Science.gov

Sample records for charged ion impact

  1. Electron impact ionization of highly charged lithiumlike ions

    SciTech Connect

    Wong, K L

    1992-10-01

    Electron impact ionization cross sections can provide valuable information about the charge-state and power balance of highly charged ions in laboratory and astrophysical plasmas. In the present work, a novel technique based on x-ray measurements has been used to infer the ionization cross section of highly charged lithiumlike ions on the Livermore electron beam ion trap. In particular, a correspondence is established between an observed x ray and an ionization event. The measurements are made at one energy corresponding to approximately 2.3 times the threshold energy for ionization of lithiumlike ions. The technique is applied to the transition metals between Z=22 (titanium, Ti[sup 19+]) and Z=26 (iron, Fe[sup 23+]) and to Z=56 (barium, Ba[sup 53+]). The results for the transition metals, which have an estimated 17-33% uncertainty, are in good overall agreement with a relativistic distorted-wave calculation. However, less good agreement is found for barium, which has a larger uncertainty. Methods for properly accounting for the polarization in the x-ray intensities and for inferring the charge-state abundances from x-ray observations, which were developed for the ionization measurements, as well as an x-ray model that assists in the proper interpretation of the data are also presented.

  2. Impact of Charge Methodology Upon the Performance of Lithium Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L.; Chin, K.; Surampudi, S.

    2002-01-01

    This viewgraph gives an overview on the impact of charge methodology upon the performance of lithium ion cells. Charge characteristics are given on the following: (1) lithium ion prototype cells, including charge rate characteristics at different temperatures, the effect of charge methodology upon cycle life performance, the effect of charge voltage upon cell performance; (2) three-electrode cells; and (3) lithium-ion eight-cell batteries.

  3. Highly Charged Ions from Laser-Cluster Interactions: Local-Field-Enhanced Impact Ionization and Frustrated Electron-Ion Recombination

    SciTech Connect

    Fennel, Thomas; Ramunno, Lora; Brabec, Thomas

    2007-12-07

    Our molecular dynamics analysis of Xe{sub 147-5083} clusters identifies two mechanisms that contribute to the yet unexplained observation of extremely highly charged ions in intense laser cluster experiments. First, electron impact ionization is enhanced by the local cluster electric field, increasing the highest charge states by up to 40%; a corresponding theoretical method is developed. Second, electron-ion recombination after the laser pulse is frustrated by acceleration electric fields typically used in ion detectors. This increases the highest charge states by up to 90%, as compared to the usual assumption of total recombination of all cluster-bound electrons. Both effects together augment the highest charge states by up to 120%, in reasonable agreement with experiments.

  4. Measurement of L-shell electron-impact ionization cross sections for highly charged uranium ions

    SciTech Connect

    Stoehlker, T.; Kraemer, A. |; Elliott, S.R.; Marrs, R.E.; Scofield, J.H.

    1997-10-01

    L-shell electron-impact ionization cross sections for highly charged uranium ions from fluorinelike U{sup 83+} through lithiumlike U{sup 89+} have been measured at 45-, 60-, and 75-keV electron energy. The cross sections were obtained from x-ray measurements of the equilibrium ionization balance in an electron beam ion trap. The measured cross sections agree with recent relativistic distorted wave calculations. {copyright} {ital 1997} {ital The American Physical Society}

  5. Properties of cold ions produced by synchrotron radiation and by charged particle impact

    NASA Astrophysics Data System (ADS)

    Levin, J. C.; Biedermann, C.; Cederquist, H.; O, C.-S.; Short, R. T.; Sellin, I. A.

    1989-04-01

    Argon recoil ions produced by beams of 0.8 MeV/u Cl 5+ have been detected by time-of-flight (TOF) techniques in coincidence with the loss of from one to five projectile electrons. Recoil-ion energies have been determined to be more than an order of magnitude higher than those of highly charged ions produced by unmonochromatized synchrotron radiation. Charge-state distributions, however, show similarities, suggesting that loss of projectile electrons corresponds, in some cases, to inner-shell target ionization producing vacancy cascades. In an essential improvement to the usual multinomial description of ionization in the independent-electron-ejection model, we find the inclusion of Auger vacancy cascades significantly alters the description of the recoil ion spectra corresponding to the projectile-electron loss. These conclusions are consistent with impact parameters inferred from determination of mean recoil energy.

  6. Observation of a sequential process in charge-asymmetric dissociation of CO2q + (q =4 ,5 ) upon the impact of highly charged ions

    NASA Astrophysics Data System (ADS)

    Khan, Arnab; Tribedi, Lokesh C.; Misra, Deepankar

    2015-09-01

    The dynamics involved in three-body breakup of carbon dioxide upon the impact of 1-MeV Ar8 + ions is investigated. Among the six possible fragmentation channels of CO2q + (q =4 ,5 ) , where all fragments are charged, two charge-asymmetric fragmentation channels show evidence of a sequential breakup process. It has been observed that the molecular structures tend towards deformed geometry as the initial charge on the precursor molecular ion increases. The total energy deposition to the system is found to play a key role in deciding between different breakup pathways.

  7. Electron-impact ionization of moderately charged atomic ions in excited states

    SciTech Connect

    Pindzola, M. S.; Ballance, C. P.; Loch, S. D.

    2011-06-15

    Nonperturbative R-matrix and perturbative distorted-wave methods are used to calculate electron-impact ionization cross sections for C{sup 3+} in excited states. Convergence studies for the cross sections of the 1s{sup 2}5s excited configuration reveal that both the R-matrix and distorted-wave methods need fairly high ejected electron angular momenta. Reasonable agreement is found between the converged R-matrix and distorted-wave cross sections. Thus, the use of the computationally less demanding distorted-wave method as a tool for the n scaling of excited-state ionization cross sections appears to be reasonable for atomic ions with charge q{>=}3.

  8. Hypervelocity dust impact craters on photovoltaic devices imaged by ion beam induced charge

    NASA Astrophysics Data System (ADS)

    Yang, Changyi; Wu, Yiyong; Lv, Gang; Rubanov, Sergey; Jamieson, David N.

    2015-04-01

    Hypervelocity dust has a speed of greater than 5 km/s and is a significant problem for equipment deployed in space such as satellites because of impacts that damage vulnerable components. Photovoltaic (PV) arrays are especially vulnerable because of their large surface area and the performance can be degraded owing to the disruption of the structure of the junction in the cells making up the array. Satellite PV arrays returned to Earth after service in orbit reveal a large number of craters larger than 5 μm in diameter arising from hypervelocity dust impacts. Extensive prior work has been done on the analysis of the morphology of craters in PV cells to understand the origin of the micrometeoroid that caused the crater and to study the corresponding mechanical damage to the structure of the cell. Generally, about half the craters arise from natural micrometeoroids, about one third from artificial Al-rich debris, probably from solid rocket exhausts, and the remainder from miscellaneous sources both known and unknown. However to date there has not been a microscopic study of the degradation of the electrical characteristics of PV cells exposed to hypervelocity dust impacts. Here we present an ion beam induced charge (IBIC) pilot study by a 2 MeV He microbeam of craters induced on a Hamamatsu PIN diode exposed to artificial hypervelocity Al dust from a dust accelerator. Numerous 5-30 μm diameter craters were identified and the charge collection efficiency of the crater and surrounds mapped with IBIC with bias voltages between 0 and 20 V. At highest bias, it was found the efficiency of the crater had been degraded by about 20% compared to the surrounding material. The speed distribution achieved in the Al dust accelerator was peaked at about 4 km/s compared to 11-68 km/s for dust encountered in low Earth orbit. We are able to extrapolate the charge collection efficiency degradation rate of unbiased cells in space based on our current measurements and the differences

  9. Highly charged ion impact on uracil: Cross sections measurements and scaling

    NASA Astrophysics Data System (ADS)

    Agnihotri, A. N.; Kasthurirangan, S.; Champion, C.; Rivarola, R. D.; Tribedi, L. C.

    2014-04-01

    Absolute total ionization cross sections (TCS) of uracil in collisions with highly charge C, O and F ions are measured. The scaling properties of cross sections are obtained as a function of projectile charge state and energy. The measurements are compared with the CDW-EIS, CB1 and CTMC calculations. The absolute double differential cross sections (DDCS) of secondary electron emission from uracil in collisions with bare MeV energy C and O ions are also measured. Large enhancement in forward emission is observed.

  10. The impact of interplanetary transport on the charge spectra of heavy ions accelerated in SEP events

    NASA Astrophysics Data System (ADS)

    Kartavykh, J.; Kovaltsov, G.; Ostryakov, V.; Droege, W.

    We investigate the effects of interplanetary propagation on charge spectra of heavy ions observed at 1 AU. A Monte-Carlo approach is applied to solve the transport equation which takes into account spatial diffusion as well as convection and adiabatic deceleration. It is shown that interplanetary propagation results in a shift of charge spectra towards lower energies due to adiabatic deceleration. This fact should be taken into account when experimental data are interpreted. A broadening of charge distributions caused by interplanetary propagation might explain rather wide charge distributions observed in a number of SEP events. We explain the available charge spectra of iron for several impulsive SEP events making use of our model of interplanetary propagation assuming different values of the mean free path.

  11. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  12. Design and performance of an instrument for electron impact tandem mass spectrometry and action spectroscopy of mass/charge selected macromolecular ions stored in RF ion trap*

    NASA Astrophysics Data System (ADS)

    Ranković, Milos Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.

    2016-06-01

    A new apparatus was designed, coupling an electron gun with a linear quadrupole ion trap mass spectrometer, to perform m/ z (mass over charge) selected ion activation by electron impact for tandem mass spectrometry and action spectroscopy. We present in detail electron tracing simulations of a 300 eV electron beam inside the ion trap, design of the mechanical parts, electron optics and electronic circuits used in the experiment. We also report examples of electron impact activation tandem mass spectra for Ubiquitin protein, Substance P and Melittin peptides, at incident electron energies in the range from 280 eV to 300 eV.

  13. Theoretical prediction of the impact of Auger recombination on charge collection from an ion track

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1991-01-01

    The theoretical analysis presented indicates that Auger recombination can reduce charge collection from very dense ion tracks in silicon devices. It is of marginal importance for tracks produced by 270-MeV krypton, and therefore it is of major importance for ions exhibiting a significantly larger loss. The analysis shows that recombination loss is profoundly affected by track diffusion. As the track diffuses, the density and recombination rate decrease so fast that the linear density (number of electron-hole pairs per unit length) approaches a nonzero limiting value as t approaches infinity. Furthermore, the linear density is very nearly equal to this limiting value in a few picoseconds or less. When Auger recombination accompanies charge transport processes that have much longer time scales, it can be simulated by assigning a reduced linear energy transfer to the ion.

  14. Dust photoemission charging modification under the impact of solar wind ions

    NASA Astrophysics Data System (ADS)

    Nouzak, Libor; Richterova, Ivana; Nemecek, Zdenek; Safrankova, Jana; Pavlu, Jiri

    2016-07-01

    Surfaces in the space are covered by a layer of dust grains and the lunar surface can serve as an example. On the sunlit side, the dust layer is exposed to solar wind particles (electrons and ions) and photons. The ions can either cause sputtering of dust grains or can be implanted into their surface. Regarding implantation, the more additional energy that ions bring into grains, the more valence band electrons are excited and thus, a photoelectron yield of grains can increase. As a consequence, the density of electrons that form a sheath above the illuminated lunar surface enhances. As a result, an influence of solar wind ions on the Debye length and photoelectron sheath formation is expected. We present laboratory measurements of work functions and photoelectron yields of a single micron-sized silica grain both prior to and after ion implantations. The silica grain, as an approximate lunar simulant, is caught in the electrodynamic trap and its specific charge is evaluated by analysis of its secular motion within the trap. The grain's work function is determined from observations of a time evolution of the charge-to-mass ratio during irradiation of the grain by photons of various energies in the order of tens of electronvolts. By comparison of the photoelectron current (from grain) with photon flux (from UV source), we establish the photoelectron yield of the trapped object. The influence of ion implantation is carefully analyzed and discussed.

  15. Theoretical prediction of the impact of Auger recombination on charge collection from an ion track

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1991-01-01

    A recombination mechanism that significantly reduces charge collection from very dense ion tracks in silicon devices was postulated by Zoutendyk et al. The theoretical analysis presented here concludes that Auger recombination is such a mechanism and is of marginal importance for higher density tracks produced by 270-MeV krypton, but of major importance for higher density tracks. The analysis shows that recombination loss is profoundly affected by track diffusion. As the track diffuses, the density and recombination rate decrease so fast that the linear density (number of electron-hole pairs per unit length) approaches a non-zero limiting value as t yields infinity. Furthermore, the linear density is very nearly equal to this limiting value in a few picoseconds or less. When Auger recombination accompanies charge transport processes that have much longer time scales, it can be simulated by assigning a reduced linear energy transfer to the ion.

  16. Comparing Coulomb explosion dynamics of multiply charged triatomic molecules after ionization by highly charged ion impact and few cycle femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Wales, B.; Karimi, R.; Bisson, E.; Beaulieu, S.; Giguère, M.; Motojima, T.; Anderson, R.; Matsumoto, J.; Kieffer, J.-C.; Légaré, F.; Shiromaru, H.; Sanderson, J.

    2013-09-01

    Recent experiments using highly charged ions (HCI) at Tokyo Metropolitan University and few cycle laser pulses at the advanced laser light source have centered on multiply ionizing carbonyl sulfide to form charge states from 3 + to 7 + . By measuring the kinetic energy release during subsequent break up and comparing with previous results from HCI impact on CO2 we can see a pattern emerging which implies that shorter laser pulses than the current sub 7 fs standard could lead to higher kinetic energy release than expected from Coulomb explosion.

  17. Electron impact action spectroscopy of mass/charge selected macromolecular ions: Inner-shell excitation of ubiquitin protein

    DOE PAGES

    Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.

    2016-02-11

    In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS2) and allows performing action spectroscopy. Electron impact MS2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS2 and single ionization energy dependencemore » spectra are compared with literature data obtained using the soft X-ray activation conditions.« less

  18. Electron impact action spectroscopy of mass/charge selected macromolecular ions: Inner-shell excitation of ubiquitin protein

    NASA Astrophysics Data System (ADS)

    Ranković, Miloš Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.

    2016-02-01

    We have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS2) and allows performing action spectroscopy. Electron impact MS2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1 s excitation. Both MS2 and single ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.

  19. Highly charged ion secondary ion mass spectroscopy

    DOEpatents

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  20. Molecular-dynamics simulations of hillocks induced by highly-charged Arq+, Xeq+ ions impact on HOPG surface

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengrong; Cheng, Xinlu; Li, Huifang; Song, Ting; Guo, Fen; Liu, Zijiang; Chen, Jianhong

    2015-11-01

    The hillocks on highly oriented pyrolytic graphite (HOPG) surface induced by highly charged Arq+, Xeq+ ions are studied by using molecular-dynamics (MD) simulations. And a hybrid potential created by combining the ReaxFF potential with the repulsive ZBL potential is used to describe the interatomic interactions. The effects of incident highly charged ion (HCI)'s kinetic energy and the energy gain due to the interaction of HCI with its own image on the formation of the hillocks are considered in the present simulations. Our results show that both potential and kinetic energy of HCI may affect the hillock size. However, the potential energy of HCI increases dramatically with charge state, which is more important than kinetic energy in the formation of the hillock in extremely high charge states. And it is found that both the height and width of the hillock agree well with experimental data. In addition, the bond breaking and bond formation during the formation of the hillock are also investigated, and the results show that there are many σ bonds breaking and interlayer bonds formation in one layer or between two layers during this process. Furthermore, most of the interlayer bonds in HOPG surface induced by HCI impact are sp2 bond, although some interlayer sp3 bonds are also observed in the present work.

  1. ION PRODUCING MECHANISM (CHARGE CUPS)

    DOEpatents

    Brobeck, W.W.

    1959-04-21

    The problems of confining a charge material in a calutron and uniformly distributing heat to the charge is described. The charge is held in a cup of thermally conductive material removably disposed within the charge chamber of the ion source block. A central thermally conducting stem is incorporated within the cup for conducting heat to the central portion of the charge contained within the cup.

  2. Charge Exchange with Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Glick, Jeremy; Ferri, Kevin; Schmitt, Jaclyn; Hanson, Joshua; Marler, Joan

    2016-05-01

    A detailed study of the physics of highly charged ions (HCIs) is critical for a deep understanding of observed phenomena resulting from interactions of HCIs with neutral atoms in astrophysical and fusion environments. Specifically the charge transfer rates and spectroscopy of the subsequent decay fluorescence are of great interest to these communities. Results from a laboratory based investigation of these rates will be presented. The experiment takes advantage of an energy and charge state selected beam of HCIs from the recently on-line Clemson University EBIT (CUEBIT). Progress towards an experimental apparatus for retrapping HCIs towards precision spectroscopy of HCIs will also be presented.

  3. Impact of metal ion's charge on the interatomic Coulombic decay widths in microsolvated clusters

    NASA Astrophysics Data System (ADS)

    Stumpf, V.; Brunken, C.; Gokhberg, K.

    2016-09-01

    Interatomic Coulombic decay (ICD) is an efficient electronic decay mechanism of electronically excited atoms and molecules embedded in an environment. For the series of isoelectronic Na+, Mg2+, and Al3+ ions in aqueous solution, ultrashort ICD lifetimes of 3.1 fs, 1.5 fs, and 0.9 fs, respectively, were observed experimentally. The magnitude of the ICD lifetimes and their variation within the series were qualitatively explained by shortening metal-oxygen equilibrium distances and the increasing polarization of the water molecules as the metal's charge grows. We carried out an extensive ab initio investigation of the variation of the ICD widths with the metal-oxygen distances and the number of water neighbors in Na+-(H2O)m (m = 1-4) and Mg2+-(H2O)n (n = 1-6) clusters including and excluding polarization effects in the decaying state. We demonstrated that the effect of the induced polarization of the water ligand and the equilibrium cation-oxygen distance are equally important in determining the ordering and ratios of the ICD lifetimes in the series. Moreover, we showed that the induced polarization of the water molecules leads to a slower than linear growth of ICD width with the number of equivalent water neighbors; the non-linearity is stronger for Mg2+. The ab initio ICD widths in microsolvated Na+-(H2O)4 and Mg2+-(H2O)6 clusters are found to be in good agreement with the experimental values.

  4. Impact of metal ion's charge on the interatomic Coulombic decay widths in microsolvated clusters.

    PubMed

    Stumpf, V; Brunken, C; Gokhberg, K

    2016-09-14

    Interatomic Coulombic decay (ICD) is an efficient electronic decay mechanism of electronically excited atoms and molecules embedded in an environment. For the series of isoelectronic Na(+), Mg(2+), and Al(3+) ions in aqueous solution, ultrashort ICD lifetimes of 3.1 fs, 1.5 fs, and 0.9 fs, respectively, were observed experimentally. The magnitude of the ICD lifetimes and their variation within the series were qualitatively explained by shortening metal-oxygen equilibrium distances and the increasing polarization of the water molecules as the metal's charge grows. We carried out an extensive ab initio investigation of the variation of the ICD widths with the metal-oxygen distances and the number of water neighbors in Na(+)-(H2O)m (m = 1-4) and Mg(2+)-(H2O)n (n = 1-6) clusters including and excluding polarization effects in the decaying state. We demonstrated that the effect of the induced polarization of the water ligand and the equilibrium cation-oxygen distance are equally important in determining the ordering and ratios of the ICD lifetimes in the series. Moreover, we showed that the induced polarization of the water molecules leads to a slower than linear growth of ICD width with the number of equivalent water neighbors; the non-linearity is stronger for Mg(2+). The ab initio ICD widths in microsolvated Na(+)-(H2O)4 and Mg(2+)-(H2O)6 clusters are found to be in good agreement with the experimental values. PMID:27634259

  5. DIET in highly charged ion interaction with silicon surfaces

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Nagata, K.; Tona, M.; Sakurai, M.; Nakamura, N.; Yamada, C.; Ohtani, S.

    2005-11-01

    We have observed mass spectra of desorbed ions from a clean and a hydrogen terminated silicon surfaces by the impact of highly charged ions (Xe q+ , q = 26, 34, 44 and 50). The released ions mainly consist of proton for both surfaces, and the quantum yield of proton desorption for hydrogen terminated surface exceeds unity. It is seemed that charge state dependence of ion yield roughly follows q5 rule reported by Kuroki et al. in the experiments for lower charge states.

  6. Gyrokinetic study of the impact of the electron to ion heating ratio on the turbulent diffusion of highly charged impurities

    SciTech Connect

    Angioni, C.

    2015-10-15

    A gyrokinetic study based on numerical and analytical calculations is presented, which computes the dependence of the turbulent diffusion of highly charged impurities on the ratio of the electron to the ion heat flux of the plasma. Nonlinear simulations show that the size of the turbulent diffusion of heavy impurities can vary by one order of magnitude with fixed total heat flux and is an extremely sensitive function of the electron to ion heat flux ratio. Numerical linear calculations are found to reproduce the nonlinear results. Thereby, a quasi-linear analytical approach is used to explain the origin of this dependence.

  7. Injected 1+ ion beam as a diagnostics tool of charge breeder ECR ion source plasmas

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Lamy, T.; Angot, J.; Thuillier, T.; Delahaye, P.; Maunoury, L.; Choinski, J.; Standylo, L.; Galatà, A.; Patti, G.; Koivisto, H.

    2015-06-01

    Charge breeder electron cyclotron resonance ion sources (CB-ECRIS) are used as 1+  →n+  charge multiplication devices of post-accelerated radioactive ion beams. The charge breeding process involves thermalization of the injected 1+  ions with the plasma ions in ion-ion collisions, subsequent ionization by electron impact and extraction of the n+  ions. Charge breeding experiments of 85Rb and 133Cs ion beams with the 14.5 GHz PHOENIX CB-ECRIS operating with oxygen gas demonstrate the plasma diagnostics capabilities of the 1+  injection method. Two populations can be distinguished in the m/q-spectrum of the extracted ion beams, the low (1+  and 2+) charge states representing the uncaptured fraction of the incident 1+  ion beam and the high charge states that have been captured in ion-ion collisions and subsequently charge bred through electron impact ionization. Identification of the uncaptured fraction of the 1+  ions allows estimating the lower limit of ion-ion collision frequency of various charge states in the ECRIS plasma. The collision frequencies of highly charged ions (˜107 Hz) are shown to exceed their gyrofrequencies (˜106 Hz) at least by an order of magnitude, which implies that the dynamics of high charge state ions are dictated by magnetically confined electrons and ambipolar diffusion and only low charge state ions can be considered magnetized. Furthermore, it is concluded that the plasma density of the ECRIS charge breeder is most likely on the order of 1011 cm-3 i.e. well below the critical density for 14.5 GHz microwaves.

  8. Charged Surfaces and Interfacial Ions.

    PubMed

    Kallay; Zalac

    2000-10-01

    Interfacial charge in a solid/liquid system is due to interactions of ions with surface sites affected by the electrostatic potential that is a consequence of their accumulation. The present theoretical approach is based on the so-called Surface Complexation Model that has several modifications known as either the 1-pK, the 2-pK, or the "MUSIC" model. These models assume different surface reactions and their equilibrium constants, taking into account electrostatic interactions. For that purpose the relationships between potentials affecting the state of interfacial ions and their surface densities need to be known, so that a certain model of the electrical interfacial layer should be introduced. The complexity of the problem results in the use of a variety of different theoretical approaches that cannot be distinguished experimentally. This article discusses several aspects of the problem, such as counterion association, structure of the electrical interfacial layer, potential-charge relationships, surface potentials, the zero charge condition, enthalpy of surface reactions, and the influence of the interfacial ionic equilibrium on the colloid stability. Copyright 2000 Academic Press. PMID:10998282

  9. A singly charged ion source for radioactive 11C ion acceleration

    NASA Astrophysics Data System (ADS)

    Katagiri, K.; Noda, A.; Nagatsu, K.; Nakao, M.; Hojo, S.; Muramatsu, M.; Suzuki, K.; Wakui, T.; Noda, K.

    2016-02-01

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.

  10. Facility produced charge-exchange ions

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1981-01-01

    These facility produced ions are created by charge-exchange collisions between neutral atoms and energetic thruster beam ions. The result of the electron transfer is an energetic neutral atom and an ion of only thermal energy. There are true charge-exchange ions produced by collisions with neutrals escaping from the ion thruster and being charge-exchange ionized before the neutral intercepts the tank wall. The facility produced charge-exchange ions will not exist in space and therefore, represent a source of error where measurements involving ion thruster plasmas and their density are involved. The quantity of facility produced ions in a test chamber with a 30 cm mercury ion thruster was determined.

  11. Double ionization of helium by highly-charged-ion impact analyzed within the frozen-correlation approximation

    SciTech Connect

    Ciappina, M. F.; Kirchner, T.; Schulz, M.

    2011-09-15

    We apply the frozen-correlation approximation (FCA) to analyze double ionization of helium by energetic highly charged ions. In this model the double ionization amplitude is represented in terms of single ionization amplitudes, which we evaluate within the continuum distorted wave-eikonal initial state (CDW-EIS) approach. Correlation effects are incorporated in the initial and final states, but are neglected during the time the collision process takes place. We implement the FCA using the Monte Carlo event generator technique, which allows us to generate theoretical event files and to compare theory and experiment using the same analysis tools. The comparison with previous theoretical results and with experimental data demonstrates, on the one hand, the validity of our earlier simple models to account for higher-order mechanisms, and, on the other hand, the robustness of the FCA.

  12. Ion-ion reactions with fixed-charge modified proteins to produce ions in a single, very high charge state

    NASA Astrophysics Data System (ADS)

    Frey, Brian L.; Krusemark, Casey J.; Ledvina, Aaron R.; Coon, Joshua J.; Belshaw, Peter J.; Smith, Lloyd M.

    2008-10-01

    Electrospray ionization (ESI) of denatured proteins produces a mass spectrum with a broad distribution of multiply charged ions. Attaching fixed positive charges, specifically quaternary ammonium groups, to proteins at their carboxylic acid groups generates substantially higher charge states compared to the corresponding unmodified proteins in positive-mode ESI. Ion-ion reactions of these modified proteins with reagent anions leads to charge reduction by proton transfer. These proton transfer reactions cannot remove charge from the quaternary ammonium groups, which do not have a proton to transfer to the anion. Thus, one might expect charge reduction to stop at a single charge state equal to the number of fixed charges on the modified protein. However, ion-ion reactions yield charge states lower than this number of fixed charges due to anion attachment (adduction) to the proteins. Charge reduction via ion-molecule reactions involving gas-phase bases also give adducts on the modified protein ions in low charge states. Such adducts are avoided by keeping the ions in charge states well above the number of fixed charges. In the present work protein ions were selectively "parked" within an ion trap mass spectrometer in a high charge state by mild radiofrequency excitation that dramatically slows their ion-ion reaction rate--a technique termed "ion parking". The combination of ion parking with the fixed-charge modified proteins permits generation of a large population of ions in a single, very high charge state.

  13. Exciplexes versus Loose Ion Pairs: How Does the Driving Force Impact the Initial Product Ratio of Photoinduced Charge Separation Reactions?

    PubMed Central

    2014-01-01

    Many donor–acceptor systems can undergo a photoinduced charge separation reaction, yielding loose ion pairs (LIPs). LIPs can be formed either directly via (distant) electron transfer (ET) or indirectly via the dissociation of an initially formed exciplex or tight ion pair. Establishing the prevalence of one of the reaction pathways is challenging because differentiating initially formed exciplexes from LIPs is difficult due to similar spectroscopic footprints. Hence, no comprehensive reaction model has been established for moderately polar solvents. Here, we employ an approach based on the time-resolved magnetic field effect (MFE) of the delayed exciplex luminescence to distinguish the two reaction channels. We focus on the effects of the driving force of ET and the solvent permittivity. We show that, surprisingly, the exciplex channel is significant even for an exergonic ET system with a free energy of ET of −0.58 eV and for the most polar solutions studied (butyronitrile). Our findings demonstrate that exciplexes play a crucial role even in polar solvents and at moderate driving forces, contrary to what is usually assumed. PMID:25243054

  14. Charged-Particle Impact Ionization of Atoms

    SciTech Connect

    Bartschat, Klaus; Guan Xiaoxu

    2008-08-08

    We have developed a hybrid method to treat charged-particle impact ionization of complex atoms and ions. The essential idea is to describe the interaction between a fast projectile and the target perturbatively, up to second order, while the initial bound state and the ejected-electron--residual-ion interaction can be handled via a convergent R-matrix with pseudo-states (close-coupling) expansion. Example results for ionization of the heavy noble gases (Ne-Xe) by positron and electron impact are presented. The general scheme for a distorted-wave treatment of ionization by heavy-particle impact is described.

  15. Surface erosion and modification by highly charged ions.

    SciTech Connect

    Insepov, Z.; Terasawa, M.; Takayama, K.; Mathematics and Computer Science; KEK, Japan; Univ. of Hyogo

    2008-06-01

    Analyses were conducted of various models and mechanisms of highly charged ion (HCI) and swift-heavy ion energy transfer into a solid target, such as hollow atom formation, charge screening, neutralization, shock wave generation, crater formation, and sputtering. A plasma model of space charge neutralization based on impact ionization of semiconductors at high electric fields was developed and applied to analyze HCI impacts on Si and W. Surface erosions of semiconductor and metal surfaces caused by HCI bombardments were studied by using a molecular dynamics simulation method, and the results were compared with experimental sputtering data.

  16. Spacecraft charging during ion beam emissions in sunlight

    NASA Technical Reports Server (NTRS)

    Lai, S. T.; Mcneil, W. J.; Aggson, T. L.

    1990-01-01

    During ion beam emissions from the SCATHA satellite, the potential of the negatively charged satellite body shows a sinusoidal oscillation frequency of once-per-spin of the satellite. The minimum occurs when the ion beam is sunward. The processes that may be responsible for the voltage modulation are considered. Neutralization of ion beam space charge by photoelectrons is examined. The photoelectrons are accelerated by the negative potential of the satellite. Effects of electron impact ionization, excitation of metastable states, and photoionization of xenon neutral atoms in the ion beam are studied in detail. Critical ionization velocity interaction is unlikely under the condition considered.

  17. Snapshot of highly charged molecular ions

    NASA Astrophysics Data System (ADS)

    Shiromaru, H.; Nishide, T.; Kitamura, T.; Rajgara, F. A.; Sanderson, J. S.; Achiba, Y.; Kobayashi, N.

    2000-02-01

    Explosive fragmentation of highly charged molecular ions has been studied by a position sensitive time-of-flight (TOF) technique. The highly charged molecular ions of CO2, NO2, and CD4 were produced by 90-120 keV collisions of Arn+ (n=6,8). By the detailed analysis of the 3-dimensional velocity vectors of the fragment ions, molecular images at the instant of multiple ionization are "reconstructed," which are consistent with known structure of the neutral molecules. This in turn means that the dissociation of the highly charged ions is reasonably described by the pure Coulomb explosion scheme.

  18. (The physics of highly charged ions)

    SciTech Connect

    Phaneuf, R.A.

    1990-10-12

    The Fifth International Conference on the Physics of Highly Charged Ions drew more than 200 participants, providing an excellent overview of this growing field. Important technical developments and experimental results in electron-ion collisions were reported. The merging of fast ion beams from accelerators or storage rings with advanced high-intensity electron-beam targets has yielded data of unprecedented quality on radiative and dielectronic recombination, providing stringent tests of theory. Long-awaited technical innovations in electron-impact excitation measurements were also reported. The level of activity in multicharged ion-surface interactions has increased. More sophisticated experimental studies of the neutralization process have shown the inadequacy of previously accepted mechanisms, and theoretical activity in this area is just being initiated. The IAEA meetings addressed atomic and molecular data needs for fusion research, with ITER providing a key focus. Such data are especially critical to modeling and diagnostics of the edge plasma. The ALADDIN data base system has been universally accepted and has streamlined the exchange of numerical data among data centers and the fusion community. The IAEA continues to play a pivotal role in the identification of data needs, and in the coordination of data compilation and research activities for fusion applications.

  19. ION SOURCE WITH SPACE CHARGE NEUTRALIZATION

    DOEpatents

    Flowers, J.W.; Luce, J.S.; Stirling, W.L.

    1963-01-22

    This patent relates to a space charge neutralized ion source in which a refluxing gas-fed arc discharge is provided between a cathode and a gas-fed anode to provide ions. An electron gun directs a controlled, monoenergetic electron beam through the discharge. A space charge neutralization is effected in the ion source and accelerating gap by oscillating low energy electrons, and a space charge neutralization of the source exit beam is effected by the monoenergetic electron beam beyond the source exit end. The neutralized beam may be accelerated to any desired energy at densities well above the limitation imposed by Langmuir-Child' s law. (AEC)

  20. Surface charge compensation for a highly charged Ion emissionmicroscope

    SciTech Connect

    McDonald, J.W.; Hamza, A.V.; Newman, M.W.; Holder, J.P.; Schneider, D.H.G.; Schenkel, T.

    2003-04-01

    A surface charge compensation electron flood gun has been added to the Lawrence Livermore National Laboratory (LLNL) highly charged ion (HCI) emission microscope. HCI surface interaction results in a significant charge residue being left on the surface of insulators and semiconductors. This residual charge causes undesirable aberrations in the microscope images and a reduction of the Time-Of-Flight (TOF) mass resolution when studying the surfaces of insulators and semiconductors. The benefits and problems associated with HCI microscopy and recent results of the electron flood gun enhanced HCI microscope are discussed.

  1. Dominance of the Breit interaction in the cross section and circular polarization of x-ray radiation following longitudinally-polarized-electron-impact excitation of highly charged ions

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin; Dong, Chen-Zhong; Jiang, Jun

    2014-08-01

    Longitudinally-polarized-electron-impact excitation cross sections from the ground state to the individual magnetic sublevels of the excited state 1s2s22p3/2(J = 2) of highly charged Be-like ions are calculated using a fully relativistic distorted-wave method. The contributions of the Breit interaction to the cross sections and circular polarizations of the 1s2s22p3/2(J = 2)→1s22s2(J = 0) magnetic quadrupole (M2) line for selected Be-like Ag43+, Ho63+, and Bi79+ ions are investigated systematically. It is found that the Breit interaction has a large effect and makes the cross sections increase, especially to the mf = -1 and -2 sublevels, the Breit interaction can modify the cross sections by several orders of magnitude. These dramatic influences also lead to a remarkable decrease in the circular polarization of subsequent x-ray radiation, the character of which becomes more and more evident with increasing incident energy and atomic number. And all these characteristics are very different from the conclusions for the linear polarization of radiation following the electron-impact process [S. Fritzsche, A. Surzhykov, and T. Stöhlker, Phys. Rev. Lett. 103, 113001 (2009), 10.1103/PhysRevLett.103.113001; Z. W. Wu, J. Jiang, and C. Z. Dong, Phys. Rev. A 84, 032713 (2011), 10.1103/PhysRevA.84.032713].

  2. Nonextensive electron and ion dust charging currents

    SciTech Connect

    Amour, Rabia; Tribeche, Mouloud

    2011-03-15

    The correct nonextensive electron and ion charging currents are presented for the first time based on the orbit motion limited approach. For -1charging current is expressed in terms of the hypergeometric function. The variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate succinctly the effects of nonextensive charge carriers. The obtained formulas bring a possibility to build theories on nonlinear collective process in variable charge nonextensive dusty plasmas.

  3. The impact of interplanetary transport on the charge spectra of heavy ions accelerated in solar energetic particle events

    NASA Astrophysics Data System (ADS)

    Kartavykh, Y. Y.; Dröge, W.; Kovaltsov, G. A.; Ostryakov, V. M.

    2006-01-01

    The effect of interplanetary propagation on the energy dependence of the iron mean ionic charge of solar cosmic rays is investigated. The diffusion convection transport equation is solved numerically making use of a Monte-Carlo approach. The interplanetary propagation results in a shift of charge spectra towards lower energies due to adiabatic deceleration which becomes stronger as the particles’ scattering mean free path decreases. Taking the above effect into account, we compare predictions of our model of charge-consistent stochastic acceleration with recent ACE observations. A detailed analysis of two particle events shows that our model can give a consistent explanation of the observed iron charge and energy spectra, and allows to put constrains on the temperature, density, and the acceleration and escape time scales in the acceleration region.

  4. Spectroscopy with trapped highly charged ions

    SciTech Connect

    Beiersdorfer, P

    2008-01-23

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed, and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  5. Ion thruster charge-exchange plasma flow

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Gabriel, S. B.; Kitamura, S.

    1982-01-01

    The electron bombardment ion thruster has been under development for a number of years and during this time, studies of the plasmas produced by the thrusters and their interactions with spacecraft have been evaluated, based on available data. Due to diagnostic techniques used and facility effects, there is uncertainty as to the reliability of data from these early studies. This paper presents data on the flow of the charge-exchange plasma produced just downstream of the thruster's ion optics. The 'end-effect' of a cylindrical Langmuir probe is used to determine ion density and directed ion velocity. Results are compared with data obtained from a retarding potential analyzer-Faraday cup.

  6. Measurement of Doubly Charged Ions in Ion Thruster Plumes

    NASA Technical Reports Server (NTRS)

    Williams, George J., Jr.; Domonkos, Matthew T.; Chavez, Joy M.

    2002-01-01

    The ratio of doubly to singly charged ions was measured in the plumes of a 30 cm and of a 40 cm ion thruster. The measured ratio was correlated with observed erosion rates and thruster operating conditions. The measured and calculated erosion rates paralleled variation in the j(sup ++)/j(sup +) ratio and indicated that the erosion was dominated by Xe III. Simple models of cathode potential surfaces which were developed in support of this work were in agreement with this conclusion and provided a predictive capability of the erosion given the ratio of doubly to singly charged ion currents.

  7. Lithium-Ion Cell Charge Control Unit

    NASA Technical Reports Server (NTRS)

    Reid, Concha; Button, Robert; Manzo, Michelle; McKissock, Barbara; Miller, Thomas; Gemeiner, Russel; Bennett, William; Hand, Evan

    2006-01-01

    Life-test data of Lithium-Ion battery cells is critical in order to establish their performance capabilities for NASA missions and Exploration goals. Lithium-ion cells have the potential to replace rechargeable alkaline cells in aerospace applications, but they require a more complex charging scheme than is typically required for alkaline cells. To address these requirements in our Lithium-Ion Cell Test Verification Program, a Lithium-Ion Cell Charge Control Unit was developed by NASA Glenn Research Center (GRC). This unit gives researchers the ability to test cells together as a pack, while allowing each cell to charge individually. This allows the inherent cell-to-cell variations to be addressed on a series string of cells and results in a substantial reduction in test costs as compared to individual cell testing. The Naval Surface Warfare Center at Crane, Indiana developed a power reduction scheme that works in conjunction with the Lithium-Ion Cell Charge Control Unit. This scheme minimizes the power dissipation required by the circuitry to prolong circuit life and improve its reliability.

  8. Time resolved ion beam induced charge collection

    SciTech Connect

    SEXTON,FREDERICK W.; WALSH,DAVID S.; DOYLE,BARNEY L.; DODD,PAUL E.

    2000-04-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a {minus}.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients.

  9. Study on space charge compensation in negative hydrogen ion beam.

    PubMed

    Zhang, A L; Peng, S X; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H(+) beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H(-) beam from a 2.45 GHz microwave driven H(-) ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results. PMID:26932087

  10. Study on space charge compensation in negative hydrogen ion beam.

    PubMed

    Zhang, A L; Peng, S X; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H(+) beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H(-) beam from a 2.45 GHz microwave driven H(-) ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  11. Investigation of ion capture in an electron beam ion trap charge-breeder for rare isotopes

    NASA Astrophysics Data System (ADS)

    Kittimanapun, Kritsada

    Charge breeding of rare isotope ions has become an important ingredient for providing reaccelerated rare isotope beams for science. At the National Superconducting Cyclotron Laboratory (NSCL), a reaccelerator, ReA, has been built that employs an advanced Electron Beam Ion Trap (EBIT) as a charge breeder. ReA will provide rare-isotope beams with energies of a few hundred keV/u up to tens of MeV/u to enable the study of properties of rare isotopes via low energy Coulomb excitation and transfer reactions, and to investigate nuclear reactions important for nuclear astrophysics. ReA consists of an EBIT charge breeder, a charge-over-mass selector, a room temperature radio-frequency quadrupole accelerator, and a superconducting radio-frequency linear accelerator. The EBIT charge breeder features a high-current electron gun, a long trap structure, and a hybrid superconducting magnet to reach both high acceptance for injected low-charge ions as well as high-electron beam current densities for fast charge breeding. In this work, continuous ion injection and capture in the EBIT have been investigated with a dedicated Monte-Carlo simulation code and in experimental studies. The Monte-Carlo code NEBIT considers the electron-impact ionization cross sections, space charge due to the electron beam current, ion dynamics, electric field from electrodes, and magnetic field from the superconducting magnet. Experiments were performed to study the capture efficiency as a function of injected ion beam current, electron beam current, trap size, and trap potential depth. The charge state evolution of trapped ions was studied, providing information about the effective current density of the electron beam inside the EBIT. An attempt was made to measure the effective space-charge potential of the electron beam by studying the dynamics of a beam injected and reflected inside the trap.

  12. Field evaporation of doubly charged ions from a polar liquid

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Novikova, L. I.

    2012-11-01

    The effect of charge on field evaporation of ions from polar liquids is considered. Using the electromembrane ion source, we performed mass-spectral analysis of field evaporation of ions from the solution of sodium sulfate in a water-glycerol mixture. The composition of doubly charged cluster ions in the field evaporation from glycerol is determined. The rates of the field evaporation of doubly charged ions and singly charged ions are compared. It is shown that the ion charge as well as its localization considerably influences the efficiency of field evaporation of ions from polar liquids.

  13. Detection method for dissociation of multiple-charged ions

    DOEpatents

    Smith, Richard D.; Udseth, Harold R.; Rockwood, Alan L.

    1991-01-01

    Dissociations of multiple-charged ions are detected and analyzed by charge-separation tandem mass spectrometry. Analyte molecules are ionized to form multiple-charged parent ions. A particular charge parent ion state is selected in a first-stage mass spectrometer and its mass-to-charge ratio (M/Z) is detected to determine its mass and charge. The selected parent ions are then dissociated, each into a plurality of fragments including a set of daughter ions each having a mass of at least one molecular weight and a charge of at least one. Sets of daughter ions resulting from the dissociation of one parent ion (sibling ions) vary in number but typically include two to four ions, one or more multiply-charged. A second stage mass spectrometer detects mass-to-charge ratio (m/z) of the daughter ions and a temporal or temporo-spatial relationship among them. This relationship is used to correlate the daughter ions to determine which (m/z) ratios belong to a set of sibling ions. Values of mass and charge of each of the sibling ions are determined simultaneously from their respective (m/z) ratios such that the sibling ion charges are integers and sum to the parent ion charge.

