepared using chitosan together with hydroxypropyl methylcellulose and glycerol. Hydroxypropyl methylcellulose is to facilitate the thermogelation through large amounts of hydrophobic interactions. Glycerol in heavy concentration destroys the polymer water sheaths promoting the formation of the hydrophobic regions, and lowering the phase transition temperature. The thermosensitive hydrogels showed a physiological pH ranging from 6.8 to 6.9 and gelation time within 15min at 37°C. The prepared hydrogels were characterized by FT-IR, XRD, SEM, and rheological studies, mechanical studies and contact angle studies. The properties of degradability, cytotoxicity and protein release behaviors of the hydrogels were investigated. The results indicate this thermosensitive hydrogel possess good fluidity, thermosensitivity and biodegradability, as well as low-cytotoxicity and controlled release, showing the potential use in biomedical applications.

  16. Preparation of stripe-patterned heterogeneous hydrogel sheets using microfluidic devices for high-density coculture of hepatocytes and fibroblasts.

    PubMed

    Kobayashi, Aoi; Yamakoshi, Kenta; Yajima, Yuya; Utoh, Rie; Yamada, Masumi; Seki, Minoru

    2013-12-01

    Here we demonstrate the production of stripe-patterned heterogeneous hydrogel sheets for the high-density 3D coculture of multiple cell types, by using microchannel-combined micronozzle devices. The prepared hydrogel sheet, composed of multiple regions with varying physical stiffness, regulates the direction of proliferation of encapsulated cells and enables the formation of arrays of rod-like heterotypic organoids inside the hydrogel matrix. We successfully prepared stripe-patterned hydrogel sheets with a uniform thickness of ~100 μm and a width of several millimeters. Hepatoma cells (HepG2) and fibroblasts (Swiss 3T3) were embedded inside the hydrogel matrix and cocultured, to form heterotypic micro-organoids mimicking in vivo hepatic cord structures. The upregulation of hepatic functions by the 3D coculture was confirmed by analyzing liver-specific functions. The presented heterogeneous hydrogel sheet could be useful, as it provides relatively large, but precisely-controlled, 3-dimensional microenvironments for the high-density coculture of multiple types of cells.

  17. Preparation of poly(polyethylene glycol methacrylate-co-acrylic acid) hydrogels by radiation and their physical properties

    NASA Astrophysics Data System (ADS)

    Park, Sung-Eun; Nho, Young-Chang; Kim, Hyung-Il

    2004-02-01

    The pH-responsive copolymer hydrogels were prepared with the monomers of polyethylene glycol methacrylate and acrylic acid based on γ-ray irradiation technique. The gel content of these copolymer hydrogels varied depending on both the composition of monomers and the radiation dose. Maximum gel percent and degree of crosslinking were obtained at the composition of equal amount of comonomers. These copolymer hydrogels did not show any noticeable change in swelling at lower pH range. However they showed an abrupt increase in swelling at higher pH range due to the ionization of carboxyl groups. This pH-responsive swelling behavior was applied for the insulin carrier via oral delivery. Insulin-loaded copolymer hydrogels released most of their insulin in the simulated intestinal fluid which had a pH of 6.8 but not in the simulated gastric fluid which had a pH of 1.2.

  18. Preparation of γ-aminopropyltriethoxysilane cross-linked poly(aspartic acid) superabsorbent hydrogels without organic solvent.

    PubMed

    Meng, Hongyu; Zhang, Xin; Sun, Shenyu; Tan, Tianwei; Cao, Hui

    2016-01-01

    Poly(aspartic acid) (PASP) hydrogel is a type of biodegradable and biocompatible polymer with high water absorbing ability. Traditionally, the production of PASP hydrogel is expensive, complex, environmentally unfriendly, and consumes a large amount of organic solvents, e.g. dimethylformamide or dimethylsulfoxide. This study introduces a one-step synthesis of PASP resin, in which the organic phase was replaced by distilled water and γ-aminopropyltriethoxysilane was used as the cross-linker. Absorbent ability and characteristics were determined by swelling ratio, FTIR, (13)C SSNMR, and SEM. In vitro cytotoxicity evaluation and animal skin irritation tests showed the hydrogel has body-friendly properties. Preparing PASP hydrogel in aqueous solution is promising and finds its use in many applications.

  19. A method for preparation of hydrogel microcapsules for stem cell bioprocessing and stem cell therapy.

    PubMed

    Goldshmid, Revital; Mironi-Harpaz, Iris; Shachaf, Yonatan; Seliktar, Dror

    2015-08-01

    A method for the preparation of suspension culture microcapsules used in the bioprocessing of human mesenchymal stem cells (hMSCs) is reported. The microcapsules are prepared from a semi-synthetic hydrogel comprising Pluronic®F127 conjugated to denatured fibrinogen. The Pluronic-fibrinogen adducts display a lower critical solubility temperature (LCST) at ∼30 °C, thus enabling mild, cell-compatible physical crosslinking of the microcapsules in a warm gelation bath. Cell-laden microgels were prepared from a solution of Pluronic-fibrinogen hydrogel precursor and hMSCs; these were cultivated for up to 15 days in laboratory-scale suspension bioreactors and harvested by reducing the temperature of the microcapsules to disassemble the physical polymer network. The viability, proliferation and cell recovery yields of the hMSCs were shown to be better than photo-chemically crosslinked microcapsules made from a similar material. The cell culture yields, which exceeded 300% after 15 days in suspension culture, were comparable to other microcarrier systems used for the mass production of hMSCs. The simplicity of this methodology, both in terms of the cell inoculation and mild recovery conditions, represent distinct advantages for stem cell bioprocessing with suspension culture bioreactors.

  20. Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    An, Haoran; Li, Yu; Long, Peng; Gao, Yi; Qin, Chengqun; Cao, Chen; Feng, Yiyu; Feng, Wei

    2016-04-01

    Fluorinated graphene hydrogels (FGHs) are synthesized through a one-step hydrothermal process and applied as the binder/additive-free electrode materials for supercapacitors. Along with the reduction of graphene oxide (GO), fluorine atoms incorporate into the graphene framework through the substitution process with the residual phenol, ether or carbonyl groups, forming different fluorine species subsequently. The fluorine content and the Csbnd F bond configuration are easily adjusted by the hydrothermal temperature. X-ray photo electron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectra indicate the mainly existent of semi-ionic Csbnd F bonds in the prepared FGHs. The semi-ionic Csbnd F bonds in FGHs facilitate the ion transport, enhance the electrical conductivity and provide active sites for the faradic reaction. Therefore, the electrochemical performances of FGHs are better than the fluorine-free graphene hydrogel prepared by the same hydrothermal process. FGH prepared at the hydrothermal temperature of 150 °C exhibit the highest specific capacitance (227 F g-1) and the best rate capability. The corresponding symmetric supercapacitor delivers the power density as high as 50.05 kW kg-1 at the current density of 50 A g-1. These results indicate the FGHs are the ideal electrode materials with the great potential in the field of high-power supercapacitors.

  1. Preparation of a 6-OH quaternized chitosan derivative through click reaction and its application to novel thermally induced/polyelectrolyte complex hydrogels.

    PubMed

    Chen, Yu; Wang, Fengju; Zhang, Na; Li, Yi; Cheng, Bin; Zheng, Yongfa

    2017-07-11

    In the present study, a chitosan derivative with long chain quaternary ammonium locating grafted at 6-OH (CTS-6-QAS) was designed and prepared via a novel click reaction. The structure and thermal stability of the products of each step were determined with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Rheological tests indicate that CTS-6-QAS possesses excellent thermally induced hydrogel formation property in the presence of β-glycerophosphate (β-GP). Based on these results, a novel thermally induced/polyelectrolyte complex CTS-6-QAS/alginate (SA)/β-GP dual-network hydrogel was designed. This controllable preparation method can avoid the disadvantages of the preparation methods for single thermo-induced hydrogels and polyelectrolyte complex hydrogels, and promote the homogeneity of the hydrogel. Porous sponges were prepared by freeze-drying the CTS-6-QASSA/β-GP hydrogels. The effects of hydrogel preparation conditions on the porous structure and swelling property of the sponges were quantitatively investigated. Tea tree oil (TTO), a natural antibacterial agent, was successfully embedded in the hydrogel due to the lipophilicity of the long chain quaternary ammonium grafted at 6-OH of chitosan. The sustained release of TTO from the hydrogel was studied. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Charge regulation and energy dissipation while compressing and sliding a cross-linked chitosan hydrogel layer.

    PubMed

    Liu, Chao; Thormann, Esben; Tyrode, Eric; Claesson, Per M

    2015-04-01

    Interactions between a silica surface and a surface coated with a grafted cross-linked hydrogel made from chitosan/PAA multilayers are investigated, utilizing colloidal probe atomic force microscopy. Attractive double-layer forces are found to dominate the long-range interaction over a broad range of pH and ionic strength conditions. The deduced potential at the hydrogel/aqueous interface is found to be very low. This situation is maintained in the whole pH-range investigated, even though the degree of protonation of chitosan changes significantly. This demonstrates that pH-variations change the concentration of counterions within the hydrogel to keep the interior close to uncharged, which is similar to what has been observed for polyelectrolyte brushes. Changes in pH and ionic strength affect the adhesion force and the friction force between the silica surface and the hydrogel layer, but not the friction coefficient. This suggests that the main energy dissipation mechanism arises from processes occurring within the hydrogel layer, rather than at the silica/hydrogel interface, and we suggest that it is related to stretching of polymer chains between the cross-linking points. We also find that an increased cross-linking density, from 40% to 100%, in the hydrogel reduces the friction coefficient.

  3. Preparation and characterization of a novel pH-sensitive hydrogel obtained from UV light-induced polymerization

    NASA Astrophysics Data System (ADS)

    Tian, R. Q.; Zhao, Y. G.; Cui, Y. Q.; Zhang, X. Y.; Zhang, J.; Liang, X. Y.; Shang, Q.

    2015-05-01

    The main aim of this study was to develop a novel pH-sensitive hydrogel prepared via an UV light-induced polymerization. Single-factor experiments were performed to acquire the optimum formula of final poly(MAA-co-PEGMA) hydrogel. Fourier transform infrared spectroscopy (FTIR) spectra were employed to confirm the successful preparation of the designed copolymers. Inner morphologies of the polymeric hydrogels were observed via an S-4800 scanning electron microscope (SEM). Swelling and reversible swelling-shrinking studies were carried out in different phosphate buffer solution (PBS) with various pH values. Drug-loading tests were performed with bovine serum albumin (BSA) as a model drug. The in vitro release profile was also investigated in PBS with the pH values of 1.2 and 7.4. FTIR spectra confirmed the preparation of the poly(MAA-co-PEGMA) copolymers without any residual monomers. The typical space grid structures were observed from the SEM photographs of hydrogels. The obtained hydrogel showed an excellent pH-sensibility and reversible swelling-shrinking property. The maximum drug-loading (40.9 %) was gained from the BSA concentration of 50.0 mg/mL. During the releasing process, only 5.8 ± 0.9 % of BSA was released at pH 1.2, but 82.1 ± 6.2 % was diffused at pH 7.4. These data suggested that such medicated hydrogel could deliver BSA to alkaline conditions (e.g., intestinal environments) site-specifically, which protected BSA from destroying by gastric acid or pepsase. Therefore, such hydrogel had a significant meaning in theoretical research and practical application.

  4. In Situ-Forming Polyamidoamine Dendrimer Hydrogels with Tunable Properties Prepared via Aza-Michael Addition Reaction.

    PubMed

    Wang, Juan; He, Hongliang; Cooper, Remy C; Yang, Hu

    2017-03-29

    In this work, we describe synthesis and characterization of novel in situ-forming polyamidoamine (PAMAM) dendrimer hydrogels (DHs) with tunable properties prepared via highly efficient aza-Michael addition reaction. PAMAM dendrimer G5 was chosen as the underlying core and functionalized with various degrees of acetylation using acetic anhydride. The nucleophilic amines on the dendrimer surface reacted with α, β-unsaturated ester in acrylate groups of polyethylene glycol diacrylate (PEG-DA, Mn = 575 g/mol) via aza-Michael addition reaction to form dendrimer hydrogels without the use of any catalyst. The solidification time, rheological behavior, network structure, swelling, and degradation properties of the hydrogel were tuned by adjusting the dendrimer surface acetylation degree and dendrimer concentration. The DHs were shown to be highly cytocompatible and support cell adhesion and proliferation. We also prepared an injectable dendrimer hydrogel formulation to deliver the anticancer drug 5-fluorouracil (5-FU) and demonstrated that the injectable formulation efficiently inhibited tumor growth following intratumoral injection. Taken together, this new class of dendrimer hydrogel prepared by aza-Michael addition reaction can serve as a safe tunable platform for drug delivery and tissue engineering.

  5. A Biocompatible and Biodegradable Protein Hydrogel with Green and Red Autofluorescence: Preparation, Characterization and In Vivo Biodegradation Tracking and Modeling

    PubMed Central

    Ma, Xiaoyu; Sun, Xiangcheng; Hargrove, Derek; Chen, Jun; Song, Donghui; Dong, Qiuchen; Lu, Xiuling; Fan, Tai-Hsi; Fu, Youjun; Lei, Yu

    2016-01-01

    Because of its good biocompatibility and biodegradability, albumins such as bovine serum albumin (BSA) and human serum albumin (HSA) have found a wide range of biomedical applications. Herein, we report that glutaraldehyde cross-linked BSA (or HSA) forms a novel fluorescent biological hydrogel, exhibiting new green and red autofluorescence in vitro and in vivo without the use of any additional fluorescent labels. UV-vis spectra studies, in conjunction with the fluorescence spectra studies including emission, excitation and synchronous scans, indicated that three classes of fluorescent compounds are presumably formed during the gelation process. SEM, FTIR and mechanical tests were further employed to investigate the morphology, the specific chemical structures and the mechanical strength of the as-prepared autofluorescent hydrogel, respectively. Its biocompatibility and biodegradability were also demonstrated through extensive in vitro and in vivo studies. More interestingly, the strong red autofluorescence of the as-prepared hydrogel allows for conveniently and non-invasively tracking and modeling its in vivo degradation based on the time-dependent fluorescent images of mice. A mathematical model was proposed and was in good agreement with the experimental results. The developed facile strategy to prepare novel biocompatible and biodegradable autofluorescent protein hydrogels could significantly expand the scope of protein hydrogels in biomedical applications. PMID:26813916

  6. A Biocompatible and Biodegradable Protein Hydrogel with Green and Red Autofluorescence: Preparation, Characterization and In Vivo Biodegradation Tracking and Modeling

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyu; Sun, Xiangcheng; Hargrove, Derek; Chen, Jun; Song, Donghui; Dong, Qiuchen; Lu, Xiuling; Fan, Tai-Hsi; Fu, Youjun; Lei, Yu

    2016-01-01

    Because of its good biocompatibility and biodegradability, albumins such as bovine serum albumin (BSA) and human serum albumin (HSA) have found a wide range of biomedical applications. Herein, we report that glutaraldehyde cross-linked BSA (or HSA) forms a novel fluorescent biological hydrogel, exhibiting new green and red autofluorescence in vitro and in vivo without the use of any additional fluorescent labels. UV-vis spectra studies, in conjunction with the fluorescence spectra studies including emission, excitation and synchronous scans, indicated that three classes of fluorescent compounds are presumably formed during the gelation process. SEM, FTIR and mechanical tests were further employed to investigate the morphology, the specific chemical structures and the mechanical strength of the as-prepared autofluorescent hydrogel, respectively. Its biocompatibility and biodegradability were also demonstrated through extensive in vitro and in vivo studies. More interestingly, the strong red autofluorescence of the as-prepared hydrogel allows for conveniently and non-invasively tracking and modeling its in vivo degradation based on the time-dependent fluorescent images of mice. A mathematical model was proposed and was in good agreement with the experimental results. The developed facile strategy to prepare novel biocompatible and biodegradable autofluorescent protein hydrogels could significantly expand the scope of protein hydrogels in biomedical applications.

  7. Preparation and properties of novel hydrogels from oxidized konjac glucomannan cross-linked chitosan for in vitro drug delivery.

    PubMed

    Yu, Huiqun; Lu, Jun; Xiao, Chaobo

    2007-09-11

    In this paper, a novel composite hydrogel was prepared by the use of dialdehyde konjac glucomannan (DAK) as macromolecular cross-linking agent for chitosan (CS). This biocompatible material cross-links and gels in minutes. The structure and morphology were characterized by various analyses. The results indicate that the hydrogels formed through the Schiff-base reaction between the amino groups of CS chains and the aldehyde groups of DAK. The cross-link density (rho(x)) increases with the enhancement of DAK content in hydrogels, while equilibrium swelling ratio (SR) and the average molecular weight between cross-links (Mc) value decrease. Drug release was evaluated by varying the pH of the release medium, reversed dependence of release rate on the equilibrium SR of hydrogel indicated that drug release may be impeded by the association of drug with the polymer. Importantly, this process offers an entirely new window of materials preparation when compared with the traditional preparation of CS-based hydrogels with small molecules cross-linking agent.

  8. Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization.

    PubMed

    Sokker, H H; El-Sawy, Naeem M; Hassan, M A; El-Anadouli, Bahgat E

    2011-06-15

    The adsorption of crude oil (initial concentration 0.5-30 g/L) from aqueous solution using hydrogel of chitosan based polyacrylamide (PAM) prepared by radiation induced graft polymerization has been investigated. The prepared hydrogel was characterized by FTIR and SEM micrographs. The experiments were carried out as a function of different initial concentrations of oil residue, acrylamide concentration, contact time and pH to determine the optimum condition for the adsorption of residue oil from aqueous solution and sea water. The results obtained showed that the hydrogel prepared at concentration of 40% acrylamide (AAm) and at a radiation dose of 5 kGy has high removal efficiency of crude oil 2.3g/g at pH 3. Equilibrium studies have been carried out to determine the capacity of the hydrogel for adsorption of crude oil, Langmuir and Freundlich adsorption models were applied to describe the experimental isotherms and isotherms constants. Equilibrium data were found to fit very well with both Freundlich and Langmuir models. Also the adsorption of oil onto the hydrogel behaves as a pseudo-second-order kinetic models rather than the pseudo-first-order kinetic model. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. A Biocompatible and Biodegradable Protein Hydrogel with Green and Red Autofluorescence: Preparation, Characterization and In Vivo Biodegradation Tracking and Modeling.

    PubMed

    Ma, Xiaoyu; Sun, Xiangcheng; Hargrove, Derek; Chen, Jun; Song, Donghui; Dong, Qiuchen; Lu, Xiuling; Fan, Tai-Hsi; Fu, Youjun; Lei, Yu

    2016-01-27

    Because of its good biocompatibility and biodegradability, albumins such as bovine serum albumin (BSA) and human serum albumin (HSA) have found a wide range of biomedical applications. Herein, we report that glutaraldehyde cross-linked BSA (or HSA) forms a novel fluorescent biological hydrogel, exhibiting new green and red autofluorescence in vitro and in vivo without the use of any additional fluorescent labels. UV-vis spectra studies, in conjunction with the fluorescence spectra studies including emission, excitation and synchronous scans, indicated that three classes of fluorescent compounds are presumably formed during the gelation process. SEM, FTIR and mechanical tests were further employed to investigate the morphology, the specific chemical structures and the mechanical strength of the as-prepared autofluorescent hydrogel, respectively. Its biocompatibility and biodegradability were also demonstrated through extensive in vitro and in vivo studies. More interestingly, the strong red autofluorescence of the as-prepared hydrogel allows for conveniently and non-invasively tracking and modeling its in vivo degradation based on the time-dependent fluorescent images of mice. A mathematical model was proposed and was in good agreement with the experimental results. The developed facile strategy to prepare novel biocompatible and biodegradable autofluorescent protein hydrogels could significantly expand the scope of protein hydrogels in biomedical applications.

  10. Microwave-Assisted Preparation of Hydrogel-Forming Microneedle Arrays for Transdermal Drug Delivery Applications.

    PubMed

    Larrañeta, Eneko; Lutton, Rebecca E M; Brady, Aaron J; Vicente-Pérez, Eva M; Woolfson, A David; Thakur, Raghu Raj Singh; Donnelly, Ryan F

    2015-06-01

    1A microwave (MW)-assisted crosslinking process to prepare hydrogel-forming microneedle (MN) arrays was evaluated. Conventionally, such MN arrays are prepared using processes that includes a thermal crosslinking step. Polymeric MN arrays were prepared using poly(methyl vinyl ether-alt-maleic acid) crosslinked by reaction with poly(ethylene glycol) over 24 h at 80 °C. Polymeric MN arrays were prepared to compare conventional process with the novel MW-assisted crosslinking method. Infrared spectroscopy was used to evaluate the crosslinking degree, evaluating the area of the carbonyl peaks (2000-1500 cm(-1)). It was shown that, by using the MW-assisted process, MN with a similar crosslinking degree to those prepared conventionally can be obtained in only 45 min. The effects of the crosslinking process on the properties of these materials were also evaluated. For this purpose swelling kinetics, mechanical characterisation, and insertion studies were performed. The results suggest that MN arrays prepared using the MW assisted process had equivalent properties to those prepared conventionally but can be produced 30 times faster. Finally, an in vitro caffeine permeation across excised porcine skin was performed using conventional and MW-prepared MN arrays. The release profiles obtained can be considered equivalent, delivering in both cases 3000-3500 μg of caffeine after 24 h.

  11. Glow discharge electrolysis plasma initiated preparation of temperature/pH dual sensitivity reed hemicellulose-based hydrogels.

    PubMed

    Zhang, Wenming; Zhu, Sha; Bai, Yunping; Xi, Ning; Wang, Shaoyang; Bian, Yang; Li, Xiaowei; Zhang, Yucang

    2015-05-20

    The temperature/pH dual sensitivity reed hemicellulose-based hydrogels have been prepared through glow discharge electrolysis plasma (GDEP). The effect of different discharge voltages on the temperature and pH response performance of reed hemicellulose-based hydrogels was inspected, and the formation mechanism, deswelling behaviors of reed hemicellulose-based hydrogels were also discussed. At the same time, infrared spectroscopy (FT-IR), scanning differential thermal analysis (DSC) and scanning electron microscope (SEM) were adopted to characterize the structure, phase transformation behaviors and microstructure of hydrogels. It turned out to be that all reed hemicellulose-based hydrogels had a double sensitivity to temperature and pH, and their phase transition temperatures were all approximately 33 °C, as well as the deswelling dynamics met the first model. In addition, the hydrogel (TPRH-3), under discharge voltage 600 V, was more sensitive to temperature and pH and had higher deswelling ratio. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Preparation and characterization of nanosized P(NIPAM-MBA) hydrogel particles and adsorption of bovine serum albumin on their surface

    PubMed Central

    2012-01-01

    Thermosensitive polymer hydrogel particles with size varying from 480 to 620 nm were prepared through precipitation copolymerization of N-isopropylacrylamide with N,N′-methylenebisacrylamide (MBA) in water with ammonium persulfate as the initiator. Only polymer hydrogels without any coagula were obtained when MBA concentration in the monomer mixture was kept between 2.5 and 10.0 wt%; with increased MBA concentration, the monomer conversion was enhanced, the size of the hydrogels was increased, and their shrinking was lessened when heated from 25°C to 40°C. Bovine serum albumin adsorption on the surface of the hydrogels of different MBA content was measured at different pH levels and under different temperatures. The results demonstrated that the adsorption of the protein on the hydrogels could be controlled by adjusting the pH, the temperature of adsorption, and the crosslinking in the hydrogels. The results were interpreted, and the mechanisms of the polymerization were proposed. PMID:23006588

  13. Poly(acrylic acid)-grafted poly(N-isopropyl acrylamide) networks: preparation, characterization and hydrogel behavior.

    PubMed

    Yu, Rentong; Zheng, Sixun

    2011-01-01

    Poly(acrylic acid)-grafted poly(N-isopropylacrylamide) co-polymer networks (PNIPAAm-g-PAA) were prepared via the reversible addition-fragmentation transfer (RAFT) polymerization of N-isopropyl- acrylamide (NIPAAm) with trithiocarbonate-terminated PAA as a macromolecular chain-transfer agent in the presence of N,N-methylenebisacrylamide. The PNIPAAm-g-PAA co-polymer networks were characterized by means of Fourier transform infrared spectroscopy, differential scanning calorimetry and small-angle X-ray scattering. It is found that the PNIPAAm-g-PAA co-polymer networks were microphase-separated, in which the microdomains of PNIPAAm-PAA interpolymer complexes were dispersed into the PNIPAAm matrix. The PNIPAAm-g-PAA hydrogels displayed a dual response to temperature and pH values. The thermoresponsive properties of PNIPAAm-g-PAA networks were investigated. Below the volume phase transition temperatures, the PNIPAAm-g-PAA hydrogels possessed much higher swelling ratios than control PNIPAAm hydrogel. In terms of swelling, deswelling and reswelling tests, it is judged that the PNIPAAm-g-PAA hydrogels displayed faster response to the external temperature changes than control PNIPAAm hydrogel. The improved thermoresponsive properties of hydrogels are ascribed to the formation of PAA-grafted PNIPAAm networks, in which the water-soluble PAA chains behave as the hydrophiphilic tunnels and allow water molecules to go through and, thus, to accelerate the diffusion of water molecules.

  14. Preparation and characterization of irradiated carboxymethyl sago starch-acid hydrogel and its application as metal scavenger in aqueous solution.

    PubMed

    Basri, Sri Norleha; Zainuddin, Norhazlin; Hashim, Kamaruddin; Yusof, Nor Azah

    2016-03-15

    Carboxymethyl sago starch-acid hydrogel was prepared via irradiation technique to remove divalent metal ions (Pb, Cu and Cd) from their aqueous solution. The hydrogel was characterized by using Fourier Transform Infrared (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The removal of these metal ions was analyzed by using inductively coupled plasma-optic emission spectra (ICP-OES) to study the amount of metal uptake by the hydrogel. Parameters of study include effect of pH, amount of sample, contact time, initial concentration of metal solution and reaction temperature. FTIR spectroscopy shows the CMSS hydrogel absorption peaks at 1741cm(-1), 1605cm(-1) and 1430cm(-1) which indicates the substitution of carboxymethyl group of modified sago starch. The degradation temperature of CMSS hydrogel is higher compared to CMSS due to the crosslinking by electron beam radiation and formed a porous hydrogel. From the data obtained, about 93.5%, 88.4% and 85.5% of Pb, Cu and Cd ions has been respectively removed from their solution under optimum condition.

  15. Control superstructure of rigid polyelectrolytes in oppositely charged hydrogels via programmed internal stress.

    PubMed

    Takahashi, Riku; Wu, Zi Liang; Arifuzzaman, Md; Nonoyama, Takayuki; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping

    2014-08-08

    Biomacromolecules usually form complex superstructures in natural biotissues, such as different alignments of collagen fibres in articular cartilages, for multifunctionalities. Inspired by nature, there are efforts towards developing multiscale ordered structures in hydrogels (recognized as one of the best candidates of soft biotissues). However, creating complex superstructures in gels are hardly realized because of the absence of effective approaches to control the localized molecular orientation. Here we introduce a method to create various superstructures of rigid polyanions in polycationic hydrogels. The control of localized orientation of rigid molecules, which are sensitive to the internal stress field of the gel, is achieved by tuning the swelling mismatch between masked and unmasked regions of the photolithographic patterned gel. Furthermore, we develop a double network structure to toughen the hydrogels with programmed superstructures, which deform reversibly under large strain. This work presents a promising pathway to develop superstructures in hydrogels and should shed light on designing biomimetic materials with intricate molecular alignments.

  16. Theory of Hydrostatic Lubrication for Like Charge Polymer Hydrogel Coated and Cartilage Coated Surfaces

    NASA Astrophysics Data System (ADS)

    Sokoloff, Jeffrey

    2011-03-01

    Polysaccharides hydrogels provide excellent lubrication of tissues and organs in humans and animals. It is argued on the basis of a solution of the Poisson-Boltzmann equation and scaling arguments that most asperities in ``contact'' at the interface between two hydrogel coated surfaces should be separated by a thin fluid layer, which is held in place by ion osmotic pressure. It is likely to be responsible for the excellent lubricating of these hydrogels. Although it appears that the same mechanism should operate in cartilage coated surfaces, it turns out that the friction coefficient is two orders of magnitude larger once equilibrium is established. A model will be provided which combines the biphasic model, traditionally used to explain the time dependence of the friction coefficient for two cartilage surfaces in contact , and the ion osmotic pressure mechanism used to explain the very low equilibrium friction coefficient for hydrogel interfaces.

  17. Alginate Hydrogel: A Shapeable and Versatile Platform for in Situ Preparation of Metal-Organic Framework-Polymer Composites.

    PubMed

    Zhu, He; Zhang, Qi; Zhu, Shiping

    2016-07-13

    This work reports a novel in situ growth approach for incorporating metal-organic framework (MOF) materials into an alginate substrate, which overcomes the challenges of processing MOF particles into specially shaped structures for real industrial applications. The MOF-alginate composites are prepared through the post-treatment of a metal ion cross-linked alginate hydrogel with a MOF ligand solution. MOF particles are well distributed and embedded in and on the surface of the composites. The macroscopic shape of the composite can be designed by controlling the shape of the corresponding hydrogel; thus MOF-alginate beads, fibers, and membranes are obtained. In addition, four different MOF-alginate composites, including HKUST-1-, ZIF-8-, MIL-100(Fe)-, and ZIF-67-alginate, were successfully prepared using different metal ion cross-linked alginate hydrogels. The mechanism of formation is revealed, and the composite is demonstrated to be an effective absorbent for water purification.

  18. Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites.

    PubMed

    Fu, Shaozhi; Guo, Gang; Gong, Changyang; Zeng, Shi; Liang, Hang; Luo, Feng; Zhang, Xiaoning; Zhao, Xia; Wei, Yuquan; Qian, Zhiyong

    2009-12-31

    In this study, we synthesized a biodegradable triblock copolymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) by ring-opening copolymerization, and nanohydroxyapatite (n-HA) powder was prepared by a hydrothermal precipitation method. The obtained n-HA was incorporated into the PECE matrix to prepare injectable thermosensitive hydrogel nanocomposites. (1)H NMR, FT-IR, XRD, DSC, and TEM were used to investigate the properties of PECE copolymer and n-HA/PECE nanocomposites. The rheological measurements for n-HA/PECE nanocomposites revealed that the gelation temperature was approximately 36 degrees C. The sol-gel-sol transition behavior and phase transition diagrams were recorded through a test tube inverting method. The results showed that n-HA/PECE nanocomposites still had thermoresponsivity like that of PECE thermosensitive hydrogel. The morphology of the nanocomposites was observed by SEM; the results showed that the nanocomposites had a 3D network structure. In addition, the effects of n-HA contents on the properties of n-HA/PECE nanocomposites are also discussed in the paper. From the results, n-HA/PECE hydrogel is believed to be promising for injectable orthopedic tissue engineering due to its good thermosensitivity and injectability.

  19. Preparation and properties of EDC/NHS mediated crosslinking poly (gamma-glutamic acid)/epsilon-polylysine hydrogels.

    PubMed

    Hua, Jiachuan; Li, Zheng; Xia, Wen; Yang, Ning; Gong, Jixian; Zhang, Jianfei; Qiao, Changsheng

    2016-04-01

    In this paper, a novel pH-sensitive poly (amino acid) hydrogel based on poly γ-glutamic acid (γ-PGA) and ε-polylysine (ε-PL) was prepared by carbodiimide (EDC) and N-hydroxysuccinimide (NHS) mediated polymerization. The influence of PGA/PL molar ratio and EDC/NHS concentration on the structure and properties was studied. Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) proved that hydrogels were crosslinked through amide bond linkage, and the conversion rate of a carboxyl group could reach 96%. Scanning electron microscopy (SEM) results showed a regularly porous structure with 20 μm pore size in average. The gelation time in the crosslink process of PGA/PL hydrogels was within less than 5 min. PGA/PL hydrogels had excellent optical performance that was evaluated by a novel optotype method. Furthermore, PGA/PL hydrogels were found to be pH-sensitive, which could be adjusted to the pH of swelling media intelligently. The terminal pH of swelling medium could be controlled at 5 ± 1 after equilibrium when the initial pH was within 3-11. The swelling kinetics was found to follow a Voigt model in deionized water but a pseudo-second-order model in normal saline and phosphate buffer solution, respectively. The differential swelling degrees were attributed to the swelling theory based on the different ratio of -COOH/-NH2 and pore size in hydrogels. The results of mechanical property indicated that PGA/PL hydrogels were soft and elastic. Moreover, PGA/PL hydrogels exhibited excellent biocompatibility by cell proliferation experiment. PGA/PL hydrogels could be degraded in PBS solution and the degradation rate was decreased with the increase of the molar ratio of PL. Considering the simple preparation process and pH-sensitive property, these PGA/PL hydrogels might have high potential for use in medical and clinical fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels.

    PubMed

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-05-07

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 ± 16 MPa and a failure strain of 1.8 ± 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 ± 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets.

  1. Who Is in Charge of Teacher Preparation?

    ERIC Educational Resources Information Center

    DeMonte, Jenny

    2013-01-01

    Having a good teacher can improve the life of a student far beyond school. How can we ensure that every student has a good teacher and receives high-quality instruction? The challenge is that, for the most part, the institutions governing teacher-training organizations are not governed by the bodies charged with overseeing K-12 public education.…

  2. PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing

    NASA Astrophysics Data System (ADS)

    Afshari, M. J.; Sheikh, N.; Afarideh, H.

    2015-08-01

    Hydrogels with three components, poly(vinyl alcohol) (PVA), carboxymethylate chitosan (CM-chitosan) and honey have been prepared by using radiation method and radiation followed by freeze-thawing cycles technique (combinational method). The solid concentration of the polymer solution is 15 wt% and the ratios of PVA/CM-chitosan/honey are 10/1.5/3.5, 10/2/3, 10/3/2, and 10/3.5/1.5. The applied irradiation doses are 25, 30 and 40 kGy. Various tests have been done to evaluate the hydrogel properties to produce materials to be used as wound dressing. The results show that combinational method improves the mechanical strength of hydrogels while it has no significant effect on the water evaporation rate of gels. The combinational method decreases the swelling of hydrogels significantly, albeit this parameter is still acceptable for wound dressing. Microbiological analyses show that the hydrogel prepared by both methods can protect the wound from Escherichia coli bacterial infection. The wound healing test shows the good performance of the gels in mice.

  3. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-04-01

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets.Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets. Electronic supplementary information (ESI) available: XPS spectrum of the SF-GO hybrid film, SEM images of lyophilized GO dispersion and the failure surface of GO film. See DOI: 10.1039/c3nr00196b

  4. Swelling equilibria for temperature-sensitive ampholytic hydrogels

    SciTech Connect

    Baker, J.P.; Stephens, D.R.; Blanch, H.W.; Prausnitz, J.M.

    1992-09-01

    Temperature-sensitive N-isopropylacrylamide (NIPA)-based ampho-lytic hydrogels were synthesized by copolymerizing NIPA with the cationic monomer methacrylamidopropyl trimethylammonium chloride (MAPTAC) and the anionic monomer sodium styrene sulfonate (SSS). The total nominal charge density of the hydrogels was held constant at 8 mol % (dry basis), while the molar ratio of anionic to cationic moieties within the hydrogels was varied. Swelling equilibria were measured in water at 6C, and in aqueous sodium chloride solutions ranging in concentration from 10{sup {minus}5}to 5 M and temperature ranging from 6 to 56C. Consistent with expectations, the swelling behavior of the hydrogels was found to be controlled by temperature at low salt concentrations; as the sodium chloride concentration increased, temperature control of hydrogel swelling decreased. Slight antipolyelectrolyte behavior was observed for the hydrogel prepared with equal molar amounts of MAPTAC and SSS.

  5. Preparation, characterization, and release behavior of aspirin-loaded poly(2-hydroxyethyl acrylate)/silica hydrogels.

    PubMed

    Lin, Mei; Xu, Peng; Zhong, Wei

    2012-05-01

    Poly(2-hydroxyethyl acrylate) (PHEA) is a polymer hydrogel that can be used as a biomaterial. In this study, PHEA/silica composites containing aspirin as a model drug were prepared, and their drug release behaviors were tested. 2-Hydroxyethyl acrylate (HEA) was first copolymerized with 3-(trimethoxysilyl) propyl methacrylate (MSMA) in the presence of ammonium persulphate and then condensed with silicic acid oligomer. The composites were characterized with Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). In addition, water uptake and matrix erosion of PHEA/silica of different weight ratios were also investigated. The results indicated that the silica particles were well dispersed in PHEA hydrogels. The in vitro drug release test revealed that the release rate of aspirin decreased with the increasing content of silica. The drug release behaviors were analyzed by employing the power law, which showed that the release profiles were governed either by Case II diffusion or by anomalous diffusion. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay of rabbit chondrocytes revealed that adding silica can improve the biocompatibility of PHEA to some extent. Copyright © 2012 Wiley Periodicals, Inc.

  6. Feather keratin hydrogel for wound repair: Preparation, healing effect and biocompatibility evaluation.

    PubMed

    Wang, Ju; Hao, Shilei; Luo, Tiantian; Cheng, Zhongjun; Li, Wenfeng; Gao, Feiyan; Guo, Tingwang; Gong, Yuhua; Wang, Bochu

    2017-01-01

    Keratins are highly attractive for wound healing due to their inherent bioactivity, biocompatibility and physical properties. However, nearly all wound healing studies have focused on human hair keratins, and the wound-repair effects and in vivo biocompatibilities of feather keratins are not clear. Feather keratins are derived from chicken feathers, which are considered to be the major waste in the poultry industry, and the quality of feather keratin is easier to control than that of human hair keratin due to human hair perming and colouring-dyeing. Thus, we extracted keratins from chicken feathers, and a feather keratin hydrogel was then prepared and used to test the in vivo wound-healing properties and biocompatibility. The results indicated that feather keratins displayed wound-healing and biodegradation properties similar to those of human hair keratins and were also highly compatible with those of the tissue and devoid of immunogenicity and systematic toxicity. Collectively, these results suggested that feather keratin hydrogel could be used for biomedical applications, particularly effective wound healing.

  7. Preparation and properties of GO-PVA composite hydrogel with oriented structure

    NASA Astrophysics Data System (ADS)

    Liu, Huanqing; Zhang, Gongzheng; Li, Huanjun

    2017-03-01

    We fabricated GO-PVA composite hydrogels with oriented structure by directional freezing and repeated freeze-thawing, which owned superior mechanical property and thermostability than PVA hydrogel. Due to physical interactions such as hydrogen bonding between surface of GO and PVA chains, GO-PVA composite hydrogel possessed higher crosslinking density and smaller pore size and can resist higher temperature and stronger force from outside than PVA hydrogel. These unique properties will endow GO-PVA hydrogel with greater potential application in biomedical materials.

  8. Preparation, properties and biological application of pH-sensitive poly(ethylene oxide) (PEO) hydrogels grafted with acrylic acid(AAc) using gamma-ray irradiation

    NASA Astrophysics Data System (ADS)

    Nho, Young Chang; Mook Lim, Youn; Moo Lee, Young

    2004-09-01

    pH-sensitive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing it in the small intestine. In this study, hydrogels based on poly(ethylene oxide) (PEO) networks grafted with acrylic acid (AAc) were prepared via a two-step process. PEO hydrogels were prepared by γ-ray irradiation, and then grafting by AAc monomer onto the PEO hydrogels with the subsequent irradiation (radiation dose: 5-20 kGy, dose rate: 2.15 kGy/h). These grafted hydrogels showed a pH-sensitive swelling behavior. The grafted hydrogels were used as a carrier for the drug delivery systems for the controlled release of insulin. The in vitro drug release behaviors of these hydrogels were examined by quantification analysis with a UV/VIS spectrophotometer. Insulin was loaded into freeze-dried hydrogels (7 mm×3 mm×2.5 mm) and administrated orally to healthy and diabetic Wistar rats. The oral administration of insulin-loaded hydrogels to Wistar rats decreased the blood glucose levels obviously for at least 4 h due to the absorption of insulin in the gastrointestinal tract.

  9. Topical treatment of the buccal mucosa and wounded skin in rats with a triamcinolone acetonide-loaded hydrogel prepared using an electron beam.

    PubMed

    Choi, Soon Gil; Baek, Eun Jung; Davaa, Enkhzaya; Nho, Young-Chang; Lim, Youn-Mook; Park, Jong-Seok; Gwon, Hui-Jeong; Huh, Kang Moo; Park, Jeong-Sook

    2013-04-15

    In this study, a triamcinolone acetonide-loaded hydrogel was prepared by electron beam irradiation and evaluated for use as a buccal mucoadhesive drug delivery system. A poloxamer was modified to have vinyl end groups for preparation of the hydrogel via an irradiation cross-linking reaction. Carbopol was introduced to improve the mucoadhesive properties of the hydrogel. The in vitro release of triamcinolone acetonide from the hydrogel was examined at 37 °C. To investigate the topical therapeutic effect of triamcinolone acetonide on wounded rat skin and buccal mucosa, the appearance and histological changes were evaluated for 15 days after treatment with saline, triamcinolone acetonide solution, triamcinolone acetonide hydrogel, and blank hydrogel, respectively. Triamcinolone acetonide was released constantly from the gel formulation at 37 °C and reach 100% at about 48 h. After 15 days, in the skin of the group treated with the triamcinolone acetonide-loaded hydrogel, the wound was almost completely free of crust and a number of skin appendages, including hair follicles, had formed at the margins of the tissue. Moreover, the inflammatory response in the buccal mucosa was milder than that in the other groups, and the wound surface was completely covered with regenerating, hyperkeratotic, thickened epithelial cells. Our results indicate that the triamcinolone-acetonide hydrogel showed sustained drug release behavior, while causing no significant histopathological changes in buccal and skin tissues. Therefore, this hydrogel system may be a powerful means of drug delivery for buccal administration with controlled release and no tissue irritation.

  10. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    SciTech Connect

    Barleany, Dhena Ria Ulfiyani, Fida; Istiqomah, Shafina; Rahmayetty; Heriyanto, Heri; Erizal

    2015-12-29

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w{sup −1} acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g{sup −1} of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g{sup −1} and 523 g g{sup −1} for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM)

  11. Removal of heavy metal ions from wastewater by a novel HEA/AMPS copolymer hydrogel: preparation, characterization, and mechanism.

    PubMed

    Li, Zhengkui; Wang, Yueming; Wu, Ningmei; Chen, Qichun; Wu, Kai

    2013-03-01

    This study aims to synthesize 2-hydroxyethyl acrylate (HEA) and 2-acrylamido-2-methylpropane sulfonic (AMPS) acid-based hydrogels by gamma radiation and to investigate their swelling behavior and heavy metal ion adsorption capabilities. The copolymer hydrogels prepared were characterized via scanning electron microscopy, Fourier transformed infrared spectra, thermal gravimetric analysis, and X-ray photoelectron spectroscopy. The research showed that the copolymer hydrogel was beneficial for permeation due to its porous structure. In addition, the experimental group A-2-d [70 % water volume ratio and (n (AMPS)/n (HEA)) =1:1] was an optimal adsorbent. The optimal pH was 6.0 and the optimal temperature was 15 °C. Pb(2+), Cd(2+), Cu(2+), and Fe(3)+ achieved adsorption equilibriums within 24 h, whereas Cr(3+) reached equilibrium in 5 h. Pb(2)+, Cd(2+), Cr(3+), and Fe(3+) maximum load capacity was 1,000 mg L(-1), whereas the Cu(2+) maximum capacity was 500 mg L(-1). The priority order in the multicomponent adsorption was Cr(3+)>Fe(3+)>Cu(2+)>Cd(2+)>Pb(2+). The adsorption process of the HEA/AMPS copolymer hydrogel for the heavy metal ions was mainly due to chemisorption, and was only partly due to physisorption, according to the pseudo-second-order equation and Langmuir adsorption isotherm analyses. The HEA/AMPS copolymer hydrogel was confirmed to be an effective adsorbent for heavy metal ion adsorption.

  12. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    NASA Astrophysics Data System (ADS)

    Barleany, Dhena Ria; Ulfiyani, Fida; Istiqomah, Shafina; Heriyanto, Heri; Rahmayetty, Erizal

    2015-12-01

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w-1 acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g-1 of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g-1 and 523 g g-1 for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM).

  13. Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Luo, Jinwei; Zhong, Wenbin; Zou, Yubo; Xiong, Changlun; Yang, Wantai

    2016-07-01

    Polyaniline (PANI) and its composite hydrogels have been considered as a unique supercapacitor electrode material due to their three dimensional (3D) porous structures, formed conducting networks, high specific surface areas and fast electron/ion transfer. Herein, dendritic and long fibrous PANI nanostructure hydrogels (PDH and PFH), dendritic PNAI nanofiber/graphene and long PANI nanofibers/Nitrogen-doped graphene composite hydrogels (PGH and PNGH) were prepared by integration polymerization of aniline and hydrothermal process. It was found that the addition of p-Phenylenediamine (PPD) not only controlled the morphologies of PANI from dendritic to long fibrous, but also facilitated the graphene oxide (GO) into nitrogen-doped graphene. Furthermore, after freeze-drying, PDH and PGH exhibited a max compressive strength of 9.5 and 9.6 KPa, respectively; while the max compressive strength of PFH and PNGH constructed with long PANI nanofiber is 79.9 and 75.8 KPa, respectively. Directly using these prepared hydrogels as electrodes for supercapacitors, it was found that PDH, PFH, PGH and PNGH exhibited high specific capacitances of 448.6, 470, 540.9 and 610 F g-1, respectively, at the current density of 1 A g-1. It is expected that the prepared PDH, PFH, PGH and PNGH can be directly applied in the field of high performance energy storage devices.

  14. Facile preparation of self-assembled hydrogel-like GdPO4*H2O nanorods.

    PubMed

    Huang, Chih-Chia; Lo, Yi-Wei; Kuo, Wen-Shuo; Hwu, Jih-Ru; Su, Wu-Chou; Shieh, Dar-Bin; Yeh, Chen-Sheng

    2008-08-05

    Of the methods employed in the preparation of one-dimensional lanthanide phosphate (LnPO(4)) nanorods/nanowires, such as GdPO(4), the hydrothermal method has been mainly used as a synthetic route. In this study, we report a facile low-temperature solution approach to prepare GdPO 4*H(2)O nanorods by simply refluxing GdCl(3) and KH(2)PO(4) for only 15 min at 88 degrees C, an approach that can easily be scaled up by increasing the reagent amounts. We observed a highly viscous macroscopic hydrogel-like material when we mixed as-prepared GdPO(4)*H(2)O nanomaterials with H(2)O. Hydrogels are an important class of biomaterials. Their building blocks, normally formed from protein-, peptide-, polymer-, and lipid-based materials, offer three-dimensional scaffolds for drug delivery, tissue engineering, and biosensors. Our preliminary results showed that GdPO(4)*H(2)O hydrogels could be used for encapsulation and drug release, and that they were biocompatible, acting as scaffolds to foster cell proliferation. These findings suggested that they might have biomedical uses. Our findings may lead to the creation of other inorganic nanomaterial-based hydrogels apart from the organic and biomolecular protein-, peptide-, polymer-, and lipid-based building blocks.

  15. Preparation and characterization of smart magnetic hydrogels and its use for drug release

    NASA Astrophysics Data System (ADS)

    Liu, Ting-Yu; Hu, Shang-Hsiu; Liu, Kun-Ho; Liu, Dean-Mo; Chen, San-Yuan

    2006-09-01

    The magnetic hydrogels were successfully fabricated by chemically cross-linking of gelatin hydrogels and Fe 3O 4 nanoparticles (ca. 40-60 nm) through genipin (GP) as cross-linking agent. The cross-sectional SEM observation demonstrates that the Fe 3O 4 nanoparticles were fairly uniformly distributed in the gelatin matrix. Moreover, in vitro release data reveal that drug release profile of the resulting hydrogels is controllable by switching on or off mode of a given magnetic field. While applying magnetic fields to the magnetic hydrogels, the release rate of vitamin B 12 of the hydrogels was considerably decreased as compared with those when the field was turned off, suggesting a close configuration of the hydrogels as a result of the aggregation of Fe 3O 4 nanoparticles. Based on this on-&-off mechanism, the smart magnetic hydrogels based on the gelatin-ferrite hybrid composites can be potentially developed for application in novel drug delivery systems.

  16. Preparation and application of abietic acid-derived optically active helical polymers and their chiral hydrogels.

    PubMed

    Yao, Fei; Zhang, Dongyue; Zhang, Chaohong; Yang, Wantai; Deng, Jianping

    2013-02-01

    A novel chiral monomer N-propargyl abietamide, M1, was synthesized from abietic acid and catalytically polymerized with (nbd)Rh+B-(C6H5)4 (nbd=norbornadiene), providing polymer [poly(1)] with a molecular weight of 13,000-36,000 at a yield of 59-84%. Poly(1) did not form stable helices in tetrahydrofuran at room temperature whereas copolymerization of M1 and the achiral N-propargylamide monomer, M2, led to the formation of helical optically active copolymers as indicated by circular dichroism studies, UV-vis spectroscopy, and specific optical rotation measurements. Hydrogels were prepared based on an optically active helical copolymer, poly(M1(0.32)-co-M2(0.68)) that exhibited enantioselective recognition toward l-alanine. The novel chiral polymers derived from abietic acid are expected to find applications in such areas as chiral recognition, chiral resolution, and chiral catalysis.

  17. Low-temperature fabrication of 3D drilled graphene sheets hydrogel for supercapacitors with ultralong cycle life

    NASA Astrophysics Data System (ADS)

    Qiu, Zenghui; He, Dawei; Wang, Yongsheng; Li, Jiayuan

    2017-09-01

    A simple cobalt catalyzed gasification strategy to synthesize drilled graphene sheets (DGNs) is performed, and 3D DGNs hydrogel is prepared at a relatively low temperature. Due to mesopore hydrogel structure that increases the charge transfer efficiency by providing pathways for ionic into the overlaps of DGNs hydrogel and hole density displays controllably, the resulting DGNs hydrogel electrode provides excellent rate capability with an ultrahigh specific capacitance of 264.1 F g-1 at 1 A g-1 compared to a value of 187.8 F g-1 for graphene sheets (GNs) pole. DGNs hydrogel expands the design space for developing high-performance energy storage devices.

  18. Topical oleo-hydrogel preparation of ketoprofen with enhanced skin permeability.

    PubMed

    Rhee, G J; Woo, J S; Hwang, S J; Lee, Y W; Lee, C H

    1999-06-01

    In an attempt to improve the skin penetration of ketoprofen, various transdermal formulations were prepared, and their in vitro skin permeability and in vivo percutaneous absorption were evaluated. In vitro permeation studies were performed using a modified Franz cell diffusion system in which permeation parameters such as cumulative amount at 8 hr Q8hr, steady-state flux Jss, or lag time tL were determined. In the in vivo percutaneous absorption study using the hairless mouse, maximum concentration Cmax and area under the curve at 24 hr AUC24h were measured. The optimal transdermal formulation (oleo-hydrogel formulation) of ketoprofen showed a Q8hr value of 227.20 micrograms/cm2, a Jss value of 29.61 micrograms/cm2/hr, and a tL value of 0.46 hr. The Q8hr and Jss values were about 10-fold (p < .01) higher than those (Q8hr = 19.61 micrograms/cm2; Jss = 2.66 micrograms/cm2/hr) from the K-gel and about 3.5-fold (p < .01) than those (Q8hr = 60.00 micrograms/cm2; Jss = 7.99 micrograms/cm2/hr) of the K-plaster. In the in vivo percutaneous absorption, the Cmax (6.82 micrograms/ml) and AUC24h (55.74 micrograms.hr/ml) values of the optimal formulation were significantly (p < .01) higher than those of K-gel and K-plaster. The relative bioavailability of the oleo-hydrogel following transdermal administration in reference to oral administration was about 37%, and the Cmax value (4.73 micrograms/cm2) in the hypodermis following topical administration was much higher than those from the conventional products (Cmax of K-gel and K-plaster were 0.92 +/- 0.19 microgram/cm2 and 1.27 +/- 0.37 microgram/cm2, respectively). These data demonstrate that the oleo-hydrogel formulation of ketoprofen was more beneficial than conventional products (K-gel and K-plaster) in enhancing transdermal permeation and skin absorption of ketoprofen. Furthermore, there was a good correlation between in vitro permeation parameters and in vivo percutaneous absorption parameters.

  19. Preparation and characterization of pH-sensitive methyl methacrylate-g-starch/hydroxypropylated starch hydrogels: in vitro and in vivo study on release of esomeprazole magnesium.

    PubMed

    Kumar, Pankaj; Ganure, Ashok Laxmanrao; Subudhi, Bharat Bhushan; Shukla, Shubhanjali

    2015-06-01

    In the present study, novel hydrogels were prepared through graft copolymerization of methyl methacrylate onto starch and hydroxypropylated starch for intestinal drug delivery. The successful grafting has been confirmed by FTIR, NMR spectroscopy, and elemental analysis. Morphological examination of copolymeric hydrogels by scanning electron microscopy (SEM) confirms the macroporous nature of the copolymers. The high decomposition temperature was observed in thermograms indicating the thermal stability of the hydrogels. To attain a hydrogel with maximum percent graft yield, the impact of reaction variables like concentration of ceric ammonium nitrate as initiator and methyl methacrylate as monomer were consistently optimized. X-ray powder diffraction and differential scanning calorimetric analysis supported the successful entrapment of the drug moiety (esomeprazole magnesium; proton pump inhibitor) within the hydrogel network. Drug encapsulation efficiency of optimized hydrogels was found to be >78%. Furthermore, swelling capacity of copolymeric hydrogels exhibited a pH-responsive behavior which makes the synthesized hydrogels potential candidates for controlled delivery of medicinal agents. In vitro drug release was found to be sustained up to 14 h with 80-90% drug release in pH 6.8 solution; however, the cumulative release was 40-45% in pH 1.2. The gastrointestinal transit behavior of optimized hydrogel was determined by gamma scintigraphy, using (99m)Tc as marker. The amount of radioactive tracer released from the labeled hydrogel was minimal when the hydrogel was in the stomach, whereas it increased as hydrogel reached in intestine. Well-correlated results of in vitro and in vivo analysis proved their controlled release behavior with preferential delivery into alkaline pH environment.

  20. Preparation and characterization of poly(propylene fumarate-co-ethylene glycol) hydrogels.

    PubMed

    Suggs, L J; Kao, E Y; Palombo, L L; Krishnan, R S; Widmer, M S; Mikos, A G

    1998-01-01

    We describe the preparation and bulk characterization of a cross-linked poly(propylene fumarate-co-ethylene glycol), p(PF-co-EG), hydrogel. Eight block copolymer formulations were made varying four different design parameters including: poly(ethylene glycol) (PEG) molecular weight, poly(propylene fumarate) (PPF) molecular weight, copolymer molecular weight, and ratio of PEG to PPF. Two different cross-linking formulations were also tested, one with a cross-linking monomer and one without. The extent of the cross-linking reaction and the degree of swelling in aqueous solution were determined on copolymer formulations made without a cross-linking monomer. The values of molecular weight between cross-links, Mc ranged from 300 +/- 120 to 1190 +/- 320 as determined from swelling data (n = 3). The equilibrium volume swelling ratios, Q, varied from 1.5 +/- 0.1 to 3.0 +/- 0.1. This ratio was found to increase with increasing PEG content in the copolymer and decrease with increasing PPF molecular weight. The values for complex dynamic elastic moduli magnitudes of E*, ranged from 0.9 +/- 0.2 to 13.1 +/- 1.1 MPa for the formulations with the cross-linking monomer, N-vinyl pyrrolidinone (VP) (n = 3). The ultimate tensile stresses on the formulations made with VP ranged from 0.15 +/- 0.03 to 1.44 +/- 1.06 MPa, and tensile moduli ranged from 1.11 +/- 0.20 to 20.66 +/- 2.42 MPa (n = 5). All of the mechanical properties increased with increasing PPF molecular weight and decreased with increasing PEG content in the copolymer. These data show that the physical properties of p(PF-co-EG) hydrogels can be tailored for specific applications by altering the material composition.

  1. Enhanced Release of Molecules upon Ultraviolet (UV) Light Irradiation from Photoresponsive Hydrogels Prepared from Bifunctional Azobenzene and Four-Arm Poly(ethylene glycol).

    PubMed

    Rastogi, Shiva K; Anderson, Hailee E; Lamas, Joseph; Barret, Scott; Cantu, Travis; Zauscher, Stefan; Brittain, William J; Betancourt, Tania

    2017-03-07

    Advances in biosensors and drug delivery are dependent on hydrogels that respond to external stimuli. In this work, we describe the preparation and characterization of photoresponsive hydrogels prepared by cross-linking of di-NHS ester of azobenzoic acid and four-armed, amine-terminated poly(ethylene glycol). The porous structure and composition of the hydrogels were confirmed by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The reversible photoisomerization of the azobenzene-containing hydrogel cross-linkers in the gels was confirmed by absorption spectroscopy. Specifically, the photoisomerization of the cross-linkers between their trans and cis configurations was observed by monitoring the absorbance of the hydrogels at the two characteristic peaks of azobenzene (π-π* at 330 nm and n-π* at 435 nm). The effect of photoisomerization on the hydrogel structure was investigated by microscopy. Ultraviolet (UV) irradiation-induced reduction in hydrogel size was observed, which may be a result of the inherently smaller footprint of the cis azobenzene conformation, as well as dipole-dipole interactions between the polar cis azobenzene and the polymer network. The UV-triggered reduction in hydrogel size was accompanied by enhanced release of the near-infrared fluorescent dye Alexa Fluor 750 (AF750). Enhanced release of AF750 was observed in samples irradiated with UV versus dark control. Together, these data demonstrate the potential of these systems as reversible photoresponsive biomaterials.