  14. Relativistic electron and ion dust charging currents

    SciTech Connect

    Tribeche, Mouloud; Boukhalfa, Soufiane

    2009-09-15

    A first theoretical attempt is made to present a relativistic generalization of the well-known orbit-limited motion theory. The appropriate relativistic (electron and ion) dust charging currents are derived. The nonlinear electrostatic potential is then expressed in terms of the variable dust charge and we take advantage of this new transcendental relation to investigate briefly the effects of relativistic charge carriers. As the relativistic character of the plasma increases, it becomes evident that certain negative values of the dust charge can never be achieved as increasingly larger values of the nonlinear potential are involved. The obtained formulas bring a possibility to build theories of nonlinear collective process in relativistic dusty plasmas.

  15. Ion Emission from Charged Liquid Surfaces

    NASA Astrophysics Data System (ADS)

    Loscertales, Ignacio Gonzalez

    1995-01-01

    The emission of small ions from electrospray (ES) droplets has been studied. The conclusions are the following: (1) ES of highly conducting solutions (K ~ 1 S/m) of polar liquids seeded with various salts yield highly charged monodisperse nanodroplets that are close to the ion-emission regime. The residues left after evaporation of these nanodroplets is found to be also monodisperse. Measurement of the diameter d_{rm r} and the charge N_{rm e} of the residues has been accomplished via aerosol techniques. These two quantities determine the electric field E on the residues. This field E is identical to the one on the droplet surface before complete solvent evaporation. (2) For a given solvent-salt pair, the value of E found on the residue of ion-emitting droplets is nearly insensitive to droplet size, salt concentration or type of counterion. This is in contradiction with Dole's Charge Residue Model (CRM) for ion evaporation from droplets. (3) Since the constancy of E relates d_{ rm r} and N_{rm e}, the rate of change of N_ {rm e} (rate of ion emission) is simply related to the rate of change of d_ {rm r}. Based on this scheme, data on the kinetics of emission of (R)_4N ^+ from formamide have been obtained. (4) An experimental challenge of existing field-evaporation theories requires knowledge of the Gibbs free energy of solvation of the pair solvent-ion. This has forced us to measure kinetic data from ES of water solutions of low conductivity. Although Muller's Image Potential Model (IPM) is found to differ from experimental observations by only 8%, it is disregarded as mechanistically inappropriate. However, a slightly modified version of Iribarne and Thomson's Ion Evaporation Model (IEM) leads to physically sound predictions nearly identical to those from the IPM, which rationalizes the experimental results within an 8% error.

  16. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    PubMed

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-01

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms.

  17. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    PubMed

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-01

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. PMID:21900733

  18. A new technique for the study of charge transfer in multiply charged ion-ion collisions

    SciTech Connect

    Shinpaugh, J.L.; Meyer, F.W.; Datz, S.

    1994-12-31

    While large cross sections (>10{sup {minus}16} cm{sup 2}) have been predicted for resonant charge transfer in ion-ion collisions, no experimental data exist for multiply charged systems. A novel technique is being developed at the ORNL ECR facility to allow study of symmetric charge exchange in multiply charged ion-ion collisions using a single ion source. Specific intra-beam charge transfer collisions occurring in a well-defined interaction region labeled by negative high voltage are identified and analyzed by electrostatic analysis in combination with ion time-of-flight coincidence detection of the collision products. Center-of-mass collision energies from 400 to 1000 eV are obtained by varying source and labeling-cell voltages. In addition, by the introduction of a target gas into the high-voltage cell, this labeling-voltage method allows measurement of electron-capture and -loss cross sections for ion-atom collisions. Consequently, higher collision energies can be investigated without the requirement of placing the ECR source on a high-voltage platform.

  19. Microwave ion source for low charge state ion production

    NASA Astrophysics Data System (ADS)

    Reijonen, J.; Eardley, M.; Gough, R.; Leung, K.; Thomae, R.

    2003-10-01

    The Plasma and Ion Source Technology Group at LBNL have developed a microwave ion source. The source consists of a stainless-steel plasma chamber, a permanent-magnet dipole structure and a coaxial microwave feed. Measurements were carried out to characterize the plasma and the ion beam produced in the ion source. These measurements included current density, charge state distribution, gas efficiency and accelerated beam emittance measurements. Using a computer controlled data acquisition system a new method of determining the saturation ion current was developed. Current density of 3-6 mA/cm 2 was measured with the source operating in the over dense mode. The highest measured charge-states were Ar 5+, O 3+ and Xe 7+. Gas efficiency was measured using a calibrated argon leak. Depending on the source pressure and discharge power, more than 20% total gas efficiency was achieved. The emittance of the ion beam was measured by using a pepper-pot device. Certain spread was noticed in the beam emittance in the perpendicular direction to the source dipole field. For the parallel direction to the magnetic field, the normalized rr' emittance of 0.032 π-mm-mrad at 13 kV of acceleration voltage and beam exit aperture of 3-mm-in-diameter was measured. This compares relatively well with the simulated value of 4 rms, normalized emittance value of 0.024 π-mm-mrad.

  20. Solar wind ion composition and charge states

    SciTech Connect

    Vonsteiger, R.

    1995-06-01

    The solar wind, a highly tenuous plasma streaming from the Sun into interplanetary space at supersonic speed, is roughly composed of 95% hydrogen and 5% helium by number. All other, heavy elements contribute less than 0.1% by number and thus are truly test particles Nevertheless, these particles provide valuable information not present in the main components. The authors first discuss the importance of the heavy ions as tracers for processes in the solar atmosphere. Specifically, their relative abundances are found to be different in the solar wind as compared to the photosphere. This fractionation, which is best organized as a function of the first ionization time (FIT) of the elements under solar surface conditions, provides information on the structure of the chromosphere, where it is imparted on the partially ionized material by an atom-ion separation mechanism. Moreover, the charge states of the heavy ions can be used to infer the coronal temperature, since they are frozen-in near the altitude where the expansion time scale overcomes the ionization/recombination time scales. Next, the authors review the published values of ion abundances in the solar wind, concentrating on the recent results of the SWICS instrument on Ulysses. About 8 elements and more than 20 charge states can be routinely analyzed by this sensor. There is clear evidence that both the composition and the charge state distribution is significantly different in the fast solar wind from the south polar coronal hole, traversed by Ulysses in 1993/94, as compared to the solar wind normally encountered near the ecliptic plane. The fractionation between low- and high-FIT elements is reduced, and the charge states indicate a lower, more uniform coronal temperature in the hole. Finally, the authors discuss these results in the framework of existing theoretical models of the chromosphere and corona, attempting to identify differences between the low- and high-latitude regions of the solar atmosphere.

  1. Electronic Structure Calculations of Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Bromley, Steve; Ziolkowski, Marcin; Marler, Joan

    2016-05-01

    Exotic systems like Highly Charged Ions (HCIs) are attracting more attention based on their properties and possible interactions. Abundance of HCIs in the solar wind and their interaction with the upper atmosphere puts them in the attention of astro- and atmospheric physicists. Also, their unique properties originating in the high charge make them an excellent candidate for precision measurements and the next generation of atomic clocks. For a better understanding of the dynamics of processes involving HCIs a combined theoretical and experimental effort is needed to study their basic properties and interactions. Both theory and experiment need to be combined due to the extreme nature of these systems. We present preliminary insight into electronic structure of light HCIs, their interactions with neutral atoms and dynamics of charge transfer processes.

  2. Multiple ionization and complete fragmentation of OCS by impact with highly charged ions Ar4+ and Ar8+ at 15 keV q-1

    NASA Astrophysics Data System (ADS)

    Wales, Benji; Motojima, Tomonori; Matsumoto, Jun; Long, ZiJian; Liu, Wing-Ki; Shiromaru, Haruo; Sanderson, Joseph

    2012-02-01

    We have used time- and position-sensitive detection in a coincidence arrangement to study the multiple ionization of OCS in collisions with Ar4+ and Ar8+ at 15 keV q-1 followed by complete breakup of the molecule OCS—Oa++ Cb+ + Sc+. We have compared our results with theoretical values derived by simulating the breakup, from ground state distributions of bond lengths and bond angle assuming a point-like ion and purely Coulombic potential. This comparison shows that in general the experimental distributions of energy release are broader and peak at lower energy than calculated. Better agreement between measurement and calculation is however found with increasing the final charge state. Furthermore, the amount of induced bending is considerably less for the high charge states. However, even where total energy release is close to Coulombic (6+) individual fragment ion energy distributions differ from the expected values because of the degree of bending. Using Newton and Dalitz plots, we are able to identify the extent of concerted and stepwise processes. Our results indicate a higher degree of asymmetric bond processes at a low charge state (3+) where small amounts (<7%) of the stepwise processes are also measurable.

  3. Precision mass measurements of highly charged ions

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, A. A.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mane, E.; MacDonald, T. D.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2012-10-01

    The reputation of Penning trap mass spectrometry for accuracy and precision was established with singly charged ions (SCI); however, the achievable precision and resolving power can be extended by using highly charged ions (HCI). The TITAN facility has demonstrated these enhancements for long-lived (T1/2>=50 ms) isobars and low-lying isomers, including ^71Ge^21+, ^74Rb^8+, ^78Rb^8+, and ^98Rb^15+. The Q-value of ^71Ge enters into the neutrino cross section, and the use of HCI reduced the resolving power required to distinguish the isobars from 3 x 10^5 to 20. The precision achieved in the measurement of ^74Rb^8+, a superallowed β-emitter and candidate to test the CVC hypothesis, rivaled earlier measurements with SCI in a fraction of the time. The 111.19(22) keV isomeric state in ^78Rb was resolved from the ground state. Mass measurements of neutron-rich Rb and Sr isotopes near A = 100 aid in determining the r-process pathway. Advanced ion manipulation techniques and recent results will be presented.

  4. Space charge induced nonlinear effects in quadrupole ion traps.

    PubMed

    Guo, Dan; Wang, Yuzhuo; Xiong, Xingchuang; Zhang, Hua; Zhang, Xiaohua; Yuan, Tao; Fang, Xiang; Xu, Wei

    2014-03-01

    A theoretical method was proposed in this work to study space charge effects in quadrupole ion traps, including ion trapping, ion motion frequency shift, and nonlinear effects on ion trajectories. The spatial distributions of ion clouds within quadrupole ion traps were first modeled for both 3D and linear ion traps. It is found that the electric field generated by space charge can be expressed as a summation of even-order fields, such as quadrupole field, octopole field, etc. Ion trajectories were then solved using the harmonic balance method. Similar to high-order field effects, space charge will result in an "ocean wave" shape nonlinear resonance curve for an ion under a dipolar excitation. However, the nonlinear resonance curve will be totally shifted to lower frequencies and bend towards ion secular frequency as ion motion amplitude increases, which is just the opposite effect of any even-order field. Based on theoretical derivations, methods to reduce space charge effects were proposed.

  5. Charge neutralization apparatus for ion implantation system

    DOEpatents

    Leung, Ka-Ngo; Kunkel, Wulf B.; Williams, Malcom D.; McKenna, Charles M.

    1992-01-01

    Methods and apparatus for neutralization of a workpiece such as a semiconductor wafer in a system wherein a beam of positive ions is applied to the workpiece. The apparatus includes an electron source for generating an electron beam and a magnetic assembly for generating a magnetic field for guiding the electron beam to the workpiece. The electron beam path preferably includes a first section between the electron source and the ion beam and a second section which is coincident with the ion beam. The magnetic assembly generates an axial component of magnetic field along the electron beam path. The magnetic assembly also generates a transverse component of the magnetic field in an elbow region between the first and second sections of the electron beam path. The electron source preferably includes a large area lanthanum hexaboride cathode and an extraction grid positioned in close proximity to the cathode. The apparatus provides a high current, low energy electron beam for neutralizing charge buildup on the workpiece.

  6. Formation of charge states of heavy ions in SEP events

    NASA Astrophysics Data System (ADS)

    Kartavykh, J. Y.; Kocharov, L.

    2007-12-01

    One can divide the formation of charge states of heavy ions in SEP events into two stages - formation of charge states during ion acceleration and their transformation due to coronal and interplanetary propagation. At the first stage the charge states of ions are formed as a result of competition of ionization and recombination processes, with possible charge-dependent acceleration. If ions were moving with a constant speed through a plasma for infinitely long time, the ionic charge of energetic ions would asymptotically reach an upper limit, the equilibrium mean charge, so that the mean charge of accelerated ions is between its thermal and equilibrium value. Coronal and interplanetary propagation can modify the charge spectra; coronal propagation by additional stripping after acceleration in a sufficiently dense environment, interplanetary propagation due to adiabatic deceleration in the expanding solar wind by shifting the charge spectra towards lower energies. The absolute value of this shift depends on the mean free path of energetic ions in interplanetary space that can be derived from the observed intensity-time profiles and anisotropies. In this paper we review recent achievements in the modeling of the charge-consistent acceleration and transport of solar ions as applied to the ionic charge states of iron.

  7. Possible Diamond-Like Nanoscale Structures Induced by Slow Highly-Charged Ions on Graphite (HOPG)

    SciTech Connect

    Sideras-Haddad, E.; Schenkel, T.; Shrivastava, S.; Makgato, T.; Batra, A.; Weis, C. D.; Persaud, A.; Erasmus, R.; Mwakikunga, B.

    2009-01-06

    The interaction between slow highly-charged ions (SHCI) of different charge states from an electron-beam ion trap and highly oriented pyrolytic graphite (HOPG) surfaces is studied in terms of modification of electronic states at single-ion impact nanosizeareas. Results are presented from AFM/STM analysis of the induced-surface topological features combined with Raman spectroscopy. I-V characteristics for a number of different impact regions were measured with STM and the results argue for possible formation of diamond-like nanoscale structures at the impact sites.

  8. Electron Flood Charge Compensation Device for Ion Trap Secondary Ion Mass Spectrometry

    SciTech Connect

    Appelhans, Anthony David; Ward, Michael Blair; Olson, John Eric

    2002-11-01

    During secondary ion mass spectrometry (SIMS) analyses of organophosphorous compounds adsorbed onto soils, the measured anion signals were lower than expected and it was hypothesized that the low signals could be due to sample charging. An electron flood gun was designed, constructed and used to investigate sample charging of these and other sample types. The flood gun was integrated into one end cap of an ion trap secondary ion mass spectrometer and the design maintained the geometry of the self-stabilizing extraction optics used in this instrument. The SIMION ion optics program was used to design the flood gun, and experimental results agreed with the predicted performance. Results showed the low anion signals from the soils were not due to sample charging. Other insulating and conducting samples were tested using both a ReO4- and a Cs+ primary ion beam. The proximity of the sample and electron source to the ion trap aperture resulted in generation of background ions in the ion trap via electron impact (EI) ionization during the period the electron gun was flooding the sample region. When using the electron gun with the ReO4- primary beam, the required electron current was low enough that the EI background was negligible; however, the high electron flood current required with the Cs+ beam produced background EI ions that degraded the quality of the mass spectra. The consequences of the EI produced cations will have to be evaluated on a sample-by-sample basis when using electron flood. It was shown that the electron flood gun could be intentionally operated to produce EI spectra in this instrument. This offers the opportunity to measure, nearly simultaneously, species evaporating from a sample, via EI, and species bound to the surface, via SIMS.

  9. Evidence for charge exchange effects in electronic excitations in Al by slow singly charged He ions

    NASA Astrophysics Data System (ADS)

    Riccardi, P.; Sindona, A.; Dukes, C. A.

    2016-09-01

    We report on experiments of secondary electron emission in the interaction of helium ions with aluminum surfaces. Comparison between the electron emission induced by the impact of 3He+ and 4He+ on Al illustrates similarities and differences between the two projectiles. The intensity of emission shows the same dependence on velocity for the two isotopes, showing that KEE yields for helium ions impact on Al are dominated by direct excitation of valence electrons and not by electron promotion. Electron promotion and charge transfer processes are unambiguously identified by the observation of Auger electron emission from Al, at energies below the excitation threshold of Al-Al collisions, indicating energy losses for the projectiles higher than those commonly considered.

  10. Solvated calcium ions in charged silica nanopores

    NASA Astrophysics Data System (ADS)

    Bonnaud, Patrick A.; Coasne, Benoît; Pellenq, Roland J.-M.

    2012-08-01

    Hydroxyl surface density in porous silica drops down to nearly zero when the pH of the confined aqueous solution is greater than 10.5. To study such extreme conditions, we developed a model of slit silica nanopores where all the hydrogen atoms of the hydroxylated surface are removed and the negative charge of the resulting oxygen dangling bonds is compensated by Ca2+ counterions. We employed grand canonical Monte Carlo and molecular dynamics simulations to address how the Ca2+ counterions affect the thermodynamics, structure, and dynamics of confined water. While most of the Ca2+ counterions arrange themselves according to the so-called "Stern layer," no diffuse layer is observed. The presence of Ca2+ counterions affects the pore filling for strong confinement where the surface effects are large. At full loading, no significant changes are observed in the layering of the first two adsorbed water layers compared to nanopores with fully hydroxylated surfaces. However, the water structure and water orientational ordering with respect to the surface is much more disturbed. Due to the super hydrophilicity of the Ca2+-silica nanopores, water dynamics is slowed down and vicinal water molecules stick to the pore surface over longer times than in the case of hydroxylated silica surfaces. These findings, which suggest the breakdown of the linear Poisson-Boltzmann theory, provide important information about the properties of nanoconfined electrolytes upon extreme conditions where the surface charge and ion concentration are large.

  11. Frequency metrology using highly charged ions

    NASA Astrophysics Data System (ADS)

    Crespo López-Urrutia, J. R.

    2016-06-01

    Due to the scaling laws of relativistic fine structure splitting, many forbidden optical transitions appear within the ground state configurations of highly charged ions (HCI). In some hydrogen-like ions, even the hyperfine splitting of the 1s ground state gives rise to optical transitions. Given the very low polarizability of HCI, such laser-accessible transitions are extremely impervious to external perturbations and systematics that limit optical clock performance and arise from AC and DC Stark effects, such as black-body radiation and light shifts. Moreover, AC and DC Zeeman splitting are symmetric due to the much larger relativistic spin-orbit coupling and corresponding fine-structure splitting. Appropriate choice of states or magnetic sub-states with suitable total angular momentum and magnetic quantum numbers can lead to a cancellation of residual quadrupolar shifts. All these properties are very advantageous for the proposed use of HCI forbidden lines as optical frequency standards. Extremely magnified relativistic, quantum electrodynamic, and nuclear size contributions to the binding energies of the optically active electrons make HCI ideal tools for fundamental research, as in proposed studies of a possible time variation of the fine structure constant. Beyond this, HCI that cannot be photoionized by vacuum-ultraviolet photons could also provide frequency standards for future lasers operating in that range.

  12. Cooling of highly charged ions in a Penning trap

    SciTech Connect

    Gruber, L

    2000-03-31

    Highly charged ions are extracted from an electron beam ion trap and guided to Retrap, a cryogenic Penning trap, where they are merged with laser cooled Be{sup +} ions. The Be{sup +} ions act as a coolant for the hot highly charged ions and their temperature is dropped by about 8 orders of magnitude in a few seconds. Such cold highly charged ions form a strongly coupled nonneutral plasma exhibiting, under such conditions, the aggregation of clusters and crystals. Given the right mixture, these plasmas can be studied as analogues of high density plasmas like white dwarf interiors, and potentially can lead to the development of cold highly charged ion beams for applications in nanotechnology. Due to the virtually non existent Doppler broadening, spectroscopy on highly charged ions can be performed to an unprecedented precision. The density and the temperature of the Be{sup +} plasma were measured and highly charged ions were sympathetically cooled to similar temperatures. Molecular dynamics simulations confirmed the shape, temperature and density of the highly charged ions. Ordered structures were observed in the simulations.

  13. High sensitivity charge amplifier for ion beam uniformity monitor

    DOEpatents

    Johnson, Gary W.

    2001-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  14. Problems with Accurate Atomic Lfetime Measurements of Multiply Charged Ions

    SciTech Connect

    Trabert, E

    2009-02-19

    A number of recent atomic lifetime measurements on multiply charged ions have reported uncertainties lower than 1%. Such a level of accuracy challenges theory, which is a good thing. However, a few lessons learned from earlier precision lifetime measurements on atoms and singly charged ions suggest to remain cautious about the systematic errors of experimental techniques.

  15. Charge breeding simulations for radioactive ion beam production

    SciTech Connect

    Variale, V.; Raino, A. C.; Clauser, T.

    2012-02-15

    The charge breeding technique is used for radioactive ion beam (RIB) production in order of optimizing the re-acceleration of the radioactive element ions produced by a primary beam in a thick target. Charge breeding is achieved by means of a device capable of increasing the ion charge state from 1+ to a desired value n+. In order to get high intensity RIB, experiments with charge breeding of very high efficiency could be required. To reach this goal, the charge breeding simulation could help to optimize the high charge state production efficiency by finding more proper parameters for the radioactive 1+ ions. In this paper a device based on an electron beam ion source (EBIS) is considered. In order to study that problem, a code already developed for studying the ion selective containment in an EBIS with RF quadrupoles, BRICTEST, has been modified to simulate the ion charge state breeding rate for different 1+ ion injection conditions. Particularly, the charge breeding simulations for an EBIS with a hollow electron beam have been studied.

  16. Maximizing ion current by space-charge neutralization using negative ions and dust particles

    SciTech Connect

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2005-05-15

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space-charge neutralization are introduced. Space-charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space-charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster.

  17. Slow highly charged ion induced nanopit formation on the KCl(001) surface

    NASA Astrophysics Data System (ADS)

    Wilhelm, R. A.; Heller, R.; Facsko, S.

    2016-08-01

    We report on nanostructuring of the KCl(001) surface induced by the individual impact of slow highly charged ions. Samples were irradiated with Xe ions with charge states of Q = 15 to 40 at kinetic energies from 1.7 to 160 keV. The formation of nanopits at the virgin surface is observed and attributed to a defect-mediated desorption process involving the removal of up to 2000 surface atoms per incident ion. The depth of the produced pits is shallow, but not limited to the first monolayer. From the variation of the ion parameters (charge state and kinetic energy) we derive a phase diagram for the structuring of the KCl(001) surface with highly charged ions.

  18. EBIS charge breeder for radioactive ion beams at ATLAS.

    SciTech Connect

    Ostroumov, P.; Kondrashev, S.; Pardo, R.; Savard, G.; Vondrasek, R.; Alessi, J.; Beebe, E.; Pikin, A.

    2010-07-01

    The construction of the Californium Rare Isotope Breeder Upgrade (CARIBU) for the Argonne National Laboratory ATLAS facility is completed and its commissioning is being performed. In its full capacity, the CARIBU facility will use fission fragments from a 1 Curie (Ci) {sup 252}Cf source. The ions will be thermalized and collected into a low-energy ion beam by a helium gas catcher, mass analyzed by an isobar separator, and charge bred to higher charge states for acceleration in ATLAS. To reach energies E/A 10 MeV/u, one should inject ions with charge-to-mass ratio (q/A) {ge} 1/7 into the ATLAS linac. In the first stage, the existing Electron Cyclotron Resonance (ECR) ion source will be used as a charge breeder. The maximum intensity of radioactive ion beams at the output of the gas catcher will not exceed 10{sup 7} ions per second. A charge breeder based on an Electron Beam Ion Source (EBIS) has significant advantages over the ECR option for ion beam intensities up to about 10{sup 9} ions per second, providing 3-4 times higher efficiency and significantly better purity of highly charged radioactive ion beams for further acceleration. The proposed EBIS project for CARIBU will heavily utilize state-of-the-art EBIS technology recently developed at Brookhaven National Laboratory. This will allow us to reduce both the project cost and timescale, simultaneously insuring reliable technical realization of the cutting-edge technology. Several parameters of the CARIBU EBIS charge breeder (EBIS-CB) will be relaxed with respect to the BNL EBIS in favor of higher reliability and lower cost. Technical performance of the CARIBU charge breeder will not suffer from such a relaxation and will provide high efficiency for a whole range of radioactive ion beams. The goal of this paper is to present the initial design of the EBIS charge breeder for radioactive ion beams at ATLAS.

  19. EBIS charge breeder for radioactive ion beams at ATLAS

    NASA Astrophysics Data System (ADS)

    Ostroumov, P.; Kondrashev, S.; Pardo, R.; Savard, G.; Vondrasek, R.; Alessi, J.; Beebe, E.; Pikin, A.

    2010-07-01

    The construction of the Californium Rare Isotope Breeder Upgrade (CARIBU) for the Argonne National Laboratory ATLAS facility is completed and its commissioning is being performed. In its full capacity, the CARIBU facility will use fission fragments from a 1 Curie (Ci) 252Cf source. The ions will be thermalized and collected into a low-energy ion beam by a helium gas catcher, mass analyzed by an isobar separator, and charge bred to higher charge states for acceleration in ATLAS. To reach energies E/A 10 MeV/u, one should inject ions with charge-to-mass ratio (q/A) >= 1/7 into the ATLAS linac. In the first stage, the existing Electron Cyclotron Resonance (ECR) ion source will be used as a charge breeder. The maximum intensity of radioactive ion beams at the output of the gas catcher will not exceed 107 ions per second. A charge breeder based on an Electron Beam Ion Source (EBIS) has significant advantages over the ECR option for ion beam intensities up to about 109 ions per second, providing 3-4 times higher efficiency and significantly better purity of highly charged radioactive ion beams for further acceleration. The proposed EBIS project for CARIBU will heavily utilize state-of-the-art EBIS technology recently developed at Brookhaven National Laboratory. This will allow us to reduce both the project cost and timescale, simultaneously insuring reliable technical realization of the cutting-edge technology. Several parameters of the CARIBU EBIS charge breeder (EBIS-CB) will be relaxed with respect to the BNL EBIS in favor of higher reliability and lower cost. Technical performance of the CARIBU charge breeder will not suffer from such a relaxation and will provide high efficiency for a whole range of radioactive ion beams. The goal of this paper is to present the initial design of the EBIS charge breeder for radioactive ion beams at ATLAS.

  20. EBIS charge breeder for radioactive ion beams at ATLAS

    SciTech Connect

    Ostroumov, P.; Alessi, J.; Kondrashev, S.; Pardo, R.; Savard, G.; Vondrasek, R.; Beebe, E.; Pikin, A.

    2010-07-20

    The construction of the Californium Rare Isotope Breeder Upgrade (CARIBU) for the Argonne National Laboratory ATLAS facility is completed and its commissioning is being performed. In its full capacity, the CARIBU facility will use fission fragments from a 1 Curie (Ci) {sup 252}Cf source. The ions will be thermalized and collected into a low-energy ion beam by a helium gas catcher, mass analyzed by an isobar separator, and charge bred to higher charge states for acceleration in ATLAS. To reach energies E/A 10 MeV/u, one should inject ions with charge-to-mass ratio (q/A) {ge} 1/7 into the ATLAS linac. In the first stage, the existing Electron Cyclotron Resonance (ECR) ion source will be used as a charge breeder. The maximum intensity of radioactive ion beams at the output of the gas catcher will not exceed 10{sup 7} ions per second. A charge breeder based on an Electron Beam Ion Source (EBIS) has significant advantages over the ECR option for ion beam intensities up to about 10{sup 9} ions per second, providing 3-4 times higher efficiency and significantly better purity of highly charged radioactive ion beams for further acceleration. The proposed EBIS project for CARIBU will heavily utilize state-of-the-art EBIS technology recently developed at Brookhaven National Laboratory. This will allow us to reduce both the project cost and timescale, simultaneously insuring reliable technical realization of the cutting-edge technology. Several parameters of the CARIBU EBIS charge breeder (EBIS-CB) will be relaxed with respect to the BNL EBIS in favor of higher reliability and lower cost. Technical performance of the CARIBU charge breeder will not suffer from such a relaxation and will provide high efficiency for a whole range of radioactive ion beams. The goal of this paper is to present the initial design of the EBIS charge breeder for radioactive ion beams at ATLAS.

  1. Charge-exchange born He(+) ions in the solar wind

    NASA Technical Reports Server (NTRS)

    Gruntman, Michael A.

    1992-01-01

    The effect of charge transfer between solar wind alpha-particles and hydrogen atoms of interstellar origin is revisited. Singly-charged helium ions born in the charge transfer carry important information on processes in the solar wind and the heliosphere. The velocity distribution of such He(+) ions is substantially different from that of He(+) pick-up ions due to ionization of the interstellar helium atoms. Estimates of the expected abundances of the charge-exchange born He(+) in the solar wind are presented, and the possibility of measuring this plasma component on deep space missions is discussed.

  2. Charge-exchange born He(+) ions in the solar wind

    NASA Astrophysics Data System (ADS)

    Gruntman, Michael A.

    1992-07-01

    The effect of charge transfer between solar wind alpha-particles and hydrogen atoms of interstellar origin is revisited. Singly-charged helium ions born in the charge transfer carry important information on processes in the solar wind and the heliosphere. The velocity distribution of such He(+) ions is substantially different from that of He(+) pick-up ions due to ionization of the interstellar helium atoms. Estimates of the expected abundances of the charge-exchange born He(+) in the solar wind are presented, and the possibility of measuring this plasma component on deep space missions is discussed.

  3. Excitation of target Auger-electron emission by the impact of highly charged ions: N sup 6+ , O sup 7+ , and Ne sup 9+ on Pt(110)

    SciTech Connect

    Schippers, S.; Hustedt, S.; Heiland, W. ); Koehrbrueck, R. ); Bleck-Neuhaus, J. ); Kemmler, J. ); Lecler, D.; Stolterfoht, N. )

    1992-10-01

    We studied the interaction of highly charged ions on metal surfaces leading to the emission of electrons from the projectile and from the target. The target electrons are due to potential emission, kinetic emission, and Auger-electron emission. In our electron spectra two types of target Auger electrons are distinguished. Electrons near 135 and 220 eV are ascribed to Pt {ital N}{sub 45}{ital O1}{ital O23} and {ital N}{sub 45}{ital N67}{ital V} Auger transitions. They are caused by {ital K}-vacancy transfer into the Pt {ital N} shell and are only emitted under bombardment with N{sup 6+} and O{sup 7+}. The other type of electrons near 40 and 60 eV are ascribed to Pt {ital O}{sub 23}{ital VV} and {ital N}{sub 67}{ital VV} Auger transitions. They are due to direct ionization and are emitted under bombardment with each projectile used. According to our analysis, the initial projectile {ital K}-shell vacancy survives the transport to and at least 8{times}10{sup {minus}16} s within the target surface.

  4. Calculations of heavy ion charge state distributions for nonequilibrium conditions

    NASA Technical Reports Server (NTRS)

    Luhn, A.; Hovestadt, D.

    1985-01-01

    Numerical calculations of the charge state distributions of test ions in a hot plasma under nonequilibrium conditions are presented. The mean ionic charges of heavy ions for finite residence times in an instantaneously heated plasma and for a non-Maxwellian electron distribution function are derived. The results are compared with measurements of the charge states of solar energetic particles, and it is found that neither of the two simple cases considered can explain the observations.

  5. Gu's function scale of ion hydration force and charge size

    NASA Astrophysics Data System (ADS)

    Gu, Hong-Kan

    1997-06-01

    “Water Vapor Chemistry” as a new science was discovered and established from trace analysis in Gu's laboratory(Gu, 1991; Gu et al., 1991). Gu's Function shows that the trace metal ion concentration in water vapor has positive correlation to “specific electron affinity constant” last ionization potential I z/ion valence Z and negative correlation to ion volume V and coordination number N(Gu, 1994). Gu's Function C=f[(Iz/Z)/VN] of the bond parameter in water vapor chemistry corresponds to the potential energy function Z'e 2/r in the Schrodinger Equation of quantum chemistry. In, different ions with the same 2+ charge, the ion concentration of water—water vapor transfer may be much different. This shows that the 2+ charge of different ions has different attractive force (hydration force). This different attractive force of the charge can be scaled with the relative energy or charge size from Gu's Function.

  6. Highly charged ions in magnetic fusion plasmas: research opportunities and diagnostic necessities

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.

    2015-07-01

    Highly charged ions play a crucial role in magnetic fusion plasmas. These plasmas are excellent sources for producing highly charged ions and copious amounts of radiation for studying their atomic properties. These studies include calibration of density diagnostics, x-ray production by charge exchange, line identifications and accurate wavelength measurements, and benchmark data for ionization balance calculations. Studies of magnetic fusion plasmas also consume a large amount of atomic data, especially in order to develop new spectral diagnostics. Examples we give are the need for highly accurate wavelengths as references for measurements of bulk plasma motion, the need for accurate line excitation rates that encompass both electron-impact excitation and indirect line formation processes, for accurate position and resonance strength information of dielectronic recombination satellite lines that may broaden or shift diagnostic lines or that may provide electron temperature information, and the need for accurate ionization balance calculations. We show that the highly charged ions of several elements are of special current interest to magnetic fusion, notably highly charged ions of argon, iron, krypton, xenon, and foremost of tungsten. The electron temperatures thought to be achievable in the near future may produce W70+ ions and possibly ions with even higher charge states. This means that all but a few of the most highly charged ions are of potential interest as plasma diagnostics or are available for basic research.

  7. Highly charged ion based time of flight emission microscope

    DOEpatents

    Barnes, Alan V.; Schenkel, Thomas; Hamza, Alex V.; Schneider, Dieter H.; Doyle, Barney

    2001-01-01

    A highly charged ion based time-of-flight emission microscope has been designed, which improves the surface sensitivity of static SIMS measurements because of the higher ionization probability of highly charged ions. Slow, highly charged ions are produced in an electron beam ion trap and are directed to the sample surface. The sputtered secondary ions and electrons pass through a specially designed objective lens to a microchannel plate detector. This new instrument permits high surface sensitivity (10.sup.10 atoms/cm.sup.2), high spatial resolution (100 nm), and chemical structural information due to the high molecular ion yields. The high secondary ion yield permits coincidence counting, which can be used to enhance determination of chemical and topological structure and to correlate specific molecular species.

  8. Charge transfer reactions in multiply charged ion-atom collisions. [in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Steigman, G.

    1975-01-01

    Charge-transfer reactions in collisions between highly charged ions and neutral atoms of hydrogen and/or helium may be rapid at thermal energies. If these reactions are rapid, they will suppress highly charged ions in H I regions and guarantee that the observed absorption features from such ions cannot originate in the interstellar gas. A discussion of such charge-transfer reactions is presented and compared with the available experimental data. The possible implications of these reactions for observations of the interstellar medium, H II regions, and planetary nebulae are outlined.

  9. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    SciTech Connect

    Jeong, S. C.; Oyaizu, M.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Niki, K.; Okada, M.; Watanabe, Y. X.; Otokawa, Y.; Osa, A.; Ichikawa, S.

    2012-02-15

    We investigated the ion-loss distribution on the sidewall of an electron cyclotron resonance (ECR) plasma chamber using the 18-GHz ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex (TRIAC). Similarities and differences between the ion-loss distributions (longitudinal and azimuthal) of different ion species (i.e., radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions that are typical volatile and nonvolatile elements) was qualitatively discussed to understand the element dependence of the charge breeding efficiency. Especially, the similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  10. EXPERIMENTAL INVESTIGATIONS OF ION CHARGE DISTRIBUTIONS, EFFECTIVE ELECTRON DENSITIES, AND ELECTRON-ION CLOUD OVERLAP IN ELECTRON BEAM ION TRAP PLASMA USING EXTREME-ULTRAVIOLET SPECTROSCOPY

    SciTech Connect

    Liang, G. Y.; Crespo Lopez-Urrutia, J. R.; Baumann, T. M.; Epp, S. W.; Gonchar, A.; Mokler, P. H.; Simon, M. C.; Tawara, H.; Maeckel, V.; Ullrich, J.; Lapierre, A.; Yao, K.; Zou, Y.; Zhao, G. E-mail: crespojr@mpi-hd.mpg.de

    2009-09-10

    Spectra in the extreme ultraviolet range from 107 to 353 A emitted from Fe ions in various ionization stages have been observed at the Heidelberg electron beam ion trap (EBIT) with a flat-field grating spectrometer. A series of transition lines and their intensities have been analyzed and compared with collisional-radiative simulations. The present collisional-radiative model reproduces well the relative line intensities and facilitates line identification of ions produced in the EBIT. The polarization effect on the line intensities resulting from nonthermal unidirectional electron impact was explored and found to be significant (up to 24%) for a few transition lines. Based upon the observed line intensities, relative charge state distributions (CSD) of ions were determined, which peaked at Fe{sup 23+} tailing toward lower charge states. Another simulation on ion charge distributions including the ionization and electron capture processes generated CSDs which are in general agreement with the measurements. By observing intensity ratios of specific lines from levels collisionally populated directly from the ground state and those starting from the metastable levels of Fe XXI, Fe X and other ionic states, the effective electron densities were extracted and found to depend on the ionic charge. Furthermore, it was found that the overlap of the ion cloud with the electron beam estimated from the effective electron densities strongly depends on the charge state of the ion considered, i.e. under the same EBIT conditions, higher charge ions show less expansion in the radial direction.

  11. The charge spectrum of positive ions in a hydrogen aurora

    NASA Technical Reports Server (NTRS)

    Lynch, J.; Pulliam, D.; Leach, R.; Scherb, F.

    1976-01-01

    An auroral ion charge spectrometer was flown into a hydrogen aurora on a Javelin sounding rocket launched from Churchill, Manitoba. The instrument contained an electrostatic analyzer which selected particles with incident energy per unit charge up to 20 keV/charge and an 80-kV power supply which accelerated these ions onto an array of solid state detectors. Ions tentatively identified as H(+), He(+2), and O(+) were detected from 225 to 820 km in altitude. The experiment did not discriminate between H(+) and He(+), or between O(+), N(+), and C(+). Upper limits of highly charged heavy ion abundances have been set at 20% of the He(+2) and 0.15% of the H(+). It is concluded that both terrestrial and solar wind sources play significant roles in auroral ion precipitation.

  12. Highly Charged Ions in Rare Earth Permanent Magnet Penning Traps

    NASA Astrophysics Data System (ADS)

    Guise, Nicholas D.; Brewer, Samuel M.; Tan, Joseph N.

    A newly constructed apparatus at the United States National Institute of Standards and Technology (NIST) is designed for the isolation, manipulation, and study of highly charged ions. Highly charged ions are produced in the NIST electron-beam ion trap (EBIT), extracted through a beamline that selects a single mass/charge species, then captured in a compact Penning trap. The magnetic field of the trap is generated by cylindrical NdFeB permanent magnets integrated into its electrodes. In a room-temperature prototype trap with a single NdFeB magnet, species including Ne10+ and N7+ were confined with storage times of order 1 second, showing the potential of this setup for manipulation and spectroscopy of highly charged ions in a controlled environment. Ion capture has since been demonstrated with similar storage times in a more-elaborate Penning trap that integrates two coaxial NdFeB magnets for improved B-field homogeneity. Ongoing experiments utilize a second-generation apparatus that incorporates this two-magnet Penning trap along with a fast time-of-flight MCP detector capable of resolving the charge-state evolution of trapped ions. Holes in the two-magnet Penning trap ring electrode allow for optical and atomic beam access. Possible applications include spectroscopic studies of one-electron ions in Rydberg states, as well as highly charged ions of interest in atomic physics, metrology, astrophysics, and plasma diagnostics.

  13. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    SciTech Connect

    Spädtke, Peter

    2014-02-15

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation.

  14. The role of space charge compensation for ion beam extraction and ion beam transport (invited).

    PubMed

    Spädtke, Peter

    2014-02-01

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation.

  15. STUDIES OF X-RAY PRODUCTION FOLLOWING CHARGE EXCHANGE RECOMBINATION BETWEEN HIGHLY CHARGED IONS AND NEUTRAL ATOMS AND MOLECULES

    SciTech Connect

    Brown, G V; Beiersdorfer, P; Chen, H; Clementson, J; Frankel, M; Gu, M F; Kelley, R L; Kilbourne, C A; Porter, F S; Thorn, D B; Wargelin, B J

    2008-08-28

    We have used microcalorimeters built by the NASA/Goddard Space Flight Center and the Lawrence Livermore National Laboratory Electron Beam Ion Trap to measure X-ray emission produced by charge exchange reactions between highly charged ions colliding with neutral helium, hydrogen, and nitrogen gas. Our measurements show the spectral dependence on neutral species and also show the distinct differences between spectra produced by charge exchange reactions and those produced by direct impact excitation. These results are part of an ongoing experimental investigation at the LLNL EBIT facility of charge exchange spectral signatures and can be used to interpret X-ray spectra produced by a variety of laboratory and celestial sources including cometary and planetary atmospheres, the Earth's magnetosheath, the heliosphere, and tokamaks.

  16. ECR sources for the production of highly charged ions

    SciTech Connect

    Lyneis, C.M.; Antaya, T.A; Michigan State Univ., East Lansing, MI )

    1989-09-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) using RF between 5 and 16 GHz have been developed into stable, reliable sources of highly charged ions produced from a wide range of elements. These devices are currently used as ion sources for cyclotrons, synchrotrons, and heavy-ion linacs for nuclear and relativistic heavy-ion physics. They also serve the atomic physics community as a source of low energy multiply-charged ions. In order to improve their performance both with respect to maximum charge state and beam intensity, ECRIS builders are now designing and constructing sources which will operate at frequencies up to 30 GHz. In this paper we review the present status of operating ECRIS, review recent experimental measurements on plasma parameters, and look at the technology and potential of sources operating at frequencies up to 30 GHz. 14 refs., 4 figs., 1 tab.

  17. In-trap spectroscopy of charge-bred radioactive ions.

    PubMed

    Lennarz, A; Grossheim, A; Leach, K G; Alanssari, M; Brunner, T; Chaudhuri, A; Chowdhury, U; Crespo López-Urrutia, J R; Gallant, A T; Holl, M; Kwiatkowski, A A; Lassen, J; Macdonald, T D; Schultz, B E; Seeraji, S; Simon, M C; Andreoiu, C; Dilling, J; Frekers, D

    2014-08-22

    In this Letter, we introduce the concept of in-trap nuclear decay spectroscopy of highly charged radioactive ions and describe its successful application as a novel spectroscopic tool. This is demonstrated by a measurement of the decay properties of radioactive mass A=124 ions (here, ^{124}In and ^{124}Cs) in the electron-beam ion trap of the TITAN facility at TRIUMF. By subjecting the trapped ions to an intense electron beam, the ions are charge bred to high charge states (i.e., equivalent to the removal of N-shell electrons), and an increase of storage times to the level of minutes without significant ion losses is achieved. The present technique opens the venue for precision spectroscopy of low branching ratios and is being developed in the context of measuring electron-capture branching ratios needed for determining the nuclear ground-state properties of the intermediate odd-odd nuclei in double-beta (ββ) decay.

  18. Sympathetic cooling of laser-produced doubly charged ions in a few-ion crystal

    SciTech Connect

    Kwapien, T.; Eichmann, U.; Sandner, W.