  2. Gelatin-Pectin Composite Films from Polyion Complex Hydrogels

    USDA-ARS?s Scientific Manuscript database

    Composite films from gelatin and low-methoxyl pectin were prepared by either ionic complexation or covalent cross-linking. The ionic interactions between positively charged gelatin and negatively charged pectin produced physically reversible hydrogels. The resultant homogeneous gels had improved mec...

  3. Solid lipid nanoparticles (SLN)--based hydrogels as potential carriers for oral transmucosal delivery of risperidone: preparation and characterization studies.

    PubMed

    Silva, A C; Amaral, M H; González-Mira, E; Santos, D; Ferreira, D

    2012-05-01

    Two different solid lipid nanoparticles (SLN)-based hydrogels (HGs) formulations were developed as potential mucoadhesive systems for risperidone (RISP) oral transmucosal delivery. The suitability of the prepared semi-solid formulations for application on oral mucosa was assessed by means of rheological and textural analysis, during 30 days. Plastic flows with thixotropy and high adhesiveness were obtained for all the tested systems, which predict their success for the oral transmucosal application proposed. The SLN remained within the colloidal range after HGs preparation. However, after 30 days of storage, a particle size increase was detected in one type of the HGs formulations. In vitro drug release studies revealed a more pronounced RISP release after SLN hydrogel entrapment, when compared to the dispersions alone. In addition, a pH-dependent release was observed as well. The predicted in vivo RISP release mechanism was Fickian diffusion alone or combined with erosion.

  4. Preparation and characterization of novel P(HEA/IA) hydrogels for Cd2+ ion removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Antić, Katarina M.; Babić, Marija M.; Vuković, Jovana J. Jovašević; Vasiljević-Radović, Dana G.; Onjia, Antonije E.; Filipović, Jovanka M.; Tomić, Simonida Lj.

    2015-05-01

    Series of novel hydrogels based on 2-hydroxyethyl acrylate (HEA) and itaconic acid (IA), P(HEA/IA) copolymers, were prepared by free radical cross-linking copolymerization and investigated as potential adsorbents for Cd2+ removal from aqueous solution. The hydrogels before and after Cd2+ adsorption were characterized using FTIR, DSC, SEM/EDX, AFM and DMA analysis. The swelling results showed that these hydrogels are pH and temperature sensitive. In order to evaluate adsorption behavior of samples various factors affecting the Cd2+ uptake behavior, such as: contact time, temperature, pH, ionic strength, adsorbent weight, competitive ions and initial concentration of the metal ions were investigated. Five adsorption isotherms and two kinetic models were studied. The adsorption behavior can be very well described by the pseudo-second order kinetic model and Langmuir isotherm. Multicomponent adsorption studies revealed that adsorption of cadmium depends on the type of metal ions present in the system. Desorption studies showed that hydrogel can be reused three times with only 15% loss of adsorption capacity. All results indicate that the sample with the highest IA content is the most promising adsorbent for Cd2+ removal.

  5. Alkynyl-functionalization of hydroxypropyl cellulose and thermoresponsive hydrogel thereof prepared with P(NIPAAm-co-HEMAPCL).

    PubMed

    Miao, Lei; Hu, Jiwen; Lu, Mangeng; Tu, Yuanyuan; Chen, Xin; Li, Yinwen; Lin, Shudong; Li, Fei; Hu, Shengyu

    2016-02-10

    A ternary system thermoresponsive hydrogel, poly(N-isopropylacrylamide-co-hydroxyethyl methylacrylate polycaprolactone)/hydroxypropyl cellulose (or P(NIPAAm-co-HEMAPCL)/HPC), was prepared via "alkynyl/azide" click chemistry between the azide modified graft copolymer P(NIPAAm-co-HEMAPCL-N3) and the alkynyl modified HPC (or alkynyl-HPC). The structures of P(NIPAAm-co-HEMAPCL-N3) and alkynyl-HPC were characterized by (1)H NMR, SEC and FT-IR, and the results demonstrated that the mole ratio of the alkynyl and azide functional groups, and the feed ratios of HPC, PCL, and PNIPAAm could be easily adjusted. The incorporation of PCL and HPC dramatically enhanced the compression modulus of the P(NIPAAm-co-HEMAPCL)/HPC hydrogel, which ranged from 500 to 1000 g/cm(2). Due to the immiscibility of HPC and PCL, a heterogeneous and semicontinuous structure was observed via SEM. The incorporation of HPC accelerated the water absorption rate and enhanced the hydrogel's ability to shed water. The swelling-deswelling and compressive properties could also be adjusted by changing the feeding ratio. The hydrogel exhibited reversible swelling-deswelling behavior after three "swelling-deswelling" cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Rheological properties of a biological thermo-responsive hydrogel prepared from vegetable oil

    USDA-ARS?s Scientific Manuscript database

    Hydrogel is a colloidal gel in which water is the dispersion medium. The unique properties of hydrogels make this kind of materials have many utilization potentials, such as drug delivery, gene therapy, wound care products, breast implant materials, cosmetic products, and tissue engineering. Hydroge...

  7. Preparation and characterization of poly(2-acrylamido-2-methylpropane-sulfonic acid)/Chitosan hydrogel using gamma irradiation and its application in wastewater treatment

    NASA Astrophysics Data System (ADS)

    Gad, Y. H.

    2008-09-01

    Radiation grafting of chitosan with 2-acrylamido-2-methyl propane sulfonic acid (AMPS) has been successfully performed. The effect of absorbed dose (kGy) and the chitosan:AMPS ratio on graft hydrogelization was studied. The structure of the prepared hydrogel was confirmed using infrared spectroscopy (IR). Thermal properties were simultaneously studied by thermogravimetric analysis (TGA). The effect of the polymerization variables on the swelling % of the prepared hydrogel was investigated. The highest equilibrium degree of swelling (38.6 g/g) and gel % (94.7%) of the prepared chitosan-AMPS hydrogel was at 40% AMPS and absorbed dose of 10 kGy. The removal of methylene blue, acid red dye, Cd (II) and Cr (III) from composed wastewater was also investigated. The effect of pH, the chitosan:AMPS ratio and the concentration of the pollutant on the adsorption process were studied.

  8. Metallization of DNA hydrogel: application of soft matter host for preparation and nesting of catalytic nanoparticles

    NASA Astrophysics Data System (ADS)

    Zinchenko, Anatoly; Che, Yuxin; Taniguchi, Shota; Lopatina, Larisa I.; G. Sergeyev, Vladimir; Murata, Shizuaki

    2016-07-01

    Nanoparticles (NPs) of Au, Ag, Pt, Pd, Cu and Ni of 2-3 nm average-size and narrow-size distributions were synthesized in DNA cross-linked hydrogels by reducing corresponding metal precursors by sodium borohydride. DNA hydrogel plays a role of a universal reactor in which the reduction of metal precursor results in the formation of 2-3 nm ultrafine metal NPs regardless of metal used. Hydrogels metallized with various metals showed catalytic activity in the reduction of nitroaromatic compounds, and the catalytic activity of metallized hydrogels changed as follows: Pd > Ag ≈ Au ≈ Cu > Ni > Pt. DNA hydrogel-based "soft catalysts" elaborated in this study are promising for green organic synthesis in aqueous media as well as for biomedical in vivo applications.

  9. Hydrothermal Conditioning of Physical Hydrogels Prepared from a Midblock-Sulfonated Multiblock Copolymer.

    PubMed

    Mineart, Kenneth P; Dickerson, Joshua D; Love, Dillon M; Lee, Byeongdu; Zuo, Xiaobing; Spontak, Richard J

    2017-03-01

    Since nanostructured amphiphilic macromolecules capable of affording high ion and water transport are becoming increasingly important in a wide range of contemporary energy and environmental technologies, the swelling kinetics and temperature dependence of water uptake are investigated in a series of midblock-sulfonated thermoplastic elastomers. Upon self-assembly, these materials maintain a stable hydrogel network in the presence of a polar liquid. In this study, real-time water-sorption kinetics in copolymer films prepared by different casting solvents are elucidated by synchrotron small-angle X-ray scattering and gravimetric measurements, which directly correlate nanostructural changes with macroscopic swelling to establish fundamental structure-property behavior. By monitoring the equilibrium swelling capacity of these materials over a range of temperatures, an unexpected transition in the vicinity of 50 °C has been discovered. Depending on copolymer morphology and degree of sulfonation, hydrothermal conditioning of specimens to temperatures above this transition permits retention of superabsorbent swelling at ambient temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Preparation, pharmacokinetics and pharmacodynamics of ophthalmic thermosensitive in situ hydrogel of betaxolol hydrochloride.

    PubMed

    Huang, Weiwei; Zhang, Nan; Hua, Haiying; Liu, Tuanbing; Tang, Yafang; Fu, Lingling; Yang, Yanan; Ma, Xiujie; Zhao, Yongxing

    2016-10-01

    Conventional ophthalmic formulations often eliminate rapidly after administration and cannot provide and maintain an adequate concentration of the drug in the precorneal area. To solve those problems, a thermosensitive in situ gelling and mucoadhesive ophthalmic drug delivery system was prepared and evaluated, the system was composed of poloxamer analogs and polycarbophil (PCP) and betaxolol hydrochloride (BH) was selected as model drug. The concentrations of poloxamer 407 (P407) (22% (w/v)) and poloxamer 188 (P188) (3.5% (w/v)) were identified through central composite design-response surface methodology (CCD-RSM). The BH in situ hydrogel (BH-HG) was liquid solution at low temperature and turned to semisolid at eye temperature. BH-HG showed good stability and biocompatibility, which fulfilled the requirements of ocular application. In vitro studies indicated that addition of PCP enhanced the viscosity of BH-HG and the release results of BH from BH-HG demonstrated a sustained release behavior of BH because of the gel dissolution. In vivo pharmacokinetics and pharmacodynamics studies indicated that the BH-HG formulation resulted in an improved bioavailability and a significantly lower intraocular pressure (IOP). The results suggested BH-HG could be potentially used as an in situ gelling system for ophthalmic delivery to enhance the bioavailability and efficacy.

  11. Biomimetic Hydrogel Materials

    DOEpatents

    Bertozzi, Carolyn , Mukkamala, Ravindranath , Chen, Oing , Hu, Hopin , Baude, Dominique

    2003-04-22

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  12. Biomimetic hydrogel materials

    SciTech Connect

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  13. Dextran-based hydrogel microspheres obtained in w/o emulsion: preparation, characterisation and in vivo studies.

    PubMed

    Casadei, Maria Antonietta; Cesa, Stefania; Pacelli, Settimio; Paolicelli, Patrizia; Tita, Beatrice; Vitali, Federica

    2014-01-01

    The cross-linking reaction in w/o emulsions of dextran (DEX) functionalised with methacrylic groups, having or not acid residues in side chain, can be used to easily prepare polysaccharide hydrogel microspheres with properties suitable for drug delivery applications. The formation of a chemical network within the obtained particles was evaluated with FT-IR spectroscopy, whereas morphology and dimensions of the microspheres were investigated with optical and scanning electron microscopy. At the same time, swelling measurements were carried out on freeze-dried particles in different aqueous media simulating biological fluids. Preliminary release experiments performed with ibuprofen, betamethasone and vitamin B12 chosen as model drugs, showed that these microspheres could be suitable as modified drug delivery systems in oral formulations. Finally, in vivo writhing experiments were carried out in mice in order to verify the antinociceptive activity of betamethasone loaded into the new polysaccharide hydrogel microspheres.

  14. Preparation of Panel and Charged Particles for Electrophoretic Display

    NASA Astrophysics Data System (ADS)

    Choi, Hyung Suk; Park, Jin Woo; Park, Lee Soon; Lee, Jung Kyung; Han, Yoon Soo; Kwon, Younghwan

    Studies on the formulation of photosensitive paste for transparent soft mold press (TSMP) method have been performed. With the optimum formulation of the photosensitive paste the box-type barrier rib with good flexibility and high solvent resistance was fabricated, suitable for the panel material of the electrophoretic display. Cationically-charged white particles were prepared by using TiO2 nanoparticles, silane coupling agent with amino groups, dispersant and acetic acid. The cationically charged TiO2 particles exhibited 74.09 mV of zeta potential and 3.11 × 10-5 cm2/Vs of mobility. Electrophoretic display fabricated with the charged TiO2 particles exhibited 10 V of low driving voltage and maximum contrast ratio (5.3/1) at 30 V.

  15. Preparation and characterization of gatifloxacin-loaded sodium alginate hydrogel membranes supplemented with hydroxypropyl methylcellulose and hydroxypropyl cellulose polymers for wound dressing

    PubMed Central

    Prabu, Durai; Majdalawieh, Amin F.; Abu-Yousef, Imad A.; Inbasekaran, Kadambari; Balasubramaniam, Tharani; Nallaperumal, Narayanan; Gunasekar, Conjeevaram J.

    2016-01-01

    Introduction: The aim of this study is to evaluate gatifloxacin-loaded sodium alginate hydrogel membranes, supplemented with glycerol (a plasticizer), glutaraldehyde (a cross-linking agent), and hydroxypropyl methylcellulose (HPMC) or hydroxypropyl cellulose (HPC) polymers, as potential wound dressing materials based on their physicochemical properties and the sustain-release phenomenon. Materials and Methods: The physicochemical properties of the prepared hydrogel membranes were evaluated by several methods including Fourier transform infrared and differential scanning calorimetry. Different techniques were used to assess the swelling behavior, tensile strength and elongation, % moisture absorption, % moisture loss, water vapor transmission rate (WVTR), and microbial penetration for the hydrogel membranes. In vitro gatifloxacin release from the hydrogel membranes was examined using the United States Pharmacopeia XXIII dissolution apparatus. Four kinetics models (zero-order, first-order, Higuchi equation, and Korsmeyer-Peppas equation) were applied to study drug release kinetics. Results: The addition of glycerol, glutaraldehyde, HPMC, and HPC polymers resulted in a considerable increase in the tensile strength and flexibility/elasticity of the hydrogel membranes. WVTR results suggest that hydrated hydrogel membranes can facilitate water vapor transfer. None of the hydrogel membranes supported microbial growth. HPMC-treated and HPC-treated hydrogel membranes allow slow, but sustained, release of gatifloxacin for 48 h. Drug release kinetics revealed that both diffusion and dissolution play an important role in gatifloxacin release. Conclusions: Given their physicochemical properties and gatifloxacin release pattern, HPMC-treated and HPC-treated hydrogel membranes exhibit effective and sustained drug release. Furthermore, HPMC-treated and HPC-treated hydrogel membranes possess physiochemical properties that make them effective and safe wound dressing materials. PMID

  16. Novel Hydrogels from Renewable Resources

    NASA Astrophysics Data System (ADS)

    Karaaslan, Muzafer Ahmet

    2011-12-01

    The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In the first part of this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose and glucose. The effect of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study and ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid. The aim of the second part of this study was to control the crosslink density and the mechanical properties of hemicellulose/chitosan semi-IPN hydrogels by changing the crosslinking sequence. It has been hypothesized that by performing the crosslinking step before introducing hemicellulose, covalent crosslinking of chitosan would not be hindered and therefore more and/or shorter crosslinks could be formed. Furthermore, additional secondary interactions and crystalline domains introduced through hemicellulose could be favorable in terms of

  17. Magnetic nanocomposite hydrogel prepared by ZnO-initiated photopolymerization for La (III) adsorption.

    PubMed

    Zheng, Xiangning; Wu, Dongbei; Su, Teng; Bao, Song; Liao, Chuanan; Wang, Qigang

    2014-11-26

    Here, we provide an effective method to fabricate magnetic ZnO clay nanocomposite hydrogel via the photopolymerization. The inorganic components endow the hydrogel with high mechanical strength, while the organic copolymers exhibit good adsorption capacity and separation selectivity to La (III) ions. An optimized hydrogel has the maximum compressive stress of 316.60±15.83 kPa, which still exhibits 138.98±7.32 kPa compressive strength after swelling. The maximum adsorption capacity of La ion is 58.8 mg/g. The adsorption matches the pseudo-second-order kinetics model. La (III) ions can be effectively separated from the mixtures of La/Ni, La/Co, La/Cu, and La/Nd in a broad pH range (2.0 to 8.0). After six adsorption-desorption cycles, the hydrogel can maintain its adsorption capacity. This work not only provides a new approach to the synthesis of tough hydrogels under irradiation, but also opens up enormous opportunities to make full use of magnetic nanocomposite hydrogels in environmental fields.

  18. Multifunctional Hydrogels Prepared by Dual Ion Cross-Linking for Chronic Wound Healing.

    PubMed

    Li, Yonghui; Han, Yan; Wang, Xiaoya; Peng, Jinliang; Xu, Yuhong; Chang, Jiang

    2017-05-17

    The creation of a moist environment and promotion of blood vessel formation are critical for wound healing. Sodium alginate (SA) hydrogel, which has good biocompatibility and is able to provide a moist environment, has been widely used as a wound dressing. However, it lacks antibacterial ability and bioactivities, which would facilitate chronic wound healing. On the basis of the gelation characteristics of SA and the bioactive hardystonite (HS) bioceramic, we designed a unique, bioactive, injectable composite hydrogel through double ion cross-linking, in which divalent ions, such as Ca(2+) and Zn(2+) function as cross-linkers; Zn(2+) also functions as an antibacterial component and as nutrition for wound healing, and Si ions play a key role in determining the bioactivity of the hydrogel. With the controlled release of divalent ions, such as Ca(2+) and Zn(2+) from HS, the gelation process of the composite hydrogel could be efficiently controlled. In addition, in vitro results reveal that the composite hydrogel stimulated proliferation and migration of both human dermal fibroblasts and human umbilical vein endothelial cells, and the in vivo results show that the wound-healing process is obviously enhanced, and the formation of epithelium and blood vessels are evidently advanced. This study indicates the potential of the SA/HS hydrogel as a multifunctional injectable wound dressing with the ability to inhibit bacterial growth and stimulate angiogenesis and wound healing.

  19. One-step preparation of magnetic recyclable quinary graphene hydrogels with high catalytic activity.

    PubMed

    Zhang, Junshuai; Yao, Tongjie; Guan, Chenchen; Zhang, Nanxi; Huang, Xin; Cui, Tieyu; Wu, Jie; Zhang, Xiao

    2017-04-01

    Metal nanoparticles (NPs) displayed overwhelming superiority in catalysis towards the corresponding bulk-phase materials; nevertheless, how to further improve catalytic activity was still an ongoing subject. Herein, we have combined one-step redox reaction and following freeze-dried technology to construct the quinary reduced graphene oxide nanosheets (rGS)/Fe2O3-PdPt/polypyrrole (PPy) hydrogels. Compared with traditional catalysts, their catalytic property was improved via two ways: construction of three-dimensional (3D) rGS hydrogels instead of two-dimensional rGS and synthesis of bimetallic alloys instead of monometallic NPs. The highly dispersed PdPt with diameter as small as 3.2nm uniformly loaded on hydrogel surface. Due to special interconnected and porous structure, the reactants were easily adsorbed in hydrogels and contacted with PdPt alloys. To explain the contributions of bimetallic alloys and 3D rGS structure on enhanced catalytic activity, the catalytic property of quinary hydrogels was compared with reference samples. Besides superior activity, they also displayed good reusability, since hydrogels could be magnetically recycled owing to the existence of Fe2O3 NPs.

  20. A novel injectable chlorhexidine thermosensitive hydrogel for periodontal application: preparation, antibacterial activity and toxicity evaluation.

    PubMed

    Ji, Qiu Xia; Zhao, Qing Sheng; Deng, Jing; Lü, Rui

    2010-08-01

    The aim of this paper was to evaluate the application potential of CS-HTCC/GP-0.1%Chx thermosensitive hydrogel which was synthesized using chitosan (CS), quaternized CS, and alpha,beta-glycerophosphate (alpha,beta-GP) loading with 0.1% chlorhexidine (Chx) (w/v) for periodontal treatment. An aqueous solution of CS-HTCC/GP-0.1%Chx was transformed into hydrogel at 6 min when the temperature was increased to 37 degrees C. The scan electron microscopy (SEM) image of the gel was a porous, loose and crosslinked network. In vitro, Chx released over 18 h from the CS-HTCC/GP thermosensitive hydrogel in artificial saliva pH 6.8. Release rate could be controlled through adjustment of alpha,beta-GP or Chx concentration. CS-HTCC/GP-0.1%Chx thermosensitive hydrogel exhibited excellent inhibitory activity against primary periodontal pathogens. CS-HTCC/GP-0.1%Chx thermosensitive hydrogel had no acute toxicity; the maximum tolerated dose in rats was 400 mg/ml. All results indicated that CS-HTCC/GP-0.1%Chx thermosensitive hydrogel is a strong candidate as a local drug delivery system for periodontal treatment.

  1. Preparation, characterization, and in vitro cytotoxicity of chitosan hydrogels containing silver nanoparticles.

    PubMed

    Tyliszczak, Bożena; Drabczyk, Anna; Kudłacik-Kramarczyk, Sonia; Sobczak-Kupiec, Agnieszka

    2017-10-01

    Hydrogels, chitosan as well as silver nanoparticles become in recent years materials characterized by a great interest. In present paper hydrogel based on chitosan and containing mentioned type of nano-sized particles have been synthesized by means of photopolymerization. Sorption capacity in selected liquids as well as behavior in simulated body fluid (such as Ringer's liquid) have been determined. Particularly attention was paid to the studies on toxicity of the hydrogels in relation to the epidermal cells as well as on their impact on growth of selected strain of bacteria (Escherichia coli). Furthermore, impact of introduction of nanosilver into hydrogel matrix on its properties has also been defined. Surface morphology of attained hydrogels by means of SEM analysis and chemical structure using spectroscopy have been checked. The most interesting conclusion is the fact that proposed chitosan based hydrogels modified with nanosilver do not affect negatively on epidermal cells. However, they inhibit a growth of E. coli. These two observations make them very interesting from the medical point of view.

  2. Gelation of charged catanionic vesicles prepared by a semispontaneous process.

    PubMed

    Huang, Zheng-Lin; Hong, Jhen-Yi; Chang, Chien-Hsiang; Yang, Yu-Min

    2010-02-16

    Various stable charged catanionic vesicles with mean zeta-potential values from +59 mV to -96 mV were successfully prepared from an ion-pair amphiphile (dodecyltrimethylammonium-dodecylsulfate, DTMA-DS) and different amounts of the component ionic surfactants (dodecyltrimethylammonium bromide and sodium dodecyl sulfate) by using a simple semispontaneous process with the aid of cosolvent (1-propanol) addition in water. With the ensuring positively and negatively charged catanionic vesicles, gelation of them by four water-soluble polymers with various charge and hydrophobic characteristics was systematically studied by the tube inversion and rheological characteristic analyses. Four phase maps, which show regions of phase separation, viscous solution, and gel by varying the vesicle composition and polymer content, were thereby constructed. Furthermore, the experimental results of the relaxation time and the storage modulus at 1 Hz for the viscous solutions and gel samples revealed that the interactions at play between charged catanionic vesicles and the water-soluble polymers are of electrostatic and hydrophobic origin. The phase maps and the rheological properties obtained for mixtures of charged catanionic vesicles and polymers may provide useful information for the potential application of catanionic vesicles in mucosal or transdermal delivery of drugs.

  3. Porous Agarose-Based Semi-IPN Hydrogels: Characterization and Cell Affinity Studies.

    PubMed

    Vardar, E; Vert, Michel; Coudane, Jean; Hasirci, V; Hasirci, N

    2012-01-01

    Hydrogels are frequently considered for medical applications due to the ease of preparation in different forms and high water content that makes them comparable to natural tissues. However, these general properties are not sufficient to make any hydrogel suitable for cell attachment and growth which are necessary for their use in tissue regeneration. Besides, the high water content makes the hydrogels mechanically weak. The formation of semi-interpenetrating networks (semi-IPNs) can be used in attempts to enhance physical, mechanical and thermal properties. In this study, semi-IPNs of agarose were prepared with chitosan and alginate, two polyelectrolytes that are positively and negatively charged under physiological conditions, respectively. Zeta potential was used to confirm the formation of charged hydrogels. All hydrogels had ultimate compression strengths in the range of 91-210 Pa where the value for pure agarose was about 103 Pa. Chitosan increased the compressive strength about two folds whereas the alginate had opposite effects. The amount of strongly bound water present in the hydrogels were estimated from TGA and DSC analysis and the highest value was found for alginate-agarose hydrogels as about 15%. The attachment and the migration of L929 fibroblasts were monitored in vitro using the MTS assay and confocal microscopy. The highest cell proliferation and penetration were observed for positively charged chitosan-agarose semi-IPN hydrogels.

  4. Covalent and ionic co-cross-linking--an original way to prepare chitosan-gelatin hydrogels for biomedical applications.

    PubMed

    Jătariu Cadinoiu, Anca N; Popa, Marcel; Curteanu, Silvia; Peptu, Cătălina A

    2011-09-01

    The first goal of this work was to develop a method for obtaining interpenetrating gelatin (G)-chitosan (CS) networks prepared by double cross-linking (covalent followed by ionic) that exhibit hydrogel character. The second goal was to modulate their properties as a function of the preparation parameters by using neural network models. This study was therefore carried out by experiment and simulation. The covalent cross-linking resulted from the reaction between the carbonyl groups of glutaraldehyde with amino groups belonging to both polymers; the ionic cross-linking is based on the interaction between tripolyphosphate anions and protonated amine groups (ammonium ions) of the polymers. The total cross-linking density (indirectly assessed by estimating the water swelling capacity) and the ability to include hydrosoluble bioactive principles are influenced by the following process parameters: the CS/G ratio, the amount of ionic cross-linker, and the ionic cross-linking time. The prepared hydrogels were characterized with respect to their structural, morphological, and some physical properties. The hydrogels ability to load high amounts of water-soluble drugs indicates their potential use as carriers for biologically active principles in the human body. A neural network methodology was applied to model the swelling degree and caffeine loading/release capacity depending on reaction conditions; in addition, applying this method, the optimal preparation conditions have been determined, targeting pre-established values for swelling degree or maximum caffeine value. The accuracy of the results obtained through this technique proves that the neural networks are suitable tools for modeling cross-linking processes taking place complex nonlinear polymers. Copyright © 2011 Wiley Periodicals, Inc.

  5. Preparation and characterization of protein-resistant hydrogels for soft contact lens applications via radical copolymerization involving a zwitterionic sulfobetaine comonomer.

    PubMed

    Zhang, Wanlu; Li, Guangji; Lin, Yinlei; Wang, Liying; Wu, Shuqing

    2017-11-01

    We aimed to introduce hydrophilic sulfobetaine-type zwitterionic groups to macromolecular chains of copolymers to construct novel copolymer hydrogels with anti-protein-fouling performance that could be used as soft contact lens (SCL) materials. Using hydroxyethyl methacrylate (HEMA), N-vinyl pyrrolidinone (NVP) and sulfobetaine methacrylate (SBMA) as comonomers, several copolymer hydrogels with different SBMA contents, poly(HEMA-NVP-SBMA), are synthesized via radical copolymerization in an aqueous phase. Surface chemistry, structural morphologies, water contact angle (WCA), equilibrium water content (EWC), visible light transmittance and tensile mechanical properties are investigated. The prepared hydrogels exhibit a closed-type porous structure. With increasing SBMA content in the comonomer mixture, the prepared copolymer hydrogel pore size gradually increases up to the micron level, WCA tends to decrease, EWC tends to increase, and visible light transmittance slightly increases, but their tensile mechanical properties decline. The amounts of protein Lyz and BSA adsorbed on the copolymer hydrogels and on commercially available EASY DAY(®) SCLs as a control are also determined by protein adsorption tests. The amount of protein adsorbed on the copolymer hydrogel decreases with increasing SBMA content. For the hydrogel prepared using the comonomer mixture with 5.0 wt % SBMA, the amount of adsorbed Lyz is 0.91 μg/cm(2), which corresponds to only 56.8% of the amount adsorbed on EASY DAY(®) SCLs. Thus, novel SCL materials with high water content and excellent anti-protein-fouling performance were efficiently constructed by introducing sulfobetaine-type zwitterionic groups into a traditional polymer hydrogel system.

  6. Synthesis and characterization of enzymatically biodegradable PEG and peptide-based hydrogels prepared by click chemistry.

    PubMed

    van Dijk, Maarten; van Nostrum, Cornelus F; Hennink, Wim E; Rijkers, Dirk T S; Liskamp, Rob M J

    2010-06-14

    Herein we describe the synthesis and rheological characterization of a series of enzymatically sensitive PEG and peptide-based hydrogels by the Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction. The hydrogels were synthesized by a combination of alkyne-functionalized star-shaped PEG molecules (two 4-armed PEGs with M(w) 10 and 20 kDa, respectively, and one 8-armed PEG of 20 kDa) and the protease-sensitive bis-azido peptide, N(alpha)-(azido)-D-alanyl-phenylalanyl-lysyl-(2-azidoethyl)-amide (6) in the presence of CuSO(4) and sodium ascorbate in aqueous solution. The swelling ratio and the storage modulus (G') of the hydrogels could be tailored by several parameters, for example, the initial solid content of the hydrogel, the molecular weight of the PEG derivative, and by the architecture of the PEG molecule (4- versus 8-armed PEG derivative). The peptide sequence, D-Ala-Phe-Lys, was sensitive toward the proteases plasmin and trypsin to render the hydrogels biodegradable.

  7. Novel zinc alginate hydrogels prepared by internal setting method with intrinsic antibacterial activity.

    PubMed

    Straccia, Maria Cristina; d'Ayala, Giovanna Gomez; Romano, Ida; Laurienzo, Paola

    2015-07-10

    In this paper, a controlled gelation of alginate was performed for the first time using ZnCO3 and GDL. Uniform and transparent gels were obtained and investigated as potential wound dressings. Homogeneity, water content, swelling capability, water evaporation rate, stability in normal saline solution, mechanical properties and antibacterial activity were assessed as a function of zinc concentration. Gelation rate increased at increasing zinc content, while a decrease in water uptake and an improvement of stability were found. Release of zinc in physiological environments showed that concentration of zinc released in solution lies below the cytotoxicity level. Hydrogels showed antimicrobial activity against Escherichia coli. The hydrogel with highest zinc content was stabilized with calcium by immersion in a calcium chloride solution. The resulting hydrogel preserved homogeneity and antibacterial activity. Furthermore, it showed even an improvement of stability and mechanical properties, which makes it suitable as long-lasting wound dressing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Physical properties of gamma irradiated poly(vinyl alcohol) hydrogel preparations

    NASA Astrophysics Data System (ADS)

    Mondino, A. V.; González, M. E.; Romero, G. R.; Smolko, E. E.

    1999-08-01

    Poly(vinyl alcohol) films from 15% w/w aqueous solutions and a thickness of 0.2 mm were selected for this study. The films were first humidified and then acetalized and/or gamma irradiated. Then, their physical properties were tested. Tensile strength of the hydrogel films reached its maximum value in samples irradiated with a 80 kGy dose, in the case of acetalized films the dose necessary for maximum tensile strength was only 40 kGy. The combination of acetalization with formaldehyde and gamma radiation produced an elastic hydrogel with good tackiness and excellent mechanical and thermal strength.

  9. Contemporary issues in hydrogels research

    SciTech Connect

    Peppas, N.A.

    1993-12-31

    The last ten years has seen an explosion in hydrogels research, the result of improved understanding of the structure and behavior of these water-swollen, crosslinked polymers. After the early developments of Flory And Katchalsky in the 1940s, the great Czechoslovakian researchers of the 1960s and Andrade, Hoffman, Ratner and Merrill of the early 1970s, hydrogels have again attracted significant research interest, especially through the imaginative research of Tanaka in the 1980s and others. Eight general areas of contemporary research in hydrogels are identified: (i) kinetic analysis of the copolymerization/crosslinking reactions used in hydrogel preparation; (ii) gelation and percolation theories; (iii) novel methods for tailor-made copolymers with desirable functional groups, or biodegradable chains; (iv) biomimetic hydrogels; (V) hydrogels of controlled porous structure; (vi) ultrapure hydrogels devoid of crosslinking agents, emulsifiers, etc.; (vii) critical phenomena in hydrogels; and (viii) behavior of anionic, cationic and amphiphilic hydrogels.

  10. Polyimide Nanocomposites Prepared from High-Temperature, Reduced Charge Organoclays

    NASA Technical Reports Server (NTRS)

    Delozier, D. M.; Orwoll, R. A.; Cahoon, J. F.; Ladislaw, J. S.; Smith, J. G., Jr.; Connell, J. W.

    2003-01-01

    Montmorillonite clays modified with the dihydrochloride salt of 1,3-bis(3-aminophenoxy)benzene (APB) were used in the preparation of polyimide/organoclay hybrid films. Organoclays with varying surface charge based upon APB were prepared and examined for their dispersion behavior in the polymer matrix. High molecular weight poly(amide acid) solutions were prepared in the presence of the organoclays. Films were cast and subsequently heated to 300C to cause imidization. The resulting nanocomposite films, containing 3 wt% of organoclay, were characterized by transmission electron microscopy and X-ray diffraction. The clay's cation exchange capacity (CEC) played a key role in determining the extent of dispersion in the polyimide matrix. Considerable dispersion was observed in some of the nanocomposite films. The most effective organoclay was found to have a CEC of 0.70 meq/g. Nanocomposite films prepared with 3-8 wt% of this organoclay were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and thin-film tensile testing. High levels of clay dispersion could be achieved even at the higher clay loadings. Results from mechanical testing revealed that while the moduli of the nanocomposites increased with increasing clay loadings, both strength and elongation decreased.

  11. Polyimide Nanocomposites Prepared from High-Temperature, Reduced Charge Organoclays

    NASA Technical Reports Server (NTRS)

    Delozier, D. M.; Orwoll, R. A.; Cahoon, J. F.; Ladislaw, J. S.; Smith, J. G., Jr.; Connell, J. W.

    2003-01-01

    Montmorillonite clays modified with the dihydrochloride salt of 1,3-bis(3-aminophenoxy)benzene (APB) were used in the preparation of polyimide/organoclay hybrid films. Organoclays with varying surface charge based upon APB were prepared and examined for their dispersion behavior in the polymer matrix. High molecular weight poly(amide acid) solutions were prepared in the presence of the organoclays. Films were cast and subsequently heated to 300C to cause imidization. The resulting nanocomposite films, containing 3 wt% of organoclay, were characterized by transmission electron microscopy and X-ray diffraction. The clay's cation exchange capacity (CEC) played a key role in determining the extent of dispersion in the polyimide matrix. Considerable dispersion was observed in some of the nanocomposite films. The most effective organoclay was found to have a CEC of 0.70 meq/g. Nanocomposite films prepared with 3-8 wt% of this organoclay were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and thin-film tensile testing. High levels of clay dispersion could be achieved even at the higher clay loadings. Results from mechanical testing revealed that while the moduli of the nanocomposites increased with increasing clay loadings, both strength and elongation decreased.

  12. Effect of sample preparation on charged impurities in graphene substrates

    NASA Astrophysics Data System (ADS)

    Burson, K. M.; Dean, C. R.; Watanabe, K.; Taniguchi, T.; Hone, J.; Kim, P.; Cullen, W. G.; Fuhrer, M. S.

    2013-03-01

    The mobility of graphene as fabricated on SiO2 has been found to vary widely depending on sample preparation conditions. Additionally, graphene mobility on SiO2 appears to be limited to ~20,000 cm2/Vs, likely due to charged impurities in the substrate. Here we present a study of the effect of fabrication procedures on substrate charged impurity density (nimp) utilizing ultrahigh-vacuum Kelvin probe force microscopy. We conclude that even minimal SEM exposure, as from e-beam lithography, induces an increased impurity density, while heating reduces the number of charges for sample substrates which already exhibit a higher impurity density. We measure both SiO2 and h-BN and find that all nimp values observed for SiO2 are higher than those observed for h-BN; this is consistent with the observed improvement in mobility for graphene devices fabricated on h-BN over those fabricated on SiO2 substrates. This work was supported by the US ONR MURI program, and the University of Maryland NSF-MRSEC under Grant No. DMR 05-20471.

  13. Preparation of biodegradable xanthan-glycerol hydrogel, foam, film, aerogel and xerogel at room temperature.

    PubMed

    Bilanovic, Dragoljub; Starosvetsky, Jeanna; Armon, Robert H

    2016-09-05

    Polymers, hence hydrogels, pollute waters and soils accelerating environmental degradation. Environmentally benign hydrogels were made in water from biodegradable xanthan (X) and glycerol (G) at 22.5±2.5°C. Molar ratio [G]/[X]<3.0 was used to maximize crosslinking by mono-glycerol instead by poly-glycerol. XG-hydrogels were transformed into: XG-foams, XG-films, and XG-aerogel. Anionic character of XG-materials changes with changing [G]/[X] ratio. XG-films made from XG-hydrogels absorb up to 40 times more water than XG-films made from XG-foams. The films made from XG-foams and HCl do not dissolve in water during 48h. Making XG-materials is a no-waste process which decreases pollution, eliminates waste disposal costs, and minimizes energy expenses. XG-materials are suitable for both industrial and environmental applications including slow release and concentration of cations. XG-materials, made of xanthan, microbial polysaccharide, could also be used in applications targeting populations that do not consume meat or meat based products.

  14. Cyclodextrin/dextran based hydrogels prepared by cross-linking with sodium trimetaphosphate.

    PubMed

    Wintgens, Véronique; Lorthioir, Cédric; Dubot, Pierre; Sébille, Bernard; Amiel, Catherine

    2015-11-05

    Novel βCD-based hydrogels have been synthesized using sodium trimetaphosphate (STMP) as non-toxic reagent. Straightforward mixing of βCD with dextran and STMP in basic aqueous media led to hydrogels incorporating dextran chains, phosphate groups and βCD units. The hydrogels have been characterized by swelling measurements, XPS and (31)P NMR. The swelling ratio was correlated to the content in phosphated groups, which give a polyelectrolyte character to these hydrogels. The significant rise of the swelling ratio with the βCD content increase has been attributed to a decrease of the number of phosphate-based crosslinks, the βCD units playing the role of dangling ends in the tridimensional network. Their loading capacity and their release properties have been investigated for methylene blue and benzophenone in order to demonstrate their potentiality for drug delivery. Through different interaction mechanisms, electrostatic and inclusion complex interactions, these compounds are loaded with different efficiencies. The release involves deswelling, diffusion mechanisms and partition equilibrium.

  15. Development of a microscale red blood cell-shaped pectin-oligochitosan hydrogel system using an electrospray-vibration method: preparation and characterization.

    PubMed

    Crouse, James Z; Mahuta, Kirsten M; Mikulski, Brandon A; Harvestine, Jenna N; Guo, Xiaoru; Lee, Jung C; Kaltchev, Matey G; Midelfort, Katarina S; Tritt, Charles S; Chen, Junhong; Zhang, Wujie

    2015-12-18

    To develop and characterize a microscale pectin-oligochitosan hydrogel microcapsule system that could be applied in such biological fields as drug delivery, cell immobilization/encapsulation, and tissue engineering. Microscale pectin-oligochitosan hydrogel microcapsules were prepared by using the vibration/electrostatic spray method. The morphology and chemistry of the hydrogel microcapsules were characterized by using scanning electron microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR), respectively. The designed hydrogel microcapsule system was then used to study the responsiveness of the microcapsules to different simulated human body fluids as well as cell encapsulation. The designed hydrogel microcapsule system exhibited a large surface area-to-volume ratio (red blood cell-shaped) and great pH/enzymatic responsiveness. In addition, this system showed the potential for controlled drug delivery and three-dimensional cell culture. This system showed a significant potential not only for bioactive-agent delivery, especially to the lower gastrointestinal (GI) tract, but also as a three-dimensional niche for cell culture. In particular, the hydrogel microcapsule system could be used to create artificial red-blood-cells as well as blood substitutes.

  16. Preparation and adsorption of bovine serum albumin-imprinted polyacrylamide hydrogel membrane grafted on non-woven polypropylene.

    PubMed

    Zhao, Kongyin; Lin, Beibei; Cui, Wenkui; Feng, Lingzhi; Chen, Tian; Wei, Junfu

    2014-04-01

    Bovine serum albumin (BSA) imprinted polypropylene (PP) fiber-grafted polyacrylamide (PAM) hydrogel membrane (PP-g-PAM MIP) was prepared using non-woven PP fiber as matrix, BSA as template molecule, and acrylamide (AM) as functional monomer via UV radiation-reduced polymerization in an aqueous phase. SEM, FT-IR, DSC and TG were used to characterize the PP grafted PAM hydrogel. Influence factors on the adsorption capacity of PP-g-PAM MIP were investigated, such as monomer concentration, cross-linker concentration, template molecule amount and pH values in BSA solution. The adsorption and recognition properties of PP-g-PAM MIP were evaluated and the results showed that the PP-g-PAM MIP exhibited an obvious improvement in terms of adsorption capacity for BSA as compared with non-imprinted ones. PP-g-PAM MIPs could recognize the template protein using Lys, Ova, BHb, and Glo as control proteins, and the selectivity factor (β) was above 2.0. The imprinting efficiency of PP-g-PAM MIP tended to be stable after three cycles and maintained 76% of the initial value of the imprinting efficiency even after five repetitions, which was more excellent than that of PAM microsphere. The PP-g-PAM MIP is low cost and easy to be prepared, which would show its potential applications in the fields of extracting and testing required proteins from cells or particulate samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels

    NASA Astrophysics Data System (ADS)

    Hagel, Valentin; Mateescu, Markus; Southan, Alexander; Wegner, Seraphine V.; Nuss, Isabell; Haraszti, Tamás; Kleinhans, Claudia; Schuh, Christian; Spatz, Joachim P.; Kluger, Petra J.; Bach, Monika; Tussetschläger, Stefan; Tovar, Günter E. M.; Laschat, Sabine; Boehm, Heike

    2013-06-01

    We designed bioinspired cross-linkers based on desmosine, the cross-linker in natural elastin, to prepare hydrogels with thiolated hyaluronic acid. These short, rigid cross-linkers are based on pyridinium salts (as in desmosine) and can connect two polymer backbones. Generally, the obtained semi-synthetic hydrogels are form-stable, can withstand repeated stress, have a large linear-elastic range, and show strain stiffening behavior typical for biopolymer networks. In addition, it is possible to introduce a positive charge to the core of the cross-linker without affecting the gelation efficiency, or consequently the network connectivity. However, the mechanical properties strongly depend on the charge of the cross-linker. The properties of the presented hydrogels can thus be tuned in a range important for engineering of soft tissues by controlling the cross-linking density and the charge of the cross-linker.

  18. Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs.

    PubMed

    Yang, Zhiqiang; Zhang, Yuehua; Markland, Peter; Yang, Victor C

    2002-10-01

    A class of new biodegradable hydrogels based on poly(ethylene glycol) methacrylate-graft-poly(glutamic acid) and poly(ethylene glycol) dimethacrylate was synthesized by photoinduced polymerization. Because all the polymeric constituents were highly hydrophilic, crosslinking could be performed in aqueous solutions. This type of crosslinked hydrogel was prepared by modifying a select number of acidic side-groups on poly(glutamic acid) with poly(ethylene glycol) methacrylate. These modified chains were then crosslinked in the presence of poly(ethylene glycol) dimethacrylate under a photoinduced polymerization at a wavelength of 365 nm. Swelling experiments were conducted to study the crosslinking density, pH-responsive behavior, and degradation of the hydrogel. Results showed that the degree of swelling of this type of hydrogels increased as the crosslinker concentration (or density) was reduced. Because of the presence of acidic side chains on poly(glutamic acid), swelling behavior was found to be pH-responsive, increasing at high pH in response to the increase in the amount of ionized acidic side chains. The degradation rate of these hydrogels also varied with pH. More rapid degradation was observed under stronger alkaline conditions because of the hydrolysis of the ester bonds between the crosslinker and the polymer backbone. Practically useful degradation rates could be achieved for such hydrogels under physiological conditions. Drug release rates from these hydrogels were found to be proportional to the protein molecular weight and the crosslinker density; increasing at lower protein molecular weight or crosslinker density. The preliminary findings presented in this article suggest that this class of biodegradable hydrogels could be an attractive avenue for drug delivery applications. The specific photoinduced crosslinking chemistry used would permit hydrogels to be synthesized in existence of the entrapped macromolecular drugs including peptides, proteins, and

  19. Enzyme-mediated in situ preparation of biocompatible hydrogel composites from chitosan derivative and biphasic calcium phosphate nanoparticles for bone regeneration

    NASA Astrophysics Data System (ADS)

    Phuong Nguyen, Thi; Hai Phuong Doan, Bach; Dang, Dinh Vu; Khoa Nguyen, Cuu; Quyen Tran, Ngoc

    2014-03-01

    Injectable chitosan-based hydrogels have been widely studied toward biomedical applications because of their potential performance in drug/cell delivery and tissue regeneration. In this study we introduce tetronic-grafted chitosan containing tyramine moieties which have been utilized for in situ enzyme-mediated hydrogel preparation. The hydrogel can be used to load nanoparticles (NPs) of biphasic calcium phosphate (BCP), mixture of hydroxyapatite (HAp) and tricalcium phosphate (TCP), forming injectable biocomposites. The grafted copolymers were well-characterized by 1H NMR. BCP nanoparticles were prepared by precipitation method under ultrasonic irradiation and then characterized by using x-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The suspension of the copolymer and BCP nanoparticles rapidly formed hydrogel biocomposite within a few seconds of the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). The compressive stress failure of the wet hydrogel was at 591 ± 20 KPa with the composite 10 wt% BCP loading. In vitro study using mesenchymal stem cells showed that the composites were biocompatible and cells are well-attached on the surfaces.

  20. Preparation of monodisperse PEG hydrogel composite microspheres via microfluidic chip with rounded channels

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Cong, Hailin; Liu, Xuesong; Ren, Yumin; Wang, Jilei; Zhang, Lixin; Tang, Jianguo; Ma, Yurong; Akasaka, Takeshi

    2013-09-01

    An effective microfluidic method to fabricate monodisperse polyethylene glycol (PEG) hydrogel composite microspheres with tunable dimensions and properties is reported in this paper. A T-junction microfluidic chip equipped with rounded channels and online photopolymerization system is applied for the microsphere microfabrication. The shape and size of the microspheres are well controlled by the rounded channels and PEG prepolymer/silicon oil flow rate ratios. The obtained PEG/aspirin composite microspheres exhibit a sustained release of aspirin for a wide time range; the obtained PEG/Fe3O4 nanocomposite microspheres exhibit excellent magnetic properties; and the obtained binary PEG/dye composite microspheres show the ability to synchronously load two functional components in the same peanut-shaped or Janus hydrogel particles.

  1. Preparation of hydrogel by radiation for the healing of diabetic ulcer

    NASA Astrophysics Data System (ADS)

    Nho, Young-Chang; Park, Jong-Seok; Lim, Youn-Mook

    2014-01-01

    Honey has been used in wound care for thousands of years. The major advantage of honey in wound care is the high osmotic activity, which accelerates the debridement of necrotic tissue and procures an antibacterial effect. It has been reported that the ancient Greeks and Romans used honey as a topical antiseptic for sores and skin ulcers. The aims of this study were to evaluate the antibacterial activities and the healing effect for diabetic ulcers from carboxymethyl cellulose (CMC) hydrogel involving honey.

  2. Facile preparation of mussel-inspired polyurethane hydrogel and its rapid curing behavior.

    PubMed

    Sun, Peiyu; Wang, Jing; Yao, Xiong; Peng, Ying; Tu, Xiaoxiong; Du, Pengfei; Zheng, Zhen; Wang, Xinling

    2014-08-13

    A facile method was found to incorporate a mussel-inspired adhesive moiety into synthetic polymers, and mussel mimetic polyurethanes were developed as adhesive hydrogels. In these polymers, a urethane backbone was substituted for the polyamide chain of mussel adhesive proteins, and dopamine was appended to mimic the adhesive moiety of adhesive proteins. A series of mussel mimetic polyurethanes were created through a step-growth polymerization based on hexamethylene diisocyanate as a hard segment, PEG having different molecular weights as a soft segment, and lysine-dopamine as a chain extender. Upon a treatment with Fe(3+), the aqueous mussel mimetic polyurethane solutions can be triggered by pH adjustment to form adhesive hydrogels instantaneously; these materials can be used as injectable adhesive hydrogels. Upon a treatment with NaIO4, the mussel mimetic polyurethane solutions can be cured in a controllable period of time. The successful combination of the unique mussel-inspired adhesive moiety with a tunable polyurethane structure can result in a new kind of mussel-inspired adhesive polymers.

  3. A cotton fabric modified with a hydrogel containing ZnO nanoparticles. Preparation and properties study

    NASA Astrophysics Data System (ADS)

    Staneva, Desislava; Atanasova, Daniela; Vasileva-Tonkova, Evgenia; Lukanova, Varbina; Grabchev, Ivo

    2015-08-01

    Two different methods were used to obtain composite materials based on a ZnO nanoparticles-hydrogel-cotton fabric. The hydrogels, synthesized by photopolymerization, were utilized to provide uniform distribution and binding of the nanoparticles to the fiber surface and to prevent their agglomeration. N-methyldiethanolamine (MDEA) was used as a co-initiator in hydrogel photopolymerization and as an alkaline agent in the synthesis of ZnO nanoparticles. Due to the difference in size, shape and morphology of the nanoparticles, examined by a TEM and SEM, it was found that the materials have distinct photoluminescence properties, e.g. in the entire visible or UV range. The composite materials with small size nanoparticles and photoluminescence in near UV range were investigated for antibiotic activity against the bacterial strains Pseudomonas aeruginosa and Acinetobacter johnsonii known as important pathogens in clinical infections. Significantly high antibacterial effect on the bacteria tested was achieved, especially on A. johnsonii. This suggests potential application of the new formulations as effective wound dressings to control the spread of infections.

  4. Preparation of theophylline hydrogels of atactic poly(vinyl alcohol)/NaCl/H2O system for drug delivery system.

    PubMed

    Shaheen, Sharif M; Yamaura, Kazuo

    2002-06-17

    Theophylline (TH) was loaded in an a-PVA/NaCl/H2O hydrogels system by one cycle gelation only at -20 degrees C. However, it developed some unwanted crystal-like structure surrounding the hydrogels while kept at room temperature. The physical, chemical and thermal analyses of this crystal-like structure indicated TH embedded with thin hydrogels of a-PVA/NaCl. Later during dissolving of feed-mixture at least 3 h heat treatment with proper mixing at high temperature contributed hydrogels of almost no crystal-like structure. 3% of TH was successfully loaded by this way. This type of hydrogels showed Fickian type drug release (Higuchi Model) and it showed a more sustained effect than that of traditional cyclic FT. Comparatively lower release rate, diffusion coefficient and kinetic constant values of this system prevail over other systems studied here. A DSC thermogram revealed that apparently homogeneous microgel junctions might play the key role behind the above properties. Moreover the a-PVA/TH/NaCl/H2O system depresses the freezing point at -30 degrees C instead of above this temperature. The hydrogels of this system were also prepared by freezing at -30 degrees C for 16 h as one cycle. Three cycles were done in cyclic FT (freezing at -30 degrees C for 16 h and thawing at room temperature for 8 h). Drug release was studied for a total of 750 min. Up to the asymptotic value, 10.5 h TH release from the hydrogel matrices of the a-PVA/NaCl/H2O system (gelation at -20 degrees C) and 6.5 h from those of a-PVA/NaCl/H2O (freezing at -30 degrees C) and a-PVA/H2O systems (cyclic FT) were found.

  5. Preparation of quercetin and rutin-loaded ceramide liposomes and drug-releasing effect in liposome-in-hydrogel complex system.

    PubMed

    Park, Soo Nam; Lee, Min Hye; Kim, Su Ji; Yu, Eun Ryeong

    2013-06-07

    In this study, we developed a 2-step delivery system to enhance transdermal permeation of quercetin and its glycoside rutin, an antioxidant. Liposome-in-hydrogel complex systems were prepared by incorporating ceramide liposomes, which consist of biocompatible lipid membranes, into cellulose hydrogel. We evaluated the encapsulation efficiency, in vitro release behavior, and skin permeability of formulations that remained stable for over 3 weeks. Rutin had greater encapsulation efficiency and better in vitro release properties than quercetin. However, quercetin demonstrated greater skin permeability than rutin. We also found that liposome-in-hydrogel complex systems (quercetin, 67.42%; rutin 59.82%) improved skin permeability of quercetin and rutin compared to control (phosphate buffer, pH 7.4) (quercetin, 2.48%; rutin, 1.89%) or single systems of hydrogel (quercetin, 31.77%; rutin, 26.35%) or liposome (quercetin, 48.35%; rutin, 37.41%). These results indicate that liposome-in-hydrogel systems can function as potential drug delivery systems to enhance transdermal permeation of the water-insoluble antioxidants quercetin and rutin.

  6. Cationic cellulose hydrogels cross-linked by poly(ethylene glycol): Preparation, molecular dynamics, and adsorption of anionic dyes.

    PubMed

    Kono, Hiroyuki; Ogasawara, Kota; Kusumoto, Ryo; Oshima, Kazuhiro; Hashimoto, Hisaho; Shimizu, Yuuichi

    2016-11-05

    Cationic cellulose hydrogels (CCGs) were prepared from quaternized celluloses with degrees of substitution (DS) of 0.56, 0.84, and 1.33, by the cross-linking reaction with poly(ethylene glycol) diglycidyl ether as a cross-linker. The CCGs exhibited swelling behavior in aqueous solutions, which was not affected by pH and temperature of the solution because of the presence of quaternary ammonium groups in their structures. The CCGs showed adsorption ability toward anionic dyes in aqueous solution, which increased with increasing DS. The dye adsorption was found to follow the pseudo-second order kinetic model and the equilibrium isotherm data can be described by the Langmuir adsorption model. In addition, the CCGs could be regenerated and proved to be recyclable adsorbents for wastewater treatment.

  7. Preparation of fast response superabsorbent hydrogels by radiation polymerization and crosslinking of N-isopropylacrylamide in solution

    NASA Astrophysics Data System (ADS)

    Abd El-Mohdy, H. L.; Safrany, Agnes

    2008-03-01

    Macroporous temperature-responsive poly( N-isopropylacrylamide) (PNIPAAm) hydrogels with high equilibrium swelling and fast response rates were obtained by a 60Co γ- and electron beam (EB) irradiation of aqueous N-isopropylacrylamide (NIPAAm) monomer solutions. The effect of irradiation temperatures, the dose, the addition of a pore-forming agent on the swelling ratio, and the kinetics of swelling and shrinking of the PNIPAAm gels was studied. The gels synthesized above the LCST exhibited the highest equilibrium swelling (300-400) and fastest response rate measured by minutes. Scanning electron microscope (SEM) pictures revealed that the gels synthesized above the LCST have larger pores than those prepared at temperatures below the LCST. The gels showed a reversible response to cyclical changes in temperature and might be used in a pulsed drug delivery device. The gels synthesized above the LCST exhibited the highest testosterone propionate release.

  8. Preparation and Characterization of a Novel Smart Polymeric Hydrogel for Drug Delivery of Insulin

    PubMed Central

    Jafari, Behzad; Rafie, Farzaneh; Davaran, Soodabeh

    2011-01-01

    Introduction Over the past years, temperature and pH-sensitive hydrogels was developed as suitable carriers for drug delivery. In this study temperature and pH-sensitive hydrogels was designed for an oral insulin delivery modeling. Methods NIPAAm-MAA -HEM copolymers were synthesized by radical chain reaction with 86:4:10 (5% w/v) ratios respectively. Reaction was carried out in 1,4-Dioxane under Nitrogen gas-flow. The copolymers were characterized with FT-IR, 1H-NMR and DSC. Copolymers were loaded with regular insulin by modified double emulsion method with ratio of 1:10. Release study carried out in two different pH (pH=2 and 7.4 for stomach and intestine simulation respectively) at 37ºC. For each pH, a 5 mL suspension of the insulin containing hydrogel was taken in to a cellulose acetate dialysis membrane, and the dialysis membrane was allowed to float in a beaker containing 15 mL of buffer solution. The beakers were placed in a shaker incubator maintained at 37ºC. Phosphate buffer (0.1 M, pH 3)/ acetonitrile (60/40) was used as the mobile phase in HPLC assay. Results Yield of reaction was 86% with an optimum Lower Critical Solution Temperature point (30ºC). In-vitro studies showed a control release behavior via pH changes which the amount of insulin releases was 80% and 20% at pH=2 and 7.4 respectively. Conclusion Results showed that by optimizing polymerization and loading method we could achieve a suitable nano system for oral delivery of insulin. PMID:23678418

  9. Ionic and Polyampholyte N-Isopropylacrylamide-Based Hydrogels Prepared in the Presence of Imprinting Ligands: Stimuli-Responsiveness and Adsorption/Release Properties

    PubMed Central

    Lago, Miguel A.; Grinberg, Valerij Ya.; Burova, Tatiana V.; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2011-01-01

    The conformation of the imprinted pockets in stimulus-responsive networks can be notably altered when the stimulus causes a volume phase transition. Such a tunable affinity for the template molecule finds interesting applications in the biomedical and drug delivery fields. Nevertheless, the effect that the binding of the template causes on the stimuli-responsiveness of the network has barely been evaluated. In this work, the effect of two ionic drugs used as templates, namely propranolol hydrochloride and ibuprofen sodium, on the responsiveness of N-isopropylacrylamide-based hydrogels copolymerized with acrylic acid (AAc) and N-(3-aminopropyl) methacrylamide (APMA) and on their ability to rebind and to control the release of the template was evaluated. The degree of swelling and, in some cases, energetics (HS-DSC) of the transitions were monitored as a function of temperature, pH, and concentration of drug. Marked decrease in the transition temperature of the hydrogels, accompanied by notable changes in the transition width, was observed in physiological NaCl solutions and after the binding of the drug molecules, which reveals relevant changes in the domain structure of the hydrogels as the charged groups are shielded. The ability of the hydrogels to rebind propranolol or ibuprofen was quantified at both 4 and 37 °C and at two different drug concentrations, in the range of those that cause major changes in the network structure. Noticeable differences between hydrogels bearing AAc or APMA and between imprinted and non-imprinted networks were also observed during the release tests in NaCl solutions of various concentrations. Overall, the results obtained evidence the remarkable effect of the template molecules on the responsiveness of intelligent imprinted hydrogels. PMID:24956450

  10. Organic hydrogels as potential sorbent materials for water purification

    NASA Astrophysics Data System (ADS)

    Linardatos, George; Bekiari, Vlasoula; Bokias, George

    2014-05-01

    Hydrogels are three-dimensional, hydrophilic, polymeric networks capable to adsorb large amounts of water or biological fluids. The networks are composed of homopolymers or copolymers and are insoluble due to the presence of chemical or physical cross-links. Depending on the nature of the structural units, swelling or shrinking of these gels can be activated by several external stimuli, such as solvent, heat, pH, electric stimuli. As a consequence, these materials are attractive for several applications in a variety of fields: drug delivery, muscle mimetic soft linear actuators, hosts of nanoparticles and semiconductors, regenerative medicine etc. Of special interest is the application of hydrogels for water purification, since they can effectively adsorb several water soluble pollutants such as metal ions, inorganic or organic anions, organic dyestaff, etc. In the present work, anionic hydrogels bearing negatively charged -COO- groups were prepared and investigated. These are based on the anionic monomer sodium acrylate (ANa) and the nonionic one N,N-dimethylacrylamide (DMAM). A series of copolymeric hydrogels (P(DMAM-co-ANax) were synthesized. The molar content x of ANa units (expressing the molar charged content of the hydrogel) varies from 0 (nonionic poly(N,N-dimethylacrylamide), PDMAM, hydrogel) up to 1 (fully charged poly(sodium acrylate), PANa, hydrogel). The hydrogels were used to extract organic or inorganic solutes from water. Cationic and anionic model dyes, as well as multivalent inorganic ions, have been studied. It is found that cationic dyes are strongly adsorbed and retained by the hydrogels, while adsorbance of anionic dyes was negligible. Both maximum adsorption and equilibrium binding constant depend on the chemical structure of the dye, the presence of functional chemical groups and the hydrophobic-hydrophilic balance. In the case of metal cations, adsorption depends mostly on the charge of the cation. In addition, crucial factors controlling

  11. Alternating-current electrophoretic adhesion of biodegradable hydrogel utilizing intermediate polymers.

    PubMed

    Asoh, Taka-Aki; Kawai, Wataru; Kikuchi, Akihiko

    2014-11-01

    The adhesion of anionic charged biodegradable hydrogels each other utilizing oppositely charged water-soluble polymers as a binder has been achieved by applying alternating-current (AC) electric fields. The two gelatin based dextran sulfate gels (DS gels) were molecularly sutured together by AC electrophoretic adhesion when cationic charged quaternary ammonium chitosan (TMC) was applied between and held in contact with the two DS gels. The adhesive strength of the gels increased with increasing periodicity when a square wave was applied. Hydrogel constructs composed of DS microgels were prepared simply by AC electrophoretic adhesion utilizing intermediate TMC.

  12. Physical properties of artificial extracellular matrix protein hydrogels prepared by thiol-maleimide chemistry

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbin; Tirrell, David

    2013-03-01

    Using genetic engineering methods, telechelic proteins were designed from elastin- and fibronectin-derived repeating units and biosynthesized in E. coli. The telechelic proteins bear terminal thiols could either undergo chain-extension with bis-maleimide-functionalized poly(ethylene glycol) (MAL-PEG-MAL) or crosslinking with tetrakis-maleimide-functionalized 4-arm star PEG (star-PEG-MAL). The latter leads to protein-based hydrogels that are transparent, uniform, and highly extensible. The reaction kinetics ranges from several minutes to a few hours depending on the free-thiol content and the protein weight percentage. The mechanical properties of the gel depend on the protein content and the cross-linker concentration. It is also possible to further tune the mechanical properties by using a mixture of MAL-PEG-MAL and star-PEG-MAL for crosslinking. The water contents of the hydrogels are high, especially after swelling. The results suggest its promising application for cell encapsulation and 3D cell culture in tissue engineering.

  13. Preparation and in vitro characterization of thermosensitive and mucoadhesive hydrogels for nasal delivery of phenylephrine hydrochloride.

    PubMed

    Xu, Xiaofeng; Shen, Yan; Wang, Wei; Sun, Chunmeng; Li, Chang; Xiong, Yerong; Tu, Jiasheng

    2014-11-01

    The aim of the present work was to develop a nasal delivery system of phenylephrine hydrochloride (PE) in spray form to make prolonged remedy of nasal congestion. The formulations contain the thermosensitive hydrogel, i.e., Poloxamer 407 (P407) and Poloxamer 188 (P188) mixtures, and mucoadhesives, i.e., ε-polylysine (ε-PL) and low molecular weight sodium hyaluronate (MW 11,000Da). The in vitro characterizations of formulations including rheology studies, texture profiles and in vitro mucoadhesion potential were investigated after gelation temperatures measurements. The results showed that the concentration of P407 or P188 had significant influence on gelation temperature and texture profiles. The addition of mucoadhesives, though lowered the gel strength of formulations, increased interaction with mucin. After screening, two formulations (i.e., 1.0% PE/0.5% ε-PL/17% P407/0.5% P188 or Formulation A; and 1.0% PE/0.5% HA/17% P407/0.8% P188 or Formulation B) presenting suitable gelation temperatures (∼32°C) were used for further studies on in vitro release behaviors and mucosa ciliotoxicity. Both formulations showed sustained release of PE for up to 8h and similar toxicity to saline, the negative control. Thus, the thermosensitive and mucoadhesive PE-containing hydrogels are promising to achieve prolonged decongestion in nasal cavity.

  14. Influence of clay particles on microfluidic-based preparation of hydrogel composite microsphere

    NASA Astrophysics Data System (ADS)

    Hong, Joung Sook

    2016-05-01

    For the successful fabrication of a hydrogel composite microsphere, this study aimed to investigate the influence of clay particles on microsphere formation in a microfluidic device which has flow focusing and a 4.5:1 contraction channel. A poly alginic acid solution (2.0 wt.%) with clay particles was used as the dispersed phase to generate drops in an oil medium, which then merged with drops of a CaCl2 solution for gelation. Drop generations were observed with different flow rates and particles types. When the flow rate increased, drop generation was enhanced and drop size decreased by the build-up of more favorable hydrodynamic flow conditions to detach the droplets. The addition of a small amount of particles insignificantly changed the drop generation behavior even though it reduced interfacial tension and increased the viscosity of the solution. Instead, clays particles significantly affected hydro-gelation depending on the hydrophobicity of particles, which produced further heterogeneity in the shape and size of microsphere.

  15. High Temperature Thermosetting Polyimide Nanocomposites Prepared with Reduced Charge Organoclay

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi; Liang, Margaret I.

    2005-01-01

    The naturally occurring sodium and calcium cations found in bentonite clay galleries were exchanged with lithium cations. Following the cation exchange, a series of reduced charge clays were prepared by heat treatment of the lithium bentonite at 130 C, 150 C, or 170 C. Inductively coupled plasma (ICP) analysis showed that heating the lithium clay at elevated temperatures reduced its cation exchange capacity. Ion exchange of heat-treated clays with either a protonated alkyl amine or a protonated aromatic diamine resulted in decreasing amounts of the organic modifier incorporated into the lithium clay. The level of silicate dispersion in a thermosetting polyimide matrix was dependent upon the temperature of Li-clay heat treatment as well as the organic modification. In general, clays treated at 150 C or 170 C, and exchanged with protonated octadcylamine or protonated 2,2'-dimethlybenzidine (DMBZ) showed a higher degree of dispersion than clays treated at 130 C, or exchanged with protonated dodecylamine. Dynamic mechanical analysis showed little change in the storage modulus or T(sub g) of the nanocomposites compared to the base resin. However, long term isothermal aging of the samples showed a significant decrease in the resin oxidative weight loss. Nanocomposite samples aged in air for 1000 hours at 288 C showed of to a decrease in weight loss compared to that of the base resin. This again was dependent on the temperature at which the Li-clay was heated and the choice of organic modification.

  16. Enhanced ALP activity of MG63 cells cultured on hydroxyapatite-poly(ethylene glycol) hydrogel composites prepared using EDTA-OH.

    PubMed

    Ito, Temmei; Sasaki, Makoto; Taguchi, Tetsushi

    2015-03-02

    In order to obtain a hydroxyapatite (HAp)-poly(ethylene glycol) (PEG) composite, tetra amine-terminated PEG was crosslinked using disuccinimidyl tartrate to obtain a PEG hydrogel. Using two kinds of chelators with different stability constants for Ca ion (N-(2-hydroxyethyl) ethylenediamine-N,N',N'-triacetic acid (EDTA-OH, 8.14), and ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA, 10.96)), calcium phosphate was deposited within PEG hydrogels by heating the chelator-containing calcium phosphate solution at 90 °C. X-ray diffraction analysis showed that the deposited calcium phosphate was HAp. The crystallinity of the HAp deposited using EDTA-OH was low compared with that obtained using EDTA, but the amount of HAp deposited within the PEG hydrogel using EDTA-OH was higher than that deposited using EDTA. Significantly more human osteoblast-like MG-63 cells adhered on the HAp-PEG composite prepared using EDTA-OH than on the HAp-PEG composites prepared using EDTA. Furthermore, the alkaline phosphatase activity of MG-63 cultured on the HAp-PEG composite prepared using EDTA-OH was four times higher than that on the HAp-PEG composite prepared using EDTA. Therefore, the HAp-PEG composite prepared using EDTA-OH has potential as a bone substitute material.

  17. Nata de coco (NDC) hydrogel as nanoreactors for preparation iron nanoparticles (FeNps) from ferrocenium reduction

    SciTech Connect

    Andarini, Mellissa; Lazim, Azwan

    2014-09-03

    This study focuses on hydrogel as nano template to produce iron nanoparticles (FeNps). Radical polymerization was used to synthesize the hydrogel from nata de coco (NDC-g-PAA). Ferrocenium (FcCL) with 1 × 10{sup −4} g/ml has successfully incorporated with NDC-g-PAA hydrogel system and reduce using sodium hydroxide (NaOH) at different concentrations. Transmission electron microscopy (TEM) result demonstrates that the size of FeNps produced was about 5 – 20 nm. Morphological analysis of hydrogel is carried out by scanning electron microscopy (SEM), SEM-EDEX is used to determine percentage of iron (Fe) in hydrogel. The results offer a wide range of application in various areas, especially the use of hydrogel system as a responsive template.

  18. Nata de coco (NDC) hydrogel as nanoreactors for preparation iron nanoparticles (FeNps) from ferrocenium reduction

    NASA Astrophysics Data System (ADS)

    Andarini, Mellissa; Lazim, Azwan

    2014-09-01

    This study focuses on hydrogel as nano template to produce iron nanoparticles (FeNps). Radical polymerization was used to synthesize the hydrogel from nata de coco (NDC-g-PAA). Ferrocenium (FcCL) with 1 × 10-4 g/ml has successfully incorporated with NDC-g-PAA hydrogel system and reduce using sodium hydroxide (NaOH) at different concentrations. Transmission electron microscopy (TEM) result demonstrates that the size of FeNps produced was about 5 - 20 nm. Morphological analysis of hydrogel is carried out by scanning electron microscopy (SEM), SEM-EDEX is used to determine percentage of iron (Fe) in hydrogel. The results offer a wide range of application in various areas, especially the use of hydrogel system as a responsive template.

  19. Preparation of chitosan/mesoporous silica nanoparticle composite hydrogels for sustained co-delivery of biomacromolecules and small chemical drugs

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Zhu, Yufang; Zhang, Lingxia; Shi, Jianlin

    2013-08-01

    We have developed composite hydrogels of chitosan (CS) and mesoporous silica nanoparticles (MSNs) in this study. The gelation rate, gel strength, drug delivery behavior and chondrocyte proliferation properties were investigated. The introduction of MSNs into CS accelerated the gelation process at body temperature and also increased the elastic modulus G‧ from 1000 to 1800 Pa. When we used gentamicin (GS) and bovine serum albumin (BSA) as model small chemical drugs and biomacromolecules, respectively, the CS/MSN hydrogels released GS and BSA in a sustained manner simultaneously, but the CS hydrogels only showed sustained BSA release. Furthermore, in vitro chondrocyte culture showed that the CS/MSN composite hydrogels indeed performed much better in supporting chondrocyte growth and maintaining chondrocytic phenotype compared to the CS hydrogels. Therefore, the results suggest that the CS/MSN composite hydrogels can be potentially very useful for cartilage regeneration.

  20. Preparation of a magnetic-field-sensitive hydrogel and preliminary study of its drug release behavior.

    PubMed

    Namdeo, Mini; Bajpai, S K; Kakkar, S

    2009-01-01

    The study describes the in situ formation of magnetite nanoparticles within a swollen polyacrylamide hydrogel. The average diameter of nanoparticles, as determined by TEM analysis, was found to be nearly 12.5 nm. In XRD analysis the characteristic peaks, observed at d = 3.07, 2.78, 2.64, 2.53, 2.32 and 2.03, also confirmed the formation of magnetite within the polymer network. The percent swelling of magnetite-loaded gel in physiological fluid was observed to decrease with increasing amount of magnetite in the gel. Moreover, the percent swelling increased from 140 to 254% as the strength of the applied magnetic field increased from 500 to 2500 Oe. Finally, the model drug, vitamin B(2), loaded magnetic gels showed relatively slower release in the presence of an applied magnetic field.

  1. The Effect of Protein Structure on their Controlled Release from an Injectable Peptide Hydrogel

    PubMed Central

    Branco, Monica C.; Pochan, Darrin J.; Wagner, Norman J.; Schneider, Joel P.

    2010-01-01

    Hydrogel materials are promising vehicles for the delivery of protein therapeutics. Proteins can impart physical interactions, both steric and electrostatic in nature, that influence their release from a given gel network. Here, model proteins of varying hydrodynamic diameter and charge are directly encapsulated and their release studied from electropositive fibrillar hydrogels prepared from the self assembling peptide, MAX8. Hydrogelation of MAX8 can be triggered in the presence of proteins for their direct encapsulation with no effect on protein structure nor the hydrogel's mechanical properties. Bulk release of the encapsulated proteins from the hydrogels was assessed for a month time period at 37°C before and after syringe delivery of the loaded gels to determine the influence of protein structure on release. Release of positively charged and neutral proteins was largely governed by the sterics imposed by the network. Conversely, negatively charged proteins interacted strongly with the positively charged fibrillar network, greatly restricting their release to <10% of the initial protein load. Partition and retention studies indicated that electrostatic interactions dictate the amount of protein available for release. Importantly, when protein encapsulated gels were delivered via syringe, the release profiles of the macromolecules showed similar trends as those observed for non-sheared gels. This study demonstrates that proteins can be directly encapsulated in self assembled MAX8 hydrogels, which can then be syringe delivered to a site where subsequent release is controlled by protein structure. PMID:20952055

  2. Integrative design of a poly(ethylene glycol)-poly(propylene glycol)-alginate hydrogel to control three dimensional biomineralization.

    PubMed

    Cha, Chaenyung; Kim, Eun-Seok; Kim, Il Won; Kong, Hyunjoon

    2011-04-01

    A mineralized polymeric matrix has been extensively studied to understand biomineralization processes and to further regulate phenotypic functions of various cells involved in osteogenesis and physiological homeostasis. It has been often proposed that several matrix variables including charge density, hydrophobicity, and pore size play vital roles in modulating composition and morphology of minerals formed within a three dimensional (3D) matrix. However, the aspects have not yet been systematically examined because a tool enabling the independent control of the matrix variables is lacking. This study presents an advanced integrative strategy to control morphology and composition of biominerals with matrix properties, by using a hydrogel formulated to independently control charge density, hydrophobicity, and porosity. The hydrogel consists of poly(ethylene glycol) monomethacrylate (PEGmM), poly(propylene glycol) monomethacrylate (PPGmM), and methacrylic alginate (MA), so the charge density and hydrophobicity of the hydrogel can be separately controlled with mass fractions of MA and PPGmM. Also, hydrogels which present only nano-sized pores, termed nanoporous hydrogels, are lyophilized and rehydrated to prepare the hydrogels containing micro-sized pores, termed microporous hydrogels. We find that increasing the mass fractions of MA and PPGmM of the microporous hydrogel promotes the growth of apatite layers because of the increases in the charge density, hydrophobicity and pore size. In contrast, increasing mass fractions of MA and PPGmM of the nanoporous hydrogel enhances the formation of calcium carbonate minerals. The dependency of the mineralization on hydrogel variables is related to the change in supersaturation of mineral ions. Overall, the results of this study will be highly useful to better understand the interplay of matrix variables in biomineralization and to design a wide array of mineralized matrix potentially used in cell therapies and tissue

  3. Preparation and biological characteristics of recombinant human bone morphogenetic protein-2-loaded dextran-co-gelatin hydrogel microspheres, in vitro and in vivo studies.

    PubMed

    Chen, Faming; Wu, Zhifen; Wang, Qintao; Wu, Hong; Zhang, Yongjie; Nie, Xin; Jin, Yan

    2005-11-01

    Hydrogels are based on hydrophilic polymers which are cross-linked to prevent dissolution in water. Because hydrogels can contain large amounts of water, they are interesting devices for the delivery of protein drugs. In this contribution, biodegradable dextran-co-gelatin hydrogel microspheres (DG-MPs) are described which are based on physical interactions and are particularly suitable for the controlled delivery of pharmaceutically active proteins. The unique feature of this preparation system is that the hydrogel microsphere formation takes place in an all-aqueous solution, by which the use of organic solvents is avoided. We investigated the preparation and biological activities of recombinant human bone morphogenetic protein-2 (rhBMP2)-loaded dextran-co-gelatin hydrogel microspheres (rhBMP2-DG-MPs), which aimed to keep rhBMP2's biological activity and to achieve a long-term sustained release of rhBMP2. The microspheres' average diameter was about 20-40 microm and rhBMP2 release in vitro could be maintained for >10 days. Cytology studies showed that using rhBMP2-DG-MPs could promote the proliferation and osteoblastic differentiation of periodontal ligament cells better than using rhBMP2 aqueous solution. By a freeze-drying method, rhBMP2-DG-MPs could be adhered in chitosan membranes for guided tissue regeneration use, namely functionalized membranes. To evaluate bone regeneration induced by rhBMP2-DG-MPs, an animal experiment with canine class III furcation defects was adopted and the results indicated that using rhBMP2-DG-MPs incorporating scaffolds and functionalized membranes could gain more periodontal tissue regeneration than using scaffolds and general membranes soaked with concentrated rhBMP2 aqueous solution. Therefore, those studies demonstrate the potential of DG-MPs in the sustained delivery of low dosages of rhBMP2 to periodontal defects.

  4. Self-Adjustable Adhesion of Polyampholyte Hydrogels.

    PubMed

    Roy, Chanchal Kumar; Guo, Hong Lei; Sun, Tao Lin; Ihsan, Abu Bin; Kurokawa, Takayuki; Takahata, Masakazu; Nonoyama, Takayuki; Nakajima, Tasuku; Gong, Jian Ping

    2015-12-02

    Developing nonspecific, fast, and strong adhesives that can glue hydrogels and biotissues substantially promotes the application of hydrogels as biomaterials. Inspired by the ubiquitous adhesiveness of bacteria, it is reported that neutral polyampholyte hydrogels, through their self-adjustable surface, can show rapid, strong, and reversible adhesion to charged hydrogels and biological tissues through the Coulombic interaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: preparation, characterization, and in vivo evaluation.

    PubMed

    Chen, Xingwei; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Zhang, Yanhui; Fan, Yating; Huang, Yanqing; Liu, Yan

    2012-11-01

    The purpose of this study was to evaluate the feasibility of in situ thermosensitive hydrogel based on chitosan in combination with disodium α-d-Glucose 1-phosphate (DGP) for ocular drug delivery system. Aqueous solution of chitosan/DGP underwent sol-gel transition as temperature increased which was flowing sol at room temperature and then turned into non-flowing hydrogel at physiological temperature. The properties of gels were characterized regarding gelation time, gelation temperature, and morphology. The sol-to-gel phase transition behaviors were affected by the concentrations of chitosan, DGP and the model drug levocetirizine dihydrochloride (LD). The developed hydrogel presented a characteristic of a rapid release at the initial period followed by a sustained release and remarkably enhanced the cornea penetration of LD. The results of ocular irritation demonstrated the excellent ocular tolerance of the hydrogel. The ocular residence time for the hydrogel was significantly prolonged compared with eye drops. The drug-loaded hydrogel produced more effective anti-allergic conjunctivitis effects compared with LD aqueous solution. These results showed that the chitosan/DGP thermosensitive hydrogel could be used as an ideal ocular drug delivery system in terms of the suitable sol-gel transition temperature, mild pH environment in the hydrogel as well as the organic solvent free.

  6. Characterization of a polyvinyl alcohol-hydrogel artificial articular cartilage prepared by injection molding.

    PubMed

    Kobayashi, Masanori; Oka, Masanori

    2004-01-01

    We have developed a hip hemi-arthroplasty using polyvinyl alcohol-hydrogel (PVA-H) as the treatment for hip joint disorders in which the lesion is limited to the joint surface. In previous studies, we characterized the biocompatibility and the mechanical properties of PVA-H as an arthroplasty material. To fix PVA-H firmly to the bone, we have devised an implant composed of PVA-H and porous titanium fiber mesh (TFM). However, because of poor infiltration of the PVA solution into the pores of the TFM when using the low temperature crystallization method, the strength of the PVA-H-TFM interface was insufficient. Consequently, the infiltration method was improved by adopting high-pressure injection molding. With this improved method, the bonding strength of the interface increased remarkably. However, as this injection molding requires high temperature, various mechanical properties of the PVA-H might change with this treatment in comparison with the previous method. The purpose of this study was to investigate the effect of high temperature treatment on the mechanical properties of PVA-H as artificial articular cartilage, the tensile test and friction test were performed about new PVA-H. The results showed no significant mechanical deterioration of the PVA-H. This certified that the injection-molding method did not induce the change of the mechanical properties of PVA-H and indicated the potential of hemi-arthroplasty using PVA-H by this method in the future.

  7. Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate.

    PubMed

    Gan, Sinyee; Zakaria, Sarani; Chia, Chin Hua; Chen, Ruey Shan; Ellis, Amanda V; Kaco, Hatika

    2017-01-01

    Here, a stable derivative of cellulose, called cellulose carbamate (CC), was produced from Kenaf (Hibiscus cannabinus) core pulp (KCP) and urea with the aid of a hydrothermal method. Further investigation was carried out for the amount of nitrogen yielded in CC as different urea concentrations were applied to react with cellulose. The effect of nitrogen concentration of CC on its solubility in a urea-alkaline system was also studied. Regenerated cellulose products (hydrogels and aerogels) were fabricated through the rapid dissolution of CC in a urea-alkaline system. The morphology of the regenerated cellulose products was viewed under Field emission scanning electron microscope (FESEM). The transformation of allomorphs in regenerated cellulose products was examined by X-ray diffraction (XRD). The transparency of regenerated cellulose products was determined by Ultraviolet-visible (UV-Vis) spectrophotometer. The degree of swelling (DS) of regenerated cellulose products was also evaluated. This investigation provides a simple and efficient procedure of CC determination which is useful in producing regenerated CC products.

  8. Biocompatibility of hyaluronic acid hydrogels prepared by porous hyaluronic acid microbeads

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Tae; Lee, Deuk Yong; Kim, Tae-Hyung; Song, Yo-Seung; Cho, Nam-Ihn

    2014-05-01

    Hyaluronic acid hydrogels (HAHs) were synthesized by immersing HA microbeads crosslinked with divinyl sulfone in a phosphate buffered saline solution to evaluate the biocompatibility of the gels by means of cytotoxicity, genotoxicity ( in vitro chromosome aberration test, reverse mutation assay, and in vivo micronucleus test), skin sensitization, and intradermal reactivity. The HAHs induced no cytotoxicity or genotoxicity. In guinea pigs treated with grafts and prostheses, no animals died and there were no abnormal clinical signs. The sensitization scores were zero in all guinea pigs after 24 h and 48 h challenge, suggesting that the HAHs had no contact allergic sensitization in the guinea pig maximization test. No abnormal signs were found in New Zealand White rabbits during the 72 h observation period after the injection. There was no difference between the HAHs and negative control mean scores because skin reaction such as erythema or oedema was not observed after injection. Experimental results suggest that the HAHs would be suitable for soft tissue augmentation due to the absence of cytotoxicity, genotoxicity, skin sensitization, and intradermal reactivity.

  9. Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate

    PubMed Central

    Gan, Sinyee; Chia, Chin Hua; Chen, Ruey Shan; Ellis, Amanda V.; Kaco, Hatika

    2017-01-01

    Here, a stable derivative of cellulose, called cellulose carbamate (CC), was produced from Kenaf (Hibiscus cannabinus) core pulp (KCP) and urea with the aid of a hydrothermal method. Further investigation was carried out for the amount of nitrogen yielded in CC as different urea concentrations were applied to react with cellulose. The effect of nitrogen concentration of CC on its solubility in a urea-alkaline system was also studied. Regenerated cellulose products (hydrogels and aerogels) were fabricated through the rapid dissolution of CC in a urea-alkaline system. The morphology of the regenerated cellulose products was viewed under Field emission scanning electron microscope (FESEM). The transformation of allomorphs in regenerated cellulose products was examined by X-ray diffraction (XRD). The transparency of regenerated cellulose products was determined by Ultraviolet–visible (UV–Vis) spectrophotometer. The degree of swelling (DS) of regenerated cellulose products was also evaluated. This investigation provides a simple and efficient procedure of CC determination which is useful in producing regenerated CC products. PMID:28296977

  10. Green chitosan-carbon dots nanocomposite hydrogel film with superior properties.

    PubMed

    Konwar, Achyut; Gogoi, Neelam; Majumdar, Gitanjali; Chowdhury, Devasish

    2015-01-22

    In this work we report novel chitosan-carbon dots nanocomposite hydrogel films. A new green source "tea" was used as precursor for carbon dots (CDs). The electrostatic interaction of positive charge on chitosan and negative charge on CDs prepared from tea was used for the successful preparation of a stable and robust chitosan-carbon dots nanocomposite hydrogel film. The hydrogel films were characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transformed infra-red spectroscopy (FTIR), scanning electron microscope (SEM), fluorescent microscopy, thermogravimetric analysis (TGA) and contact angle analysis. It was observed that chitosan-carbon dots hydrogel films are soft but tough with superior UV-visible blocking, swelling, thermal and mechanical properties in comparison to chitosan hydrogel film. Moreover chitosan-carbon dots films are more water repellent (hydrophobic) as indicated by their high contact angle values. Thus, fabrication of such green soft but tough biocompatible chitosan-carbon dots nanocomposite hydrogel films offers tremendous bio-medical and industrial applications.

  11. Density distribution of thermally prepared charge in commercial coke ovens

    SciTech Connect

    Babanin, B.I.; Shein, S.Sh.; Shterengarts, A.I.; Spasov, I.G.; Antonovskii, E.S.; Nevoisa, Eh.G.; Kachaev, V.G.; Treznyuk, N.P.

    1983-01-01

    Preheated charges offer advantages in terms of faster, dust-free oven filling and their density pattern over the oven elevation has now been established by radio-isotope methods. Basically it is the bunker discharge rate which controls oven density. There is a tendency for density to be higher below the centre charge hatch, the more pronounced as the rate of filling accelerates. Density over the length of the oven necessarily increases when the larry bunkers are discharged in series rather than simultaneously. The high density at the centre would appear to be due to the dynamic bunching effect exerted by flow from the side bunkers and side hatches.

  12. [Gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting promotes cell adhesion and proliferation of human dental pulp cells in vitro].

    PubMed

    Yu, Hai-Yue; Ma, Dan-Dan; Wu, Bu-Ling

    2017-05-20

    To evaluate the cytotoxicity of gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting in human dental pulp cells (HDPCs) and compare the cell adhesion and proliferation of the cells seeded in the biomaterial using two different methods. HDPCs isolated by tissue block culture and enzyme digestion were cultured and passaged. Gelatin/alginate hydrogel scaffolds were printed using a bioplotter, and the cytotoxicity of the aqueous extracts of the scaffold material was tested in the third passage of HDPCs using cell counting kit-8. Scanning electron microscopy and trypan blue were used to assess the adhesion and proliferation of the cells seeded in the scaffold material at a low or high concentration. The aqueous extract of the scaffolds at different concentrations showed no obvious cytotoxicity and promoted the proliferation of HDPCs. The scaffolds had a good biocompatibility and HDPCs seeded in the scaffold showed good cell growth. Cell seeding at a high concentration in the scaffold better promoted the adhesion of HDPCs and resulted in a greater cell number on the scaffold surface compared with low-concentration cell seeding after a 5-day culture (P<0.05). Gelatinhydrogel scaffolds prepared by 3D bioprinting has a good biocompatibility and promotes the proliferation of HDPCs, and can be used as a scaffold material for tooth regeneration. Cell seeding at a high concentration can better promote cell adhesion to the scaffold material.

  13. Cyclodextrin Inclusion Polymers Forming Hydrogels

    NASA Astrophysics Data System (ADS)

    Li, Jun

    This chapter reviews the advances in the developments of supramolecular hydrogels based on the polypseudorotaxanes and polyrotaxanes formed by inclusion complexes of cyclodextrins threading onto polymer chains. Both physical and chemical supramolecular hydrogels of many different types are discussed with respect to their preparation, structure, property, and gelation mechanism. A large number of physical supramolecular hydrogels were formed induced by self-assembly of densely packed cyclodextrin rings threaded on polymer or copolymer chains acting as physical crosslinking points. The thermo-reversible and thixotropic properties of these physical supramolecular hydrogels have inspired their applications as injectable drug delivery systems. Chemical supramolecular hydrogels synthesized from polypseudorotaxanes and polyrotaxanes were based on the chemical crosslinking of either the cyclodextrin molecules or the included polymer chains. The chemical supramolecular hydrogels were often made biodegradable through incorporation of hydrolyzable threading polymers, end caps, or crosslinkers, for their potential applications as biomaterials.

  14. Preparation and characterization of a novel sodium alginate incorporated self-assembled Fmoc-FF composite hydrogel.

    PubMed

    Gong, Xiao; Branford-White, Christopher; Tao, Lei; Li, Shubai; Quan, Jing; Nie, Huali; Zhu, Limin

    2016-01-01

    Dipeptides and their derivatives have attracted tremendous attention owning to their excellent abilities of self-assemble assembling into various structures which have great potentials for applications in biology and/or nanotechnology. In the present study, we dedicate to fabricate a rigid and structure controllable Fmoc-FF/SA composite hydrogel. We found that the modified dipeptide, fluorenyl-9-methoxycarbonyl (Fmoc)-diphenylalanine (Phe-Phe) can self-assemble into rigid hydrogels with structures of nanowires, layered thin films or honeycombs as the change of sodium alginate (SA) concentration. Meanwhile, CD-spectroscopy demonstrated that SA appeared to control the process, but it did not change the arrangement of the Fmoc-FF peptide. Our results demonstrated that the formed hydrogel showed physical and chemical stability as well as possessing good biocompatibility. Rheological measurements showed that the addition of SA could improve the stability of the hydrogel. Cell viability assay revealed that the Fmoc-FF and Fmoc-FF/SA hydrogels are both beneficial for cell proliferation in-vitro. Our results indicated that the fabricated Fmoc-FF/SA composite hydrogels could be used in tissue engineering and drug delivery in the future.

  15. The crosslinking of polysaccharides with polyamines and dextran-polyallylamine antibacterial hydrogels.

    PubMed

    O'Connor, Naphtali A; Abugharbieh, Ahmad; Yasmeen, Farzana; Buabeng, Emmanuel; Mathew, Steve; Samaroo, Diana; Cheng, Hai-Ping

    2015-01-01

    A facile modular approach to rapidly prepare pH-responsive hydrogels by crosslinking polysaccharides with polyamines is demonstrated. Hydrogels are prepared by first reacting the less reactive polysaccharides with the cross-linker epichlorohydrin and completed by the addition of polyamines. The crosslinking of polysaccharides with polyamines provides a facile method for incorporating functionality into polysaccharide based hydrogels. This process is demonstrated with the polysaccharides dextran, pullulan and carboxymethyl cellulose and with the polyamines polyallylamine and polyethylene imine. The hydrogels were characterized by FTIR and swelling studies, which showed pH-dependent swelling due to the presence of the polyamine. The hydrogels can also be tailored by varying the mass ratio between the polysaccharide and polyamine. Absorption studies of organic analytes showed the polyamine content affecting the uptake of a charged substrate (methylene blue) and no effect on a neutral substrate (6-methyl coumarin). This synthetic method was also used to prepare hydrogels with antibacterial activity against E. coli and S. aureus by utilizing an amphiphilic polyallylamine.

  16. Preparation and characterization of a novel micro- and nanocomposite hydrogels containing cellulosic fibrils

    USDA-ARS?s Scientific Manuscript database

    In recent years, the preparation of cellulosic composites and nanocomposites has become an important approach because of the wide abundance of cellulose, its biodegradability, renewability, and the ability to effectively reinforce a polymer matrix in an environmentally benign nature. The main object...

  17. Preparing side charging of PCM storage: theoretical and experimental investigation

    NASA Astrophysics Data System (ADS)

    Tesfay, A. H.; Hagos, F. Y.; Yohannes, K. G.; Nydal, O. J.; Kahsay, M. B.

    2015-12-01

    In Ethiopia, there is an abundant source of solar energy that is estimated to 5.3 kWh/m2/day. However, more than 90% of the society uses biomass as a main source of energy for cooking due to lack of technologies to convert this energy. Replacing these cooking activities by using renewable energy resources decreases pollution and reduces deforestation significantly. Using the solar energy in day time has no problem. For night time however, the system needs some kind of back-up system to make the daytime solar energy available. This back-up should have high-density energy storage and constant working temperature to perform a specific application. Latent heat storage using phase change materials (PCM) is one way of storing thermal energy. In the current study, a latent heat storage that uses a PCM material is used to store the solar energy aimed at utilizing solar energy for cooking Injera, main staple bread in Ethiopia. The PCM is a mixture of 60% NaNO3 and 40% KNO3 that are known as solar salts. The storage has a welded parallel aluminum fins with a gap of 40 mm in between to enhance the thermal conductivity during the charging-discharging process of the storage. The fins are extruded outside of the storage container to enable a side charging technique for the PCM. A prototype was developed with a solar salt of 17.5 kg and is tested for charging-discharging. The numerical simulation done on ANSYS and experimental results show an agreement and the system registered a 41.6% efficiency.

  18. Nanostructure controlled sustained delivery of human growth hormone using injectable, biodegradable, pH/temperature responsive nanobiohybrid hydrogel

    NASA Astrophysics Data System (ADS)

    Singh, Narendra K.; Nguyen, Quang Vinh; Kim, Bong Sup; Lee, Doo Sung

    2015-02-01

    The clinical efficacy of a therapeutic protein, the human growth hormone (hGH), is limited by its short plasma half-life and premature degradation. To overcome this limitation, we proposed a new protein delivery system by the self-assembly and intercalation of a negatively charged hGH onto a positively charged 2D-layered double hydroxide nanoparticle (LDH). The LDH-hGH ionic complex, with an average particle size of approximately 100 nm, retards hGH diffusion. Nanobiohybrid hydrogels (PAEU/LDH-hGH) were prepared by dispersing the LDH-hGH complex into a cationic pH- and temperature-sensitive injectable PAEU copolymer hydrogel to enhance sustained hGH release by dual ionic interactions. Biodegradable copolymer hydrogels comprising poly(β-amino ester urethane) and triblock poly(ε-caprolactone-lactide)-poly(ethylene glycol)-poly-(ε-caprolactone-lactide) (PCLA-PEG-PCLA) were synthesized and characterized. hGH was self-assembled and intercalated onto layered LDH nanoparticles through an anion exchange technique. X-ray diffraction and zeta potential results showed that the LDH-hGH complex was prepared successfully and that the PAEU/LDH-hGH nanobiohybrid hydrogel had a disordered intercalated nanostructure. The biocompatibility of the nanobiohybrid hydrogel was confirmed by an in vitro cytotoxicity test. The in vivo degradation of pure PAEU and its nanobiohybrid hydrogels was investigated and it showed a controlled degradation of the PAEU/LDH nanobiohybrids compared with the pristine PAEU copolymer hydrogel. The LDH-hGH loaded injectable hydrogels suppressed the initial burst release of hGH and extended the release period for 13 days in vitro and 5 days in vivo. The developed nanohybrid hydrogel has the potential for application as a protein carrier to improve patient compliance.The clinical efficacy of a therapeutic protein, the human growth hormone (hGH), is limited by its short plasma half-life and premature degradation. To overcome this limitation, we proposed a new

  19. Hydrogel-Forming Microneedles Prepared from “Super Swelling” Polymers Combined with Lyophilised Wafers for Transdermal Drug Delivery

    PubMed Central

    Donnelly, Ryan F.; McCrudden, Maelíosa T. C.; Zaid Alkilani, Ahlam; Larrañeta, Eneko; McAlister, Emma; Courtenay, Aaron J.; Kearney, Mary-Carmel; Singh, Thakur Raghu Raj; McCarthy, Helen O.; Kett, Victoria L.; Caffarel-Salvador, Ester; Al-Zahrani, Sharifa; Woolfson, A. David

    2014-01-01

    We describe, for the first time, hydrogel-forming microneedle arrays prepared from “super swelling” polymeric compositions. We produced a microneedle formulation with enhanced swelling capabilities from aqueous blends containing 20% w/w Gantrez S-97, 7.5% w/w PEG 10,000 and 3% w/w Na2CO3 and utilised a drug reservoir of a lyophilised wafer-like design. These microneedle-lyophilised wafer compositions were robust and effectively penetrated skin, swelling extensively, but being removed intact. In in vitro delivery experiments across excised neonatal porcine skin, approximately 44 mg of the model high dose small molecule drug ibuprofen sodium was delivered in 24 h, equating to 37% of the loading in the lyophilised reservoir. The super swelling microneedles delivered approximately 1.24 mg of the model protein ovalbumin over 24 h, equivalent to a delivery efficiency of approximately 49%. The integrated microneedle-lyophilised wafer delivery system produced a progressive increase in plasma concentrations of ibuprofen sodium in rats over 6 h, with a maximal concentration of approximately 179 µg/ml achieved in this time. The plasma concentration had fallen to 71±6.7 µg/ml by 24 h. Ovalbumin levels peaked in rat plasma after only 1 hour at 42.36±17.01 ng/ml. Ovalbumin plasma levels then remained almost constant up to 6 h, dropping somewhat at 24 h, when 23.61±4.84 ng/ml was detected. This work represents a significant advancement on conventional microneedle systems, which are presently only suitable for bolus delivery of very potent drugs and vaccines. Once fully developed, such technology may greatly expand the range of drugs that can be delivered transdermally, to the benefit of patients and industry. Accordingly, we are currently progressing towards clinical evaluations with a range of candidate molecules. PMID:25360806

  20. Macroporous chitosan hydrogels: Effects of sulfur on the loading and release behaviour of amino acid-based compounds.

    PubMed

    Elviri, Lisa; Asadzadeh, Maliheh; Cucinelli, Roberta; Bianchera, Annalisa; Bettini, Ruggero

    2015-11-05

    Chitosan is a biodegradable, biocompatible polymer of natural origin widely applied to the preparation of functional hydrogels suitable for controlled release of drugs, peptides and proteins. Non-covalent interactions, expecially ionic interactions, are the main driver of the loading and release behaviour of amino acids or peptides from chitosan hydrogels. With the aim to improve the understanding of the mechanisms governing the behaviour of chitosan hydrogels on peptide uptake and delivery, in this paper the attention was focused on the role played by sulfur on the interactions of chitosan hydrogels with sulfur-containing amino acids (AA) and peptides. Hence, loading and release experiments on cysteine, cystine and glutathione (SH containing amino acid, dipeptide and tripeptide, respectively) as well as on glycine and valine as apolar amino acids were carried out. For these puroses, chitosan hydrogels were prepared in an easy and reproducible manner by a freeze-gelation process on a poly-L-lysine coated support. The hydrogel surface pore size, uniformity and distribution were tested. Optimal results (D50 = 26 ± 4 μm) were obtained by using the poly-L-lysine positively-charged surface. The loading results gathered evidenced that the sulfur-containing molecules presented an increased absorption both in terms of rate and extent by chitosan hydrogels with respect to nonpolar amino acids, mainly due to ionic and hydrogen bond interactions. ATR-FTIR analysis carried out on chitosan hydrogels, with and without the AA related compounds to study putative interactions, supported these apparent sulfur-dependent results. Finally, chitosan hydrogels displayed excellent retention capabilities (AA release <5%) for all AA, strongly supporting the use of chitosan hydrogels as matrix for controlled drug release.

  1. Preparation and characterization of a new gellan gum and sulphated hyaluronic acid hydrogel designed for epidural scar prevention.

    PubMed

    Cencetti, Claudia; Bellini, Davide; Longinotti, Cristina; Martinelli, Andrea; Matricardi, Pietro

    2011-02-01

    Postsurgical adhesions are a common problem in clinical practice, causing nerve compression, pain and discomfort. A new hydrogel based on gellan gum and sulphated hyaluronic acid was synthesized, with the aim to create an effective barrier for epidural scar formation. Physico-chemical properties of the gel were analyzed, and preliminary biocompatibility data (i.e. cytotoxicity) have been collected in view of its potential clinical use. The characterization of the new material demonstrated that the hydrogel, due to its high-viscosity, could effectively act as a barrier with a long in situ residence time. In addition, the hydrogel can be easily extruded from a syringe and its structure exhibits excellent stabilizing properties. Furthermore, biological assays showed that this gel is suitable for further preclinical development.

  2. Multi-Hierarchical Self-Assembly of Collagen Mimetic Peptides into AAB Type Heterotrimers, Nanofibers and Hydrogels Driven by Charged Pair Interactions

    NASA Astrophysics Data System (ADS)

    O'Leary, Lesley Russell

    2011-12-01

    Replicating the multi-hierarchical self-assembly of collagen (peptide chain to triple helix to nanofiber and, finally, to a hydrogel) has long attracted scientists, both from the fundamental science perspective of supramolecular chemistry and for the potential biomedical applications perceived in tissue engineering. In terms of triple helical formation, collagen is the most abundant protein in the human body with at least 28 types, yet research involving collagen mimetic systems has only recently began to consider the innate ability of collagen to control helix composition and register. Collagen triple helices can be homotrimeric or heterotrimeric and while some types of natural collagen form only one specific composition of helix, others can form multiple. It is critical to fully understand and, if possible, reproduce the control that native collagen has on helix composition and register. In terms of nanofiber formation, many approaches to drive the self-assembly of synthetic systems through the same steps as natural collagen have been partially successful, but none have simultaneously demonstrated all levels of structural assembly. In this work, advancements in the ability to control helix composition and replicate the multi-hierarchical assembly of collagen are described. Both positive and negative design for the assembly of AAB type collagen heterotrimers were utilized by promoting heterotrimer formation though the use of charged amino acids to form intra-helix electrostatic interactions, while simultaneously discouraging homotrimers, resulting in the identification of multiple peptide systems with full control over the composition of the resulting triple helix. Similar salt-bridged hydrogen bonds between charged residues were incorporated into nanofiber forming peptides, one of which successfully assembled into sticky-ended triple helices, nanofibers with characteristic triple helical packing visible in the solution state, and strong hydrogels that are

  3. Swelling, diffusion, network parameters and adsorption properties of IPN hydrogel of chitosan and acrylic copolymer.

    PubMed

    Mandal, Bidyadhar; Ray, Samit Kumar

    2014-11-01

    Interpenetrating network (IPN) type hydrogels of a biopolymer and a synthetic polymer were prepared from chitosan and crosslink copolymer of acrylic acid, sodium acrylate and hydroxyethyl methacrylate. Acrylic acid, sodium acrylate, hydroxyethyl methacrylate and N'N'-methylenebisacrylamide (MBA) monomers were free radically copolymerized and crosslinked in aqueous solution of chitosan. Several IPN hydrogels were prepared by varying concentrations of initiator, crosslinker (MBA) and weight% of chitosan . These hydrogels were characterized by free acid content, pH at point of zero charge (PZC), FTIR, DTA-TGA, SEM and XRD. The swelling and diffusion characteristics, network parameters and adsorption of cationic methyl violet (MV) and anionic congo red (CR) dyes by these hydrogels were studied. The hydrogels showed high adsorption (9.5-119 mg/g for CR and 9.2-98 mg/g for MV) and removal% (98-73% for CR and 94-66% for MV) over the feed concentration of 10-140 mg/l dye in water. The isotherms and kinetics of dye adsorption by the hydrogels were also studied.

  4. Preparation and characterization of structured hydrogel microparticles based on cross-linked hyperbranched polyglycerol.

    PubMed

    Oudshoorn, Marion H M; Penterman, Roel; Rissmann, Robert; Bouwstra, Joke A; Broer, Dirk J; Hennink, Wim E

    2007-11-06

    The aim of this work was to obtain well-defined HyPG-MA (methacrylated hyperbranched polyglycerol) microparticles with uniform sizes. Therefore, three different preparation methods were evaluated. First, we assessed a micromolding technique using rigid SU-8 (a photoresist based on epoxies) grids. Independent of the surface treatment of the SU-8 grid or the type of polymer used, approximately 50% of the microgels remained attached to the SU-8 grid or broke into smaller particles during the release process in which drying of the gels was followed by a sonication process. Although 90% methacrylate conversion could be obtained, this method has some additional drawbacks as the obtained dried microgels did not rehydrate completely after the drying step. Second, a soft micromolding technique was evaluated using elastomeric PDMS (poly(dimethyl siloxane)) grids. The use of these flexible grids resulted in a high yield (80-90% yield; >90% methacrylate conversion) of microgels with a well-defined size and shape (squares 100 microm x 100 microm x 50 microm or hexagons with Ø 30 microm and a thickness of 20 microm) without the occurrence of water evaporation. However, a number of particles showed a less-defined shape as not all grids could be filled well. The microgels showed restricted swelling, implying that these gels are dimensionally stable. Third, an alternative method referred to as photolithography was evaluated. This method was suitable to tailor accurately the size and shape of HyPG-MA microgels and additionally gained 100% yield. Well-defined HyPG-MA microgels in the size range of 200-1400 microm (thickness of 6, 20, or 50 microm), with a methacrylate conversion of >90%, could easily be prepared by adding an inhibitor (e.g., 1% (w/v) of vitamin C) to the polymer solution to inhibit dark polymerization. Microgels in the size range of 30-100 microm (>90% conversion) could only be obtained when applying the photomask in direct contact with the polymer solution and

  5. A green approach to prepare silver nanoparticles loaded gum acacia/poly(acrylate) hydrogels.

    PubMed

    Bajpai, S K; Kumari, Mamta

    2015-09-01

    In this work, gum acacia (GA)/poly(sodium acrylate) semi-interpenetrating polymer networks (Semi-IPN) have been fabricated via free radical initiated aqueous polymerization of monomer sodium acrylate (SA) in the presence of dissolved Gum acacia (GA), using N,N'-methylenebisacrylamide (MB) as cross-linker and potassium persulphate (KPS) as initiator. The semi-IPNs, synthesized, were characterized by various techniques such as X-ray diffraction (XRD), thermo gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy. The dynamic water uptake behavior of semi-IPNs was investigated and the data were interpreted by various kinetic models. The equilibrium swelling data were used to evaluate various network parameters. The semi-IPNs were used as template for the in situ preparation of silver nanoparticles using extract of Syzygium aromaticum (clove). The formation of silver nanoparticles was confirmed by surface plasmon resonance (SPR), XRD and transmission electron microscopy (TEM). Finally, the antibacterial activity of GA/poly(SA)/silver nanocomposites was tested against E. coli.

  6. Preparation and characterization of silver nanoparticle loaded amorphous hydrogel of carboxymethylcellulose for infected wounds.

    PubMed

    Das, Anup; Kumar, Ajay; Patil, Niranjan B; Viswanathan, Chandra; Ghosh, Deepa

    2015-10-05

    There is a growing demand for an appropriate and safe antimicrobial dressing to treat infected deep wounds. An amorphous gel formulation (SNP-CMC), containing silver nanoparticles (SNPs) and carboxymethylcellulose (CMC), was prepared in one step by the reduction of silver nitrate in situ. Spectrophotometric and microscopic analysis revealed that the SNPs were 7-21 nm in diameter. In simulated wound experiments, SNP-CMC gel was found to absorb 80.48 ± 4.69% w/w of saline and donate 17.43 ± 0.76% w/w of moisture within 24h indicating its dual fluid affinity. Cytocompatibility of the gel was assessed by proliferation studies with primary human skin cells. The antimicrobial activity studies showed that SNP-CMC containing 50 ppm of SNPs was effective against the growth of both Gram negative and Gram positive strains including methicillin-resistant Staphylococcus aureus (MRSA). These results indicate that SNP-CMC could be ideal for the treatment of deep infected wounds.

  7. Bioresorbable and nonresorbable macroporous thermosensitive hydrogels prepared by cryopolymerization. Role of the cross-linking agent.

    PubMed

    Perez, Paloma; Plieva, Fatima; Gallardo, Alberto; San Roman, Julio; Aguilar, Maria Rosa; Morfin, Isabelle; Ehrburger-Dolle, Françoise; Bley, Francoise; Mikhalovsky, Sergey; Galaev, Igor Yu; Mattiasson, Bo

    2008-01-01

    Macroporous poly( N-isopropylacrylamide) (pNIPA) gels (so-called cryogels), cross-linked with different bis-acrylic compounds, N,N'-methylenebisacrylamide (MBAAm) and dimethacrylate-tyrosine-lysine-tyrosine (DMTLT), were prepared through free-radical polymerization at subzero temperature in dioxane/water media. DMTLT is a hydrolytically degradable cross-linker with relatively hydrophobic character. The effects of different synthesis conditions, namely the concentration of monomers, the cross-linker, and the initiator in the reaction mixture, on the structure of the pNIPA-cryogels have been studied. The equilibrium swelling ratio of the DMTLT cross-linked pNIPA cryogels at temperatures below lower critical solution temperature (LCST) of pNIPA, was over ten times higher than that of the gels synthesized at room temperature from the same feed composition. The MBAAm cross-linked pNIPA cryogels synthesized in water exhibited the highest equilibrium swelling and the fastest response. The critical transition temperature, T c, was lower ( T c approximately 31 degrees C) for pNIPA-cryogels synthesized in dioxane/water media or cross-linked with DMTLT as compared to MBAAm cross-linked pNIPA cryogels synthesized in water (T c approximately 33 degrees C). Scanning electron microscopy (SEM) revealed different porous structure and pore surface morphology depending on the cross-linker (MBAAm or DMTLT) and the solvent (water or dioxane/water) used. Gels and cryogels were also characterized by SAXS, showing that the nanostructure of the samples is related to swelling.

  8. A novel method for preparing silver nanoparticle-hydrogel nanocomposites via pH-induced self-assembly.

    PubMed

    Young Yook, Ju; Choi, Gwang-Ho; Hack Suh, Dong

    2012-05-21

    We present a novel and facile method to fabricate the silver nanoparticle (AgNP)-sodium deoxycholate (NaDOC) hybrid hydrogel from the NaDOC-stablized AgNP colloidal hydrosol via the pH-induced self-assembly.

  9. Poly(vinyl alcohol) hydrogels: their synthesis and steps towards control of electroendosmosis.

    PubMed

    Purss, Helen K; Caulfield, Marcus J; Solomon, David H; Sommer-Knudsen, Jens

    2003-01-01

    Poly(vinyl alcohol) (PVAl) hydrogel networks cross-linked with glutaraldehyde were prepared and their properties as membranes examined using a variety of techniques including preparative electrophoresis. Electroendosmosis (EEO) was observed and shown to be the result of charges on the membrane and of complexation with borate buffer ions. Investigation of "glutaraldehyde" solutions showed acid entities in, or formed in "glutaraldehyde" were responsible for EEO. Techniques for using "glutaraldehyde" which minimize EEO are described.

  10. Preparation and Characterization of Electrospun PLCL/Poloxamer Nanofibers and Dextran/Gelatin Hydrogels for Skin Tissue Engineering

    PubMed Central

    Sun, Hui; Xu, Feng

    2014-01-01

    In this study, two different biomaterials were fabricated and their potential use as a bilayer scaffold for skin tissue engineering applications was assessed. The upper layer biomaterial was a Poly(ε-caprolactone-co-lactide)/Poloxamer (PLCL/Poloxamer) nanofiber membrane fabricated using electrospinning technology. The PLCL/Poloxamer nanofibers (PLCL/Poloxamer, 9/1) exhibited strong mechanical properties (stress/strain values of 9.37±0.38 MPa/187.43±10.66%) and good biocompatibility to support adipose-derived stem cells proliferation. The lower layer biomaterial was a hydrogel composed of 10% dextran and 20% gelatin without the addition of a chemical crosslinking agent. The 5/5 dextran/gelatin hydrogel displayed high swelling property, good compressive strength, capacity to present more than 3 weeks and was able to support cells proliferation. A bilayer scaffold was fabricated using these two materials by underlaying the nanofibers and casting hydrogel to mimic the structure and biological function of native skin tissue. The upper layer membrane provided mechanical support in the scaffold and the lower layer hydrogel provided adequate space to allow cells to proliferate and generate extracellular matrix. The biocompatibility of bilayer scaffold was preliminarily investigated to assess the potential cytotoxicity. The results show that cell viability had not been affected when cocultured with bilayer scaffold. As a consequence, the bilayer scaffold composed of PLCL/Poloxamer nanofibers and dextran/gelatin hydrogels is biocompatible and possesses its potentially high application prospect in the field of skin tissue engineering. PMID:25405611

  11. Preparation and characterization of electrospun PLCL/Poloxamer nanofibers and dextran/gelatin hydrogels for skin tissue engineering.

    PubMed

    Pan, Jian-feng; Liu, Ning-hua; Sun, Hui; Xu, Feng

    2014-01-01

    In this study, two different biomaterials were fabricated and their potential use as a bilayer scaffold for skin tissue engineering applications was assessed. The upper layer biomaterial was a Poly(ε-caprolactone-co-lactide)/Poloxamer (PLCL/Poloxamer) nanofiber membrane fabricated using electrospinning technology. The PLCL/Poloxamer nanofibers (PLCL/Poloxamer, 9/1) exhibited strong mechanical properties (stress/strain values of 9.37 ± 0.38 MPa/187.43 ± 10.66%) and good biocompatibility to support adipose-derived stem cells proliferation. The lower layer biomaterial was a hydrogel composed of 10% dextran and 20% gelatin without the addition of a chemical crosslinking agent. The 5/5 dextran/gelatin hydrogel displayed high swelling property, good compressive strength, capacity to present more than 3 weeks and was able to support cells proliferation. A bilayer scaffold was fabricated using these two materials by underlaying the nanofibers and casting hydrogel to mimic the structure and biological function of native skin tissue. The upper layer membrane provided mechanical support in the scaffold and the lower layer hydrogel provided adequate space to allow cells to proliferate and generate extracellular matrix. The biocompatibility of bilayer scaffold was preliminarily investigated to assess the potential cytotoxicity. The results show that cell viability had not been affected when cocultured with bilayer scaffold. As a consequence, the bilayer scaffold composed of PLCL/Poloxamer nanofibers and dextran/gelatin hydrogels is biocompatible and possesses its potentially high application prospect in the field of skin tissue engineering.

  12. Morphological effect on swelling behaviour of hydrogel

    SciTech Connect

    Yacob, Norzita; Hashim, Kamaruddin

    2014-02-12

    Hydrogels are hydrophilic polymer networks that are capable of imbibing large amounts of water. In this work, hydrogels prepared from natural and synthetic polymers were irradiated by using electron beam irradiation. The morphology of hydrogel inter-polymeric network (IPN) was investigated using Scanning Electron Microscopy (SEM). The studies reveal correlations between pore sizes of IPN with degree of cross-linking. This relation also has an effect on swelling properties of the hydrogel. The results indicated that hydrogel with smaller pore size, as a result of much dense IPN, would decrease water uptake capacity. Combination of natural and synthetic polymers to form hydrogel affects the pore size and swelling property of the hydrogel as compared to each component of polymer.