    2007-06-15

    We present experimental results in which single Ca{sup +} ions in a chain of laser cooled Ca{sup +} ions are further ionized by means of an intense short pulse laser. The ions are trapped in a linear Paul trap, which is instantaneously loaded by ions from a laser-produced ablation plasma. Due to sympathetic cooling the doubly charged ions are held in place. We study and characterize linear few-ion crystals with mixed charges by applying a radio frequency field, which excites the center of mass (c.m.) and breathing modes of different configurations. From the position shift of laser cooled ions initiated through the higher charge state we can deduce the charge of the nonfluorescing ion. This information might be used as an intensity probe for high intensity lasers.

  19. NSTAR Ion Thruster Plume Impact Assessments

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Pencil, Eric J.; Rawlin, Vincent K.; Kussmaul, Michael; Oden, Katessha

    1995-01-01

    Tests were performed to establish 30-cm ion thruster plume impacts, including plume characterizations via near and farfield ion current measurements, contamination, and sputtering assessments. Current density measurements show that 95% of the beam was enclosed within a 22 deg half-angle and that the thrust vector shifted by less than 0.3 deg during throttling from 2.3 to 0.5 kW. The beam flatness parameter was found to be 0.47, and the ratio of doubly charged to singly charged ion current density decreased from 15% at 2.3 kW to 5% at 0.5 kW. Quartz sample erosion measurements showed that the samples eroded at a rate of between 11 and 13 pm/khr at 25 deg from the thruster axis, and that the rate dropped by a factor of four at 40 deg. Good agreement was obtained between extrapolated current densities and those calculated from tantalum target erosion measurements. Quartz crystal microbalance and witness plate measurements showed that ion beam sputtering of the tank resulted in a facility material backflux rate of -10 A/hr in a large space simulation chamber.

  20. Beam charge and current neutralization of high-charge-state heavy ions

    SciTech Connect

    Logan, B.G.; Callahan, D.A.

    1997-10-29

    High-charge-state heavy-ions may reduce the accelerator voltage and cost of heavy-ion inertial fusion drivers, if ways can be found to neutralize the space charge of the highly charged beam ions as they are focused to a target in a fusion chamber. Using 2-D Particle-In- Cell simulations, we have evaluated the effectiveness of two different methods of beam neutralization: (1) by redistribution of beam charge in a larger diameter, preformed plasma in the chamber, and (2), by introducing a cold-electron-emitting source within the beam channel at the beam entrance into the chamber. We find the latter method to be much more effective for high-charge-state ions.

  1. Charge equilibrium of a laser-generated carbon-ion beam in warm dense matter.

    PubMed

    Gauthier, M; Chen, S N; Levy, A; Audebert, P; Blancard, C; Ceccotti, T; Cerchez, M; Doria, D; Floquet, V; Lamour, E; Peth, C; Romagnani, L; Rozet, J-P; Scheinder, M; Shepherd, R; Toncian, T; Vernhet, D; Willi, O; Borghesi, M; Faussurier, G; Fuchs, J

    2013-03-29

    Using ion carbon beams generated by high intensity short pulse lasers we perform measurements of single shot mean charge equilibration in cold or isochorically heated solid density aluminum matter. We demonstrate that plasma effects in such matter heated up to 1 eV do not significantly impact the equilibration of carbon ions with energies 0.045-0.5  MeV/nucleon. Furthermore, these measurements allow for a first evaluation of semiempirical formulas or ab initio models that are being used to predict the mean of the equilibrium charge state distribution for light ions passing through warm dense matter. PMID:23581330

  2. The spectral lines of highly charged gold ions

    NASA Astrophysics Data System (ADS)

    Hu, Feng; Yang, Jiamin; Zhang, Jiyan; Jiang, Gang

    2015-02-01

    Extreme ultraviolet spectra of highly charged gold were produced with an electron beam ion trap at the University of Electro-Communications, Tokyo. The X-ray spectra (3240-3360 eV) of Au with well-defined maximum charge states ranging from Cu- to Se-like ions were recorded. Guided by configuration interaction calculations, the strongest 3d-5f transitions have been well defined.

  3. Determination of Dusty Particle Charge Taking into Account Ion Drag

    SciTech Connect

    Ramazanov, T. S.; Dosbolayev, M. K.; Jumabekov, A. N.; Amangaliyeva, R. Zh.; Orazbayev, S. A.; Petrov, O. F.; Antipov, S. N.

    2008-09-07

    This work is devoted to the experimental estimation of charge of dust particle that levitates in the stratum of dc glow discharge. Particle charge is determined on the basis of the balance between ion drag force, gravitational and electric forces. Electric force is obtained from the axial distribution of the light intensity of strata.

  4. A vacuum spark ion source: High charge state metal ion beams

    NASA Astrophysics Data System (ADS)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  5. Measurement of the temperature of cold highly charged ions produced in an electron beam ion trap

    SciTech Connect

    Beiersdorfer, P.; Decaux, V.; Widmann, K.

    1994-09-14

    The temperature of highly charged titanium ions produced and trapped in an electron beam ion trap was determined by precisely measuring the broadening of the emission line profile caused by the thermal Doppler motion. The measured temperature ranges from about 700 eV for deeply trapped ions to about 70 eV for ions in a shallow trap. The latter value represents the lowest temperature at which the x-ray emission of collisonally excited heliumlike Ti{sup 20}+ ions has ever been recorded, and the measured transitions represent the narrowest x-ray lines observed from highly charged titanium ions.

  6. Charge Induced by Displacement of an Ion.

    ERIC Educational Resources Information Center

    Spokas, John J.

    1978-01-01

    Tries to clarify and explain some inaccuracies that appeared in a recent article dealing with a current induced in an external circuit due to charges moving within a device, an ionization chamber of planar geometry, in the circuit. (GA)

  7. Ion and water transport in charge-modified graphene nanopores

    NASA Astrophysics Data System (ADS)

    Qiu, Ying-Hua; Li, Kun; Chen, Wei-Yu; Si, Wei; Tan, Qi-Yan; Chen, Yun-Fei

    2015-10-01

    Porous graphene has a high mechanical strength and an atomic-layer thickness that makes it a promising material for material separation and biomolecule sensing. Electrostatic interactions between charges in aqueous solutions are a type of strong long-range interaction that may greatly influence fluid transport through nanopores. In this study, molecular dynamic simulations were conducted to investigate ion and water transport through 1.05-nm diameter monolayer graphene nanopores, with their edges charge-modified. Our results indicated that these nanopores are selective to counterions when they are charged. As the charge amount increases, the total ionic currents show an increase-decrease profile while the co-ion currents monotonically decrease. The co-ion rejection can reach 76.5% and 90.2% when the nanopores are negatively and positively charged, respectively. The Cl- ion current increases and reaches a plateau, and the Na+ current decreases as the charge amount increases in systems in which Na+ ions act as counterions. In addition, charge modification can enhance water transport through nanopores. This is mainly due to the ion selectivity of the nanopores. Notably, positive charges on the pore edges facilitate water transport much more strongly than negative charges. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB707601 and 2011CB707605), the National Natural Science Foundation of China (Grant No. 50925519), the Fundamental Research Funds for the Central Universities, Funding of Jiangsu Provincial Innovation Program for Graduate Education, China (Grant No. CXZZ13_0087), and the Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBJJ 1322).

  8. Highly charged ion beam applied to lithography technique.

    PubMed

    Momota, Sadao; Nojiri, Yoichi; Taniguchi, Jun; Miyamoto, Iwao; Morita, Noboru; Kawasegi, Noritaka

    2008-02-01

    In various fields of nanotechnology, the importance of nanoscale three-dimensional (3D) structures is increasing. In order to develop an efficient process to fabricate nanoscale 3D structures, we have applied highly charged ion (HCI) beams to the ion-beam lithography (IBL) technique. Ar-ion beams with various charge states (1+ to 9+) were applied to fabricate spin on glass (SOG) and Si by means of the IBL technique. The Ar ions were prepared by a facility built at Kochi University of Technology, which includes an electron cyclotron resonance ion source (NANOGAN, 10 GHz). IBL fabrication was performed as a function of not only the charge state but also the energy and the dose of Ar ions. The present results show that the application of an Ar(9+) beam reduces the etching time for SOG and enhances the etching depth compared with those observed with Ar ions in lower charged states. Considering the high-energy deposition of HCI at a surface, the former phenomena can be understood consistently. Also, the latter phenomena can be understood based on anomalously deep structural changes, which are remarkable for glasses. Furthermore, it has also been shown that the etching depth can be easily controlled with the kinetic energy of the Ar ions. These results show the possibilities of the IBL technique with HCI beams in the field of nanoscale 3D fabrication. PMID:18315242

  9. Radiocarbon detection by ion charge exchange mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hotchkis, Michael; Wei, Tao

    2007-06-01

    A method for detection of radiocarbon at low levels is described and the results of tests are presented. We refer to this method as ion charge exchange mass spectrometry (ICE-MS). The ICE-MS instrument is a two stage mass spectrometer. In the first stage, molecular interferences which would otherwise affect radiocarbon detection at mass 14 are eliminated by producing high charge state ions directly in the ion source (charge state ⩾2). 14N interference is eliminated in the second stage by converting the beam to negative ions in a charge exchange cell. The beam is mass-analysed at each stage. We have built a test apparatus consisting of an electron cyclotron resonance ion source and a pair of analysing magnets with a charge exchange cell in between, followed by an electrostatic analyser to improve the signal to background ratio. With this apparatus we have measured charge exchange probabilities for (Cn+ → C-) from 4.5 to 40.5 keV (n = 1-3). We have studied the sources of background including assessment of limits for nitrogen interference by searching for negative ions from charge exchange of 14N ions. Our system has been used to detect 14C in enriched samples of CO2 gas with 14C/12C isotopic ratio down to the 10-9 level. Combined with a measured sample consumption rate of 4 ng/s, this corresponds to a capability to detect transient signals containing only a few μBq of 14C activity, such as may be obtained from chromatographic separation. The method will require further development to match the sensitivity of AMS with a gas ion source; however, even in its present state its sensitivity is well suited to tracer studies in biomedical research and drug development.

  10. Laser generation of Au ions with charge states above 50+

    SciTech Connect

    Laska, L.; Jungwirth, K.; Krasa, J.; Krousky, E.; Rohlena, K.; Skala, J.; Velyhan, A.; Margarone, D.; Torrisi, L.; Ryc, L.; Ullschmied, J.

    2008-02-15

    Results of recent studies on highly charged Au ion generation, using the intense long pulses of the PALS high power iodine laser ({lambda}=1.315 {mu}m, E{sub L}=800 J/400 ps), operating under variable experimental conditions (1{omega}, 3{omega}, varying target thickness and changing focus positions), are presented. Both the ion collectors and the ion electrostatic analyzers were applied for the identification of ions in a large distance from the target. The time-of-flight collector signals were treated by a means of peak deconvolution assuming a shifted Maxwell-Boltzmann form of the constituent ion current peaks. Attention was paid to the influence of pulse precursor, which becomes evident, especially, if using thinner targets and 1{omega}. The results for 3{omega} point to the presence of several groups of ions with the highest recorded charge state Au{sup 53+}.

  11. Conducting ion tracks generated by charge-selected swift heavy ions

    NASA Astrophysics Data System (ADS)

    Gupta, Srashti; Gehrke, H. G.; Krauser, J.; Trautmann, C.; Severin, D.; Bender, M.; Rothard, H.; Hofsäss, H.

    2016-08-01

    Conducting ion tracks in tetrahedral amorphous carbon (ta-C) thin films were generated by irradiation with swift heavy ions of well-defined charge state. The conductivity of tracks and the surface topography of the films, showing characteristic hillocks at each track position, were investigated using conductive atomic force microscopy measurements. The dependence of track conductivity and hillock size on the charge state of the ions was studied using 4.6 MeV/u Pb ions of charge state 53+, 56+ and 60+ provided by GANIL, as well as 4.8 MeV/u Bi and Au ions of charge state from 50+ to 61+ and 4.2 MeV/u 238U ions in equilibrium charge state provided by UNILAC of GSI. For the charge state selection at GSI, an additional stripper-foil system was installed at the M-branch that now allows routine irradiations with ions of selected charge states. The conductivity of tracks in ta-C increases significantly when the charge state increases from 51+ to 60+. However, the conductivity of individual tracks on the same sample still shows large variations, indicating that tracks formed in ta-C are either inhomogeneous or the conductivity is limited by the interface between ion track and Si substrate.

  12. Reducing Space Charge Effects in a Linear Ion Trap by Rhombic Ion Excitation and Ejection

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohua; Wang, Yuzhuo; Hu, Lili; Guo, Dan; Fang, Xiang; Zhou, Mingfei; Xu, Wei

    2016-07-01

    Space charge effects play important roles in ion trap operations, which typically limit the ion trapping capacity, dynamic range, mass accuracy, and resolving power of a quadrupole ion trap. In this study, a rhombic ion excitation and ejection method was proposed to minimize space charge effects in a linear ion trap. Instead of applying a single dipolar AC excitation signal, two dipolar AC excitation signals with the same frequency and amplitude but 90° phase difference were applied in the x- and y-directions of the linear ion trap, respectively. As a result, mass selective excited ions would circle around the ion cloud located at the center of the ion trap, rather than go through the ion cloud. In this work, excited ions were then axially ejected and detected, but this rhombic ion excitation method could also be applied to linear ion traps with ion radial ejection capabilities. Experiments show that space charge induced mass resolution degradation and mass shift could be alleviated with this method. For the experimental conditions in this work, space charge induced mass shift could be decreased by ~50%, and the mass resolving power could be improved by ~2 times at the same time.

  13. Characterization of the internal ion environment of biofilms based on charge density and shape of ion.

    PubMed

    Kurniawan, Andi; Tsuchiya, Yuki; Eda, Shima; Morisaki, Hisao

    2015-12-01

    Biofilm polymers contain both electrically positively and negatively charged sites. These charged sites enable the biofilm to trap and retain ions leading to an important role of biofilm such as nutrient recycling and pollutant purification. Much work has focused on the ion-exchange capacity of biofilms, and they are known to adsorb ions through an exchange mechanism between the ions in solution and the ions adsorbed to the charged sites on the biofilm polymer. However, recent studies suggest that the adsorption/desorption behavior of ions in a biofilm cannot be explained solely by this ion exchange mechanism. To examine the possibility that a substantial amount of ions are held in the interstitial region of the biofilm polymer by an electrostatic interaction, intact biofilms formed in a natural environment were immersed in distilled water and ion desorption was investigated. All of the detected ion species were released from the biofilms over a short period of time, and very few ions were subsequently released over more time, indicating that the interstitial region of biofilm polymers is another ion reserve. The extent of ion retention in the interstitial region of biofilms for each ion can be determined largely by charge density, |Z|/r, where |Z| is the ion valence as absolute value and r is the ion radius. The higher |Z|/r value an ion has, the stronger it is retained in the interstitial region of biofilms. Ion shape is also a key determinant of ion retention. Spherical and non-spherical ions have different correlations between the condensation ratio and |Z|/r. The generality of these findings were assured by various biofilm samples. Thus, the internal regions of biofilms exchange ions dynamically with the outside environment.

  14. HIGH-INTENSITY, HIGH CHARGE-STATE HEAVY ION SOURCES

    SciTech Connect

    ALESSI,J.G.

    2004-08-16

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions is reviewed. These sources include ECR, EBIS, and Laser ion sources. Benefits and limitations for these type sources are described. Possible future improvements in these sources are also mentioned.

  15. Ion Species and Charge States of Vacuum Arc Plasma with Gas Feed and Longitudinal Magnetic Field

    SciTech Connect

    Oks, Efim; Anders, Andre

    2010-06-23

    The evolution of copper ion species and charge state distributions is measured for a long vacuum arc discharge plasma operated in the presence of a longitudinal magnetic field of several 10 mT and working gas (Ar). It was found that changing the cathode-anode distance within 20 cm as well as increasing the gas pressure did not affect the arc burning voltage and power dissipation by much. In contrast, burning voltage and power dissipation were greatly increased as the magnetic field was increased. The longer the discharge gap the greater was the fraction of gaseous ions and the lower the fraction of metal ions, while the mean ion charge state was reduced. It is argued that the results are affected by charge exchange collisions and electron impact ionization.

  16. Measurement of Metastable Lifetimes of Highly-Charged Ions

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Chutjian, A.; Lozano, J.

    2002-01-01

    The present work is part of a series of measurements of metastable lifetimes of highly-charged ions (HCIs) which contribute to optical absorption, emission and energy balance in the Interstellar Medium (ISM), stellar atmospheres, etc. Measurements were carried out using the 14-GHz electron cyclotron resonance ion source (ECRIS) at the JPL HCI facility. The ECR provides useful currents of charge states such as C(sup(1-6)+), Mg(sup(1-6)+) and Fe(sup(1-17)+). In this work the HCI beam is focused into a Kingdon electrostatic ion trap for measuring lifetimes via optical decays.

  17. Atomic structure of highly-charged ions. Final report

    SciTech Connect

    Livingston, A. Eugene

    2002-05-23

    Atomic properties of multiply charged ions have been investigated using excitation of energetic heavy ion beams. Spectroscopy of excited atomic transitions has been applied from the visible to the extreme ultraviolet wavelength regions to provide accurate atomic structure and transition rate data in selected highly ionized atoms. High-resolution position-sensitive photon detection has been introduced for measurements in the ultraviolet region. The detailed structures of Rydberg states in highly charged beryllium-like ions have been measured as a test of long-range electron-ion interactions. The measurements are supported by multiconfiguration Dirac-Fock calculations and by many-body perturbation theory. The high-angular-momentum Rydberg transitions may be used to establish reference wavelengths and improve the accuracy of ionization energies in highly charged systems. Precision wavelength measurements in highly charged few-electron ions have been performed to test the most accurate relativistic atomic structure calculations for prominent low-lying excited states. Lifetime measurements for allowed and forbidden transitions in highly charged few-electron ions have been made to test theoretical transition matrix elements for simple atomic systems. Precision lifetime measurements in laser-excited alkali atoms have been initiated to establish the accuracy of relativistic atomic many-body theory in many-electron systems.

  18. Solar photovoltaic charging of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gibson, Thomas L.; Kelly, Nelson A.

    Solar photovoltaic (PV) charging of batteries was tested by using high efficiency crystalline and amorphous silicon PV modules to recharge lithium-ion battery modules. This testing was performed as a proof of concept for solar PV charging of batteries for electrically powered vehicles. The iron phosphate type lithium-ion batteries were safely charged to their maximum capacity and the thermal hazards associated with overcharging were avoided by the self-regulating design of the solar charging system. The solar energy to battery charge conversion efficiency reached 14.5%, including a PV system efficiency of nearly 15%, and a battery charging efficiency of approximately 100%. This high system efficiency was achieved by directly charging the battery from the PV system with no intervening electronics, and matching the PV maximum power point voltage to the battery charging voltage at the desired maximum state of charge for the battery. It is envisioned that individual homeowners could charge electric and extended-range electric vehicles from residential, roof-mounted solar arrays, and thus power their daily commuting with clean, renewable solar energy.

  19. Rocket Propulsion Through Multiply Charged Ions From a Mirror Plasma

    NASA Astrophysics Data System (ADS)

    Leung, L.; Petty, C. C.; Evans, T. E.

    2006-10-01

    Plasma propulsion is of interest for space exploration because the high exit velocity of the propellant, compared to that of chemical means, generates a high final spacecraft velocity with reduced propellant mass. This project evaluates the viability of using plasma in a magnetic mirror to produce multiply charged ions as propellant. Electron cyclotron heating of a mirror plasma produces deeply trapped hot electrons which strip heavy ions of electrons. The ambipolar potential accelerates the greatly charged ions to high velocity as they exit the end of the magnetic mirror open to space, generating thrust. We model the distribution of ion charge states to include all relevant atomic processes using the conservation of particle and energy equations in tandem with cross-sections from the ADAS database. The system of equations is then optimized to determine the feasibility of plasma propulsion. The results of this model in a high- density rocket regime are benchmarked against experimental data in low-density mirror plasmas.

  20. Optimised Charging Performance On Quantum X Ion Implanters

    NASA Astrophysics Data System (ADS)

    Kirkwood, David A.; Sakase, Takao; Miura, Ryuichi; Goldberg, Richard D.; Murrell, Adrian J.

    2006-11-01

    A key parameter in the optimisation of CMOS device yield is the minimisation of charging-induced damage and/or breakdown of the gate dielectric material during ion implantation. In typical ion beams used for transistor doping applications, beam potentials can charge up the wafer surface if not controlled, and hence this potential must be neutralised to avoid damage to devices. MOS capacitor TEG (Test Element Group) wafers are an industry standard metric for determining the charging performance of ion implanters. By optimising the performance of the High Density Plasma Flood System (HDPFS) of the Applied Materials Quantum X ion implanter, TEG device yields of >90% at antenna ratios of 1E5:1 for a gate dielectric thickness of 3.5 nm on 300 mm wafers have been demonstrated.

  1. Charge breeding of radioactive ions with EBIS and EBIT

    NASA Astrophysics Data System (ADS)

    Wenander, F.

    2010-10-01

    A charge state breeder, which transforms externally injected singly charged ions to a higher charge state q+, is an important tool which has applications within atomic, nuclear and even particle physics. The charge breeding concept of radioactive ions has already been demonstrated at REX-ISOLDE/CERN with the use of an Electron beam Ion Source (EBIS) and at several facilities employing Electron Resonance Cyclotron Ion Sources (ECRIS). As will be demonstrated in this paper, EBIS and Electron Beam Ion Traps (EBIT), are well suited for the task as they are capable of delivering clean, highly charged beams within a short transformation time. The increasing demand for highly charged ions of all kind of elements and isotopes, stable and radioactive, to be used for low-energy experiments such as TITAN at TRIUMF and MATS at FAIR, but also for post-acceleration to higher energies, is now pushing the development of the breeders. The next challenge will be to satisfy the needs, for example space-charge capacity, of the second generation radioactive beam facilities presently under construction or in the design stage, such as the MSU re-accelerator (ReA3), SPIRAL2, SPES and later on EURISOL. Radioactive trap facilities will also require high performance breeders geared towards rapid breeding times. The requirements and the critical issues of the breeding concept will be discussed and a review of the different facilities, operational and planned, will be given. The paper does furthermore feature a summary of the extensive breeding experience gained under operational conditions at REX-ISOLDE, including results from dedicated beam cleaning tests, isotope production using in-trap decay, high-current and continuous ion injection into the breeder, and closed-shell breeding.

  2. Optimal charging profiles for mechanically constrained lithium-ion batteries

    SciTech Connect

    Suthar, B; Ramadesigan, V; De, S; Braatz, RD; Subramanian, VR

    2014-01-01

    The cost and safety related issues of lithium-ion batteries require intelligent charging profiles that can efficiently utilize the battery. This paper illustrates the application of dynamic optimization in obtaining the optimal current profile for charging a lithium-ion battery using a single-particle model while incorporating intercalation-induced stress generation. In this paper, we focus on the problem of maximizing the charge stored in a given time while restricting the development of stresses inside the particle. Conventional charging profiles for lithium-ion batteries (e.g., constant current followed by constant voltage) were not derived by considering capacity fade mechanisms. These charging profiles are not only inefficient in terms of lifetime usage of the batteries but are also slower since they do not exploit the changing dynamics of the system. Dynamic optimization based approaches have been used to derive optimal charging and discharging profiles with different objective functions. The progress made in understanding the capacity fade mechanisms has paved the way for inclusion of that knowledge in deriving optimal controls. While past efforts included thermal constraints, this paper for the first time presents strategies for optimally charging batteries by guaranteeing minimal mechanical damage to the electrode particles during intercalation. In addition, an executable form of the code has been developed and provided. This code can be used to identify optimal charging profiles for any material and design parameters.

  3. Electron Cooling of Highly Charged Ions in Penning Traps

    SciTech Connect

    Zwicknagel, Guenter

    2006-10-18

    For recent and planned experiments like the CPT-tests with antihydrogen at CERN (ATHENA, ATRAP) or the QED-tests and various other investigations with slow highly charged ions at GSI (HTTRAP), the ions or antiprotons are cooled with electrons or positrons in Penning traps. In many of these applications an efficient and fast cooling is crucial. In particular for electron cooling of highly charged ions, like e.g. of U92+ in HITRAP, sufficiently large cooling rates are mandatory for avoiding too much losses by recombination or charge exchange processes. Here we present calculations of electron cooling and recombination losses of an ensemble of ions in a Penning traps based on a detailed description of the cooling force and the actual radiative ion-electron recombination rate. We focus on the cooling of highly charged ions, namely bare Uranium, in HITRAP. Both the associated cooling times and recombination losses strongly depend on the density of the electrons and the ratio of the number of ions to the number of electrons in the trap. Our analysis shows that electron cooling of bare Uranium with an initial energy of a few keV/u is feasible with a cooling time less than about a second at less than 10 percent recombination losses.

  4. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    SciTech Connect

    Jeong, S. C.; Oyaizu, M.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Niki, K.; Okada, M.; Watanabe, Y. X.; Otokawa, Y.; Osa, A.; Ichikawa, S.

    2011-03-15

    The ion loss distribution in an electron cyclotron resonance ion source (ECRIS) was investigated to understand the element dependence of the charge breeding efficiency in an electron cyclotron resonance (ECR) charge breeder. The radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions (typical nonvolatile and volatile elements, respectively) were injected into the ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex to breed their charge states. Their respective residual activities on the sidewall of the cylindrical plasma chamber of the source were measured after charge breeding as functions of the azimuthal angle and longitudinal position and two-dimensional distributions of ions lost during charge breeding in the ECRIS were obtained. These distributions had different azimuthal symmetries. The origins of these different azimuthal symmetries are qualitatively discussed by analyzing the differences and similarities in the observed wall-loss patterns. The implications for improving the charge breeding efficiencies of nonvolatile elements in ECR charge breeders are described. The similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  5. Production of soft X-ray emitting slow multiply charged ions - Recoil ion spectroscopy

    NASA Technical Reports Server (NTRS)

    Sellin, I. A.; Elston, S. B.; Forester, J. P.; Griffin, P. M.; Pegg, D. J.; Peterson, R. S.; Thoe, R. S.; Vane, C. R.; Wright, J. J.; Groeneveld, K.-O.

    1977-01-01

    S ions with a mean charge state of about 14+ and Cl ions with a mean charge state of 12+ were used to study Ne L-shell vacancy production. The ions caused copious production of NeII-NeVIII excited states with approximately 10 to the minus 18 sq cm cross sections. The induced recoil velocities might have application to a significantly higher resolution spectroscopy than is possible with beam-foil methods.

  6. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.

    PubMed

    Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J

    2012-10-15

    A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-). PMID:22818952

  7. Ion transport through macrocapillaries - Oscillations due to charge patch formation

    NASA Astrophysics Data System (ADS)

    Kulkarni, D. D.; Lyle, L. A. M.; Sosolik, C. E.

    2016-09-01

    We present results on ion transport through large bore capillaries (macrocapillaries) that probe both the geometric and ion-guided aspects of this ion delivery mechanism. We have demonstrated that guiding in macrocapillaries exhibits position- and angle-dependent transmission properties which are directly related to the capillary material (either metal or insulator) and geometry. Specifically, we have passed 1 keV Rb+ ions through glass and metal macrocapillaries, and have observed oscillations for the transmitted ion current passing through the insulating capillaries. Straightforward calculations show that these oscillations can be attributed to beam deflections from charge patches that form on the interior walls of the capillary. The absence of these oscillations in the metal capillary data serve as further confirmation of the role of charge patch formation.

  8. Metastable dissociation of doubly charged CO/sub 2/ cluster ions

    SciTech Connect

    Leiter, K.; Kreisle, D.; Echt, O.; Maerk, T.D.

    1987-05-07

    Multiply charged CO/sub 2/ cluster ions are produced by adiabatic nozzle expansion and subsequent ionization by electron impact. They are analyzed in a double focussing sector field mass spectrometer (reversed geometry). (CO/sub 2/)/sub n//sup 2 +/ cluster ions are only detected above an electron energy of about 30 eV and with sizes n greater than or equal to 45 in the direct mass spectrum. Metastable decay reactions of these ions occurring in the first field free region are investigated by decoupling the analyzer fields. It is shown that (CO/sub 2/)/sub n//sub 2//sup +/ with sizes of n greater than or equal to 44 lose one neutral monomer or, roughly ten times less probable, two neutral monomers in these dissociation reactions. The total effective dissociation rates for these dissociation processes are very large, e.g. approx.2 x 10/sup 4/ s/sup -1/ for (CO/sub 2/)/sub 47//sup 2 +/. Conversely, no singly charged fragment ions were observed to be produced by Coulomb explosion from doubly charged clusters in the first field free region. Moreover, besides doubly charged stoichiometric ions the existence of doubly charged fragment cluster ions with n greater than or equal to 44 in observed in the mass spectra.

  9. Atomic physics with highly charged ions

    SciTech Connect

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  10. Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen

    SciTech Connect

    Draganic, I. N.; Havener, C. C.; Seely, D. G.; McCammon, D.

    2011-06-01

    Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  11. Solar Wind Charge Exchange Studies of Highly Charged Ions on Atomic Hydrogen

    SciTech Connect

    Draganic, Ilija N; Seely, D. G.; McCammon, D; Havener, Charles C

    2011-01-01

    Accurate studies of low energy charge exchange (CX) are critical to understanding underlying soft X ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H like, and He like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H like ions of C, N, O and fully stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV u 20 keV u) and compared to previous H oven measurements. The present measurements are performed using a merged beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV u 3.3 keV u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  12. Space Charge Neutralization in the ITER Negative Ion Beams

    SciTech Connect

    Surrey, Elizabeth

    2007-08-10

    A model of the space charge neutralization of negative ion beams, developed from the model due to Holmes, is applied to the ITER heating and diagnostic beams. The Holmes model assumed that the plasma electron temperature was derived from the stripped electrons. This is shown to be incorrect for the ITER beams and the plasma electron temperature is obtained from the average creation energy upon ionization. The model shows that both ITER beams will be fully space charge compensated in the drift distance between the accelerator and the neutralizer. Inside the neutralizer, the plasma over compensates the space charge to the extent that a significant focusing force is predicted. At a certain position in the neutraliser this force balances the defocusing force due to the ions' transverse energy. Under these conditions the beam distribution function can change from Gaussian to Bennett and evidence of such a distribution observed in a multi-aperture, neutralized negative ion beam is presented.

  13. Electrochemical model based charge optimization for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pramanik, Sourav; Anwar, Sohel

    2016-05-01

    In this paper, we propose the design of a novel optimal strategy for charging the lithium-ion battery based on electrochemical battery model that is aimed at improved performance. A performance index that aims at minimizing the charging effort along with a minimum deviation from the rated maximum thresholds for cell temperature and charging current has been defined. The method proposed in this paper aims at achieving a faster charging rate while maintaining safe limits for various battery parameters. Safe operation of the battery is achieved by including the battery bulk temperature as a control component in the performance index which is of critical importance for electric vehicles. Another important aspect of the performance objective proposed here is the efficiency of the algorithm that would allow higher charging rates without compromising the internal electrochemical kinetics of the battery which would prevent abusive conditions, thereby improving the long term durability. A more realistic model, based on battery electro-chemistry has been used for the design of the optimal algorithm as opposed to the conventional equivalent circuit models. To solve the optimization problem, Pontryagins principle has been used which is very effective for constrained optimization problems with both state and input constraints. Simulation results show that the proposed optimal charging algorithm is capable of shortening the charging time of a lithium ion cell while maintaining the temperature constraint when compared with the standard constant current charging. The designed method also maintains the internal states within limits that can avoid abusive operating conditions.

  14. Controlled charge exchange between alkaline earth metals and their ions

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Côté, Robin

    2015-05-01

    We theoretically investigate the prospects of realizing controlled charge exchange via magnetic Feshbach resonances in cold and ultracold collisions of atoms and ions. In particular, we focus on near-resonant charge exchange in heteroisotopic combinations of alkaline earth metals, such as 9Be++10 Be<-->9 Be+10Be+ , which exhibit favorable electronic and hyperfine structure. The quantum scattering calculations are performed for a range of initial states and experimentally attainable magnetic fields in standard coupled-channel Feshbach projection formalism, where higher-order corrections such as the mass-polarization term are explicitely included. In addition, we predict a number of magnetic Feshbach resonances for different heteronuclear isotopic combinations of the listed and related alkaline earth elements. Our results imply that near-resonant charge-exchange could be used to realize atom-ion quantum gates, as well as controlled charge transfer in optically trapped cold quantum gases. This work is partially supported by ARO.

  15. Charge-exchange plasma generated by an ion thruster

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1977-01-01

    The charge exchange plasma generated by an ion thruster was investigated experimentally using both 5 cm and 15 cm thrusters. Results are shown for wide ranges of radial distance from the thruster and angle from the beam direction. Considerations of test environment, as well as distance from the thruster, indicate that a valid simulation of a thruster on a spacecraft was obtained. A calculation procedure and a sample calculation of charge exchange plasma density and saturation electron current density are included.

  16. Production of highly charged ion beams with SECRAL.

    PubMed

    Sun, L T; Zhao, H W; Lu, W; Zhang, X Z; Feng, Y C; Li, J Y; Cao, Y; Guo, X H; Ma, H Y; Zhao, H Y; Shang, Y; Ma, B H; Wang, H; Li, X X; Jin, T; Xie, D Z

    2010-02-01

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e microA of Xe(37+), 1 e microA of Xe(43+), and 0.16 e microA of Ne-like Xe(44+). To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi(31+) beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e microA of Bi(31+), 22 e microA of Bi(41+), and 1.5 e microA of Bi(50+) have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.

  17. Ion exchange and surface charge on montmorillonite clay

    SciTech Connect

    Sperry, J.M.; Peirce, J.J.

    1999-05-01

    An ion-exchange model originally developed for pure oxides prepared in the laboratory is extended to study of ion exchange and surface charge on a naturally occurring montmorillonite clay. The range of surface charges measured for montmorillonite with various electrolyte solutions and clay pretreatments is within the range of those measured for a wide variety of oxides prepared in the laboratory, including MnO{sub 2}-IC1, MnO{sub 2}-IC12, MnO{sub 2}-IC22, titanium dioxide, ferric oxide, and aluminum oxide. In addition, fitted parameter values for lateral interaction constants and equilibrium constants for the acid sites that characterize ion exchange on montmorillonite are on the same order of magnitude as those obtained for pure oxides. Surface charge of montmorillonite in sodium nitrate solution is measured to be approximately 15 to 25% greater than that measured between a pH of 4 and 9 in calcium chloride solution. This difference is attributed to the greater charge on the calcium (2{sup +}) ion; thus, its stronger electrostatic attraction to the acid hydroxyl site. An order of magnitude change in solids concentration (C{sub p}) can lead to a difference in measured net surface charge density of the same oxide sample of several orders of magnitude. This difference increases at higher pH, indicating the importance of reporting the corresponding C{sub p} at which experiments are conducted.

  18. Ionization and fragmentation of water clusters by fast highly charged ions

    NASA Astrophysics Data System (ADS)

    Adoui, L.; Cassimi, A.; Gervais, B.; Grandin, J.-P.; Guillaume, L.; Maisonny, R.; Legendre, S.; Tarisien, M.; López-Tarifa, P.; Politis, M.-F.; Penhoat, M.-A. Hervé du; Vuilleumier, R.; Gaigeot, M.-P.; Tavernelli, I.; Alcamí, M.; Martín, F.

    2009-04-01

    We study the dissociative ionization of water clusters by impact of 12 MeV/u Ni25+ ions. Cold target recoil ion momentum spectroscopy (COLTRIMS) is used to obtain information about stability, energetics and charge mobility of the ionized water clusters. An unusual stability of the H9O+4 ion is observed, which could be the signature of the so-called Eigen structure in gas-phase water clusters. From the analysis of coincidences between charged fragments, we conclude that charge mobility is very high and is responsible for the formation of protonated water clusters, (H2O)nH+, that dominate the mass spectrum. These results are supported by Car-Parrinello molecular dynamics and time-dependent density functional theory simulations, which also reveal the mechanisms of such mobility.

  19. Charge state dependence of channeled ion energy loss

    NASA Astrophysics Data System (ADS)

    Golovchenko, J. A.; Goland, A. N.; Rosner, J. S.; Thorn, C. E.; Wegner, H. E.; Knudsen, H.; Moak, C. D.

    1981-02-01

    The charge state dependence of channeled ion energy loss has been determined for a series of ions ranging from fluorine to chlorine along the <110> direction in a silicon crystal. Energy losses for both bare ions and ions partially clothed with bound electrons at EA≅3 MeV/amu have been measured. The energy-loss rate for bare ions follows a strict Z21 scaling and agrees reasonably well with quantal perturbation calculations without the need for polarization or Bloch corrections. An explanation for this result is discussed. The clothed-ion energy losses appear to demonstrate screening effects that agree qualitatively with simple estimates. The angular dependence of the observed energy-loss effects is also presented.

  20. X-ray Signature of Charge Exchange in the Spectra of L-shell Iron Ions

    SciTech Connect

    Beiersdorfer, P; Schweikhard, L; Liebisch, P; Brown, G V

    2007-01-05

    The X-ray signature of charge exchange between highly charged L-shell iron ions and neutral gas atoms was studied in the laboratory in order to assess its diagnostic utility. Significant differences with spectra formed by electron-impact excitation were observed. In particular, a strong enhancement was found of the emission corresponding to n {le} 4 {yields} n = 2 transitions relative to the n = 3 {yields} n = 2 emission. This enhancement was detectable even with relatively low-resolution X-ray instrumentation (E/{Delta}E {approx} 10) and may enable future identification of charge exchange as a line-formation mechanism in astrophysical spectra.

  1. Polarization and charge transfer in the hydration of chloride ions

    SciTech Connect

    Zhao Zhen; Rogers, David M.; Beck, Thomas L.

    2010-01-07

    A theoretical study of the structural and electronic properties of the chloride ion and water molecules in the first hydration shell is presented. The calculations are performed on an ensemble of configurations obtained from molecular dynamics simulations of a single chloride ion in bulk water. The simulations utilize the polarizable AMOEBA force field for trajectory generation and MP2-level calculations are performed to examine the electronic structure properties of the ions and surrounding waters in the external field of more distant waters. The ChelpG method is employed to explore the effective charges and dipoles on the chloride ions and first-shell waters. The quantum theory of atoms in molecules (QTAIM) is further utilized to examine charge transfer from the anion to surrounding water molecules. The clusters extracted from the AMOEBA simulations exhibit high probabilities of anisotropic solvation for chloride ions in bulk water. From the QTAIM analysis, 0.2 elementary charges are transferred from the ion to the first-shell water molecules. The default AMOEBA model overestimates the average dipole moment magnitude of the ion compared to the quantum mechanical value. The average magnitude of the dipole moment of the water molecules in the first shell treated at the MP2-level, with the more distant waters handled with an AMOEBA effective charge model, is 2.67 D. This value is close to the AMOEBA result for first-shell waters (2.72 D) and is slightly reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment of the water molecules in the first solvation shell is most strongly affected by the local water-water interactions and hydrogen bonds with the second solvation shell, rather than by interactions with the ion.

  2. Plasma ion temperature measurements via charge exchange recombination radiation

    NASA Astrophysics Data System (ADS)

    Fonck, R. J.; Goldston, R. J.; Kaita, R.; Post, D. E.

    1983-02-01

    Spatially and temporally resolved plasma ion temperatures can be determined by measuring the Doppler-broadened line profiles of transitions excited by charge-exchange recombination reactions between fast hydrogen atoms and fully ionized low-Z ions. Plasma rotation velocity profiles can also be obtained. A sample result from the PDX tokamak using He+ radiation is presented, and expected line intensities for model cases for PDX and TFTR are calculated.

  3. Plasma ion temperature measurements via charge-exchange recombination radiation

    SciTech Connect

    Fonck, R.J.; Goldston, R.J.; Kaita, R.; Post, D.E.

    1982-11-01

    Spatially and temporally resolved plasma ion temperatures can be determined by measuring the Doppler-broadened line profiles of transitions excited by charge-exchange recombination reactions between fast hydrogen atoms and fully ionized low-Z ions. Plasma rotation velocity profiles can also be obtained. A sample result from the PDX tokamak using He/sup +/ radiation is presented, and expected line intensities for model cases for PDX and TFTR are calculated.

  4. Plasma ion temperature measurements via charge exchange recombination radiation

    SciTech Connect

    Fonck, R.J.; Goldston, R.J.; Kaita, R.; Post, D.E.

    1983-02-01

    Spatially and temporally resolved plasma ion temperatures can be determined by measuring the Doppler-broadened line profiles of transitions excited by charge-exchange recombination reactions between fast hydrogen atoms and fully ionized low-Z ions. Plasma rotation velocity profiles can also be obtained. A sample result from the PDX tokamak using He/sup +/ radiation is presented, and expected line intensities for model cases for PDX and TFTR are calculated.

  5. Production of multiply charge-state ions in a multicusp ion source

    SciTech Connect

    Williams, M.D.; deVries, G.J.; Gough, R.A.; Leung, K.N.; Monroy, M.

    1996-03-01

    High charge state ion beams are commonly used in atomic and nuclear physics experiments. Multiply charged ions are normally produced in an ECR or in an EBIS. Multicusp generators can confine primary electrons very efficiently. Therefore, the electrical and gas efficiencies of these devices are high. Since the magnetic cusp fields are localized near the chamber wall, large volumes of uniform and high density plasmas can be obtained at low pressure, conditions favorable for the formation of multiply charged state ions. Attempts have been made at LBNL to generate multiply charged ion beams by employing a 25-cm diam by 25-cm long multicusp source. Experimental results demonstrated that charge states as high as 7+ can be obtained with argon or xenon plasmas. Multiply charged metallic ions such as tungsten and titanium have also been successfully formed in the multicusp source by evaporation and sputtering processes. In order to extend the charge state to higher values, a novel technique of injecting high energy electrons into the source plasma is proposed. If this is successful, the multicusp source will become very useful for radioactive beam accelerators, ion implantation, and nuclear physics applications. {copyright} {ital 1996 American Institute of Physics.}

  6. Charge state distributions from highly charged ions channeled at a metal surface

    SciTech Connect

    Folkerts, L.; Meyer, F.W.; Schippers, S. |

    1994-06-01

    The vast majority of the experimental work in the field of multicharged ion-surface interactions, to date, has focused on x-ray and particularly on electron emission. These experiments include measurements of the total electron yield, the emission statistics of the electrons, and, most of all, the electron energy distributions. So far, little attention has been paid to the fate of the multicharged projectile ions after the scattering. To our knowledge, the only measurement of the charge state distribution of the scattered ions is the pioneering experiment of de Zwart et al., who measured the total yield of scattered 1+, 2+, and 3+ ions as a function of the primary charge state q (q = 1--11) for 20 key Ne, Ar, and Kr ions after reflection from a polycrystalline tungsten target. Their main finding is the sudden onset of scattered 3+ ions when inner-shell vacancies are present in the primary particles. This suggests that a certain fraction of the inner-shell vacancies survives the entire collision event, and decays via autoionization on the outgoing path. Since the projectiles scattered in the neutral charge state could not be detected in the experiment of de Zwart et al., they were not able to provide absolute charge state fractions. In our present experiment, we focus on the scattered projectiles, measuring both the final charge state and the total scattering angle with a single 2D position sensitive detector (PSD). This method gives us the number of positive, as well as neutral and negative, scattered ions, thus allowing us to extract absolute charge state fractions. Using a well-prepared single Au(110) crystal and a grazing incidence geometry, we were able to observe surface channeling along the [001] channels.