  13. Tough photoluminescent hydrogels doped with lanthanide.

    PubMed

    Wang, Mei Xiang; Yang, Can Hui; Liu, Zhen Qi; Zhou, Jinxiong; Xu, Feng; Suo, Zhigang; Yang, Jian Hai; Chen, Yong Mei

    2015-03-01

    Photoluminescent hydrogels have emerged as novel soft materials with potential applications in many fields. Although many photoluminescent hydrogels have been fabricated, their scope of usage has been severely limited by their poor mechanical performance. Here, a facile strategy is reported for preparing lanthanide (Ln)-alginate/polyacrylamide (PAAm) hydrogels with both high toughness and photoluminescence, which has been achieved by doping Ln(3+) ions (Ln = Eu, Tb, Eu/Tb) into alginate/PAAm hydrogel networks, where Ln(3+) ions serve as both photoluminescent emitters and physical cross-linkers. The resulting hydrogels exhibit versatile advantages including excellent mechanical properties (∼ MPa strength, ≈ 20 tensile strains, ≈ 10(4) kJ m(-3) energy dissipation), good photoluminescent performance, tunable emission color, excellent processability, and cytocompatibility. The developed tough photoluminescent hydrogels hold great promises for expanding the usage scope of hydrogels.

  14. Preparation of thermosensitive hydrogel (PP-g-NIPAAm) with one-off switching for controlled release of drugs

    NASA Astrophysics Data System (ADS)

    Minghong, Wu; Bao, Borong; Chen, Jie; Xu, Yinjuan; Zhou, Shiru; Ma, Zue-Teh

    1999-09-01

    A novel thermosensitive hydrogel with high mechanical strength was obtained by grafting N-isopropylacrylamide (NIPAAm) onto polypropylene using a preirradiation grafting method. The effect of radiation dose, dose rate, grafting temperature and reaction time on the grafting degree and properties of swelling-deswelling is discussed. Water absorption of the grafted polypropylene film could be switched on and off swiftly by control of temperature. The microstructure of grafted ultra thin porous PP film was studied with scanning electron microscope.

  15. Preparation of three-bore hollow fiber charged nanofiltration membrane for separation of organics and salts.

    PubMed

    Deng, Jianmian; Zhang, Yatao; Liu, Jindun; Zhang, Haoqin

    2012-01-01

    Three-bore hollow fiber charged nanofiltration (NF) membrane was prepared by interfacial polymerization (IP). The results showed that the flux and rejection of NF membrane prepared in this study increased with the increasing in the operating pressure. The water flux decreased and rejection for obvious dyes increased as the solute concentration increased. The separation factor for mixture of Xylenol orange/NaCl decreased when NaCl concentration in solution increased and could reach to as high as 18. In addition, three-bore hollow fiber charged nanofiltration membrane prepared in this study has excellent stability for strong acid (pH = 3), strong alkali (pH = 11) and high temperature solution (80 °C).

  16. Deflection and the Dielectrophoresis Force of Multi-Wall Carbon Nanotube/Gelatin Hydrogel Composites under Electric Field

    NASA Astrophysics Data System (ADS)

    Tungkavet, Thawatchai; Sirivat, Anuvat; Conductive and Electroactive Polymers Research Unit Team

    2013-03-01

    The Multi-wall carbon nanotubes (MWNT) /gelatin hydrogel composites are prepared by the dispersion of MWNT into the gelatin aqueous solution with sodium dodecyl sulfate (SDS) and by the solvent casting. The effect of electric field strength on the deflection distance and the dielectrophoresis force of the MWNT/gelatin hydrogel composites are investigated. The dielectrophoresis force, using a vertical cantilever fixture, is determined by measuring the deflection of the specimen under applied electric field strengths between 0 and 600 V/mm. The dielectrophoresis force of the MWNT/gelatin hydrogel composites and pure gelatin hydrogel increase monotonically with electric field strength. The deflection suggests the attractive interaction between the anode and the polarlized caboxyl group, in which the gelatin structure possesses negative charges. Surprisingly, the 1vol%MWNT/gelatin hydrogel composite has a smaller deflection and response under the applied electric field than those of the 0.1vol%MWNT/gelatin hydrogel composite and the pure gelatin hydrogel, due to the diminishing particle polarization by agglomeration. The Petroleum and Petrochemical college, National Metal and MaterialsTechnology Center

  17. Preparation and swelling behavior of a novel self-assembled β-cyclodextrin/acrylic acid/sodium alginate hydrogel.

    PubMed

    Huang, Zhanhua; Liu, Shouxin; Zhang, Bin; Wu, Qinglin

    2014-11-26

    A novel biodegradable β-cyclodextrin/acrylic acid/sodium alginate (CSA) hydrogel with a three-dimensional network structure was self-assembled by inverse suspension copolymerization. The CSA resin was pH sensitive and had good water absorption properties in pH 6-8 buffer solutions. At a β-CD:AA:SA mass ratio of 1:9:3 the CSA water absorbency was found to be 1403 g/g and the CSA hydrogel strength was 4.968 N. In 0.005-0.1 mol/L chloride salt and sulfate salt solutions the CSA water absorbencies increased as follows: NaCl>KCl>MgCl2>CaCl2>FeCl3, and Na2SO4>K2SO4>FeSO4>Al2(SO4)3, respectively. The release of water from the CSA hydrogel occurred slowly over 120 h. The biodegradation efficiency of the resin reached 85.3% for Lentinula edodes. The super water absorbency, good salt resistance and excellent water retention properties of CSA make it suitable for application as an agricultural water retention agent in saline soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Preparation of a self-supporting cell architecture mimic by water channel confined photocrosslinking within a lamellar structured hydrogel.

    SciTech Connect

    Grubjesic, S.; Lee, B.; Seifert, S.; Firestone, M. A.

    2011-01-01

    A self-supporting biomimetic chemical hydrogel that can be reversibly swollen in water is described. An aqueous dispersion of a diacrylate end-derivatized PEO-PPO-PEO macromer, a saturated phospholipid, and a zwitterionic co-surfactant self-assembles into a multilamellar-structured physical gel at room temperature as determined by SAXS. The addition of a water soluble PEGDA co-monomer and photoinitiator within the water layers does not alter the self-assembled structure. ATR/FT-IR spectroscopy reveals that photoirradiation initiates the crosslinking between the acrylate end groups on the macromer with the PEGDA, forming a polymeric network within the aqueous domains. The primitive cytoskeleton mimic serves to stabilize the amphiphile bilayer, converting the physical gel into an elastic self-supporting chemical gel. Storage under ambient conditions causes dehydration of the hydrogel to 5 wt % water which can be reversed by swelling in water. The fully water swollen gel (85 wt % water) remains self-supporting but converts to a non-lamellar structure. As water is lost the chemical gel regains its lamellar structure. Incubation of the hydrogel in nonpolar organic solvents that do not dissolve the uncrosslinked lipid component (hexane) allow for swelling without loss of structural integrity. Chloroform, which readily solubilizes the lipid, causes irreversible loss of the lamellar structure.

  19. Preparation and Self-Assembly Mechanism of Bovine Serum Albumin-Citrus Peel Pectin Conjugated Hydrogel: A Potential Delivery System for Vitamin C.

    PubMed

    Peng, Hailong; Chen, Sha; Luo, Mei; Ning, Fangjian; Zhu, Xuemei; Xiong, Hua

    2016-10-05

    In this study, a novel hydrogel (BSA-pectin hydrogel, BPH) was prepared via a self-assembly method by using the natural polymers of bovine serum albumin (BSA) and citrus peel pectin (pectin). The rheological properties and gel conformational structures were determined and showed that electrostatic and covalent interactions between BSA and pectin were the main mechanisms for the formation of BPH. The morphological characteristics of BPH included a stable and solid three-dimensional network structure with a narrow size distribution (polydispersity index <0.06). BPH was used as a delivery system to load the functional agent vitamin C (Vc). The encapsulation efficiency (EE) and release properties of Vc from BPH were also investigated. The results revealed that the EE of Vc into BPH was approximately 65.31%, and the in vitro Vc release from BPH was governed by two distinct stages (i.e., burst release and sustained release) in different pH solutions, with release mechanisms involving diffusion, swelling, and erosion. Meanwhile, the stability results showed that BPH was a stable system with an enhanced Vc retention (73.95%) after 10 weeks of storage. Thus, this three-dimensional network system of BPH may be a potential delivery system to improve the stability and bioavailability of functional agents in both food and non-food fields.

  20. Energy conversion in polyelectrolyte hydrogels

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica; Erbas, Aykut; Olvera de la Cruz Team

    Energy conversion and storage have been an active field of research in nanotechnology parallel to recent interests towards renewable energy. Polyelectrolyte (PE) hydrogels have attracted considerable attention in this field due to their mechanical flexibility and stimuli-responsive properties. Ideally, when a hydrogel is deformed, applied mechanical work can be converted into electrostatic, elastic and steric-interaction energies. In this talk, we discuss the results of our extensive molecular dynamics simulations of PE hydrogels. We demonstrate that, on deformation, hydrogels adjust their deformed state predominantly by altering electrostatic interactions between their charged groups rather than excluded-volume and bond energies. This is due to the hydrogel's inherent tendency to preserve electro-neutrality in its interior, in combination with correlations imposed by backbone charges. Our findings are valid for a wide range of compression ratios and ionic strengths. The electrostatic-energy alterations that we observe in our MD simulations may induce pH or redox-potential changes inside the hydrogels. The resulting energetic difference can be harvested, for instance, analogously to a Carnot engine, or facilitated for sensor applications. Center for Bio-inspired Energy Science (CBES).

  1. Preparation of agarose with low net negative charge density using an inexpensive anion exchanger.

    PubMed

    Polson, A; Swart, P; Spies, H S; van der Merwe, K J

    1986-01-01

    A method of preparing agarose of low net negative charge density by the use of Chromium tanned gelatin is described. Using commercial agarose (agarose c) as standard of comparison the product has a sulphate content approximately 0.1 that of agarose c and its pyruvate content was reduced to zero as shown by NMR in DMSO. The product was still able to adsorb and desorb serum glycoproteins similar to agarose c indicating that charge on the agarose c gel particles played a minor role if any on the binding of the serum glycoproteins.

  2. A Hydrogel Derived From Decellularized Dermal Extracellular Matrix

    PubMed Central

    Wolf, Matthew T.; Daly, Kerry A.; Brennan-Pierce, Ellen P.; Johnson, Scott A.; Carruthers, Christopher; D’Amore, Antonio; Nagarkar, Shailesh P.; Velankar, Sachin S.; Badylak, Stephen F.

    2012-01-01

    The ECM of mammalian tissues has been used as a scaffold to facilitate the repair and reconstruction of numerous tissues. Such scaffolds are prepared in many forms including sheets, powders, and hydrogels. ECM hydrogels provide advantages such as injectability, the ability to fill an irregularly shaped space, and the inherent bioactivity of native matrix. However, material properties of ECM hydrogels and the effect of these properties upon cell behavior are neither well understood nor controlled. The objective of this study was to prepare and determine the structure, mechanics, and the cell response in vitro and in vivo of ECM hydrogels prepared from decellularized porcine dermis and urinary bladder tissues. Dermal ECM hydrogels were characterized by a more dense fiber architecture and greater mechanical integrity than urinary bladder ECM hydrogels, and showed a dose dependent increase in mechanical properties with ECM concentration. In vitro, dermal ECM hydrogels supported greater C2C12 myoblast fusion, and less fibroblast infiltration and less fibroblast mediated hydrogel contraction than urinary bladder ECM hydrogels. Both hydrogels were rapidly infiltrated by host cells, primarily macrophages, when implanted in a rat abdominal wall defect. Both ECM hydrogels degraded by 35 days in vivo, but UBM hydrogels degraded more quickly, and with greater amounts of myogenesis than dermal ECM. These results show that ECM hydrogel properties can be varied and partially controlled by the scaffold tissue source, and that these properties can markedly affect cell behavior. PMID:22789723

  3. Charge Retention by Monodisperse Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions

    NASA Astrophysics Data System (ADS)

    Johnson, Grant; Priest, Thomas; Laskin, Julia

    2012-02-01

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Gold clusters were synthesized in methanol solution by reduction of a gold precursor with a weak reducing agent in the presence of a diphosphine capping ligand. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (SIMS) it is demonstrated that the cluster retains its 3+ charge state when soft landed onto the surface of a fluorinated self assembled monolayer on gold. In contrast, when deposited onto carboxylic acid terminated and conventional alkyl thiol surfaces on gold the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the surface have been investigated using in-situ Fourier Transform Ion Cyclotron Resonance SIMS. It is shown that an extremely slow interfacial charge reduction occurs on the fluorinated monolayer surface while an almost instantaneous neutralization takes place on the surface of the alkyl thiol monolayer. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected ions onto selected substrates.

  4. Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release.

    PubMed

    Wang, Qin; Xie, Xiaoling; Zhang, Xiaowei; Zhang, Junping; Wang, Aiqin

    2010-04-01

    A series of pH-sensitive composite hydrogel beads, chitosan-g-poly (acrylic acid)/vermiculite/sodium alginate (CTS-g-PAA/VMT/SA), was prepared using CTS-g-PAA/VMT composite and SA by Ca(2+) as the crosslinking agent. The structure and morphologies of the developed composite hydrogel beads were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The swelling properties and pH-sensitivity of the beads were investigated. In addition, the drug loading and controlled release behaviors of the beads were also evaluated using diclofenac sodium (DS) as the model drug in stimulated gastric fluids (pH 2.1) and intestinal fluids (pH 6.8). The results indicate that the composite hydrogel beads showed good pH-sensitivity. The release rate of the drug from the composite hydrogel beads is remarkably slowed down, which indicated that incorporating VMT into the composite hydrogel beads can improve the burst release effect of the drug.

  5. Discharge and charge characteristics of amorphous FeOOH including aniline (a{sub an}-FeOOH). Influence of preparation conditions on discharge and charge characteristics

    SciTech Connect

    Sakaebe, Hikari; Higuchi, Shunichi; Kanamura, Kiyoshi; Fujimoto, Hiroyuki; Takehara, Zenichiro

    1995-02-01

    The effect of the preparation conditions for amorphous FEOOH including aniline (a{sub an}-FeOOH) on its discharge and charge characteristics as a cathode material for a rechargeable lithium battery was investigated to improve the discharge and charge characteristics. The a{sub an}-FeOOH was prepared in solutions containing different Concentrations of aniline, or in solutions with different pH. From the discharge and charge characteristics of these products, it can be seen that the discharge capacity depends on the pH of the reaction solution rather than the concentration of aniline.

  6. Local charge transport properties of hydrazine reduced monolayer graphene oxide sheets prepared under pressure condition

    SciTech Connect

    Ryuzaki, Sou Meyer, Jakob A. S.; Petersen, Søren; Nørgaard, Kasper; Hassenkam, Tue; Laursen, Bo W.

    2014-09-01

    Charge transport properties of chemically reduced graphene oxide (RGO) sheets prepared by treatment with hydrazine were examined using conductive atomic force microscopy. The current-voltage (I-V) characteristics of monolayer RGO sheets prepared under atmospheric pressure followed an exponentially increase due to 2D variable-range hopping conduction through small graphene domains in an RGO sheet containing defect regions of residual sp{sup 3} carbon clusters bonded to oxygen groups, whereas RGO sheets prepared in a closed container under moderate pressure showed linear I-V characteristics with a conductivity of 267.2−537.5 S/m. It was found that the chemical reduction under pressure results in larger graphene domains (sp{sup 2} networks) in the RGO sheets when compared to that prepared under atmospheric pressure, indicating that the present reduction of GO sheets under the pressure is one of the effective methods to make well-reduced GO sheets.

  7. Charge Retention by Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-01-24

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Ligand-stabilized gold clusters were prepared in methanol solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine complex in the presence of 1,3-bis(diphenylphosphino)propane. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species (Au11L53+, L = 1,3-bis(diphenylphosphino)propane) which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (TOF-SIMS) it is demonstrated that the Au11L53+ cluster retains its 3+ charge state when soft landed onto the surface of a 1H,1H,2H,2H-

  8. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles

    NASA Astrophysics Data System (ADS)

    Nowak, Andrew P.; Breedveld, Victor; Pakstis, Lisa; Ozbas, Bulent; Pine, David J.; Pochan, Darrin; Deming, Timothy J.

    2002-05-01

    Protein-based hydrogels are used for many applications, ranging from food and cosmetic thickeners to support matrices for drug delivery and tissue replacement. These materials are usually prepared using proteins extracted from natural sources, which can give rise to inconsistent properties unsuitable for medical applications. Recent developments have utilized recombinant DNA methods to prepare artificial protein hydrogels with specific association mechanisms and responsiveness to various stimuli. Here we synthesize diblock copolypeptide amphiphiles containing charged and hydrophobic segments. Dilute solutions of these copolypeptides would be expected to form micelles; instead, they form hydrogels that retain their mechanical strength up to temperatures of about 90°C and recover rapidly after stress. The use of synthetic materials permits adjustment of copolymer chain length and composition, which we varied to study their effect on hydrogel formation and properties. We find that gelation depends not only on the amphiphilic nature of the polypeptides, but also on chain conformations-α-helix, β-strand or random coil. Indeed, shape-specific supramolecular assembly is integral to the gelation process, and provides a new class of peptide-based hydrogels with potential for applications in biotechnology.

  9. Hemostatic potential of natural/synthetic polymer based hydrogels crosslinked by gamma radiation

    NASA Astrophysics Data System (ADS)

    Barba, Bin Jeremiah D.; Tranquilan-Aranilla, Charito; Abad, Lucille V.

    2016-01-01

    Various raw materials and hydrogels prepared from their combination were assessed for hemostatic capability using swine whole blood clotting analysis. Initial screening showed efficient coagulative properties from κ-carrageenan and its carboxymethylated form, and α-chitosan, even compared to commercial products like QuikClot Zeolite Powder. Blending natural and synthetic polymers formed into hydrogels using gamma radiation produced materials with improved properties. KC and CMKC hydrogels were found to have the lowest blood clotting index in granulated form and had the higher capacity for platelet adhesion in foamed form compared to GelFoam. Possible mechanisms involved in the evident thrombogenicity of the materials include adsorption of platelets and related proteins that aid in platelet activation (primary hemostasis), absorption of water to concentrate protein factors that control the coagulation cascade, contact activation by its negatively charged surface and the formation of gel-blood clots.

  10. Soy-Based Hydrogels for Biomedical Applications

    USDA-ARS?s Scientific Manuscript database

    Soy based hydrogels were prepared by ring-opening polymerization of epoxidized soybean oil, flowing hydrolysis of formed polymer. The hydrogels were evaluated loading and release water-soluble anticancer drug doxorubin (Dox). The results suggested that this new system may offer great potential to ...

  11. Soy-based Hydrogels for Biomedical Applications

    USDA-ARS?s Scientific Manuscript database

    Soy based hydrogels were prepared by ring-opening polymerization of epoxidized soybean oil, following hydrolysis of formed polymers. The hydrogels were evaluated loading and releasing water-soluble anticancer drug doxorubin (Dox). The results suggest that this new system offers a great potential t...

  12. Preparation and in vitro characterization of dexamethasone-loaded poly(D,L-lactic acid) microspheres embedded in poly(ethylene glycol)-poly({varepsilon}-caprolactone)-poly(ethylene glycol) hydrogel for orthopedic tissue engineering.

    PubMed

    Fan, Min; Guo, QingFa; Luo, JingCong; Luo, Feng; Xie, Ping; Tang, XiaoHai; Qian, ZhiYong

    2013-08-01

    The corium is decreased to about half of its thickness in skin defects and wrinkles due to gravity and environment. In this study, dexamethasone/poly(d,l-lactic acid) (Mn = 160,000) microspheres were incorporated into poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) (Mn = 3300) hydrogel to prepare an injectable hydrogel composite. The composite was designed to increase the thickness of the corium. Dexamethasone/poly(d,l-lactic acid) microspheres were prepared by oil-in-water emulsion/solvent evaporation technique. The properties of microspheres were investigated by size distribution measurement, scanning electron microscope and x-ray diffraction. Drug loading, encapsulation efficiency, and drug delivery behavior of microspheres were also studied in detail. Cell adhesion of microspheres was investigated by NIH3T3 cell in vitro. The properties of hydrogel composite were investigated by scanning electron microscope, rheological measurements and methyl thiazolyl tetrazolium assay. Drug release from composite was determined by HPLC-UV analysis. These results suggested that poly(d,l-lactic acid) microspheres encapsulating dexamethasone embedded in poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) hydrogel might have prospective application in orthopedic tissue engineering field.

  13. Cytocompatible cellulose hydrogels containing trace lignin.

    PubMed

    Nakasone, Kazuki; Kobayashi, Takaomi

    2016-07-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43N/mm(2) and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Study on a Photonic Crystal Hydrogel Material for Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Xu, Jia-Yu; Yan, Chun-Xiao; Hu, Xiao-Chun; Liu, Chao; Tang, Hua-Min; Zhou, Chao-Hua; Xue, Fei

    2014-01-01

    There is intense interest in the applications of photonic crystal hydrogel materials for the detection of glucose, metal ions, organophosphates and so on. In this paper, monodisperse polystyrene spheres with diameters between 100 440 nm were synthesized by emulsion polymerization. Highly charged polystyrene spheres readily self-assembled into crystalline colloidal array because of electrostatic interactions. Photonic crystal hydrogel materials were formed by polymerization of acrylamide hydrogel around the crystalline colloidal arrays of polystyrene spheres. After chemical modification of hydrogel backbone with carboxyl groups, our photonic crystals hydrogel materials are demonstrated to be excellent in response to pH and ionic strength changes.

  15. Conductive hydrogel containing 3-ionene

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor)

    1977-01-01

    Cationic polyelectrolytes formed by the polymerization in absence of oxygen of a monomer of the general formula: dispersed ##STR1## where x is 3 or more than 6 and Z is I, Br or Cl to form high charge density linear polymers are dispered in a water-soluble polymer such as polyvinyl alcohol to form a conductive hydrogel.

  16. Preparation and properties of a hydrogel of maleated poly(vinyl alcohol) (PVAM) grafted with cassava starch.

    PubMed

    Riyajan, Sa-Ad; Sukhlaaied, Wattana; Keawmang, Woranut

    2015-05-20

    A novel pH-sensitive graft copolymer (PVAM-g-CSt) was synthesized from maleated poly(vinyl alcohol) (PVAM) and cassava starch (CSt) through a grafting reaction using potassium persulfate as a thermal initiator. The chemical structure of the PVAM-g-CSt was revealed by FTIR and ether linkage of the graft copolymer was observed at 1089 cm(-1). The degree of grafting of the copolymer was found to range between 40 and 82%, depending on the PVAM/CSt ratio. The highest tensile strength was found at a ratio of 9:1 PVAM/CSt. In addition, the swelling ratio in water increased with increasing proportions of CSt in the PVAM-g-CSt due to the decrease in the degree of grafting. The resulting hydrogel exhibits good pH sensitivity in different pH mediums. The graft copolymer easily degraded in natural soil, especially at high proportions of CSt in the blend.

  17. Poly(ethylene glycol) grafted polylactide based copolymers for the preparation of PLA-based nanocarriers and hybrid hydrogels.

    PubMed

    Riva, Raphaël; Schmeits, Stéphanie; Croisier, Florence; Lecomte, Philippe; Jérôme, Christine

    2015-01-01

    In previous works, poly(D,L-lactide-co-ɛCL-poly(ethylene glycol) (poly(D,L-La-co-αPEGɛCL) amphiphilic graft-copolymers were successfully synthesized according to a copper azide-alkyne cycloaddition (CuAAC) strategy. This paper aims at reporting on the behavior of this amphiphilic copolymer in water, which was not studied in the previous paper. Moreover, the ability of the copolymer to stabilize a PLA nanoparticles aqueous suspension is presented. For this purpose, dynamic light scattering (DLS) and transmission electron microscopy (TEM) are proposed to characterize the nanoparticles in solution. Otherwise, the strategy developed for the synthesis of the amphiphilic copolymers was adapted and extended to the synthesis of PLA-based degradable hydrogel, potentially applicable as drug-loaded degradable polymer implant.

  18. Learning from Synthetic Models of Extracellular Matrix; Differential Binding of Wild Type and Amyloidogenic Human Apolipoprotein A-I to Hydrogels Formed from Molecules Having Charges Similar to Those Found in Natural GAGs.

    PubMed

    Rosú, Silvana A; Toledo, Leandro; Urbano, Bruno F; Sanchez, Susana A; Calabrese, Graciela C; Tricerri, M Alejandra

    2017-08-01

    Among other components of the extracellular matrix (ECM), glycoproteins and glycosaminoglycans (GAGs) have been strongly associated to the retention or misfolding of different proteins inducing the formation of deposits in amyloid diseases. The composition of these molecules is highly diverse and a key issue seems to be the equilibrium between physiological and pathological events. In order to have a model in which the composition of the matrix could be finely controlled, we designed and synthesized crosslinked hydrophilic polymers, the so-called hydrogels varying the amounts of negative charges and hydroxyl groups that are prevalent in GAGs. We checked and compared by fluorescence techniques the binding of human apolipoprotein A-I and a natural mutant involved in amyloidosis to the hydrogel scaffolds. Our results indicate that both proteins are highly retained as long as the negative charge increases, and in addition it was shown that the mutant is more retained than the Wt, indicating that the retention of specific proteins in the ECM could be part of the pathogenicity. These results show the importance of the use of these polymers as a model to get deep insight into the studies of proteins within macromolecules.

  19. Dual ionic interaction system based on polyelectrolyte complex and ionic, injectable, and thermosensitive hydrogel for sustained release of human growth hormone.

    PubMed

    Park, Mi-Ran; Seo, Bo-Bae; Song, Soo-Chang

    2013-01-01

    A dual ionic interaction system composed of a positively charged polyelectrolyte complex (PEC) containing human growth hormone (hGH) and anionic thermosensitive hydrogel has been suggested for sustained delivery of bioactive hGH. The PEC was prepared by ionic interaction between negatively charged hGH and positively charged protamine sulfate (PS) to suppress diffusion of hGH. Moreover, we loaded the positively charged PEC into an anionic, injectable, and thermosensitive poly(organophosphazene) hydrogel to enhance sustained release of hGH by dual ionic interactions. PS formed a spherical complex with hGH, and their ionic interaction grew stronger with increasing amounts of PS. From a weight ratio of 0.5, the PS/hGH complex had a size and zeta-potential that were constantly maintained around 500 nm and +8 mV, respectively, in 0.9% NaCl. The PEC-loaded hydrogels suppressed the initial burst release of hGH and extended the release period in vitro and in vivo. In a pharmacokinetic study in rats, the PEC-loaded anionic hydrogel extended half-life 13-fold with similar area under the curve (AUC) compared to hGH solution. Furthermore, single injection of PEC-loaded anionic hydrogel showed a more increased growth rate than daily injection of hGH solution for 7 days in hypophysectomized rats, demonstrating its potential as an injectable, sustained delivery system that can release bioactive hGH.

  20. Enzyme-sensing chitosan hydrogels.

    PubMed

    Sadat Ebrahimi, Mir Morteza; Schönherr, Holger

    2014-07-08

    We report on a chitosan hydrogel-based platform for the detection of enzymes, which is compatible with the implementation in infection-sensing wound dressings. Thin films of the established wound dressing biopolymer chitosan were functionalized with a fluorogenic substrate, which is released upon enzymatic degradation, resulting in a pronounced increase in fluorescence emission intensity. In this first model study, the fluorogenic substrate alanyl-alanyl-phenylalanine-7-amido-4-methylcoumarin (AAP-AMC) was covalently conjugated via amide bond formation to chitosan and was shown to facilitate the detection of the serine protease α-chymotrypsin. Systematic investigations established the dependence of hydrogel thickness and substrate loading on the hydrogel preparation conditions, as well as the dependence of the rate of the reaction on the initial enzyme concentration and the loading of AAP-AMC in the hydrogel. The initial release rate of the fluorophore 7-AMC was found to be linear with enzyme concentration and substrate loading and was independent of hydrogel thickness. Under optimized conditions the hydrogel reports the presence of α-chymotrypsin in <5 min with a limit of detection of ≤10 nM. This generic approach, which can be adapted to detect different kinds of enzymes by using appropriate fluorogenic or chromogenic substrates, is highly interesting for targeting the detection of specific pathogenic bacteria, e.g., in wound dressings.

  1. A thermosensitive chitosan-based hydrogel for controlled release of insulin

    NASA Astrophysics Data System (ADS)

    Gao, Ting-Ting; Kong, Ming; Cheng, Xiao-Jie; Xia, Gui-Xue; Gao, Yuan-Yuan; Chen, Xi-Guang; Cha, Dong Su; Park, Hyun Jin

    2014-06-01

    Present study aims at synthesizing a thermosensitive hydrogel for controlled release of insulin. According to a modified method, hydroxybutyl chitosan (HBC) hydrogel possessed thermal sensitivity is prepared which can form hydrogel at over 25°C. The HBC hydrogel is non-cytotoxic to mice fibroblasts cells (L929). Insulin is 100% entrapped in the hydrogel, 38% of which is released in vitro from the concentration of 5% hydrogel after 48 h, whereas by enzymolysis with lysozyme, 80% of the total insulin is released after 48 h. This study suggests that HBC hydrogel could be utilized for controlled release of insulin in a non-invasive manner.

  2. Novel stereocomplexed sol-gel transition hydrogels prepared from physical packing of self-assembled PEO-PPO-PEO and PPO-PEO-PPO copolymer nanoscale micelles.

    PubMed

    Lee, Yuhan; Park, Sung Young; Park, Tae Gwan

    2008-10-01

    A new class of stereocomplex-induced hydrogels was synthesized based on self-assembled PEO-PPO-PEO and PPO-PEO-PPO copolymers having multiple hydroxyl groups in the PPO segment. The copolymers were grafted with enantiomeric oligo(L-lactic acid) or oligo(D-lactic acid) chains using ring opening polymerization onto the PPO segment. WAXS and DSC analysis were used to investigate the stereocomplex formation of the equimolar mixture of the copolymers. The copolymer hydrogels having stereocomplexed crystalline domains as crosslinking loci exhibited significantly altered temperature-sensitive sol-gel transition behaviors, and showed more delayed erosion and sustained protein release behaviors, compared to Pluronic F127 copolymer hydrogels. The current hydrogels are expected to be used as useful injectable hydrogel materials for macromolecular drug delivery.

  3. Preparation, Modification, and Characterization of Alginate Hydrogel with Nano-/Microfibers: A New Perspective for Tissue Engineering

    PubMed Central

    Palma Santana, Bianca; Piva, Evandro; Varella de Carvalho, Rodrigo; Fernando Demarco, Flávio; Lenin Villarreal Carreño, Neftali

    2013-01-01

    We aimed to develop an alginate hydrogel (AH) modified with nano-/microfibers of titanium dioxide (nfTD) and hydroxyapatite (nfHY) and evaluated its biological and chemical properties. Nano-/microfibers of nfTD and nfHY were combined with AH, and its chemical properties were evaluated by FTIR spectroscopy, X-ray diffraction, energy dispersive X-Ray analysis, and the cytocompatibility by the WST-1 assay. The results demonstrate that the association of nfTD and nfHY nano-/microfibers to AH did not modified the chemical characteristics of the scaffold and that the association was not cytotoxic. In the first 3 h of culture with NIH/3T3 cells nfHY AH scaffolds showed a slight increase in cell viability when compared to AH alone or associated with nfTD. However, an increase in cell viability was observed in 24 h when nfTD was associated with AH scaffold. In conclusion our study demonstrates that the combination of nfHY and nfTD nano-/microfibers in AH scaffold maintains the chemical characteristics of alginate and that this association is cytocompatible. Additionally the combination of nfHY with AH favored cell viability in a short term, and the addition of nfTD increased cell viability in a long term. PMID:23862142

  4. Energy Conversion in Polyelectrolyte Hydrogels

    SciTech Connect

    Erbas, Aykut; Olvera de la Cruz, Monica

    2015-08-18

    Using extensive molecular dynamics simulations of polyelectrolyte hydrogels we demonstrate that, on deformation, these hydrogels adjust their deformed state predominantly by altering electrostatic interactions between their charged groups rather than excluded-volume and bond energies. On deformation, due to the hydrogel’s inherent tendency to preserve electroneutrality in its interior, the translational entropy of counterions decreases and the total electrostatic energy becomes more attractive. This result is valid for a wide range of compression ratios and Bjerrum lengths. The change in the electrostatic energy is more marked in highly swollen gels at low ionic strengths. At high Bjerrum lengths, where most of the counterions are condensed on hydrogel chains and the gel resembles a neutral system, the electrostatic-energy change with deformation is weaker.

  5. Film electrode prepared from oppositely charged silicate submicroparticles and carbon nanoparticles for selective dopamine sensing.

    PubMed

    Celebanska, Anna; Tomaszewska, Dorota; Lesniewski, Adam; Opallo, Marcin

    2011-07-15

    Film electrodes prepared from oppositely charged silicate submicroparticles and carbon nanoparticles was applied for selective dopamine sensing. Mesoporous silicate submicroparticles with tetraalkylammonium functionalities were prepared by sol-gel method. They were immobilised on an indium tin oxide film surface together with phenylsulphonated carbon nanoparticles by layer-by-layer method: alternative immersion into their suspensions. As it is shown by scanning electron microscopy the obtained film is composed of silicate submicroparticles covered by carbon nanoparticles. The nanoparticulate film is stable and its electroactive surface is significantly larger than substrate. Accumulation of redox active cations indicates that only fraction charged functionalities of carbon nanoparticles are employed in film formation. The obtained electrode exhibits catalytic properties towards dopamine oxidation and its interferences as ascorbic acid, uric acid and acetaminophen. This allows for selective determination of tenth micromolar concentration of dopamine in the presence of these interferences at milimolar level. The detection limit and linear range were determined to 0.1 × 10⁻⁶ mol dm⁻³ and 0.3-18 × 10⁻⁶ mol dm⁻³ respectively.

  6. Non-diffusing radiochromic leuco-crystal violet hydrogel dosimeter

    NASA Astrophysics Data System (ADS)

    Jordan, K. J.; Lindenmaier, T.; Dekker, K. H.

    2017-05-01

    A systematic study to prepare mixed-micelle, radiochromic hydrogels found that non-diffusing dosimeters can be prepared. Subsequent experiments determined that sodium dodecyl sulfate (SDS) a negatively charged surfactant, binds positively charged crystal violet dye to gelatin below the critical micelle concentration. A typical formulation includes: 4% gelatin by mass, 1 mM hydrogen peroxide, 1 mM SDS, 1 mM leuco crystal violet (LCV) and 25 mM trichloroacetic acid (TCAA). This transparent material has an initial attenuation coefficient of 0.08 cm-1 and dose sensitivity of 0.015 cm-1 Gy-1. Which is a doubling of the dose sensitivity from the initial formulation with uncharged Triton X100 micelles. Reconstructed beam profiles from 3D optical CT scans performed 1, 14 and 85 hours post irradiation demonstrate no diffusion of the recorded dose distribution.

  7. Magnetic hydrogel with high coercivity

    SciTech Connect

    Sözeri, H.; Alveroğlu, E.; Kurtan, U.; Şenel, M.; Baykal, A.

    2013-08-01

    Highlights: • Polyacrylamide (PAAm) hydrogels containing magnetic BaFe{sub 12}O{sub 19} nanoparticles have been prepared. • Magnetization measurements reveal that hydrogels have hard magnetic properties with high coercivity. • Magnetic nanoparticles makes the gel more homogeneous and do not diffuse out of the gel during water intake. • These gels are useful in applications as wastewater treatment once gels are magnetized before its usage. - Abstract: This study investigates the synthesis and characterization of polyacrylamide (PAAm) hydrogels containing magnetic BaFe{sub 12}O{sub 19} nanoparticles. Structural, electrical, and magnetic characterization of the gels have been performed with X-ray powder diffractometry, scanning electron microscopy, DC conductivity, magnetization and fluorescence spectroscopy techniques. The preparation and characterization of polyacrylamide (PAAm) hydrogels that contain 5 and 10 mg BaFe{sub 12}O{sub 19} (16 and 21 nm diameter) nanoparticles are described herein. It is seen from the fluorescence spectra that, nanoparticles surrounded to pyranine molecules so that some of pyranine molecules could not bound to the polymer strands. Electrical measurements show that presence of nanoparticles make the gel more homogeneous. Magnetization measurements reveal that hydrogels have hard magnetic properties with quite high coercivity of 4.2 kOe, which does not change with swelling. This feature makes these gels useful in applications as wastewater treatment if they are magnetized before use.

  8. Preparation, characterization and in vivo evaluation of a combination delivery system based on hyaluronic acid/jeffamine hydrogel loaded with PHBV/PLGA blend nanoparticles for prolonged delivery of Teriparatide.

    PubMed

    Bahari Javan, Nika; Montazeri, Hamed; Rezaie Shirmard, Leila; Jafary Omid, Nersi; Barbari, Ghullam Reza; Amini, Mohsen; Ghahremani, Mohammad Hossein; Rafiee-Tehrani, Morteza; Abedin Dorkoosh, Farid

    2017-04-01

    In the current study, biodegradable PHBV/PLGA blend nanoparticles (NPs) containing Teriparatide were loaded in hyaluronic acid/jeffamine (HA-JEF ED-600) hydrogel to prepare a combination delivery system (CDS) for prolonged delivery of Teriparatide. The principal purpose of the present study was to formulate an effective and prolonged Teriparatide delivery system in order to reduce the frequency of injection and thus enhance patient's compliance. Morphological properties, swelling behaviour, crosslinking efficiency and rheological characterization of HA-JEF ED-600 hydrogel were evaluated. The CDS was acquired by adding PHBV/PLGA NPs to HA-JEF ED-600 hydrogel simultaneously with crosslinking reaction. The percentage of NPs incorporation within the hydrogel as well as the loading capacity and morphology of Teriparatide loaded CDS were examined. Intrinsic fluorescence and circular dichroism spectroscopy proved that Teriparatide remains stable after processing. The release profile represented 63% Teriparatide release from CDS within 50days with lower burst release compared to NPs and hydrogel. MTT assay was conducted by using NIH3T3 cell line and no sign of reduction in cell viability was observed. Based on Miller and Tainter method, LD50 of Teriparatide loaded CDS was 131.8mg/kg. In vivo studies demonstrated that Teriparatide loaded CDS could effectively increase serum calcium level after subcutaneous injection in mice. Favourable results in the current study introduced CDS as a promising candidate for controlled delivery of Teriparatide and pave the way for future investigations in the field of designing prolonged delivery systems for other peptides and proteins.

  9. Anionic and cationic dextran hydrogels for post-loading and release of proteins.

    PubMed

    Schillemans, Joris P; Verheyen, Ellen; Barendregt, Arjan; Hennink, Wim E; Van Nostrum, Cornelus F

    2011-03-30

    In this study, post-loading of proteins in and release from chemically crosslinked dextran hydrogels exploiting reversible electrostatic interactions was investigated. Methacrylated dextran (Dex-MA) was co-polymerized with methacrylic acid (MA) or dimethylaminoethyl methacrylate (DMAEMA) to form negatively and positively charged hydrogels, respectively. Incubation of negatively charged hydrogels in a low ionic strength (10 mM HEPES, pH 7.4) solution of cytochrome C (isoelectric point (pI) 10.2) led to quantitative absorption of the protein in the hydrogel. BSA (pI 4.8) and myoglobin (pI 7.2) were post-loaded into positively charged gels at neutral pH and negatively charged gels at pH 5, respectively. Loading efficiency and protein distribution in the gels were dependent on network charge (maximum loading efficiency at 100-150 μmol charged monomer/g gel) and crosslink density (higher and more homogenous loading at lower crosslink density) and on the ionic strength during loading (lower but more homogenous loading at higher ionic strength). Diffusion controlled release of the loaded protein was triggered by incubation of the hydrogel in HEPES buffered saline (HBS) pH 7.4. The amount of released cytochrome C in HBS varied from 94% to 70% from gels containing 60 and 150 MA/g, respectively. Importantly, quantitative release was obtained in 1 M NaCl, indicating that post-loading led to neither the formation of insoluble protein aggregates nor irreversible immobilization of the protein in the matrix. ESI-MS analysis of the released cytochrome C revealed that post-loading did not result in oxidation of the protein, as opposed to loading during preparation of the gels. In conclusion, this paper shows that post-loading of proteins in dextran hydrogels and release exploiting reversible charge interactions can be applied for efficient loading of proteins that are negative, positive or neutral at physiological pH. Importantly, our data demonstrate that using this loading

  10. Spectrophotometric determination of bisoprolol in pharmaceutical preparations by charge transfer reactions

    NASA Astrophysics Data System (ADS)

    Ulu, Sevgi Tatar; Kel, Elif

    2012-06-01

    A simple, rapid and sensitive method for the spectrophotometric determination, of bisoprolol was developed. The proposed methods were based on the charge-transfer reactions of bisoprolol, as n-electron donor, with 7,7,8,8-tetracyanoqumodimethane (TCNQ) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as π-acceptors to give highly colored complexes. The proposed methods were validated according to the ICH guidelines with respect to linearity, limit of detection, limit of quantification, accuracy, precision, recovery and specificity. Beer's law is obeyed over the concentration ranges of 10-60 and 10-80 μg/mL bisoprolol with TCNQ and DDQ, respectively. The proposed methods were successfully applied to the assay of bisoprolol in pharmaceutical preparations.

  11. Reduction of postsurgical adhesion formation with hydrogels synthesized by radiation

    NASA Astrophysics Data System (ADS)

    Nho, Young-Chang; Lee, Joon-Ho

    2005-07-01

    Biocompatible and biodegradable hydrogels based on carboxymethyl cellulose (CMC) and polyethyleneglycol (PEG) were prepared as physical barriers for preventing surgical adhesions. These interpolymeric hydrogels were synthesized by gamma irradiation crosslinking technique. A 1.5 cm × 1.5 cm of cecal serosa and an adjacent abdominal wall were abraded with bone burr until the serosal surface was disrupted and hemorrhagic but not perforated. The denuded cecum was covered with either CMC/PEG hydrogels or a solution from a CMC/PEG hydrogel. Control rat serosa was not covered. Two weeks later, the rats were sacrificed and the adhesion was scored on a 0-5 scale. Control rat showed a significantly higher incidence of adhesions than either the CMC/PEG hydrogels or a solution from the CMC/PEG hydrogel. In conclusion, these studies demonstrate that CMC/PEG hydrogels have a function of the prevention for an intra abdominal adhesion in a rat model.

  12. Hydrogels: a journey from diapers to gene delivery.

    PubMed

    Chawla, Pooja; Srivastava, Alok Ranjan; Pandey, Priyanka; Chawla, Viney

    2014-02-01

    Hydrogels are the biomaterials comprising network of natural or synthetic polymers capable of absorbing large amount of water. Hydrogels are "Smart Gels" or "Intelligent Gels" which can be made to respond to the various environmental conditions like temperature, pH, magnetic/electric field, ionic strength, inflammation, external stress etc. There are numerous potential applications of hydrogels in modern day life ranging from a diaper to gene delivery. This review succinctly describes the classification, properties and preparation methods along with numerous diverse applications of hydrogels like agricultural hydrogels, hydrogel for drug delivery, sensing, dental adhesives, wound healing and tissue regeneration, diet aid and gastric retention and in tissue engineering etc. Hydrogels can be regarded as highly valuable biomaterials for human-beings.

  13. State of water, molecular structure, and cytotoxicity of silk hydrogels.

    PubMed

    Numata, Keiji; Katashima, Takuya; Sakai, Takamasa

    2011-06-13

    A novel technique was developed to regulate the bulk water content of silk hydrogels by adjusting the concentrations of silk proteins, which is helpful to investigate the effects of the state of water in polymeric hydrogel on its biological functions, such as cytotoxicity. Gelation of the silk hydrogel was induced with ethanol and its gelation behavior was analyzed by rheometry. The silk hydrogels prepared at various silk concentrations were characterized with respect to their water content, molecular and network structures, state of water, mechanical properties, and cytotoxicity to human mesenchymal stem cells. The network structure of silk hydrogel was heterogeneous with β-sheet and fibrillar structures. The influence of the state of water in the silk hydrogel on the cytotoxicity was recognized by means of differential scanning calorimetry and cell proliferation assay, which revealed that the bound water will support cell-adhesion proteins in the cellular matrix to interact with the surface of the silk hydrogels.

  14. Thermally Tunable Hydrogels Displaying Angle‐Independent Structural Colors

    PubMed Central

    Ohtsuka, Yumiko; Seki, Takahiro

    2015-01-01

    Abstract We report the preparation of thermally tunable hydrogels displaying angle‐independent structural colors. The porous structures were formed with short‐range order using colloidal amorphous array templates and a small amount of carbon black (CB). The resultant porous hydrogels prepared using colloidal amorphous arrays without CB appeared white, whereas the hydrogels with CB revealed bright structural colors. The brightly colored hydrogels rapidly changed hues in a reversible manner, and the hues varied widely depending on the water temperature. Moreover, the structural colors were angle‐independent under diffusive lighting because of the isotropic nanostructure generated from the colloidal amorphous arrays. PMID:26503915

  15. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations.

    PubMed

    Salvioni, Lucia; Galbiati, Elisabetta; Collico, Veronica; Alessio, Giulia; Avvakumova, Svetlana; Corsi, Fabio; Tortora, Paolo; Prosperi, Davide; Colombo, Miriam

    2017-01-01

    The discovery of new solutions with antibacterial activity as efficient and safe alternatives to common preservatives (such as parabens) and to combat emerging infections and drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal silver nanoparticles (NPs) are attracting interest as novel effective antimicrobial agents for the prevention of several infectious diseases. Water-soluble, negatively charged silver nanoparticles (AgNPs) were synthesized by reduction with citric and tannic acid and characterized by transmission electron microscopy, dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet-visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria in comparison to two different kinds of commercially available AgNPs. In this work, AgNPs with higher antibacterial activity compared to the commercially available colloidal silver solutions were prepared and investigated. Bacteria were plated and the antibacterial activity was tested at the same concentration of silver ions in all samples. The AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time period. In addition, AgNPs were transferred to organic phase and retained their antibacterial efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells. We developed AgNPs with a 20 nm diameter and negative zeta potential with powerful antibacterial activity and low toxicity compared to currently available colloidal silver, suitable for cosmetic preservatives and pharmaceutical preparations administrable to humans and/or animals as needed.

  16. The synthesis and study of telechelic polyelectrolytes for hydrogel formation

    NASA Astrophysics Data System (ADS)

    Hunt, Jasmine N.

    Polymeric hydrogels comprised of oppositely charged ABA triblock copolymer polyelectrolytes based upon poly(allyl glycidyl ether-b-ethylene glycol-ballyl glycidyl ether), P(AGE-b-EG-b-AGE), with functionalized ionic 'A'-endblocks and a neutral, hydrophilic 'B'-block were synthesized. Aqueous solutions of poly-cations and -anions were mixed at room temperature, producing hydrogels through co-assembly driven by electrostatic interactions between the endblocks. Due the ease and modular nature of the synthesis and hydrogel formation, polymeric libraries differing in relative block lengths and ionic functionalization were created and the affects of polymer composition on the hydrogel's mechanical and structural properties were examined.

  17. An abiotic analogue of the nuclear pore complex hydrogel.

    PubMed

    Bird, Sean P; Baker, Lane A

    2011-09-12

    We describe an abiotic hydrogel that mimics selectivity of the nuclear pore complex. Copolymerization of peptide tetramers (phenylalanine-serine-phenylalanine-glycine, FSFG) with acrylamide results in hydrophobic interactions significant enough to allow the formation of freestanding hydrogel structures. Incorporation of FSFG motifs also renders the hydrogels selective. Selective binding of importins and nuclear transport receptor-cargo complexes is qualitatively demonstrated and compared with polyacrylamide, hydrogels prepared from a control peptide, and hydrogels prepared from the nuclear pore complex protein Nsp1. These abiotic hydrogels will enable further studies of the unique transport mechanisms of the nuclear pore complex and provide an interesting paradigm for the future development of synthetic platforms for separations and selective interfaces.

  18. One-pot synthesis of 3-dimensional reduced graphene oxide-based hydrogel as support for microbe immobilization and BOD biosensor preparation.

    PubMed

    Liu, Ling; Zhai, Junfeng; Zhu, Chengzhou; Gao, Ying; Wang, Yue; Han, Yanchao; Dong, Shaojun

    2015-01-15

    We report a hydrothermal method to prepare reduced graphene oxide (rGO)-based hydrogel (Gel(rGONR)), using neutral red (NR) to mediate the assembly of rGO sheets and tune the pore size of Gel(rGONR). A series of techniques including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy and BET were employed to characterize the physico-chemical properties of Gel(rGONR). A large pore size of up to 20 µm and interconnected porous structure of Gel(rGONR) were obtained. Gel(rGONR) was used as a support for immobilizing microbe (denoted as Gel(rGONR-M)), which showed ~3.3 times more load mass of microbe than commonly used supports (i.e., activated carbon and carbon fiber felt) and 2.5 times higher biodegradation efficiency (BE) than carbon fiber felt. Further use of Gel(rGONR-M) as a biocatalyst for establishing a BOD biosensor exhibits a linear range of 2-64 mg O L(-1) and a detection limit 0.4 mg O L(-1) for glucose-glutamic acid (GGA). Moreover, our proposed BOD detection strategy shows a long-term viability over one year and stability up to 2 months with a relative standard deviation of 2.1%. Our results demonstrated the great potential of employing Gel(rGONR) as a microbe-immobilization support for biosensor development. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. [Preparation of recombinant serpins B3 and B4 and investigation of their specific interactions with antibodies using hydrogel-based microarrays].

    PubMed

    Butvilovskaya, V I; Tsybulskaya, M V; Tikhonov, A A; Talibov, V O; Belousov, P V; Sazykin, A Yu; Schwartz, A M; Putlyaeva, L V; Surzhikov, S A; Stomakhin, A A; Solopova, O N; Rubina, A Yu

    2015-01-01

    The objective of this work was to obtain preparations of recombinant squamous-cell carcinoma antigens (serpins B3 and B4) and to investigate their interactions with different monoclonal antibodies using hydrogel-based microarrays (biochips). Two genetic constructs encoding full-length serpin B3 and serpin B4 molecules were created to produce recombinant SPB3 and SPB4 proteins carrying a N-terminal His6-tag. Monoclonal antibodies against serpin B3 (H3, C5, H5, H81, and G9) were also obtained. An experimental gel-based biological microchip was designed to contain gel elements that carry immobilized antibodies against SPB3, immobilized commercial monoclonal SCC107 and SCC140 antibodies against squamous-cell carcinoma antigen (SCCA), and gel elements with immobilized SPB3 or SPB4. Judging by the specificity of recombinant SPB3 and SPB4, which bind to monoclonal antibodies against SCCA and, according to the manufacturer's data, can recognize conformational epitopes of both SPB3 and SPB4, it was concluded that the obtained recombinant serpins had the correct tertiary structure. A biochip-based direct immunoassay showed that SPB4 could bind effectively only to SCC107 and SCC140 antibodies, while SPB3 interacted specifically not only with these antibodies, but also with H3 and C5 monoclonal antibodies. Using biochip-based sandwich immunoassay, a pair of monoclonal antibodies SCC107/C5 that interacted specifically with serpin B3 but did not interact with serpin B4 was identified. Thus, it has been demonstrated that serpin B3 can be selectively determined in the presence of highly homologous serpin B4 using a biochip-based assay.

  20. Conducting polymer electrodes printed on hydrogel.

    PubMed

    Sekine, Soichiro; Ido, Yuichiro; Miyake, Takeo; Nagamine, Kuniaki; Nishizawa, Matsuhiko

    2010-09-29

    We report herein the micropatterning of poly(3,4-ethylenedioxythiophene) (PEDOT) on a hydrogel, agarose, to provide a fully organic, moist, and flexible electrode. The PEDOT/agarose electrodes were prepared through two electrochemical processes: electropolymerization of PEDOT into the hydrogel and electrochemical-actuation-assisted peeling. We also present a typical application of the PEDOT/agarose electrode to the cultivation of contractile myotubes.

  1. Orientation in multi-layer chitosan hydrogel: morphology, mechanism, and design principle

    PubMed Central

    Nie, Jingyi; Lu, Wentao; Ma, Jianjun; Yang, Ling; Wang, Zhengke; Qin, An; Hu, Qiaoling

    2015-01-01

    Hydrogels with organized structure have attracted remarkable attentions for bio-related applications. Among the preparation of hierarchical hydrogel materials, fabrication of hydrogel with multi-layers is an important branch. Although the generation mechanism of layers had been fully discussed, sub-layer structure was not sufficiently studied. In this research, multi-layered chitosan hydrogel with oriented structure was constructed, and the formation mechanism of orientation was proposed, based on gelation behavior and entanglement of polymer chains in the hydrogel-solution system. Employing the layered-oriented characteristic, chitosan hydrogel materials with various shapes and structure can be designed and fabricated. PMID:25559867

  2. Bioinspired Smart Actuator Based on Graphene Oxide-Polymer Hybrid Hydrogels.

    PubMed

    Wang, Tao; Huang, Jiahe; Yang, Yiqing; Zhang, Enzhong; Sun, Weixiang; Tong, Zhen

    2015-10-28

    Rapid response and strong mechanical properties are desired for smart materials used in soft actuators. A bioinspired hybrid hydrogel actuator was designed and prepared by series combination of three trunks of tough polymer-clay hydrogels to accomplish the comprehensive actuation of "extension-grasp-retraction" like a fishing rod. The hydrogels with thermo-creep and thermo-shrinking features were successively irradiated by near-infrared (NIR) to execute extension and retraction, respectively. The GO in the hydrogels absorbed the NIR energy and transformed it into thermo-energy rapidly and effectively. The hydrogel with adhesion or magnetic force was adopted as the "hook" of the hybrid hydrogel actuator for grasping object. The hook of the hybrid hydrogel actuator was replaceable according to applications, even with functional materials other than hydrogels. This study provides an innovative concept to explore new soft actuators through combining response hydrogels and programming the same stimulus.

  3. A Stimuli-Responsive Hydrogel for Doxorubicin Delivery

    PubMed Central

    Dadsetan, Mahrokh; Liu, Zen; Pumberger, Matthias; Giraldo, Catalina Vallejo; Ruesink, Terry; Lu, Lichun; Yaszemski, Michael J.

    2010-01-01

    The goal of this study was to develop a polymeric carrier for delivery of anti-tumor drugs and sustained release of these agents in order to optimize anti-tumor activity while minimizing systemic effects. We used oligo(poly(ethylene glycol) fumarate) (OPF) hydrogels modified with small negatively charged molecules, sodium methacrylate (SMA), for delivery of doxorubicin (DOX). SMA at different concentrations was incorporated into the OPF hydrogel with a photo-crosslinking method. The resulting hydrogels exhibited sensitivity to the pH and ionic strength of the surrounding environment. Our results revealed that DOX was bound to the negatively charged hydrogel through electrostatic interaction and was released in a timely fashion with an ion exchange mechanism. Release kinetics of DOX was directly correlated to the concentration of SMA in the hydrogel formulations. Anti-tumor activity of the released DOX was assessed using a human osteosarcoma cell line. Our data revealed that DOX released from the modified, charged hydrogels remained biologically active and had the capability to kill cancer cells. In contrast, control groups of unmodified OPF hydrogels with or without DOX did not exhibit any cytotoxicity. This study demonstrates the feasibility of using SMA-modified OPF hydrogels as a potential carrier for chemotherapeutic drugs for cancer treatments. PMID:20696470

  4. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations

    PubMed Central

    Salvioni, Lucia; Galbiati, Elisabetta; Collico, Veronica; Alessio, Giulia; Avvakumova, Svetlana; Corsi, Fabio; Tortora, Paolo; Prosperi, Davide; Colombo, Miriam

    2017-01-01

    Background The discovery of new solutions with antibacterial activity as efficient and safe alternatives to common preservatives (such as parabens) and to combat emerging infections and drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal silver nanoparticles (NPs) are attracting interest as novel effective antimicrobial agents for the prevention of several infectious diseases. Methods Water-soluble, negatively charged silver nanoparticles (AgNPs) were synthesized by reduction with citric and tannic acid and characterized by transmission electron microscopy, dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet–visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria in comparison to two different kinds of commercially available AgNPs. Results In this work, AgNPs with higher antibacterial activity compared to the commercially available colloidal silver solutions were prepared and investigated. Bacteria were plated and the antibacterial activity was tested at the same concentration of silver ions in all samples. The AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time period. In addition, AgNPs were transferred to organic phase and retained their antibacterial efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells. Conclusion We developed AgNPs with a 20 nm diameter and negative zeta potential with powerful antibacterial activity and low toxicity compared to currently available colloidal silver, suitable for cosmetic preservatives and pharmaceutical preparations administrable to humans and/or animals as needed. PMID:28408822

  5. Preparation of comb-type N-isopropylacrylamide hydrogel beads and their application for size-selective separation media.

    PubMed

    Annaka, Masahiko; Matsuura, Toyoaki; Kasai, Masaki; Nakahira, Takayuki; Hara, Yoshiaki; Okano, Teruo

    2003-01-01

    A series of the comb-type poly(N-isopropylacrylamide) (NIPAM) gel beads were prepared by inverse suspension polymerization techniques. The comb-type NIPAM gel beads exhibited large volume change at 30 degrees C, and their deswelling rate, defined as the time required for half-shrinking, was 10 times faster than that of the normal-type NIPAM gel beads. The gel beads were utilized to concentrate dilute aqueous solutions of albumin, gamma-globulin, and vitamin B(12). The separation efficiencies of albumin and gamma -globulin with the comb-type NIPAM gel were 80% and 85%, respectively. Whereas those with normal-type NIPAM gel were 55% and 60%, respectively. The incorporation of grafted chains into gel makes the effective mesh size smaller. Therefore it induces the additional obstruction effects between the solutes and network and excludes the high molecular weight solutes. After they have extracted water, their rapid deswelling property makes the gel regenerate effectively by warming to release the absorbed water.

  6. Temperature, pH and redox responsive cellulose based hydrogels for protein delivery.

    PubMed

    Dutta, Sujan; Samanta, Pousali; Dhara, Dibakar

    2016-06-01

    Cellulose based hydrogels are important due to their biocompatibility, non-toxicity and natural origin. In this work, a new set of pH, temperature and redox responsive hydrogels were prepared from carboxymethylcellulose (CMC) and poly(N-isopropylacrylamide). Copolymeric (CP) hydrogels were synthesized by copolymerizing N-isopropylacrylamide (NIPA) and methacrylated carboxymethylcellulose, semi-interpenetrating network (SIPN) hydrogels were prepared by polymerizing NIPA in presence of CMC. Two types of cross-linkers were used viz. N,N'-methylenebisacrylamide (BIS) and N,N'-bis(acryloyl)cystamine (CBA), a redox sensitive cross-linker. The structures of the hydrogels were characterized by FTIR and SEM studies. The CP hydrogels were found to be more porous than corresponding SIPNs which resulted in higher swelling for the CP hydrogels. Swelling for both the hydrogels were found to increase with CMC content. While the swelling of SIPN hydrogels showed discontinuous temperature dependency, CP hydrogels showed gradual decrease in water retention values with increase in temperature. CBA cross-linked hydrogels showed higher swelling in comparison to BIS cross-linked hydrogels. Additionally, lysozyme was loaded in the hydrogels and its in vitro release was studied in various pH, temperature and in presence of a reducing agent, glutathione (GSH). The release rate was found to be maximum at lower temperature, lower pH and in presence of GSH. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Designing degradable hydrogels for orthogonal control of cell microenvironments

    PubMed Central

    Kharkar, Prathamesh M.

    2013-01-01

    Degradable and cell-compatible hydrogels can be designed to mimic the physical and biochemical characteristics of native extracellular matrices and provide tunability of degradation rates and related properties under physiological conditions. Hence, such hydrogels are finding widespread application in many bioengineering fields, including controlled bioactive molecule delivery, cell encapsulation for controlled three-dimensional culture, and tissue engineering. Cellular processes, such as adhesion, proliferation, spreading, migration, and differentiation, can be controlled within degradable, cell-compatible hydrogels with temporal tuning of biochemical or biophysical cues, such as growth factor presentation or hydrogel stiffness. However, thoughtful selection of hydrogel base materials, formation chemistries, and degradable moieties is necessary to achieve the appropriate level of property control and desired cellular response. In this review, hydrogel design considerations and materials for hydrogel preparation, ranging from natural polymers to synthetic polymers, are overviewed. Recent advances in chemical and physical methods to crosslink hydrogels are highlighted, as well as recent developments in controlling hydrogel degradation rates and modes of degradation. Special attention is given to spatial or temporal presentation of various biochemical and biophysical cues to modulate cell response in static (i.e., non-degradable) or dynamic (i.e., degradable) microenvironments. This review provides insight into the design of new cell-compatible, degradable hydrogels to understand and modulate cellular processes for various biomedical applications. PMID:23609001

  8. The synthesis of hydrogels with controlled distribution of polymer brushes in hydrogel network

    NASA Astrophysics Data System (ADS)

    Sun, YuWei; Zhou, Chao; Zhang, AoKai; Xu, LiQun; Yao, Fang; Cen, Lian; Fu, Guo-Dong

    2014-11-01

    Poly(ethylene glycol) (PEG) hydrogels with 3-dimensionally controlled well-defined poly(N-isopropylacrylamide) (poly(NIPAAm)) brushes were prepared by combined copper(I)-catalyzed azide-alkyne cycloaddition ("Click Chemistry") and atom transfer radical polymerization (ATRP). The resulting hydrogels were presented as representatives with their detailed synthesis routes and characterization. HPEG-S-poly(NIPAAm) is a hydrogel with poly(NIPAAm) brushes mainly grafted on surface, whereas HPEG-G-poly(NIPAAm) has a gradiently decreased poly(NIPAAm) brushes in their chain length from surface to inside. On the other hand, poly(NIPAAm) brushes in HPEG-U-poly(NIPAAm) are uniformly dispersed throughout the whole hydrogel network. Successful preparation of HPEG-S-poly(NIPAAm), HPEG-G-poly(NIPAAm) and HPEG-U-poly(NIPAAm) were ascertained by X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. Optical properties and thermal behaviors of these hydrogels were evaluated by UV-visible transmittance spectra and differential scanning calorimetry (DSC). Hence, the flexibility and controllability of the synthetic strategy in varying the distribution of polymer brushes and hydrogel properties was demonstrated. Hydrogels with tunable and well-defined 3-dimensional poly(NIPAAm) polymer brushes could be tailor-designed to find potential applications in smart devices or skin dressing, such as for diabetics as they have special optical and thermal behaviors.

  9. Preparation and characterization of a hydrogel carrier to deliver gatifloxacin and its application as a therapeutic contact lens for bacterial keratitis therapy.

    PubMed

    Shi, Yunfeng; Lv, Hongling; Fu, Yeyun; Lu, Qingjun; Zhong, Jingxiang; Ma, Dong; Huang, Yuexin; Xue, Wei

    2013-10-01

    A soft and biocompatible hydrogel exhibiting a higher loading and the sustained release of gatifloxacin (GFLX) was developed as the potential matrix to fabricate a therapeutic contact lens for curing bacterial keratitis. 2-hydroxyethyl methacrylate (HEMA) and five other kinds of vinyl monomers with different side groups were used as co-monomers. Copolymerization took place in a cornea shaped mould via the gradient temperature-elevating method. The results of drug loading and in vitro release experiments showed that P(HEMA-co-MAA) achieved the highest drug loading of 11.78±0.77 µg mg(-1) among the obtained hydrogels, as well as a slow release. In addition, its physical properties and cytocompatibility were also proved suitable and safe for wearing on the eye surface. In animal experiments, a rat model of bacterial keratitis was established and employed to evaluate the clinical results of certain treatments employing obtained hydrogels; saline and GFLX eye drops were used as negative and positive controls, respectively. Corneal abscess and opacity caused by epithelial erosion and stromal ulceration were almost healed after wearing the drug loaded P(HEMA-co-MAA) hydrogel for 48 h. Its excellent antibacterial effect was also confirmed by testing the bacterial activity in tear extraction via the streak line method.

  10. Diverse rheological properties, mechanical characteristics and microstructures of corn fiber gum and soy protein isolate hydrogels prepared by laccase and heat treatment

    USDA-ARS?s Scientific Manuscript database

    Two types of corn fiber gum (CFGs) were extracted from corn fibers (CFs) obtained from wet or dry corn milling processing. Both CFGs could form hydrogels when induced via laccase, but CFGs isolated from wet milled CFs exhibited higher storage modulus (G') and better mechanical strength as obtained f...

  11. Controlled Thermoresponsive Hydrogels by Stereocomplexed PLA-PEG-PLA Prepared via Hybrid Micelles of Pre-Mixed Copolymers with Different PEG Lengths

    SciTech Connect

    Abebe, Daniel G.; Fujiwara, Tomoko

    2012-09-05

    The stereocomplexed hydrogels derived from the micelle mixture of two enantiomeric triblock copolymers, PLLA-PEG-PLLA and PDLA-PEG-PDLA, reported in 2001 exhibited sol-to-gel transition at approximately body temperature upon heating. However, the showed poor storage modulus (ca. 1000 Pa) determined their insufficiency as injectable implant biomaterials for many applications. In this study, the mechanical property of these hydrogels was significantly improved by the modifications of molecular weights and micelle structure. Co-micelles composed of block copolymers with two sizes of PEG block length were shown to possess unique and dissimilar properties from the micelles composed of single-sized block copolymers. The stereomixture of PLA-PEG-PLA comicelles showed a controllable sol-to-gel transition at a wide temperature range of 4 and 80 C. The sol-gel phase diagram displays a linear relationship of temperature versus copolymer composition; hence, a transition at body temperature can be readily achieved by adjusting the mixed copolymer ratio. The resulting thermoresponsive hydrogels exhibit a storage modulus notably higher (ca. 6000 Pa) than that of previously reported hydrogels. As a physical network solely governed by self-reorganization of micelles, followed by stereocomplexation, this unique system offers practical, safe, and simple implantable biomaterials.

  12. Hydrogel microspheres from biodegradable polymers as drug delivery systems

    USDA-ARS?s Scientific Manuscript database

    A series of hydrogel microspheres were prepared from pectin, a hydrophilic biopolymer, and zein, a hydrophobic biopolymer, at varying weight ratios. The hydrogel formulation was conducted in the presence of calcium or other divalent metal ions at room temperature under mild conditions. Studies of ...

  13. Functionalized graphene hydrogel-based high-performance supercapacitors.

    PubMed

    Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Wang, Yang; Huang, Yu; Duan, Xiangfeng

    2013-10-25

    Functionalized graphene hydrogels are prepared by a one-step low-temperature reduction process and exhibit ultrahigh specific capacitances and excellent cycling stability in the aqueous electrolyte. Flexible solid-state supercapacitors based on functionalized graphene hydrogels are demonstrated with superior capacitive performances and extraordinary mechanical flexibility.

  14. Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers

    Treesearch

    Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Daniel J. Yelle; Gisela Buschle-Diller

    2011-01-01

    Nanoreinforced hydrogels with a unique network structure were prepared from wood cellulose whiskers coated with chemically modified wood hemicelluloses. The hemicelluloses were modified with 2-hydroxyethylmethacrylate prior to adsorption onto the cellulose whiskers in aqueous medium. Synthesis of the hydrogels was accomplished by in situ radical polymerization of the...

  15. Polyvinyl alcohol hydrogels for iontohporesis

    NASA Astrophysics Data System (ADS)

    Bera, Prasanta; Alam, Asif Ali; Arora, Neha; Tibarewala, Dewaki Nandan; Basak, Piyali

    2013-06-01

    Transdermal therapeutic systems propound controlled release of active ingredients through the skin into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. The iontophoresis deal with the systemic delivery of the bioactive agents (drug) by applying an electric current. It is basically an injection without the needle. The iontophoretic system requires a gel-based matrix to accommodate the bioactive agent. Hydrogels have been used by many investigators in controlled-release drug delivery systems because of their good tissue compatibility and easy manipulation of swelling level and, thereby, solute permeability. In this work we have prepared polyvinyl alcohol (PVA) hydrogel. We have cross linked polyvinyl alcohol chemically with Glutaraldehyde with different wt%. FTIR study reveals the chemical changes during cross linking. Swelling in water, is done to have an idea about drug loading and drug release from the membrane. After drug loading to the hydrogels, we have studied the drug release property of the hydrogels using salicylic acid as a model drug.

  16. Thermoresponsive Nanocomposite Hydrogels: Transparency, Rapid Deswelling and Cell Release

    PubMed Central

    Hou, Yaping; Fei, Ruochong; Burkes, Jonathan C.; Lee, Shin Duk; Munoz-Pinto, Dany; Hahn, Mariah S.; Grunlan, Melissa A.

    2013-01-01

    Thermal modulation reversibly switches poly(N-isopropylacrylamide) (PNIPAAm) hydrogels between a water-swollen and a deswollen state which is useful for a variety of biomedical applications. The utility and efficiency of PNIPAAm hydrogels requires tailoring their rate of deswelling/reswelling, mechanical properties and/or optical clarity. In the current work, we prepared novel thermoresponsive nanocomposite hydrogels comprised of a PNIPAAm hydrogel matrix and polysiloxane colloidal nanoparticles (~54 nm ave. diameter) via in situ photopolymerization of aqueous solutions of NIPAAm monomer, N,N′-methylenebisacrylamide (BIS, crosslinker), photoinitiator and 0.5–4.0 wt% polysiloxane nanoparticles (wt% solids of nanoparticles with respect to NIPAAm weight) at ~7 °C. At these nanoparticle concentrations, the nanocomposite hydrogels were more optically transparent versus those prepared with analogous larger nanoparticles (~219 nm ave. diameter). The volume phase transition temperature (VPTT) of the nanocomposite hydrogels was conveniently unaltered versus that of the pure PNIPAAm hydrogel. Incorporation of nanoparticles caused enhancement in modulus as well as the extent and rate of deswelling. When cooled from 37 °C to 25 °C, mouse smooth muscle precursor cells (10T1/2) were effectively detached from nanocomposite hydrogel surfaces due to hydrogel swelling. PMID:24377059

  17. Environmentally Responsive Hydrogels

    NASA Astrophysics Data System (ADS)

    Schueneman, Susan M.; Chen, Wei

    2002-07-01

    A hydrogel experimental module was designed for an undergraduate upper-level laboratory course. Cross-linked poly(N-isopropylacrylamide) (PIPAM) is a thermo-sensitive hydrogel; it undergoes a volume collapse driven by hydrophobic interactions in pure water as the temperature increases to 32 °C. The extent and temperature of the volume transition are two critical parameters in its applications ranging from pharmaceutics to biotechnology and they can be controlled by incorporating ionic components in the PIPAM system. In this experiment, linear PIPAM, cross-linked neutral PIPAM gel, and cross-linked ionic PIPAM gel were prepared by radical polymerization. Viscosity, molecular weight, and thermal transition (cloud point) of linear PIPAM were determined. Volume collapses of the neutral and ionic PIPAM gels as a function of temperature were examined and compared. In this module, students were exposed to original literature and contemporary chemical research in polymer chemistry and they learned to integrate concepts from different disciplines of chemistry into a unified experimental approach to problem solving. This module could also be used for polymer chemistry or physical chemistry laboratory courses.

  18. Preparation, assessment, and comparison of α-chitin nano-fiber films with different surface charges

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Jiang, Jie; Liu, Liang; Zheng, Ke; Yu, Shiyuan; Fan, Yimin

    2015-05-01

    Chitin nano-fibers with positive and negative charges have been, respectively, produced from partially deacetylated and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidized α-chitin. The average diameters and lengths of the TEMPO-oxidized chitin nano-fibers (TOChN) were 14 ± 4.3 and 190 ± 140 nm, respectively, and the average diameters and lengths of the partially deacetylated chitin nano-fibers (DEChN) were 6 ± 1.7 and 320 ± 105 nm, respectively. A partially deacetylated chitin nano-fiber film (DEChN-F), a TEMPO-mediated and oxidized chitin nano-fiber film (TOChN-F), and a composite film (DE-TO-ChN-F) consisting of a combination of the two were prepared by drying the dispersions at 40 °C. The DEChN-F, TOChN-F, and DE-TO-ChN-F all have similar tensile strengths of approximately 90 MPa; however, the chitosan film (Chitosan-F) had a tensile strength of approximately 30 MPa. In addition, TOChN-F and DE-TO-ChN-F have a thermal weight loss at 210 °C, and DEChN-F has a thermal weight loss at 280 °C. DEChN-F was found to have antimicrobial activity with regards to Escherichia coli. Finally, the chitin nano-fiber films could be slightly degraded by cellulase, which provided a novel biological performance of the chitin nano-material.

  19. Preparation, assessment, and comparison of α-chitin nano-fiber films with different surface charges.

    PubMed

    Zhang, Yan; Jiang, Jie; Liu, Liang; Zheng, Ke; Yu, Shiyuan; Fan, Yimin

    2015-01-01

    Chitin nano-fibers with positive and negative charges have been, respectively, produced from partially deacetylated and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidized α-chitin. The average diameters and lengths of the TEMPO-oxidized chitin nano-fibers (TOChN) were 14 ± 4.3 and 190 ± 140 nm, respectively, and the average diameters and lengths of the partially deacetylated chitin nano-fibers (DEChN) were 6 ± 1.7 and 320 ± 105 nm, respectively. A partially deacetylated chitin nano-fiber film (DEChN-F), a TEMPO-mediated and oxidized chitin nano-fiber film (TOChN-F), and a composite film (DE-TO-ChN-F) consisting of a combination of the two were prepared by drying the dispersions at 40 °C. The DEChN-F, TOChN-F, and DE-TO-ChN-F all have similar tensile strengths of approximately 90 MPa; however, the chitosan film (Chitosan-F) had a tensile strength of approximately 30 MPa. In addition, TOChN-F and DE-TO-ChN-F have a thermal weight loss at 210 °C, and DEChN-F has a thermal weight loss at 280 °C. DEChN-F was found to have antimicrobial activity with regards to Escherichia coli. Finally, the chitin nano-fiber films could be slightly degraded by cellulase, which provided a novel biological performance of the chitin nano-material.

  20. Tunable Drug-loading Capability of Chitosan Hydrogels with Varied Network Architectures

    PubMed Central

    Tronci, Giuseppe; Ajiro, Hiroharu; Russell, Stephen J.; Wood, David J.; Akashi, Mitsuru

    2016-01-01

    Advanced bioactive systems with defined macroscopic properties and spatio-temporal sequestration of extracellular biomacromolecules are highly desirable for next generation therapeutics. Here, chitosan hydrogels were prepared with neutral or negatively-charged crosslinkers in order to promote selective electrostatic complexation with charged drugs. Chitosan (CT) was functionalized with varied dicarboxylic acids, such as tartaric acid (TA), poly(ethylene glycol) bis(carboxymethyl) ether (PEG), 1.4-Phenylenediacetic acid (4Ph) and 5-Sulfoisophthalic acid monosodium salt (PhS), whereby PhS was hypothesized to act as a simple mimetic of heparin. ATR FT-IR showed the presence of C=O amide I, N-H amide II and C=O ester bands, providing evidence of covalent network formation. The crosslinker content was reversely quantified by 1H-NMR on partially-degraded network oligomers, so that 18 mol.-% PhS was exemplarily determined. Swellability (SR: 299±65–1054±121 wt.-%), compressability (E: 2.1±0.9–9.2±2.3 kPa), material morphology, and drug-loading capability were successfully adjusted based on the selected network architecture. Here, hydrogel incubation with model drugs of varied electrostatic charge, i.e. allura red (AR, --), methyl orange (MO, -) or methylene blue (MB, +), resulted in direct hydrogel-dye electrostatic complexation. Importantly, the cationic compound, MB, showed different incorporation behaviours, depending on the electrostatic character of the selected crosslinker. In light of this tuneable drug-loading capability, these CT hydrogels would be highly attractive as drug reservoirs towards e.g. the fabrication of tissue models in vitro. PMID:24157693

  1. Tough and multi-responsive hydrogel based on the hemicellulose from the spent liquor of viscose process.

    PubMed

    Du, Jian; Li, Bin; Li, Chao; Zhang, Yuedong; Yu, Guang; Wang, Haisong; Mu, Xindong

    2016-07-01

    The hemicellulose isolated from the spent liquor of a viscose process was successfully utilized to prepare hydrogels by the graft copolymerization of acrylic acid (AA) with hemicellulose. The hemicellulose and prepared hydrogel were characterized by Fourier-transform infrared (FT-IR), scanning electron microscopy (SEM), and solid-state nuclear magnetic resonance ((13)C NMR). Under the optimum preparation conditions, the highest compressive strength and strain at break of the resultant hydrogel were 105.1±12.9kPa and 34.8%, respectively. Furthermore, the maximum equilibrium swelling degree of prepared hydrogel was 192. Also, the hydrogel could rapidly respond to pH, salt and ethanol. Taken together, the prepared hydrogels had great mechanical and multi-responsive properties. Thus, the prepared hydrogels had a great potential application in drug release, water treatment and cell immobilization. In addition, the utilization of alkaline extracted hemicellulose from the viscose fiber factory has huge market potential and economic benefits.

  2. Understanding the structure, dynamics, and mass transport properties of self assembling peptide hydrogels for injectable, drug delivery applications

    NASA Astrophysics Data System (ADS)

    Branco, Monica Cristina

    Advances in biotechnology have led to the rapid development of small protein and antibody therapeutics. However, several limitations remain in the preparation and delivery of these drugs due to the susceptibility of proteins to degrade during storage and upon administration. To address this problem, hydrogels have been used as delivery devices for these protein drugs. We have designed a class of self-assembling peptides, MAX1 and MAX8, that undergo triggered hydrogelation in response to physiological pH and salt conditions (pH 7.4, 150 mM NaCl). These peptides adopt a random coil conformation in aqueous pH 7.4 solutions and are freely soluble. However, when a physiological relevant concentration of NaCl (150 mM) is added, the peptides fold into a beta-hairpin confirmation, and subsequently, self-assemble to form a rigid hydrogel stabilized by non-covalent cross-links. For these peptides, it is possible to control the folding and assembly kinetics to form hydrogels with different mechanical rigidities. These changes affect the porous morphology (i.e., mesh size) within the hydrogel system, and subsequently influence the rate of macromolecular diffusion within the peptide fibrillar network. Another unique characteristic of these hydrogels is that under applied shear, the hydrogel will shear-thin into a low-viscosity gel; however, the gel quickly resets and recovers its initial mechanical rigidity after the applied shear is removed. This property allows hydrogels encapsulating therapeutics to be administered via syringe to target sites for eventual delivery. The objective of this thesis work is to investigate the potential of MAX1 and MAX8 hydrogels as controlled release, drug delivery vehicles for macromolecular therapeutics. First, the differences in the folding and self assembly kinetics, as well as the resultant material properties, of MAX1 and MAX8 are assessed to yield a physical model of the nanoscale topology and dynamics of the self-assembled peptide

  3. Determination of Gentamicin Sulphate Composition and Related Substances in Pharmaceutical Preparations by LC with Charged Aerosol Detection.

    PubMed

    Stypulkowska, Karolina; Blazewicz, Agata; Fijalek, Zbigniew; Sarna, Katarzyna

    2010-12-01

    A new, simple and repeatable liquid chromatography method with charged aerosol detection (LC-CAD) for the determination of gentamicin sulphate composition and related substances has been developed. Gentamicin lacks of chromophores, therefore its determination is quite problematic. Using a universal CAD enables to achieve good separation without sample derivatization. Mass spectrometry was employed to confirm the LC-CAD peak profile. The proposed method was validated and applied for the determination of gentamicin sulphate composition and related substances in pharmaceutical preparations.

  4. Preparation of Schrödinger cat states of a cavity field via coupling to a superconducting charge qubit

    NASA Astrophysics Data System (ADS)

    Freitas, Dagoberto S.; Nemes, M. C.

    2014-05-01

    We extend the approach in Ref. 5 [Y.-X. Liu, L. F. Wei and F. Nori, Phys. Rev. A 71 (2005) 063820] for preparing superposition states of a cavity field interacting with a superconducting charge qubit. We study effects of the nonlinearity on the creation of such states. We show that the main contribution of nonlinear effects is to shorten the time necessary to build the superposition.

  5. Processing Techniques and Applications of Silk Hydrogels in Bioengineering

    PubMed Central

    Floren, Michael; Migliaresi, Claudio; Motta, Antonella

    2016-01-01

    Hydrogels are an attractive class of tunable material platforms that, combined with their structural and functional likeness to biological environments, have a diversity of applications in bioengineering. Several polymers, natural and synthetic, can be used, the material selection being based on the required functional characteristics of the prepared hydrogels. Silk fibroin (SF) is an attractive natural polymer for its excellent processability, biocompatibility, controlled degradation, mechanical properties and tunable formats and a good candidate for the fabrication of hydrogels. Tremendous effort has been made to control the structural and functional characteristic of silk hydrogels, integrating novel biological features with advanced processing techniques, to develop the next generation of functional SF hydrogels. Here, we review the several processing methods developed to prepare advanced SF hydrogel formats, emphasizing a bottom-up approach beginning with critical structural characteristics of silk proteins and their behavior under specific gelation environments. Additionally, the preparation of SF hydrogel blends and other advanced formats will also be discussed. We conclude with a brief description of the attractive utility of SF hydrogels in relevant bioengineering applications. PMID:27649251

  6. Application of hydrogel system for neutron attenuation

    NASA Astrophysics Data System (ADS)

    Gupta, Satish Chandra; Baheti, G. L.; Gupta, B. P.

    2000-07-01

    Hydrogel sheets based on poly(vinyl alcohol) (PVA) and poly(vinyl acetate) (PVAc) have been prepared by the technique of acetalization of PVA using formaldehyde and grafting of acrylic acid onto PVAc by gamma irradiation. PVA hydrogel (PVAB) sheets have been prepared in geometrically stable shapes by compression moulding process and characterised for their thermal properties, geometrical stability on water absorption, and neutron shielding efficiency. The effective protection from fast neutrons can be increased by a factor of 18% by swelling the PVAB sheets to 210% in water. The water intake and subsequent retention of water by the sheet can be tailored as per shielding requirements.

  7. Preparation of porous bioceramics using reverse thermo-responsive hydrogels in combination with rhBMP-2 carriers: in vitro and in vivo evaluation.

    PubMed

    Fu, Yin-Chih; Chen, Chung-Hwan; Wang, Chau-Zen; Wang, Yan-Hsiung; Chang, Je-Ken; Wang, Gwo-Jaw; Ho, Mei-Ling; Wang, Chih-Kuang

    2013-11-01

    Porous biphasic calcium phosphates (BCP) were fabricated using reverse thermo-responsive hydrogels with hydroxyapatite (HAp) and β-tricalcium (β-TCP) powder and planetary centrifugal mixer. This hydrogel mixture slurry will shrink and compress the HAp powder during the sintering process. The porous bioceramics are expected to have good mechanical properties after sintering at 1200°C. Reverse thermo-responsive hydrogels of poly[(N-isopropylacrylamide)-co-(methacrylic acid)] p(NiPAAm-MAA) were synthesized by free-radical cross-linking copolymerization, and their chemical properties were evaluated by nuclear magnetic resonance spectroscopy, infrared spectroscopy, and electrospray-ionization mass spectrometry. The lower critical solution temperature (LCST) of the hydrogel was determined using turbidity measurements. A thermogravimetric analysis was used to examine the thermal properties. The porous bioceramic properties were analyzed by X-ray diffraction, scanning electron microscopy, bulk density, compressive strength testing and cytotoxicity. The compressive strength and average porosity of the porous bioceramics were examined at approximately 6.8MPa and 66% under 10wt% p(NiPAAm-MAA)=99:1 condition. The ratio of HAp/β-TCP can adjust two different compositional behaviors during the 1200°C sintering process without resulting in cell toxicity. The (rhBMP-2)-HAp-PLGA carriers were fabricated as in our previous study of the double emulsion and drop-coating technique. Results of animal study included histological micrographs of the 1-mm defect in the femurs, with the rhBMP-2 carrier group, the bioceramic spacer group and the bioceramic spacer with rhBMP-2 carriers group showing better callus formation around the femur defect site than the control group. The optimal dual effects of the bone growth factors from osteoconductive bioceramics and osteoinductive rhBMP-2 carriers produced better bone formation.

  8. "One-step" preparation of thiol-ene clickable PEG-based thermoresponsive hyperbranched copolymer for in situ crosslinking hybrid hydrogel.

    PubMed

    Dong, Yixiao; Saeed, Aram Omer; Hassan, Waqar; Keigher, Catherine; Zheng, Yu; Tai, Hongyun; Pandit, Abhay; Wang, Wenxin

    2012-01-01

    A well-defined poly(ethylene glycol) based hyperbranched thermoresponsive copolymer with high content of acrylate vinyl groups was synthesized via a "one-pot and one-step" deactivation enhanced atom transfer radical polymerization approach, which provided an injectable and in situ crosslinkable system via Michael-type thiol-ene reaction with a thiol-modified hyaluronan biopolymer. The hyperbranched structure, molecular weight, and percentage of vinyl content of the copolymer were characterized by gel permeation chromatography and (1)H NMR. The lower critical solution temperature of this copolymer is close to body temperature, which can result in a rapid thermal gelation at 37 °C. The scanning electron microscopy analysis of crosslinked hydrogel showed the network formation with porous structure, and 3D cell culture study demonstrated the good cell viability after the cells were embedded inside the hydrogel. This injectable and in situ crosslinking hybrid hydrogel system offers great promise as a new class of hybrid biomaterials for tissue engineering.

  9. Physically crosslinked-sacran hydrogel films for wound dressing application.

    PubMed

    Wathoni, Nasrul; Motoyama, Keiichi; Higashi, Taishi; Okajima, Maiko; Kaneko, Tatsuo; Arima, Hidetoshi

    2016-08-01

    The thin hydrogel films consisting of water-swollen polymer networks can potentially be applied for biomedical fields. Recently, natural polysaccharides have great attentions to be developed as wound healing and protection. In the present study, we newly prepared and characterized a physically crosslinked-hydrogel film composed of a novel megamolecular polysaccharide sacran for wound dressing application. We successfully fabricated a physically crosslinked-sacran hydrogel film by a solvent-casting method. The thickness of a sacran hydrogel film was lower than that of a sodium alginate (Na-alginate) film. Importantly, the swollen ratio of a sacran hydrogel film in water at 24h was 19-fold, compared to initial weight. Meanwhile, a Na-alginate hydrogel film was completely broken apart after rehydration. Moreover, a sacran hydrogel film did not show any cytotoxicity on NIH3T3 cells, a murine fibroblast cell line. The in vivo skin hydration study revealed that a sacran hydrogel film significantly increased the moisture content on hairless mice skin and considerably improved wound healing ability, compared to control (non-treated), probably due to not only the moisturing effect but also the anti-inflammatory effect of sacran. These results suggest that sacran has the potential properties as a basic biomaterial in a hydrogel film for wound dressing application.

  10. The effects of fixed electrical charge on chondrocyte behavior.

    PubMed

    Dadsetan, Mahrokh; Pumberger, Matthias; Casper, Michelle E; Shogren, Kristin; Giuliani, Melissa; Ruesink, Terry; Hefferan, Theresa E; Currier, Bradford L; Yaszemski, Michael J

    2011-05-01

    In this study we have compared the effects of negative and positive fixed charges on chondrocyte behavior in vitro. Electrical charges have been incorporated into oligo(poly(ethylene glycol) fumarate) (OPF) using small charged monomers such as sodium methacrylate (SMA) and (2-(methacryloyloxy) ethyl)-trimethyl ammonium chloride (MAETAC) to produce negatively and positively charged hydrogels, respectively. The physical and electrical properties of the hydrogels were characterized by measuring and calculating the swelling ratio and zeta potential, respectively. Our results revealed that the properties of these OPF modified hydrogels varied according to the concentration of charged monomers. Zeta potential measurements demonstrated that the electrical properties of the OPF hydrogel surfaces changed on incorporation of SMA and MAETAC and that these changes in electrical properties were dose-dependent. Attenuated total reflectance Fourier transform infrared spectroscopy was used to determine the hydrogel surface composition. To assess the effects of surface properties on chondrocyte behavior primary chondrocytes isolated from rabbit ears were seeded as a monolayer on top of the hydrogels. We demonstrated that the cells remained viable over 7 days and began to proliferate while seeded on top of the hydrogels. Collagen type II staining was positive in all samples, however, the staining intensity was higher on negatively charged hydrogels. Similarly, glycosaminoglycan production was significantly higher on negatively charged hydrogels compared with a neutral hydrogel. Reverse transcriptase polymerase chain reaction showed up-regulation of collagen type II and down-regulation of collagen type I on the negatively charged hydrogels. These findings indicate that charge plays an important role in establishing an appropriate environment for chondrocytes and, hence, in the engineering of cartilage. Thus, further investigations into charged hydrogels for cartilage tissue

  11. Preparation and characterization of microporous layers on titanium by anodization in sulfuric acid with and without hydrogen charging.

    PubMed

    Tanaka, Shin-ichi; Fukushima, Yuriko; Nakamura, Isao; Tanaki, Toshiyuki; Jerkiewicz, Gregory

    2013-04-24

    The formation of microporous oxide layers on titanium (Ti) by anodization in sulfuric acid (H2SO4) solution and the influence of prior hydrogen charging on their properties are examined using electrochemical techniques, scanning electron microscopy, grazing incident X-ray diffraction, and X-ray photoelectron spectroscopy. When Ti is anodized in 1 M aqueous H2SO4 solution at a high direct current (DC) potential (>150 V) for 1 min, a porous surface layer develops, and the process takes place with spark-discharge. Under these conditions, oxygen evolution at the Ti electrode proceeds vigorously and concurrently with the formation of anodic oxide. The oxygen gas layer adjacent to the Ti surface acts as an insulator and triggers spark-discharge; the latter stimulates the development of pores. In the absence of spark-discharge, the oxide layer has extended surface roughness but low porosity. A porous oxide layer can be prepared by applying a lower DC voltage (130 V) and without spark-discharge, but Ti requires prior hydrogen charging by cathodic polarization in 1 M aqueous H2SO4 solution. Mott-Schottky measurements indicate that the oxide layers are n-type semiconductors and that the charge carrier density in the anodic oxide layer on the hydrogen-charged Ti is lower than in the case of untreated Ti. The hydrogen charging also affects the flat band potential of the anodic oxide layers on Ti by increasing its value. The reduced charge carrier density brought about by hydrogen charging decreases the oxide layer conductivity and creates favorable conditions for its electrical breakdown that stimulates the development of pores. The porous layer on the hydrogen-charged Ti consists of anatase and rutile phases of TiO2; it has the same chemical composition as the porous layer obtained on untreated Ti. X-ray photoelectron spectroscopy measurements show that prior hydrogen charging does not affect the thickness of anodic oxides on Ti. The porous oxide layer on Ti enables the

  12. Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation

    NASA Astrophysics Data System (ADS)

    Hoeng, Fanny; Denneulin, Aurore; Neuman, Charles; Bras, Julien

    2015-06-01

    Synthesis of silver nanoparticles using cellulose nanocrystals (CNC) has been found to be a great method for producing metallic particles in a sustainable way. In this work, we propose to evaluate the influence of the charge density of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-oxidized CNC on the morphology and the stability of synthetized silver nanoparticles. Silver nanoparticles were obtained by sol-gel reaction using borohydride reduction, and charge density of TEMPO-oxidized CNC was tuned by an amine grafting. The grafting was performed at room temperature and neutral pH. Crystallinity and morphology were kept intact during the peptidic reaction on CNC allowing knowing the exact impact of the charge density. Charge density has been found to have a strong impact on shape, organization, and suspension stability of resulting silver particles. Results show an easy way to tune the charge density of CNC and propose a sustainable way to control the morphology and stability of silver nanoparticles in aqueous suspension.

  13. New in situ crosslinking chemistries for hydrogelation

    NASA Astrophysics Data System (ADS)

    Roberts, Meredith Colleen

    Over the last half century, hydrogels have found immense value as biomaterials in a vast number of biomedical and pharmaceutical applications. One subset of hydrogels receiving increased attention is in situ forming gels. Gelling by either bioresponsive self-assembly or mixing of binary crosslinking systems, these technologies are useful in minimally invasive applications as well as drug delivery systems in which the sol-to-gel transition aids the formulation's performance. Thus far, the field of in situ crosslinking hydrogels has received limited attention in the development of new crosslinking chemistries. Moreover, not only does the chemical nature of the crosslinking moieties allow these systems to perform in situ, but they contribute dramatically to the mechanical properties of the hydrogel networks. For example, reversible crosslinks with finite lifetimes generate dynamic viscoelastic gels with time-dependent properties, whereas irreversible crosslinks form highly elastic networks. The aim of this dissertation is to explore two new covalent chemistries for their ability to crosslink hydrogels in situ under physiological conditions. First, reversible phenylboronate-salicylhydroxamate crosslinking was implemented in a binary, multivalent polymeric system. These gels formed rapidly and generated hydrogel networks with frequency-dependent dynamic rheological properties. Analysis of the composition-structure-property relationships of these hydrogels---specifically considering the effects of pH, degree of polymer functionality, charge of the polymer backbone and polymer concentration on dynamic theological properties---was performed. These gels demonstrate diverse mechanical properties, due to adjustments in the binding equilibrium of the pH-sensitive crosslinks, and thus have the potential to perform in a range of dynamic or bioresponsive applications. Second, irreversible catalyst-free "click" chemistry was employed in the hydrogelation of multivalent azide

  14. Glucose-responsive hydrogel electrode for biocompatible glucose transistor

    PubMed Central

    Kajisa, Taira; Sakata, Toshiya

    2017-01-01

    Abstract In this paper, we propose a highly sensitive and biocompatible glucose sensor using a semiconductor-based field effect transistor (FET) with a functionalized hydrogel. The principle of the FET device contributes to the easy detection of ionic charges with high sensitivity, and the hydrogel coated on the electrode enables the specific detection of glucose with biocompatibility. The copolymerized hydrogel on the Au gate electrode of the FET device is optimized by controlling the mixture ratio of biocompatible 2-hydroxyethylmethacrylate (HEMA) as the main monomer and vinylphenylboronic acid (VPBA) as a glucose-responsive monomer. The gate surface potential of the hydrogel FETs shifts in the negative direction with increasing glucose concentration from 10 μM to 40 mM, which results from the increase in the negative charges on the basis of the diol-binding of PBA derivatives with glucose molecules in the hydrogel. Moreover, the hydrogel coated on the gate suppresses the signal noise caused by the nonspecific adsorption of proteins such as albumin. The hydrogel FET can serve as a highly sensitive and biocompatible glucose sensor in in vivo or ex vivo applications such as eye contact lenses and sheets adhering to the skin. PMID:28179956

  15. Glucose-responsive hydrogel electrode for biocompatible glucose transistor.

    PubMed

    Kajisa, Taira; Sakata, Toshiya

    2017-01-01

    In this paper, we propose a highly sensitive and biocompatible glucose sensor using a semiconductor-based field effect transistor (FET) with a functionalized hydrogel. The principle of the FET device contributes to the easy detection of ionic charges with high sensitivity, and the hydrogel coated on the electrode enables the specific detection of glucose with biocompatibility. The copolymerized hydrogel on the Au gate electrode of the FET device is optimized by controlling the mixture ratio of biocompatible 2-hydroxyethylmethacrylate (HEMA) as the main monomer and vinylphenylboronic acid (VPBA) as a glucose-responsive monomer. The gate surface potential of the hydrogel FETs shifts in the negative direction with increasing glucose concentration from 10 μM to 40 mM, which results from the increase in the negative charges on the basis of the diol-binding of PBA derivatives with glucose molecules in the hydrogel. Moreover, the hydrogel coated on the gate suppresses the signal noise caused by the nonspecific adsorption of proteins such as albumin. The hydrogel FET can serve as a highly sensitive and biocompatible glucose sensor in in vivo or ex vivo applications such as eye contact lenses and sheets adhering to the skin.

  16. Antifouling properties of hydrogels

    NASA Astrophysics Data System (ADS)

    Murosaki, Takayuki; Ahmed, Nafees; Gong, Jian Ping

    2011-12-01

    Marine sessile organisms easily adhere to submerged solids such as rocks, metals and plastics, but not to seaweeds and fishes, which are covered with soft and wet 'hydrogel'. Inspired by this fact, we have studied long-term antifouling properties of hydrogels against marine sessile organisms. Hydrogels, especially those containing hydroxy group and sulfonic group, show excellent antifouling activity against barnacles both in laboratory assays and in the marine environment. The extreme low settlement on hydrogels in vitro and in vivo is mainly caused by antifouling properties against the barnacle cypris.

  17. A highly sensitive and stable glucose biosensor using thymine-based polycations into laponite hydrogel films.

    PubMed

    Paz Zanini, Veronica I; Gavilán, Maximiliano; López de Mishima, Beatriz A; Martino, Débora M; Borsarelli, Claudio D

    2016-04-01

    A series of glucose bioelectrodes were prepared by glucose oxidase (GOx) immobilization into laponite hydrogel films containing DNA bioinspired polycations made of vinylbenzyl thymine (VBT) and vinylbenzyl triethylammonium chloride (VBA) with general formulae (VBT)m(VBA)n](n+)≈25 with m=0, 1 and n=2, 4, 8, deposited onto glassy carbon electrode. The bioelectrodes were characterized by chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy. Results indicated that the electrochemical properties of the laponite hydrogel films were largely improved by the incorporation of thymine-based polycations, being proportional to the positive charge density of the polycation molecule. After incorporation of glucose oxidase, the sensitivity of the bioelectrode to glucose increased with the positive charge density of the polycation. Additionally, the presence of the vinylbenzyl thymine moiety played a role in the long-term stability and reproducibility of the bioelectrode signal. As a consequence, the [(VBT)(VBA)8](8+)≈25 was the most appropriate polycation for bioelectrode preparation and glucose sensing, with a specific sensitivity of se=176 mA mmol(-1)Lcm(-2)U(-1), almost two-order of magnitude larger than other laponite immobilized GOx bioelectrodes reported elsewhere. These features were confirmed by testing the bioelectrode for a selective determination of glucose in powder milk and blood serum samples without interference of either ascorbic or uric acids under the experimental conditions. The present study demonstrates the suitability of DNA bioinspired water-soluble polycations [(VBT)m(VBA)n](n+)≈25 for enzyme immobilization like GOx into laponite hydrogels, and the preparation of highly sensitive and stable bioelectrodes on glassy carbon surface. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Hydrogel Actuation by Electric Field Driven Effects

    NASA Astrophysics Data System (ADS)

    Morales, Daniel Humphrey

    Hydrogels are networks of crosslinked, hydrophilic polymers capable of absorbing and releasing large amounts of water while maintaining their structural integrity. Polyelectrolyte hydrogels are a subset of hydrogels that contain ionizable moieties, which render the network sensitive to the pH and the ionic strength of the media and provide mobile counterions, which impart conductivity. These networks are part of a class of "smart" material systems that can sense and adjust their shape in response to the external environment. Hence, the ability to program and modulate hydrogel shape change has great potential for novel biomaterial and soft robotics applications. We utilized electric field driven effects to manipulate the interaction of ions within polyelectrolyte hydrogels in order to induce controlled deformation and patterning. Additionally, electric fields can be used to promote the interactions of separate gel networks, as modular components, and particle assemblies within gel networks to develop new types of soft composite systems. First, we present and analyze a walking gel actuator comprised of cationic and anionic gel legs attached by electric field-promoted polyion complexation. We characterize the electro-osmotic response of the hydrogels as a function of charge density and external salt concentration. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices in aqueous solutions. An 'ionoprinting' technique is presented with the capability to topographically structure and actuate hydrated gels in two and three dimensions by locally patterning ions induced by electric fields. The bound charges change the local mechanical properties of the gel to induce relief patterns and evoke localized stress, causing rapid folding in air. The ionically patterned hydrogels exhibit programmable temporal and spatial shape transitions which can be tuned by the duration and/or strength of

  19. One-step synthesis of interpenetrating network hydrogels: Environment sensitivities and drug delivery properties

    PubMed Central

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Ashraf, Muhammmad Aqeel; Zhao, Yansheng

    2015-01-01

    A novel interpenetrating network hydrogel for drug controlled release, composed of modified poly(aspartic acid) (KPAsp) and carboxymethyl chitosan (CMCTS), was prepared in aqueous system. The surface morphology and composition of hydrogels were characterized by SEM and FTIR. The swelling properties of KPAsp, KPAsp/CMCTS semi-IPN and KPAsp/CMCTS IPN hydrogels were investigated and the swelling dynamics of the hydrogels was analyzed based on the Fickian equation. The pH, temperature and salt sensitivities of hydrogels were further studied, and the prepared hydrogels showed extremely sensitive properties to pH, temperature, the ionic salts kinds and concentration. The results of controlled drug release behaviors of the hydrogels revealed that the introduction of IPN observably improved the drug release properties of hydrogels, the release rate of drug from hydrogels can be controlled by the structure of the hydrogels and pH value of the external environment, a relative large amount of drug released was preferred under simulated intestinal fluid. These results illustrated high potential of the KPAsp/CMCTS IPN hydrogels for application as drug carriers. PMID:26858562

  20. Stimuli responsive deswelling of radiation synthesized collagen hydrogel in simulated physiological environment.

    PubMed

    Zhang, Xiangmei; Xu, Ling; Wei, Shicheng; Zhai, Maolin; Li, Jiuqiang

    2013-08-01

    Collagen hydrogels were prepared via radiation crosslinking. The simulated physiological environmental effects related to their biomedical applications on the volume phase transition of collagen hydrogel were studied, that is stimuli response to ions, temperature, and pH. The deswelling behavior of collagen hydrogel depends on the salt concentration, temperature, pH, and the hydrogel preparation procedure. Meanwhile, hydrogel structure related to the volume phase transition was investigated by FTIR, fluorescence spectrum, and HR-MAS NMR. Deswelling in salt solution caused little change on collagen conformation, and a denser network led to more significant tyrosine-derived fluorescence quenching. Hydrogen bonding between hydrated water and collagen polypeptide chain was dissociated and the activity of hydrophobic side chain increased, inducing a higher extent of contraction with the increasing of salt concentration. Moreover, salt solution treatments weakened the electrostatic interactions, side chains interactions, and hydrogen bonding of collagen hydrogel, which reduced the thermal stability of collagen hydrogel. Comparing with cell-free collagen hydrogel contraction, fibroblasts did not aggravate contraction of collagen hydrogel significantly. This study elucidated the deswelling mechanism of radiation crosslinked collagen hydrogel in simulated physiological environment and provides strategies for controlling the stimuli response of collagen hydrogel in biomedical application.

  1. Determination of Gentamicin Sulphate Composition and Related Substances in Pharmaceutical Preparations by LC with Charged Aerosol Detection

    PubMed Central

    Stypulkowska, Karolina; Fijalek, Zbigniew; Sarna, Katarzyna

    2010-01-01

    A new, simple and repeatable liquid chromatography method with charged aerosol detection (LC-CAD) for the determination of gentamicin sulphate composition and related substances has been developed. Gentamicin lacks of chromophores, therefore its determination is quite problematic. Using a universal CAD enables to achieve good separation without sample derivatization. Mass spectrometry was employed to confirm the LC-CAD peak profile. The proposed method was validated and applied for the determination of gentamicin sulphate composition and related substances in pharmaceutical preparations. PMID:21212825

  2. Extracellular matrix hydrogels from decellularized tissues: Structure and function.

    PubMed

    Saldin, Lindsey T; Cramer, Madeline C; Velankar, Sachin S; White, Lisa J; Badylak, Stephen F

    2017-02-01

    Extracellular matrix (ECM) bioscaffolds prepared from decellularized tissues have been used to facilitate constructive and functional tissue remodeling in a variety of clinical applications. The discovery that these ECM materials could be solubilized and subsequently manipulated to form hydrogels expanded their potential in vitro and in vivo utility; i.e. as culture substrates comparable to collagen or Matrigel, and as injectable materials that fill irregularly-shaped defects. The mechanisms by which ECM hydrogels direct cell behavior and influence remodeling outcomes are only partially understood, but likely include structural and biological signals retained from the native source tissue. The present review describes the utility, formation, and physical and biological characterization of ECM hydrogels. Two examples of clinical application are presented to demonstrate in vivo utility of ECM hydrogels in different organ systems. Finally, new research directions and clinical translation of ECM hydrogels are discussed.

  3. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications.

    PubMed

    Zhou, Hui Yun; Jiang, Ling Juan; Cao, Pei Pei; Li, Jun Bo; Chen, Xi Guang

    2015-03-06

    Chitosan is non-toxic, biocompatible and biodegradable polysaccharide composed of glucosamine and derived by deacetylation of chitin. Chitosan thermosensitive hydrogel has been developed to form a gel in situ, precluding the need for surgical implantation. In this review, the recent advances in chitosan thermosensitive hydrogels based on different glycerophosphate are summarized. The hydrogel is prepared with chitosan and β-glycerophosphate or αβ-glycerophosphate which is liquid at room temperature and transits into gel as temperature increases. The gelation mechanism may involve multiple interactions between chitosan, glycerophosphate, and water. The solution behavior, rheological and physicochemical properties, and gelation process of the hydrogel are affected not only by the molecule weight, deacetylation degree, and concentration of chitosan, but also by the kind and concentration of glycerophosphate. The properties and the three-dimensional networks of the hydrogel offer them wide applications in biomedical field including local drug delivery and tissue engineering.

  4. A collagen peptide-based physical hydrogel for cell encapsulation.

    PubMed

    Pérez, Charles M Rubert; Panitch, Alyssa; Chmielewski, Jean

    2011-10-10

    Collagen peptide-based hydrogels are prepared and characterized for application in 3D cell growth. Physical hydrogels are formed by covalently linking a collagen-based peptide to an 8-arm poly(ethylene glycol) star polymer. The resulting viscoelastic hydrogels have the ability to melt into a liquid-like state near the melting temperature of the collagen triple helix and reform back into an elastic-state at room temperature, adding a thermoresponsive feature to the material. In addition, the hydrogels possess desirable stiffness, as well as a highly cross-linked network of pores where cells are found to reside, making the hydrogels promising scaffolds for the culture of hMSCs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Enzymatic regulation of functional vascular networks using gelatin hydrogels

    PubMed Central

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh

    2015-01-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:25749296

  6. Enzymatic regulation of functional vascular networks using gelatin hydrogels.

    PubMed

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M; Chen, Ying-Chieh

    2015-06-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights

  7. Dextran/Albumin hydrogel sealant for Dacron(R) vascular prosthesis.

    PubMed

    Lisman, Anna; Butruk, Beata; Wasiak, Iga; Ciach, Tomasz

    2014-05-01

    In this paper, the authors describe a novel type of hydrogel coating prepared from the copolymer of human serum albumin and oxidized dextran. The material was designed as a hydrogel sealant for polyester (Dacron®)-based vascular grafts. Dextran was chosen as a coating material due to its anti-thrombogenic properties. Prepared hydrogels were compared with similar, already known biomaterial made from gelatine with the same cross-linking agent. Obtained hydrogels, prepared from various ratios of oxidized dextran/albumin or oxidized dextran/gelatine, showed different cross-linking densities, which caused differences in swelling, degradation rate and mechanical properties. Permeability tests confirmed the complete tightness of the hydrogel-modified prosthesis. Results showed that application of the hydrogel coating provided leakage-free prosthesis and eliminated the need of pre-clotting.

  8. Photo-cross-linkable and thermo-responsive hydrogels containing chitosan and Pluronic for sustained release of human growth hormone (hGH).

    PubMed

    Yoo, Hyuk Sang

    2007-01-01

    A Pluronic/chitosan hydrogel was prepared by employing di-acrylated Pluronic and acrylated chitosan for thermo-responsive and photo-cross-linkable in situ gelation. Mixtures of diacrylated Pluronic and acrylated chitosan were transformed to physical gels at elevated temperatures and the gelation temperature of the hydrogels gradually increased by increasing chitosan content in the hydrogels from 0% to 15%. Photo-cross-linked Pluronic/chitosan hydrogels were prepared by UV irradiation of the physical gels above their gelation temperatures. Hydrogels with a long photo-cross-linking time showed low degradation rates and chitosan contents in the hydrogels also impeded the degradation rates of the hydrogels, which was caused by a high degree of inter-connected polymer networks between acrylated Pluronic and acrylated chitosan. Human growth hormone (hGH), mixed with the mixture of Pluronic and chitosan, was photo-cross-linked to prepare biodegradable hGH hydrogels. The hydrogels containing hGH showed sustained release profiles for those with long photo-cross-linking times and high chitosan contents in the hydrogel. The hydrogels with a long cross-linking time showed impeded release of the protein and high content of chitosan in the hydrogels also decreased burst release of hGH from the hydrogels while hGH was rapidly released out for the hydrogels with low content of chitosan.

  9. Difference between Chitosan Hydrogels via Alkaline and Acidic Solvent Systems

    PubMed Central

    Nie, Jingyi; Wang, Zhengke; Hu, Qiaoling

    2016-01-01

    Chitosan (CS) has generated considerable interest for its desirable properties and wide applications. Hydrogel has been proven to be a major and vital form in the applications of CS materials. Among various types of CS hydrogels, physical cross-linked CS hydrogels are popular, because they avoided the potential toxicity and sacrifice of intrinsic properties caused by cross-linking or reinforcements. Alkaline solvent system and acidic solvent system are two important solvent systems for the preparation of physical cross-linked CS hydrogels, and also lay the foundations of CS hydrogel-based materials in many aspects. As members of physical cross-linked CS hydrogels, gel material via alkaline solvent system showed significant differences from that via acidic solvent system, but the reasons behind are still unexplored. In the present work, we studied the difference between CS hydrogel via alkaline system and acidic system, in terms of gelation process, hydrogel structure and mechanical property. In-situ/pseudo in-situ studies were carried out, including fluorescent imaging of gelation process, which provided dynamic visualization. Finally, the reasons behind the differences were explained, accompanied by the discussion about design strategy based on gelation behavior of the two systems. PMID:27786262

  10. Characterization of bladder acellular matrix hydrogel with inherent bioactive factors.

    PubMed

    Jiang, Dan; Huang, Jianwen; Shao, Huili; Hu, Xuechao; Song, Lujie; Zhang, Yaopeng

    2017-08-01

    Bladder acellular matrix (BAM) hydrogel may have great potential in tissue engineering due to outstanding biocompatibility and the presence of inherent bioactive factors in BAM. In this study, we prepared the BAM hydrogel by the method of enzymatic solubilization with pepsin and characterize the microrheological properties of the BAM precursor solution. The structures of the BAM hydrogel were characterized by scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Furthermore, the growth factors including vascular endothelial growth factor (VEGF), platelet-derived growth factor B (PDGF-BB), keratinocyte growth factor (KGF) were quantified by ELISA. The biological performances of the hydrogels were evaluated by cultivating porcine iliac endothelial cells (PIECs) in vitro. Lyophilized BAM showed porous structure with pore diameter ranging from 50 to 100μm. BAM 4-G hydrogel (4mg/mL) with a short gelation time of 3.95±0.07min presents better thermal stability than BAM 6-G hydrogel (6mg/mL). Growth factors in the BAM hydrogel maintain valuable biological activity even after digestion process. The BAM hydrogel supported the adhesion and growth of PIECs well and has great potential for further tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Difference between Chitosan Hydrogels via Alkaline and Acidic Solvent Systems

    NASA Astrophysics Data System (ADS)

    Nie, Jingyi; Wang, Zhengke; Hu, Qiaoling

    2016-10-01

    Chitosan (CS) has generated considerable interest for its desirable properties and wide applications. Hydrogel has been proven to be a major and vital form in the applications of CS materials. Among various types of CS hydrogels, physical cross-linked CS hydrogels are popular, because they avoided the potential toxicity and sacrifice of intrinsic properties caused by cross-linking or reinforcements. Alkaline solvent system and acidic solvent system are two important solvent systems for the preparation of physical cross-linked CS hydrogels, and also lay the foundations of CS hydrogel-based materials in many aspects. As members of physical cross-linked CS hydrogels, gel material via alkaline solvent system showed significant differences from that via acidic solvent system, but the reasons behind are still unexplored. In the present work, we studied the difference between CS hydrogel via alkaline system and acidic system, in terms of gelation process, hydrogel structure and mechanical property. In-situ/pseudo in-situ studies were carried out, including fluorescent imaging of gelation process, which provided dynamic visualization. Finally, the reasons behind the differences were explained, accompanied by the discussion about design strategy based on gelation behavior of the two systems.

  12. Studies on radiation synthesis of PVA/EDTA hydrogels

    NASA Astrophysics Data System (ADS)

    Francis, Sanju; Varshney, Lalit

    2005-12-01

    Aqueous solutions of polyvinyl alcohol (PVA) containing different amounts of ethylenediaminetetraacetic acid (EDTA) were gamma irradiated from a Co-60 source to form PVA-EDTA hydrogels. The effect of irradiation dose and EDTA content on the specific viscosity (in feed), gel percentage and equilibrium degree of swelling (EDS) was investigated. The amount of EDTA in the hydrogel matrix was found to be considerably lower than in the feed composition. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) technique was used to determine the amount of Pb(II), Cd(II) and Hg(II) absorbed by the hydrogel. The incorporation of EDTA moieties onto PVA network results in a hydrogel which has absorption affinity for Pb(II) and Cd(II). The maximum chelating capacities of the hydrogel were observed to be 8.5 mg/g for Pb(II) and 4.2 mg/g for Cd(II). No affinity for absorption of Hg(II) by the hydrogel was observed. The thermal stabilities of the prepared hydrogels were characterized by TGA. The efficiency of EDTA in the hydrogel matrix for chelation was observed to be approximately 10% of that of pure EDTA in solution.

  13. Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity.

    PubMed

    Peng, Na; Wang, Yanfeng; Ye, Qifa; Liang, Lei; An, Yuxing; Li, Qiwei; Chang, Chunyu

    2016-02-10

    Current superabsorbent hydrogels commercially applied in the disposable diapers have disadvantages such as weak mechanical strength, poor biocompatibility, and lack of antimicrobial activity, which may induce skin allergy of body. To overcome these hassles, we have developed novel cellulose based hydrogels via simple chemical cross-linking of quaternized cellulose (QC) and native cellulose in NaOH/urea aqueous solution. The prepared hydrogel showed superabsorbent property, high mechanical strength, good biocompatibility, and excellent antimicrobial efficacy against Saccharomyces cerevisiae. The presence of QC in the hydrogel networks not only improved their swelling ratio via electrostatic repulsion of quaternary ammonium groups, but also endowed their antimicrobial activity by attraction of sections of anionic microbial membrane into internal pores of poly cationic hydrogel leading to the disruption of microbial membrane. Moreover, the swelling properties, mechanical strength, and antibacterial activity of hydrogels strongly depended on the contents of quaternary ammonium groups in hydrogel networks. The obtained data encouraged the use of these hydrogels for hygienic application such as disposable diapers.