  7. Atomic physics with highly charged ions. Progress report

    SciTech Connect

    Richard, P.

    1994-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

  8. Selection of charge methods for lithium ion batteries by considering diffusion induced stress and charge time

    NASA Astrophysics Data System (ADS)

    Lu, Bo; Song, Yicheng; Zhang, Junqian

    2016-07-01

    This article demonstrates the design of charging strategies for lithium ion batteries with considering the balance between diffusion induced stress and total charge time for two- and three-stage charge methods. For the two-stage galvanostatic-potentiostatic charge method the low mechanical stress can be achieved without increasing total charge time by switching the galvanostatic to the potentiostatic at the time moment when the lithium concentration at the surface of particles reaches the limit cbarsurf = 0 . A three-stage method, which consists of an initial galvanostatic stage of high current, a galvanostatic stage of low current and a potentiostatic ending stage, is suggested. Employing the initial galvanostatic stage of high current is helpful not only in accelerating the charge process, but also in controlling the mechanical stress once the electrical current and time duration of the initial galvanostatic stage are properly designed.

  9. Biological impact of small air ions.

    PubMed

    Krueger, A P; Reed, E J

    1976-09-24

    The thrust of the experimental data presented here is that small air ions are biologically active. There is convincing evidence that both negative and positive ions (i) inhibit growth of bacteria and fungi on solid media; (ii) exert a lethal effect on vegetative forms of bacteria suspended in water when opportunity is provided for contact of cells and ions; and (iii) reduce the viable count of bacterial aerosols. Through physical action, ions of either charge upset the stability of aerolosized bacterial suspensions and, in addition, have a direct lethal effect which is more prominent with negative ions than with positive ions. With regard to the serotonin hypothesis of air ions action, the situation is more complex. The essential fact is that mice and rats display a charge-related metabolic response to air ions and this phenomenon also occurs in humans. Because serotonin is such a potent hormone, the ultimate functional changes incident to air ion action are impressive and account for the signs of symptoms of the sharav syndrome. Alterations in the cumulative mortality rate with three experimental respiratory disease in the mouse also are charge-dependent, positive ions routinely exercising a detrimental effect. Further, in the case of mice infected with influenza virus, ion-deprivation increases the cumulative mortality rate. Since ion depletion is a constant concomitant of modern urban life, one reasonably may speculate about comparable inimical effects on humans.

  10. Highly charged ion research at the Livermore electron beam ion traps

    SciTech Connect

    Beiersdorfer, P

    2004-01-04

    Spectroscopy performed with the three Livermore electron beam ion traps is reviewed, which is continuing and complementing the innumerable contributions to atomic physics provided over the years by heavy-ion accelerators. Numerous spectrometers were developed that cover the spectral bands from the visible to the hard x ray region. These enabled exhaustive line surveys useful for x-ray astrophysics and for systematic studies along iso-electronic sequences, such as the 4s-4p, 3s-3p, and 2s-2p transitions in ions of the Cu-I, Na-I, and Li-I sequences useful for studying QED and correlation effects as well as for precise determinations of atomic-nuclear interactions. They also enabled measurements of radiative transition probabilities of very long-lived (milli- and microseconds) and very short-live (femtosecond) levels. Because line excitation processes can be controlled by choice of the electron beam energy, the observed line intensities are used to infer cross sections for electron-impact excitation, dielectronic recombination, resonance excitation, and innershell ionization. These capabilities have recently been expanded to simulate x-ray emission from comets by charge exchange. Specific contributions to basic atomic physics, nuclear physics, and high-temperature diagnostics are illustrated.

  11. Improved Control of Charging Voltage for Li-Ion Battery

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul; Bugga, Ratnakumar

    2006-01-01

    The protocol for charging a lithium-ion battery would be modified, according to a proposal, to compensate for the internal voltage drop (charging current internal resistance of the battery). The essence of the modification is to provide for measurement of the internal voltage drop and to increase the terminal-voltage setting by the amount of the internal voltage drop. Ordinarily, a lithium-ion battery is charged at constant current until its terminal voltage attains a set value equal to the nominal full-charge potential. The set value is chosen carefully so as not to exceed the lithium-plating potential, because plated lithium in metallic form constitutes a hazard. When the battery is charged at low temperature, the internal voltage drop is considerable because the electrical conductivity of the battery electrolyte is low at low temperature. Charging the battery at high current at any temperature also gives rise to a high internal voltage drop. In some cases, the internal voltage drop can be as high as 1 volt per cell. Because the voltage available for charging is less than the terminal voltage by the amount of the internal voltage drop, the battery is not fully charged (see figure), even when the terminal voltage reaches the set value. In the modified protocol, the charging current would be periodically interrupted so that the zero-current battery-terminal voltage indicative of the state of charge could be measured. The terminal voltage would also be measured at full charging current. The difference between the full-current and zero-current voltages would equal the internal voltage drop. The set value of terminal voltage would then be increased beyond the nominal full-charge potential by the amount of the internal voltage drop. This adjustment would be performed repeatedly, in real time, so that the voltage setting would track variations in the internal voltage drop to afford full charge without risk of lithium plating. If the charging current and voltage settings

  12. Measurement and calculation of absolute single- and double-charge-exchange cross sections for O6 + ions at 1.17 and 2.33 keV/u impacting He and H2

    NASA Astrophysics Data System (ADS)

    Machacek, J. R.; Mahapatra, D. P.; Schultz, D. R.; Ralchenko, Yu.; Chutjian, A.; Simcic, J.; Mawhorter, R. J.

    2014-11-01

    Absolute single- and double-charge-exchange cross sections for the astrophysically prominent O6 + ion with the atomic and molecular targets He and H2 are reported. These collisions give rise to x-ray emissions in the interplanetary medium, planetary atmospheres, and comets as they approach the sun. Measurements have been carried out using the Caltech Jet Propulsion Laboratory electron cyclotron resonance ion source with O6 + at energies of 1.17 and 2.33 keV/u characteristic of the slow and fast components of the solar wind. Absolute charge-exchange (CE) data are derived from knowledge of the target gas pressure, target path length, incident ion current, and charge-exchanged ion currents. These data are compared with results obtained using the n -electron classical trajectory Monte Carlo method. The radiative and Auger evolution of ion populations following one- and two-electron transfers is calculated with the time-dependent collisional-radiative code nomad using atomic data from the flexible atomic code. Calculated CE emission spectra for 100 Å <λ <1400 Å are reported as well and compared with experimental sublevel spectra and cross sections.

  13. Charge-Control Unit for Testing Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Mazo, Michelle A.; Button, Robert M.

    2008-01-01

    A charge-control unit was developed as part of a program to validate Li-ion cells packaged together in batteries for aerospace use. The lithium-ion cell charge-control unit will be useful to anyone who performs testing of battery cells for aerospace and non-aerospace uses and to anyone who manufacturers battery test equipment. This technology reduces the quantity of costly power supplies and independent channels that are needed for test programs in which multiple cells are tested. Battery test equipment manufacturers can integrate the technology into their battery test equipment as a method to manage charging of multiple cells in series. The unit manages a complex scheme that is required for charging Li-ion cells electrically connected in series. The unit makes it possible to evaluate cells together as a pack using a single primary test channel, while also making it possible to charge each cell individually. Hence, inherent cell-to-cell variations in a series string of cells can be addressed, and yet the cost of testing is reduced substantially below the cost of testing each cell as a separate entity. The unit consists of electronic circuits and thermal-management devices housed in a common package. It also includes isolated annunciators to signal when the cells are being actively bypassed. These annunciators can be used by external charge managers or can be connected in series to signal that all cells have reached maximum charge. The charge-control circuitry for each cell amounts to regulator circuitry and is powered by that cell, eliminating the need for an external power source or controller. A 110-VAC source of electricity is required to power the thermal-management portion of the unit. A small direct-current source can be used to supply power for an annunciator signal, if desired.

  14. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    SciTech Connect

    Nakagawa, T.

    2014-02-15

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams.

  15. Chemical noise reduction via mass spectrometry and ion/ion charge inversion: amino acids.

    PubMed

    Hassell, Kerry M; LeBlanc, Yves C; McLuckey, Scott A

    2011-05-01

    Charge inversion ion/ion reactions can provide a significant reduction in chemical noise associated with mass spectra derived from complex mixtures for species composed of both acidic and basic sites, provided the ions derived from the matrix largely undergo neutralization. Amino acids constitute an important class of amphoteric compounds that undergo relatively efficient charge inversion. Precipitated plasma constitutes a relatively complex biological matrix that yields detectable signals at essentially every mass-to-charge value over a wide range. This chemical noise can be dramatically reduced using multiply charged reagent ions that can invert the charge of species amenable to the transfer of multiple charges upon a single interaction and by detecting product ions of opposite polarity. The principle is illustrated here with amino acids present in precipitated plasma subjected to ionization in the positive mode, reaction with anions derived from negative nanoelectrospray ionization of poly (amido amine) dendrimer generation 3.5, and mass analysis in the negative ion mode. PMID:21456599

  16. Ionization efficiency studies with charge breeder and conventional electron cyclotron resonance ion source

    SciTech Connect

    Koivisto, H. Tarvainen, O.; Toivanen, V.; Komppula, J.; Kronholm, R.; Lamy, T.; Angot, J.; Delahaye, P.; Maunoury, L.; Patti, G.; Standylo, L.; Steczkiewicz, O.; Choinski, J.

    2014-02-15

    Radioactive Ion Beams play an increasingly important role in several European research facility programs such as SPES, SPIRAL1 Upgrade, and SPIRAL2, but even more for those such as EURISOL. Although remarkable advances of ECRIS charge breeders (CBs) have been achieved, further studies are needed to gain insight on the physics of the charge breeding process. The fundamental plasma processes of charge breeders are studied in the frame of the European collaboration project, EMILIE, for optimizing the charge breeding. Important information on the charge breeding can be obtained by conducting similar experiments using the gas mixing and 2-frequency heating techniques with a conventional JYFL 14 GHz ECRIS and the LPSC-PHOENIX charge breeder. The first experiments were carried out with noble gases and they revealed, for example, that the effects of the gas mixing and 2-frequency heating on the production of high charge states appear to be additive for the conventional ECRIS. The results also indicate that at least in the case of noble gases the differences between the conventional ECRIS and the charge breeder cause only minor impact on the production efficiency of ion beams.

  17. Correlated charge-changing ion-atom collisions

    SciTech Connect

    Tanis, J.A.

    1992-04-01

    This report summarizes the progress and accomplishments in accelerator atomic physics research supported by DOE grant DE-FG02-87ER13778 from March 16, 1991 through March 15, 1992. This work involves the experimental investigation of fundamental atomic processes in collisions of charged projectiles with neutral targets or electrons, with particular emphasis on two-electron interactions and electron correlation effects. Processes involving combinations of excitation, ionization, and charge transfer are investigated utilizing coincidence techniques in which projectiles charge-changing events are associated with x-ray emission, target recoil ions, or electron emission. New results have been obtained for studies involving (1) resonant recombination of atomic ions, (2) double ionization of helium, and (3) continuum electron emission. Experiments were conducted using accelerators at the Lawrence Berkeley Laboratory, Argonne National Laboratory, Michigan State University, Western Michigan University, and the Institute of Nuclear Research, Debrecen, Hungary. Brief summaries of work completed and work in progress are given in this report.

  18. Systematics of heavy-ion charge-exchange straggling

    NASA Astrophysics Data System (ADS)

    Sigmund, P.; Schinner, A.

    2016-10-01

    The dependence of heavy-ion charge-exchange straggling on the beam energy has been studied theoretically for several ion-target combinations. Our previous work addressed ions up to krypton, while the present study focuses on heavier ions, especially uranium. Particular attention has been paid to a multiple-peak structure which has been predicted theoretically in our previous work. For high-Z1 and high-Z2 systems, exemplified by U in Au, we identify three maxima in the energy dependence of charge-exchange straggling, while the overall magnitude is comparable with that of collisional straggling. Conversely, for U in C, charge-exchange straggling dominates, but only two peaks lie in the energy range where we presently are able to produce credible predictions. For U-Al we find good agreement with experiment in the energy range around the high-energy maximum. The position of the high-energy peak - which is related to processes in the projectile K shell - is found to scale as Z12 , in contrast to the semi-empirical Z13/2 dependence proposed by Yang et al. Measurements for heavy ions in heavy targets are suggested in order to reconcile a major discrepancy between the present calculations and the frequently-used formula by Yang et al.

  19. Energy straggling of low-energy ion beam in a charge exchange cell for negative ion production

    SciTech Connect

    Takeuchi, S.; Sasao, M.; Sugawara, H.; Tanaka, N.; Kisaki, M.; Okamoto, A.; Shinto, K.; Kitajima, S.; Nishiura, M.; Wada, M.

    2008-02-15

    Energy straggling in a charge exchange cell, which is frequently used for negative ion production, was studied experimentally and compared with the results of theoretical evaluation. The change of the energy spectrum of a He{sup +} beam due to charge exchange processes in argon gas was measured in the energy range of 2-6 keV. Energy straggling by multiple collisions is expressed by the energy loss formula due to inelastic and elastic processes. The impact parameter is related to the elastic scattering angle, and the geometry of the charge exchange cell and other components of the beam transportation system determines the maximum acceptable scattering angle. The energy spread was evaluated taking the integral limit over the impact parameter into consideration. The theoretical results showed good agreement with those of actual measurement.

  20. Predicting ion charge state distributions of vacuum arc plasmas

    SciTech Connect

    Anders, A.; Schulke, T.

    1996-04-01

    Multiply charged ions are present in vacuum arc plasmas. The ions are produced at cathode spots, and their charge state distributions (CSDs) depend on the cathode material but only little on the arc current or other parameters as long as the current is relatively low and the anode is not actively involved in the plasma production. There are experimental data of ion CSDs available in the literature for 50 different cathode materials. The CSDs can be calculated based on the assumption that thermodynamic equilibrium is valid in the vicinity of the cathode spot, and the equilibrium CSDs `freeze` at a certain distance from the cathode spot (transition to a non-equilibrium plasma). Plasma temperatures and densities at the `freezing points` have been calculated, and, based on the existence of characteristic groups of elements in the Periodic Table, predictions of CSDs can be made for metallic elements which have not yet been used as cathode materials.

  1. Charge exchange processes involving highly charged ions and targets of interest in astrophysics and fusion plasmas

    NASA Astrophysics Data System (ADS)

    Otranto, S.

    2012-11-01

    Renewed interest in charge exchange processes involving highly charged ions arises because of their crucial role in the planned ITER reactor as well as to recent X-ray observations in the astrophysical context. In this work, the classical trajectory Monte Carlo method (CTMC) is used to calculate state selective single charge exchange n-level cross sections and line emission cross sections pertinent to both fields. These are contrasted to recent laboratory data from KVI for the Xe18+ + Na(3s) collision system and NIST/BERLIN-EBIT data for the Ar18+ +Ar system.

  2. Low energy singly and multiply charged ion irradiation of astrophysical ices

    NASA Astrophysics Data System (ADS)

    Dawes, A.; Holtom, P. D.; Mukerji, R. J.; Davis, M. P.; Sivaraman, B.; McCullough, R. W.; Williams, I.; Mason, N. J.

    Ion induced processes play an important role in the chemical modification of astrophysical ices, both on the surfaces of satellites in the outer solar system and in the depths of dark molecular clouds where few photons penetrate. To date many laboratory studies have been developed to study energetic singly charged ion interactions with astrophysical ice analogues (e.g. Mennella, et al 2004; Strazzulla, Baratta & Palumbo 2001; Gerakines, Moore, & Hudson 2000) and have been found to produce new chemical species and cause significant effects on ice morphology (Palumbo 2005). However, the effects of low energy and multiply charged ions have not yet been investigated. Such ions are prevalent in many astrophysical environments: as primary and secondary particles generated by cosmic ray bombardment and as constituents of planetary magnetospheres (e.g. Jupiter and Saturn). These ions comprise a rich variety of reactive species in a variety of charge states with typical kinetic energies of few keV. The effect of slow, multiply charged ions (MCIs) with the surfaces of astrophysical ices and their possible effect on chemical processing is unclear. However, studies of MCI impacts with insulator surfaces suggest that they may play an important role due to surplus potential energy imparted at the surface of the target (Winter & Aumayr 2001). We have developed a research program to study ion interactions with astrophysical ices using an Electron Cyclotron Resonance (ECR) ion source at Queens University Belfast. Such a source can produce different species of ions with variable energy and different charge states. Ices are prepared in situ by depositing gas onto a cold infrared transmitting window. Samples are analysed using FTIR spectroscopy during irradiation. We have conducted a series of experiments to investigate the effects of ion charge state (potential vs. kinetic energy effects), ion energy (nuclear vs. electronic stopping processes) and sample temperature. In this poster

  3. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    SciTech Connect

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M.

    1996-08-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  4. Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.

    2013-10-01

    Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.

  5. ECR plasma source for heavy ion beam charge neutralization

    SciTech Connect

    Efthimion, P.C.; Gilson, E.; Grisham, L.; Kolchin, P.; Davidson, E.C.; Yu, S.S.; Logan, B.G.

    2002-05-01

    Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length {approx} 0.1-2 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures {approx} 10{sup -6} Torr at full ionization. The initial operation of the source has been at pressures of 10{sup -4}-10{sup -1} Torr. Electron densities in the range of 10{sup 8}-10{sup 11} cm{sup -3} have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source.

  6. Doubly-charged ions in the planetary ionospheres: a review.

    PubMed

    Thissen, Roland; Witasse, Olivier; Dutuit, Odile; Wedlund, Cyril Simon; Gronoff, Guillaume; Lilensten, Jean

    2011-11-01

    This paper presents a review of the current knowledge on the doubly-charged atomic and molecular positive ions in the planetary atmospheres of the Solar System. It is focused on the terrestrial planets which have a dense atmosphere of N(2) or CO(2), i.e. Venus, the Earth and Mars, but also includes Titan, the largest satellite of Saturn, which has a dense atmosphere composed mainly of N(2) and a few percent of methane. Given the composition of these neutral atmospheres, the following species are considered: C(++), N(++), O(++), CH(4)(++), CO(++), N(2)(++), NO(++), O(2)(++), Ar(++) and CO(2)(++). We first discuss the status of their detection in the atmospheres of planets. Then, we provide a comprehensive review of their complex and original photochemistry, production and loss processes. Synthesis tables are provided for those ions, while a discussion on individual species is also provided. Methods for detecting doubly-charged ions in planetary atmospheres are presented, namely with mass-spectrometry, remote sensing and fine plasma density measurements. A section covers some original applications, like the possible effect of the presence of doubly-charged ions on the escape of an atmosphere, which is a key topic of ongoing planetary exploration, related to the evolution of a planet. The results of models, displayed in a comparative way for Venus, Earth, Mars and Titan, are discussed, as they can predict the presence of doubly-charged ions and will certainly trigger new investigations. Finally we give our view concerning next steps, challenges and needs for future studies, hoping that new scientific results will be achieved in the coming years and feed the necessary interdisciplinary exchanges amongst different scientific communities. PMID:21931881

  7. Monte-Carlo simulation and acceptance calculation on NSCL charge breeder electron beam ion trap

    NASA Astrophysics Data System (ADS)

    Kittimanapun, Kritsada; Bollen, Georg; Lapierre, Alain; Schwarz, Stefan

    2011-10-01

    The NSCL charge breeder electron-beam ion trap (NSCL-EBIT) is constructed as the first part of the post acceleration ReA project at the National Superconducting Cyclotron Laboratory (NSCL) to study the key reactions in nuclear astrophysics and Coulomb excitation. The NSCL-EBIT is designed to operate with 6-T maximum magnetic field strength in the trap center and provide high electron beam current density up to 104 A/cm2 for fast charge breeding. To reach maximum efficiency, acceptance calculations have been done and charge evolution by electron impact ionization based on Monte-Carlo method is implemented. Optimization of electric potential distributions and different magnetic-field configurations are investigated. Acceptance for 0.8 A and 2.5 A electron current are 65% and 85% for an injected ion beam of 10 π mm-mrad, respectively, and the breeding time for Ca15+ is approximately 0.7 ms.

  8. Kinetic Modeling of the Neutral Gas, Ions, and Charged Dust in Europa's Exosphere

    NASA Astrophysics Data System (ADS)

    Tenishev, V.; Borovikov, D.; Rubin, M.; Jia, X.; Combi, M. R.

    2015-12-01

    The interaction of the Jovian magnetosphere with Europa has been a subject of active research during the last few decades both through in-situ and remote sensing observations as well as theoretical considerations. Linking the magnetosphere and the moon's surface and interior, Europa's exosphere has become one of the primary objects of study in the field. Understanding the physical processes occurring in the exosphere and its chemical composition is required for the understanding of the interaction between Europa and Jupiter. Europa's surface-bound exosphere originates mostly from ion sputtering of the water ice surface. Minor neutral species and ions of exospheric origin are produced via photolytic and electron impact reactions. The interaction of the Jovian magnetosphere and Europa affects the exospheric population of both neutrals and ions via source and loss processes. Moreover, the Lorentz force causes the newly created exospheric ions to move preferably aligned with the magnetic field lines. Contrary to the ions, heavier and slow-moving charged dust grains are mostly affected by gravity and the electric field component of the Lorentz force. As a result, escaping dust forms a narrow tail aligned in the direction of the convection electric field. Here we present results of a kinetic model of the neutral species (H2O, OH, O2, O, and H), ions (O+, O2+, H+, H2+, H2O+, and OH+), and neutral and charged dust in Europa's exosphere. In our model H2O and O2 are produced via sputtering and other exospheric neutral and ions species are produced via photolytic and electron impact reactions. For the charged dust we compute the equilibrium grain charge by balancing the electron and ion collecting currents according to the local plasma flow conditions at the grain's location. For the tracking of the ions, charged dust, and the calculation of the grains' charge we use plasma density and velocity, and the magnetic field derived from our multi-fluid MHD model of Europa

  9. Influence of solar wind ions on photoemission charging of dust

    NASA Astrophysics Data System (ADS)

    Nouzak, Libor; Richterova, Ivana; Pavlu, Jiri; Safrankova, Jana; Nemecek, Zdenek

    2016-04-01

    The lunar surface covered by a layer of dust grains is exposed to solar wind particles and photons coming from the Sun on the sunlit side. Solar wind ions cause sputtering of dust grains or can be implanted into grains. We suppose that as a consequence of ion implantation, an additional energy is transferred to grains, more valence band electrons are excited, and the photoelectron yield is increased. An increase of the photoelectron current causes the enhanced density of electrons that form a sheet above the illuminated lunar surface. Thus, an influence of solar wind ions on the Debye length and photoelectron sheet formation is expected. We present laboratory estimations of work functions and photoelectron yields of a single micron-sized silica grain before and after ion implantation. The silica grain used as a lunar simulant is caught in the electrodynamic trap. Grain's specific charge is evaluated by an analysis of the grain motion within the trap, while its work function is determined from observations of a time evolution of the charge-to-mass ratio when the grain is irradiated by photons of different emission lines. By comparison of the photoelectron current (from grain) with photon flux (from UV source), we establish the photoelectron yield of the trapped object. The influence of ion implantation is thoroughly analyzed and discussed.

  10. Irradiation of graphene field effect transistors with highly charged ions

    NASA Astrophysics Data System (ADS)

    Ernst, P.; Kozubek, R.; Madauß, L.; Sonntag, J.; Lorke, A.; Schleberger, M.

    2016-09-01

    In this work, graphene field-effect transistors are used to detect defects due to irradiation with slow, highly charged ions. In order to avoid contamination effects, a dedicated ultra-high vacuum set up has been designed and installed for the in situ cleaning and electrical characterization of graphene field-effect transistors during irradiation. To investigate the electrical and structural modifications of irradiated graphene field-effect transistors, their transfer characteristics as well as the corresponding Raman spectra are analyzed as a function of ion fluence for two different charge states. The irradiation experiments show a decreasing mobility with increasing fluences. The mobility reduction scales with the potential energy of the ions. In comparison to Raman spectroscopy, the transport properties of graphene show an extremely high sensitivity with respect to ion irradiation: a significant drop of the mobility is observed already at fluences below 15 ions/μm2, which is more than one order of magnitude lower than what is required for Raman spectroscopy.

  11. Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier.

    PubMed

    Yao, Masaru; Sano, Hikaru; Ando, Hisanori; Kiyobayashi, Tetsu

    2015-06-04

    Is it possible to exceed the lithium redox potential in electrochemical systems? It seems impossible to exceed the lithium potential because the redox potential of the elemental lithium is the lowest among all the elements, which contributes to the high voltage characteristics of the widely used lithium ion battery. However, it should be possible when we use a molecule-based ion which is not reduced even at the lithium potential in principle. Here we propose a new model system using a molecular electrolyte salt with polymer-based active materials in order to verify whether a molecular ion species serves as a charge carrier. Although the potential of the negative-electrode is not yet lower than that of lithium at present, this study reveals that a molecular ion can work as a charge carrier in a battery and the system is certainly a molecular ion-based "rocking chair" type battery.

  12. Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier

    PubMed Central

    Yao, Masaru; Sano, Hikaru; Ando, Hisanori; Kiyobayashi, Tetsu

    2015-01-01

    Is it possible to exceed the lithium redox potential in electrochemical systems? It seems impossible to exceed the lithium potential because the redox potential of the elemental lithium is the lowest among all the elements, which contributes to the high voltage characteristics of the widely used lithium ion battery. However, it should be possible when we use a molecule-based ion which is not reduced even at the lithium potential in principle. Here we propose a new model system using a molecular electrolyte salt with polymer-based active materials in order to verify whether a molecular ion species serves as a charge carrier. Although the potential of the negative-electrode is not yet lower than that of lithium at present, this study reveals that a molecular ion can work as a charge carrier in a battery and the system is certainly a molecular ion-based “rocking chair” type battery. PMID:26043147

  13. Numerical simulation of ion charge breeding in electron beam ion source

    SciTech Connect

    Zhao, L. Kim, Jin-Soo

    2014-02-15

    The Electron Beam Ion Source particle-in-cell code (EBIS-PIC) tracks ions in an EBIS electron beam while updating electric potential self-consistently and atomic processes by the Monte Carlo method. Recent improvements to the code are reported in this paper. The ionization module has been improved by using experimental ionization energies and shell effects. The acceptance of injected ions and the emittance of extracted ion beam are calculated by extending EBIS-PIC to the beam line transport region. An EBIS-PIC simulation is performed for a Cs charge-breeding experiment at BNL. The charge state distribution agrees well with experiments, and additional simulation results of radial profiles and velocity space distributions of the trapped ions are presented.

  14. Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier

    NASA Astrophysics Data System (ADS)

    Yao, Masaru; Sano, Hikaru; Ando, Hisanori; Kiyobayashi, Tetsu

    2015-06-01

    Is it possible to exceed the lithium redox potential in electrochemical systems? It seems impossible to exceed the lithium potential because the redox potential of the elemental lithium is the lowest among all the elements, which contributes to the high voltage characteristics of the widely used lithium ion battery. However, it should be possible when we use a molecule-based ion which is not reduced even at the lithium potential in principle. Here we propose a new model system using a molecular electrolyte salt with polymer-based active materials in order to verify whether a molecular ion species serves as a charge carrier. Although the potential of the negative-electrode is not yet lower than that of lithium at present, this study reveals that a molecular ion can work as a charge carrier in a battery and the system is certainly a molecular ion-based “rocking chair” type battery.

  15. An electrostatic deceleration lens for highly charged ions.

    PubMed

    Rajput, J; Roy, A; Kanjilal, D; Ahuja, R; Safvan, C P

    2010-04-01

    The design and implementation of a purely electrostatic deceleration lens used to obtain beams of highly charged ions at very low energies is presented. The design of the lens is such that it can be used with parallel as well as diverging incoming beams and delivers a well focused low energy beam at the target. In addition, tuning of the final energy of the beam over a wide range (1 eV/q to several hundred eV/q, where q is the beam charge state) is possible without any change in hardware configuration. The deceleration lens was tested with Ar(8+), extracted from an electron cyclotron resonance ion source, having an initial energy of 30 keV/q and final energies as low as 70 eV/q have been achieved.

  16. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS.

    SciTech Connect

    STEINBERG,P.A.FOR THE PHOBOS COLLABORATION

    2002-07-24

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}(s{sub NN}) = 19.6, 130 and 200 GeV. Two observations indicate universal behavior of charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/{bar p}p and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. These features may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  17. Low charge state heavy ion production with sub-nanosecond laser.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  18. Low charge state heavy ion production with sub-nanosecond laser

    NASA Astrophysics Data System (ADS)

    Kanesue, T.; Kumaki, M.; Ikeda, S.; Okamura, M.

    2016-02-01

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  19. Optimal charge rates for a lithium ion cell

    NASA Astrophysics Data System (ADS)

    Rahimian, Saeed Khaleghi; Rayman, Sean; White, Ralph E.

    The optimum charge rate for a lithium ion cell at each cycle is determined to maximize the useful life of the cell without using optimization algorithms. In previous work, we showed that by applying a dynamic optimization routine the number of cycles can be increased by approximately 29.4% with respect to the case with one optimal charge current [7]. The dynamic optimization results indicated that the optimum charge rates are the minimum currents at which the constraints for the useful life are satisfied. This is due to the minimum charge rate resulting in minimum side reaction rate and capacity fade. Useful cell life is defined as the number of cycles before the end of discharge voltage (EODV) drops below 3.0 V or the cell discharge capacity becomes less than 20% of the original discharge capacity. The new approach presented in this work is able to find the optimal charge rates in a few minutes while the previous optimization algorithm takes at least one day, and improves the useful cell life by approximately 41.6% with respect to using only one optimal charge current.

  20. Highly charged ion X-rays from Electron Cyclotron Resonance Ion Sources

    NASA Astrophysics Data System (ADS)

    Indelicato, P.; Boucard, S.; Covita, D. S.; Gotta, D.; Gruber, A.; Hirtl, A.; Fuhrmann, H.; Le Bigot, E.-O.; Schlesser, S.; dos Santos, J. M. F.; Simons, L. M.; Stingelin, L.; Trassinelli, M.; Veloso, J.; Wasser, A.; Zmeskal, J.

    2007-09-01

    Radiation from the highly charged ions contained in the plasma of Electron-Cyclotron Resonance Ion Sources (ECRISs) constitutes a very bright source of X-rays. Because the ions have a relatively low kinetic energy (≈1 eV) transitions can be very narrow, containing only a small Doppler broadening. We describe preliminary accurate measurements of two and three-electron ions with Z=16-18. We show how these measurement can test sensitively many-body relativistic calculations or can be used as X-ray standards for precise measurements of X-ray transitions in exotic atoms.

  1. Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source

    SciTech Connect

    Higurashi, Y.; Ohnishi, J.; Nakagawa, T.; Haba, H.; Fujimaki, M.; Komiyama, M.; Kamigaito, O.; Tamura, M.; Aihara, T.; Uchiyama, A.

    2012-02-15

    A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U{sup 35+} for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power.

  2. Momentum transfer in relativistic heavy ion charge-exchange reactions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  3. To what extent can highly charged ions keep captured electrons

    SciTech Connect

    Morgenstern, R. )

    1993-06-05

    In collisions between highly charged ions and atomic or molecular targets three phases can be distinguished: an initial capture into nonstationary states, a rearrangement of the captured electrons, and finally a decay by means of photon or electron emission. To understand the final result of such collisions one has to understand the processes in each phase. Several examples of recent investigations are discussed which shed light on the processes during these phases.

  4. Effect of ion compensation of the beam space charge on gyrotron operation

    SciTech Connect

    Fokin, A. P.; Glyavin, M. Yu.; Nusinovich, G. S.

    2015-04-15

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ion compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.

  5. Ferroelectric Plasma Source for Heavy Ion Beam ChargeNeutralization

    SciTech Connect

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson,Ronald C.; Yu, Simon; Waldron, William; Logan, B. Grant

    2005-10-01

    Plasmas are employed as a source of unbound electrons for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length {approx} 0.1-1 m would be suitable. To produce one-meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being developed. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source utilizes the ferroelectric ceramic BaTiO{sub 3} to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic, and high voltage ({approx} 1-5 kV) applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long has produced plasma densities of 5 x 10{sup 11} cm{sup -3}. The source was integrated into the previous Neutralized Transport Experiment (NTX), and successfully charge neutralized the K{sup +} ion beam. Presently, the one-meter source is being fabricated. The source is being characterized and will be integrated into NDCX for charge neutralization experiments.

  6. Beam Extraction from Laser Driven Multi-Charged Ion Source

    SciTech Connect

    Anderson, O A; Logan, B G

    2001-03-19

    A newly proposed type of multicharged ion source offers the possibility of an economically advantageous high-charge-state fusion driver. Multiphoton absorption in an intense uniform laser focus can give multiple charge states of high purity, simplifying or eliminating the need for charge-state separation downstream. Very large currents (hundreds of amperes) can be extracted from this type of source. Several arrangements are possible. For example, the laser plasma could be tailored for storage in a magnetic bucket, with beam extracted from the bucket. A different approach, described in this report, is direct beam extraction from the expanding laser plasma. They discuss extraction and focusing for the particular case of a 4.1-MV beam of Xe{sup 16+} ions. The maximum duration of the beam pulse is limited by the total charge in the plasma, while the practical pulse length is determined by the range of plasma radii over which good beam optics can be achieved. The extraction electrode contains a solenoid for beam focusing. The design studies were carried out first with an envelope code and then with a self-consistent particle code. Results from the initial model showed that hundreds of amperes could be extracted, but that most of this current missed the solenoid entrance or was intercepted by the wall and that only a few amperes were able to pass through. They conclude with an improved design which increases the surviving beam to more than 70 amperes.

  7. Charged particle measurements on a 30-CM diameter mercury ion engine thrust beam

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Komatsu, G. K.; Hoffmaster, D. K.; Kemp, R. F.

    1974-01-01

    Measurements of both thrust ions and charge exchange ions were made in the beam of a 30 centimeter diameter electron bombardment mercury ion thruster. A qualitative model is presented which describes magnitudes of charge exchange ion formation and motions of these ions in the weak electric field structure of the neutralized thrust beam plasma. Areas of agreement and discrepancy between observed and modeled charge exchange properties are discussed.

  8. The uses of electron beam ion traps in the study of highly charged ions

    SciTech Connect

    Knapp, D.

    1994-11-02

    The Electron Beam Ion Trap (EBIT) is a relatively new tool for the study of highly charged ions. Its development has led to a variety of new experimental opportunities; measurements have been performed with EBITs using techniques impossible with conventional ion sources or storage rings. In this paper, I will highlight the various experimental techniques we have developed and the results we have obtained using the EBIT and higher-energy Super-EBIT built at the Lawrence Livermore National Laboratory. The EBIT employs a high-current-density electron beam to trap, ionize, and excite a population of ions. The ions can be studied in situ or extracted from the trap for external experiments. The trapped ions form an ionization-state equilibrium determined by the relative ionization and recombination rates. Ions of several different elements may simultaneously be present in the trap. The ions are nearly at rest, and, for most systems, all in their ground-state configurations. The electron-ion interaction energy has a narrow distribution and can be varied over a wide range. We have used the EBIT devices for the measurement of electron-ion interactions, ion structure, ion-surface interactions, and the behavior of low-density plasmas.

  9. Structural Heterogeneity of Doubly-Charged Peptide b-Ions

    NASA Astrophysics Data System (ADS)

    Li, Xiaojuan; Huang, Yiqun; O'Connor, Peter B.; Lin, Cheng

    2011-02-01

    Performing collisionally activated dissociation (CAD) and electron capture dissociation (ECD) in tandem has shown great promise in providing comprehensive sequence information that was otherwise unobtainable by using either fragmentation method alone or in duet. However, the general applicability of this MS3 approach in peptide sequencing may be undermined by the formation of non-direct sequence ions, as sometimes observed under CAD, particularly when multiple stages of CAD are involved. In this study, varied-sized doubly-charged b-ions from three tachykinin peptides were investigated by ECD. Sequence scrambling was observed in ECD of all b-ions from neurokinin A (HKTDSFVGLM-NH2), suggesting the presence of N- and C-termini linked macro-cyclic conformers. On the contrary, none of the b-ions from eledoisin (pEPSKDAFIGLM-NH2) produced non-direct sequence ions under ECD, as it does not contain a free N-terminal amino group. ECD of several b-ions from Substance P (RPKPQQFFGLM-NH2) showed series of cm-Lys fragment ions which suggested that the macro-cyclic structure may also be formed by connecting the C-terminal carbonyl group and the ɛ-amino group of the lysine side chain. Theoretical investigation of selected Substance P b-ions revealed several low energy conformers, including both linear oxazolones and macro-ring structures, in corroboration with the experimental observation. This study showed that a b-ion may exist as a mixture of several forms, with their propensities influenced by its N-terminus, length, and certain side-chain groups. Further, the presence of several macro-cyclic structures may result in erroneous sequence assignment when the combined CAD and ECD methods are used in peptide sequencing.

  10. Electron emission and defect formation in the interaction of slow,highly charged ions with diamond surfaces

    SciTech Connect

    Sideras-Haddad, E.; Shrivastava, S.; Rebuli, D.B.; Persaud, A.; Schneider, D.H.; Schenkel, T.

    2006-05-31

    We report on electron emission and defect formation in theinteraction between slow (v~;0.3 vBohr) highly charged ions (SHCI) withinsulating (type IIa) and semiconducting (type IIb) diamonds. Electronemission induced by 31Pq+ (q=5 to 13), and 136Xeq+ (q=34 to 44) withkinetic energies of 9 kVxq increase linearly with the ion charge states,reaching over 100 electrons per ion for high xenon charge states withoutsurface passivation of the diamond with hydrogen. Yields from bothdiamond types are up to a factor of two higher then from reference metalsurfaces. Crater like defects with diameters of 25 to 40 nm are formed bythe impact of single Xe44+ ions. High secondary electron yields andsingle ion induced defects enable the formation of single dopant arrayson diamond surfaces.

  11. X-ray radiography with highly charged ions

    DOEpatents

    Marrs, Roscoe E.

    2000-01-01

    An extremely small (1-250 micron FWHM) beam of slow highly charged ions deexciting on an x-ray production target generates x-ray monochromatic radiation that is passed through a specimen and detected for imaging. The resolution of the x-ray radiograms is improved and such detection is achieved with relatively low dosages of radiation passing through the specimen. An apparatus containing an electron beam ion trap (and modifications thereof) equipped with a focusing column serves as a source of ions that generate radiation projected onto an image detector. Electronic and other detectors are able to detect an increased amount of radiation per pixel than achieved by previous methods and apparati.

  12. Transport of intense beams of highly charged ions

    NASA Astrophysics Data System (ADS)

    Winkler, M.; Gammino, S.; Ciavola, G.; Celona, L.; Spadtke, P.; Tinschert, K.

    2005-10-01

    The new generation of ion sources delivers beams with intensities of several mA. This requires a careful design of the analysing system and the low-energy beam transport (LEBT) from the source to the subsequent systems. At INFN-LNS, high intensity proton sources (TRIPS [L. Celona, G. Ciavola, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1423 (2004)], PM-TRIPS [G. Ciavola, L. Celona, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1453 (2004)]) as well as ECR ion sources for the production of highly charged high-intensity heavy ion beams are developed (SERSE [S. Gammino, G. Ciavola, L. Celona et al ., Rev. Sci. Instrum. 72(11) 4090 (2001), and references therein], GyroSERSE [S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1637 (2004)], MS-ECRIS [G. Ciavola et al ., (2005), 11th Int. Conf. on Ion Sources, Caen, (in press)]). In this paper, we present ion-optical design studies of various LEBT systems for ion-sources devoted to the production of intense beams. Calculations were performed using the computer codes GIOS [H. Wollnik, J. Brezina and M. Berz, NIM A 258 (1987)], GICO [M. Berz, H.C. Hoffmann, and H. Wollnik, NIM A 258 (1987)], and TRANSPORT [K.L. Brown, F. Rothacker and D.C. Carey, SLAC-R-95-462, Fermilab-Pub-95/069, UC-414 (1995)]. Simulations take into account the expected phase space growth of the beam emittance due to space-charge effects and image aberrations introduced by the magnetic elements.

  13. Coulomb crystallization of sympathetically cooled highly charged ions

    NASA Astrophysics Data System (ADS)

    Crespo López-Urrutia, José R.

    2015-05-01

    Wave functions of inner-shell electrons significantly overlap with the nucleus, whereby enormously magnified relativistic, quantum electrodynamic (QED) and nuclear size effects emerge. In highly charged ions (HCI), the relative reduction of electronic correlations contributions improves the visibility of these effects. This well known facts have driven research efforts with HCI, yet the typically high temperatures at which these can be prepared in the laboratory constitutes a serious hindrance for application of laser spectroscopic methods. The solution for this, cooling HCI down to crystallization has remained an elusive target for more than two decades. By applying laser cooling to an ensemble of Be+ ions, we build Coulomb crystals that we use for stopping the motion of HCI and for cooling them. HCI, in this case Ar13+ ions are extracted from an electron beam ion trap with an energy spread of a few 100's of eV, due to the ion temperature within the trap. Carefully timed electric pulses in a potential-gradient decelerate and bunch the HCI. We achieve Coulomb crystallization of these HCI by re-trapping them in a cryogenic linear radiofrequency trap where they are sympathetically cooled through Coulomb interaction with the directly laser-cooled ensemble. Furthermore, we also demonstrate cooling of a single Ar13+ ion by a single Be+ ion, prerequisite for quantum logic spectroscopy with potentially 10-19 relative accuracy. The strongly suppressed thermal motion of the embedded HCI offers novel possibilities for investigation of questions related to the time variation of fundamental constants, parity non-conservation effects, Lorentz invariance and quantum electrodynamics. Achieving a seven orders-of-magnitude decrease in HCI temperature, from the starting point at MK values in the ion source down to the mK range within the Coulomb crystal eliminates the major obstacle for HCI investigation with high precision laser spectroscopy and quantum computation schemes.

  14. Cometary X-Rays: Line Emission Cross Sections for Multiply Charged Solar Wind Ion Charge Exchange

    SciTech Connect

    Otranto, S; Olson, R E; Beiersdorfer, P

    2006-12-22

    Absolute line emission cross sections are presented for 1 keV/amu charge exchange collisions of multiply charged solar wind ions with H{sub 2}O, H, O, CO{sub 2}, and CO cometary targets. The present calculations are contrasted with available laboratory data. A parameter-free model is used to successfully predict the recently observed x-ray spectra of comet C/LINEAR 1999 S4. We show that the resulting spectrum is extremely sensitive to the time variations of the solar wind composition. Our results suggest that orbiting x-ray satellites may be a viable way to predict the solar wind intensities and composition on the Earth many hours before the ions reach the earth.