  14. Synthesis and characterization of a chitosan based nanocomposite injectable hydrogel.

    PubMed

    Wang, Qianqian; Chen, Dajun

    2016-01-20

    The aim of the current study was to enhance the mechanical property of chitosan/β-glycerophosphate disodium salt (CS/GP) injectable hydrogels. A novel nanocomposite injectable hydrogel was prepared by introducing attapulgite (ATP) nano particles into the CS/GP hydrogels. The mechanical properties of the composite hydrogels with two different water contents were characterized by tensile test, the results shown that the tensile strength and elongation at break of composite hydrogels both increased obviously with increasing of ATP content. And, in our testing range, the maximum values of tensile strength and elongation at break were both more than 5 times larger than that of neat CS/GP hydrogel. We discussed this enhancement effect in detail by Scanning electron microscope observations (SEM) and Fourier transform infrared spectroscopy testing (FT-IR). The SEM images of composite hydrogels shown quite different from the neat CS/GP hydrogel, where the pores were more tightly and with some uniform and smaller holes dispersed on the wall. FT-IR test results revealed that the introduction of ATP increased the cross-link density because of the hydrogen bonds formation between ATP nanoparticles and CS molecules. Also, we studied the impact of ATP introduction on gelation speed through tracking the dynamic process of the sol-gel transition by means of rheological measurement, and the results shown that the reaction rate increased significantly with the increase of ATP concentration.

  15. Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange.

    PubMed

    Bruchet, Marion; Melman, Artem

    2015-10-20

    Calcium cross-linked alginate hydrogels are widely used in targeted drug delivery, tissue engineering, wound treatment, and other biomedical applications. We developed a method for preparing homogeneous alginate hydrogels cross-linked with Ca(2+) cations using reductive cation exchange in homogeneous iron(III) cross-linked alginate hydrogels. Treatment of iron(III) cross-linked alginate hydrogels with calcium salts and sodium ascorbate results in reduction of iron(III) cations to iron(II) that are instantaneously replaced with Ca(2+) cations, producing homogeneous ionically cross-linking hydrogels. Alternatively, the cation exchange can be performed by photochemical reduction in the presence of calcium chloride using a sacrificial photoreductant. This approach allows fabrication of patterned calcium alginate hydrogels through photochemical patterning of iron(III) cross-linked alginate hydrogel followed by the photochemical reductive exchange of iron cations to calcium.

  16. Development of microbial resistant thermosensitive Ag nanocomposite (gelatin) hydrogels via green process.

    PubMed

    Manjula, Bandla; Varaprasad, Kokkarachedu; Sadiku, Rotimi; Ramam, Koduri; Reddy, G Venkata Subba; Raju, Konduru Mohana

    2014-04-01

    In this investigation, an ecofriendly method for the synthesis of silver nanoparticles (AgNPs) using biodegradable gelatin as a stabilizing agent is reported. Here, we prepared thermosensitive silver nanocomposite hydrogels composed of gelatin and N-isopropylacrylamide. In this green process AgNPs were formed from Ag(+) ions and reduced with leaf [Azadirachta indica (neem leaf)] extracts, resulting in a hydrogel network. The Ag(0) nanoparticles affect the hydrogel strength and improved the biological activity (inactivation effect of bacteria) of the biodegradable hydrogels. The resulted hydrogel structure, morphology, thermal, swelling behavior, degradation, and antibacterial properties were systematically investigated. The biodegradable thermosensitive silver nanocomposite hydrogels developed were tested for antibacterial activities. The results indicate that these biodegradable silver nanocomposite hydrogels are suitable potential candidates for antibacterial applications.

  17. Characterization of superabsorbent hydrogel based on epichlorohydrin crosslink and carboxymethyl functionalization of cassava starch

    NASA Astrophysics Data System (ADS)

    Muharam, S.; Yuningsih, L. M.; Sumitra, M. R.

    2017-07-01

    Superabsorbent hydrogel was prepared by epichlorohydrin crosslink of cassava starch. Their swelling improved with added carboxymethyl group on the starch-epichlorohydrin structure. The structure and properties of starch-epichlorohydrin-carboxymethyl hydrogel were measured by SEM, FTIR, water and physiological solution absorption test and water retention test. The result showed that hydrogel displayed macroporous with heterogenous distribution and irregular surface was formed by epichlorohydrin and carboxymethyl bond in the structure of hydrogel. It was confirmed also by the FTIR spectra. The swelling ratio of starch-epichlorohydrin hydrogel to the water is 518 % and increased to 1,028.5 % with carboxymethyl addition on the structure. The best influence of the physiological solution to the swelling ratio of starch-epichlorohydrin-carboxymethyl hydrogel is urea solution. The water retention of starch-epichlorohydrin-carboxymethyl hydrogel in NaCl solution is better than in CaCl2 solution.

  18. Carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing.

    PubMed

    Zhang, Di; Zhou, Wei; Wei, Bing; Wang, Xin; Tang, Rupei; Nie, Jiemin; Wang, Jun

    2015-07-10

    The objective of this study was to develop a novel carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. To prepare the crosslinked hydrogels, poly(vinyl alcohol) (PVA) was grafted with succinate acid to yield carboxyl-modified poly(vinyl alcohol) (PVA-COOH). Hydrogel films based on PVA-COOH and chitosan (CS) at different concentrations were crosslinked through the formation of amide linkages. The mechanical properties of these crosslinked hydrogel films in dry and swollen state were greatly improved with high swelling ratio. Water vapor and oxygen permeability evaluations indicated that crosslinked hydrogel films could maintain a moist environment over wound bed. Biocompatibility test showed the crosslinked hydrogels had no cytotoxicity and hemolytic potential. Gentamicin sulfate-loaded crosslinked hydrogel films showed sustained drug release profile, and could effectively suppress bacterial proliferation and protect wound from infection.

  19. Facile synthesis of antibacterial chitosan/CuO bio-nanocomposite hydrogel beads.

    PubMed

    Farhoudian, Sana; Yadollahi, Mehdi; Namazi, Hassan

    2016-01-01

    CuO nanoparticles were synthesized in situ during the formation of physically cross-linked chitosan hydrogel beads using sodium tripolyphosphate as the cross-linker. The aim of the study was to investigate whether these nanocomposite beads have the potential to be used in drug delivery applications. The formation of CuO nanoparticles (CuONPs) in the hydrogels was confirmed by X-ray diffraction and scanning electron microscopy studies. SEM micrographs revealed the formation of CuONPs with size range of 10-25 nm within the hydrogel matrix. Furthermore, the antibacterial and swelling properties of the beads were studied. The prepared nanocomposite hydrogels showed a pH sensitive swelling behavior. The CuO nanocomposite hydrogels have rather higher swelling in different aqueous solutions in comparison with neat hydrogel. The nanocomposite hydrogels demonstrated good antibacterial effects against Escherichia coli and Staphylococcus aureus bacteria.

  20. Behaviors of acrylamide/itaconic acid hydrogels in uptake of uranyl ions from aqueous solutions

    SciTech Connect

    Karadag, E.; Saraydin, D.; Gueven, O.

    1995-12-01

    In this study, adsorptions of uranyl ions from two different aqueous uranyl solutions by acrylamide-itaconic acid hydrogels were investigated by a spectroscopic method. The hydrogels were prepared by irradiating with {gamma}-radiation. In the experiment of uranyl ions adsorption, Type II adsorption was found. One gram of acrylamide-itaconic acid hydrogels sorbed 178-219 mg uranyl ions from the solutions of uranyl acetate, 42-76 mg uranyl ions from the aqueous solutions of uranyl nitrate, while acrylamide hydrogel did not sorb any uranyl ion. For the hydrogel containing 40 mg of itaconic acid and irradiated to 3.73 kGy, swelling of the hydrogels was observed in water (1660%), in the aqueous solution of uranyl acetate (730%), and in the aqueous solution of uranyl nitrate (580%). Diffusions of water onto hydrogels were a non-Fickian type of diffusion, whereas diffusions of uranyl ions were a Fickian type of diffusion.

  1. Hydrogel microparticles for biosensing

    PubMed Central

    Le Goff, Gaelle C.; Srinivas, Rathi L.; Hill, W. Adam; Doyle, Patrick S.

    2015-01-01

    Due to their hydrophilic, biocompatible, and highly tunable nature, hydrogel materials have attracted strong interest in the recent years for numerous biotechnological applications. In particular, their solution-like environment and non-fouling nature in complex biological samples render hydrogels as ideal substrates for biosensing applications. Hydrogel coatings, and later, gel dot surface microarrays, were successfully used in sensitive nucleic acid assays and immunoassays. More recently, new microfabrication techniques for synthesizing encoded particles from hydrogel materials have enabled the development of hydrogel-based suspension arrays. Lithography processes and droplet-based microfluidic techniques enable generation of libraries of particles with unique spectral or graphical codes, for multiplexed sensing in biological samples. In this review, we discuss the key questions arising when designing hydrogel particles dedicated to biosensing. How can the hydrogel material be engineered in order to tune its properties and immobilize bioprobes inside? What are the strategies to fabricate and encode gel particles, and how can particles be processed and decoded after the assay? Finally, we review the bioassays reported so far in the literature that have used hydrogel particle arrays and give an outlook of further developments of the field. PMID:26594056

  2. Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications.

    PubMed

    Millon, L E; Mohammadi, H; Wan, W K

    2006-11-01

    Polyvinyl alcohol (PVA) is a hydrophilic polymer with various characteristics desired for biomedical applications and can be transformed into a solid hydrogel by physical crosslinking, using a low-temperature thermal cycling process. As with most polymeric materials, the mechanical properties of the resultant PVA are isotropic, as oppose to most soft tissues, which are anisotropic. The objective of this research is to develop a PVA-based hydrogel that not only mimics the nonlinear mechanical properties displayed by cardiovascular tissues, but also their anisotropic behavior. By applying a controlled strain to the PVA samples, while undergoing low-temperature thermal cycling, we were able to create oriented mechanical properties in PVA hydrogels. The oriented stress-strain properties of porcine aorta were matched simultaneously by a PVA hydrogel prepared (10% PVA, cycle 3, 75% initial strain). This novel technique allows the controlled introduction of anisotropy to PVA hydrogel, and gives a broad range of control of its mechanical properties, for specific medical device applications. (c) 2006 Wiley Periodicals, Inc.

  3. A study on chitosan-based hydrogels: Towards the development of an artificial muscle

    NASA Astrophysics Data System (ADS)

    Sun, Shan

    The short-term purpose of this research is to prepare and characterize a chitosan-based hydrogel for its potential application as a prosthetic actuator. Such hydrogels in the form of fiber and membrane were prepared and characterized. Under the stimulation of electric fields, their electrochemomechanical (ECM) behaviors and associated mechanisms were systematically investigated in various aqueous environments. The reversibility of the ECM behaviors was also studied in response to cyclic external stimuli. A theoretical model based on the triphasic theory for a fully hydrated polyelectrolyte matrix was applied to simulate the bending behaviors of the chitosan/PEG hydrogel. The parameters necessary to drive the model were assessed experimentally. Experimental results showed that the deformation of the chitosan/PEG hydrogel depended significantly on its composition, geometric size, crosslink density as well as other external factors, such as the applied electric potential, the pH and ionic strength of the bath medium. While maintaining adequate mechanical properties, the rate of deformation could be improved by adjusting the above factors. Within the range of parameters studied, the bending curvature was found to be proportional to the intensity of the applied electric potential. These experimental observations were interpreted in terms of fiber stiffness, fixed charge density and osmotic swelling, which depended on the equilibrium states in different pH and ionic environments. Electrochemical kinetics was involved in the transient processes. Within the ranges of crosslink density, pH and ionic strength examined in this dissertation research, an optimal condition was obtained for reversible bending behavior under an applied alternating electric field. The experimental results suggest that 0.02 M epichlorohydrin (ECH), 0.015 M Na2SO4 and 0.05% HCl may offer an optimal condition for these ECM responses and for the mechanical properties of these chitosan/PEG fibers. The

  4. Hypoxia-Inducible Hydrogels

    PubMed Central

    Park, Kyung Min; Gerecht, Sharon

    2014-01-01

    Oxygen is vital for the existence of all multicellular organisms, acting as a signaling molecule regulating cellular activities. Specifically, hypoxia, which occurs when the partial pressure of oxygen falls below 5%, plays a pivotal role during development, regeneration, and cancer. Here we report a novel hypoxia-inducible (HI) hydrogel composed of gelatin and ferulic acid that can form hydrogel networks via oxygen consumption in a laccase-mediated reaction. Oxygen levels and gradients within the hydrogels can be accurately controlled and precisely predicted. We demonstrate that HI hydrogels guide vascular morphogenesis in vitro via hypoxia-inducible factors activation of matrix metalloproteinases and promote rapid neovascularization from the host tissue during subcutaneous wound healing. The HI hydrogel is a new class of biomaterials that may prove useful in many applications, ranging from fundamental studies of developmental, regenerative and disease processes through the engineering of healthy and diseased tissue models towards the treatment of hypoxia-regulated disorders. PMID:24909742

  5. Process for preparing negative plates for use in a dry charge battery

    SciTech Connect

    Wegner, P.C.

    1986-02-11

    This patent describes a process for the production of lead-containing negative plates for use in a dry charge battery. The process cnsists of drying wet negative plates while protecting them from oxidation. This improvement is accomplished by treating the wet negative plates prior to the drying operation with an aqueous soluton of an oxidation inhibiting agent selected from salicylic acid, and 2-naphtol. The plates are then protected against oxidation during drying; and dry negative plates are obtained which are resistant to the absorption of water from the atmosphere on storage but are wet immediately by battery acid in use.

  6. Morphological evaluation of bioartificial hydrogels as potential tissue engineering scaffolds.

    PubMed

    Cascone, Maria Grazia; Lazzeri, Luigi; Sparvoli, Enzo; Scatena, Manuele; Serino, Lorenzo Pio; Danti, Serena

    2004-12-01

    Poly(vinyl alcohol) hydrogels prepared by freeze-thawing procedure represent synthetic systems widely investigated as non-biodegradable scaffolds for tissue regeneration. In order to improve the biocompatibility properties of pure poly(vinyl alcohol) (PVA) hydrogels, blends of PVA with different biological macromolecules, such hyaluronic acid, dextran, and gelatin were prepared and used to produce "bioartificial hydrogels". The porosity characteristics of these hydrogels were investigated by scanning electron microscopy and mercury intrusion porosimetry. The morphology of bioartificial hydrogels was evaluated and compared with that of pure PVA hydrogels. In particular the effect exerted by each biological component on pore size and distribution was investigated. The obtained results indicate that when a natural macromolecule is added to PVA the internal structure of the material changes. A small amount of biopolymer induces the structural elements of PVA matrix to take on a well evident lamellar appearance and an apparent preferential orientation. Comparing the results of SEM and mercury intrusion porosimetry it was concluded that hydrogels containing 20% of biological component have the most regular structure and at the same time the lowest total porosity. On the contrary samples with the highest content of natural polymer (40%) show the less regular structure and the highest total porosity.

  7. Preparation of metal-TCNQ charge-transfer complexes on conducting and insulating surfaces by photocrystallization.

    PubMed

    O'Mullane, Anthony P; Fay, Nigel; Nafady, Ayman; Bond, Alan M

    2007-02-21

    A generic method for the synthesis of metal-7,7,8,8-tetracyanoquinodimethane (TCNQ) charge-transfer complexes on both conducting and nonconducting substrates is achieved by photoexcitation of TCNQ in acetonitrile in the presence of a sacrificial electron donor and the relevant metal cation. The photochemical reaction leads to reduction of TCNQ to the TCNQ(-) monoanion. In the presence of M(x+)(MeCN), reaction with TCNQ(-)(MeCN) leads to deposition of M(x+)[TCNQ]x crystals onto a solid substrate with morphologies that are dependent on the metal cation. Thus, CuTCNQ phase I photocrystallizes as uniform microrods, KTCNQ as microrods with a random size distribution, AgTCNQ as very long nanowires up to 30 mum in length and with diameters of less than 180 nm, and Co[TCNQ](2)(H(2)O)(2) as nanorods and wires. The described charge-transfer complexes have been characterized by optical and scanning electron microscopy and IR and Raman spectroscopy. The CuTCNQ and AgTCNQ complexes are of particular interest for use in memory storage and switching devices. In principle, this simple technique can be employed to generate all classes of metal-TCNQ complexes and opens up the possibility to pattern them in a controlled manner on any type of substrate.

  8. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater.

    PubMed

    Yun, Jumi; Lee, Dae Hoon; Im, Ji Sun; Kim, Hyung-Il

    2012-08-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater.

  9. An injectable, calcium responsive composite hydrogel for the treatment of acute spinal cord injury.

    PubMed

    McKay, Christopher A; Pomrenke, Rebecca D; McLane, Joshua S; Schaub, Nicholas J; DeSimone, Elise K; Ligon, Lee A; Gilbert, Ryan J

    2014-02-12

    Immediately following spinal cord injury, further injury can occur through several secondary injury cascades. As a consequence of cell lysis, an increase in extracellular Ca(2+) results in additional neuronal loss by inducing apoptosis. Thus, hydrogels that reduce extracellular Ca(2+) concentration may reduce secondary injury severity. The goal of this study was to develop composite hydrogels consisting of alginate, chitosan, and genipin that interact with extracellular Ca(2+) to enable in situ gelation while maintaining an elastic modulus similar to native spinal cord (∼1000 Pa). It was hypothesized that incorporation of genipin and chitosan would regulate hydrogel electrostatic characteristics and influence hydrogel porosity, degradation, and astrocyte behavior. Hydrogel composition was varied to create hydrogels with statistically similar mechanical properties (∼1000 Pa) that demonstrated tunable charge characteristics (6-fold range in free amine concentration) and degradation rate (complete degradation between 7 and 28 days; some blends persist after 28 days). Hydrogels demonstrate high sensitivity to Ca(2+) concentration, as a 1 mM change during fabrication induced a significant change in elastic modulus. Additionally, hydrogels incubated in a Ca(2+)-containing solution exhibited an increased linear viscoelastic limit (LVE) and an increased elastic modulus above the LVE limit in a time dependent manner. An extension of the LVE limit implies a change in hydrogel cross-linking structure. Attachment assays demonstrated that addition of chitosan/genipin to alginate hydrogels induced up to a 4-fold increase in the number of attached astrocytes and facilitated astrocyte clustering on the hydrogel surface in a composition dependent manner. Furthermore, Western blots demonstrated tunable glial fibrillary acid protein (GFAP) expression in astrocytes cultured on hydrogel blends, with some hydrogel compositions demonstrating no significant increase in GFAP expression

  10. An Injectable, Calcium Responsive Composite Hydrogel for the Treatment of Acute Spinal Cord Injury

    PubMed Central

    2015-01-01

    Immediately following spinal cord injury, further injury can occur through several secondary injury cascades. As a consequence of cell lysis, an increase in extracellular Ca2+ results in additional neuronal loss by inducing apoptosis. Thus, hydrogels that reduce extracellular Ca2+ concentration may reduce secondary injury severity. The goal of this study was to develop composite hydrogels consisting of alginate, chitosan, and genipin that interact with extracellular Ca2+ to enable in situ gelation while maintaining an elastic modulus similar to native spinal cord (∼1000 Pa). It was hypothesized that incorporation of genipin and chitosan would regulate hydrogel electrostatic characteristics and influence hydrogel porosity, degradation, and astrocyte behavior. Hydrogel composition was varied to create hydrogels with statistically similar mechanical properties (∼1000 Pa) that demonstrated tunable charge characteristics (6-fold range in free amine concentration) and degradation rate (complete degradation between 7 and 28 days; some blends persist after 28 days). Hydrogels demonstrate high sensitivity to Ca2+ concentration, as a 1 mM change during fabrication induced a significant change in elastic modulus. Additionally, hydrogels incubated in a Ca2+-containing solution exhibited an increased linear viscoelastic limit (LVE) and an increased elastic modulus above the LVE limit in a time dependent manner. An extension of the LVE limit implies a change in hydrogel cross-linking structure. Attachment assays demonstrated that addition of chitosan/genipin to alginate hydrogels induced up to a 4-fold increase in the number of attached astrocytes and facilitated astrocyte clustering on the hydrogel surface in a composition dependent manner. Furthermore, Western blots demonstrated tunable glial fibrillary acid protein (GFAP) expression in astrocytes cultured on hydrogel blends, with some hydrogel compositions demonstrating no significant increase in GFAP expression compared

  11. Development of Hydrogels and Biomimetic Regulators as Tissue Engineering Scaffolds

    PubMed Central

    Shi, Junbin; Xing, Malcolm M. Q.; Zhong, Wen

    2012-01-01

    This paper reviews major research and development issues relating to hydrogels as scaffolds for tissue engineering, the article starts with a brief introduction of tissue engineering and hydrogels as extracellular matrix mimics, followed by a description of the various types of hydrogels and preparation methods, before a discussion of the physical and chemical properties that are important to their application. There follows a short comment on the trends of future research and development. Throughout the discussion there is an emphasis on the genetic understanding of bone tissue engineering application. PMID:24957963

  12. Substrate-Independent Robust and Heparin-Mimetic Hydrogel Thin Film Coating via Combined LbL Self-Assembly and Mussel-Inspired Post-Cross-linking.

    PubMed

    Ma, Lang; Cheng, Chong; He, Chao; Nie, Chuanxiong; Deng, Jie; Sun, Shudong; Zhao, Changsheng

    2015-12-02

    In this work, we designed a robust and heparin-mimetic hydrogel thin film coating via combined layer-by-layer (LbL) self-assembly and mussel-inspired post-cross-linking. Dopamine-grafted heparin-like/-mimetic polymers (DA-g-HepLP) with abundant carboxylic and sulfonic groups were synthesized by the conjugation of adhesive molecule, DA, which exhibited substrate-independent adhesive affinity to various solid surfaces because of the formation of irreversible covalent bonds. The hydrogel thin film coated substrates were prepared by a three-step reaction: First, the substrates were coated with DA-g-HepLP to generate negatively charged surfaces. Then, multilayers were obtained via LbL coating of chitosan and the DA-g-HepLP. Finally, the noncovalent multilayers were oxidatively cross-linked by NaIO4. Surface ATR-FTIR and XPS spectra confirmed the successful fabrication of the hydrogel thin film coatings onto membrane substrates; SEM images revealed that the substrate-independent coatings owned 3D porous morphology. The soaking tests in highly alkaline, acid, and concentrated salt solutions indicated that the cross-linked hydrogel thin film coatings owned high chemical resistance. In comparison, the soaking tests in physiological solution indicated that the cross-linked hydrogel coatings owned excellent long-term stability. The live/dead cell staining and morphology observations of the adhered cells revealed that the heparin-mimetic hydrogel thin film coated substrates had low cell toxicity and high promotion ability for cell proliferation. Furthermore, systematic in vitro investigations of protein adsorption, platelet adhesion, blood clotting, and blood-related complement activation confirmed that the hydrogel film coated substrates showed excellent hemocompatibility. Both the results of inhibition zone and bactericidal activity indicated that the gentamycin sulfate loaded hydrogel thin films had significant inhibition capability toward both Escherichia coli and

  13. Designing the mechanical properties of peptide-based supramolecular hydrogels for biomedical applications

    NASA Astrophysics Data System (ADS)

    Li, Ying; Qin, Meng; Cao, Yi; Wang, Wei

    2014-05-01

    Hydrogels are a class of special materials that contain a large amount of water and behave like rubber. These materials have found broad applications in tissue engineering, cell culturing, regenerative medicine etc. Recently, the exploration of peptide-based supramolecular hydrogels has greatly expanded the repertoire of hydrogels suitable for biomedical applications. However, the mechanical properties of peptide-based hydrogels are intrinsically weak. Therefore, it is crucial to develop methods that can improve the mechanical stability of such peptide-based hydrogels. In this review, we explore the factors that determine or influence the mechanical stability of peptide-based hydrogels and summarize several key elements that may guide scientists to achieve mechanically improved hydrogels. In addition, we exemplified several methods that have been successfully developed to prepare hydrogels with enhanced mechanical stability. These mechanically strong peptide-based hydrogels may find broad applications as novel biomaterials. It is still challenging to engineer hydrogels in order to mimic the mechanical properties of biological tissues. More hydrogel materials with optimal mechanical properties suitable for various types of biological applications will be available in the near future.

  14. Injectable, cytocompatible, elastic, free radical scavenging and electroconductive hydrogel for cardiac cell encapsulation.

    PubMed

    Komeri, Remya; Muthu, Jayabalan

    2017-09-01

    The injectable electroconductive hydrogels are desirable for the regenerative therapy of electroresponsive tissues like heart. With the present electroconductive hydrogels, the issues of cytotoxicity, biodegradability, and diffusion of the conductive element and poor water solubility limit their applications. Here, electroconductive injectable single component hydrogels, PANIE-P/PEGDA and PANIS-P/PEGDA, are prepared with fumarate-co-PEG-co-sebacate comacromer conjugated with non-sulfonated/sulfonated polyaniline and PEGDA. These hydrogels have maximum electrical conductivity of 0.351±0.043×10(-3)Scm(-1) and 0.550±0.016×10(-3)Scm(-1), which is comparable to the native myocardium. The hydrogels with 50% comacromer concentration coded as PE50P and PS50P retain 82.48% and 84.08% water on equilibrium swelling respectively. The hydrogels have required a porous surface for cell growth and proliferation. PS50P hydrogel has stiffness of 442kPa with elastic characteristics. The hydrogel is compatible with L929 fibroblast and H9c2 cardiomyoblast cells. PS50P hydrogel has better free radical scavenging property and protective effect over cells under oxidative stress. The hydrogel retains encapsulated cardiomyoblast cells with 98% viability under static long-term in vitro culture. Briefly, the PS50P hydrogel is electroconductive, free radical scavenging and mechanically suitable for cardiac regenerative therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Thermosensitive hydrogel containing dexamethasone micelles for preventing postsurgical adhesion in a repeated-injury model.

    PubMed

    Wu, Qinjie; Wang, Ning; He, Tao; Shang, Jinfeng; Li, Ling; Song, Linjiang; Yang, Xi; Li, Xia; Luo, Na; Zhang, Wenli; Gong, Changyang

    2015-09-01

    Tissue adhesion is a common complication after surgery. In this work, a dexamethasone loaded polymeric micelles in thermosensitive hydrogel composite (Dex hydrogel) was prepared, which combined the anti-adhesion barrier with controlled release of anti-adhesion drug. Dexamethasone (Dex) was encapsulated in polymeric micelles (Dex micelles), and then the Dex micelles were loaded into biodegradable and thermosensitive hydrogel. The obtained Dex hydrogel showed a temperature-dependent sol-gel-sol phase transition behavior. The Dex hydrogel could form a non-flowing gel in situ upon subcutaneous injection and gradually degrade in about 20 days. In addition, Dex hydrogel was assigned for anti-adhesion studies in a more rigorous recurrent adhesion animal model. Compared with normal saline (NS) and Dex micelles group, tissue adhesions in hydrogel and Dex hydrogel group were significantly alleviated. In Dex hydrogel group, the media adhesion score is 0, which was dramatically lower than that in blank hydrogel group (2.50, P < 0.001). In histopathological examination and scanning electron microscopy (SEM) analysis, an integral neo-mesothelial cell layer with microvilli on their surface was observed, which revealed that the injured parietal and visceral peritoneum were fully recovered without the concerns of adhesion formation. Our results suggested that Dex hydrogel may serve as a potential anti-adhesion candidate.

  16. Characterizing Drug Release from Nonfouling Polyampholyte Hydrogels.

    PubMed

    Barcellona, Marcos N; Johnson, Nicholas; Bernards, Matthew T

    2015-12-15

    Controlled delivery of bioactive signaling molecules and drugs is essential for the development of the next generation of tissue regeneration scaffolds. However, these molecules must be delivered from a nonfouling platform, so that the therapeutic role is not masked by the naturally occurring foreign body response. Therefore, the purpose of this study is to characterize the release profiles of three pseudodrug molecules from a nonfouling polyampholyte hydrogel to gain insight into the potential for this platform to serve as a tissue regeneration scaffold. Hydrogels composed of equimolar concentrations of [2-(acryloyloxy)ethyl] trimethylammonium chloride (TMA) and 2-carboxyethyl acrylate (CAA) monomers were synthesized in the presence of caffeine, methylene blue, or metanil yellow. Then the release of these three molecules was tracked as a function of the hydrogel cross-linker density, the solution pH, and the solution ionic strength. The results suggest that the release of the neutral caffeine molecule is dictated by diffusion alone, while the release of the two charged pseudodrug molecules are controlled by their interactions with the charged regions of the TMA and CAA monomer subunits. These interactions are clearly impacted by solution pH and ionic strength leading to clear changes in the rate of release and extent of release for metanil yellow and methylene blue. Additionally, an enzyme-linked immunosorbent assay was used to confirm that the TMA:CAA hydrogels retain their nonfouling characteristics following the release of the pseudodrug molecules. When these results are combined with the literature related to TMA:CAA hydrogels, it is concluded that this system represents a promising multifunctional platform for both short-term and long-term delivery of bioactive molecules for tissue regeneration.

  17. Radiation synthesis of superabsorbent poly(acrylic acid)-carrageenan hydrogels

    NASA Astrophysics Data System (ADS)

    Francis, Sanju; Kumar, Manmohan; Varshney, Lalit

    2004-04-01

    A series of superabsorbent hydrogels were prepared from carrageenan and partially neutralized acrylic acid by gamma irradiation at room temperature. The gel fraction, swelling kinetics and the equilibrium degree of swelling (EDS) of the hydrogels were studied. It was found that the incorporation of even 1% carrageenan (sodium salt) increases the EDS of the hydrogels from ˜320 to ˜800 g/g. Thermal analysis were carried out to determine the amount of free water and bound water in the hydrogels. Under optimum conditions, poly(acrylic acid)-carrageenan hydrogels with high gel fraction (˜80%) and very high EDS (˜800 g/g) were prepared gamma radiolytically from aqueous solution containing 15% partially neutralized acrylic acid and 1-5% carrageenan. The hydrogels were also found to be sensitive to the pH and the ionic strength of the medium.

  18. Synthesis of Cu-Nanoparticle Hydrogel with Self-Healing and Photothermal Properties.

    PubMed

    Chen, Shuai; Tang, Fu; Tang, Liangzhen; Li, Lidong

    2017-06-21

    Copper (Cu) nanoparticles possess unusual electrical, thermal, and optical properties. However, applications of these materials are often limited by their tendency to oxidize. We prepared Cu nanoparticles by a simple polyol method, with a good control over the particle size. The reaction required no inert atmosphere or surfactant agents. The as-prepared Cu nanoparticles showed good resistance to oxidation in solution. These Cu nanoparticles were then incorporated into a biocompatible polysaccharide hydrogel, which further stabilized the nanoparticles. The hybrid hydrogel exhibited a rapid self-healing ability. Because of the excellent photothermal conversion properties of the embedded Cu nanoparticles, the hybrid hydrogel showed rapid temperature elevation under laser irradiation. The hybrid hydrogel showed limited cytotoxicity; however, under laser irradiation the hydrogel displayed antibacterial properties owing to the heating effects. This study demonstrates that our hybrid hydrogel may have applications in biomedical fields and photothermal therapy.

  19. [Antineoplastic effect of hydrogel prospidin on Seidel ascites hepatoma used as a model].

    PubMed

    Bychkovskiĭ, P M; Iurkshtovich, T L; Kladiev, A A; Revtovich, M Iu

    2012-01-01

    Antineoplastic effect of hydrogel dextran phosphate, hydrogel prospidin, and prospidin in an injectable preparation has been assessed using Seidel ascites hepatoma as a model. Injectable and hydrogel prospidin in doses from 250, 500 to 1000 mg/kg and hydrogel phosphate dextran in doses of 500 and 1000 mg/kg were administered to rats intraperitoneally in a single dose in a volume of 1 or 2 ml per each 100 g of animal body weight. The study has shown that irrespective of rats with Seidel ascites hepatoma and significantly increase in the dosage of prospidin preparations and hydrogel dextran phosphate results in a longer average life expectancy of rats Compared with its injectable variant, hydrogel prospidin appears to produce more than twice as high antineoplastic effect, and is found to provide prolonged therapeutic effects, as well as cure of animals in more than 60 % of cases.

  20. Synthesis and characterization of an in situ forming hydrogel using tyramine conjugated high methoxyl gum tragacanth.

    PubMed

    Tavakol, Moslem; Vasheghani-Farahani, Ebrahim; Mohammadifar, Mohammad Amin; Soleimani, Masoud; Hashemi-Najafabadi, Sameereh

    2016-02-01

    In this study, an enzyme catalyzed in situ forming hydrogel based on tyramine conjugated high methoxyl content gum tragacanth (TA-HMGT) was prepared and characterized. TA-HMGT was synthesized via heterogeneous ammonolysis of methyl ester groups of HMGT. Then, the hydrogel was prepared via horseradish peroxidase catalyzed coupling reaction in the presence of hydrogen peroxide. Hydrogel properties, such as gelation time, swelling/degradation behavior and rheological properties could be adjusted by tuning the gelation parameters and extent of tyramine conjugation. This system was a soft elastic hydrogel with appropriate biocompatibility. The fast gelation of the hydrogel is desirable for clinical applications. Also, in vitro bovine serum albumin release from the synthesized hydrogel showed good release profile with limited burst release.

  1. Development of CMC hydrogels loaded with silver nano-particles for medical applications.

    PubMed

    Hebeish, Ali; Hashem, M; El-Hady, M M Abd; Sharaf, S

    2013-01-30

    Innovative CMC-based hydrogels with great potentials for usage in medical area were principally synthesized as per two strategies .The first involved reaction of epichlorohydrin in alkaline medium containing silver nitrate to yield silver nano-particles (AgNPs)-loaded CMC hydrogel. While CMC acted as stabilizing for AgNPs, trisodium citrate was added to the reaction medium to assist CMC in establishing reduction of Ag(+) to AgNPs. The second strategy entailed preparation of CMC hydrogel which assists the in situ preparation of AgNPs under the same conditions. In both strategies, factors affecting the characterization of AgNPs-loaded CMC hydrogels were studied. Analysis and characterization of the so obtained hydrogels were performed through monitoring swelling behavior, FTIR spectroscopy, SEM, EDX, UV-vis spectrophotometer and TEM. Antimicrobial activity of the hydrogels was examined and mechanisms involved in their synthesis were reported.

  2. Cellulose fibers extracted from rice and oat husks and their application in hydrogel.

    PubMed

    Oliveira, Jean Paulo de; Bruni, Graziella Pinheiro; Lima, Karina Oliveira; Halal, Shanise Lisie Mello El; Rosa, Gabriela Silveira da; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-04-15

    The commercial cellulose fibers and cellulose fibers extracted from rice and oat husks were analyzed by chemical composition, morphology, functional groups, crystallinity and thermal properties. The cellulose fibers from rice and oat husks were used to produce hydrogels with poly (vinyl alcohol). The fibers presented different structural, crystallinity, and thermal properties, depending on the cellulose source. The hydrogel from rice cellulose fibers had a network structure with a similar agglomeration sponge, with more homogeneous pores compared to the hydrogel from oat cellulose fibers. The hydrogels prepared from the cellulose extracted from rice and oat husks showed water absorption capacity of 141.6-392.1% and high opacity. The highest water absorption capacity and maximum stress the compression were presented by rice cellulose hydrogel at 25°C. These results show that the use of agro-industrial residues is promising for the biomaterial field, especially in the preparation of hydrogels.

  3. Free radical scavenging injectable hydrogels for regenerative therapy.

    PubMed

    Komeri, Remya; Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan

    2017-02-01

    Pathological free radicals generated from inflamed and infarcted cardiac tissues interferes natural tissue repair mechanisms. Hypoxic microenvironment at the injured zone of non-regenerating cardiac tissues hinders the therapeutic attempts including cell therapy. Here we report an injectable, cytocompatible, free radical scavenging synthetic hydrogel formulation for regenerative therapy. New hydrogel (PEAX-P) is prepared with D-xylitol-co-fumarate-co-poly ethylene adipate-co-PEG comaromer (PEAX) and PEGDiacrylate. PEAX-P hydrogel swells 4.9 times the initial weight and retains 100.07kPa Young modulus at equilibrium swelling, which is suitable for cardiac applications. PEAX-P hydrogel retains elastic nature even at 60% compressive strain, which is favorable to fit with the dynamic and elastic natural tissue counterparts. PEAX-P hydrogel scavenges 51% DPPH radical, 40% hydroxyl radicals 41% nitrate radicals with 31% reducing power. The presence of hydrogel protects 62% cardiomyoblast cells treated with stress inducing media at LD 50 concentration. The free hydroxyl groups in sugar alcohols of the comacromer influence the free radical scavenging. Comparatively, PEAX-P hydrogel based on xylitol evinces slightly lower scavenging characteristics than with previously reported PEAM-P hydrogel containing mannitol having more hydroxyl groups. The possible free radical scavenging mechanism of the present hydrogel relies on the free π electrons associated with uncrosslinked fumarate bonds, hydrogen atoms associated with sugar alcohols/PEG and radical dilution by free water in the matrix. Briefly, the present PEAX-P hydrogel is a potential injectable system for combined antioxidant and regenerative therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Synthesis and characterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels.

    PubMed

    Wahid, Fazli; Yin, Jun-Jiao; Xue, Dong-Dong; Xue, Han; Lu, Yu-Shi; Zhong, Cheng; Chu, Li-Qiang

    2016-07-01

    The antibacterial carboxymethyl chitosan/ZnO nanocomposite hydrogels were successfully prepared via in situ formation of ZnO nanorods in the crosslinked carboxymethyl chitosan (CMCh) matrix, by treating the CMCh hydrogel matrix with zinc nitrate solution followed by the oxidation of zinc ions with alkaline solution. The resulting CMCh/ZnO hydrogels were characterized by using FTIR spectroscopy, X-ray diffractormetry and scanning electron microscopy (SEM). SEM micrographs revealed the formation of ZnO nanorods in the hydrogel matrix with the size ranging from 190nm to 600nm. The swelling behavior of the prepared nanocomposite hydrogels was also investigated in different pH solutions. The CMCh/ZnO nanocomposite hydrogel showed rather higher swelling behavior in different pH solutions in comparison with neat CMCh hydrogel. Furthermore, the antibacterial activity of CMCh/ZnO hydrogel was studied against Escherichia coli and Staphylococcus aureus by CFU assay. The results demonstrated an excellent antibacterial activity of the nanocomposite hydrogel. Therefore, the developed CMCh/ZnO nanocomposite hydrogel can be used effectively in biomedical field. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Morphology, absorptivity and viscoelastic properties of mineralized PVP-CMC hydrogel

    NASA Astrophysics Data System (ADS)

    Saha, Nabanita; Shah, Rushita; Vyroubal, Radek; Kitano, Takeshi; Saha, Petr

    2013-04-01

    A simple liquid diffusion mineralization technique was applied for the incorporation of calcium carbonate (CaCO3) in PVP-CMC hydrogel. The hydrogel was prepared 6.5 mm thick to achieve around 1 mm thick sample after mineralization of hydrogel matrix with calcite. The calcite crystals were round shaped and organized as building blocks inside the porous three dimensional cross linked structure of the PVP-CMC hydrogel. The present study was designed to evaluate the properties of mineralized (calcite) hydrogel with respect to freshly prepared hydrogel and those swelled in water (H2O) after drying. The viscoelastic properties of swelled and mineralized samples were reported though the dry PVP-CMC hydrogel were swelled and mineralized with calcite until 150 min. It is observed that there is not much difference in elastic property of fresh and 60 min mineralized hydrogels but the values of elastic property are decreased in the case of swelled hydrogels. It is interesting that in case of swelled samples the values of complex viscosity (η*) are increased with the increase of swelling time after 90 min but in case of calcite hydrogel the values (η*) are gradually decreased with the increase of time.

  6. Biodegradable polymers from renewable sources: rheological characterization of hemicellulose-based hydrogels.

    PubMed

    Söderqvist Lindblad, Margaretha; Albertsson, Ann-Christine; Ranucci, Elisabetta; Laus, Michele; Giani, Elena

    2005-01-01

    Hemicellulose-based hydrogels were prepared by radical polymerization of 2-hydroxyethyl methacrylate or poly(ethylene glycol) dimethacrylate with oligomeric hydrosoluble hemicellulose modified with well-defined amounts of methacrylic functions. The polymerization reaction was carried out in water at 40 degrees C using a redox initiator system. The hydrogels were in general elastic, soft, and easily swellable in water. Their viscoelastic properties were determined by oscillatory shear measurements on 2 mm thick hydrogels under a slight compression to avoid slip, over the frequency range 10(-1) to 10(2). The rheological characterization indicated that the elastic response of the hydrogels was stronger than the viscous response, leading to the conclusion that the hydrogel systems displayed a predominantly solid-like behavior. The curves showed an increase in shear storage modulus with increasing cross-linking density. The nature of the synthetic comonomer in the hemicellulose-based hydrogels also influenced the shear storage modulus. Comparison of hemicellulose-based hydrogels with pure poly(2-hydroxyethyl methacrylate) hydrogels showed that their behaviors were rather similar, demonstrating that the synthetic procedure made it possible to prepare hemicellulose-based hydrogels with properties similar to those of pure poly(2-hydroxyethyl methacrylate) hydrogels.

  7. Nanostructured conducting polymer hydrogels for energy storage applications.

    PubMed

    Shi, Ye; Peng, Lele; Yu, Guihua

    2015-08-14

    Conducting polymer hydrogels are emerging as a promising class of polymeric materials for various technological applications, especially for energy storage devices due to their unique combination of advantageous features of conventional polymers and organic conductors. To overcome the drawbacks of conventional synthesis, new synthetic routes in which acid molecules are adopted as both crosslinkers and dopants have been developed for conducting polymer hydrogels with unique 3D hierarchical porous nanostructures, resulting in high electrical conductivity, large surface area, structural tunability and hierarchical porosity for rapid mass/charge transport. The newly developed conducting polymer hydrogels exhibit high performance when applied as active electrode materials for electrochemical capacitors or as functional binder materials for high-energy lithium-ion batteries. This feature article summarizes the synthesis of conducting polymer hydrogels, presents their applications in energy storage, and discusses further opportunities and challenges.

  8. Nanostructured conducting polymer hydrogels for energy storage applications

    NASA Astrophysics Data System (ADS)

    Shi, Ye; Peng, Lele; Yu, Guihua

    2015-07-01

    Conducting polymer hydrogels are emerging as a promising class of polymeric materials for various technological applications, especially for energy storage devices due to their unique combination of advantageous features of conventional polymers and organic conductors. To overcome the drawbacks of conventional synthesis, new synthetic routes in which acid molecules are adopted as both crosslinkers and dopants have been developed for conducting polymer hydrogels with unique 3D hierarchical porous nanostructures, resulting in high electrical conductivity, large surface area, structural tunability and hierarchical porosity for rapid mass/charge transport. The newly developed conducting polymer hydrogels exhibit high performance when applied as active electrode materials for electrochemical capacitors or as functional binder materials for high-energy lithium-ion batteries. This feature article summarizes the synthesis of conducting polymer hydrogels, presents their applications in energy storage, and discusses further opportunities and challenges.

  9. Electroactive SWNT/PEGDA hybrid hydrogel coating for bio-electrode interface.

    PubMed

    He, Lei; Lin, Demeng; Wang, Yanping; Xiao, Yinghong; Che, Jianfei

    2011-10-15

    Electric interface between neural tissue and electrode plays a significant role in the development of implanted devices for continuous monitoring and functional stimulation of central nervous system in terms of electroactivity, biocompatibility and long-term stability. To engineer an interface that possesses these merits, a polymeric hydrogel based on poly(ethylene glycol) diacrylate (PEGDA) and single-walled carbon nanotubes (SWNTs) were employed to fabricate a hybrid hydrogel via covalent anchoring strategy, i.e., self-assembly of cysteamine (Cys) followed by Michael addition between Cys and PEGDA. XPS characterization proves that the Cys molecules are linked to gold surface via the strong S-Au bond and that the PEGDA macromers are covalently bonded to Cys. FTIR spectra indicate the formation of hybrid hydrogel coating during photopolymerization. Electrochemical measurements using cyclic voltammetry (CV) and impedance spectrum clearly show the enhancement of electric properties to the hydrogel by the SWNTs. The charge transfer of the hybrid hydrogel-based electrode is quasi-reversible and charge transfer resistance decreases to the tenth of that of the pure hydrogel due to electron hopping along the SWNTs. Additionally, this hybrid hydrogel provides a favorable biomimetic microenvironment for cell attachment and growth due to its inherent biocompatibility. Combination of these merits yields hybrid hydrogels that can be good candidates for application to biosensors and biomedical devices. More importantly, the hybrid hydrogel coatings fabricated via the current strategy have good adhesion to the electrode substrate which is highly desired for chronically implantable devices.

  10. Characterizing pore sizes and water structure in stimuli-responsive hydrogels

    SciTech Connect

    Hoffman, A.S.; Antonsen, K.P.; Ashida, T.; Bohnert, J.L.; Dong, L.C.; Nabeshima, Y.; Nagamatsu, S.; Park, T.G.; Sheu, M.S.; Wu, X.S.; Yan, Q.

    1993-12-31

    Hydrogels have been extensively investigated as potential matrices for drug delivery. In particular, hydrogels responsive to pH and temperature changes have been of greatest interest most recently. Proteins and peptide drugs are especially relevant for delivery from such hydrogel matrices due to the relatively {open_quotes}passive{close_quotes} and biocompatible microenvironment which should exist within the hydrogel aqueous pores. The large molecular size of many proteins requires an interconnected large pore structure. Furthermore, the gel pore {open_quotes}walls{close_quotes} should not provide hydrophobic sites for strong interactions with proteins. In the special case of ion exchange release the protein would be attracted by opposite charges on the polymer backbones. Therefore, it is important both to control and to characterize the pore structure and the water character within a hydrogel to be used or protein or peptide drug delivery. This talk will critically review techniques for estimating these two key parameters in hydrogels.

  11. Influence of polyelectrolyte on the thermosensitive property of PNIPAAm-based copolymer hydrogels.

    PubMed

    Zhang, Xian-Zheng; Chu, Chih-Chang

    2007-09-01

    A new family of poly(NIPAAm-co-2-acrylamido-2-methyl-1-propanesulfonic acid) [P(NIPAAm-co-AMPSA)] hydrogels was synthesized by incorporating negative charged AMPSA to the backbone of the PNIPAAm-based hydrogel. The effect of polyelectrolyte (i.e., PAMPSA) on the thermosensitive property of PNIPAAm hydrogels was investigated. It was found that P(NIPAAm-co-AMPSA) hydrogels exhibited unique honey-comb-like 3D porous structure having rigid cell wall as well as enhanced mechanical property. The incorporation of AMPSA into PNIPAAm backbones also led to a significant increase in swelling capability at room temperature when comparing to pure PNIPAAm hydrogels. In addition, the shrinking rate upon heating was significantly improved if the AMPSA content in P(NIPAAm-co-AMPSA) hydrogels was less than 10 wt%.

  12. Antifouling properties of hydrogels

    PubMed Central

    Murosaki, Takayuki; Ahmed, Nafees; Ping Gong, Jian

    2011-01-01

    Marine sessile organisms easily adhere to submerged solids such as rocks, metals and plastics, but not to seaweeds and fishes, which are covered with soft and wet ‘hydrogel’. Inspired by this fact, we have studied long-term antifouling properties of hydrogels against marine sessile organisms. Hydrogels, especially those containing hydroxy group and sulfonic group, show excellent antifouling activity against barnacles both in laboratory assays and in the marine environment. The extreme low settlement on hydrogels in vitro and in vivo is mainly caused by antifouling properties against the barnacle cypris. PMID:27877456

  13. Spectrophotometric determination of lamotrigine in pharmaceutical preparations and urine by charge-transfer complexation.

    PubMed

    Alizadeh, N; Khakinahad, R; Jabbari, A

    2008-11-01

    Rapid and sensitive spectrophotometric methods are developed for the determination of lamotrigine (LTG) in pharmaceutical dosage forms and urine samples, based on the formation of the charge-transfer (CT) complexes between LTG as an n-donor and the acceptors: bromocresol green (BCG), bromocresol purple (BCP), and chlorophenol red (CPR). These complexes are studied spectrophotometrically in chloroform solution in order to obtain some information about their stoichiometry and stability of complexation. The analytical parameters and their effects on the extraction of drug from urine samples are investigated. The reactions were extremely rapid at room temperature, and the absorbance values remained unchanged after 24 h for all reactions. Beer's law was obeyed in the concentration ranges 0.15-19.8, 0.15-19.8 and 0.05-34.1 microg x ml(-1) for CPR, BCP and BCG, respectively. The proposed methods were applied successfully for the determination of LTG in pharmaceutical formulations, and human urine samples in the presence of other antiepileptic drugs such as carbamazepine, oxcarbazepine and phenobarbital, with good accuracy and precision.

  14. Preparation and Charge Density in (Co, Fe)-Doped La-Ca-Based Chromite

    NASA Astrophysics Data System (ADS)

    Saravanan, R.; Thenmozhi, N.; Fu, Yen-Pei

    2016-08-01

    Transition metal-doped lanthanum chromites (La0.8Ca0.2)(Cr0.9- x Co0.1Fe x )O3 ( x = 0.03, 0.06, 0.09, 0.12) have been synthesized by solid state reaction method. The synthesized samples were characterized for their structural properties using powder x-ray diffraction analysis, which shows that the grown samples are orthorhombic in structure with single phase. The nature of bonding and the charge distribution of the grown samples have been analyzed by maximum entropy method. Further, the samples were characterized for their optical and magnetic properties using ultraviolet-visible spectra and vibrating sample magnetometry. The microstructural studies were carried by scanning electron microscopy/electron dispersive x-ray spectroscopy techniques. From the optical absorption spectra, it was found that the energy band gap of the samples ranges from 2.135 eV to 2.405 eV. From vibrating sample magnetometer measurements, ferromagnetic like behaviour with large coercive field was observed for Fe doping concentration of x = 0.12. Since the doped lanthanum chromites have good mechanical properties and electrical conductivity at high temperature, these materials are used in solid oxide fuel cells.

  15. In vitro and in vivo evaluation of polymer hydrogels for hemorrhage control.

    PubMed

    Casey, Brendan J; Behrens, Adam M; Tsinas, Zois I; Hess, John R; Wu, Zhongjun J; Griffith, Bartley P; Kofinas, Peter

    2013-01-01

    In vitro and in vivo experimentation of various synthetic polymer hydrogels was conducted to establish some of the integral material properties that influence hemostasis. In vitro swelling experiments suggested that positive electrostatic charge was a key determinant of the ability of a polymer hydrogel to absorb physiological fluids, e.g. human plasma and blood. In vitro testing using unadulterated sheep blood suggested positive electrostatic charge and crosslink density were key determinants of the ability of a material to induce or enhance clot formation. Hydrogel formulations composed of higher amounts of positive electrostatic charge and lower crosslink density were able to effectively induce and enhance clot formation in the presence of a coagulation cascade activator. In vivo experimentation confirmed that hydrogels containing higher electrostatic charge and low crosslink density are more effective at fostering the formation of a robust hemostatic plug to control blood loss.

  16. Biodegradation of PVP-CMC hydrogel film: a useful food packaging material.

    PubMed

    Roy, Niladri; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2012-06-20

    Hydrogels can offer new opportunities for the design of efficient packaging materials with desirable properties (i.e. durability, biodegradability and mechanical strength). It is a promising and emerging concept, as most of the biopolymer based hydrogels are supposed to be biodegradable, they can be considered as alternative eco-friendly packaging materials. This article reports about synthetic (polyvinylpyrrolidone (PVP)) and biopolymer (carboxymethyl cellulose (CMC)) based a novel hydrogel film and its nature of biodegradability under controlled environmental condition. The dry hydrogel films were prepared by solution casting method and designated as 'PVP-CMC hydrogel films'. The hydrogel film containing PVP and CMC in a ratio of 20:80 shows best mechanical properties among all the test samples (i.e. 10:90, 20:80, 50:50, 80:20 and 90:10). Thus, PVP-CMC hydrogel film of 20:80 was considered as a useful food packaging material and further experiments were carried out with this particular hydrogel film. Biodegradation of the PVP-CMC hydrogel films were studied in liquid state (Czapec-Dox liquid medium+soil extracts) until 8 weeks. Variation in mechanical, viscoelastic properties and weight loss of the hydrogel films with time provide the direct evidence of biodegradation of the hydrogels. About 38% weight loss was observed within 8 weeks. FTIR spectra of the hydrogel films (before and after biodegradation) show shifts of the peaks and also change in the peak intensities, which refer to the physico-chemical change in the hydrogel structure and SEM views of the hydrogels show how internal structure of the PVP-CMC film changes in the course of biodegradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Spectrophotometric determination of terfenadine in pharmaceutical preparations by charge-transfer reactions.

    PubMed

    Khaled, Elmorsy

    2008-06-15

    A simple, rapid and accurate method for the spectrophotometric determination of terfenadine has been developed. The proposed method based on the charge-transfer reactions of terfenadine, as n-electron donor, with 7,7,8,8-tetracyanoquinodimethane (TCNQ), tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) or 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid, p-CLA) as pi-acceptors to give highly colored complexes. The experimental conditions such as reagent concentration, reaction solvent and time have been carefully optimized to achieve the highest sensitivity. Beer's law is obeyed over the concentration ranges of 3-72, 3-96, 12-168 and 24-240 microg mL(-1) terfenadine using TCNQ, TCNE, DDQ and p-CLA, respectively, with correlation coefficients 0.9999, 0.9974, 0.9997 and 0.9979 and detection limits 0.3, 0.4, 2.6 and 12.3 microg mL(-1), for the reagents in the same order. DDQ and p-CLA react spontaneously with terfenadine to give colored complexes that can be applied for the flow injection analysis of terfenadine in the concentration ranges 2.4-120 and 24-240 microg with correlation coefficients 0.9990 and 0.9985 and detection limits 0.8 and 2.7 microg for DDQ and p-CLA, respectively, in addition to the high sampling through output of 40 sample h(-1).

  18. Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility.

    PubMed

    Fuhrer, Roland; Athanassiou, Evagelos Kimon; Luechinger, Norman Albert; Stark, Wendelin Jan

    2009-03-01

    The combination of force and flexibility is at the core of biomechanics and enables virtually all body movements in living organisms. In sharp contrast, presently used machines are based on rigid, linear (cylinders) or circular (rotator in an electrical engine) geometries. As a potential bioinspired alternative, magnetic elastomers can be realized through dispersion of micro- or nanoparticles in polymer matrices and have attracted significant interest as soft actuators in artificial organs, implants, and devices for controlled drug delivery. At present, magnetic particle loss and limited actuator strength have restricted the use of such materials to niche applications. We describe the direct incorporation of metal nanoparticles into the backbone of a hydrogel and application as an ultra-flexible, yet strong magnetic actuator. Covalent bonding of the particles prevents metal loss or leaching. Since metals have a far higher saturation magnetization and higher density than oxides, the resulting increased force/volume ratio afforded significantly stronger magnetic actuators with high mechanical stability, elasticity, and shape memory effect.

  19. Polymer hydrogels: Chaperoning vaccines

    NASA Astrophysics Data System (ADS)

    Staats, Herman F.; Leong, Kam W.

    2010-07-01

    A cationic nanosized hydrogel (nanogel) shows controlled antigen delivery in vivo following intranasal administration and hence holds promise for a clinically effective adjuvant-free and needle-free vaccine system.

  20. Properties of radiation-synthesized polyvinylpyrrolidone/chitosan hydrogel blends

    NASA Astrophysics Data System (ADS)

    Mahmud, Maznah; Daik, Rusli; Adam, Zainah

    2015-09-01

    Poly(vinylpyrrolidone) (PVP)-crosslinked chitosan hydrogels were prepared by gamma radiation at various doses; 1, 3 5, 7, 10, 15, 20, 25 and 30kGy. Gamma radiation was used as a crosslinking tool which requires no chemical initiator, no heating process and need no purification step on the end products obtained. The hydrogel formulations were composed of 6% chitosan with average molecular weight (Mw) = 48 800 g/mol and 14% PVP with Mw = 10 000 g/mol in 2% lactic acid. Physical properties of hydrogels such as gel fraction and swelling property at pH 5.5 and pH 7.0 as well as syneresis activity were determined. It was found that different radiation dose induces different effect on hydrogels' network formed. Morphological study of hydrogels has been carried out by scanning electron microscope (SEM). From these preliminary evaluations, it can be concluded that gamma radiation is an effective tool for network development of hydrogels and it also induces enhancement on characteristics of hydrogels synthesized.

  1. Photonic hydrogel beads for controlled release of risedronate

    NASA Astrophysics Data System (ADS)

    Khajuria, Deepak K.; Roy Mahapatra, D.

    2014-03-01

    pH-sensitive photonic composite hydrogel beads composed of sodium alginate and risedronate sodium (SA/RIS) was prepared crosslinked by Ca2+ owing to the ionic gelation of SA. The structure and surface morphology of the composite hydrogel beads were characterized by SEM. pH-sensitivity of these composite hydrogels beads and the release behaviors of drug from them were investigated. The results showed that the composite hydrogel beads had good pH-sensitivity. The drug loading and encapsulation efficiency were 27.7% and 92% for RIS, respectively. The cumulative release ratios of RIS from the composite hydrogel beads were 2.47% in pH 2.1 solution and 83 % in pH 6.8 solutions within 24 h, respectively. However, the cumulative release ratio of RIS in pH 7.4 solution reached 91% within 7 h. It is proposed that the novel photonic SA/RIS composite hydrogel bead could possess the potential of an increased intestinal absorption and fewer adverse effects of RIS. The pH and salt response of photonic hydrogel bead, as well as the encapsulation of macromolecules, are promising for applications in biomedicine and biotechnology.