  15. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    NASA Astrophysics Data System (ADS)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.

    2016-04-01

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established ˜5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-μs surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of μs after the high voltage pulse is applied. It is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.

  16. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    DOE PAGES

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.

    2016-04-27

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15V before neutralization to 0.3 V,more » implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established similar to –5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-mu s surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of mu s after the high voltage pulse is applied. Lastly, it is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.« less

  17. Electron-ion plasma dynamics in the presence of highly charged dust-clusters

    SciTech Connect

    Djebli, Mourad Benkhelifa, El-Amine

    2015-05-15

    Electron-ion plasma expansion is studied in the presence of positively (negatively) highly charged uniformly distributed dust particles, considered as impurities. For that purpose, a multi-fluid model is used, where the charged impurities characteristics are included in Poisson's equation. We found that ion acceleration is enhanced by the presence of positively charged dust. The latter leads to spiky structures in the ion front which have a higher amplitude as the charge increases. The charged impurities have a significant effect when the combination of their charge and density is greater than a critical value which depends on ion to electron temperature ratio.

  18. Oxygen ionization rates at Mars and Venus - Relative contributions of impact ionization and charge exchange

    NASA Technical Reports Server (NTRS)

    Zhang, M. H. G.; Luhmann, J. G.; Nagy, A. F.; Spreiter, J. R.; Stahara, S. S.

    1993-01-01

    Oxygen ion production rates above the ionopauses of Venus and Mars are calculated for photoionization, charge exchange, and solar wind electron impact ionization processes. The latter two require the use of the Spreiter and Stahara (1980) gas dynamic model to estimate magnetosheath velocities, densities, and temperatures. The results indicate that impact ionization is the dominant mechanism for the production of O(+) ions at both Venus and Mars. This finding might explain both the high ion escape rates measured by Phobos 2 and the greater mass loading rate inferred for Venus from the bow shock positions.

  19. Oxygen ionization rates at Mars and Venus - Relative contributions of impact ionization and charge exchange

    NASA Astrophysics Data System (ADS)

    Zhang, M. H. G.; Luhmann, J. G.; Nagy, A. F.; Spreiter, J. R.; Stahara, S. S.

    1993-02-01

    Oxygen ion production rates above the ionopauses of Venus and Mars are calculated for photoionization, charge exchange, and solar wind electron impact ionization processes. The latter two require the use of the Spreiter and Stahara (1980) gas dynamic model to estimate magnetosheath velocities, densities, and temperatures. The results indicate that impact ionization is the dominant mechanism for the production of O(+) ions at both Venus and Mars. This finding might explain both the high ion escape rates measured by Phobos 2 and the greater mass loading rate inferred for Venus from the bow shock positions.

  20. Interaction of multiply charged ions with solid surfaces

    SciTech Connect

    Havener, C.C.; Reed, K.J.; Snowdon, K.J.; Zehner, D.M.; Meyer, F.W.

    1988-01-01

    The observation of the decay of inner-shell vacancies can serve as an excellent probe of the neutralization of multicharged ions during their approach to a metal surface. Several recent experiments that have measured electrons emitted during this neutralization are discussed. Measurements of the total electron yield for incident ions with inner-shell vacancies first showed marked differences from the yield observed for lower charge states and indicated the need for further investigations. Measurements of the emitted electron energy distributions have led to a qualitative understanding of the timescales of the neutralization process. For incident ions with high enough energies, projectile inner-shell vacancies have been observed to survive the neutralization process above the surface and then to be transferred to target atoms in close collisions. The inner-shell reactions occurring in such close collisions are analogous to those that have been observed in ion-atom and ion-foil collisions. Recent measurements of angular distributions of the electrons emitted due to the decay of target vacancies created during the interaction show evidence of the projectile penetrating several layers below the surface. 27 refs., 7 figs.

  1. Charge exchange spectroscopy as a fast ion diagnostic on TEXTORa)

    NASA Astrophysics Data System (ADS)

    Delabie, E.; Jaspers, R. J. E.; von Hellermann, M. G.; Nielsen, S. K.; Marchuk, O.

    2008-10-01

    An upgraded charge exchange spectroscopy diagnostic has been taken into operation at the TEXTOR tokamak. The angles of the viewing lines with the toroidal magnetic field are close to the pitch angles at birth of fast ions injected by one of the neutral beam injectors. Using another neutral beam for active spectroscopy, injected counter the direction in which fast ions injected by the first beam are circulating, we can simultaneously measure a fast ion tail on the blue wing of the Dα spectrum while the beam emission spectrum is Doppler shifted to the red wing. An analysis combining the two parts of the spectrum offers possibilities to improve the accuracy of the absolute (fast) ion density profiles. Fast beam modulation or passive viewing lines cannot be used for background subtraction on this diagnostic setup and therefore the background has to be modeled and fitted to the data together with a spectral model for the slowing down feature. The analysis of the fast ion Dα spectrum obtained with the new diagnostic is discussed.

  2. Physical sputtering of metallic systems by charged-particle impact

    SciTech Connect

    Lam, N.Q.

    1989-12-01

    The present paper provides a brief overview of our current understanding of physical sputtering by charged-particle impact, with the emphasis on sputtering of metals and alloys under bombardment with particles that produce knock-on collisions. Fundamental aspects of ion-solid interactions, and recent developments in the study of sputtering of elemental targets and preferential sputtering in multicomponent materials are reviewed. We concentrate only on a few specific topics of sputter emission, including the various properties of the sputtered flux and depth of origin, and on connections between sputtering and other radiation-induced and -enhanced phenomena that modify the near-surface composition of the target. The synergistic effects of these diverse processes in changing the composition of the integrated sputtered-atom flux is described in simple physical terms, using selected examples of recent important progress. 325 refs., 27 figs.

  3. Impact of the vertical velocity field on charging processes and charge separation in a simulated thunderstorm

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhang, Yijun; Zheng, Dong; Xu, Liangtao

    2015-04-01

    A three-dimensional (3D) charging-discharging cloud resolution model was used to investigate the impact of the vertical velocity field on the charging processes and the formation of charge structure in a strong thunderstorm. The distribution and evolution of ice particle content and charges on ice particles were analyzed in different vertical velocity fields. The results show that the ice particles in the vertical velocity range from 1 to 5 m s-1 obtained the most charge through charging processes during the lifetime of the thunderstorm. The magnitude of the charges could reach 1014 nC. Before the beginning of lightning activity, the charges produced in updraft region 2 (updraft speed ⩾ 13 m s-1) and updraft region 1 (updraft speed between 5 and 13 m s-1) were relatively significant. The magnitudes of charge reached 1013 nC, which clearly impacted upon the early lightning activity. The vertical velocity conditions in the quasi-steady region (updraft speed between -1 and 1 m s-1) were the most conducive for charge separation on ice particles on different scales. Accordingly, a net charge structure always appeared in the quasi-steady and adjacent regions. Based on the results, a conceptual model of ice particle charging, charge separation, and charge structure formation in the flow field was constructed. The model helps to explain observations of the "lightning hole" phenomenon.

  4. An Ion Switch Regulates Fusion of Charged Membranes

    PubMed Central

    Siepi, Evgenios; Lutz, Silke; Meyer, Sylke; Panzner, Steffen

    2011-01-01

    Here we identify the recruitment of solvent ions to lipid membranes as the dominant regulator of lipid phase behavior. Our data demonstrate that binding of counterions to charged lipids promotes the formation of lamellar membranes, whereas their absence can induce fusion. The mechanism applies to anionic and cationic liposomes, as well as the recently introduced amphoteric liposomes. In the latter, an additional pH-dependent lipid salt formation between anionic and cationic lipids must occur, as indicated by the depletion of membrane-bound ions in a zone around pH 5. Amphoteric liposomes fuse under these conditions but form lamellar structures at both lower and higher pH values. The integration of these observations into the classic lipid shape theory yielded a quantitative link between lipid and solvent composition and the physical state of the lipid assembly. The key parameter of the new model, κ(pH), describes the membrane phase behavior of charged membranes in response to their ion loading in a quantitative way. PMID:21575575

  5. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited).

    PubMed

    Sun, L; Guo, J W; Lu, W; Zhang, W H; Feng, Y C; Yang, Y; Qian, C; Fang, X; Ma, H Y; Zhang, X Z; Zhao, H W

    2016-02-01

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω(2) scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE01 and HE11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar(12+), 0.92 emA Xe(27+), and so on, will be presented.

  6. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited).

    PubMed

    Sun, L; Guo, J W; Lu, W; Zhang, W H; Feng, Y C; Yang, Y; Qian, C; Fang, X; Ma, H Y; Zhang, X Z; Zhao, H W

    2016-02-01

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω(2) scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE01 and HE11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar(12+), 0.92 emA Xe(27+), and so on, will be presented. PMID:26931925

  7. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    NASA Astrophysics Data System (ADS)

    Sun, L.; Guo, J. W.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Yang, Y.; Qian, C.; Fang, X.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω2 scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE01 and HE11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar12+, 0.92 emA Xe27+, and so on, will be presented.

  8. Double charge exchange at high impact energies

    NASA Astrophysics Data System (ADS)

    Belkić, Dževad

    1994-03-01

    In fast ion-atom collisions, double ionization always dominates the two-electron transfer. For this reason, an adequate description of double charge exchange requires proper inclusion of intermediate ionization channels. This is even more important in two- than in one-electron transitions. First-order Born-type perturbation theories ignore throughout these electronic continuum intermediate states and hence provide utterly unreliable high energy cross sections for two-electron capture processes. Therefore, it is essential to use second- and higher-order theories, which include the intermediate ionization continua of the two electrons in an approximate manner. In the present paper, a new second-order theory called the Born distorted wave (BDW) approximation is introduced and implemented in the case of symmetric resonant double electron capture from the ground state of helium by fast alpha particles. A genuine four-body formalism is adopted, in contrast to the conventional independent particle model of atomic scattering theory. The obtained results for the total cross sections are compared with the available experimental data, and satisfactory agreement is recorded. As the incident energy increases, a dramatic improvement is obtained in going from the CB1 to the BDW approximation, since the latter closely follows the measurement, whereas the former overestimates the observed total cross sections by two orders of magnitude. This strongly indicates that the role of continuum intermediate states is decisive, even at those incident energies for which the Thomas double scattering effects are not important. This is in sharp contrast to the case of one-electron transfer atomic reactions.

  9. Role of positively charged dust grains on dust acoustic wave propagation in presence of nonthermal ions

    SciTech Connect

    Sarkar, Susmita; Maity, Saumyen

    2013-08-15

    An expression for ion current flowing to the dust grains is proposed, when dust charge is positive and the ions are nonthermal. Secondary electron emission has been considered as the source of positive charging of the dust grains. Investigation shows that presence of positively charged dust grains along with thermal electrons and nonthermal ions generate purely growing dust acoustic waves for both the cases of ion nonthermal parameter greater than one and less than one. In the later case, the growth is conditional.

  10. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    SciTech Connect

    Tanaka, Koichi; Anders, André

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  11. Highly confined ions store charge more efficiently in supercapacitors.

    PubMed

    Merlet, C; Péan, C; Rotenberg, B; Madden, P A; Daffos, B; Taberna, P-L; Simon, P; Salanne, M

    2013-01-01

    Liquids exhibit specific properties when they are adsorbed in nanoporous structures. This is particularly true in the context of supercapacitors, for which an anomalous increase in performance has been observed for nanoporous electrodes. This enhancement has been traditionally attributed in experimental studies to the effect of confinement of the ions from the electrolyte inside sub-nanometre pores, which is accompanied by their partial desolvation. Here we perform molecular dynamics simulations of realistic supercapacitors and show that this picture is correct at the microscopic scale. We provide a detailed analysis of the various environments experienced by the ions. We pick out four different adsorption types, and we, respectively, label them as edge, planar, hollow and pocket sites upon increase of the coordination of the molecular species by carbon atoms from the electrode. We show that both the desolvation and the local charge stored on the electrode increase with the degree of confinement.

  12. Ion-ion reactions in the gas phase: Proton transfer reactions of protonated pyridine with multiply charged oligonucleotide anions.

    PubMed

    Herron, W J; Goeringer, D E; McLuckey, S A

    1995-06-01

    Isolated triply and doubly charged anions of the single-stranded deoxynucleotide 5'-d(AAAA)-3' were allowed to undergo ion-ion proton transfer reactions with protonated pyridine cations within a quadrupole ion trap mass spectrometer. Sufficiently high ion number densities and spatial overlap of the oppositely charged ion clouds could be achieved to yield readily measurable rates. Three general observations were made: (1) the ion-ion reaction rate constants were estimated to be 10(- (7 - 8)) cm(3) ion(-1) s(-1); (2) the ion-ion reaction rates were found to be dependent on the reactant ion number density, which could be controlled by both the reactant ion number and the pseudopotential well depth, and (3) very little fragmentation, if any, was observed, as might normally be expected with highly exothermic proton transfer reactions.

  13. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    SciTech Connect

    Thorn, Daniel Bristol

    2008-11-19

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the

  14. Influence of ion size and charge on osmosis.

    PubMed

    Cannon, James; Kim, Daejoong; Maruyama, Shigeo; Shiomi, Junichiro

    2012-04-12

    Osmosis is fundamental to many processes, such as in the function of biological cells and in industrial desalination to obtain clean drinking water. The choice of solute in industrial applications of osmosis is highly important in maximizing efficiency and minimizing costs. The macroscale process of osmosis originates from the nanoscale properties of the solvent, and therefore an understanding of the mechanisms of how these properties determine osmotic strength can be highly useful. For this reason, we have undertaken molecular dynamics simulations to systematically study the influence of ion size and charge on the strength of osmosis of water through carbon nanotube membranes. Our results show that strong osmosis occurs under optimum conditions of ion placement near the region of high water density near the membrane wall and of maintenance of a strong water hydration shell around the ions. The results in turn allow greater insight into the origin of the strong osmotic strength of real ions such as NaCl. Finally, in terms of practical simulation, we highlight the importance of avoiding size effects that can occur if the simulation cell is too small. PMID:22397596

  15. Influence of ion size and charge on osmosis.

    PubMed

    Cannon, James; Kim, Daejoong; Maruyama, Shigeo; Shiomi, Junichiro

    2012-04-12

    Osmosis is fundamental to many processes, such as in the function of biological cells and in industrial desalination to obtain clean drinking water. The choice of solute in industrial applications of osmosis is highly important in maximizing efficiency and minimizing costs. The macroscale process of osmosis originates from the nanoscale properties of the solvent, and therefore an understanding of the mechanisms of how these properties determine osmotic strength can be highly useful. For this reason, we have undertaken molecular dynamics simulations to systematically study the influence of ion size and charge on the strength of osmosis of water through carbon nanotube membranes. Our results show that strong osmosis occurs under optimum conditions of ion placement near the region of high water density near the membrane wall and of maintenance of a strong water hydration shell around the ions. The results in turn allow greater insight into the origin of the strong osmotic strength of real ions such as NaCl. Finally, in terms of practical simulation, we highlight the importance of avoiding size effects that can occur if the simulation cell is too small.

  16. Charge states of energetic tellurium ions: Equilibrium and non-equilibrium calculations

    NASA Astrophysics Data System (ADS)

    Kartavykh, Y.; Droege, W.; Klecker, B.; Kocharov, L.; Moebius, E.

    2007-12-01

    Recently, very high abundances of ultraheavy ions were observed in impulsive SEP events, compared to coronal abundances with enrichment factors of >100 for atomic mass > 100 amu. Because wave/particle interaction processes, as discussed for heavy ion enrichment and acceleration, depend critically on the mass per charge (M/Q) of the ions, an estimate of the ionic charge is very important for model calculations. In any realistic acceleration model one would have to use the ionization and recombination rates of these ions as a function of energy, because charge changing processes in the solar corona are inevitable and energy dependent. As an example of high mass ions, we calculate the equilibrium and non-equilibrium charge states for tellurium ions (Te, nuclear charge 52), and present a method to estimate the cross sections and rates for ionization and recombination of ions with arbitrary nuclear charge Z and atomic mass number A.

  17. Ab initio Determination of Formation Energies and Charge Transfer Levels of Charged Ions in Water

    NASA Astrophysics Data System (ADS)

    Vatti, Anoop Kishore; Todorova, Mira; Neugebauer, Joerg

    The ability to describe the complex atomic and electronic structure of liquid water and hydrated ions on a microscopic level is a key requirement to understand and simulate electro-chemical and biological processes. Identifying theoretical concepts which enable us to achieve an accurate description in a computationally efficient way is thereby of central importance. Aiming to unravel the importance and influence of different contributions on the hydration energy of ions we perform extensive ab-initio molecular dynamics simulations for charged and neutral cations (Zn, Mg) and anions (Cl, Br, I) in water. The structural correlations and electronic properties of the studied ions are analysed and compared to experimental observations. Following an approach inspired by the defect chemistry in semiconductors and aligning the water band edges on an absolute scale allows us to benchmark the calculated formation energies, identify transition states and compare the results to experiment. Based on these results we discuss the performance of various DFT xc-functionals to predict charge transfer levels and photo-emission experiments.

  18. Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.

    2011-05-01

    Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.

  19. Production and appearance size of multiply charged stoichiometric and nonstoichiometric SO/sub 2/ cluster ions

    SciTech Connect

    Scheier, P.; Walder, G.; Stamatovic, A.; Maerk, T.D.

    1989-01-15

    We report the first well resolved SO/sub 2/ cluster ion spectrum showing doubly charged parent and fragment ions. The critical appearance size deduced for doubly charged SO/sub 2/ clusters is n/sub 2/ = 21 and for triply charged SO/sub 2/ clusters n/sub 3/ = 49. This result is compared with theoretical predictions.

  20. Investigation and optimization of parameters affecting the multiply charged ion yield in AP-MALDI MS.

    PubMed

    Ryumin, Pavel; Brown, Jeffery; Morris, Michael; Cramer, Rainer

    2016-07-15

    Liquid matrix-assisted laser desorption/ionization (MALDI) allows the generation of predominantly multiply charged ions in atmospheric pressure (AP) MALDI ion sources for mass spectrometry (MS) analysis. The charge state distribution of the generated ions and the efficiency of the ion source in generating such ions crucially depend on the desolvation regime of the MALDI plume after desorption in the AP-to-vacuum inlet. Both high temperature and a flow regime with increased residence time of the desorbed plume in the desolvation region promote the generation of multiply charged ions. Without such measures the application of an electric ion extraction field significantly increases the ion signal intensity of singly charged species while the detection of multiply charged species is less dependent on the extraction field. In general, optimization of high temperature application facilitates the predominant formation and detection of multiply charged compared to singly charged ion species. In this study an experimental set-up and optimization strategy is described for liquid AP-MALDI MS which improves the ionization efficiency of selected ion species up to 14 times. In combination with ion mobility separation, the method allows the detection of multiply charged peptide and protein ions for analyte solution concentrations as low as 2fmol/μL (0.5μL, i.e. 1fmol, deposited on the target) with very low sample consumption in the low nL-range. PMID:26827934

  1. Theory for charge states of energetic oxygen ions in the earth's radiation belts

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.; Fritz, T. A.

    1978-01-01

    Fluxes of geomagnetically trapped energetic oxygen ions have been studied in detail. Ion distributions in radial locations below the geostationary orbit, energy spectra between 1 keV and 100 MeV, and the distribution over charge states have been computed for equatorially mirroring ions. Both ionospheric and solar wind oxygen ion sources have been considered, and it is found that the charge state distributions in the interior of the radiation belts are largely independent of the charge state characteristics of the sources. In the MeV range, oxygen ions prove to be a more sensitive probe for radiation belt dynamics than helium ions and protons.

  2. A fully relativistic approach for calculating atomic data for highly charged ions

    SciTech Connect

    Zhang, Hong Lin; Fontes, Christopher J; Sampson, Douglas H

    2009-01-01

    We present a review of our fully relativistic approach to calculating atomic data for highly charged ions, highlighting a research effort that spans twenty years. Detailed discussions of both theoretical and numerical techniques are provided. Our basic approach is expected to provide accurate results for ions that range from approximately half ionized to fully stripped. Options for improving the accuracy and range of validity of this approach are also discussed. In developing numerical methods for calculating data within this framework, considerable emphasis is placed on techniques that are robust and efficient. A variety of fundamental processes are considered including: photoexcitation, electron-impact excitation, electron-impact ionization, autoionization, electron capture, photoionization and photorecombination. Resonance contributions to a variety of these processes are also considered, including discussions of autoionization, electron capture and dielectronic recombination. Ample numerical examples are provided in order to illustrate the approach and to demonstrate its usefulness in providing data for large-scale plasma modeling.

  3. Development of a Kingdon ion trap system for trapping externally injected highly charged ions

    SciTech Connect

    Numadate, Naoki; Okada, Kunihiro; Nakamura, Nobuyuki; Tanuma, Hajime

    2014-10-01

    We have developed a Kingdon ion trap system for the purpose of the laboratory observation of the x-ray forbidden transitions of highly charged ions (HCIs). Externally injected Ar{sup q+} (q = 5–7) with kinetic energies of 6q keV were successfully trapped in the ion trap. The energy distribution of trapped ions is discussed in detail on the basis of numerical simulations. The combination of the Kingdon ion trap and the time-of-flight mass spectrometer enabled us to measure precise trapping lifetimes of HCIs. As a performance test of the instrument, we measured trapping lifetimes of Ar{sup q+} (q = 5–7) under a constant number density of H₂ and determined the charge-transfer cross sections of Ar{sup q+}(q = 5, 6)-H₂ collision systems at binary collision energies of a few eV. It was confirmed that the present cross section data are consistent with previous data and the values estimated by some scaling formula.

  4. Multiply-Charged Positive Ion Polarizabilities from Rydberg Ion Fine Structure

    NASA Astrophysics Data System (ADS)

    Lundeen, Stephen R.; Wright, Laura E.; Snow, Erica L.

    2006-05-01

    Experimental methods originally developed for study of fine structure patterns in high-L Rydberg states of neutral atoms and molecules have recently been extended to allow study of similar states in Rydberg states of multiply-charged ions[1]. Initial studies, carried out in Rydberg states of Si^+ and Si^2+, led to determination of the polarizabilities of Na-like and Mg-like Silicon ions [2,3], but similar studies may be feasible in a wide range of systems. Continued studies are aimed at studying ions with higher charge, such as the closed shell ion Kr^6+, and eventually the Radon-like ions U^6+ and Th^4+. [1] S.R. Lundeen in Advances in Atomic, Molecular and Optical Physics, Vol. 52, edited by P.R. Berman and C.C. Lin, p. 161 [2] R.A. Komara, M.A. Gearba, S.R. Lundeen, C.W. Fehrenbach, Phys. Rev. A 67, 062502 (2003) [3] R.A. Komara, M.A. Gearba, C.W. Fehrenbach, and S.R. Lundeen, J. Phys. B, At. Mol. Opt. Phys. 28, 2787 (2005)

  5. Ion-π interaction in impacting the nonlinear optical properties of ion-buckybowl complexes.

    PubMed

    Chen, He; Wang, Wen-Yong; Wang, Li; Zhu, Chang-Li; Fang, Xin-Yan; Qiu, Yong-Qing

    2016-03-01

    Ion-buckybowl complexes have received considerable attention in modern chemical research due to its fundamental and practical importance. Herein, we performed density functional theory (DFT) to calculate the geometical structure, binding interactions, dipole moments and the first hyperpolarizabilities (βtot) of ion-buckybowl complexes (ions are Cl(-) and Na(+), buckybowls are quadrannulene, corannulene and sumanene). It is found that the stabilities of ion-buckybowl compounds primarily originate from the interaction energy, which was proved by a new isomerization energy decomposition analysis approach. Plots of reduced density gradient mirror the ion-π weak interaction has been formed between the ions and buckybowls. Significantly, the buckybowl subunits cannot effectively impact the nonlinear optical (NLO), but the kind of ion has marked influence on the second-order NLO responses. The βtot values of Cl(-)-buckybowl complexes are all larger as compared to that of Na(+)-buckybowl complexes, which is attributed to the large charge-transfer (CT) from Cl(-) to buckybowl. Our present work will be beneficial for further theoretical and experimental studies on the NLO properties of ion-buckybowl compounds. PMID:26851864

  6. Laboratory Studies of Thermal Energy Charge Transfer of Silicon and Iron Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    1996-01-01

    Charge transfer at electron-volt energies between multiply charged atomic ions and neutral atoms and molecules is of considerable importance in astrophysics, plasma physics, and in particular, fusion plasmas. In the year covered by this report, several major tasks were completed. These include: (1) the re-calibration of the ion gauge to measure the absolute particle densities of H2, He, N2, and CO for our current measurements; (2) the analysis of data for charge transfer reactions of N(exp 2 plus) ion and He, H2, N2, and CO; (3) measurement and data analysis of the charge transfer reaction of (Fe(exp 2 plus) ion and H2; (4) charge transfer measurement of Fe(exp 2 plus) ion and H2; and (5) redesign and modification of the ion detection and data acquisition system for the low energy beam facility (reflection time of flight mass spectrometer) dedicated to the study of state select charge transfer.

  7. Lateral charge transport from heavy-ion tracks in integrated circuit chips

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.

    1988-01-01

    A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.

  8. Influence of charge exchange on the collection of the laser produced ions

    NASA Astrophysics Data System (ADS)

    Hasegawa, Shuichi; Takei, Manabu; Suzuki, Atsuyuki; Kurosawa, Hitoshi

    2001-12-01

    We evaluated influences of charge exchange on ion collection of laser isotope separation of uranium. We made a two-dimensional code based on fluid dynamics taking the charge exchange term into consideration. Parametric study was performed in terms of electric amplitude, ion density, and electron temperature. In addition to parallel electrode arrangement, calculations were performed for Π- and M-type arrangements. The ratio of charge exchanged ions is found to largely depend on the collection time.

  9. Database for inelastic collisions of sodium atoms with electrons, protons, and multiply charged ions

    SciTech Connect

    Igenbergs, K.; Schweinzer, J.; Bray, I.; Bridi, D.; Aumayr, F.

    2008-11-15

    The available experimental and theoretical cross section data for inelastic collision processes of ground (3s) and excited (3p, 4s, 3d, 4p, 5s, 4d, and 4f) state Na atoms with electrons, protons, and multiply charged ions have been collected and critically assessed. In addition to existing data, electron-impact cross sections, for both excitation and ionization, have been calculated using the convergent close-coupling approach. In the case of proton-impact cross section, the database was enlarged by new atomic-orbital close-coupling calculations. Both electron-impact and proton-impact processes include excitation from the ground state and between excited states (n = 3-5). For electron-impact, ionization from all states is also considered. In the case of proton-impact electron loss, cross sections (the sum of ionization and single-electron charge transfer) are given. Well-established analytical formulae used to fit cross sections, published by Wutte et al. and Schweinzer et al. for collisions with lithium atoms, were adapted to sodium. The 'recommended cross sections' for the processes considered have been critically evaluated and fitted using the adapted analytical formulae. For each inelastic process the fit parameters determined are tabulated. We also present the assessed data in graphical form. The criteria for comprehensively evaluating the accuracy of the experimental data, theoretical calculations, and procedures used in determining the recommended cross sections are discussed.

  10. Charge as you like! Efficient manipulation of negative ion net charge in electrospray ionization of proteins and nucleic acids.

    PubMed

    Ganisl, Barbara; Taucher, Monika; Riml, Christian; Breuker, Kathrin

    2011-01-01

    Acidic proteins and nucleic acids such as RNA are most readily ionized in electrospray ionization (ESI) operated in negative-ion mode. The multiply deprotonated protein or RNA ions can be used as precursors in top- down mass spectrometry. Because the performance of the dissociation method used critically depends on precursor ion negative net charge, it is important that the extent of charging in ESI can be manipulated efficiently. We show here that (M - nH)(n-) ion net charge of proteins and RNA can be controlled efficiently by the addition of organic bases to the electrosprayed solution. Our study also highlights the fact that ion formation in ESI in negative mode is only poorly understood. PMID:22006635

  11. Characterization and control of wafer charging effects during high-current ion implantation

    SciTech Connect

    Current, M.I.; Lukaszek, W.; Dixon, W.; Vella, M.C.; Messick, C.; Shideler, J.; Reno, S.

    1994-02-01

    EEPROM-based sense and memory devices provide direct measures of the charge flow and potentials occurring on the surface of wafers during ion beam processing. Sensor design and applications for high current ion implantation are discussed.

  12. Anomalous Ion Charge State Behavior In Interplanetary Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.

    2015-12-01

    A recent analysis of solar wind charge state composition measurements from the ACE/SWICS instrument showed that the expected correlation between the frozen-in values of the O7/O6 and C6/C5 ratios was violated in ~5% of the slow solar wind in the 1998-2011 period (Zhao et al. 2015). In this work we determine that such anomalous behavior is also found in over 40% of Interplanetary Coronal Mass Ejections (ICMEs), as identified by Richardson and Cane (2010). An analysis of the plasma composition during these events reveals significant depletions in densities of fully stripped ions of Carbon, Oxygen, and Nitrogen. We argue that these events are indicators of ICME plasma acceleration via magnetic reconnection near the freeze-in region of Carbon and Oxygen above the solar corona.

  13. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited).

    PubMed

    Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  14. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    NASA Astrophysics Data System (ADS)

    Zhao, H. Y.; Zhang, J. J.; Jin, Q. Y.; Liu, W.; Wang, G. C.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 1013 W cm-2 in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  15. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited).

    PubMed

    Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications. PMID:26931978

  16. Direct evidence for projectile charge-state dependent crater formation due to fast ions.

    PubMed

    Papaléo, R M; Silva, M R; Leal, R; Grande, P L; Roth, M; Schattat, B; Schiwietz, G

    2008-10-17

    We report on craters formed by individual 3 MeV/u Au (q(ini)+) ions of selected incident charge states q_(ini) penetrating thin layers of poly(methyl methacrylate). Holes and raised regions are formed around the region of the impact, with sizes that depend strongly and differently on q_(ini). Variation of q_(ini) of the film thickness and of the angle of incidence allows us to extract information about the depth of origin contributing to different crater features. PMID:18999714

  17. Direct Evidence for Projectile Charge-State Dependent Crater Formation Due to Fast Ions

    SciTech Connect

    Papaleo, R. M.; Silva, M. R.; Leal, R.; Grande, P. L.; Roth, M.; Schattat, B.; Schiwietz, G.

    2008-10-17

    We report on craters formed by individual 3 MeV/u Au{sup q{sub i}{sub n}{sub i}{sup +}} ions of selected incident charge states q{sub ini} penetrating thin layers of poly(methyl methacrylate). Holes and raised regions are formed around the region of the impact, with sizes that depend strongly and differently on q{sub ini}. Variation of q{sub ini}, of the film thickness and of the angle of incidence allows us to extract information about the depth of origin contributing to different crater features.

  18. Aggregation and Charge Behavior of Metallic and Nonmetallic Nanoparticles in the Presence of Competing Similarly-Charged Inorganic Ions

    EPA Science Inventory

    The influence of competing, similarly charged, inorganic ions on the size and charge behavior of suspended titanium-dioxide (nTiO2), silver (nAg) and fullerene (nC60) nanoparticles (NPs) was investigated. Under pH and ionic conditions similar to natural water bodies, Ca2+ induced...

  19. Controlling polymer translocation and ion transport via charge correlations.

    PubMed

    Buyukdagli, Sahin; Ala-Nissila, T

    2014-11-01

    We develop a correlation-corrected transport theory in order to predict ionic and polymer transport properties of membrane nanopores under physical conditions where mean-field electrostatics breaks down. The experimentally observed low KCl conductivity of open α-hemolysin pores is quantitatively explained by the presence of surface polarization effects. Upon the penetration of a DNA molecule into the pore, these polarization forces combined with the electroneutrality of DNA sets a lower boundary for the ionic current, explaining the weak salt dependence of blocked pore conductivities at dilute ion concentrations. The addition of multivalent counterions to the solution results in the reversal of the polymer charge and the direction of the electroosmotic flow. With trivalent spermidine or quadrivalent spermine molecules, the charge inversion is strong enough to stop the translocation of the polymer and to reverse its motion. This mechanism can be used efficiently in translocation experiments in order to improve the accuracy of DNA sequencing by minimizing the translocation velocity of the polymer. PMID:25310861

  20. Dynamics of the fully stripped ion-hydrogen atom charge exchange process in dense quantum plasmas

    SciTech Connect

    Zhang, Ling-yu; Wan, Jiang-feng; Zhao, Xiao-ying; Xiao, Guo-qing; Duan, Wen-shan; Qi, Xin; Yang, Lei

    2014-09-15

    The plasma screening effects of dense quantum plasmas on charge exchange processes of a fully stripped ion colliding with a hydrogen atom are studied by the classical trajectory Monte Carlo method. The inter-particle interactions are described by the exponential cosine-screened Coulomb potentials. It is found that in weak screening conditions, cross sections increase with the increase of the ionic charge Z. However, in strong screening conditions, the dependence of cross sections on the ionic charge is related to the incident particle energy. At high energies, cross sections show a linear increase with the increase of Z, whereas at low energies, cross sections for Z≥4 become approximately the same. The He{sup 2+} and C{sup 6+} impacting charge exchange cross sections in dense quantum plasmas are also compared with those in weakly coupled plasmas. The interactions are described by the static screened Coulomb potential. It is found that for both He{sup 2+} and C{sup 6+}, the oscillatory screening effects of dense quantum plasmas are almost negligible in weak screening conditions. However, in strong screening conditions, the oscillatory screening effects enhance the screening effects of dense quantum plasmas, and the enhancement becomes more and more significant with the increase of the screening parameter and the ionic charge.

  1. Intrinsic slow charge response in the perovskite solar cells: Electron and ion transport

    SciTech Connect

    Shi, Jiangjian; Xu, Xin; Zhang, Huiyin; Luo, Yanhong; Li, Dongmei; Meng, Qingbo

    2015-10-19

    The intrinsic charge response and hysteresis characteristic in the perovskite solar cell has been investigated by an electrically modulated transient photocurrent technology. An ultraslow charge response process in the timescale of seconds is observed, which can be well explained by the ion migration in the perovskite CH{sub 3}NH{sub 3}PbI{sub 3} film driven by multiple electric fields derived from the heterojunction depletion charge, the external modulation, and the accumulated ion charge. Furthermore, theoretical calculation of charge transport reveals that the hysteresis behavior is also significantly influenced by the interfacial charge extraction velocity and the carrier transport properties inside the cell.

  2. Photoionization of Highly Charged Argon Ions and Their Diagnostic Lines

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2012-06-01

    %TEXT OF YOUR ABSTRACT Lines of highly charged He-like and Li-like ions in the ultraviolet and X-ray regions provide useful diagnostics for the physical and chemical conditions of the astrophysical as well as fusion plasmas. For example, Ar XVII lines in a Syfert galaxy have been measured by the X-ray space observatory Chandra. Results on photoionization of Ar XVI and Ar XVII obtained from relativistic Breit-Pauli R-matrix method and close-coupling approximation will be presented. Important features for level-specific photoionization for the diagnostic w, x, y, z lines of He-like Ar XVII in the ultraviolet region will be illustrated. Although monotonous decay dominates the low energy photoionization for these ions, strong resonances appear in the high energy region indicating higher recombination, inverse process of photoionization, at high temperature. The spectra of the well known 22 diagnostics dielectronic satellite lines of Li-like Ar XVI will be shown produced from the the KLL resonances in photoionization. Acknowledgement: Partially supported by DOE, NSF; Computational work was carried out at the Ohio Supercomputer Center

  3. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Delahaye, P.; Kutsaev, Sergey; Maunoury, L.

    2012-11-01

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a 252Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species 143Ba27+. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for 23Na7+ and 17.9% for 39K10+ were obtained injecting stable Na+ and K+ beams from a surface ionization source.

  4. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    SciTech Connect

    Vondrasek, R.; Kutsaev, Sergey; Delahaye, P.; Maunoury, L.

    2012-11-15

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a {sup 252}Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species {sup 143}Ba{sup 27+}. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for {sup 23}Na{sup 7+} and 17.9% for {sup 39}K{sup 10+} were obtained injecting stable Na{sup +} and K{sup +} beams from a surface ionization source.

  5. Low charge state heavy ion production with sub-nanosecond laser.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target. PMID:26931977

  6. Formation and fragmentation of quadruply charged molecular ions by intense femtosecond laser pulses.

    PubMed

    Yatsuhashi, Tomoyuki; Nakashima, Nobuaki

    2010-07-22

    We investigated the formation and fragmentation of multiply charged molecular ions of several aromatic molecules by intense nonresonant femtosecond laser pulses of 1.4 mum with a 130 fs pulse duration (up to 2 x 10(14) W cm(-2)). Quadruply charged states were produced for 2,3-benzofluorene and triphenylene molecular ion in large abundance, whereas naphthalene and 1,1'-binaphthyl resulted only in up to triply charged molecular ions. The laser wavelength was nonresonant with regard to the electronic transitions of the neutral molecules, and the degree of fragmentation was strongly correlated with the absorption of the singly charged cation radical. Little fragmentation was observed for naphthalene (off-resonant with cation), whereas heavy fragmentation was observed in the case of 1,1'-binaphthyl (resonant with cation). The degree of H(2) (2H) and 2H(2) (4H) elimination from molecular ions increased as the charge states increased in all the molecules examined. A striking difference was found between triply and quadruply charged 2,3-benzofluorene: significant suppression of molecular ions with loss of odd number of hydrogen was observed in the quadruply charged ions. The Coulomb explosion of protons in the quadruply charged state and succeeding fragmentation resulted in the formation of triply charged molecular ions with an odd number of hydrogens. The hydrogen elimination mechanism in the highly charged state is discussed.

  7. Formation and fragmentation of quadruply charged molecular ions by intense femtosecond laser pulses.

    PubMed

    Yatsuhashi, Tomoyuki; Nakashima, Nobuaki

    2010-07-22

    We investigated the formation and fragmentation of multiply charged molecular ions of several aromatic molecules by intense nonresonant femtosecond laser pulses of 1.4 mum with a 130 fs pulse duration (up to 2 x 10(14) W cm(-2)). Quadruply charged states were produced for 2,3-benzofluorene and triphenylene molecular ion in large abundance, whereas naphthalene and 1,1'-binaphthyl resulted only in up to triply charged molecular ions. The laser wavelength was nonresonant with regard to the electronic transitions of the neutral molecules, and the degree of fragmentation was strongly correlated with the absorption of the singly charged cation radical. Little fragmentation was observed for naphthalene (off-resonant with cation), whereas heavy fragmentation was observed in the case of 1,1'-binaphthyl (resonant with cation). The degree of H(2) (2H) and 2H(2) (4H) elimination from molecular ions increased as the charge states increased in all the molecules examined. A striking difference was found between triply and quadruply charged 2,3-benzofluorene: significant suppression of molecular ions with loss of odd number of hydrogen was observed in the quadruply charged ions. The Coulomb explosion of protons in the quadruply charged state and succeeding fragmentation resulted in the formation of triply charged molecular ions with an odd number of hydrogens. The hydrogen elimination mechanism in the highly charged state is discussed. PMID:20578764

  8. Accelerated simulation study of space charge effects in quadrupole ion traps using GPU techniques.

    PubMed

    Xiong, Xingchuang; Xu, Wei; Fang, Xiang; Deng, Yulin; Ouyang, Zheng

    2012-10-01

    Space charge effects play important roles in the performance of various types of mass analyzers. Simulation of space charge effects is often limited by the computation capability. In this study, we evaluate the method of using graphics processing unit (GPU) to accelerate ion trajectory simulation. Simulation using GPU has been compared with multi-core central processing unit (CPU), and an acceleration of about 390 times have been obtained using a single computer for simulation of up to 10(5) ions in quadrupole ion traps. Characteristics of trapped ions can be investigated at detailed levels within a reasonable simulation time. Space charge effects on the trapping capacities of linear and 3D ion traps, ion cloud shapes, ion motion frequency shift, mass spectrum peak coalescence effects between two ion clouds of close m/z are studied with the ion trajectory simulation using GPU.

  9. The effects of charge transfer on the aqueous solvation of ions

    SciTech Connect

    Soniat, Marielle; Rick, Steven W.

    2012-07-28

    Ab initio-based charge partitioning of ionic systems results in ions with non-integer charges. This charge-transfer (CT) effect alters both short- and long-range interactions. Until recently, the effects of CT have been mostly neglected in molecular dynamics (MD) simulations. The method presented in this paper for including charge transfer between ions and water is consistent with ab initio charge partitioning and does not add significant time to the simulation. The ions of sodium, potassium, and chloride are parameterized to reproduce dimer properties and aqueous structures. The average charges of the ions from MD simulations (0.900, 0.919, and -0.775 for Na{sup +}, K{sup +}, and Cl{sup -}, respectively) are consistent with quantum calculations. The hydration free energies calculated for these ions are in agreement with experimental estimates, which shows that the interactions are described accurately. The ions also have diffusion constants in good agreement with experiment. Inclusion of CT results in interesting properties for the waters in the first solvation shell of the ions. For all ions studied, the first shell waters acquire a partial negative charge, due to the difference between water-water and water-ion charge-transfer amounts. CT also reduces asymmetry in the solvation shell of the chloride anion, which could have important consequences for the behavior of chloride near the air-water interface.