  2. Cellular responses to degradable cyclic acetal modified PEG hydrogels.

    PubMed

    Kaihara, Sachiko; Matsumura, Shuichi; Fisher, John P

    2009-09-01

    In this study, high viability of bone marrow stromal stem cells (BMSCs) encapsulated in a synthetic, poly[poly(ethylene glycol)-co-cyclic acetal] (PECA) hydrogel has been reported. This novel degradable hydrogel, which contains cyclic acetal as degradable segments and poly(ethylene glycol) (PEG) as hydrophilic segments, has been designed to limit the release of acidic products during hydrolytic degradation. PECAs with three different molecular weights (PECA 600, 1000, and 2000) were prepared to evaluate the effect of polymer main chain molecular weight on the viability and morphology of BMSCs embedded in PECA hydrogels as well as the viability of BMSCs exposed to PECA degradation products. Results demonstrated high BMSC viability when incubated in control media with PECA, while a significant decrease in viability was noted after 4 days when incubated in media augmented with PEG diacrylate. There was no effect of PECA molecular weight on the differentiation and cytotoxicity of degradation products up to 4 days, indicating that the degradation products' terminal carbonyl groups do not significantly affect cell viability and differentiation. BMSC viability when embedded on PECA hydrogels was evaluated by a LIVE/DEAD assay, and confirmed high viability up to 14 days. Gene expression analysis confirmed that BMSCs embedded in PECA hydrogels undergo osteogenic differentiation. Histological analysis also showed that cell morphology was significantly influenced by hydrogel swelling degree, which is itself controllable by the molecular weights of PECA main chains. These results indicate that PECA hydrogels may be utilized as scaffolds for regeneration of bone-like tissues.

  3. Charge transfer in crystalline germanium/monolayer MoS2 heterostructures prepared by chemical vapor deposition.

    PubMed

    Lin, Yung-Chen; Bilgin, Ismail; Ahmed, Towfiq; Chen, Renjie; Pete, Doug; Kar, Swastik; Zhu, Jian-Xin; Gupta, Gautam; Mohite, Aditya; Yoo, Jinkyoung

    2016-11-10

    Heterostructuring provides novel opportunities for exploring emergent phenomena and applications by developing designed properties beyond those of homogeneous materials. Advances in nanoscience enable the preparation of heterostructures formed incommensurate materials. Two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, are of particular interest due to their distinct physical characteristics. Recently, 2D/2D heterostructures have opened up new research areas. However, other heterostructures such as 2D/three-dimensional (3D) materials have not been thoroughly studied yet although the growth of 3D materials on 2D materials creating 2D/3D heterostructures with exceptional carrier transport properties has been reported. Here we report a novel heterostructure composed of Ge and monolayer MoS2, prepared by chemical vapor deposition. A single crystalline Ge (110) thin film was grown on monolayer MoS2. The electrical characteristics of Ge and MoS2 in the Ge/MoS2 heterostructure were remarkably different from those of isolated Ge and MoS2. The field-effect conductivity type of the monolayer MoS2 is converted from n-type to p-type by growth of the Ge thin film on top of it. Undoped Ge on MoS2 is highly conducting. The observations can be explained by charge transfer in the heterostructure as opposed to chemical doping via the incorporation of impurities, based on our first-principles calculations.

  4. Reversible Polymer Hydrogels

    DTIC Science & Technology

    2008-12-01

    glucosamine hydrochloride was dissolved in 100 mL of de- ionized water and placed in an ice bath at >5oC and purged with N2 gas for 20 minutes; 3.25...Temperature sensitive hydrogels based on N-isopropyl acrylamide (NIPA) and acryloyl glucosamine (AG) were synthesized using ammonium persulfate (APS) as...hydrogels by copolymerization of poly (N-isopropylacrylamide) (NIPA), and acryloyl glucosamine (AG) a derivative of chi- tosan, a biopolymer from

  5. Non-coalescence of oppositely charged droplets in pH-sensitive emulsions

    PubMed Central

    Liu, Tingting; Seiffert, Sebastian; Thiele, Julian; Abate, Adam R.; Weitz, David A.; Richtering, Walter

    2012-01-01

    Like charges stabilize emulsions, whereas opposite charges break emulsions. This is the fundamental principle for many industrial and practical processes. Using micrometer-sized pH-sensitive polymeric hydrogel particles as emulsion stabilizers, we prepare emulsions that consist of oppositely charged droplets, which do not coalesce. We observe noncoalescence of oppositely charged droplets in bulk emulsification as well as in microfluidic devices, where oppositely charged droplets are forced to collide within channel junctions. The results demonstrate that electrostatic interactions between droplets do not determine their stability and reveal the unique pH-dependent properties of emulsions stabilized by soft microgel particles. The noncoalescence can be switched to coalescence by neutralizing the microgels, and the emulsion can be broken on demand. This unusual feature of the microgel-stabilized emulsions offers fascinating opportunities for future applications of these systems. PMID:22203968

  6. Composite hydrogel scaffolds with controlled pore opening via biodegradable hydrogel porogen degradation.

    PubMed

    Hawkins, Ashley M; Milbrandt, Todd A; Puleo, David A; Hilt, J Zach

    2014-02-01

    Poly(β-amino ester) (PBAE) biodegradable hydrogel systems have garnered much attention in recent years due to their appealing properties for biomedical applications. These hydrogel systems exhibit properties similar to natural soft tissue, degrade in aqueous environments, and have easily tunable properties that have been well studied and understood. In most cases, tissue engineering scaffolds must possess a three-dimensional interconnected porous network for tissue ingrowth and construct vascularization. Here, PBAE properties were explored and systems were selected to serve as both the pore-forming agent and the outer matrix of a scaffold that exhibits controlled pore opening upon degradation. To our knowledge, this is the first demonstration of a biodegradable hydrogel porogen system entrapped in a degradable hydrogel outer matrix. Scaffolds were prepared, and the degradation, compressive moduli, and porosity were analyzed. An added advantage of a degradable porogen is the potential for controlled drug release, and a model protein was released from the porogen particles to demonstrate this application. Finally, pluripotent cells seeded onto predegraded scaffolds were viable during the first 24 h of exposure, and furthermore, cell tracking confirmed the presence of cells within the pores of the scaffold. Overall, these present studies demonstrate the possibility of using these biodegradable hydrogel porogen-matrix systems as tissue engineering scaffolding materials.

  7. Studies of in situ-forming hydrogels by blending PLA-PEG-PLA copolymer with silk fibroin solution.

    PubMed

    Zhong, Tianyi; Deng, Chunmin; Gao, Yanfei; Chen, Mei; Zuo, Baoqi

    2012-08-01

    Hydrogels had been prepared by blending PLA-PEG-PLA copolymer with Bombyx mori silk fibroin (SF) solution. Copolymers were synthesized by ring opening polymerization of L-lactide in the presence of dihydroxyl PEG with molar mass of 400 and 1000, and characterized by using (1)H NMR and DSC. Hydrogels formed leaf-like lamellar structures with many nanoglobules which may reserve drugs or growth factors more effectively. Rheological measurements indicated that the adding of copolymer significantly accelerated the hydrogelation of silk fibroin solution which leads to orders-of-magnitude increase in the complex shear modulus to form rigid hydrogel. Hydrogelation kinetics could be controlled easily by changing the concentration ratio, kinds of copolymer and hydrogelation temperature, suggesting the hydrogels could be formed in situ under physiological conditions with suitable mechanical properties. Furthermore, Fourier transform infrared, X-ray diffraction, and differential thermal analysis were employed to study the structure of hydrogels. The copolymer and SF in blend hydrogels were phase separation. There was an increase of β-sheet content and formation of silk II structure during hydrogelation. These results may indicate that copolymer/SF hydrogels could be a valuable candidate scaffold as in situ-forming hydrogels for drug/growth factor release in tissue engineering.

  8. Processing and characterisation of a novel electropolymerized silk fibroin hydrogel membrane

    PubMed Central

    Wang, Hai-Yan; Zhang, Yu-Qing

    2014-01-01

    Silk fibroin can be made into various forms of biocompatible medical materials, including hydrogel due to its excellent properties. Here, we report a novel method for the preparation of electropolymerized silk fibroin hydrogel membrane (ESFHM), which is formed on a nanoporous film as a barrier using a homemade device at a higher DC voltage. Regenerated silk fibroin solution in Tris buffer (pH 6.55–7.55) was added into a reservoir with a negative charge, and the silk molecules migrated toward the positive charge at 80VDC, resulting in the formation of the ESFHM on the barrier film. Barrier film with a MWCO of 10 kDa is favourable to the formation of the ESFHM. Semi-transparent ESFHM with a swelling ratio of 1056.4% predominantly consisted of a mixture of β-sheets and α-helix crystalline structures. SEM studies revealed that the ESFHM consisted of a 3D mesh structure woven by a chain of silk fibroin nanoparticles with a size of approximately 30 nanometres, similar to a pearl necklace. In vitro studies indicated that the ESFHM was degradable and was sufficient for cell adhesion and growth. Thus, ESFHM is a promising candidate for loading bioactive protein and appropriate cells, as artificial skin or for use in transplantation. PMID:25154713

  9. Processing and characterisation of a novel electropolymerized silk fibroin hydrogel membrane.

    PubMed

    Wang, Hai-Yan; Zhang, Yu-Qing

    2014-08-26

    Silk fibroin can be made into various forms of biocompatible medical materials, including hydrogel due to its excellent properties. Here, we report a novel method for the preparation of electropolymerized silk fibroin hydrogel membrane (ESFHM), which is formed on a nanoporous film as a barrier using a homemade device at a higher DC voltage. Regenerated silk fibroin solution in Tris buffer (pH 6.55-7.55) was added into a reservoir with a negative charge, and the silk molecules migrated toward the positive charge at 80VDC, resulting in the formation of the ESFHM on the barrier film. Barrier film with a MWCO of 10 kDa is favourable to the formation of the ESFHM. Semi-transparent ESFHM with a swelling ratio of 1056.4% predominantly consisted of a mixture of β-sheets and α-helix crystalline structures. SEM studies revealed that the ESFHM consisted of a 3D mesh structure woven by a chain of silk fibroin nanoparticles with a size of approximately 30 nanometres, similar to a pearl necklace. In vitro studies indicated that the ESFHM was degradable and was sufficient for cell adhesion and growth. Thus, ESFHM is a promising candidate for loading bioactive protein and appropriate cells, as artificial skin or for use in transplantation.

  10. Nanocomposite hydrogels for biomedical applications

    PubMed Central

    Gaharwar, Akhilesh K.

    2014-01-01

    Hydrogels mimic native tissue microenvironment due to their porous and hydrated molecular structure. An emerging approach to reinforce polymeric hydrogels and to include multiple functionalities focuses on incorporating nanoparticles within the hydrogel network. A wide range of nanoparticles, such as carbon-based, polymeric, ceramic, and metallic nanomaterials can be integrated within the hydrogel networks to obtain nanocomposites with superior properties and tailored functionality. Nanocomposite hydrogels can be engineered to possess superior physical, chemical, electrical, and biological properties. This review focuses on the most recent developments in the field of nanocomposite hydrogels with emphasis on biomedical and pharmaceutical applications. In particular, we discuss synthesis and fabrication of nanocomposite hydrogels, examine their current limitations and conclude with future directions in designing more advanced nanocomposite hydrogels for biomedical and biotechnological applications. PMID:24264728

  11. An improved cryosection method for polyethylene glycol hydrogels used in tissue engineering.

    PubMed

    Ruan, Jia-Ling; Tulloch, Nathaniel L; Muskheli, Veronica; Genova, E Erin; Mariner, Peter D; Anseth, Kristi S; Murry, Charles E

    2013-10-01

    The high water content of hydrogels allows these materials to closely mimic the native biological extracellular conditions, but it also makes difficult the histological preparation of hydrogel-based bioengineered tissue. Paraffin-embedding techniques require dehydration of hydrogels, resulting in substantial collapse and deformation, whereas cryosectioning is hampered by the formation of ice crystals within the hydrogel material. Here, we sought to develop a method to obtain good-quality cryosections for the microscopic evaluation of hydrogel-based tissue-engineered constructs, using polyethylene glycol (PEG) as a test hydrogel. Conventional sucrose solutions, which dehydrate cells while leaving extracellular water in place, produce a hydrogel block that is brittle and difficult to section. We therefore replaced sucrose with multiple protein-based and nonprotein-based solutions as cryoprotectants. Our analysis demonstrated that overnight incubation in bovine serum albumin (BSA), fetal bovine serum (FBS), polyvinyl alcohol (PVA), optimum cutting temperature (OCT) compound, and Fisher HistoPrep frozen tissue-embedding media work well to improve the cryosectioning of hydrogels. The protein-based solutions give background staining with routine hematoxylin and eosin, but the use of nonprotein-based solutions PVA and OCT reduces this background by 50%. These methods preserve the tissue architecture and cellular details with both in vitro PEG constructs and in constructs that have been implanted in vivo. This simple hydrogel cryosectioning technique improves the methodology for creation of good-quality histological sections from hydrogels in multiple applications.

  12. An Improved Cryosection Method for Polyethylene Glycol Hydrogels Used in Tissue Engineering

    PubMed Central

    Ruan, Jia-Ling; Tulloch, Nathaniel L.; Muskheli, Veronica; Genova, E. Erin; Mariner, Peter D.; Anseth, Kristi S.

    2013-01-01

    The high water content of hydrogels allows these materials to closely mimic the native biological extracellular conditions, but it also makes difficult the histological preparation of hydrogel-based bioengineered tissue. Paraffin-embedding techniques require dehydration of hydrogels, resulting in substantial collapse and deformation, whereas cryosectioning is hampered by the formation of ice crystals within the hydrogel material. Here, we sought to develop a method to obtain good-quality cryosections for the microscopic evaluation of hydrogel-based tissue-engineered constructs, using polyethylene glycol (PEG) as a test hydrogel. Conventional sucrose solutions, which dehydrate cells while leaving extracellular water in place, produce a hydrogel block that is brittle and difficult to section. We therefore replaced sucrose with multiple protein-based and nonprotein-based solutions as cryoprotectants. Our analysis demonstrated that overnight incubation in bovine serum albumin (BSA), fetal bovine serum (FBS), polyvinyl alcohol (PVA), optimum cutting temperature (OCT®) compound, and Fisher HistoPrep frozen tissue-embedding media work well to improve the cryosectioning of hydrogels. The protein-based solutions give background staining with routine hematoxylin and eosin, but the use of nonprotein-based solutions PVA and OCT reduces this background by 50%. These methods preserve the tissue architecture and cellular details with both in vitro PEG constructs and in constructs that have been implanted in vivo. This simple hydrogel cryosectioning technique improves the methodology for creation of good-quality histological sections from hydrogels in multiple applications. PMID:23448137

  13. Structural study and preliminary biological evaluation on the collagen hydrogel crosslinked by γ-irradiation.

    PubMed

    Zhang, Xiangmei; Xu, Ling; Huang, Xin; Wei, Shicheng; Zhai, Maolin

    2012-11-01

    Under γ-irradiation, concentrated collagen solutions yielded collagen hydrogels and liquid products. The molecular structure of collagen hydrogels and the source of the liquid products were studied. Furthermore, preliminary biological properties of the hydrogels were investigated. The results revealed that crosslinking occurred to form collagen hydrogel and the crosslinking density increased with the increasing of the absorbed dose, and the collagen hydrogels showed enhanced mechanical properties. Meanwhile, collagen underwent radiation degradation and water was squeezed out from hydrogel by contraction of hydrogel, yielding liquid products. Collagen hydrogels induced by γ-irradiation maintained the backbone structure of collagen, and tyrosine partially involved in crosslinking. The irradiated collagen hydrogels have higher denatured temperature, can promote fibroblasts proliferation, and their degradation rate in vivo depended on the absorbed dose. The comprehensive results suggested that the collagen hydrogels prepared by radiation crosslinking preserved the triple helical conformation, possessed improved thermal stability and mechanical properties, excellent biocompatibility, which is expected to favor its application as biomaterials. Copyright © 2012 Wiley Periodicals, Inc.

  14. Composites of Quasi-Colloidal Layered Double Hydroxide Nanoparticles and Agarose Hydrogels for Chromate Removal.

    PubMed

    Gwak, Gyeong-Hyeon; Kim, Min-Kyu; Oh, Jae-Min

    2016-01-26

    Composite hydrogels were prepared that consisted of quasi-colloidal layered double hydroxide (LDH) nanoparticles and agarose via the electrophoretic method, starting from three different agarose concentrations of 0.5, 1, and 2 wt/v%. The composite hydrogel was identified to have a uniform distribution of LDH nanoparticles in agarose matrix. Microscopic studies revealed that the composite hydrogel had a homogeneous quasi-colloidal state of LDHs, while the simple mixture of LDH powder and agarose hydrogels did not. It was determined that agarose concentration of the starting hydrogel did not significantly influence the amount of LDH that developed in the composite. The chromate scavenging efficiency of the composite hydrogel and corresponding agarose or mixture hydrogel was evaluated with respect to time, and chromate concentration. In general, the composite hydrogels exhibited much higher chromate removal efficacy compared with agarose or mixture hydrogels. Through estimating chromate adsorption by LDH moiety in the composite or mixture hydrogel, it was suggested that the agarose component facilitated the stability and dispersibility of the quasi-colloidal state of LDH nanoparticles in the composite resulting in high adsorption efficacy. From Freundlich isotherm adsorption fitting, composites were determined to possess beneficial cooperative adsorption behavior with a high adsorption coefficient.

  15. Composites of Quasi-Colloidal Layered Double Hydroxide Nanoparticles and Agarose Hydrogels for Chromate Removal

    PubMed Central

    Gwak, Gyeong-Hyeon; Kim, Min-Kyu; Oh, Jae-Min

    2016-01-01

    Composite hydrogels were prepared that consisted of quasi-colloidal layered double hydroxide (LDH) nanoparticles and agarose via the electrophoretic method, starting from three different agarose concentrations of 0.5, 1, and 2 wt/v%. The composite hydrogel was identified to have a uniform distribution of LDH nanoparticles in agarose matrix. Microscopic studies revealed that the composite hydrogel had a homogeneous quasi-colloidal state of LDHs, while the simple mixture of LDH powder and agarose hydrogels did not. It was determined that agarose concentration of the starting hydrogel did not significantly influence the amount of LDH that developed in the composite. The chromate scavenging efficiency of the composite hydrogel and corresponding agarose or mixture hydrogel was evaluated with respect to time, and chromate concentration. In general, the composite hydrogels exhibited much higher chromate removal efficacy compared with agarose or mixture hydrogels. Through estimating chromate adsorption by LDH moiety in the composite or mixture hydrogel, it was suggested that the agarose component facilitated the stability and dispersibility of the quasi-colloidal state of LDH nanoparticles in the composite resulting in high adsorption efficacy. From Freundlich isotherm adsorption fitting, composites were determined to possess beneficial cooperative adsorption behavior with a high adsorption coefficient. PMID:28344282

  16. Hydrogels for osteochondral repair based on photocrosslinkable carbamate dendrimers.

    PubMed

    Degoricija, Lovorka; Bansal, Prashant N; Söntjens, Serge H M; Joshi, Neel S; Takahashi, Masaya; Snyder, Brian; Grinstaff, Mark W

    2008-10-01

    First generation, photocrosslinkable dendrimers consisting of natural metabolites (i.e., succinic acid, glycerol, and beta-alanine) and nonimmunogenic poly(ethylene glycol) (PEG) were synthesized divergently in high yields using ester and carbamate forming reactions. Aqueous solutions of these dendrimers were photocrosslinked with an eosin-based photoinitiator to afford hydrogels. The hydrogels displayed a range of mechanical properties based on their structure, generation size, and concentration in solution. All of the hydrogels showed minimal swelling characteristics. The dendrimer solutions were then photocrosslinked in situ in an ex vivo rabbit osteochondral defect (3 mm diameter and 10 mm depth), and the resulting hydrogels were subjected to physiologically relevant dynamic loads. Magnetic resonance imaging (MRI) showed the hydrogels to be fixated in the defect site after the repetitive loading regimen. The ([G1]-PGLBA-MA) 2-PEG hydrogel was chosen for the 6 month pilot in vivo rabbit study because this hydrogel scaffold could be prepared at low polymer weight (10 wt %) and possessed the largest compressive modulus of the 10% formulations, a low swelling ratio, and contained carbamate linkages, which are more hydrolytically stable than the ester linkages. The hydrogel-treated osteochondral defects showed good attachment in the defect site and histological analysis showed the presence of collagen II and glycosaminoglycans (GAGs) in the treated defects. By contrast, the contralateral unfilled defects showed poor healing and negligible GAG or collagen II production. Good mechanical properties, low swelling, good attachment to the defect site, and positive in vivo results illustrate the potential of these dendrimer-based hydrogels as scaffolds for osteochondral defect repair.

  17. Using hydrogels in microscopy: A tutorial.

    PubMed

    Flood, Peter; Page, Henry; Reynaud, Emmanuel G

    2016-05-01

    Sample preparation for microscopy is a crucial step to ensure the best experimental outcome. It often requires the use of specific mounting media that have to be tailored to not just the sample but the chosen microscopy technique. The media must not damage the sample or impair the optical path, and may also have to support the correct physiological function/development of the sample. For decades, researchers have used embedding media such as hydrogels to maintain samples in place. Their ease of use and transparency has promoted them as mainstream mounting media. However, they are not as straightforward to implement as assumed. They can contain contaminants, generate forces on the sample, have complex diffusion and structural properties that are influenced by multiple factors and are generally not designed for microscopy in mind. This short review will discuss the advantages and disadvantages of using hydrogels for microscopy sample preparation and highlight some of the less obvious problems associated with the area.

  18. Critical review of radiation processing of hydrogel and polysaccharide

    NASA Astrophysics Data System (ADS)

    Makuuchi, K.

    2010-03-01

    Radiation processing of an aqueous solution of polymer initiated by rad OH radicals formed by radiolysis of water is applied for preparation of hydrogel wound dressing and plant growth promoter. Recently, Fenton reagent that generates rad OH radicals was successfully applied to synthesize PVP hydrogel. The Fenton reaction also can be applied to the depolymerization of chitosan. These progresses in the syntheses of hydrogel and oligo-chitosan by radiation and non-radiation methods such as hydrolysis, oxidative degradation, photolysis, sonolysis and degradation by microwave are reviewed to survey a possibility to reduce the costs of production. Radiation synthesized hydrogel should target value-added medical products because only radiation can crosslink and sterilize simultaneously. Oligo-chitosan can be produced economically by irradiation of solid chitin by Fenton reagent, if necessary.

  19. Viscoelastic Properties and Morphology of Mumio-based Medicated Hydrogels

    NASA Astrophysics Data System (ADS)

    Zandraa, Oyunchimeg; Jelínková, Lenka; Roy, Niladri; Sáha, Tomáš; Kitano, Takeshi; Saha, Nabanita

    2011-07-01

    Novel medicated hydrogels were prepared (by moist heat treatment) with PVA, agar, mumio, mare's milk (MM), seabuckthorn oil (SB oil) and salicylic acid (SA) for wound dressing/healing application. Scanning electron micrographs (SEM) show highly porous structure of these hydrogels. The swelling behaviour of the hydrogels in physiological solution displays remarkable liquid absorption property. The knowledge obtained from rheological investigations of these-systems may be highly useful for the characterization of the newly developed topical formulations. In the present study, an oscillation frequency sweep test was used for the evaluation of storage modulus (G'), loss modulus (G″), and complex viscosity (η*) of five different formulations, over an angular frequency range from 0.1 to 100 rad.s-1. The influence of healing agents and swelling effect on the rheological properties of mumio-based medicated hydrogels was investigated to judge its application on uneven surface of body.

  20. Stretchable Hydrogel Electronics and Devices

    PubMed Central

    Lin, Shaoting; Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Koo, Hyunwoo; Yu, Cunjiang; Zhao, Xuanhe

    2016-01-01

    Animal bodies are mainly composed of hydrogels — polymer networks infiltrated with water. Most biological hydrogels are mechanically flexible yet robust, and they accommodate transportations (e.g., convection and diffusion) and reactions of various essential substances for life – endowing living bodies with exquisite functions such as sensing and responding, self-healing, self-reinforcing and self-regulating et al. To harness hydrogels’ unique properties and functions, intensive efforts have been devoted to developing various biomimetic structures and devices based on hydrogels. Examples include hydrogel valves for flow control in microfluidics[1], adaptive micro lenses activated by stimuli-responsive hydrogels[2], color-tunable colloidal crystals from hydrogel particles[3, 4], complex micro patterns switched by hydrogel-actuated nanostructures[5], responsive buckled hydrogel surfaces[6], and griping and self-walking structures based on hydrogels[7–9]. Entering the era of mobile health or mHealth, as unprecedented amounts of electronic devices are being integrated with human body[10–14], hydrogels with similar physiological and mechanical properties as human tissues represent ideal matrix/coating materials for electronics and devices to achieve long-term effective bio-integrations[15–17]. However, owing to the weak and brittle nature of common synthetic hydrogels, existing hydrogel electronics and devices mostly suffer from the limitation of low mechanical robustness and low stretchability. On the other hand, while hydrogels with extraordinary mechanical properties, or so-called tough hydrogels, have been recently developed[18–22], it is still challenging to fabricate tough hydrogels into stretchable electronics and devices capable of novel functions. The design of robust, stretchable and biocompatible hydrogel electronics and devices represents a critical challenge in the emerging field of soft materials, electronics and devices. PMID:26639322

  1. Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria.

    PubMed

    Jayaramudu, Tippabattini; Raghavendra, Gownolla Malegowd; Varaprasad, Kokkarachedu; Sadiku, Rotimi; Raju, Konduru Mohana

    2013-02-15

    The design and fabrication of novel biodegradable gold nanocomposites hydrogels were developed as antibacterial agent. Biodegradable gold nanocomposite hydrogels were developed by using acrylamide (AM) and wheat protein isolate (WPI). The gold nanoparticles were prepared as a gold colloid by reducing HAuCl(4)·XH(2)O with leaf extracts of Azadirachta indica (neem leaf) that formed hydrogel network. The characterization of developed biodegradable hydrogels were studied using fourier transforms infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). The biodegradable gold nanoparticle composite hydrogels developed were tested for antibacterial properties. The results indicate that these biodegradable gold nanocomposite hydrogels can be used as potential candidates for antibacterial applications.

  2. Embedding magnetic nanoparticles into polysaccharide-based hydrogels for magnetically assisted bioseparation.

    PubMed

    Liang, Yuan-Yuan; Zhang, Li-Ming; Jiang, Wei; Li, Wei

    2007-11-12

    Based on the preparation of biocompatible polysaccharide-based hydrogels with stimuli-responsive properties by the copolymerization of maleilated carboxymethyl chitosan with N-isopropylacrylamide, novel magnetic hybrid hydrogels were fabricated by the in situ embedding of magnetic iron oxide nanoparticles into the porous hydrogel networks. Scanning electron microscopy (SEM) and thermogravimetric (TG) analyses showed that the size, morphology, and content of the iron oxide nanoparticles formed could be modulated by controlling the amount of maleilated carboxymethyl chitosan. As confirmed by X-ray diffractometry (XRD), equilibrium swelling ratio, and differential scanning calorimetry (DSC) measurements, the embedding process did not induce a phase change of the magnetic iron oxide nanoparticles, and the resultant hybrid hydrogels could retain the pH- and temperature-responsive characteristics of their hydrogel precursors. By investigating the partition coefficients of bovine serum albumin as a model protein, this magnetic hydrogel material was found to hold a potential application in magnetically assisted bioseparation.

  3. Injectable Hydrogel Composite Based Gelatin-PEG and Biphasic Calcium Phosphate Nanoparticles for Bone Regeneration

    NASA Astrophysics Data System (ADS)

    Van, Thuy Duong; Tran, Ngoc Quyen; Nguyen, Dai Hai; Nguyen, Cuu Khoa; Tran, Dai Lam; Nguyen, Phuong Thi

    2016-05-01

    Gelatin hydrogels have recently attracted much attention for tissue regeneration because of their biocompatibility. In this study, we introduce poly-ethylene glycol (PEG)—grafted gelatin containing tyramine moieties which have been utilized for in situ enzyme-mediated hydrogel preparation. The hydrogel can be used to load nanoparticles of biphasic calcium phosphate, a mixture of hydroxyapatite and β-tricalcium phosphate, and forming injectable bio-composites. Proton nuclear magnetic resonance (1H NMR) spectra indicated that tyramine-functionalized polyethylene glycol-nitrophenyl carbonate ester was conjugated to the gelatin. The hydrogel composite was rapidly formed in situ (within a few seconds) in the presence of horseradish peroxidase and hydrogen peroxide. In vitro experiments with bio-mineralization on the hydrogel composite surfaces was well-observed after 2 weeks soaking in simulated body fluid solution. The obtained results indicated that the hydrogel composite could be a potential injectable material for bone regeneration.

  4. Efficient inhibition of colorectal peritoneal carcinomatosis by drug loaded micelles in thermosensitive hydrogel composites

    NASA Astrophysics Data System (ADS)

    Gong, Changyang; Wang, Cheng; Wang, Yujun; Wu, Qinjie; Zhang, Doudou; Luo, Feng; Qian, Zhiyong

    2012-05-01

    In this work, we aim to develop a dual drug delivery system (DDDS) of self-assembled micelles in thermosensitive hydrogel composite to deliver hydrophilic and hydrophobic drugs simultaneously for colorectal peritoneal carcinomatosis (CRPC) therapy. In our previous studies, we found that poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCEC) copolymers with different molecular weight and PEG/PCL ratio could be administered to form micelles or thermosensitive hydrogels, respectively. Therefore, the DDDS was constructed from paclitaxel (PTX) encapsulated PCEC micelles (PTX-micelles) and a fluorouracil (Fu) loaded thermosensitive PCEC hydrogel (Fu-hydrogel). PTX-micelles were prepared by self-assembly of biodegradable PCEC copolymer (Mn = 3700) and PTX without using any surfactants or excipients. Meanwhile, biodegradable and injectable thermosensitive Fu-hydrogel (Mn = 3000) with a lower sol-gel transition temperature at around physiological temperature was also prepared. The obtained PTX-micelles in thermosensitive Fu-hydrogel (PTX-micelles-Fu-hydrogel) composite is a free-flowing sol at ambient temperature and rapidly turned into a non-flowing gel at physiological temperature. In addition, the results of cytotoxicity, hemolytic study, and acute toxicity evaluation suggested that the PTX-micelles-Fu-hydrogel was non-toxic and biocompatible. In vitro release behaviors of PTX-micelles-Fu-hydrogel indicated that both PTX and Fu have a sustained release behavior. Furthermore, intraperitoneal application of PTX-micelles-Fu-hydrogel effectively inhibited growth and metastasis of CT26 peritoneal carcinomatosis in vivo (p < 0.001), and induced a stronger antitumor effect than that of Taxol® plus Fu (p < 0.001). The pharmacokinetic study indicated that PTX-micelles-Fu-hydrogel significantly increased PTX and Fu concentration and residence time in peritoneal fluids compared with Taxol® plus Fu group. Thus, the results suggested the micelles-hydrogel DDDS may

  5. The effect of lipid composition and liposome size on the release properties of liposomes-in-hydrogel.

    PubMed

    Hurler, Julia; Žakelj, Simon; Mravljak, Janez; Pajk, Stane; Kristl, Albin; Schubert, Rolf; Škalko-Basnet, Nataša

    2013-11-01

    To study the release of liposome-associated drugs into hydrogels, we designed and synthesized two pH-sensitive rhodamine derivatives to use as model compounds of different lipophilicities. The dyes were fluorescent when in the free form released from liposomes into the chitosan hydrogel, but not when incorporated within liposomes. The effect of liposomal composition, surface charge and vesicle size on the release of those incorporated dyes was evaluated. The lipophilicity of the rhodamine derivatives affected both the amount and rate of release. While liposome size had only a minor effect on the release of dyes into the hydrogel, the surface charge affected the release to a greater extent. By optimizing the characteristics of liposomes we could develop a liposomes-in-hydrogel system for application in wound therapy. We further characterized liposomes-in-hydrogel for their rheological properties, textures and moisture handling, as well as their potential to achieve a controlled release of the dye. The polymer-dependent changes in the hydrogel properties were observed upon addition of liposomes. The charged liposomes exhibited stronger effects on the textures of the chitosan hydrogels than the neutral ones. In respect to the ability of the system to handle wound exudates, chitosan-based hydrogels were found to be superior to Carbopol-based hydrogels.

  6. Surface chemistry and size influence the release of model therapeutic nanoparticles from poly(ethylene glycol) hydrogels

    NASA Astrophysics Data System (ADS)

    Hume, Stephanie L.; Jeerage, Kavita M.

    2013-05-01

    Nanoparticles have emerged as promising therapeutic and diagnostic tools, due to their unique physicochemical properties. The specific core and surface chemistries, as well as nanoparticle size, play critical roles in particle transport and interaction with biological tissue. Localized delivery of therapeutics from hydrogels is well established, but these systems generally release molecules with hydrodynamic radii less than 5 nm. Here, model nanoparticles with biologically relevant surface chemistries and diameters between 10 and 35 nm are analyzed for their release from well-characterized hydrogels. Functionalized gold nanoparticles or quantum dots were encapsulated in three-dimensional poly(ethylene glycol) hydrogels with varying mesh size. Nanoparticle size, surface chemistry, and hydrogel mesh size all influenced the release of particles from the hydrogel matrix. Size influenced nanoparticle release as expected, with larger particles releasing at a slower rate. However, citrate-stabilized gold nanoparticles were not released from hydrogels. Negatively charged carboxyl or positively charged amine-functionalized quantum dots were released from hydrogels at slower rates than neutrally charged PEGylated nanoparticles of similar size. Transmission electron microscopy images of gold nanoparticles embedded within hydrogel sections demonstrated uniform particle distribution and negligible aggregation, independent of surface chemistry. The nanoparticle-hydrogel interactions observed in this work will aid in the development of localized nanoparticle delivery systems.

  7. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication.

    PubMed

    Altomare, Lina; Cochis, Andrea; Carletta, Andrea; Rimondini, Lia; Farè, Silvia

    2016-05-01

    Methylcellulose (MC), a water-soluble polymer derived from cellulose, was investigated as a possible temporary substrate having thermo-responsive properties favorable for cell culturing. MC-based hydrogels were prepared by a dispersion technique, mixing MC powder (2, 4, 6, 8, 10, 12 % w/v) with selected salts (sodium sulphate, Na2SO4), sodium phosphate, calcium chloride, or phosphate buffered saline, to evaluate the influence of different compositions on the thermo-responsive behavior. The inversion test was used to determine the gelation temperatures of the different hydrogel compositions; thermo-mechanical properties and thermo-reversibility of the MC hydrogels were investigated by rheological analysis. Gelation temperatures and rheological behavior depended on the MC concentration and type and concentration of salt used in hydrogel preparation. In vitro cytotoxicity tests, performed using L929 mouse fibroblasts, showed no toxic release from all the tested hydrogels. Among the investigated compositions, the hydrogel composed of 8 % w/v MC with 0.05 M Na2SO4 had a thermo-reversibility temperature at 37 °C. For that reason, this formulation was thus considered to verify the possibility of inducing in vitro spontaneous detachment of cells previously seeded on the hydrogel surface. A continuous cell layer (cell sheet) was allowed to grow and then detached from the hydrogel surface without the use of enzymes, thanks to the thermo-responsive behavior of the MC hydrogel. Immunofluorescence observation confirmed that the detached cell sheet was composed of closely interacting cells.

  8. Tuning PEG-DA hydrogel properties via solvent-induced phase separation (SIPS)†

    PubMed Central

    Bailey, Brennan Margaret; Hui, Vivian; Fei, Ruochong

    2012-01-01

    Poly(ethylene glycol) diacrylate (PEG-DA) hydrogels are widely utilized to probe cell-material interactions and ultimately for a material-guided approach to tissue regeneration. In this study, PEG-DA hydrogels were fabricated via solvent-induced phase separation (SIPS) to obtain hydrogels with a broader range of tunable physical properties including morphology (e.g. porosity), swelling and modulus (G′). In contrast to conventional PEG-DA hydrogels prepared from an aqueous precursor solution, the reported SIPS protocol utilized a dichloromethane (DCM) precursor solution which was sequentially photopolymerized, dried and hydrated. Physical properties were further tailored by varying the PEG-DA wt% concentration (5 wt%–25 wt%) and Mn (3.4k and 6k g mol −1). SIPS produced PEG-DA hydrogels with a macroporous morphology as well as increased G′ values versus the corresponding conventional PEG-DA hydrogels. Notably, since the total swelling was not significantly changed versus the corresponding conventional PEG-DA hydrogels, pairs or series of hydrogels represent scaffolds in which morphology and hydration or G′ and hydration are uncoupled. In addition, PEG-DA hydrogels prepared via SIPS exhibited enhanced degradation rates. PMID:22956857

  9. Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria.

    PubMed

    Jayaramudu, Tippabattini; Raghavendra, Gownolla Malegowd; Varaprasad, Kokkarachedu; Sadiku, Rotimi; Ramam, Koduri; Raju, Konduru Mohana

    2013-06-05

    In this paper, we report the synthesis and characterization of Iota-Carrageenan based on a novel biodegradable silver nanocomposite hydrogels. The aim of study was to investigate whether these hydrogels have the potential to be used in bacterial inactivation applications. Biodegradable silver nanocomposite hydrogels were prepared by a green process using acrylamide (AM) with I-Carrageenan (IC). The silver nanoparticles were prepared as silver colloid by reducing AgNO3 with leaf extracts of Azadirachta indica (neem leaf) that (Ag(0)) formed the hydrogel network. The formation of biodegradable silver nanoparticles in the hydrogels was characterized using UV-vis spectroscopy, thermo gravimetrical analysis, X-ray diffractometry studies, scanning electron microscopy and transmission electron microscopy studies. In addition, swelling behavior and degradation properties were systematically investigated. Furthermore, the biodegradable silver nanoparticle composite hydrogels developed were tested for antibacterial activities. The antibacterial activity of the biodegradable silver nanocomposite hydrogels was studied by inhibition zone method against Bacillus and Escherichia coli, which suggested that the silver nanocomposite hydrogels developed were effective as potential candidates for antimicrobial applications. Therefore, the inorganic biodegradable hydrogels developed can be used effectively for biomedical application. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The dynamic magnetoviscoelastic properties of biomineralized (Fe3O4) PVP-CMC hydrogel

    NASA Astrophysics Data System (ADS)

    Ray, Ayan; Saha, Nabanita; Saha, Petr

    2017-05-01

    The Polyvinylpyrrolidone (PVP) and carboxymethylcellulose (CMC) based polymer matrix was used as a template for the preparation of magnetic hydrogel. This freshly prepared PVP-CMC hydrogel template was successfully mineralized by in situ synthesis of magnetic nanoparticles (Fe3O4) via chemical co-precipitation reaction using liquid diffusion method. The present study emphasizes on the rheological behavior of non-mineralized and mineralized PVP-CMC hydrogels. Scanning Electron Microscopy (SEM), transmission electron microscopy (TEM), X-ray Diffraction (XRD) pattern, Fourier transform infrared spectroscopy (FT-TR), Vibrating sample magnetometer (VSM) and dynamic magneto rheometer were used to study the morphological, physical, chemical and magnetic properties of nanoparticle (Fe3O4) filled PVP-CMC hydrogel respectively in order to monitor how Fe3O4 magnetic nanoparticles affects the mechanical properties of the hydrogel network. The storage (G') and loss (G") moduli with a complex viscosity of the system was measured using a parallel plate rheometer. Frequency and amplitude sweep with temperature variation was performed to determine the frequency and amplitude dependent magneto viscoelastic moduli for both hydrogel samples. A strong shear thinning effect was observed in both (non-mineralized and mineralized) PVP-CMC hydrogels, which confirm that Fe3O4 filled magnetic hydrogels, are pseudoplastic in nature. This Fe3O4 filled PVP-CMC hydrogel can be considered as stimuli-responsive soft matter that may be used as an actuator in medical devices.

  11. Water-Soluble Polyphosphazenes and Their Hydrogels

    DTIC Science & Technology

    1994-05-18

    T IC 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(E E L L 87. PERFORMING ORGANIZATION Department of Chemistry MAY 3 119M4. REPORT NUMBER The...THEIR HYDROGELS by Harry R. Allcock Prepared for Publication in ACS Symposium Series Department of Chemistry The Pennsylvania State University...Polyphophaunes Chart I shows six different polyphosphazenes that are soluble in water. All of them were synthesized in our labomory via variants of the chemistry

  12. Effect of Chemical Charging/Discharging on Plasmonic Behavior of Silver Metal Nanoparticles Prepared using Citrate-Stabilized Cadmium Selenide Quantum Dots.

    PubMed

    Ingole, Pravin P; Bhat, Mohsin A

    2016-10-18

    The thermodynamics and kinetics of the chemical and electrochemical charging of a catalyst surface are very important to understand its applicability as a catalyst material, particularly in redox catalysis. Through the present study, we hereby communicate the results obtained from our detailed investigations related to the effect of chemical charging on the plasmonic behavior of silver metal nanoparticles (Ag MNPs) as redox catalysts. Two different batches of Ag MNPs were prepared through thermally assisted chemical reduction of silver ions. The difference in these batches was the use or not of citrate-capped cadmium selenide quantum dots (Q-CdSe) for the reduction of solution-phase silver ions to their colloidal plasmonic phase. The charge on the surfaces of the Ag MNPs was varied by the chemical electron injection method by using BH4(-) ions from a NaBH4 solution. The processes of charging and discharging were monitored by using UV/Vis absorption spectroscopy. The impact of the concentration of the reductant on the charging and discharging processes was also investigated. The Ag MNPs were also tested for their voltammetric response, wherein it was observed that it was more difficult to oxidize the Ag MNPs prepared with Q-CdSe seeds than to oxidize Ag MNPs prepared without Q-CdSe particles. Our results demonstrate that Q-CdSe seeds not only enhance the redox catalytic activity of Ag MNPs but also provide stability towards polarization of their plasmonic behavior.

  13. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Senna, Magdy M.; Mostafa, Abo El-Khair B.; Mahdy, Sanna R.; El-Naggar, Abdel Wahab M.

    2016-11-01

    Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  14. Repairable, nanostructured biomimetic hydrogels

    NASA Astrophysics Data System (ADS)

    Firestone, M.; Brombosz, S.; Grubjesic, S.

    2013-03-01

    Proteins facilitate many key cellular processes, including signal recognition and energy transduction. The ability to harness this evolutionarily-optimized functionality could lead to the development of protein-based systems useful for advancing alternative energy storage and conversion. The future of protein-based, however, requires the development of materials that will stabilize, order and control the activity of the proteins. Recently we have developed a synthetic approach for the preparation of a durable biomimetic chemical hydrogel that can be reversibly swollen in water. The matrix has proven ideal for the stable encapsulation of both water- and membrane-soluble proteins. The material is composed of an aqueous dispersion of a diacrylate end-derivatized PEO-PPO-PEO macromer, a saturated phospholipid and a zwitterionic co-surfactant that self-assembles into a nanostructured physical gel at room temperature as determined by X-ray scattering. The addition of a water soluble PEGDA co-monomer and photoinitator does not alter the self-assembled structure and UV irradiation serves to crosslink the acrylate end groups on the macromer with the PEGDA forming a network within the aqueous domains as determined by FT-IR. More recently we have begun to incorporate reversible crosslinks employing Diels-Alder chemistry, allowing for the extraction and replacement of inactive proteins. The ability to replenish the materials with active, non-denatured forms of protein is an important step in advancing these materials for use in nanostructured devices This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, USDoE under Contract No. DE-AC02-06CH11357.

  15. Iodixanol as a Contrast Agent in a Fibrin Hydrogel for Endodontic Applications

    PubMed Central

    Hertig, Gabriel; Zehnder, Matthias; Woloszyk, Anna; Mitsiadis, Thimios A.; Ivica, Anja; Weber, Franz E.

    2017-01-01

    The application of biomaterials used in regenerative endodontics should be traceable. In this study, we checked some basic effects of rendering a fibrin hydrogel radiopaque using an iodine-based contrast agent (iodixanol) approved for systemic application. Fibrin hydrogels were prepared from a fibrin sealant (Tisseel) using either an isotonic iodixanol solution (Visipaque 320, test) or Tris buffer (control) as a diluent. Gelation kinetics, radiopacity, and swelling of lyophilized hydrogels were tested using standard methods. Hydrogel structure was evaluated using scanning electron microscopy (SEM). Furthermore, iodixanol release from the test gels was assessed using spectrophotometry, and tissue compatibility was compared between test and control hydrogels using the chick chorioallantoic membrane (CAM) assay. Results were compared using pairwise t-test, p < 0.05. Iodixanol caused a 70-fold delay in gelation to 26 min in the test compared to the control hydrogels (22 ± 1 s). Radiopacity of the test gels was 1.9 ± 0.2 mm Al/mm, compared to zero in the control hydrogels. Lyophilized hydrogel swelling was strongly reduced when iodixanol was added to the hydrogel (p < 0.05). Test hydrogels had an altered SEM appearance compared to controls, and exhibited a reduced porosity. Iodixanol release from the test hydrogels reached 14.5 ± 0.5% after 120 h and then ceased. This release did not have any apparent toxic effect and neither affected the viability, nor the physiology or vascularization of the CAM of fertilized chicken eggs. Iodixanol can render a fibrin hydrogel radiopaque and maintains its tissue compatibility, yet impacts gelation kinetics and hydrogel porosity. PMID:28360862

  16. Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors.

    PubMed

    Nguyen, Tuyen; Boudard, Michel; Carmezim, M João; Montemor, M Fátima

    2017-01-04

    Consecutive layers of Ni(OH)2 and Co(OH)2 were electrodeposited on stainless steel current collectors for preparing charge storage electrodes of high specific capacity with potential application in hybrid supercapacitors. Different electrodes were prepared consisting on films of Ni(OH)2, Co(OH)2, Ni1/2Co1/2(OH)2 and layered films of Ni(OH)2 on Co(OH)2 and Co(OH)2 on Ni(OH)2 to highlight the advantages of the new architecture. The microscopy studies revealed the formation of nanosheets in the Co(OH)2 films and of particles agglomerates in the Ni(OH)2 films. Important morphological changes were observed in the double hydroxides films and layered films. Film growth by electrodeposition was governed by instantaneous nucleation mechanism. The new architecture composed of Ni(OH)2 on Co(OH)2 displayed a redox response characterized by the presence of two peaks in the cyclic voltammograms, arising from redox reactions of the metallic species present in the layered film. These electrodes revealed a specific capacity of 762 C g(-1) at the specific current of 1 A g(-1). The hybrid cell using Ni(OH)2 on Co(OH)2 as positive electrode and carbon nanofoam paper as negative electrode display specific energies of 101.3 W h g(-1) and 37.8 W h g(-1) at specific powers of 0.2 W g(-1) and 2.45 W g(-1), respectively.

  17. Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuyen; Boudard, Michel; Carmezim, M. João; Montemor, M. Fátima

    2017-01-01

    Consecutive layers of Ni(OH)2 and Co(OH)2 were electrodeposited on stainless steel current collectors for preparing charge storage electrodes of high specific capacity with potential application in hybrid supercapacitors. Different electrodes were prepared consisting on films of Ni(OH)2, Co(OH)2, Ni1/2Co1/2(OH)2 and layered films of Ni(OH)2 on Co(OH)2 and Co(OH)2 on Ni(OH)2 to highlight the advantages of the new architecture. The microscopy studies revealed the formation of nanosheets in the Co(OH)2 films and of particles agglomerates in the Ni(OH)2 films. Important morphological changes were observed in the double hydroxides films and layered films. Film growth by electrodeposition was governed by instantaneous nucleation mechanism. The new architecture composed of Ni(OH)2 on Co(OH)2 displayed a redox response characterized by the presence of two peaks in the cyclic voltammograms, arising from redox reactions of the metallic species present in the layered film. These electrodes revealed a specific capacity of 762 C g‑1 at the specific current of 1 A g‑1. The hybrid cell using Ni(OH)2 on Co(OH)2 as positive electrode and carbon nanofoam paper as negative electrode display specific energies of 101.3 W h g‑1 and 37.8 W h g‑1 at specific powers of 0.2 W g‑1 and 2.45 W g‑1, respectively.

  18. Charge transfer in crystalline germanium/monolayer MoS 2 heterostructures prepared by chemical vapor deposition

    SciTech Connect

    Lin, Yung-Chen; Bilgin, Ismail; Ahmed, Towfiq; Chen, Renjie; Pete, Doug; Kar, Swastik; Zhu, Jian-Xin; Gupta, Gautam; Mohite, Aditya; Yoo, Jinkyoung

    2016-09-21

    Heterostructuring provides novel opportunities for exploring emergent phenomena and applications by developing designed properties beyond those of homogeneous materials. Advances in nanoscience enable the preparation of heterostructures formed incommensurate materials. Two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, are of particular interest due to their distinct physical characteristics. There have been recent changes in new research areas related to 2D/2D heterostructures. But, other heterostructures such as 2D/three-dimensional (3D) materials have not been thoroughly studied yet although the growth of 3D materials on 2D materials creating 2D/3D heterostructures with exceptional carrier transport properties has been reported. Here also we report a novel heterostructure composed of Ge and monolayer MoS2, prepared by chemical vapor deposition. A single crystalline Ge (110) thin film was grown on monolayer MoS2. The electrical characteristics of Ge and MoS2 in the Ge/MoS2 heterostructure were remarkably different from those of isolated Ge and MoS2. The field-effect conductivity type of the monolayer MoS2 is converted from n-type to p-type by growth of the Ge thin film on top of it. Undoped Ge on MoS2 is highly conducting. The observations can be explained by charge transfer in the heterostructure as opposed to chemical doping via the incorporation of impurities, based on our first-principles calculations.

  19. Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors

    PubMed Central

    Nguyen, Tuyen; Boudard, Michel; Carmezim, M. João; Montemor, M. Fátima

    2017-01-01

    Consecutive layers of Ni(OH)2 and Co(OH)2 were electrodeposited on stainless steel current collectors for preparing charge storage electrodes of high specific capacity with potential application in hybrid supercapacitors. Different electrodes were prepared consisting on films of Ni(OH)2, Co(OH)2, Ni1/2Co1/2(OH)2 and layered films of Ni(OH)2 on Co(OH)2 and Co(OH)2 on Ni(OH)2 to highlight the advantages of the new architecture. The microscopy studies revealed the formation of nanosheets in the Co(OH)2 films and of particles agglomerates in the Ni(OH)2 films. Important morphological changes were observed in the double hydroxides films and layered films. Film growth by electrodeposition was governed by instantaneous nucleation mechanism. The new architecture composed of Ni(OH)2 on Co(OH)2 displayed a redox response characterized by the presence of two peaks in the cyclic voltammograms, arising from redox reactions of the metallic species present in the layered film. These electrodes revealed a specific capacity of 762 C g−1 at the specific current of 1 A g−1. The hybrid cell using Ni(OH)2 on Co(OH)2 as positive electrode and carbon nanofoam paper as negative electrode display specific energies of 101.3 W h g−1 and 37.8 W h g−1 at specific powers of 0.2 W g−1 and 2.45 W g−1, respectively. PMID:28051143

  20. Charge transfer in crystalline germanium/monolayer MoS 2 heterostructures prepared by chemical vapor deposition

    DOE PAGES

    Lin, Yung-Chen; Bilgin, Ismail; Ahmed, Towfiq; ...

    2016-09-21

    Heterostructuring provides novel opportunities for exploring emergent phenomena and applications by developing designed properties beyond those of homogeneous materials. Advances in nanoscience enable the preparation of heterostructures formed incommensurate materials. Two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, are of particular interest due to their distinct physical characteristics. There have been recent changes in new research areas related to 2D/2D heterostructures. But, other heterostructures such as 2D/three-dimensional (3D) materials have not been thoroughly studied yet although the growth of 3D materials on 2D materials creating 2D/3D heterostructures with exceptional carrier transport properties has been reported. Here also wemore » report a novel heterostructure composed of Ge and monolayer MoS2, prepared by chemical vapor deposition. A single crystalline Ge (110) thin film was grown on monolayer MoS2. The electrical characteristics of Ge and MoS2 in the Ge/MoS2 heterostructure were remarkably different from those of isolated Ge and MoS2. The field-effect conductivity type of the monolayer MoS2 is converted from n-type to p-type by growth of the Ge thin film on top of it. Undoped Ge on MoS2 is highly conducting. The observations can be explained by charge transfer in the heterostructure as opposed to chemical doping via the incorporation of impurities, based on our first-principles calculations.« less

  1. Multi-membrane hydrogels.

    PubMed

    Ladet, Sébastien; David, Laurent; Domard, Alain

    2008-03-06

    Polysaccharide-based hydrogels are useful for numerous applications, from food and cosmetic processing to drug delivery and tissue engineering. The formation of hydrogels from polyelectrolyte solutions is complex, involving a variety of molecular interactions. The physical gelation of polysaccharides can be achieved by balancing solvophobic and solvophilic interactions. Polymer chain reorganization can be obtained by solvent exchange, one of the processing routes forming a simple hydrogel assembly. Nevertheless, many studies on hydrogel formation are empirical with a limited understanding of the mechanisms involved, delaying the processing of more complex structures. Here we use a multi-step interrupted gelation process in controlled physico-chemical conditions to generate complex hydrogels with multi-membrane 'onion-like' architectures. Our approach greatly simplifies the processing of gels with complex shapes and a multi-membrane organization. In contrast with existing assemblies described in the literature, our method allows the formation of free 'inter-membrane' spaces well suited for cell or drug introduction. These architectures, potentially useful in biomedical applications, open interesting perspectives by taking advantage of tailor-made three-dimensional multi-membrane tubular or spherical structures.

  2. Hydrophobic charge-induction resin with 5-aminobenzimidazol as the functional ligand: preparation, protein adsorption and immunoglobulin G purification.

    PubMed

    Yan, Jun; Zhang, Qi-Lei; Tong, Hong-Fei; Lin, Dong-Qiang; Yao, Shan-Jing

    2015-07-01

    A new hydrophobic charge-induction chromatography resin was prepared with 5-aminobenzimidazol as functional ligand and polyacrylic ester beads as matrix. Adsorption isotherms and adsorption in columns were investigated using human immunoglobulin G and bovine serum albumin as model proteins, and the influence of pH and NaCl concentration was discussed. Results showed that the ligand density was 195 μmol/mL gel, and protein selectivity can be improved by controlling pH and salt addition. An optimized purification process (sample loading at pH 8.0 with 0.2 M NaCl and elution at pH 5.0) was performed to purify human immunoglobulin G from bovine serum albumin containing feedstock, which resulted in human immunoglobulin G purity of 99.7% and recovery of 94.6%. A similar process was applied for the purification of monoclonal antibody from cell culture supernatant, which showed antibody purity of 94.9% and recovery of 92.5%. The results indicated that the new resin developed had comparable performance as Protein A chromatography and would be suitable for antibody purification from complex feedstock. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Asymmetric hydrogel membranes for biohybrid artificial organs and bioseparations

    NASA Astrophysics Data System (ADS)

    Dai, Weihua Sonya

    1999-11-01

    Homogeneous hydrogel membranes were prepared by crosslinking poly(vinyl alcohol) (PVA) with glutaraldehyde. These membranes were then modified to create asymmetry by establishing a glutaraldehyde concentration gradient across the hydrogel thickness. Creatinine (MW: 113), goat Fab (MW: 50 kD) and human IgG (MW: 150 kD) were used to simulate the molecular size of nutrients, therapeutic proteins, and immunological molecules, respectively, involved in cell encapsulation. Permeation experiments were performed in a stirred diffusion cell through homogeneous and asymmetric PVA hydrogels. At a given value of IgG rejection, the asymmetric membranes had higher creatinine and Fab permeabilities than the corresponding homogeneous membranes, indicating that creating mesh size asymmetry in a hydrogel can result in a high-flux, high-selectivity membrane for bioartificial organs and bioseparations. The hydrogel membranes with mesh size asymmetry were characterized with laser scanning confocal fluorescence microscopy. A fluorescent label, DTAF (5-{[4,6-dichlorotriazin-2-yl] amino}-fluorescein) was attached to poly(vinyl alcohol), which then was used to prepare homogeneous and asymmetric hydrogel membranes. Structural asymmetry was clearly present in the gradient-modified membranes from the intensity as a function of membrane depth. From the relationships between fluorescence intensity and water content and between solute permeability and water content for homogeneous membranes, the permeabilities of creatinine, Fab and IgG for the asymmetric membranes were predicted from a sum-of-resistances model. The predicted solute permeabilities compared well to experimental values. The hydrogel membranes were mechanically supported with flat-sheet microfiltration membranes by impregnating the pores with a PVA solution, which was crosslinked with glutaraldehyde and then modified under a glutaraldehyde gradient to produce mesh size asymmetry. The supported, PVA hydrogel membranes with mesh size

  4. Efficient charge-carrier extraction from Ag2S quantum dots prepared by the SILAR method for utilization of multiple exciton generation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoliang; Liu, Jianhua; Johansson, Erik M. J.

    2015-01-01

    The utilization of electron-hole pairs (EHPs) generated from multiple excitons in quantum dots (QDs) is of great interest toward efficient photovoltaic devices and other optoelectronic devices; however, extraction of charge carriers remains difficult. Herein, we extract photocharges from Ag2S QDs and investigate the dependence of the electric field on the extraction of charges from multiple exciton generation (MEG). Low toxic Ag2S QDs are directly grown on TiO2 mesoporous substrates by employing the successive ionic layer adsorption and reaction (SILAR) method. The contact between QDs is important for the initial charge separation after MEG and for the carrier transport, and the space between neighbor QDs decreases with more SILAR cycles, resulting in better charge extraction. At the optimal electric field for extraction of photocharges, the results suggest that the threshold energy (hνth) for MEG is 2.41Eg. The results reveal that Ag2S QD is a promising material for efficient extraction of charges from MEG and that QDs prepared by SILAR have an advantageous electrical contact facilitating charge separation and extraction.The utilization of electron-hole pairs (EHPs) generated from multiple excitons in quantum dots (QDs) is of great interest toward efficient photovoltaic devices and other optoelectronic devices; however, extraction of charge carriers remains difficult. Herein, we extract photocharges from Ag2S QDs and investigate the dependence of the electric field on the extraction of charges from multiple exciton generation (MEG). Low toxic Ag2S QDs are directly grown on TiO2 mesoporous substrates by employing the successive ionic layer adsorption and reaction (SILAR) method. The contact between QDs is important for the initial charge separation after MEG and for the carrier transport, and the space between neighbor QDs decreases with more SILAR cycles, resulting in better charge extraction. At the optimal electric field for extraction of photocharges, the

  5. Rational molecular design of complementary self-assembling peptide hydrogels.

    PubMed

    Kyle, Stuart; Felton, Susan H; McPherson, Michael J; Aggeli, Amalia; Ingham, Eileen

    2012-09-01

    Rational molecular design of self- assembling peptide-based materials that spontaneously form self-supporting hydrogels shows potential in many healthcare applications. Binary peptides based on complementary charged sequences are developed, and the use of biophysical analysis and cell-based studies highlights that the charged interactions can influence the properties of peptide materials and ultimately affect biomaterial applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hydrogels Constructed from Engineered Proteins.

    PubMed

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Microfluidic hydrogels for tissue engineering.

    PubMed

    Huang, Guo You; Zhou, Li Hong; Zhang, Qian Cheng; Chen, Yong Mei; Sun, Wei; Xu, Feng; Lu, Tian Jian

    2011-03-01

    With advanced properties similar to the native extracellular matrix, hydrogels have found widespread applications in tissue engineering. Hydrogel-based cellular constructs have been successfully developed to engineer different tissues such as skin, cartilage and bladder. Whilst significant advances have been made, it is still challenging to fabricate large and complex functional tissues due mainly to the limited diffusion capability of hydrogels. The integration of microfluidic networks and hydrogels can greatly enhance mass transport in hydrogels and spatiotemporally control the chemical microenvironment of cells, mimicking the function of native microvessels. In this review, we present and discuss recent advances in the fabrication of microfluidic hydrogels from the viewpoint of tissue engineering. Further development of new hydrogels and microengineering technologies will have a great impact on tissue engineering.

  8. Strong fiber-reinforced hydrogel.

    PubMed

    Agrawal, Animesh; Rahbar, Nima; Calvert, Paul D

    2013-02-01

    In biological hydrogels, the gel matrix is usually reinforced with micro- or nanofibers, and the resulting composite is tough and strong. In contrast, synthetic hydrogels are weak and brittle, although they are highly elastic. The are many potential applications for strong synthetic hydrogels in medical devices, including as scaffolds for tissue growth. This work describes a new class of hydrogel composites reinforced with elastic fibers, giving them a cartilage-like structure. A three-dimensional rapid prototyping technique was used to form crossed "log-piles" of elastic fibers that are then impregnated with an epoxy-based hydrogel in order to form the fiber-reinforced gel. The fibrous construct improves the strength, modulus and toughness of the hydrogel, and also constrains the swelling. By altering the construct geometry and studying the effect on mechanical properties, we will develop the understanding needed to design strong hydrogels for biomedical devices and soft machines. Copyright © 2012. Published by Elsevier Ltd.

  9. Hydrogels in Regenerative Medicine

    PubMed Central

    Slaughter, Brandon V.; Khurshid, Shahana S.; Fisher, Omar Z.; Khademhosseini, Ali

    2015-01-01

    Hydrogels, due to their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics, have been the material of choice for many applications in regenerative medicine. They can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures, and serve as adhesives or barriers between tissue and material surfaces. In this work, the properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed. Recent research involving several different hydrogels polymerized from a variety of synthetic and natural monomers using typical and novel synthetic methods are highlighted. Finally, special attention is given to the microfabrication techniques that are currently resulting in important advances in the field. PMID:20882499

  10. Starch nanocrystals based hydrogel: Construction, characterizations and transdermal application.

    PubMed

    Bakrudeen, Haja Bava; Sudarvizhi, C; Reddy, B S R

    2016-11-01

    Bio-based nanocomposites were prepared using starch nanocrystals obtained by acid hydrolysis of native starches using different acid sources. In recent times, focuses on starch nanocrystals (SNCs) have been increasing in number of research works dedicated to the development of bio-nanocomposites by blending with different biopolymeric matrices. The work mainly deals with the preparation of starch nanocrystals using different native starches by acid hydrolysis using hydrochloric acid and trifluroacetic acid. The as-prepared starch nanocrystals are having high crystallinity and more platelet morphologies, and used as a drug carrying filler material in the hydrogel formulations with the care of different polymer matrices. The condensed work also concentrates on the dispersion of antiviral drug in the hydrogels, which are applied onto biocompatible bio-membrane to be formulating a complete transdermal patch. The acid hydrolysed starch nanocrystals were thoroughly characterized using TEM, SEM, particle size analysis and zeta potential. Their thermal stability and the crystalline properties were also characterized using TG-DSC and XRD respectively. The physiochemical interaction and compatibility between the drug and the SNCs filler in the polymeric hydrogels were evaluated using FT-IR analysis. The formulated hydrogels were subjected to evaluation of in vitro permeation studies using Franz diffusion studies. The in vitro study was indicated substantial guarantee for the fabrication of drug dispersed in polymeric hydrogels using SNCs as filler matrices for a successful transdermal drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. PIXE investigation of in vitro release of chloramphenicol across polyvinyl alcohol/acrylamide hydrogel

    NASA Astrophysics Data System (ADS)

    Rihawy, M. S.; Alzier, A.; Allaf, A. W.

    2011-09-01

    Hydrogels based on polyvinyl alcohol and different amounts of acrylamide monomer were prepared by thermal cross-linking in the solid state. The hydrogels were investigated for drug delivery system applications. Chloramphenicol was adopted as a model drug to study its release behavior. Particle induced X-ray emission was utilized to study the drug release behavior across the hydrogels and a comparison study with ultraviolet measurements was performed. Fourier Transform Infrared measurements were carried out for molecular characterization. The releasing behavior of the drug exhibits a decrease and a subsequent increase in the release rate, as the acrylamide monomer increases. Characterization of the hydrogels has shown a competitive behavior between crosslinking with AAm acrylamide monomer or oligomerized version, depending on the amount added to prepare the hydrogels.

  12. Enhanced mechanical performance of biocompatible hemicelluloses-based hydrogel via chain extension

    PubMed Central

    Qi, Xian-Ming; Chen, Ge-Gu; Gong, Xiao-Dong; Fu, Gen-Que; Niu, Ya-Shuai; Bian, Jing; Peng, Feng; Sun, Run-Cang

    2016-01-01

    Hemicelluloses are widely used to prepare gel materials because of their renewability, biodegradability, and biocompatibility. Here, molecular chain extension of hemicelluloses was obtained in a two-step process. Composite hydrogels were prepared via free radical graft copolymerization of crosslinked quaternized hemicelluloses (CQH) and acrylic acid (AA) in the presence of crosslinking agent N,N’-methylenebisacrylamide (MBA). This chain extension strategy significantly improved the mechanical performance of the resulting hydrogels. The crosslinking density, compression modulus, and swelling capacities of hydrogels were tuned by changing the AA/CQH and MBA/CQH contents. Moreover, the biocompatibility test suggests that the hemicelluloses-based hydrogels exhibited no toxicity to cells and allowed cell growth. Taken together, these properties demonstrated that the composite hydrogels have potential applications in the fields of water absorbents, cell culture, and other functional biomaterials. PMID:27634095

  13. Light-Switchable Self-Healing Hydrogel Based on Host-Guest Macro-Crosslinking.

    PubMed

    Yang, Qiaofeng; Wang, Ping; Zhao, Chuanzhuang; Wang, Wenqin; Yang, Jingfa; Liu, Qiao

    2017-03-01

    A self-healing hydrogel is prepared by crosslinking acrylamide with a host-guest macro-crosslinker assembled from poly(β-cyclodextrin) nanogel and azobenzeneacrylamide. The photoisomerizable azobenzene moiety can change its binding affinity with β-cyclodextrin, therefore the crosslinking density and rheology property of the hydrogel can be tuned with light stimulus. The hydrogel can repair its wound autonomously through the dynamic host-guest interaction. In addition, the wounded hydrogel will lose its ability of self-healing when exposed to ultraviolet light, and the self-healing behavior can be recovered upon the irradiation of visible light. The utilizing of host-guest macro-crosslinking approach manifests the as-prepared hydrogel reversible and light-switchable self-healing property, which would broaden the potential applications of self-healing polymers.

  14. Defining cisplatin incorporation properties in thermosensitive injectable biodegradable hydrogel for sustained delivery and enhanced cytotoxicity.

    PubMed

    Abdel-Bar, Hend Mohamed; Abdel-Reheem, Amal Youssef; Osman, Rihab; Awad, Gehanne A S; Mortada, Nahed

    2014-12-30

    Injectable thermoreversible chitosan (CS)/β-glycerophosphate (β-GP) hydrogels were developed for prolonged localized delivery of cisplatin (Cis). The effects of formulation variables on the thermoreversible hydrogels preparation as well as the impact of drug incorporation method on Cis release were studied. Antitumor activity of Cis CS/β-GP thermoreversible hydrogels were evaluated against HCT-116 human colorectal cancer cells and MCF-7 human breast cancer cells. Incorporation of Cis to CS solution adjusted at pH 6.2 prior to hydrogel preparation deemed necessary to achieve a sustained release up to 4 days. Cis loaded CS/β-GP thermoreversible hydrogels showed enhanced antitumor activity with about 1.2 fold and 2.05 fold that of Cis solution against HCT-116 cancer cells and MCF-7 cancer cells respectively. The obtained enhanced antitumor activity elected this delivery system for further in vivo and toxicological investigations.

  15. Improving the stability of chitosan-gelatin-based hydrogels for cell delivery using transglutaminase and controlled release of doxycycline.

    PubMed

    Tormos, Christian J; Abraham, Carol; Madihally, Sundararajan V

    2015-12-01

    Although local cell delivery is an option to repair tissues, particularly using chitosan-based hydrogels, significant attrition of injected cells prior to engraftment has been a problem. To address this problem, we explored the possibility of stabilizing the chitosan-gelatin (CG) injectable hydrogels using (1) controlled release of doxycycline (DOX) to prevent premature degradation due to increased gelatinase activity (MMP-2 and MMP-9), and (2) transglutaminase (TG) to in situ cross-link gelatin to improve the mechanical stability. We prepared DOX-loaded PLGA nanoparticles, loaded into the CG hydrogels, measured DOX release for 5 days, and modeled using a single-compartmental assumption. Next, we assessed the influence of TG and DOX on hydrogel compression properties by incubating hydrogels for 7 days in PBS. We evaluated the effect of these changes on retention of fibroblasts and alterations in MMP-2/MMP-9 activity by seeding 500,000 fibroblasts for 5 days. These results showed that 90 % of DOX released from cross-linked CG hydrogels after 4 days, unlike CG hydrogels where 90 % of DOX was released within the first day. Addition of TG enhanced the CG hydrogel stability significantly. More than 60 % of seeded fibroblasts were recovered from the CG-TG hydrogels at day 5, unlike 40 % recovered from CG-hydrogels. Inhibition of MMP-2/MMP-9 were observed. In summary, controlled release of DOX from CG hydrogels cross-linked with TG shows a significant potential as a carrier for cell delivery.

  16. Adhesion in hydrogel contacts

    NASA Astrophysics Data System (ADS)

    Torres, J. R.; Jay, G. D.; Kim, K.-S.; Bothun, G. D.

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  17. Adhesion in hydrogel contacts.

    PubMed

    Torres, J R; Jay, G D; Kim, K-S; Bothun, G D

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  18. Enhanced loading efficiency and sustained release of doxorubicin from hyaluronic acid/graphene oxide composite hydrogels by a mussel-inspired catecholamine.

    PubMed

    Byun, Eunkyoung; Lee, Haeshin

    2014-10-01

    Hydrogels have been widely investigated as depots and carriers for drug delivery. For example, hydrogels have been successfully used to encapsulate a variety of pharmaceuticals, such as peptides and proteins. Recently, carbon material/hydrogel hybrid systems have been of interest as new hydrogel systems because of the attractiveness of structural reinforcement for biomedical applications. In particular, graphene and graphene oxide (GO) have been recognized as novel biomaterials with unique physical, electrical, and thermal properties. Among the various applications of these materials, many research groups are intensively exploring the biomedical applications of graphene and GO. In this study, we propose a new role for GO in hybrid hydrogels, with the inclusion of GO in the gel network resulting in a nearly 90% enhancement in the loading of small, hydrophobic drugs (e.g., doxorubicin, Dox) compared to the hydrogel without encapsulated GO. The hydrogels were prepared from hyaluronic acid (HA), with a mussel-inspired crosslinking chemistry used to prepare the HA hydrogels. Dox was then loaded into the hydrogels. The HA/GO composite hydrogel not only enhanced the loading amount but also exhibited long-lasting anticancer activity over 10 days. We believe that these graphene oxide-containing composite hydrogels can solve one of the challenges in the application of hydrogels by improving the loading efficiency of small-molecule drugs.

  19. Reusable self-healing hydrogels realized via in situ polymerization.

    PubMed

    Vivek, Balachandran; Prasad, Edamana

    2015-04-09

    In this work, a self-healing hydrogel has been prepared using in situ polymerization of acrylic acid and acrylamide in the presence of glycogen. The hydrogel was characterized using NMR, SEM, FT-IR, rheology, and dynamic light scattering (DLS) studies. The developed hydrogel exhibits self-healing properties at neutral pH, high swelling ability, high elasticity, and excellent mechanical strength. The hydrogel exhibits modulus values (G', G″) as high as 10(6) Pa and shows an exceptionally high degree of swelling ratio (∼3.5 × 10(3)). Further, the polymer based hydrogel adsorbs toxic metal ions (Cd(2+), Pb(2+), and Hg(2+)) and organic dyes (methylene blue and methyl orange) from contaminated water with remarkable efficiency (90-98%). The mechanistic analysis indicated the presence of pseudo-second-order reaction kinetics. The reusability of the hydrogel has been demonstrated by repeating the adsorption-desorption process over five cycles with identical results in the adsorption efficiency.

  20. Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications

    PubMed Central

    Borzacchiello, Assunta; Russo, Luisa; Malle, Birgitte M.; Schwach-Abdellaoui, Khadija; Ambrosio, Luigi

    2015-01-01

    Hyaluronic acid (HA) hydrogels, obtained by cross-linking HA molecules with divinyl sulfone (DVS) based on a simple, reproducible, and safe process that does not employ any organic solvents, were developed. Owing to an innovative preparation method the resulting homogeneous hydrogels do not contain any detectable residual cross-linking agent and are easier to inject through a fine needle. HA hydrogels were characterized in terms of degradation and biological properties, viscoelasticity, injectability, and network structural parameters. They exhibit a rheological behaviour typical of strong gels and show improved viscoelastic properties by increasing HA concentration and decreasing HA/DVS weight ratio. Furthermore, it was demonstrated that processes such as sterilization and extrusion through clinical needles do not imply significant alteration of viscoelastic properties. Both SANS and rheological tests indicated that the cross-links appear to compact the network, resulting in a reduction of the mesh size by increasing the cross-linker amount. In vitro degradation tests of the HA hydrogels demonstrated that these new hydrogels show a good stability against enzymatic degradation, which increases by increasing HA concentration and decreasing HA/DVS weight ratio. Finally, the hydrogels show a good biocompatibility confirmed by in vitro tests. PMID:26090451

  1. Dynamic mechanical and swelling properties of maleated hyaluronic acid hydrogels.

    PubMed

    Lin, Hai; Liu, Jun; Zhang, Kai; Fan, Yujiang; Zhang, Xingdong

    2015-06-05

    A series of maleated hyaluronan (MaHA) are developed by modification with maleic anhydride. The degrees of substitution (DS) of MaHA vary between 7% and 75%. The DS of MaHA is both higher and wider than methacrylated HA derivatives (MeHA) reported in the literature. MaHA hydrogels are then prepared by photopolymerization and their dynamic mechanical and swelling properties of the hydrogels are investigated. The results showed that MaHA hydrogels with moderate DS (25%, 50% and 65%) have higher storage modulus and lower equilibrium swelling ratios than those with either low or high DS (7%, 15% and 75%). Theoretical analyses also suggest a similar pattern among hydrogels with different DS. The results confirm that the increased cross-linking density enhances the strength of hydrogels. Meanwhile, the hydrophilicity of introduced groups during modification and the degree of incomplete crosslinking reaction might have negative impact on the mechanical and swelling properties of MaHA hydrogels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Hydrogels for the Repair of Articular Cartilage Defects

    PubMed Central

    Maher, Suzanne A.; Lowman, Anthony M.

    2011-01-01

    The repair of articular cartilage defects remains a significant challenge in orthopedic medicine. Hydrogels, three-dimensional polymer networks swollen in water, offer a unique opportunity to generate a functional cartilage substitute. Hydrogels can exhibit similar mechanical, swelling, and lubricating behavior to articular cartilage, and promote the chondrogenic phenotype by encapsulated cells. Hydrogels have been prepared from naturally derived and synthetic polymers, as cell-free implants and as tissue engineering scaffolds, and with controlled degradation profiles and release of stimulatory growth factors. Using hydrogels, cartilage tissue has been engineered in vitro that has similar mechanical properties to native cartilage. This review summarizes the advancements that have been made in determining the potential of hydrogels to replace damaged cartilage or support new tissue formation as a function of specific design parameters, such as the type of polymer, degradation profile, mechanical properties and loading regimen, source of cells, cell-seeding density, controlled release of growth factors, and strategies to cause integration with surrounding tissue. Some key challenges for clinical translation remain, including limited information on the mechanical properties of hydrogel implants or engineered tissue that are necessary to restore joint function, and the lack of emphasis on the ability of an implant to integrate in a stable way with the surrounding tissue. Future studies should address the factors that affect these issues, while using clinically relevant cell sources and rigorous models of repair. PMID:21510824

  3. Recent advances in clay mineral-containing nanocomposite hydrogels.

    PubMed

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao

    2015-12-28

    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.

  4. Properties of radiation-synthesized polyvinylpyrrolidone/chitosan hydrogel blends

    SciTech Connect

    Mahmud, Maznah; Daik, Rusli; Adam, Zainah

    2015-09-25

    Poly(vinylpyrrolidone) (PVP)-crosslinked chitosan hydrogels were prepared by gamma radiation at various doses; 1, 3 5, 7, 10, 15, 20, 25 and 30kGy. Gamma radiation was used as a crosslinking tool which requires no chemical initiator, no heating process and need no purification step on the end products obtained. The hydrogel formulations were composed of 6% chitosan with average molecular weight (Mw) = 48 800 g/mol and 14% PVP with Mw = 10 000 g/mol in 2% lactic acid. Physical properties of hydrogels such as gel fraction and swelling property at pH 5.5 and pH 7.0 as well as syneresis activity were determined. It was found that different radiation dose induces different effect on hydrogels’ network formed. Morphological study of hydrogels has been carried out by scanning electron microscope (SEM). From these preliminary evaluations, it can be concluded that gamma radiation is an effective tool for network development of hydrogels and it also induces enhancement on characteristics of hydrogels synthesized.

  5. Oxidatively Responsive Chain Extension to Entangle Engineered Protein Hydrogels

    PubMed Central

    Tang, Shengchang; Glassman, Matthew J.; Li, Shuaili; Socrate, Simona; Olsen, Bradley D.

    2014-01-01

    Engineering artificial protein hydrogels for medical applications requires precise control over their mechanical properties, including stiffness, toughness, extensibility and stability in the physiological environment. Here we demonstrate topological entanglement as an effective strategy to robustly increase the mechanical tunability of a transient hydrogel network based on coiled-coil interactions. Chain extension and entanglement are achieved by coupling the cysteine residues near the N- and C- termini, and the resulting chain distribution is found to agree with the Jacobson-Stockmayer theory. By exploiting the reversible nature of the disulfide bonds, the entanglement effect can be switched on and off by redox stimuli. With the presence of entanglements, hydrogels exhibit a 7.2-fold enhanced creep resistance and a suppressed erosion rate by a factor of 5.8, making the gels more mechanically stable in a physiologically relevant open system. While hardly affecting material stiffness (only resulting in a 1.5-fold increase in the plateau modulus), the entanglements remarkably lead to hydrogels with a toughness of 65,000 J m-3 and extensibility to approximately 3,000% engineering strain, which enables the preparation of tough yet soft tissue simulants. This improvement in mechanical properties resembles that from double-network hydrogels, but is achieved with the use of a single associating network and topological entanglement. Therefore, redox-triggered chain entanglement offers an effective approach for constructing mechanically enhanced and responsive injectable hydrogels. PMID:24910474

  6. Injectable hyaluronic acid hydrogel for 19F magnetic resonance imaging.

    PubMed

    Yang, Xia; Sun, Yi; Kootala, Sujit; Hilborn, Jöns; Heerschap, Arend; Ossipov, Dmitri

    2014-09-22

    We report on a 19F labeled injectable hyaluronic acid (HA) hydrogel that can be monitored by both 1H and 19F MR imaging. The HA based hydrogel formed via carbazone reaction can be obtained within a minute by simple mixing of HA-carbazate and HA-aldehyde derivatized polymers. 19F contrast agent was linked to with carbazate and thiol dually functionalized HA via orthogonal Michael addition reaction which afforded cross-linkable and 19F labeled HA. The 19F labeling of HA polymer did not affect the mechanical properties of the formed hydrogel. As a result, the shape of a hydrogel sample could be imaged very well by both 1H MRI and high resolution 19F MRI. This hydrogel has high potential in clinical applications since it is injectable, biocompatible, and can be tracked in a minimally invasive manner. The present approach can be applied in preparation of injectable 19F labeled hydrogel biomaterials from other natural biomacromolecules.

  7. Microfluidic hydrogel arrays for direct genotyping of clinical samples.

    PubMed

    Jung, Yun Kyung; Kim, Jungkyu; Mathies, Richard A

    2016-05-15

    A microfluidic hydrogel DNA microarray is developed to overcome the limitations of conventional planar microarrays such as low sensitivity, long overnight hybridization time, lack of a melting verification of proper hybrid, and complicated sample preparation process for genotyping of clinical samples. Unlike our previous prototype hydrogel array which can analyze only single-stranded DNA (ssDNA) targets, the device is the first of its type to allow direct multiplexed single nucleotide polymorphism (SNP) detection of human clinical samples comprising double-stranded DNA (dsDNA). This advance is made possible by incorporating a streptavidin (SA) hydrogel capture/purification element in a double T-junction at the start of the linear hydrogel array structure and fabricating ten different probe DNAs-entrapped hydrogels in microfluidic channels. The purified or unpurified polymerase chain reaction (PCR) products labeled with a fluorophore and a biotin are electrophoresed through the SA hydrogel for binding and purification. After electrophoretic washing, the fluorophore-labeled DNA strand is then thermally released for hybridization capture by its complementary probe gel element. We demonstrate the precise and rapid discrimination of the genotypes of five different clinical targets by melting curve analysis based on temperature-gradient electrophoresis within 3h, which is at least 3-fold decrease in incubation time compared to conventional microarrays. In addition, a 1.7 pg (0.024 femtomoles) limit of detection for clinical samples is achieved which is ~100-fold better sensitivity than planar microarrays.

  8. Fabrication of multilayered vascular tissues using microfluidic agarose hydrogel platforms.

    PubMed

    Kinoshita, Keita; Iwase, Masaki; Yamada, Masumi; Yajima, Yuya; Seki, Minoru

    2016-11-01

    Vascular tissues fabricated in vitro are useful tools for studying blood vessel-related cellular physiologies and for constructing relatively large 3D tissues. An efficient strategy for fabricating vascular tissue models with multilayered, branched, and thick structures through the in situ hydrogel formation in fluidic channels is proposed. First, an aqueous solution of RGD-alginate containing smooth muscle cells (SMCs) is introduced into channel structures made of agarose hydrogel, forming a cell-embedding Ca-alginate hydrogel layer with a thickness of several hundred micrometers on the channel surface because of the Ca(2+) ions diffused from the agarose hydrogel matrix. Next, endothelial cells (ECs) are introduced and cultured for up to seven days to form hierarchically organized, multilayered vascular tissues. The factors affecting the thickness of the Ca-alginate hydrogel layer, and prepared several types of microchannels with different morphologies are examined. The fabricated vascular tissue models are easily recovered from the channel by simply detaching the agarose hydrogel plates. In addition, the effect of O2 tension (20 or 80%) on the viability and elastin production of SMCs during the perfusion culture is evaluated. This technique would pave a new way for vascular tissue engineering because it enables the facile production of morphologically in vivo vascular tissue-like structures that can be employed for various biomedical applications.

  9. Silk protein-based hydrogels: Promising advanced materials for biomedical applications.

    PubMed

    Kapoor, Sonia; Kundu, Subhas C

    2016-02-01

    Hydrogels are a class of advanced material forms that closely mimic properties of the soft biological tissues. Several polymers have been explored for preparing hydrogels with structural and functional features resembling that of the extracellular matrix. Favourable material properties, biocompatibility and easy processing of silk protein fibers into several forms make it a suitable material for biomedical applications. Hydrogels made from silk proteins have shown a potential in overcoming limitations of hydrogels prepared from conventional polymers. A great deal of effort has been made to control the properties and to integrate novel topographical and functional characteristics in the hydrogel composed from silk proteins. This review provides overview of the advances in silk protein-based hydrogels with a primary emphasis on hydrogels of fibroin. It describes the approaches used to fabricate fibroin hydrogels. Attempts to improve the existing properties or to incorporate new features in the hydrogels by making composites and by improving fibroin properties by genetic engineering approaches are also described. Applications of the fibroin hydrogels in the realms of tissue engineering and controlled release are reviewed and their future potentials are discussed. This review describes the potentiality of silk fibroin hydrogel. Silk Fibroin has been widely recognized as an interesting biomaterial. Due to its properties including high mechanical strength and excellent biocompatibility, it has gained wide attention. Several groups are exploring silk-based materials including films, hydrogels, nanofibers and nanoparticles for different biomedical applications. Although there is a good amount of literature available on general properties and applications of silk based biomaterials, there is an inadequacy of extensive review articles that specifically focus on silk based hydrogels. Silk-based hydrogels have a strong potential to be utilized in biomedical applications. Our

  10. A novel injectable temperature-sensitive zinc doped chitosan/β-glycerophosphate hydrogel for bone tissue engineering.

    PubMed

    Niranjan, Ramesh; Koushik, Chandru; Saravanan, Sekaran; Moorthi, Ambigapathi; Vairamani, Mariappanadar; Selvamurugan, Nagarajan

    2013-03-01

    Hydrogels are hydrophilic polymers that have a wide range of biomedical applications including bone tissue engineering. In this study we report preparation and characterization of a thermosensitive hydrogel (Zn-CS/β-GP) containing zinc (Zn), chitosan (CS) and beta-glycerophosphate (β-GP) for bone tissue engineering. The prepared hydrogel exhibited a liquid state at room temperature and turned into a gel at body temperature. The hydrogel was characterized by SEM, EDX, XRD, FT-IR and swelling studies. The hydrogel enhanced antibacterial activity and promoted osteoblast differentiation. Thus, we suggest that the Zn-CS/β-GP hydrogel could have potential impact as an injectable in situ forming scaffold for bone tissue engineering applications.

  11. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials

    PubMed Central

    2015-01-01

    In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping address fundamental questions about the mechanisms or the consequences of the self-assembly of molecules, including low molecular weight ones. Finally, we provide a perspective on supramolecular hydrogelators. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring supramolecular hydrogelators as molecular biomaterials for addressing the societal needs at various frontiers. PMID:26646318

  12. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials.

    PubMed

    Du, Xuewen; Zhou, Jie; Shi, Junfeng; Xu, Bing

    2015-12-23

    In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping address fundamental questions about the mechanisms or the consequences of the self-assembly of molecules, including low molecular weight ones. Finally, we provide a perspective on supramolecular hydrogelators. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring supramolecular hydrogelators as molecular biomaterials for addressing the societal needs at various frontiers.

  13. Design of biomimetic super-lubricants by hydrogel-biopolymer aggregates

    NASA Astrophysics Data System (ADS)

    Seekell, Raymond; Dever, Rachel; Zhu, Yingxi

    2013-03-01

    Inspired by the superb lubricity of natural synovial fluids for moving articular cartilage joints, we investigate a biomimetic artificial lubricant based on a hydrogel-biopolymer mixture with optimized rheological properties at a microscopic level. Specifically, we examine the structure and rheological relationship of stimuli-responsive poly (N-isopropylacrylamide) (PNIPAM) hydrogel added with hyaluronic acid (HA) to simulate the complexes of HA with a globule protein, lubricin, which are credited as the two key lubricious constituents in natural synovial fluids. By combined microscopic structural characterization and rheology measurement, we tune the rheological and frictional behaviors of HA solutions by optimizing the content of added micron-sized PNIPAM hydrogel particles to form stable PNIPAM-HA network. In a recent work on using zwitterionic hydrogel particles instead of negatively charged PNIPAM, comparable structure and rheological properties of hydrogel-HA aggregates are observed, which may give insight to design new biocompatible lubricants and lubricious coatings for medical ramification.

  14. Sustained-release hydrogels of topotecan for retinoblastoma.

    PubMed

    Taich, Paula; Moretton, Marcela A; Del Sole, María Jose; Winter, Ursula; Bernabeu, Ezequiel; Croxatto, Juan O; Oppezzo, Javier; Williams, Gustavo; Chantada, Guillermo L; Chiappetta, Diego A; Schaiquevich, Paula

    2016-10-01

    Treatment of retinoblastoma, the most common primary ocular malignancy in children, has greatly improved over the last decade. Still, new devices for chemotherapy are needed to achieve better tumor control. The aim of this project was to develop an ocular drug delivery system for topotecan (TPT) loaded in biocompatible hydrogels of poly(ε-caprolactone)-poly(ethyleneglycol)-poly(ε-caprolactone) block copolymers (PCL-PEG-PCL) for sustained TPT release in the vitreous humor. Hydrogels were prepared from TPT and synthesized PCL-PEG-PCL copolymers. Rheological properties and in vitro and in vivo TPT release were studied. Hydrogel cytotoxicity was evaluated in retinoblastoma cells as a surrogate for efficacy and TPT vitreous pharmacokinetics and systemic as well as ocular toxicity were evaluated in rabbits. The pseudoplastic behavior of the hydrogels makes them suitable for intraocular administration. In vitro release profiles showed a sustained release of TPT from PCL-PEG-PCL up to 7days and drug loading did not affect the release pattern. Blank hydrogels did not affect retinoblastoma cell viability but 0.4% (w/w) TPT-loaded hydrogel was highly cytotoxic for at least 7days. After intravitreal injection, TPT vitreous concentrations were sustained above the pharmacologically active concentration. One month after injection, animals with blank or TPT-loaded hydrogels showed no systemic toxicity or retinal impairment on fundus examination, electroretinographic, and histopathological assessments. These novel TPT-hydrogels can deliver sustained concentrations of active drug into the vitreous with excellent biocompatibility in vivo and pronounced cytotoxic activity in retinoblastoma cells and may become an additional strategy for intraocular retinoblastoma treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Electron beam crosslinked PEO and PEO/PVA hydrogels for wound dressing

    NASA Astrophysics Data System (ADS)

    Yoshii, F.; Zhanshan, Y.; Isobe, K.; Shinozaki, K.; Makuuchi, K.

    1999-06-01

    In order to prepare polyethylene oxide (PEO) hydrogel for wound dressing, different molecular weight PEO and PEO/poly(vinyl alcohol), PVA blend hydrogels were obtained with electron beam irradiation. Gel formation of PEO in aqueous solution was saturated at 40 kGy and the achieved gel fraction was 60-70%. The PEO hydrogel obtained was very fragile, hence PVA was added at 10-30% to give toughness to the PEO hydrogel. The PEO/PVA hydrogel blend showed satisfactory properties for wound dressing. To evaluate the healing effect of PEO/PVA hydrogel blend for dressing, the hydrogel covered a wound formed on the back of marmots. Healing under the wet environment of the hydrogel dressing had some advantages compared with that of gauze dressing which gives a dry environment: (1) the healing rate is faster, (2) easier to change the dressing, i.e. the hydrogel can be peeled off without any damage to the regenerated surface, and (3) no dressing material remains on the wound.

  16. Effect of discarded keratin-based biocomposite hydrogels on the wound healing process in vivo.

    PubMed

    Park, Mira; Shin, Hye Kyoung; Kim, Byoung-Suhk; Kim, Myung Jin; Kim, In-Shik; Park, Byung-Yong; Kim, Hak-Yong

    2015-10-01

    Biocompatible keratin-based hydrogels prepared by electron beam irradiation (EBI) were examined in wound healing. As the EBI dose increased to 60 kGy, the tensile strength of the hydrogels increased, while the percentage of elongation of the hydrogels decreased. After 7 days, the dehydrated wool-based hydrogels show the highest mechanical properties (the % elongation of 1341 and the tensile strength of 6030 g/cm(2) at an EBI dose of 30 kGy). Excision wound models were used to evaluate the effects of human hair-based hydrogels and wool-based hydrogels on various phases of healing. On post-wounding days 7 and 14, wounds treated with either human hair-based or wool-based hydrogels were greatly reduced in size compared to wounds that received other treatments, although the hydrocolloid wound dressing-treated wound also showed a pronounced reduction in size compared to an open wound as measured by a histological assay. On the 14th postoperative day, the cellular appearances were similar in the hydrocolloid wound dressing and wool-based hydrogel-treated wounds, and collagen fibers were substituted with fibroblasts and mixed with fibroblasts in the dermis. Furthermore, the wound treated with a human hair-based hydrogel showed almost complete epithelial regeneration, with the maturation of immature connective tissue and hair follicles and formation of a sebaceous gland. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Periodontal Tissue Regeneration Using Enzymatically Solidified Chitosan Hydrogels With or Without Cell Loading

    PubMed Central

    Yan, Xiang-Zhen; van den Beucken, Jeroen J.J.P.; Cai, Xinjie; Yu, Na; Jansen, John A.

    2015-01-01

    This study is aimed to evaluate the in vivo biocompatibility and periodontal regenerative potential of enzymatically solidified chitosan hydrogels with or without incorporated periodontal ligament cells (PDLCs). To this end, chitosan hydrogels, with (n=8; CHIT+CELL) or without (n=8; CHIT) fluorescently labeled PDLCs, were prepared and transplanted into rat intrabony periodontal defects; untreated defects were used as empty controls (n=8; EMPTY). After 4 weeks, maxillae were harvested, decalcified, and used for histological, histomorphometrical, and immunohistochemical assessments. The results showed that PDLCs remained viable upon encapsulation within chitosan hydrogels before transplantation. Histological analysis demonstrated that the chitosan hydrogels were largely degraded after 4 weeks of implantation, without any adverse reaction in the surrounding tissue. In terms of periodontal regeneration, alveolar bone height, alveolar bone area, and epithelial downgrowth were comparable for CHIT, CHIT+CELL, as well as EMPTY groups. In contrast, both CHIT and CHIT+CELL showed a significant increase in functional ligament length compared with EMPTY. From a cellular perspective, the contribution of chitosan hydrogel-incorporated cells to the periodontal regeneration could not be ascertained, as no signal from transplanted PDLCs could be detected at 4 weeks posttransplantation. The results demonstrated that enzymatically solidified chitosan hydrogels are highly biocompatible and biodegradable. Moreover, chitosan hydrogels without cell loading can improve periodontal regeneration in terms of functional ligament length, indicating the great potential of this hydrogel in clinical applications. Further work on the use of chitosan hydrogels as cell carriers is required. PMID:25345525

  18. Periodontal tissue regeneration using enzymatically solidified chitosan hydrogels with or without cell loading.

    PubMed

    Yan, Xiang-Zhen; van den Beucken, Jeroen J J P; Cai, Xinjie; Yu, Na; Jansen, John A; Yang, Fang

    2015-03-01

    This study is aimed to evaluate the in vivo biocompatibility and periodontal regenerative potential of enzymatically solidified chitosan hydrogels with or without incorporated periodontal ligament cells (PDLCs). To this end, chitosan hydrogels, with (n=8; CHIT+CELL) or without (n=8; CHIT) fluorescently labeled PDLCs, were prepared and transplanted into rat intrabony periodontal defects; untreated defects were used as empty controls (n=8; EMPTY). After 4 weeks, maxillae were harvested, decalcified, and used for histological, histomorphometrical, and immunohistochemical assessments. The results showed that PDLCs remained viable upon encapsulation within chitosan hydrogels before transplantation. Histological analysis demonstrated that the chitosan hydrogels were largely degraded after 4 weeks of implantation, without any adverse reaction in the surrounding tissue. In terms of periodontal regeneration, alveolar bone height, alveolar bone area, and epithelial downgrowth were comparable for CHIT, CHIT+CELL, as well as EMPTY groups. In contrast, both CHIT and CHIT+CELL showed a significant increase in functional ligament length compared with EMPTY. From a cellular perspective, the contribution of chitosan hydrogel-incorporated cells to the periodontal regeneration could not be ascertained, as no signal from transplanted PDLCs could be detected at 4 weeks posttransplantation. The results demonstrated that enzymatically solidified chitosan hydrogels are highly biocompatible and biodegradable. Moreover, chitosan hydrogels without cell loading can improve periodontal regeneration in terms of functional ligament length, indicating the great potential of this hydrogel in clinical applications. Further work on the use of chitosan hydrogels as cell carriers is required.

  19. The physical and chemical properties of the polyvinylalcohol/polyvinylpyrrolidone/hydroxyapatite composite hydrogel.

    PubMed

    Ma, Yahui; Bai, Tongchun; Wang, Fei

    2016-02-01

    A hydrogel of polyvinylalcohol (PVA)/polyvinylpyrrolidone (PVP)/hydroxyapatite (HA) was prepared by a repeated freezing and thawing technique. The effect of HA on the hydrogel was evaluated by comparing the physical and chemical properties of PVA/PVP/HA and PVA/PVP hydrogels. By using theoretical models, the information about the swelling kinetics and the dehydration kinetics have been obtained. From the analysis of structure, mechanical properties, and molecular interaction, the application of PVA/PVP/HA hydrogel as a biomaterial has been evaluated. Relative to PVA/PVP, the PVA/PVP/HA hydrogel is of denser network structure, lower water content, larger storage modulus, and higher dehydration activation energy. These results reveal that, as HA fills in the hydrogel, the molecular interaction is enhanced, the free space of network is compressed, and the diffusion activation energy of water is increased. In spite of its water content being decreased, it is still in the range of meeting the requirement of bio-application. When the hydrogel is subjected to external forces, the matrix will transfer the load to the HA powder, thus enhance the strength of the hydrogel. For application in bio-materials, HA will still have osteoinductivity because its crystalline structure is not interrupted in PVA/PVP/HA hydrogel environment.

  20. Biocompatible and biodegradable poly(Tannic Acid) hydrogel with antimicrobial and antioxidant properties.

    PubMed

    Sahiner, Nurettin; Sagbas, Selin; Sahiner, Mehtap; Silan, Coskun; Aktas, Nahit; Turk, Mustafa

    2016-01-01

    A novel resourceful bulk poly(Tannic Acid) (p(TA)) hydrogel was prepared by crosslinking TA molecules with an epoxy crosslinker, trimethylolpropane triglycidyl ether (TMPGDE), in an autoclave at 90°C for 2h. The obtained p(TA) hydrogels were in disk form and have highly porous morphology. The swelling characteristics of p(TA) hydrogels were investigated in wound healing pH conditions of pH 5.4, 7.4, and 9 at 37.5°C, and the hydrogels showed good swelling and moisture content behavior. Especially, p(TA) hydrogels were found to be sensitive to pH 9 with 1669% maximum swelling. P(TA) hydrogels were completely degraded at pH 9 hydrolytically in 9 days. Total phenol contents and the effects of scavenging ABTS(+) radicals of degraded p(TA) hydrogels at pH 5.4, 7.4, and 9 were evaluated and calculated in terms of gallic acid equivalent and trolox equivalent antioxidant capacity, respectively, and found to be very effective. Moreover, degraded p(TA) hydrogels display strong antimicrobial behavior against gram positive Staphylococcus aureus, Bacillus subtilis, gram negative Pseudomonas aeruginosa bacteria strains and Candida albicans fungus strain. The WST-1 results indicated that bulk p(TA) hydrogels have no cyctotoxicity to the L929 fibroblast cell line in vitro.

  1. Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity.

    PubMed

    Yang, Xuan; Bakaic, Emilia; Hoare, Todd; Cranston, Emily D

    2013-12-09

    Injectable hydrogels based on carboxymethyl cellulose and dextran, reinforced with rigid rod-like cellulose nanocrystals (CNCs) and aldehyde-functionalized CNCs (CHO-CNCs), were prepared and characterized. The mechanical properties, internal morphology, and swelling of injectable hydrogels with unmodified and modified CNCs at various loadings were examined. In all cases, gelation occurred within seconds as the hydrogel components were extruded from a double-barrel syringe, and the CNCs were evenly distributed throughout the composite, as observed by scanning and transmission electron microscopy. When immersed in purified water or 10 mM PBS, all CNC-reinforced hydrogels maintained their original shape for more than 60 days. The maximum storage modulus was observed in hydrogels with 0.250 wt % of unmodified CNCs and 0.375 wt % of CHO-CNCs. CHO-CNCs acted as both a filler and a chemical cross-linker, making the CHO-CNC-reinforced hydrogels more elastic, more dimensionally stable, and capable of facilitating higher nanoparticle loadings compared to hydrogels with unmodified CNCs, without sacrificing mechanical strength. No significant cytotoxicity to NIH 3T3 fibroblast cells was observed for the hydrogels or their individual components. These properties make CNC-reinforced injectable hydrogels of potential interest for various biomedical applications such as drug delivery vehicles or tissue engineering matrices.

  2. Functional elastic hydrogel as recyclable membrane for the adsorption and degradation of methylene blue.

    PubMed

    Bao, Song; Wu, Dongbei; Wang, Qigang; Su, Teng

    2014-01-01

    Developing the application of high-strength hydrogels has gained much attention in the fields of medical, pharmacy, and pollutant removal due to their versatility and stimulus-responsive properties. In this presentation, a high-strength freestanding elastic hydrogel membrane was constructed by clay nanosheets, N, N-dimethylacrylamide and 2-acrylamide-2-methylpropanesulfonic acid for adsorption of methylene blue and heavy metal ions. The maximum values of elongation and Young's modulus for 0.5% AMPSNa hydrogel were 1901% and 949.4 kPa, respectively, much higher than those of traditional hydrogels. The adsorptions were confirmed to follow pseudo-second kinetic equation and Langmuir isotherm model fits the data well. The maximum adsorption capacity of hydrogel towards methylene blue was 434.8 mg g(-1). The hydrogel also exhibited higher separation selectivity to Pb(2+) than Cu(2+). The methylene blue adsorbed onto the hydrogel membrane can be photocatalytically degraded by Fenton agent and the hydrogel membrane could be recycled at least five times without obvious loss in mechanical properties. In conclusion, this presentation demonstrates a convenient strategy to prepare tough and elastic clay nanocomposite hydrogel, which can not only be applied as recyclable membrane for the photocatalytic degradation of organic dye, but also for the recovery of valuables.

  3. Functional Elastic Hydrogel as Recyclable Membrane for the Adsorption and Degradation of Methylene Blue

    PubMed Central

    Bao, Song; Wu, Dongbei; Wang, Qigang; Su, Teng

    2014-01-01

    Developing the application of high-strength hydrogels has gained much attention in the fields of medical, pharmacy, and pollutant removal due to their versatility and stimulus-responsive properties. In this presentation, a high-strength freestanding elastic hydrogel membrane was constructed by clay nanosheets, N, N-dimethylacrylamide and 2-acrylamide-2-methylpropanesulfonic acid for adsorption of methylene blue and heavy metal ions. The maximum values of elongation and Young’s modulus for 0.5% AMPSNa hydrogel were 1901% and 949.4 kPa, respectively, much higher than those of traditional hydrogels. The adsorptions were confirmed to follow pseudo-second kinetic equation and Langmuir isotherm model fits the data well. The maximum adsorption capacity of hydrogel towards methylene blue was 434.8 mg g−1. The hydrogel also exhibited higher separation selectivity to Pb2+ than Cu2+. The methylene blue adsorbed onto the hydrogel membrane can be photocatalytically degraded by Fenton agent and the hydrogel membrane could be recycled at least five times without obvious loss in mechanical properties. In conclusion, this presentation demonstrates a convenient strategy to prepare tough and elastic clay nanocomposite hydrogel, which can not only be applied as recyclable membrane for the photocatalytic degradation of organic dye, but also for the recovery of valuables. PMID:24586396

  4. Injectable In Situ Forming Biodegradable Chitosan-Hyaluronic acid Based Hydrogels for Cartilage Tissue Engineering

    PubMed Central

    Tan, Huaping; Chu, Constance R.; Payne, Karin; Marra, Kacey G.

    2009-01-01

    Injectable, biodegradable scaffolds are important biomaterials for tissue engineering and drug delivery. Hydrogels derived from natural polysaccharides are ideal scaffolds as they resemble the extracellular matrices of tissues comprised of various glycosaminoglycans (GAG). Here, we report a new class of biocompatible and biodegradable composite hydrogels derived from water-soluble chitosan and oxidized hyaluronic acid upon mixing, without the addition of a chemical crosslinking agent. The gelation is attributed to the Schiff-base reaction between amino and aldehyde groups of polysaccharide derivatives. In the current work, N-succinyl-chitosan (S-CS) and aldehyde hyaluronic acid (A-HA) were synthesized for preparation of the composite hydrogels. The polysaccharide derivatives and composite hydrogels were characterized by FTIR spectroscopy. The effect of the ratio of S-CS and A-HA on the gelation time, microstructure, surface morphology, equilibrium swelling, compressive modulus, and in vitro degradation of composite hydrogels was examined. The potential of the composite hydrogel as an injectable scaffold was demonstrated by encapsulation of bovine articular chondrocytes within the composite hydrogel matrix in vitro. The results demonstrated that the composite hydrogel supported cell survival and the cells retained chondrocytic morphology. These characteristics provide a potential opportunity to use the injectable, composite hydrogels in tissue engineering applications. PMID:19167750

  5. Cytocompatible injectable carboxymethyl chitosan/N-isopropylacrylamide hydrogels for localized drug delivery.

    PubMed

    Zhang, Lin; Wang, Ling; Guo, Baolin; Ma, Peter X

    2014-03-15

    Cytocompatible injectable hydrogels with pH and temperature sensitivity based on carboxymethyl chitosan-graft-poly (N-isopropyl acrylamide)-glycidyl methacrylate (CMCS-PNIPAm-GMA) were prepared by UV crosslinking, and these hydrogels as localized drug carriers for anticancer drug and anti-inflammatory drug were also investigated. The chemical structure of CMCS-PNIPAm-GMA and of their hydrogels was characterized by FT-IR and NMR. The effect of PNIPAm grafting percentage, pH and temperature on the swelling ratio of the hydrogels was studied, demonstrating the pH/temperature-responsive nature of the hydrogels. The morphology of the hydrogels before and after swelling was observed by scanning electron microscope. 5-Fluorouracil and diclofenac sodium as model drugs were encapsulated into the hydrogels in situ. Moreover, the effect of pH and temperature on the release of these drugs was discussed. The cytocompatibility of the macromonomer CMCS-PNIPAm-GMA and their hydrogels was studied with dog bone marrow mesenchymal stem cells by using Alamar blue measurement and Live/Dead assay kit. All the results indicated that these degradable injectable hydrogels are good candidates for localized delivery systems of drugs.

  6. Horseradish peroxidase-catalysed in situ-forming hydrogels for tissue-engineering applications.

    PubMed

    Bae, Jin Woo; Choi, Jong Hoon; Lee, Yunki; Park, Ki Dong

    2015-11-01

    In situ-forming hydrogels are an attractive class of implantable biomaterials that are used for biomedical applications. These injectable hydrogels are versatile and provide a convenient platform for delivering cells and drugs via minimally invasive surgery. Although several crosslinking methods for preparing in situ forming hydrogels have been developed over the past two decades, most hydrogels are not sufficiently versatile for use in a wide variety of tissue-engineering applications. In recent years, enzyme-catalysed crosslinking approaches have been emerged as a new approach for developing in situ-forming hydrogels. In particular, the horseradish peroxidase (HRP)-catalysed crosslinking approach has received increasing interest, due to its highly improved and tunable capacity to obtain hydrogels with desirable properties. The HRP-catalysed crosslinking reaction immediately occurs upon mixing phenol-rich polymers with HRP and hydrogen peroxide (H2O2) in aqueous media. Based on this unique gel-forming feature, recent studies have shown that various properties of formed hydrogels, such as gelation time, stiffness and degradation rate, can be easily manipulated by varying the concentrations of HRP and H2O2. In this review, we outline the versatile properties of HRP-catalysed in situ-forming hydrogels, with a brief introduction to the crosslinking mechanisms involved. In addition, the recent biomedical applications of HRP-catalysed in situ-forming hydrogels for tissue regeneration are described.

  7. The relationship between oxygen permeability and phase separation morphology of the multicomponent silicone hydrogels.

    PubMed

    Zhao, Zhengbai; Xie, Haijiao; An, Shuangshuang; Jiang, Yong

    2014-12-18

    In this article, the multicomponent copolymers were prepared by the copolymerization of two hydrophobic silicon-containing monomers bis(trimethylsilyloxy) methylsilylpropyl glycerol methacrylate (SiMA) and tris(trimethylsiloxy)-3-methacryloxypropylsilane (TRIS) with three hydrophilic monomers 2-hydroxyethyl methacrylate, N-vinylpyrrolidone, and N,N-dimethyl acrylamide. The copolymers were hydrated to form transparent silicone hydrogels. The oxygen permeability coefficients (Dk) of hydrogels were measured, and their relationships with the equilibrium water contents (EWC) and the types and contents of silicon containing monomers as well as the phase separation structures of silicone hydrogels were analyzed in detail. The results showed that the EWC decreased as the increase of SiMA content. The relationship between Dk and SiMA content, as well as that between Dk and EWC, showed inverted bell curve distributions, which meant two main factors, i.e., silicon-oxygen bond in silicone and water in hydrogel, contributed to oxygen permeation and followed a mutual inhibition competition mechanism. The internal morphologies of the hydrogels were observed by transmission electron microscope, and the results showed that the hydrogels presented two different phase separation structures depending on the types of the silicon-containing monomers. The silicone phase in SiMA containing hydrogel presented to be a granular texture, while the silicone phase in TRIS containing hydrogel formed a fibrous texture which resulted in a higher Dk value. These results could help to design a silicone hydrogel with better properties and wider application.

  8. Injectable in situ forming xylitol-PEG-based hydrogels for cell encapsulation and delivery.

    PubMed

    Selvam, Shivaram; Pithapuram, Madhav V; Victor, Sunita P; Muthu, Jayabalan

    2015-02-01

    Injectable in situ crosslinking hydrogels offer unique advantages over conventional prefabricated hydrogel methodologies. Herein, we synthesize poly(xylitol-co-maleate-co-PEG) (pXMP) macromers and evaluate their performance as injectable cell carriers for tissue engineering applications. The designed pXMP elastomers were non-toxic and water-soluble with viscosity values permissible for subcutaneous injectable systems. pXMP-based hydrogels prepared via free radical polymerization with acrylic acid as crosslinker possessed high crosslink density and exhibited a broad range of compressive moduli that could match the natural mechanical environment of various native tissues. The hydrogels displayed controlled degradability and exhibited gradual increase in matrix porosity upon degradation. The hydrophobic hydrogel surfaces preferentially adsorbed albumin and promoted cell adhesion and growth in vitro. Actin staining on cells cultured on thin hydrogel films revealed subconfluent cell monolayers composed of strong, adherent cells. Furthermore, fabricated 3D pXMP cell-hydrogel constructs promoted cell survival and proliferation in vitro. Cumulatively, our results demonstrate that injectable xylitol-PEG-based hydrogels possess excellent physical characteristics and exhibit exceptional cytocompatibility in vitro. Consequently, they show great promise as injectable hydrogel systems for in situ tissue repair and regeneration.

  9. Designing injectable beta-hairpin peptide hydrogels for cartilage tissue engineering application

    NASA Astrophysics Data System (ADS)

    Sinthuvanich, Chomdao

    In this work, it was demonstrated that peptide-based gels having different electrostatic network character but similar mechanical properties can be designed by modulating the primary sequence of the peptides used for self-assembly. As a result, HLT2 and HET1 peptides, having formal charge states of +5 per monomer, were designed using MAX8, a peptide with a charge state of +7 per monomer, as a template. Using gels prepared from all three peptides (MAX8, HLT2, and HET1), it was shown that the electropositive character of the network influences chondrocyte behavior. Specifically, the less electropositive gel (HLT2) is able to maintain chondrocyte viability and phenotype. In contrast, chondrocytes encapsulated in the more positively charged gel (MAX8) are more prone to dedifferentiation, resulting in tissue constructs with inferior mechanical properties. Gels prepared from peptides having the same net charge but differing only in their primary sequences (HLT2 and HET1) were also shown to influence cell behavior, but only during the early period of culturing. If constructs derived from these two different peptide gels are allowed to culture for extended times, their mechanical properties become similar. This suggests that the amino acid composition and sequence of the peptides used to make the gels also influences cell behavior, but perhaps not to the extent that network electrostatics plays. Supplementation of bioactive factors in the culturing media, as opposed to being encapsulated directly in the network, was shown to adversely affect the cellular response resulting in tissue constructs where extracellular matrix (ECM) components are non-uniformly distributed. When bioactive factors were encapsulated and co-delivered with cells, positive results were observed, particularly when cells were co-encapsulated with the growth factor, TGF-β1. The effect of TGF-β1 on cellular response and the mechanical properties of the tissue-engineered constructs is largely governed by

  10. Evaluation of genipin-crosslinked chitosan hydrogels as a potential carrier for silver sulfadiazine nanocrystals.

    PubMed

    Gao, Lei; Gan, Hui; Meng, Zhiyun; Gu, Ruolan; Wu, Zhuona; Zhu, Xiaoxia; Sun, Wenzhong; Li, Jian; Zheng, Ying; Sun, Tao; Dou, Guifang

    2016-12-01

    In the present study genipin crosslinked chitosan (CHI) hydrogels, which had been constructed and reported in our previous studies (Gao et al., 2014 [22]), were further evaluated for their advantage as a carrier for silver sulfadiazine (AgSD) nanocrystal systems. Firstly, AgSD nanocrystals with a mean particle size of 289nm were prepared by wet milling method and encapsulated into genipin crosslinked CHI hydrogels. AgSD nanocrystals displayed a uniform distribution and very good physical stability in the hydrogel network. Swelling-dependent release pattern was found for AgSD nanocrystals from hydrogels and the release profile could be well fitted with Peppas equation. When AgSD nanocrystals were encapsulated in hydrogels their fibroblast cytotoxicity decreased markedly, and their antibacterial effects against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were still comparable to unencapsulated AgSD nanocrystals. In vivo evaluation in excision and burn cutaneous wound models in mice showed that AgSD nanocrystal hydrogels markedly decreased the expression of inflammatory cytokine IL-6, but increased the levels of growth factors VEGF-A and TGF-β1. Histopathologically, the wounds treated by hydrogels containing AgSD nanocrystals showed the best healing state compared with commercial AgSD cream, hydrogels containing AgSD bulk powders and blank hydrogels. The wounds treated by AgSD nanocrystal hydrogels were dominated by marked fibroblast proliferation, new blood vessels and thick regenerated epithelial layer. Sirius Red staining assay indicated that AgSD nanocrystal hydrogels resulted in more collagen deposition characterized by a large proportion of type I fibers. Our study suggested that genipin-crosslinked CHI hydrogel was a potential carrier for local antibacterial nanomedicines. Copyright © 2016. Published by Elsevier B.V.

  11. Swelling/deswelling of Toroidal Hydrogels

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Wen; Dimitriyev, Michael; Marquez, Samantha; Goldbart, Paul; Fernandez-Nieves, Alberto

    2014-03-01

    Swelling/deswelling of hydrogel spheres proceeds with the increase/decrease of particle radius that corresponds to the change in overall volume. When the hydrogel has a toroidal geometry, which is characterized by two principal radii -radius from the center of the donut hole to the center of the tube, and the tube radius, it is not obvious how swelling proceeds. We prepare thermo-sensitive poly(N-isopropylacrylamide) pNIPAM toroidal gel particles of different aspect ratios. At equilibrium deswelling, i.e., slow heating rate, we find that the aspect ratio remains constant for both fat and thin tori. This is explained by linear elasticity. On the other hand, when the heating rate is sufficiently high, the toroid buckles due to the presence of a water-impermeable skin layer that develops in the initial deswelling stages. Acknowledgement: We thank Dr. Manuel Marquez, YNano LLC for financial support

  12. Metal nanoparticles triggered persistent negative photoconductivity in silk protein