  10. Observation and implications of high mass-to-charge ratio ions from electrospray ionization mass spectrometry.

    PubMed

    Winger, B E; Light-Wahl, K J; Ogorzalek Loo, R R; Udseth, H R; Smith, R D

    1993-07-01

    High mass-to-charge ratio ions (> 4000) from electrospray ionization (ESI) have been observed for several proteins, including bovine cytochrome c (M r 12,231) and porcine pepsin (M r 34,584), by using a quadrupole mass spectrometer with an m/z 45,000 range. The ESI mass spectrum for cytochrome c in an aqueous solution gives a charge state distribution that ranges from 12 + to 2 +, with a broad, low-intensity peak in the mass-to-charge ratio region corresponding to the [M + H](+) ion. the negative ion ESI mass spectrum for pepsin in 1% acetic acid solution shows a charge state distribution ranging from 7- to 2-. To observe the [M - H](-) ion, harsher desolvation and interface conditions were required. Also observed was the abundant aggregation of the protens with average charge states substantially lower than observed for their monomeric counterparts. The negative ion ESI mass spectrum for cytochrome c in 1-100 mM NH4OAc solutions showed greater relative abundances for the higher mass-to-charge ratio ions than in acuidic solutions, with an [M - H](-) ion relative abundance approximately 50% that of the most abundant charge state peak. The observation that protein aggregates are formed with charge states comparable to monomeric species (at fower mass-to-charge ratios) suggests that the high mass-to-charge ratio monomers may be formed by the dissociation of aggregate species. The observation of low charge state and aggregate molecular ions concurrently with highly charged species may serve to support a variation of the charged residue model, originally described by Dole and co-workers (Dole, M., et al. J. Chem. Phys. 1968, 49, 2240; Mack, L. L., et al. J. Chem. Phys. 1970, 52, 4977) which involves the Coulombically driven formation of either very highly solvated molecular ions or lower ananometer-diameter droplets. PMID:24227640

  11. Heavy Inertial Confinement Energy: Interactions Involoving Low charge State Heavy Ion Injection Beams

    SciTech Connect

    DuBois, Robert D

    2006-04-14

    During the contract period, absolute cross sections for projectile ionization, and in some cases for target ionization, were measured for energetic (MeV/u) low-charge-state heavy ions interacting with gases typically found in high and ultra-high vacuum environments. This information is of interest to high-energy-density research projects as inelastic interactions with background gases can lead to serious detrimental effects when intense ion beams are accelerated to high energies, transported and possibly confined in storage rings. Thus this research impacts research and design parameters associated with projects such as the Heavy Ion Fusion Project, the High Current and Integrated Beam Experiments in the USA and the accelerator upgrade at GSI-Darmstadt, Germany. Via collaborative studies performed at GSI-Darmstadt, at the University of East Carolina, and Texas A&M University, absolute cross sections were measured for a series of collision systems using MeV/u heavy ions possessing most, or nearly all, of their bound electrons, e.g., 1.4 MeV/u Ar{sup +}, Xe{sup 3+}, and U{sup 4,6,10+}. Interactions involving such low-charge-state heavy ions at such high energies had never been previously explored. Using these, and data taken from the literature, an empirical model was developed for extrapolation to much higher energies. In order to extend our measurements to much higher energies, the gas target at the Experimental Storage Ring in GSI-Darmstadt was used. Cross sections were measured between 20 and 50 MeV/u for U{sup 28+}- H{sub 2} and - N{sub 2}, the primary components found in high and ultra-high vacuum systems. Storage lifetime measurements, information inversely proportional to the cross section, were performed up to 180 MeV/u. The lifetime and cross section data test various theoretical approaches used to calculate cross sections for many-electron systems. Various high energy density research projects directly benefit by this information. As a result, the general

  12. Diagnostics of a charge breeder electron cyclotron resonance ion source helium plasma with the injection of 23Na1+ ions

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Koivisto, H.; Galatà, A.; Angot, J.; Lamy, T.; Thuillier, T.; Delahaye, P.; Maunoury, L.; Mascali, D.; Neri, L.

    2016-05-01

    This work describes the utilization of an injected 23Na1+ ion beam as a diagnostics of the helium plasma of a charge breeder electron cyclotron resonance ion source. The obtained data allows estimating the upper limit for the ion-ion collision mean-free path of the incident sodium ions, the lower limit of ion-ion collision frequencies for all charge states of the sodium ions and the lower limit of the helium plasma density. The ion-ion collision frequencies of high charge state ions are shown to be at least on the order of 1-10 MHz and the plasma density is estimated to be on the order of 1011 cm-3 or higher. The experimental results are compared to simulations of the 23Na1+ capture into the helium plasma. The results indicate that the lower breeding efficiency of light ions in comparison to heavier elements is probably due to different capture efficiencies in which the in-flight ionization of the incident 1 + ions plays a vital role.

  13. Method of precisely modifying predetermined surface layers of a workpiece by cluster ion impact therewith

    DOEpatents

    Friedman, Lewis; Buehler, Robert J.; Matthew, Michael W.; Ledbetter, Myron

    1985-01-01

    A method of precisely modifying a selected area of a workpiece by producing a beam of charged cluster ions that is narrowly mass selected to a predetermined mean size of cluster ions within a range of 25 to 10.sup.6 atoms per cluster ion, and accelerated in a beam to a critical velocity. The accelerated beam is used to impact a selected area of an outer surface of the workpiece at a preselected rate of impacts of cluster ions/cm.sup.2 /sec. in order to effect a precise modification in that selected area of the workpiece.

  14. Method of precisely modifying predetermined surface layers of a workpiece by cluster ion impact therewith

    DOEpatents

    Friedman, L.; Beuhler, R.J.; Matthew, M.W.; Ledbetter, M.

    1984-06-25

    A method of precisely modifying a selected area of a workpiece by producing a beam of charged cluster ions that is narrowly mass selected to a predetermined mean size of cluster ions within a range of 25 to 10/sup 6/ atoms per cluster ion, and accelerated in a beam to a critical velocity. The accelerated beam is used to impact a selected area of an outer surface of the workpiece at a preselected rate of impacts of cluster ions/cm/sup 2//sec in order to effect a precise modification in that selected area of the workpiece.

  15. Ionisation from the 3s sub-level of highly charged ions

    NASA Technical Reports Server (NTRS)

    Golden, L. B.; Sampson, D. H.; Omidvar, K.

    1978-01-01

    Scaled electron-impact cross sections are calculated for ionization from the 3s sublevel of hydrogenic ions with Z equal infinity by use of the Born exchange or the Coulomb-Born Oppenheimer approximation (which is exact, apart from relativistic corrections, in this limit). The results are fitted to an analytic expression which goes into the correct Bethe approximation result at high energies and which can readily be integrated over a Maxwellian electron velocity distribution to obtain collision rates. These results permit calculation of the approximate cross section and collision rate for ionization from the 3s sublevel of any highly charged ion with Z/N larger than approximately 2. Results obtained by the described procedure for Fe-14(+) and Fe-15(+) are compared with results obtained by other procedures.

  16. Excitation of helium ion by positron impact

    SciTech Connect

    Khan, P.; Ghosh, A.S.

    1986-01-01

    Three (1s,2s,2p) and five (1s,2s,2p,3s-bar,3p-bar) -state close-coupling methods have been employed to calculate the n = 2 excitation cross sections of helium ion by positron impact. The effect of pseudostate is found to be very pronounced in the case of 1s-2s excitation.

  17. Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy.

    PubMed

    Derevianko, Andrei; Dzuba, V A; Flambaum, V V

    2012-11-01

    We propose a novel class of atomic clocks based on highly charged ions. We consider highly forbidden laser-accessible transitions within the 4f(12) ground-state configurations of highly charged ions. Our evaluation of systematic effects demonstrates that these transitions may be used for building exceptionally accurate atomic clocks which may compete in accuracy with recently proposed nuclear clocks.

  18. Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy.

    PubMed

    Derevianko, Andrei; Dzuba, V A; Flambaum, V V

    2012-11-01

    We propose a novel class of atomic clocks based on highly charged ions. We consider highly forbidden laser-accessible transitions within the 4f(12) ground-state configurations of highly charged ions. Our evaluation of systematic effects demonstrates that these transitions may be used for building exceptionally accurate atomic clocks which may compete in accuracy with recently proposed nuclear clocks. PMID:23215265

  19. Highly Charged Ions as a Basis of Optical Atomic Clockwork of Exceptional Accuracy

    NASA Astrophysics Data System (ADS)

    Derevianko, Andrei; Dzuba, V. A.; Flambaum, V. V.

    2012-11-01

    We propose a novel class of atomic clocks based on highly charged ions. We consider highly forbidden laser-accessible transitions within the 4f12 ground-state configurations of highly charged ions. Our evaluation of systematic effects demonstrates that these transitions may be used for building exceptionally accurate atomic clocks which may compete in accuracy with recently proposed nuclear clocks.

  20. Surface charging and x-ray emission from insulator surfaces induced by collisions with highly charged ions : relevance to cometary and planetary sp

    NASA Technical Reports Server (NTRS)

    Djuric, N.; Lozano, J. A.; Smith, S. J.; Chutjian, A.

    2005-01-01

    Characteristic X-ray emission lines are detected from simulants of comet surfaces as they undergo collisions with highly charged ions (HCIs). The HCI projectiles are O+2-O+7. Ion energies are varied in the range (2-7)q keV, where q is the ion charge state. The targets are the insulator minerals olivine, augite, and quartz. It is found that the emission of characteristic K-L, K-M X-rays appears to proceed during positive charging of the surface by the HCI beam. When one uses low-energy, flood-gun electrons to neutralize the surface charge, the X-ray emission is eliminated or greatly reduced, depending on the flood-gun current. Acceleration of background electrons onto the charged surface results in excitation of elemental transitions, including the K-L2 and K-L3 target X-ray emission lines of Mg and Si located spectroscopically at 1253.6 and 1739.4 eV, respectively. Also observed are emission lines from O, Na, Ca, Al, and Fe atoms in the target and charge-exchange lines via surface extraction of electrons by the O+q electric field. Good agreement is found in the ratio of the measured X-ray yields for Mg and Si relative to the ratio of their electron-impact K-shell ionization cross sections. The present study may serve as a guide to astronomers as to specific observing X-ray energies indicative of solar/stellar wind or magnetospheric ion interactions with a comet, planetary surface, or circumstellar dust.

  1. Investigation on gallium ions impacting monolayer graphene

    SciTech Connect

    Wu, Xin; Zhao, Haiyan Yan, Dong; Pei, Jiayun

    2015-06-15

    In this paper, the physical phenomena of gallium (Ga{sup +}) ion impacting monolayer graphene in the nanosculpting process are investigated experimentally, and the mechanisms are explained by using Monte Carlo (MC) and molecular dynamics (MD) simulations. Firstly, the MC method is employed to clarify the phenomena happened to the monolayer graphene target under Ga{sup +} ion irradiation. It is found that substrate has strong influence on the damage mode of graphene. The mean sputtering yield of graphene under 30 keV Ga{sup +} ion irradiation is 1.77 and the least ion dose to completely remove carbon atoms in graphene is 21.6 ion/nm{sup 2}. Afterwards, the focused ion beam over 21.6 ion/nm{sup 2} is used for the irradiation on a monolayer graphene supported by SiO2 experimentally, resulting in the nanostructures, i.e., nanodot and nanowire array on the graphene. The performances of the nanostructures are characterized by atomic force microscopy and Raman spectrum. A plasma plume shielding model is put forward to explain the nanosculpting results of graphene under different irradiation parameters. In addition, two damage mechanisms are found existing in the fabrication process of the nanostructures by using empirical MD simulations. The results can help us open the possibilities for better control of nanocarbon devices.

  2. Calculating method for confinement time and charge distribution of ions in electron cyclotron resonance sources

    SciTech Connect

    Dougar-Jabon, V.D.; Umnov, A.M.; Kutner, V.B.

    1996-03-01

    It is common knowledge that the electrostatic pit in a core plasma of electron cyclotron resonance sources exerts strict control over generation of ions in high charge states. This work is aimed at finding a dependence of the lifetime of ions on their charge states in the core region and to elaborate a numerical model of ion charge dispersion not only for the core plasmas but for extracted beams as well. The calculated data are in good agreement with the experimental results on charge distributions and magnitudes for currents of beams extracted from the 14 GHz DECRIS source. {copyright} {ital 1996 American Institute of Physics.}

  3. Impact of surface properties on the dust grain charging

    NASA Astrophysics Data System (ADS)

    Pavlů, J.; Richterová, I.; Šafránková, J.; Němeček, Z.

    2006-01-01

    Dust grains are common in the space environment and being immersed in plasma, they become charged. It is well known that a motion of grains in space is driven mainly by electrodynamic forces and thus the grain charge is important for processes like the coagulation or dust cloud formations. Among other charging currents, emission processes are very important for setting the dust charge. It is believed that emission processes are connected exclusively with surface properties of dust grains but it is not evident for the surfaces covered by a very thin layer of different material (e.g., oxidized metal). For this reason, we investigate surface effects experimentally. Our experiment is based on an 3D electrodynamic trap. We caught a single dust grain for several days inside the vacuum vessel and exposed it to the electron/ion beam and studied charging/discharging processes. We have chosen spherically shaped melamine formaldehyde resin grains of a diameter 2.35 μm either with a clean surface or covered with a thin nickel film. An advantage of these samples is that the properties of bulk and surface materials are completely different. The effect of a surface modification was studied for ion and electron field emissions. We determined field intensities needed for significant emission currents as well as effective work functions for charged dust grains of particular material.

  4. Physical limits for high ion charge states in pulsed discharges in vacuum

    SciTech Connect

    Yushkov, Georgy; Anders, Andre

    2008-12-23

    Short-pulse, high-current discharges in vacuum were investigated with the goal to maximize the ion charge state number. In a direct extension of previous work [Appl. Phys. Lett. 92, 041502 (2008)], the role of pulse length, rate of current rise, and current amplitude was studied. For all experimental conditions, the usable (extractable) mean ion charge state could not be pushed beyond 7+. Instead, a maximum of the mean ion charge state (about 6+ to 7+ for most cathode materials) was found for a power of 2-3 MW dissipated in the discharge gap. The maximum is the result of two opposing processes that occur when the power is increased: (i) the formation of higher ion charge states, and (ii) a greater production of neutrals (both metal and non-metal), which reduces the charge state via charge exchange collisions.

  5. Computation of Ion Drag Force and Charge on a Static Spherical Dust Grain in RF Plasma

    SciTech Connect

    Ikkurthi, V. R.; Melzer, A.; Matyash, K.; Schneider, R.

    2008-09-07

    The ion drag force and charge on a spherical dust grain located in RF discharge plasma is computed using a 3-dimensional Particle-Particle Particle-Mesh (P3M) code. Our plasma model includes finite-size effects for dust grains and allows to self-consistently resolve the dust grain charging due to absorption of plasma electrons and ions. Ion drag and dust charge have been computed for various sizes of dust particles placed at various locations in the discharge. The results for ion drag have been compared with previous collisionless models and affect of collisions on drag has been discussed in detail.

  6. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    SciTech Connect

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; Vizkelethy, Gyorgy; Abraham, John B. S.; Doyle, Barney L.

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si++ ions and 60 keV Li+ ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  7. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE PAGES

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; Vizkelethy, Gyorgy; Abraham, John B. S.; Doyle, Barney L.

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si++ ions and 60 keV Li+ ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  8. Modifications of gallium phosphide single crystals using slow highly charged ions and swift heavy ions

    NASA Astrophysics Data System (ADS)

    El-Said, A. S.; Wilhelm, R. A.; Heller, R.; Akhmadaliev, Sh.; Schumann, E.; Sorokin, M.; Facsko, S.; Trautmann, C.

    2016-09-01

    GaP single crystals were irradiated with slow highly charged ions (HCI) using 114 keV 129Xe(33-40)+ and with various swift heavy ions (SHI) of 30 MeV I9+ and 374 MeV-2.2 GeV 197Au25+. The irradiated surfaces were investigated by scanning force microscopy (SFM). The irradiations with SHI lead to nanohillocks protruding from the GaP surfaces, whereas no changes of the surface topography were observed after the irradiation with HCI. This result indicates that a potential energy above 38.5 keV is required for surface nanostructuring of GaP. In addition, strong coloration of the GaP crystals was observed after irradiation with SHI. The effect was stronger for higher energies. This was confirmed by measuring an increased extinction coefficient in the visible light region.

  9. MONO1001: A source for singly charged ions applied to the production of multicharged fullerene beams

    NASA Astrophysics Data System (ADS)

    Maunoury, L.; Andersen, J. U.; Cederquist, H.; Huber, B. A.; Hvelplund, P.; Leroy, R.; Manil, B.; Pacquet, J. Y.; Pedersen, U. V.; Rangamma, J.; Tomita, S.

    2004-05-01

    The present article reports on a recent study of the production of multiply charged fullerene beams based on an electron cyclotron resonance (ECR) ion source (ECRIS). As collision studies in fundamental physics are demanding intense beams of multiply charged ions of small molecules, clusters, and particularly of fullerenes, we have further developed the ion source ECRIS MONO1000 [P. Jardin et al., Rev. Sci. Instrum. 73, 789 (2002)], originally devoted to produce singly charged ions, towards the production of multiply charged fullerene beams. In this article, the test measurements performed at the Electrostatic Ion Storage Ring Århus rf power (ELISA) facility will be described. Typical mass spectra (from pure C60 and C70 powder) will be shown and the influence of several source parameters (rf power, support gas, gas pressure,…) will be discussed specifying the conditions necessary for an optimum ion source operation.

  10. The Importance of Ion Packing on the Dynamics of Ionic Liquids during Micropore Charging

    SciTech Connect

    He, Yadong; Qiao, Rui; Vatamanu, Jenel; Borodin, Oleg; Bedrov, Dmitry; Huang, Jingsong; Sumpter, Bobby G.

    2015-12-07

    There is an emerging concern that using room-temperature ionic liquids (RTILs) together with microporous electrodes may compromise supercapacitors power density in spite of their benefit for enhancing energy density due to possibly slow transport of ions inside narrow pores. Based on molecular simulations of the diffusion of EMIM+ and TFSI ions in slit-shaped micropores (width < 2 nm,) under conditions similar to those during pore charging, we show that, in pores that accommodate only a single layer of ions, the ions diffuse increasingly faster as the pore becomes charged, even faster than Na^+ ions in bulk water. However, this trend can be reversed when the pore becomes highly charged. In pores wide enough to fit more than one layer of ions, the ion diffusion is typically slower than in the bulk, and only changes modestly as the pore becomes charged. Analysis of these results revealed that the fast (or slow) diffusion of ions inside a micropore is correlated most strongly with the dense (or loose) ion packing inside the pore during charging. The molecular details of ions and the precise width of pores modify these trends relatively weakly, except when the pore size is so narrow that the conformation of ions is strongly constrained by the pore walls. Insight from these results should be useful for establishing guidelines for the design of RTILs and porous electrode materials for supercapacitors.

  11. The Importance of Ion Packing on the Dynamics of Ionic Liquids during Micropore Charging

    DOE PAGES

    He, Yadong; Qiao, Rui; Vatamanu, Jenel; Borodin, Oleg; Bedrov, Dmitry; Huang, Jingsong; Sumpter, Bobby G.

    2015-12-07

    There is an emerging concern that using room-temperature ionic liquids (RTILs) together with microporous electrodes may compromise supercapacitors power density in spite of their benefit for enhancing energy density due to possibly slow transport of ions inside narrow pores. Based on molecular simulations of the diffusion of EMIM+ and TFSI ions in slit-shaped micropores (width < 2 nm,) under conditions similar to those during pore charging, we show that, in pores that accommodate only a single layer of ions, the ions diffuse increasingly faster as the pore becomes charged, even faster than Na^+ ions in bulk water. However, this trendmore » can be reversed when the pore becomes highly charged. In pores wide enough to fit more than one layer of ions, the ion diffusion is typically slower than in the bulk, and only changes modestly as the pore becomes charged. Analysis of these results revealed that the fast (or slow) diffusion of ions inside a micropore is correlated most strongly with the dense (or loose) ion packing inside the pore during charging. The molecular details of ions and the precise width of pores modify these trends relatively weakly, except when the pore size is so narrow that the conformation of ions is strongly constrained by the pore walls. Insight from these results should be useful for establishing guidelines for the design of RTILs and porous electrode materials for supercapacitors.« less

  12. Space-charge-dominated mass spectrometry ion sources: Modeling and sensitivity.

    PubMed

    Busman, M; Sunner, J; Vogel, C R

    1991-01-01

    The factors determining the sensitivity of space-charge-dominated (SCD) unipolar ion sources, such as electrospray (ESP) and corona atmospheric pressure ionization (API) have been studied theoretically. The most important parameters are the ion density and ion drift time in the vicinity of the sampling orifice. These are obtained by solving a system of differential equations, "the space-charge problem." For some simple geometries, analytical solutions are known. For a more realistic "needle-in-can" geometry, a solution to the space-charge problem was obtained using a finite-element method. The results illustrate some general characteristics of SCD ion sources. It is shown that for typical operating conditions the minimum voltage required to overcome the space-charge effect in corona API or ESP ion sources constitutes a dominant or significant fraction of total applied voltage. Further, the electric field and the ion density in the region of the ion-sampling orifice as well as the ion residence time in the source are determined mainly by the space charge. Finally, absolute sensitivities of corona API ion sources were calculated by using a geometry-independent treatment of space charge.

  13. Impact of Fast Charging on Life of EV Batteries

    SciTech Connect

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad A.

    2015-05-03

    Utilization of public charging infrastructure is heavily dependent on user-specific travel behavior. The availability of fast chargers can positively affect the utility of battery electric vehicles, even given infrequent use. Estimated utilization rates do not appear frequent enough to significantly impact battery life. Battery thermal management systems are critical in mitigating dangerous thermal conditions on long distance tours with multiple fast charge events.

  14. Direct generation of ion beam images with a two-dimensional charge injection device.

    PubMed

    Cable, P R; Parker, M; Marcus, R K; Pochkowski, J M

    1995-02-01

    The use of a two-dimensional charge injection device (CID) to directly image the spatial profile of impingent positively charged ions is described. By this approach, no prior conversion from an ion beam to a photon image is required. Because of the positive response of the device to plasma photons, ions that emanated from the radiofrequency glow discharge source were diverted around a photon stop and focused onto the CID. The resultant ion images were digitized via an external image processor and corrected for dark current contributions. Two-dimensional ion images and single pixel line profiles are presented.

  15. Electron-impact dissociation and ionization of NO+ ions

    NASA Astrophysics Data System (ADS)

    Belic, D. S.; Urbain, X.; Cherkani-Hassani, H.; Defrance, P.

    2016-07-01

    Absolute cross sections for electron-impact ionization and dissociation of NO+ ions are reported. Simple ionization to NO2+ ion and production of singly charged N+ and O+ and doubly charged N2+ and O2+ fragments have been investigated. The animated electron-ion crossed-beam method is applied in the energy range from the respective thresholds up to 2.5 keV. The maximum of the simple ionization cross section is found to be (3.49 ± 0.07) × 10-17 cm2 at 135 eV. The total cross sections for N+ and O+ fragments at the maximum are found to be (13.9 ± 1.0) × 10-17 cm2 and (14.0 ± 1.4) × 10-17 cm2, respectively, both at an energy of 85 eV. By performing careful magnetic field scans of the detected signal, contributions of dissociative excitation and dissociative ionization to N+ and O+ production are determined separately. The cross sections for asymmetric dissociative ionization to N2+ and O2+ are found to be over one order of magnitude smaller. Distributions of the kinetic energy release to the fragments are determined for all dissociation processes.

  16. Symmetric Resonance Charge Exchange Cross Section Based on Impact Parameter Treatment

    NASA Technical Reports Server (NTRS)

    Omidvar, Kazem; Murphy, Kendrah; Atlas, Robert (Technical Monitor)

    2002-01-01

    Using a two-state impact parameter approximation, a calculation has been carried out to obtain symmetric resonance charge transfer cross sections between nine ions and their parent atoms or molecules. Calculation is based on a two-dimensional numerical integration. The method is mostly suited for hydrogenic and some closed shell atoms. Good agreement has been obtained with the results of laboratory measurements for the ion-atom pairs H+-H, He+-He, and Ar+-Ar. Several approximations in a similar published calculation have been eliminated.

  17. Electron-impact ionization of multicharged ions at ORNL: 1985--1992

    SciTech Connect

    Gregory, D.C.; Bannister, M.E.

    1994-07-01

    Absolute cross sections are presented in graphs and tables for single ionization of forty-one ions, multiple ionization of four ions, and for dissociation and ionization of two molecular ions by electron impact. This memo is the third in a series of manuscripts summarizing previously published as well as unpublished ionization cross section measurements at ORNL; contents of the two previous memos are also referenced in this work. All work tabulated in this memo involved ion beams generated in the ORNL-ECR ion source and utilized the ORNL electron-ion crossed beams apparatus. Target ions range from atomic number Z = 8 (oxygen) to Z = 92 (uranium) in initial charge states from +1 to +16. Electron impact energies typically range from threshold to 1500 eV.

  18. Method and apparatus for detection of charge on ions and particles

    DOEpatents

    Fuerstenau, Stephen Douglas; Soli, George Arthur

    2002-01-01

    The present invention provides a tessellated array detector with charge collecting plate (or cup) electrode pixels and amplifying circuitry integrated into each pixel making it sensitive to external electrostatic charge; a micro collector/amplifier pixel design possessing a small capacitance to ensure a high charge to voltage signal conversion for low noise/high sensitivity operation; a micro-fabricated array of such pixels to create a useful macroscopic target area for ion and charged particle collection.

  19. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.

    1981-01-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  20. Recent Excitation, Charge Exchange, and Lifetime Results in Highly Charged Ions Relevant to Stellar, Interstellar, Solar and Comet Phenomena

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Hossain, S.; Mawhorter, R. J.; Smith, S. J.

    2006-01-01

    Recent JPL absolute excitation and charge exchange cross sections, and measurements of lifetimes of metastable levels in highly-charged ions (HCIs) are reported. These data provide benchmark comparisons to results of theoretical calculations. Theoretical approaches can then be used to calculate the vast array of data which cannot be measured due to experimental constraints. Applications to the X-ray emission from comets are given.

  1. Modulation and interactions of charged biomimetic membranes with bivalent ions

    NASA Astrophysics Data System (ADS)

    Kazadi Badiambile, Adolphe

    biomolecules in a dynamic environment and the lack of appropriate physical and biochemical tools. In contrast, biomimetic membrane models that rely on the amphiphilic properties of phospholipids are powerful tools that enable the study of these molecules in vitro. By having control over the different experimental parameters such as temperature and pH, reliable and repeatable experimental conditions can be created. One of the key questions I investigated in this thesis is related to the clustering mechanism of PtdIns(4, 5)P2 into pools or aggregates that enable independent cellular control of this species by geometric separation. The lateral aggregation of PtdIns(4, 5)P2 and its underlying physical causes is still a matter of debate. In the first part of this thesis I introduce the general information on lipid membranes with a special focus on the PtdIns family and their associated signaling events. In addition, I explain the Langmuir-Blodgett film balance (LB) system as tool to study lipid membranes and lipid interactions. In the second chapter, I describe my work on the lateral compressibility of PtdIns(4, 5)P2, PtdIns and DOPG monolayers and its modulation by bivalent ions using Langmuir monolayers. In addition, a theoretical framework of compressibility that depends on a surface potential induced by a planar layer of charged molecules and ions in the bulk was provided. In the third part, I present my work on the excess Gibbs free energy of the lipid systems PtdIns(4, 5)P2 --POPC, PtdIns(4, 5)P2, and POPC as they are modulated by bivalent ions. In the fourth part, I report on my foray in engineering a light-based system that relies on different dye properties to simulate calcium induced calcium release (CICR) that occurs in many cell types. In the final chapter, I provide a general conclusion and present directions for future research that would build on my findings.

  2. Charge-exchange plasma environment for an ion drive spacecraft

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Carruth, M. R., Jr.

    1981-01-01

    A model was reviewed which describes the propagation of the mercury charge-exchange plasma and extended to describe the flow of the molybdenum component of the charge-exchange plasma. The uncertainties in the models for various conditions are discussed. Such topics as current drain to the solar array, charge-exchange plasma material deposition, and the effects of space plasma on the charge-exchange plasma propagation are addressed.

  3. Demonstration of charge breeding in a compact room temperature electron beam ion trap

    SciTech Connect

    Vorobjev, G.; Sokolov, A.; Herfurth, F.; Kester, O.; Quint, W.; Stoehlker, Th.; Thorn, A.; Zschornack, G.

    2012-05-15

    For the first time, a small room-temperature electron beam ion trap (EBIT), operated with permanent magnets, was successfully used for charge breeding experiments. The relatively low magnetic field of this EBIT does not contribute to the capture of the ions; single-charged ions are only caught by the space charge potential of the electron beam. An over-barrier injection method was used to fill the EBIT's electrostatic trap with externally produced, single-charged potassium ions. Charge states as high as K{sup 19+} were reached after about a 3 s breeding time. The capture and breeding efficiencies up to 0.016(4)% for K{sup 17+} have been measured.

  4. Neutral atomic oxygen beam produced by ion charge exchange for Low Earth Orbital (LEO) simulation

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Rutledge, Sharon; Brdar, Marko; Olen, Carl; Stidham, Curt

    1987-01-01

    A low energy neutral atomic oxygen beam system was designed and is currently being assembled at the Lewis Research Center. The system utilizes a 15 cm diameter Kaufman ion source to produce positive oxygen ions which are charge exchange neutralized to produce low energy (variable from 5 to 150 eV) oxygen atoms at a flux simulating real time low Earth orbital conditions. An electromagnet is used to direct only the singly charged oxygen ions from the ion source into the charge exchange cell. A retarding potential grid is used to slow down the oxygen ions to desired energies prior to their charge exchange. Cryogenically cooled diatomic oxygen gas in the charge exchange cell is then used to transfer charge to the oxygen ions to produce a neutral atomic oxygen beam. Remaining non-charge exchanged oxygen ions are then swept from the beam by electromagnetic or electrostatic deflection depending upon the desired experiment configuration. The resulting neutral oxygen beam of 5 to 10 cm in diameter impinges upon target materials within a sample holder fixture that can also provide for simultaneous heating and UV exposure during the atomic oxygen bombardment.

  5. Optimization of electron-cyclotron-resonance charge-breeder ions : Final CRADA Report.

    SciTech Connect

    Pardo, R.; Physics; Far-Tech, Inc.

    2009-10-09

    Measurements of 1+ beam properties and associated performance of ECR Charge Breeder source determined by total efficiency measurement and charge state distributions from the ECR Charge Breeder. These results were communicated to Far-Tech personnel who used them to benchmark the newly developed programs that model ion capture and charge breeding in the ECR Charge Breeder Source. Providing the basic data described above and in the discussion below to Far-Tech allowed them to improve and refine their calculational tools for ECR ion sources. These new tools will be offered for sale to industry and will also provide important guidance to other research labs developing Charge Breeding ion sources for radioactive beam physics research.

  6. Adsorption of charged protein residues on an inorganic nanosheet: Computer simulation of LDH interaction with ion channel

    NASA Astrophysics Data System (ADS)

    Tsukanov, Alexey A.; Psakhie, Sergey G.

    2016-08-01

    Quasi-two-dimensional and hybrid nanomaterials based on layered double hydroxides (LDH), cationic clays, layered oxyhydroxides and hydroxides of metals possess large specific surface area and strong electrostatic properties with permanent or pH-dependent electric charge. Such nanomaterials may impact cellular electrostatics, changing the ion balance, pH and membrane potential. Selective ion adsorption/exchange may alter the transmembrane electrochemical gradient, disrupting potential-dependent cellular processes. Cellular proteins as a rule have charged residues which can be effectively adsorbed on the surface of layered hydroxide based nanomaterials. The aim of this study is to attempt to shed some light on the possibility and mechanisms of protein "adhesion" an LDH nanosheet and to propose a new direction in anticancer medicine, based on physical impact and strong electrostatics. An unbiased molecular dynamics simulation was performed and the combined process free energy estimation (COPFEE) approach was used.

  7. Radial stratification of ions as a function of mass to charge ratio in collisional cooling radio frequency multipoles used as ion guides or ion traps.

    PubMed

    Tolmachev, A V; Udseth, H R; Smith, R D

    2000-01-01

    Collisional cooling in radio frequency (RF) ion guides has been used in mass spectrometry as an intermediate step during the transport of ions from high pressure regions of an ion source into high vacuum regions of a mass analyzer. Such collisional cooling devices are also increasingly used as 'linear', two-dimensional (2D) ion traps for ion storage and accumulation to achieve improved sensitivity and dynamic range. We have used the effective potential approach to study m/z dependent distribution of ions in the devices. Relationships obtained for the ideal 2D multipole demonstrate that after cooling the ion cloud forms concentric cylindrical layers, each of them composed of ions having the same m/z ratio; the higher the m/z, the larger is the radial position occupied by the ions. This behavior results from the fact that the effective RF focusing is stronger for ions of lower m/z, pushing these ions closer to the axis. Radial boundaries of the layers are more distinct for multiply charged ions, compared to singly charged ions having the same m/z and charge density. In the case of sufficiently high ion density and low ion kinetic energy, we show that each m/z layer is separated from its nearest neighbor by a radial gap of low ion density. The radial gaps of low ion population between the layers are formed due to the space charge repulsion. Conditions for establishing the m/z stratified structure include sufficiently high charge density and adequate collisional relaxation. These conditions are likely to occur in collisional RF multipoles operated as ion guides or 2D ion traps for external ion accumulation. When linear ion density increases, the maximum ion cloud radius also increases, and outer layers of high m/z ions approach the multipole rods and may be ejected. This 'overfilling' of the multipole capacity results in a strong discrimination against high m/z ions. A relationship is reported for the maximum linear ion density of a multipole that is not overfilled.

  8. Measurements of the Total Charge-Changing Cross Sections for Collisions of Fast Ions with Target Gas Using High Current Experiment

    SciTech Connect

    Covo, Michel Kireeff; Molvik, Arthur W.; Kaganovich, Igor D.; Shnidman, Ariel; Vujic, Jasmina L.

    2009-04-13

    The sum of ionization and charge-exchange cross sections of several gas targets (H2, N2, He, Ne, Kr, Xe, Ar, and water vapor) impacted by 1MeV K+ beam are measured. In a high current ion beam, the self-electric field of the beam is high enough that ions produced from the gas ionization or charge exchange by the ion beam are quickly swept to the sides of accelerator. The flux of the expelled ions is measured by a retarding field analyzer. This allows accurate measuring of the total charge-changing cross sections (ionization plus charge exchange) of the beam interaction with gas. Cross sections for H2, He, and N2 are simulated using classical trajectory Monte Carlo (CTMC) method and compared with the experimental results, showing good agreement.

  9. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    PubMed

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  10. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    PubMed

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007. PMID:18315105

  11. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL (invited)a)

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Guo, X. H.; Cao, Y.; Lu, W.; Zhang, Z. M.; Yuan, P.; Song, M. T.; Zhao, H. Y.; Jin, T.; Shang, Y.; Zhan, W. L.; Wei, B. W.; Xie, D. Z.

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6T at injection, 2.2T at extraction, and a radial sextupole field of 2.0T at plasma chamber wall. During the commissioning phase at 18GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5kW by two 18GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810eμA of O7+, 505eμA of Xe20+, 306eμA of Xe27+, and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  12. Electron emission following the interaction of highly charged ions with a Pt(110) target

    SciTech Connect

    Koehrbrueck, R.; Stolterfoht, N. Laboratoire de Spectroscopie Atomique, Institut des Sciences de la Matiere et du Rayonnement Campus II, F-14050 Caen Cedex ); Schippers, S.; Hustedt, S.; Heiland, W. ); Lecler, D. ); Kemmler, J. ); Bleck-Neuhaus, J. )

    1993-11-01

    We measured secondary-electron energy spectra of the H-like ions N[sup 6+], O[sup 7+], and Ne[sup [ital q]+]([ital q]=3,7,8,9,10) incident on a solid Pt(110) surface at different angles (10[degree]--90[degree]) using impact energies of 10[ital q] and 15[ital q] keV. Clear evidence is found for subsurface electron emission of the [ital KLL] Auger electrons. The stepwise filling of both [ital K]-shell holes of the Ne[sup 10+] projectile is observed in the electron energy spectrum. The dynamics of the filling of the [ital L] and [ital K] shells in the solid is studied for the Ne[sup 10+] ion. It is found that hollow Ne atoms are formed inside the solid. With decreasing incident charge state of the Ne projectile the [ital LMM] Auger lines are shifted to lower energies due to the different screening of the nuclear charge, which is consistent with corresponding Hartree-Fock calculations.

  13. Open questions in electronic sputtering of solids by slow highly charged ions with respect to applications in single ion implantation

    SciTech Connect

    Schenkel, T.; Rangelow, I.W.; Keller, R.; Park, S.J.; Nilsson, J.; Persaud, A.; Radmilivitc, V.R.; Liddle, J.A.; Grabiec, P.; Bokor, J.; Schneider, D.H.

    2003-07-16

    In this article we discuss open questions in electronic sputtering of solids by slow, highly charged ions in the context of their application in a single ion implantation scheme. High yields of secondary electrons emitted when highly charged dopant ions impinge on silicon wafers allow for formation of non-Poissonian implant structures such as single atom arrays. Control of high spatial resolution and implant alignment require the use of nanometer scale apertures. We discuss electronic sputtering issues on mask lifetimes, and damage to silicon wafers.

  14. Charge ordering in charge-compensated Na 0.41CoO 2 by oxonium ions

    NASA Astrophysics Data System (ADS)

    Wang, C. H.; Zhang, H. T.; Lu, X. X.; Wu, G.; Chen, X. H.; Li, J. Q.

    2006-04-01

    Charge ordering behavior is observed in the crystal prepared through the immersion of the Na 0.41CoO 2 crystal in distilled water. Discovery of the charge ordering in the crystal with Na content less than 0.5 indicates that the immersion in water brings about the reduction of the Na 0.41CoO 2. The formal valence of Co changes from +3.59 estimated from the Na content to +3.50, the same as that in Na 0.5CoO 2. The charge compensation is confirmed to arise from the intercalation of the oxonium ions as occurred in the superconducting sodium cobalt oxide bilayer-hydrate [K. Takada, et al. J. Mater. Chem. 14 (2004) 1448]. The charge ordering is the same as that observed in Na 0.5CoO 2. It suggests that the Co valence of +3.50 is necessary for the charge ordering.

  15. Performance on the low charge state laser ion source in BNL

    SciTech Connect

    Okamura, M.; Alessi, J.; Beebe, E.; Costanzo, M.; DeSanto, L.; Jamilkowski, J.; Kanesue, T.; Lambiase, R.; Lehn, D.; Liaw, C. J.; McCafferty, D.; Morris, J.; Olsen, R.; Pikin, A.; Raparia, D.; Steszyn, A.; Ikeda, S.

    2015-09-07

    On March 2014, a Laser Ion Source (LIS) was commissioned which delivers high-brightness, low-charge-state heavy ions for the hadron accelerator complex in Brookhaven National Laboratory (BNL). Since then, the LIS has provided many heavy ion species successfully. The low-charge-state (mostly singly charged) beams are injected to the Electron Beam Ion Source (EBIS), where ions are then highly ionized to fit to the following accelerator’s Q/M acceptance, like Au32+. Recently we upgraded the LIS to be able to provide two different beams into EBIS on a pulse-to-pulse basis. Now the LIS is simultaneously providing beams for both the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory (NSRL).

  16. Plasma Diagnostics by the Charge Distributions of Heavy Ions in Impulsive Solar Flares

    NASA Astrophysics Data System (ADS)

    Kartavykh, Julia

    We consider stochastic acceleration of heavy ions (Fe as a sample species) by the Alfven wave turbulence in impulsive solar flares. The processes of Coulomb losses and ion stripping during the energy gain are taken into account. The properties of charge distribution function are influenced by the plasma parameters such as temperature, number density and spectral index of turbulence. General dependences of the mean charge, dispersion and asymmetry of charge distribution on plasma parameters are investigated. These simulations could be important in the light of new experimental data from ACE spacecraft that is able to measure charge distribution for an individual impulsive event.

  17. Charging-delay induced dust acoustic collisionless shock wave: Roles of negative ions

    SciTech Connect

    Ghosh, Samiran; Bharuthram, R.; Khan, Manoranjan; Gupta, M. R.

    2006-11-15

    The effects of charging-delay and negative ions on nonlinear dust acoustic waves are investigated. It has been found that the charging-delay induced anomalous dissipation causes generation of dust acoustic collisionless shock waves in an electronegative dusty plasma. The small but finite amplitude wave is governed by a Korteweg-de Vries Burger equation in which the Burger term arises due to the charging-delay. Numerical investigations reveal that the charging-delay induced dissipation and shock strength decreases (increases) with the increase of negative ion concentration (temperature)

  18. Molecular effect on equilibrium charge-state distributions. [of nitrogen ions injected through carbon foil

    NASA Technical Reports Server (NTRS)

    Wickholm, D.; Bickel, W. S.

    1976-01-01

    The paper describes an experiment consisting of the acceleration of N(+) and N2(+) ions to energies between 0.25 and 1.75 MeV and their injection through a thin carbon foil, whereupon they were charge-state analyzed with an electrostatic analyzer. A foil-covered electrically suppressed Faraday cup, connected to a stepping motor, moved in the plane of the dispersed beams. The Faraday cup current, which was proportional to the number of incident ions, was sent to a current digitizer and computer programmed as a multiscaler. The energy-dependent charge-state fractions, the mean charge and the distribution width were calculated. It was shown that for incident atoms, the charge state distribution appeared to be spread over more charge states, while for the incident molecules, there was a greater fraction of charge states near the mean charge.

  19. Highly-charged heavy-ion production with short pulse lasers

    SciTech Connect

    Logan, G.; Bitmire, T.; Perry, M.; Anderson, O.; Kuehl, T.

    1998-01-27

    This MathCAD document describes a possible approach using a PW -class short pulse laser to form a useful number (10{sup 12}) of high and uniform charge state ions with low ion temperature (<< 100 eV) and low momentum spread ({delta}p{sub z}/p, < 10{sup -4} ) for injection into heavy-ion fusion accelerators. As a specific example, we consider here Xenon{sup +26}, which has an ionization energy E{sub i} {approximately} 860 eV for the 26th electron, and a significantly higher ionization potential of 1500 eV for the 27th electron because of the M-shell jump. The approach considered here may be used for other ion species as well. The challenge is not simply to produce high charge states with a laser (the ITEP group [Sharkov] have used long pulse CO{sub 2} lasers to create many charge states of chromium up to helium-like Cr{sup +25} by collisional ionization at high Te), nor just to create such high charge states more selectively by field (tunneling) ionization at higher intensities and shorter pulses. Rather, the challenge is to create a selected uniform high charge state, in useful numbers, while keeping the ion temperature and momentum spread small, and avoiding subsequent loss of ion charge state due to recombination and charge-exchange with background gas atoms during extraction into a useful low emittance beam.

  20. Charge states of energetic oxygen and sulfur ions in Jupiter's magnetosphere

    NASA Astrophysics Data System (ADS)

    Clark, G.; Mauk, B. H.; Paranicas, C.; Kollmann, P.; Smith, H. T.

    2016-03-01

    Pitch angle distributions of proton and energetic heavy ion fluxes near Europa's orbit have been measured by the Galileo Energetic Particles Detector (EPD). At similar energies, these distributions have important differences. If their source and transport processes are similar, as we hypothesize here, then it is difficult to reconcile their different pitch angle distributions. By looking at the same question, other researchers have proposed that the heavies are multiply charged, leading to differences in how the particles are lost. This could not be confirmed directly with EPD because that detector does not separate heavy ion measurements by charge state. However, indirect analyses of the data have extracted the charge state of a few sulfur events. We present here a complete list of ion injections observed with EPD over the whole mission. Energetic sulfur and oxygen charge states can be inferred through a dispersion analysis of dynamic injections that makes use of the charge-dependent nature of the gradient-curvature azimuthal drift. We find that sulfur is predominantly multiply charged, whereas oxygen is more evenly distributed between singly and doubly charged states. In addition to current theories on energetic heavy ion transport near the Europa region, we propose that charge gain for the oxygen ions (electron stripping) may play an important role in the character of energetic particles in that region.

  1. The description of charge transfer in fast negative ions scattering on water covered Si(100) surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Qiu, Shunli; Liu, Pinyang; Xiong, Feifei; Lu, Jianjie; Liu, Yuefeng; Li, Guopeng; Liu, Yiran; Ren, Fei; Xiao, Yunqing; Gao, Lei; Zhao, Qiushuang; Ding, Bin; Li, Yuan; Guo, Yanling; Chen, Ximeng

    2016-11-01

    Doping has significantly affected the characteristics and performance of semiconductor electronic devices. In this work, we study the charge transfer processes for 8.5-22.5 keV C- and F- ions scattering on H2O-terminated p-type Si(100) surfaces with two different doping concentrations. We find that doping has no influence on negative-ion formation for fast collisions in this relatively high energy range. Moreover, we build a model to calculate negative ion fractions including the contribution from positive ions. The calculations support the nonadiabatic feature of charge transfer.

  2. Aberration of a negative ion beam caused by space charge effect.

    PubMed

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  3. Influence of argon and oxygen on charge-state-resolved ion energydistributions of filtered aluminum arcs

    SciTech Connect

    Rosen, Johanna; Anders, Andre; Mraz, Stanislav; Atiser, Adil; Schneider, Jochen M.

    2006-03-23

    The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range 0.5 8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as well as a narrow IED. These data may enable tailoring thin-film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions.

  4. Excitation of atoms and molecules in collisions with highly charged ions. [Cyclotron Inst. , Texas A M Univ. , College Station, Texas

    SciTech Connect

    Watson, R.L.

    1993-01-01

    A study of the double ionization of He by high-energy N[sup 7+] ions was extended up in energy to 40 MeV/amu. Coincidence time-of-flight studies of multicharged N[sub 2], O[sub 2], and CO molecular ions produced in collisions with 97-MeV Ar[sup 14+] ions were completed. Analysis of the total kinetic energy distributions and comparison with the available data for CO[sup 2+] and CO[sup 3+] from synchrotron radiation experiments led to the conclusion that ionization by Ar-ion impact populates states having considerably higher excitation energies than those accessed by photoionization. The dissociation fractions for CO[sup 1+] and CO[sup 2+] molecular ions, and the branching ratios for the most prominent charge division channels of CO[sup 2+] through CO[sup 7+] were determined from time-of-flight singles and coincidence data. An experiment designed to investigate the orientation dependence of dissociative multielectron ionization of molecules by heavy ion impact was completed. Measurements of the cross sections for K-shell ionization of intermediate-Z elements by 30-MeV/amu H, N, Ne, and Ar ions were completed. The cross sections were determined for solid targets of Z = 13, 22, 26, 29, 32, 40, 42, 46, and 50 by recording the spectra of K x rays with a Si(Li) spectrometer.

  5. Excitation of atoms and molecules in collisions with highly charged ions. Progress report, January 1, 1990--December 1, 1992

    SciTech Connect

    Watson, R.L.

    1993-01-01

    A study of the double ionization of He by high-energy N{sup 7+} ions was extended up in energy to 40 MeV/amu. Coincidence time-of-flight studies of multicharged N{sub 2}, O{sub 2}, and CO molecular ions produced in collisions with 97-MeV Ar{sup 14+} ions were completed. Analysis of the total kinetic energy distributions and comparison with the available data for CO{sup 2+} and CO{sup 3+} from synchrotron radiation experiments led to the conclusion that ionization by Ar-ion impact populates states having considerably higher excitation energies than those accessed by photoionization. The dissociation fractions for CO{sup 1+} and CO{sup 2+} molecular ions, and the branching ratios for the most prominent charge division channels of CO{sup 2+} through CO{sup 7+} were determined from time-of-flight singles and coincidence data. An experiment designed to investigate the orientation dependence of dissociative multielectron ionization of molecules by heavy ion impact was completed. Measurements of the cross sections for K-shell ionization of intermediate-Z elements by 30-MeV/amu H, N, Ne, and Ar ions were completed. The cross sections were determined for solid targets of Z = 13, 22, 26, 29, 32, 40, 42, 46, and 50 by recording the spectra of K x rays with a Si(Li) spectrometer.

  6. Additional considerations about the role of ion size in charge reversal.

    PubMed

    Martín-Molina, A; Hidalgo-Álvarez, R; Quesada-Pérez, M

    2009-10-21

    The effect of the ion size on the charge reversal process is studied via canonical Monte Carlo simulation. To this end, a primitive model of electrolyte is used to analyze the electric double layer formed by an asymmetric electrolyte in the presence of a charged planar wall. Different values of ion diameters and surface charge densities are used so as to determine the conditions at which the charge reversal first occurs. For each case, the apparent surface charge density is calculated as a function of the distance from the charged wall for the different electrolyte concentrations in order to establish the minimal salt concentration required for the charge reversal. We will refer to this electrolyte concentration as the reversal concentration and will show how it depends on the surface charge density and on the ion size. From the apparent surface charge density profiles, the distance from the wall at which the charge reversal arises as well as its intensity can be also inferred. PMID:21715840

  7. The ReA electron-beam ion trap charge breeder for reacceleration of rare isotopes

    NASA Astrophysics Data System (ADS)

    Lapierre, A.; Schwarz, S.; Kittimanapun, K.; Fogleman, J.; Krause, S.; Nash, S.; Rencsok, R.; Tobos, L.; Perdikakis, G.; Portillo, M.; Rodriguez, J. A.; Wittmer, W.; Wu, X.; Bollen, G.; Leitner, D.; Syphers, M.; ReA Team

    2013-04-01

    ReA is a post-accelerator at the National Superconducting Cyclotron Laboratory at Michigan State University. ReA is designed to reaccelerate rare isotopes to energies of a few MeV/u following production by projectile fragmentation and thermalization in a gas cell. The facility consists of four main components: an electron-beam ion trap (EBIT) charge breeder, an achromatic charge-over-mass (Q/A) separator, a radio-frequency quadrupole accelerator, and a superconducting radio-frequency linear accelerator. The EBIT charge breeder was specifically designed to efficiently capture continuous beams of singly charged ions injected at low energy (<60 keV), charge breed in less than 50 ms, and extract highly charged ions to the Q/A separator for charge-state selection and reacceleration through the accelerator structures. The use of highly charged ions to reach high beam energies is a key aspect that makes ReA a compact and cost-efficient post-accelerator. The EBIT is characterized by a high-current electron gun, a long multi-electrode trap structure and a dual magnet to provide both the high electron-beam current density necessary for fast charge breeding of short-lived isotopes as well as the high capture probability of injected beams. This paper presents an overview and the status of the ReA EBIT, which has extracted for reacceleration tests stable 20Ne8+ ion beams produced from injected gas and more recently 39K16+ beams by injecting stable 39,41K+ ions from an external ion source.

  8. A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.

    PubMed

    Chen, Duan

    2016-08-01

    In this work, we propose a new Poisson-Nernst-Planck (PNP) model with ion-water interactions for biological charge transport in ion channels. Due to narrow geometries of these membrane proteins, ion-water interaction is critical for both dielectric property of water molecules in channel pore and transport dynamics of mobile ions. We model the ion-water interaction energy based on realistic experimental observations in an efficient mean-field approach. Variation of a total energy functional of the biological system yields a new PNP-type continuum model. Numerical simulations show that the proposed model with ion-water interaction energy has the new features that quantitatively describe dielectric properties of water molecules in narrow pores and are possible to model the selectivity of some ion channels.

  9. A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.

    PubMed

    Chen, Duan

    2016-08-01

    In this work, we propose a new Poisson-Nernst-Planck (PNP) model with ion-water interactions for biological charge transport in ion channels. Due to narrow geometries of these membrane proteins, ion-water interaction is critical for both dielectric property of water molecules in channel pore and transport dynamics of mobile ions. We model the ion-water interaction energy based on realistic experimental observations in an efficient mean-field approach. Variation of a total energy functional of the biological system yields a new PNP-type continuum model. Numerical simulations show that the proposed model with ion-water interaction energy has the new features that quantitatively describe dielectric properties of water molecules in narrow pores and are possible to model the selectivity of some ion channels. PMID:27480225

  10. The effect of dust charge variation, due to ion flow and electron depletion, on dust levitation

    SciTech Connect

    Land, Victor; Douglass, Angela; Qiao Ke; Matthews, Lorin; Hyde, Truell

    2011-11-29

    Using a fluid model, the plasma densities, electron temperature and ion Mach number in front of a powered electrode in different plasma discharges is computed. The dust charge is computed using OML theory for Maxwellian electrons and ions distributed according to a shifted-Maxwellian. By assuming force balance between gravity and the electrostatic force, the dust levitation height is obtained. The importance of the dust charge variation is investigated.

  11. The assessment of microscopic charging effects induced by focused electron and ion beam irradiation of dielectrics.

    PubMed

    Stevens-Kalceff, Marion A; Levick, Katie J

    2007-03-01

    Energetic beams of electrons and ions are widely used to probe the microscopic properties of materials. Irradiation with charged beams in scanning electron microscopes (SEM) and focused ion beam (FIB) systems may result in the trapping of charge at irradiation induced or pre-existing defects within the implanted microvolume of the dielectric material. The significant perturbing influence on dielectric materials of both electron and (Ga(+)) ion beam irradiation is assessed using scanning probe microscopy (SPM) techniques. Kelvin Probe Microscopy (KPM) is an advanced SPM technique in which long-range Coulomb forces between a conductive atomic force probe and the silicon dioxide specimen enable the potential at the specimen surface to be characterized with high spatial resolution. KPM reveals characteristic significant localized potentials in both electron and ion implanted dielectrics. The potentials are observed despite charge mitigation strategies including prior coating of the dielectric specimen with a layer of thin grounded conductive material. Both electron- and ion-induced charging effects are influenced by a delicate balance of a number of different dynamic processes including charge-trapping and secondary electron emission. In the case of ion beam induced charging, the additional influence of ion implantation and nonstoichiometric sputtering from compounds is also important. The presence of a localized potential will result in the electromigration of mobile charged defect species within the irradiated volume of the dielectric specimen. This electromigration may result in local modification of the chemical composition of the irradiated dielectric. The implications of charging induced effects must be considered during the microanalysis and processing of dielectric materials using electron and ion beam techniques.

  12. Low dust charging rate induced weakly dissipative dust acoustic solitary waves: Role of nonthermal ions

    SciTech Connect

    Chaudhuri, Tushar Kanti; Khan, Manoranjan; Gupta, M. R.; Ghosh, Samiran

    2007-10-15

    The effects of low dust charging rate compared to the dust oscillation frequency and nonthermal ions on small but finite amplitude nonlinear dust acoustic wave have been investigated. It is seen that because of the low dust charging rate, the nonlinear wave exhibits weakly dissipative solitary wave that is governed by a modified form of the Korteweg-de Vries equation. The solitary wave possesses both rarefactive and compressive soliton solution depending on the values of ion nonthermality parameter a. An analytical solution reveals that because of the simultaneous effects of low dust charging rate and nonthermal ions, the wave amplitude may grow exponentially with time if the ion nonthermality parameter (a) exceeds a critical value provided the ion-electron temperature ratio ({sigma}{sub i}) is less than 0.11.

  13. Asymmetry in electron and ion charge collection in a drifting plasma bunch

    SciTech Connect

    Belloni, F.; Lorusso, A.; Nassisi, V.

    2007-05-01

    We report on the different behavior of electron and ion currents recorded by a Faraday cup in a plasma bunch generated via laser ablation. An excimer laser was employed to irradiate a Ge target. The current signals were recorded equipping the Faraday cup collector by a set of diaphragms. We found that the electron time-of-flight spectra were fairly similar to the ion ones, but the collected charge yield for electrons was up to 200 times larger than the corresponding ion yield. We ascribed such a discrepancy to the different cup collection efficiency for ions and electrons forming the plasma which was heavily influenced by the plume geometry, the energy of the particles, as well as the diaphragm size. Our findings would suggest that the overall electron charge 'tended' to be collected, unlike the ion charge which scaled upon the collection solid angle.

  14. Electron-beam diagnostic for space-charge measurement of an ion beam

    SciTech Connect

    Roy, Prabir K.; Yu, Simon S.; Henestroza, Enrique; Eylon, Shmuel; Shuman, Derek B.; Ludvig, Jozsef; Bieniosek, Frank M.; Waldron, William L.; Greenway, Wayne G.; Vanecek, David L.; Hannink, Ryan; Amezcua, Monserrat

    2005-02-01

    A nonperturbing electron-beam diagnostic system for measuring the charge distribution of an ion beam is developed for heavy ion fusion beam physics studies. Conventional diagnostics require temporary insertion of sensors into the beam, but such diagnostics stop the beam, or significantly alter its properties. In this diagnostic a low energy, low current electron beam is swept transversely across the ion beam; the measured electron-beam deflection is used to infer the charge density profile of the ion beam. The initial application of this diagnostic is to the neutralized transport experiment (NTX), which is exploring the physics of space-charge-dominated beam focusing onto a small spot using a neutralizing plasma. Design and development of this diagnostic and performance with the NTX ion beamline is presented.

  15. Electron beam diagnostic for space charge measurement of an ion beam

    SciTech Connect

    Roy, Prabir K.; Yu, Simon S.; Henestroza, Enrique; Eylon, Shmuel; Shuman, Derek B.; Ludvig, Jozsef; Bieniosek, Frank M.; Waldron, William L.; Greenway, Wayne G.; Vanecek, David L.; Hannink, Ryan; Amezcua, Monserrat

    2004-09-25

    A non-perturbing electron beam diagnostic system for measuring the charge distribution of an ion beam is developed for Heavy Ion Fusion (HIF) beam physics studies. Conventional diagnostics require temporary insertion of sensors into the beam, but such diagnostics stop the beam, or significantly alter its properties. In this diagnostic a low energy, low current electron beam is swept transversely across the ion beam; the measured electron beam deflection is used to infer the charge density profile of the ion beam. The initial application of this diagnostic is to the Neutralized Transport Experiment (NTX), which is exploring the physics of space-charge-dominated beam focusing onto a small spot using a neutralizing plasma. Design and development of this diagnostic and performance with the NTX ion beamline is presented.

  16. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited)a)

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Levand, A.; Pardo, R.; Savard, G.; Scott, R.

    2012-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi 252Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci 252Cf source to produce radioactive beams with intensities up to 106 ions/s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for 23Na8+, 15.6% for 84Kr17+, and 13.7% for 85Rb19+ with typical breeding times of 10 ms/charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for 143Cs27+ and 14.7% for 143Ba27+. The project has been commissioned with a radioactive beam of 143Ba27+ accelerated to 6.1 MeV/u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.

  17. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited)

    SciTech Connect

    Vondrasek, R.; Levand, A.; Pardo, R.; Savard, G.; Scott, R.

    2012-02-15

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi {sup 252}Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci {sup 252}Cf source to produce radioactive beams with intensities up to 10{sup 6} ions/s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for {sup 23}Na{sup 8+}, 15.6% for {sup 84}Kr{sup 17+}, and 13.7% for {sup 85}Rb{sup 19+} with typical breeding times of 10 ms/charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for {sup 143}Cs{sup 27+} and 14.7% for {sup 143}Ba{sup 27+}. The project has been commissioned with a radioactive beam of {sup 143}Ba{sup 27+} accelerated to 6.1 MeV/u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.

  18. Impact of Ions on Individual Water Entropy.

    PubMed

    Saha, Debasis; Mukherjee, Arnab

    2016-08-01

    Solutes determine the properties of a solution. In this study, we probe ionic solutions through the entropy of individual water molecules in the solvation shells around different cations and anions. Using a method recently developed by our group, we show the solvation shell entropy stemming from the individual contributions correlates extremely well with experimental values for both polarizable and nonpolarizable force fields. The behavior of water entropy as a function of distance reveals significant (∼20%) contributions from the second solvation shell even for the low concentration considered here. While for the cations, contributions from both translational and rotational entropy loss are similar in different solvation shells, water around anions loses much more rotational entropy due to their ability to accept hydrogen bonds. Most importantly, while charge density of cations or anions correlates with the translational entropy loss, anions with similar charge density as that of cations has a much stronger and long-range effect on water. We also show how the modulation of water entropy by ions is correlated to the structural modifications of hydration shell. This study thus provides a step toward understanding the entropic behavior of water in molecular recognition processes between proteins and drug molecules. PMID:27404917

  19. Angular and charge state distributions of highly charged ions scattered during low energy surface-channeling interactions with Au(110)

    SciTech Connect

    Meyer, F.W.; Folkerts, L.; Schippers, S.

    1994-10-01

    The authors have measured scattered projectile angular and charge state distributions for 3.75 keV/amu O{sup q+} (3 {le} q {le} 8) and 1.2 keV/amu Ar{sup 1+} (3 {le} q {le} 14) ions grazingly incident along the [110] and [100] directions of a Au(110) single crystal target. Scattered projectile angular distribution characteristic of surface channeling are observed. For both incident species, the dominant scattered charge fraction is neutral, which varies only by a few percent as a function of incident charge state. Significant O{sup {minus}} formation is observed, which manifests a distinct velocity threshold. For incident Ar projectiles with open L-shells, the positive scattered charge fractions, while always less than about 10%, increase linearly with increasing number of initial L-shell vacancies.

  20. Highly charged ions for atomic clocks and search for variation of the fine structure constant

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Flambaum, V. V.

    2015-11-01

    We review a number of highly charged ions which have optical transitions suitable for building extremely accurate atomic clocks. This includes ions from Hf 12+ to U 34+, which have the 4 f 12 configuration of valence electrons, the Ir 17+ ion, which has a hole in almost filled 4 f subshell, the Ho 14+, Cf 15+, Es 17+ and Es 16+ ions. Clock transitions in most of these ions are sensitive to variation of the fine structure constant, α (α = e2/hbar c). E.g., californium and einsteinium ions have largest known sensitivity to α-variation while holmium ion looks as the most suitable ion for experimental study. We study the spectra of the ions and their features relevant to the use as frequency standards.

  1. Plastic flow produced by single ion impacts on metals.

    SciTech Connect

    Birtcher, R. C.

    1998-10-30

    Single ion impacts have been observed using in situ transmission electron microscopy and video recording with a time resolution of 33 milliseconds. Gold was irradiated at 50 K and room temperature. Single ion impacts produce holes, modify existing holes, and extrude material into the initial specimen hole and holes formed by other ion impacts. The same behavior is observed at both temperatures. At both temperatures, ion impacts result in craters and ejected material. Ion impacts produce more small craters than large ones for all ion masses, while heavier mass ions produce more and larger craters than lighter mass ions. This comparison is affected by the ion energy. As the energy of an ion is increased, the probability for deposition near the surface decreases and fewer craters are formed. For a given ion mass, crater production depends on the probability for displacement cascade production in the near surface region. Crater and holes are stable at room temperature, however, ion impacts near an existing crater may cause flow of material into the crater either reshaping or annihilating it. Holes and craters result from the explosive outflow of material from the molten zone of near-surface cascades. The outflow may take the form of molten material, a solid lid or an ejected particle. The surface is a major perturbation on displacement cascades resulting from ion impacts.

  2. A review of studies on ion thruster beam and charge-exchange plasmas

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1982-01-01

    Various experimental and analytical studies of the primary beam and charge-exchange plasmas of ion thrusters are reviewed. The history of plasma beam research is recounted, emphasizing experiments on beam neutralization, expansion of the beam, and determination of beam parameters such as electron temperature, plasma density, and plasma potential. The development of modern electron bombardment ion thrusters is treated, detailing experimental results. Studies on charge-exchange plasma are discussed, showing results such as the relationship between neutralizer emission current and plasma beam potential, ion energies as a function of neutralizer bias, charge-exchange ion current collected by an axially moving Faraday cup-RPA for 8-cm and 30-cm ion thrusters, beam density and potential data from a 15-cm ion thruster, and charge-exchange ion flow around a 30-cm thruster. A 20-cm thruster electrical configuration is depicted and facility effects are discussed. Finally, plasma modeling is covered in detail for plasma beam and charge-exchange plasma.

  3. Near-field plume properties of an ion beam formed by alternating extraction and acceleration of oppositely charged ions

    NASA Astrophysics Data System (ADS)

    Oudini, N.; Aanesland, A.; Chabert, P.; Lounes-Mahloul, S.; Bendib, A.

    2016-10-01

    This paper is devoted to study the expansion of a beam composed of packets of positively and negatively charged ions generated by alternating extraction and acceleration. This beam is extracted from an ion-ion plasma, i.e. the electron density is negligible compared to the negative ion density. The alternating acceleration of ions is ensured by two grids placed in the ion-ion plasma region. The screen grid in contact with the plasma is biased with a square voltage waveform while the acceleration grid is grounded. A two-dimensional particle-in-cell (2D-PIC) code and an analytical model are used to study the properties of the near-field plume downstream of the acceleration grid. It is shown that the possible operating bias frequency is delimited by an upper limit and a lower one that are in the low MHz range. The simulations show that alternating acceleration with bias frequencies close to the upper frequency limit for the system can achieve high ion exhaust velocities, similar to traditional gridded ion thrusters, and with lower beam divergence than in classical systems. Indeed, ion-ion beam envelope might be reduced to 15° with 70% of ion flux contained within an angle of 3°. Thus, this alternating acceleration method is promising for electric space propulsion.

  4. Enhancement of the mechanoluminescence properties on Ca2MgSi2O7:Dy3+ phosphor by co-doping of charge compensator ions

    NASA Astrophysics Data System (ADS)

    Sahu, Ishwar Prasad

    2016-08-01

    In the present article, effect of charge compensator ions (R+ = Li+, Na+ and K+) on dysprosium-doped di-calcium magnesium di-silicate (Ca2MgSi2O7:Dy3+) phosphors were investigated. The Ca2MgSi2O7:Dy3+ and Ca2MgSi2O7:Dy3+, R+ phosphors, were prepared by solid-state reaction method. The crystal structures of sintered phosphors were an akermanite-type structure which belongs to the tetragonal crystallography. The peaks of mechanoluminescence (ML) intensity were increased linearly with increasing impact velocity of the moving piston. Thus, present investigation indicates that the piezoelectricity was responsible to produce ML in prepared phosphors. The time of the peak ML intensity and the decay rate did not change significantly with respect to increasing impact velocity. Addition of charge compensator ions enhances the luminescence intensity of prepared Ca2MgSi2O7:Dy3+ phosphors, because they neutralize the charge generated by Dy3+ substitution for Ca2+ ions. The role of Li+ ions among all charge compensator ions (Na+ or K+) used was found to be most effective for enhanced Dy3+ ion emission. These ML materials can be used in the devices such as stress sensor, fracture sensor, impact sensor, damage sensors, safety management monitoring system and fuse system for army warheads.

  5. Trajectory bending and energy spreading of charged ions in time-of-flight telescopes used for ion beam analysis

    NASA Astrophysics Data System (ADS)

    Laitinen, Mikko; Sajavaara, Timo

    2014-04-01

    Carbon foil time pick-up detectors are widely used in pairs in ion beam applications as time-of-flight detectors. These detectors are suitable for a wide energy range and for all ions but at the lowest energies the tandem effect limits the achievable time of flight and therefore the energy resolution. Tandem effect occurs when an ion passes the first carbon foil of the timing detector and its charge state is changed. As the carbon foil of the first timing detector has often a non-zero voltage the ion can accelerate or decelerate before and after the timing detector. The combination of different charge state properties before and after the carbon foil now induces spread to the measured times of flight. We have simulated different time pick-up detector orientations, voltages, ions and ion energies to examine the tandem effect in detail and found out that the individual timing detector orientation and the average ion charge state have a very small influence to the magnitude of the tandem effect. On the other hand, the width of the charge state distribution for particular ion and energy in the first carbon foil, and the carbon foil voltage contributes linearly to the magnitude of the tandem effect. In the simulations low energy light ion trajectories were observed to bend in the electric fields of the first timing gate, and the magnitude of this bending was studied. It was found out that 50-150 keV proton trajectories can even bend outside the second timing gate.

  6. Desorption of cluster ions from solid Ne by low-energy ion impact.

    PubMed

    Tachibana, T; Fukai, K; Koizumi, T; Hirayama, T

    2010-12-01

    We investigated Ne(+) ions and Ne(n)(+) (n = 2-20) cluster ions desorbed from the surface of solid Ne by 1.0 keV Ar(+) ion impact. Kinetic energy analysis shows a considerably narrower energy distribution for Ne(n)(+) (n ≥ 3) ions than for Ne(n)(+) (n = 1, 2) ions. The dependence of ion yields on Ne film thickness indicates that cluster ions (n ≥ 3) are desorbed only from relatively thick films. We conclude that desorbed ions grow into large cluster ions during the outflow of deep bulk atoms to the vacuum.

  7. Lunar Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    NASA Astrophysics Data System (ADS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; LeClair, A. C.; Spann, J. F.

    2010-08-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 μm size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  8. Lunary Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  9. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: COMPLEX ROLE OF SECONDARY ELECTRON EMISSIONS IN SPACE ENVIRONMENTS

    SciTech Connect

    Abbas, M. M.; Craven, P. D.; LeClair, A. C.; Spann, J. F.; Tankosic, D.

    2010-08-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 {mu}m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  10. An analytic expression for the sheath criterion in magnetized plasmas with multi-charged ion species

    SciTech Connect

    Hatami, M. M.

    2015-04-15

    The generalized Bohm criterion in magnetized multi-component plasmas consisting of multi-charged positive and negative ion species and electrons is analytically investigated by using the hydrodynamic model. It is assumed that the electrons and negative ion density distributions are the Boltzmann distribution with different temperatures and the positive ions enter into the sheath region obliquely. Our results show that the positive and negative ion temperatures, the orientation of the applied magnetic field and the charge number of positive and negative ions strongly affect the Bohm criterion in these multi-component plasmas. To determine the validity of our derived generalized Bohm criterion, it reduced to some familiar physical condition and it is shown that monotonically reduction of the positive ion density distribution leading to the sheath formation occurs only when entrance velocity of ion into the sheath satisfies the obtained Bohm criterion. Also, as a practical application of the obtained Bohm criterion, effects of the ionic temperature and concentration as well as magnetic field on the behavior of the charged particle density distributions and so the sheath thickness of a magnetized plasma consisting of electrons and singly charged positive and negative ion species are studied numerically.

  11. Simulation of space charge compensation in a multibeamlet negative ion beam.

    PubMed

    Sartori, E; Maceina, T J; Veltri, P; Cavenago, M; Serianni, G

    2016-02-01

    Ion beam space charge compensation occurs by cumulating in the beam potential well charges having opposite polarity, usually generated by collisional processes. In this paper we investigate the case of a H(-) ion beam drift, in a bi-dimensional approximation of the NIO1 (Negative Ion Optimization phase 1) negative ion source. H(-) beam ion transport and plasma formation are studied via particle-in-cell simulations. Differential cross sections are sampled to determine the velocity distribution of secondary particles generated by ionization of the residual gas (electrons and slow H2 (+) ions) or by stripping of the beam ions (electrons, H, and H(+)). The simulations include three beamlets of a horizontal section, so that multibeamlet space charge and secondary particle diffusion between separate generation regions are considered, and include a repeller grid biased at various potentials. Results show that after the beam space charge is effectively screened by the secondary plasma in about 3 μs (in agreement with theoretical expectations), a plasma grows across the beamlets with a characteristic time three times longer, and a slight overcompensation of the electric potential is verified as expected in the case of negative ions. PMID:26932089

  12. The study towards high intensity high charge state laser ion sources.

    PubMed

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  13. The study towards high intensity high charge state laser ion sources.

    PubMed

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible. PMID:24593615

  14. Charged particle flows in the beam extraction region of a negative ion source for NBI.

    PubMed

    Geng, S; Tsumori, K; Nakano, H; Kisaki, M; Ikeda, K; Osakabe, M; Nagaoka, K; Takeiri, Y; Shibuya, M; Kaneko, O

    2016-02-01

    Experiments by a four-pin probe and photodetachment technique were carried out to investigate the charged particle flows in the beam extraction region of a negative hydrogen ion source for neutral beam injector. Electron and positive ion flows were obtained from the polar distribution of the probe saturation current. Negative hydrogen ion flow velocity and temperature were obtained by comparing the recovery times of the photodetachment signals at opposite probe tips. Electron and positive ions flows are dominated by crossed field drift and ambipolar diffusion. Negative hydrogen ion temperature is evaluated to be 0.12 eV. PMID:26931985

  15. Negative Ion CID Fragmentation of O-linked Oligosaccharide Aldoses—Charge Induced and Charge Remote Fragmentation

    NASA Astrophysics Data System (ADS)

    Doohan, Roisin A.; Hayes, Catherine A.; Harhen, Brendan; Karlsson, Niclas Göran

    2011-06-01

    Collision induced dissociation (CID) fragmentation was compared between reducing and reduced sulfated, sialylated, and neutral O-linked oligosaccharides. It was found that fragmentation of the [M - H]- ions of aldoses with acidic residues gave unique Z-fragmentation of the reducing end GalNAc containing the acidic C-6 branch, where the entire C-3 branch was lost. This fragmentation pathway, which is not seen in the alditols, showed that the process involved charge remote fragmentation catalyzed by a reducing end acidic anomeric proton. With structures containing sialic acid on both the C-3 and C-6 branch, the [M - H]- ions were dominated by the loss of sialic acid. This fragmentation pathway was also pronounced in the [M - 2H]2- ions revealing both the C-6 Z-fragment plus its complementary C-3 C-fragment in addition to glycosidic and cross ring fragmentation. This generation of the Z/C-fragment pairs from GalNAc showed that the charges were not participating in their generation. Fragmentation of neutral aldoses showed pronounced Z-fragmentation believed to be generated by proton migration from the C-6 branch to the negatively charged GalNAc residue followed by charge remote fragmentation similar to the acidic oligosaccharides. In addition, A-type fragments generated by charge induced fragmentation of neutral oligosaccharides were observed when the charge migrated from C-1 of the GalNAc to the GlcNAc residue followed by rearrangement to accommodate the 0,2A-fragmentation. LC-MS also showed that O-linked aldoses existed as interchangeable α/β pyranose anomers, in addition to a third isomer (25% of the total free aldose) believed to be the furanose form.

  16. Gas-Phase Chemical Separation of Phosphatidylcholine and Phosphatidylethanolamine Cations via Charge Inversion Ion/Ion Chemistry.

    PubMed

    Rojas-Betancourt, Stella; Stutzman, John R; Londry, Frank A; Blanksby, Stephen J; McLuckey, Scott A

    2015-11-17

    The [M + H](+) cations formed upon electrospray ionization of the glycerophospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE) show distinct reactivities upon gas-phase reactions with doubly deprotonated 1,4-phenylenedipropionic acid (PDPA). PC cations undergo charge inversion via adduct formation with subsequent methyl cation and proton transfer to the acid to yield [PC - CH3](-) anions. These demethylated PC anions fragment upon ion trap collision-induced dissociation (CID) to yield products that reveal fatty acid chain lengths and degrees of unsaturation. PE cations, on the other hand, undergo charge inversion via double proton transfer to the two carboxylate moieties in doubly deprotonated PDPA to yield [PE - H](-) anions. These anions also fragment upon ion trap CID to yield product ions indicative of chain lengths and degrees of unsaturation in the fatty acyl moieties. Advantage is taken of this distinct reactivity to separate isomeric and isobaric PC and PE cations present in mass spectra of lipid mixtures. A cation precursor ion population containing a mixture of PE and PC cations is mass-selected and subjected to ion/ion charge inversion reactions that result in separation of PC and PE anions into different mass-to-charge ratios. Mass selection and subsequent ion trap CID of the lipid anions allows for the characterization of the isomeric lipids within each subclass. The charge inversion approach described here is demonstrated to provide increased signal-to-noise ratios for detection of PCs and PEs relative to the standard negative ionization approach as well as improved mixture analysis performance. PMID:26477819

  17. Overview on collision processes of highly charged ions with atoms present status and problems

    SciTech Connect

    Janev, R.K.

    1983-05-01

    This paper provides a brief discussion on the present status of the collision physics of highly charged ions with atoms. The emphasis is on the main achievements in understanding and describing the most important collision processes, and as charge transfer, ionization and Auger-type processes, and even more on those open problems which, due either to their scientific or practical importance, represent challenges to current research in this field. The paper concentrates on general ideas and problems whose development and solutions have advanced or will advance our basic understanding of the collision dynamics of multiply charged ions with atoms.

  18. Impact of surface properties on the dust grain charging

    NASA Astrophysics Data System (ADS)

    Pavlu, J.; Richterova, I.; Safrankova, J.; Nemecek, Z.

    Dust grains are common in the space environment and being embosomed with plasma they become charged. It is well known that a motion of grains in the space is driven mainly by electrodynamic forces and thus the grain charge is of a significant importance for processes like the coagulation or dust cloud formations. Among others, emission processes are very important for setting of the dust charge. It is believed that emission processes are connected exclusively with surface properties of dust grains but it is not evident for the surfaces covered by a very thin layer of different material (e.g., oxidized metal). For this reason, we investigate surface effects experimentally. Our experiment is based on an electrodynamic trap. We can catch a single dust grain for several days inside the vacuum vessel and exposed it by the electron/ion beam and study charging/discharging processes. We have chosen spherically shaped melamine formaldehyde resin grains of a diameter 2.5 μm either with a clean surface or covered with a thin film from different metals. An advantage of these samples is that the properties of bulk and surface materials are completely different. The effect of surface modification was studied for several types of emissions, including secondary electron emission and field emissions.

  19. Integrated modeling of electron cyclotron resonance ion sources and charge breeders with GEM, MCBC, and IonEx

    SciTech Connect

    Kim, J. S.; Zhao, L.; Cluggish, B. P.; Galkin, S. A.; Grubert, J. E.; Pardo, R. C.; Vondrasek, R. C.

    2010-02-15

    A numerical toolset to help in understanding physical processes in the electron cyclotron resonance charge breeder (ECRCB) and further to help optimization and design of current and future machines is presented. The toolset consists of three modules (Monte Carlo charge breeding code, generalized electron cyclotron resonance ion source modeling, and ion extraction), each modeling different processes occurring in the ECRCB from beam injection to extraction. The toolset provides qualitative study, such as parameter studies, and scaling of the operation, and physical understanding in the ECRCB. The methodology and a sample integrated modeling are presented.

  20. High-precision atomic clocks with highly charged ions: Nuclear-spin-zero f12-shell ions

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Derevianko, A.; Flambaum, V. V.

    2012-11-01

    Optical atomic clocks using highly charged ions hold an intriguing promise of metrology at the 19th significant figure. Here we study transitions within the 4f12 ground-state electronic configuration of highly charged ions. We consider isotopes lacking hyperfine structure and show that the detrimental effects of coupling of electronic quadrupole moments to the gradients of a trapping electric field can be effectively reduced by using specially chosen virtual clock transitions. The estimated systematic fractional clock accuracy is shown to be below 10-19.

  1. Progress on precision measurements of inner shell transitions in highly charged ions at an ECR ion source

    SciTech Connect

    Szabo, Csilla I.; Indelicato, Paul; LeBigot, Eric-Olivier; Vallette, Alexandre; Amaro, Pedro; Guerra, Mauro; Gumberidze, Alex

    2012-05-25

    Inner shell transitions of highly charged ions produced in the plasma of an Electron Cyclotron Resonance Ion Source (ECRIS) were observed the first time by a Double Crystal Spectrometer (DCS). The DCS is a well-used tool in precision x-ray spectroscopy due to its ability of precision wavelength measurement traced back to a relative angle measurement. Because of its requirement for a bright x-ray source the DCS has not been used before in direct measurements of highly charged ions (HCI). Our new precision measurement of inner shell transitions in HCI is not just going to provide new x-ray standards for quantum metrology but can also give information about the plasma in which the ions reside. Ionic temperatures and with that the electron density can be determined by thorough examination of line widths measured with great accuracy.

  2. Effect of ion suprathermality on arbitrary amplitude dust acoustic waves in a charge varying dusty plasma

    SciTech Connect

    Tribeche, Mouloud; Mayout, Saliha; Amour, Rabia

    2009-04-15

    Arbitrary amplitude dust acoustic waves in a high energy-tail ion distribution are investigated. The effects of charge variation and ion suprathermality on the large amplitude dust acoustic (DA) soliton are then considered. The correct suprathermal ion charging current is rederived based on the orbit motion limited approach. In the adiabatic case, the variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to show the existence of rarefactive variable charge DA solitons involving cusped density humps. The dust charge variation leads to an additional enlargement of the DA soliton, which is less pronounced as the ions evolve far away from Maxwell-Boltzmann distribution. In the nonadiabatic case, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation the strength of which becomes important and may prevail over that of dispersion as the ion spectral index {kappa} increases. Our results may provide an explanation for the strong spiky waveforms observed in auroral electric field measurements by Ergun et al.[Geophys. Res. Lett. 25, 2025 (1998)].

  3. Ablation of GaAs by Intense, Ultrafast Electronic Excitation from Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Schenkel, T.; Hamza, A. V.; Barnes, A. V.; Schneider, D. H.; Banks, J. C.; Doyle, B. L.

    1998-09-01

    We have measured total ablation rates and secondary ion yields from undoped GaAs(100) interacting with slow \\(v = 6.6×105 m/s\\), very highly charged ions. Ablation rates increase strongly as a function of projectile charge. Some 1400 target atoms are removed when a single Th70+ ion deposits a potential energy of 152.6 keV within a few femtoseconds into a nanometer-sized target volume. We discuss models for ablation of semiconductors by intense, ultrafast electronic excitation.

  4. Ablation of GaAs by Intense, Ultrafast Electronic Excitation from Highly Charged Ions

    SciTech Connect

    Schenkel, T.; Hamza, A.V.; Barnes, A.V.; Schneider, D.H.; Banks, J.C.; Doyle, B.L.

    1998-09-01

    We have measured total ablation rates and secondary ion yields from undoped GaAs(100) interacting with slow (v=6.6{times}10{sup 5} m /s) , very highly charged ions. Ablation rates increase strongly as a function of projectile charge. Some 1400thinspthinsptarget atoms are removed when a single Th{sup 70+} ion deposits a potential energy of 152.6thinspthinspkeV within a few femtoseconds into a nanometer-sized target volume. We discuss models for ablation of semiconductors by intense, ultrafast electronic excitation. {copyright} {ital 1998} {ital The American Physical Society}

  5. X-ray emission from charge exchange of highly-charged ions in atoms and molecules

    NASA Technical Reports Server (NTRS)

    Greenwood, J. B.; Williams, I. D.; Smith, S. J.; Chutjian, A.

    2000-01-01

    Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections.

  6. Relative dissociation fractions of CF4 under 15–30 keV H‑, C‑ and O‑ negative ion impact

    NASA Astrophysics Data System (ADS)

    Wang, Dedong; Fan, Yikui; Zhao, Zilong; Min, Guangxin; Zhang, Xuemei

    2016-08-01

    The relative dissociation fractions to produce the fragments of CF4 molecule are studied under the impact of 15 keV to 30 keV H‑, C‑ and O‑ negative ions. By using a time-of-flight mass spectrometer, the recoil ions and ion pairs originating from the target molecule CF4 are detected and identified in coincidence with scattered ions in q = 0 and q = +1 charge states. The fractions for the production of the fragment ions are obtained relative to the {\\text{CF} }3+ yield, while that of the ion pairs relative to the (C+, F+) coincidence yield.

  7. Laboratory investigation of electric charging of dust particles by electrons, ions, and UV radiation

    NASA Technical Reports Server (NTRS)

    Svestka, Jiri; Pinter, S.; Gruen, E.

    1989-01-01

    In many cosmic environments electric charging of dust particles occurs by electrons, ions, and UV radiation. In case of interstellar dust particles the value of their electric charge can have, for instance, very important consequences for their destruction rate in supernova remnant's shock waves and can globally influence the overall life cycle of dust particles in galaxies. For experimental simulation of charging processes a vacuum chamber was used in which the particles fall through an electron or ion beam of energies up to 10 KeV. The aim of the experiments was to attain maximum charge of dust particles. Furthermore the influence of the rest gas was also determined because electrons and ions produced by collisional ionization of the rest gas can result in significant effects. For measurement particles from 1 to 100 microns from glass, carbon, Al, Fe, MgO, and very loosely bound conglomerates of Al2O3 were used.

  8. Charge exchange and ionization in hydrogen atom-fully stripped ion collisions in Debye plasmas

    SciTech Connect

    Zhang, H.; Wang, J. G.; He, B.; Qiu, Y. B.; Janev, R. K.

    2007-05-15

    The processes of charge exchange and ionization in collisions of ground state hydrogen atom with fully stripped ions in a weakly coupled plasma are studied by the classical trajectory Monte Carlo method in the collision energy range 10-900 keV/amu. The interparticle interactions are described by the Debye-Hueckel model with inclusion of dynamical effects associated with the projectile velocity. The microcanonical distribution of initial state electronic coordinates and momenta has been determined by inclusion of plasma screening effects. The cross section dependencies on plasma parameters and ion charge and velocity are investigated. It is shown that plasma effects on charge exchange and ionization cross sections are significant and particularly pronounced at low collision velocities. The results of systematic cross section calculations for different values of Debye screening length (in the range 1-50a{sub 0}) and ion charges (in the range 1-14) are presented.

  9. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source.

    PubMed

    Ostroumov, P N; Barcikowski, A; Dickerson, C A; Perry, A; Pikin, A I; Sharamentov, S I; Vondrasek, R C; Zinkann, G P

    2015-08-01

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz. PMID:26329185

  10. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    DOE PAGES

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Pikin, A. I.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.

    2015-08-28

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstratemore » stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less

  11. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    SciTech Connect

    Ostroumov, P. N. Barcikowski, A.; Dickerson, C. A.; Perry, A.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.; Pikin, A. I.

    2015-08-15

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.

  12. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    SciTech Connect

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Pikin, A. I.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.

    2015-08-28

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.

  13. Charging and discharging in ion implanted dielectric films used for capacitive radio frequency microelectromechanical systems switch

    SciTech Connect

    Li Gang; Chen Xuyuan; San Haisheng

    2009-06-15

    In this work, metal-insulator-semiconductor (MIS) capacitor structure was used to investigate the dielectric charging and discharging in the capacitive radio frequency microelectromechanical switches. The insulator in MIS structure is silicon nitride films (SiN), which were deposited by either low pressure chemical vapor deposition (LPCVD) or plasma enhanced chemical vapor deposition (PECVD) processes. Phosphorus or boron ions were implanted into dielectric layer in order to introduce impurity energy levels into the band gap of SiN. The relaxation processes of the injected charges in SiN were changed due to the ion implantation, which led to the change in relaxation time of the trapped charges. In our experiments, the space charges were introduced by stressing the sample electrically with dc biasing. The effects of implantation process on charge accumulation and dissipation in the dielectric are studied by capacitance-voltage (C-V) measurement qualitatively and quantitatively. The experimental results show that the charging and discharging behavior of the ion implanted silicon nitride films deposited by LPCVD is quite different from the one deposited by PECVD. The charge accumulation in the dielectric film can be reduced by ion implantation with proper dielectric deposition method.

  14. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Pikin, A. I.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.

    2015-08-01

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.

  15. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source.

    PubMed

    Ostroumov, P N; Barcikowski, A; Dickerson, C A; Perry, A; Pikin, A I; Sharamentov, S I; Vondrasek, R C; Zinkann, G P

    2015-08-01

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.

  16. Neutralization of Space Charge Effects for Low Energy Ion Beams Using Field Emitters

    SciTech Connect

    Nicolaescu, D.; Sakai, S.; Matsuda, K.; Gotoh, Y.; Ishikawa, J.

    2008-11-03

    The paper presents models and computations for neutralization of space charge effects using electrons provided by field emitter arrays. Different ion species ({sup 11}B{sup +},{sup 31}P{sup +},{sup 75}As{sup +}) with energy in the range E{sub ion} = 200 eV-1 keV have been considered. The ion beam divergence is studied as a function of electron beam geometry and physical parameters (electron and ion energy, electron/ion current ratio I{sub el}/I{sub ion}). The electron beam geometry takes into account electron source positions and initial launching angles. It is shown that optimal ion beam neutralization occurs for low energy electrons emitted parallel to the ion beam.

  17. Flow of multiple charged accelerated metal ions from low-inductance vacuum spark

    NASA Astrophysics Data System (ADS)

    Gorbunov, S. P.; Krasov, V. P.; Paperny, V. L.; Savyelov, A. S.

    2006-12-01

    Results of studies of the short-run beams of multiple charged fast ions that have been found earlier by the authors in a low voltage vacuum spark are presented. The ion emission was due to the formation of micropinches in the cathode plasma jet by the action of the self-magnetic field. A relation between the average velocity of the fast ions and that of the bulk of the ions of the cathode jet was obtained over a wide range of the discharge current amplitudes. The total yield of the multiple charged fast ions per pulse Nf was evaluated from the direct collector measurements with regard to a decrease in ion flow due to several reasons. This value was in satisfactory agreement with evaluation that was obtained from the ballistic pendulum measurements and gave Nf ap 5 × 1013-1014 ions per pulse at the average ion charge state of +9 at the maximum of the discharge current Id = 12 kA. Evaluation of current density for these ions gave jf ap 3 mA cm-2 at a distance of about 1 m from the anode.

  18. Influence of chromatic aberrations on space charge ion optics.

    PubMed

    Whealton, J H; Tsai, C C

    1978-04-01

    By solution to the Poisson-Vlasov equation the influence of fluctuations (chromatic aberrations) on ion optics is shown for various accelerator designs : (1) cylindrical bore triode with various aspect ratios, (2) pseudo-Pierce shaped electrode triode at various aspect ratios, (3) insulated coating emission electrode triode for various preacceleration potentials, and (4) cylindrical bore tetrodes for various field distributions. Fluctuation levels of 20% can be very important in limiting the ion optics in certain cases.

  19. Penning traps with unitary architecture for storage of highly charged ions.

    PubMed

    Tan, Joseph N; Brewer, Samuel M; Guise, Nicholas D

    2012-02-01

    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.

  20. Ion temperatures in HIP-1 and SUMMA from charge-exchange neutral optical emission spectra

    NASA Technical Reports Server (NTRS)

    Patch, R. W.; Lauver, M. R.

    1976-01-01

    Ion temperatures were obtained from observations of the H sub alpha, D sub alpha, and He 587.6 nm lines emitted from hydrogen, deuterium, and helium plasmas in the SUMMA and HIP-1 mirror devices at Lewis Research Center. Steady state discharges were formed by applying a radially inward dc electric field between cylindrical or annular anodes and hollow cathodes located at the peaks of the mirrors. The ion temperatures were found from the Doppler broadening of the charge-exchange components of spectral lines. A statistical method was developed for obtaining scaling relations of ion temperature as a function of current, voltage, and magnetic flux density. Derivations are given that take into account triangular monochromator slit functions, loss cones, and superimposed charge-exchange processes. In addition, the Doppler broadening was found to be sensitive to the influence of drift on charge-exchange cross section. The effects of finite ion-cyclotron radius, cascading, and delayed emission are reviewed.

  1. Laboratory Studies of Thermal Energy Charge Transfer of Silicon and Iron Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    1997-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department is dedicated to the study of atomic processes in low temperature plasmas. Our current program is directed to the study of charge transfer of multiply charged ions and neutrals that are of importance to astrophysics at energies less than 1 eV (about 10(exp 4) K). Specifically, we measure the charge transfer rate coefficient of ions such as N(2+), Si(3+), Si(3+), with helium and Fe(2+) with molecular and atomic hydrogen. All these ions are found in a variety of astrophysical plasmas. Their electron transfer reactions with neutral atoms can affect the ionization equilibrium of the plasma.

  2. Charge exchange of metastable 2D oxygen ions with molecular oxygen - A new source of thermospheric O2/+/ ions

    NASA Technical Reports Server (NTRS)

    Torr, D. G.; Torr, M. R.; Rusch, D. W.; Nier, A. O.; Kayser, D.; Hanson, W. B.; Hoffman, J. H.; Donahue, K.

    1979-01-01

    Reactions involving metastable ions are difficult to study in the laboratory. Much new information on these reactions has been derived from satellite measurements of aeronomic parameters. In this paper, Atmosphere Explorer D data are used to study charge exchange of metastable O(+)(2D) ions with O2. Using direct measurements of the O2 at 200 km to compute O2 densities at 300 km and supporting ionic concentrations and temperature observations, we find the rate coefficient for this reaction to be 1 + or - 0.6 times 10 to the minus 9th cu cm/sec. The process constitutes a significant source of O2(+) ions in the F2 layer at times when the N2 and O2 densities are enhanced. This finding leads to the conclusion that charge exchange with O2 must be a major sink for O(+)(2D) and an important source of O2(+) ions in the E region, because of the increase in the O2 concentration/N2 concentration ratio with decreasing altitude. The results imply that 80% of all O(+) ions formed in the E region are converted to O2(+) and that only about 20% of the metastable O(+) ions are converted into N2(+) through charge exchange with N2.

  3. Self-diffusion and activity coefficients of ions in charged disordered media

    NASA Astrophysics Data System (ADS)

    Jardat, Marie; Hribar-Lee, Barbara; Dahirel, Vincent; Vlachy, Vojko

    2012-09-01

    Self-diffusion and single ion activity coefficients of ions of size symmetric electrolytes were studied in the presence of a collection of charged obstacles (called matrix) within a "soft" version of the primitive model of electrolyte solutions. The matrix subsystem possesses a net charge, depending on the concentration and charge of obstacles. The Brownian dynamics method was used to calculate the self-diffusion coefficients of mobile species. The replica Ornstein-Zernike theory for the partly quenched systems was used to calculate the individual activity coefficients of mobile ionic species. The results reflect the competition between attractive (obstacle-counterion, co-ion-counterion), and repulsive (obstacle-co-ion) interactions in these model systems. For the simplest possible system of symmetric monovalent ions the latter effect wins: Co-ions are excluded from the area around obstacles, and this slows down their diffusion compared to that of counterions. Introduction of divalent charges into the system changes this result when the concentration of obstacles is low. We compare these results to those obtained for the corresponding fully annealed systems, i.e., where all the species are mobile. In most cases the self-diffusion and activity coefficients of counterions and co-ions in the presence of charged obstacles follow the trends of the fully annealed solution, which are dictated by the composition of the mixture. In few situations, however, the presence of charged obstacles modifies these trends. Our study allows us to clearly identify the effects due to obstacles, and to separate them from those arising from the composition of the solution. In the case of charge and size symmetric systems, the results for the individual activity coefficients fully support the hypothesis of the "electrostatic excluded volume". Thermodynamic and dynamic results are consistent in explaining the behavior of the systems studied.

  4. The Influence of Trapped Ions and Non-equilibrium EDF on Dust Particle Charging

    SciTech Connect

    Sukhinin, G. I.; Fedoseev, A. V.; Antipov, S. N.; Petrov, O. F.; Fortov, V. E.

    2008-09-07

    Dust particles charging in a low-pressure glow discharge was investigated theoretically with the help of model for trapped and free ions coupled with the self-consistent solution of Poisson equation for electric potential. Non-equilibrium (non-Maxwellian) character of electron energy distribution function depending on gas pressure and electric field was also taken into account on the basis of the solution of kinetic Boltzmann equation. The results were compared with the experimental measurements of dust particle charge depending on gas pressure. It was shown that the calculated effective charge, i.e. the difference of the dust particle charge and trapped ion charge, is in a fairly good agreement with the experimental data.

  5. A feasibility study of space-charge neutralized ion induction linacs: Final report

    SciTech Connect

    Slutz, S.A.; Primm, P.; Renk, T.; Johnson, D.J.

    1997-03-01

    Applications for high current (> 1 kA) ion beams are increasing. They include hardening of material surfaces, transmutation of radioactive waste, cancer treatment, and possibly driving fusion reactions to create energy. The space-charge of ions limits the current that can be accelerated in a conventional ion linear accelerator (linac). Furthermore, the accelerating electric field must be kept low enough to avoid the generation and acceleration of counter-streaming electrons. These limitations have resulted in ion accelerator designs that employ long beam lines and would be expensive to build. Space-charge neutralization and magnetic insulation of the acceleration gaps could substantially reduce these two limitations, but at the expense of increasing the complexity of the beam physics. We present theory and experiments to determine the degree of charge-neutralization that can be achieved in various environments found in ion accelerators. Our results suggest that, for high current applications, space-charge neutralization could be used to improve on the conventional ion accelerator technology. There are two basic magnetic field geometries that can be used to insulate the accelerating gaps, a radial field or a cusp field. We will present studies related to both of these geometries. We shall also present numerical simulations of {open_quotes}multicusp{close_quotes} accelerator that would deliver potassium ions at 400 MeV with a total beam power of approximately 40 TW. Such an accelerator could be used to drive fusion.

  6. On the Analytical Model of Charge Evolution of Solar Flare Ions

    NASA Astrophysics Data System (ADS)

    Perez-Peraza, Jorge; Balderas-Avilez, Gabriel; Rodriguez-Frias, Dolores; Del Peral, Luis; Hebrero, Gema; Cruz, Ricardo

    Models attempting to describe the charge state of solar flare ions are in general of numerical nature, where the involved physics is masked by their high mathematical complexity. There is however, the oldest of the models, developed long ago for one of us, which is of analytical nature, and based in very simple physical concepts, namely hereafter the High Energy Crosssections Model (HECSM). In this model definition of the charge state of the energetic ions occurs during the acceleration process at the flare source. It is assumed the atomic interactions between a population which is being accelerated getting an exponential (or power law) spectrum, namely the ions projectiles, and another population which is in thermodynamic equilibrium (TE), with a Maxwellian spectrum, namely the targets. In contrast with other models that use thermal cross-sections (ionization and recombination) even for energetic ions which are out of the (TE), in our model we employ High Energy Cross-sections for electron capture and loss, since the population which is being accelerated acquires a non-thermal spectrum. First, we have built temperature-dependent cross-sections. Then, we have developed criteria for charge interchange establishment, it is determined whether there is establishment of (1) both processes, capture and los, or (2) only one of them, or even (3) none of them. In case (1) charge equilibrium is reached. In case (2) when only electron capture is established, at the beginning of the acceleration process, the local charge value will decrease up to an energy where both crosssection becomes of the same order, or when only electron loss is established the effective charge goes faster toward the nuclear charge value than in conditions of charge equilibrium. In case (3) ions keep the local thermal charge at the source temperature. After, we derivate an analytical expression for the Effective Charge (equilibrium charge), qef f, on basis to direct and simple physical concepts. We

  7. Charge-to-mass-ratio-dependent ion heating during magnetic reconnection in the MST RFP

    SciTech Connect

    Kumar, S. T. A.; Almagri, A. F.; Den Hartog, D. J.; Nornberg, M. D.; Sarff, J. S.; Terry, P. W.; Craig, D.

    2013-05-15

    Temperature evolution during magnetic reconnection has been spectroscopically measured for various ion species in a toroidal magnetized plasma. Measurements are made predominantly in the direction parallel to the equilibrium magnetic field. It is found that the increase in parallel ion temperature during magnetic reconnection events increases with the charge-to-mass ratio of the ion species. This trend can be understood if the heating mechanism is anisotropic, favoring heating in the perpendicular degree of freedom, with collisional relaxation of multiple ion species. The charge-to-mass ratio trend for the parallel temperature derives from collisional isotropization. This result emphasizes that collisional isotropization and energy transfer must be carefully modeled when analyzing ion heating measurements and comparing to theoretical predictions.

  8. Responses of a direct ion storage dosimeter (DIS-1) to heavy charged particles.

    PubMed

    Yasuda, H

    2001-12-01

    The responses of a direct ion storage dosimeter (DIS-1) to energetic heavy charged particles were examined using (4)He, (12)C, (40)Ar and (56)Fe ion beams at the HIMAC at the National Institute of Radiological Sciences. The efficiency of the DIS-1 on the basis of absorbed dose was almost unity for the helium and carbon ions and was slightly decreased for the argon and iron ions. The linearity in the dose response and the angular independence for these heavy ions were fairly good. Although further studies are necessary, these results suggest that the DIS-1 would be a suitable passive dosimeter for measurements of absorbed dose in a field dominated by heavy charged particles such as the space environment. PMID:11741505

  9. Space charge effects on relative peak heights in fourier transform-ion cyclotron resonance spectra.

    PubMed

    Uechi, G T; Dunbar, R C

    1992-10-01

    Ion trajectory calculations have confirmed that space charge interactions can be a source for mass discrimination seen in Fourier transform-ion cyclotron resonance (FT-ICR) spectra. As compared with the previously recognized mechanism of z-axis excitation, ion-ion repulsion is a mechanism which specifically affects relative peak heights of ions close in mass, and is most severe for low excitation radiofrequency (rf) amplitudes. In this mechanism, Coulomb repulsion significantly perturbs the motion of the ion clouds during excitation and alters the final cyclotron orbital radii. Under these conditions peak heights do not accurately reflect the true ion abundances in the FT-ICR spectrometer. Mass discrimination can be minimized by using low numbers of ions, low ion densities, and a short, high amplitude rf excitation waveform. Experimental observation of the relative peak heights of the m/z 91, 92, and 134 ions in n-butylbenzene gives quantitative confirmation of the results of the trajectory calculations. Chirp, SWIFT, and impulse excitation were modeled: impulse excitation was found to be most effective in minimizing the effects of space charge interactions.

  10. Effect of mobile ions on the electric field needed to orient charged diblock copolymer thin films

    SciTech Connect

    Dehghan, Ashkan; Shi, An-Chang; Schick, M.

    2015-10-07

    We examine the behavior of lamellar phases of charged/neutral diblock copolymer thin films containing mobile ions in the presence of an external electric field. We employ self-consistent field theory and focus on the aligning effect of the electric field on the lamellae. Of particular interest are the effects of the mobile ions on the critical field, the value required to reorient the lamellae from the parallel configuration favored by the surface interaction to the perpendicular orientation favored by the field. We find that the critical field depends strongly on whether the neutral or charged species is favored by the substrates. In the case in which the neutral species is favored, the addition of charges decreases the critical electric field significantly. The effect is greater when the mobile ions are confined to the charged lamellae. In contrast, when the charged species is favored by the substrate, the addition of mobile ions stabilizes the parallel configuration and thus results in an increase in the critical electric field. The presence of ions in the system introduces a new mixed phase in addition to those reported previously.

  11. Mass Spectrometric Observation of Doubly Charged Alkaline-Earth Argon Ions.

    PubMed

    Hattendorf, Bodo; Gusmini, Bianca; Dorta, Ladina; Houk, Robert S; Günther, Detlef

    2016-09-01

    Doubly charged diatomic ions MAr(2+) where M=Mg, Ca, Sr or Ba have been observed by mass spectrometry with an inductively coupled plasma ion source. Abundance ratios are quite high, 0.1 % for MgAr(2+) , 0.4 % for CaAr(2+) , 0.2 % for SrAr(2+) and 0.1 % for BaAr(2+) relative to the corresponding doubly charged atomic ions M(2+) . It is assumed that these molecular ions are formed through reactions of the doubly charged metal ions with neutral argon atoms within the ion source. Bond dissociation energies (D0 ) were calculated and agree well with previously published values. The abundance ratios MAr(+) /M(+) and MAr(2+) /M(2+) generally follow the predicted bond dissociation energies with the exception of MgAr(2+) . Mg(2+) should form the strongest bond with Ar [D0 (MgAr(2+) )=124 to 130 kJ mol(-1) ] but its relative abundance is similar to that of the weakest bound BaAr(2+) (D0 =34 to 42 kJ mol(-1) ). The relative abundances of the various MAr(2+) ions are higher than those expected from an argon plasma at T=6000 K, indicating that collisions during ion extraction reduce the abundance of the MAr(2+) ions relative to the composition in the source. The corresponding singly charged MAr(+) ions are also observed but occur at about three orders of magnitude lower intensity than MAr(2+) . PMID:27252087

  12. Impact of Airspace Charges on Transatlantic Aircraft Trajectories

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Ng, Hok K.; Linke, Florian; Chen, Neil Y.

    2015-01-01

    Aircraft flying over the airspace of different countries are subject to over-flight charges. These charges vary from country to country. Airspace charges, while necessary to support the communication, navigation and surveillance services, may lead to aircraft flying routes longer than wind-optimal routes and produce additional carbon dioxide and other gaseous emissions. This paper develops an optimal route between city pairs by modifying the cost function to include an airspace cost whenever an aircraft flies through a controlled airspace without landing or departing from that airspace. It is assumed that the aircraft will fly the trajectory at a constant cruise altitude and constant speed. The computationally efficient optimal trajectory is derived by solving a non-linear optimal control problem. The operational strategies investigated in this study for minimizing aircraft fuel burn and emissions include flying fuel-optimal routes and flying cost-optimal routes that may completely or partially reduce airspace charges en route. The results in this paper use traffic data for transatlantic flights during July 2012. The mean daily savings in over-flight charges, fuel cost and total operation cost during the period are 17.6 percent, 1.6 percent, and 2.4 percent respectively, along the cost- optimal trajectories. The transatlantic flights can potentially save $600,000 in fuel cost plus $360,000 in over-flight charges daily by flying the cost-optimal trajectories. In addition, the aircraft emissions can be potentially reduced by 2,070 metric tons each day. The airport pairs and airspace regions that have the highest potential impacts due to airspace charges are identified for possible reduction of fuel burn and aircraft emissions for the transatlantic flights. The results in the paper show that the impact of the variation in fuel price on the optimal routes is to reduce the difference between wind-optimal and cost-optimal routes as the fuel price increases. The

  13. High-resolution mobility analysis of charge-reduced electrosprayed protein ions.

    PubMed

    Fernandez de la Mora, Juan

    2015-04-01

    Many mobility studies (IMS) of electrospray ions with charge states z reduced to unity have shown a singular ability to analyze large protein complexes and viruses, though with wide mobility peaks (fwhm ∼ 20%). Here we confirm that this limitation arises primarily when early charge reduction precedes drop evaporation (suppressing secondary atomization by the usual sequence of many Coulomb explosions). By drying before neutralizing, we achieve a protein fwhm of ∼3.7%. A positively biased electrospraying capillary is coaxial with a cylindrical charge-reduction (CR) chamber coated with radioactive Ni-63 (10 mCi) that fills the CR chamber with a bipolar ionic atmosphere. A screen interposed between the spraying capillary and the CR chamber limits penetration of the neutralizing anions into the electrospray (ES) chamber, precluding destabilization of the ES tip, even when brought very close to the grid to enhance ion transmission. As ES cations cross the grid, driven by their own space charge, they recombine with CR ions reducing their charge state as well as space charge dispersion. The setup is tested with the protein ovalbumin (MW ∼ 44.3 kDa) and its clusters up to the tetramer, by analyzing the charge-reduced ions with a differential mobility analyzer (DMA). At gas sample flow rates of ∼1 L/min, the dominant peaks are singly charged (z = 1). They are widened by clustering of involatile solution impurities, depending on spray quality and solution cleanness, with fwhm as small as 3.7% achieved in desalted and acidified solutions. When using sharp nanospray capillaries, the grid may be removed, resulting in ∼2-fold increased ion transmission. In the absence of the grid, however, spray stability and quality are often compromised, even with capillary tip diameters as small as 30 μm. PMID:25803189

  14. Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies

    SciTech Connect

    Bu, Wei

    2009-01-01

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.

  15. Ions with low charges in the solar wind as measured by SWICS on board Ulysses. [Solar Wind Ion Composition Spectrometer

    NASA Technical Reports Server (NTRS)

    Geiss, J.; Ogilvie, K. W.; Von Steiger, R.; Mall, U.; Gloeckler, G.; Galvin, A. B.; Ipavich, F.; Wilken, B.; Gliem, F.

    1992-01-01

    We present new data on rare ions in the solar wind. Using the Ulysses-SWICS instrument with its very low background we have searched for low-charge ions during a 6-d period of low-speed solar wind and established sensitive upper limits for many species. In the solar wind, we found He(1+)/He(2+) of less than 5 x 10 exp -4. This result and the charge state distributions of heavier elements indicate that all components of the investigated ion population went through a regular coronal expansion and experienced the typical electron temperatures of 1 to 2 million Kelvin. We argue that the virtual absence of low-charge ions demonstrates a very low level of nonsolar contamination in the source region of the solar wind sample we studied. Since this sample showed the FlP effect typical for low-speed solar wind, i.e., an enhancement in the abundances of elements with low first ionization potential, we conclude that this enhancement was caused by an ion-atom separation mechanism operating near the solar surface and not by foreign material in the corona.

  16. Efficiently photo-charging lithium-ion battery by perovskite solar cell.

    PubMed

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-08-27

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium-air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications.

  17. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    PubMed Central

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-01-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium–air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications. PMID:26311589

  18. Efficiently photo-charging lithium-ion battery by perovskite solar cell.

    PubMed

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-01-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium-air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications. PMID:26311589

  19. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-08-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium-air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications.

  20. Ionization Efficiency of Doubly Charged Ions Formed from Polyprotic Acids in Electrospray Negative Mode

    NASA Astrophysics Data System (ADS)

    Liigand, Piia; Kaupmees, Karl; Kruve, Anneli

    2016-07-01

    The ability of polyprotic acids to give doubly charged ions in negative mode electrospray was studied and related to physicochemical properties of the acids via linear discriminant analysis (LDA). It was discovered that the compound has to be strongly acidic (low p K a1 and p K a2) and to have high hydrophobicity (log P ow) to become multiply charged. Ability to give multiply charged ions in ESI/MS cannot be directly predicted from the solution phase acidities. Therefore, for the first time, a quantitative model to predict the charge state of the analyte in ESI/MS is proposed and validated for small anions. Also, a model to predict ionization efficiencies of these analytes was developed. Results indicate that acidity of the analyte, its octanol-water partition coefficient, and charge delocalization are important factors that influence ionization efficiencies as well as charge states of the analytes. The pH of the solvent was also found to be an important factor influencing the ionization efficiency of doubly charged ions.

  1. Non-equilibrium energy loss for very highly charged ions in insulators

    SciTech Connect

    Briere, M.A.; Schenkel, T.; Bauer, P.; Amau, A.

    1996-12-31

    The energy loss of 144 keV Ar{sup +16} ions on a bilayer structure of C-CaF{sub 2} has been measured. An asymmetry in the results is found depending on which layer is passed by the ion first: the energy loss is about four times larger when the CaF{sub 2} layer is traversed by the ion first. We interpret this as an indication of the existence of a nonequilibrium charge state of the Ar ions inside the solid in the case of the insulator.

  2. EBIS-A facility for the studies of X-ray emission from solids bombarded by highly charged ions

    NASA Astrophysics Data System (ADS)

    Banaś, D.; Jabłoński, Ł.; Jagodziński, P.; Kubala-Kukuś, A.; Sobota, D.; Pajek, M.

    2015-07-01

    We report here on the progress in the X-ray spectroscopy program at the EBIS-A facility installed recently at the Institute of Physics of Jan Kochanowski University in Kielce. In this facility the beams of low-energy highly charged ions (HCI) produced by the Dresden EBIS-A ion source, after extraction and charge-state separation in the double focusing magnet, are directed to the experimental UHV chamber equipped with a 5-axis universal sample manipulator. The X-rays emitted in interaction of the highly charged ions with solids can be measured by an energy dispersive X-ray silicon drift detector (SDD) and/or a wavelength-dispersive X-ray spectrometer (WDS) mounted at the experimental chamber. The surface nanostructures formed by an impact of HCI will be studied by the grazing emission X-ray fluorescence (GEXRF) technique and using a multiprobe surface analysis system based on the X-ray photoelectron spectrometer (XPS) coupled to the UHV chamber of the EBIS-A facility. In this paper a brief description of the facility, X-ray instrumentation and the surface analysis system is given and the first results are presented.

  3. Shot-to-shot reproducibility in the emission of fast highly charged metal ions from a laser ion source

    SciTech Connect

    Krasa, J.; Velyhan, A.; Margarone, D.; Krousky, E.; Laska, L.; Jungwirth, K.; Rohlena, K.; Ullschmied, J.; Parys, P.; Ryc, L.; Wolowski, J.

    2012-02-15

    The generation of fast highly charged metal ions with the use of the sub-nanosecond Prague Asterix Laser System, operated at a fundamental wavelength of 1315 nm, is reported. Particular attention is paid to shot-to-shot reproducibility in the ion emission. Au and Pd targets were exposed to intensities up to 5 x 10{sup 16} W/cm{sup 2}. Above the laser intensity threshold of {approx}3 x 10{sup 14} W/cm{sup 2} the plasma is generated in a form of irregular bursts. The maximum energy of protons constituting the leading edge of the fastest burst reaches a value up to 1 MeV. The fast ions in the following bursts have energy gradually decreasing with the increasing burst number, namely, from a value of about 0.5 MeV/charge regardless of the atomic number and mass of the ionized species.

  4. Effect of charge delocalization on radical ion pair electronic coupling

    NASA Astrophysics Data System (ADS)

    Sinks, Louise E.; Weiss, Emily A.; Giaimo, Jovan M.; Wasielewski, Michael R.

    2005-03-01

    Photoinduced charge separation and recombination were studied in a series of covalent donor-acceptor triads consisting of aniline, 1-aminonaphthalene, or 9-aminoanthracene donors (D) attached to a 4-aminonaphthalene-1,8-dicarboximide chromophore (ANI), which in turn is attached to a naphthalene-1,4:5,8-bis(dicarboximide) acceptor (NI) to give D-ANI-NI. The relationship between the molecular structure of D + rad and the magnitude of the electronic coupling between the radicals within D + rad -ANI-NI - rad was probed by direct measurements of the spin-spin exchange interaction, 2J, using magnetic field effects on the yield of the neutral triplet state resulting from charge recombination and by density functional theory calculations.

  5. Simulation of the charge migration in DNA under irradiation with heavy ions.

    PubMed

    Belov, Oleg V; Boyda, Denis L; Plante, Ianik; Shirmovsky, Sergey Eh

    2015-01-01

    A computer model to simulate the processes of charge injection and migration through DNA after irradiation by a heavy charged particle was developed. The most probable sites of charge injection were obtained by merging spatial models of short DNA sequence and a single 1 GeV/u iron particle track simulated by the code RITRACKS (Relativistic Ion Tracks). Charge migration was simulated by using a quantum-classical nonlinear model of the DNA-charge system. It was found that charge migration depends on the environmental conditions. The oxidative damage in DNA occurring during hole migration was simulated concurrently, which allowed the determination of probable locations of radiation-induced DNA lesions. PMID:26405967

  6. Prompt and delayed fragmentation of bromouracil cations ionized by multiply charged ions

    NASA Astrophysics Data System (ADS)

    Delaunay, Rudy; Champeaux, Jean-Philippe; Maclot, Sylvain; Capron, Michael; Domaracka, Alicja; Méry, Alain; Manil, Bruno; Adoui, Lamri; Rousseau, Patrick; Moretto-Capelle, Patrick; Huber, Bernd A.

    2014-06-01

    The fragmentation of singly and multiply charged 5-bromouracil molecules (C4H3N2O2Br) induced by collisions with slow multiply charged ions has been studied. The emission of neutral fragments as well as charge separating decay channels are identified as a function of the projectile charge state. In the first case, delayed loss of neutral moieties, occurring on a μs time scale, indicates a wider internal energy distribution resulting in a power law decay. In the second case, the most important decay channels, leading to the formation of Br+, HNCO+ and CO+/NHCH+, are discussed showing that in many processes intramolecular H-migration occurs before fragmentation. Furthermore, molecular rearrangement may lead to delayed charge separating processes. Although the dication of bromouracil is unstable, smaller doubly charged systems created by the loss of neutral fragments are found to be (meta) stable.

  7. Fragmentation processes of OCS in collision with highly charged ions

    NASA Astrophysics Data System (ADS)

    Matsumoto, J.; Tezuka, T.; Fukutome, A.; Karimi, R.; Wales, B.; Sanderson, J. H.; Shiromaru, H.

    2014-04-01

    Fragmentation of (OCS)3+ and (OCS)4+ produced by 120 keV Ar8+ collision was studied by using a position-sensitive time-of-flight (PS-TOF) method. We identified stepwise processes involving CO2+ and CS2+ metastable species as well as the concerted process (simultaneous breakup of the two bonds). For the (OCS)4+ events, the stepwise processes were found for fragmentation channels containing a doubly-charged terminal atom.

  8. Monte Carlo simulation of charged particle impact on the satellites of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Bell, E. V., II; Armstrong, T. P.

    1986-01-01

    Ensemble-averaged lifetimes of Jovian and Saturnian trapped charged particles against loss by impact on natural satellites are presented. Precise values of these loss rates can be obtained from the known geometry of the satellite orbits, magnetic fields, and particle trajectory. These loss rates are needed as an ingredient of transport theory which is usually formulated in terms of the first and second adiabatic invariants and radial distance. The effects of satellite orbital inclination and eccentricity, ion charge to mass ratio and energy, equatorial pitch, and distance from the planet on the particle lifetime are discussed utilizing a tilted, but not offset, dipolar field geometry resulting in lifetime values expressed as functions of the first two adiabatic invariants and the equatorial radial distance from the planet.

  9. Charge transfer in collisions of doubly charged ions of iron and nickel with hydrogen atoms

    SciTech Connect

    Neufeld, D.A.; Dalgarno, A.

    1987-04-01

    The Landau-Zener approximation is used to compute the charge-transfer recombination rate coefficients of Fe/sup 2+/ and Ni/sup 2+/ in hydrogen at thermal energies. The energy separations of the adiabatic potential-energy curves of the quasimolecules FeH/sup 2+/ and NiH/sup 2+/ are obtained from one-electron calculations. The rate coefficients are of the order of 10/sup -9/ cm/sup 3/X sup -1: or greater. Charge transfer of Fe/sup 2+/ occurs preferentially into the ground state of Fe/sup +/ so that the reverse process of charge-transfer ionization of Fe/sup +/ in collision with H/sup +/ also occurs rapidly above the reaction threshold.

  10. Production of Highly Charged Ga Ions from Organic Metal Comppound Using the Liquid-He-Free Superconducting Electron Cyclotron Resonance Ion Source at RIKEN

    NASA Astrophysics Data System (ADS)

    Higurashi, Yoshihide; Nakagawa, Takahide; Kidera, Masanori; Kageyama, Tadashi; Kase, Masayuki; Yano, Yasushige

    2002-08-01

    We successfully produced the multi-charged Ga ions using metal ions from volatile compounds (MIVOC) method from liquid-He-free super conducting electron cyclotron resonance ion source at RIKEN (RAMSES). The beam intensities of Ga15+ and Ga16+ ions were 5 and 4 eμA at the injected microwave power of 200 W, respectively.

  11. Opposite counter-ion effects on condensed bundles of highly charged supramolecular nanotubes in water.

    PubMed

    Wei, Shenghui; Chen, Mingming; Wei, Chengsha; Huang, Ningdong; Li, Liangbin

    2016-07-20

    Although ion specificity in aqueous solutions is well known, its manifestation in unconventional strong electrostatic interactions remains implicit. Herein, the ionic effects in dense packing of highly charged polyelectrolytes are investigated in supramolecular nanotube prototypes. Distinctive behaviors of the orthorhombic arrays composed of supramolecular nanotubes in various aqueous solutions were observed by Small Angle X-ray Scattering (SAXS), depending on the counter-ions' size and affiliation to the surface -COO(-) groups. Bigger tetra-alkyl ammonium (TAA(+)) cations weakly bonding to -COO(-) will compress the orthorhombic arrays, while expansion is induced by smaller alkaline metal (M(+)) ions with strong affiliation to -COO(-). Careful analysis of the changes in the SAXS peaks with different counter/co-ion combinations indicates dissimilar mechanisms underlying the two explicit types of ionic effects. The pH measurements are in line with the ion specificity by SAXS and reveal the strong electrostatic character of the system. It is proposed that the small distances between the charged surfaces, in addition to the selective adsorption of counter-ions by the surface charge, bring out the observed distinctive ionic effects. Our results manifest the diverse mechanisms and critical roles of counter-ion effects in strong electrostatic interactions. PMID:27373802

  12. Proceedings of the workshop on opportunities for atomic physics using slow, highly-charged ions

    SciTech Connect

    Not Available

    1987-01-01

    The study of atomic physics with highly-charged ions is an area of intense activity at the present time because of a convergence of theoretical interest and advances in experimental techniques. The purpose of the Argonne ''Workshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ions'' was to bring together atomic, nuclear, and accelerator physicists in order to identify what new facilities would be most useful for the atomic physics community. The program included discussion of existing once-through machines, advanced ion sources, recoil ion techniques, ion traps, and cooler rings. One of the topics of the Workshop was to discuss possible improvement to the ANL Tandem-Linac facility (ATLAS) to enhance the capability for slowing down ions after they are stripped to a high-charge state (the Accel/Decel technique). Another topic was the opportunity for atomic physics provided by the ECR ion source which is being built for the Uranium Upgrade of ATLAS. 18 analytics were prepared for the individual papers in this volume.

  13. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    DOE PAGES

    Vittone, Ettore; Pastuovic, Zeljko; Breese, Mark B. H.; Lopez, Javier Garicia; Jaksic, Milko; Raisanen, Jyrki; Siegele, Rainer; Simon, Aliz; Vizkelethy, Gyorgy

    2016-02-08

    This study investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and themore » charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.« less

  14. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    NASA Astrophysics Data System (ADS)

    Vittone, E.; Pastuovic, Z.; Breese, M. B. H.; Garcia Lopez, J.; Jaksic, M.; Raisanen, J.; Siegele, R.; Simon, A.; Vizkelethy, G.

    2016-04-01

    This paper investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and the charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.

  15. Electron emission following the interaction of slow highly charged ions with solids

    SciTech Connect

    McDonald, J.W., LLNL

    1998-01-01

    The interaction of highly-charged ions with surfaces involves many excitation processes of the surface atoms and the bulk material. One such process, the emission of electrons from surfaces due to the potential energy of the incident ions has been studied. The experimental results presented here confirm that the majority of electrons emitted as a result of highly-charged ions interacting with a solid surface have energies of about 20 eV. Auger processes contribute a smaller fraction of the total emitted electrons with increasing Z of the projectile. This contribution to the total electron emission yield is found to be less than 5% for Ne{sup 9+} and less than 1% for Ar{sup 18+}. For Z{>=} 54, no Auger electrons were detected. The early indications that the total number of emitted low energy electrons increases linearly with charge have been demonstrated not to hold for q {>=} 18.

  16. Particles inside electrolytes with ion-specific interactions, their effective charge distributions, and effective interactions

    NASA Astrophysics Data System (ADS)

    Ding, Mingnan; Liang, Yihao; Xing, Xiangjun

    2016-10-01

    In this work, we explore the statistical physics of colloidal particles that interact with electrolytes via ion-specific interactions. Firstly we study particles interacting weakly with electrolyte using linear response theory. We find that the mean potential around a particle is linearly determined by the effective charge distribution of the particle, which depends both on the bare charge distribution and on ion-specific interactions. We also discuss the effective interaction between two such particles and show that, in the far field regime, it is bilinear in the effective charge distributions of two particles. We subsequently generalize the above results to the more complicated case where particles interact strongly with the electrolyte. Our results indicate that in order to understand the statistical physics of non-dilute electrolytes, both ion-specific interactions and ionic correlations have to be addressed in a single unified and consistent framework. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174196 and 91130012).

  17. Role of charge transfer in heavy-ion-beam-plasma interactions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Ortner, A.; Frank, A.; Blažević, A.; Roth, M.

    2015-02-01

    In this paper we investigate the influence of the plasma properties on the charge state distribution of a swift heavy ion beam interacting with a plasma. The main finding is that the charge state in plasma can be lower than in cold matter. The charge state distribution is determined by the ionization and recombination rates which are balancing each other out. Both, ionization and recombination rates, as well as atomic excitation and decay rates, depend on the plasma parameters in different ways. These effects have been theoretically studied by Monte Carlo simulations on the example of an argon ion beam at an energy of 4 MeV /u in a carbon plasma. This study covers a plasma parameter space ranging from ion densities from 1018 to 1023 cm-3 and electron temperatures from 10 to 200 eV.

  18. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    SciTech Connect

    Valerio-Lizarraga, Cristhian A.; Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard; Leon-Monzon, Ildefonso; Midttun, Øystein

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  19. Charge-state dependence of kinetic electron emission induced by slow ions in metals

    SciTech Connect

    Juaristi, J.I.; Dubus, A.; Roesler, M.

    2003-07-01

    A calculation is performed in order to analyze the charge-state dependence of the kinetic electron emission induced by slow ions in metals. All stages of the emission process are included: the excitation of the electrons, the neutralization of the projectile during its passage through the solid, and the transport of the excited electrons from where they are created to the surface. It is shown that the number of excited electrons depends strongly on the ion charge state. Nevertheless, due to the fast neutralization of the ions within the escape depth of the excited electrons, no significant initial charge-state dependence is expected in the kinetic electron yield. This result is consistent with available experimental data.

  20. Dust acoustic solitary wave with variable dust charge: Role of negative ions

    SciTech Connect

    Ghosh, Samiran

    2005-09-15

    The role of negative ions on small but finite amplitude dust acoustic solitary wave including the effects of high and low charging rates of dust grains compared to the dust oscillation frequency in electronegative dusty plasma is investigated. In the case of high charging rate, the solitary wave is governed by Korteweg-de Vries (KdV) equation, but in the case of low charging rate, it is governed by KdV equation with a linear damping term. Numerical investigations reveal that in both cases dust acoustic soliton sharpens (flatens) and soliton width decreases (increases) with the increase of negative-ion number density (temperature). Also, the negative ions reduce the damping rate.

  1. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    SciTech Connect

    Amour, Rabia; Tribeche, Mouloud

    2014-12-15

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient.

  2. Using Ion Injections to Infer the Energetic Oxygen and Sulfur Charge States in Jupiter's Inner and Middle Magnetosphere

    NASA Astrophysics Data System (ADS)

    Clark, G. B.; Mauk, B.; Paranicas, C.; Kollmann, P.; Mitchell, D. G.

    2015-12-01

    Neutral gases can, through the charge exchange processes, shape the distributions of energetic ions trapped within a planetary magnetosphere, and also redistribute the energetic ion charge states. One region where the prevalence of such processes has been proposed is the orbital region of Jupiter's moon Europa, where the existence of a neutral gas torus has been inferred. Data from the Galileo Energetic Particle Detector (EPD) showed a depletion of protons with near equatorial pitch angles near Europa, while oxygen and sulfur maintained their trapped profile as they were transported inward. The contrast in these distributions was attributed by Lagg et al. (2003) to the multiple charge states of the oxygen and sulfur, dramatically increasing the charge exchange lifetimes of these species. It was proposed that as the ions diffuse inwards across Europa's orbit and into the Io torus regions, the distributed neutral gas interactions redistribute the charge states of the heavy ions until, close to Io, these ions may be heavily depleted. And so, the charge state of the heavy ions is a critical parameter in determining whether or not these processes are taking place. Limited evidence for the multiple charged states of heavy ions was provided by Mauk et al. [1999], who analyzed three ion injection events and found evidence of multiply charged energetic oxygen and sulfur ions in two of the events, but not in the third event. Injections introduce a transient disturbance to the ion distributions, and the drift rate of disturbed ions away from the injection region depends on the charge state of the ions. In this work we revisit the Galileo EPD data set and find additional ion dispersion events from which composition can be measured and charge state can be inferred. We aspire to develop a much clearer picture as to the ordering of charge state as a function of radial distance. Results and conclusions will be presented as well as the importance from new measurements from the

  3. The influence of nonthermal electron distributions on the charge state of heavy ions

    NASA Astrophysics Data System (ADS)

    Kartavykh, Yu.; Ostryakov, V.

    2001-08-01

    We investigate the influence of non-thermal electrons on the formation of ionic states of heavy elements in SEP events. The equilibrium mean charge of Mg, Si and Fe for several samples of non-Maxwellian populations (power law electron beam and bi-Maxwellian distribution) were calculated. According to our estimates the anomalously high density of non-thermal electrons is required to obtain substantial difference in the mean charge of heavy ions as compared with `pure' thermal dstribution.

  4. Recoil ion charge state distribution following the beta(sup +) decay of {sup 21}Na

    SciTech Connect

    Scielzo, Nicholas D.; Freedman, Stuart J.; Fujikawa, Brian K.; Vetter, Paul A.

    2003-01-03

    The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions.

  5. Nonlinear localized dust acoustic waves in a charge varying dusty plasma with nonthermal ions

    SciTech Connect

    Tribeche, Mouloud; Amour, Rabia

    2007-10-15

    A numerical investigation is presented to show the existence, formation, and possible realization of large-amplitude dust acoustic (DA) solitary waves in a charge varying dusty plasma with nonthermal ions. These nonlinear localized structures are self-consistent solutions of the collisionless Vlasov equation with a population of fast particles. The spatial patterns of the variable charge DA solitary wave are significantly modified by the nonthermal effects. The results complement and provide new insights into previously published results on this problem.

  6. Gas-phase ions of solute species from charged droplets of solutions

    PubMed Central

    Nguyen, Steve; Fenn, John B.

    2007-01-01

    Charged droplets, produced by electrostatic dispersion of solutions of amino acids and peptides are driven by a potential difference a countercurrent to a flow of heated nitrogen bath gas. Evaporation of solvent from those droplets increases surface charge density, resulting in subdivision into smaller charged droplets. Each smaller droplet repeats that sequence until the ultimate result is a dispersion of solvent-free solute ions in the bath gas. Surprisingly, mass spectrometric analyses of the final ion-bath gas mixtures showed that the relative abundances of the desolvated ions were substantially higher when the nitrogen bath gas contained vapor of a polar solvent species than when no such solvent vapor was present. Adding solvent vapor to the background bath gas can certainly not increase, but must decrease, the net rate of solvent evaporation from the charged droplets. Consequently, the observed enhancement of ion formation by the presence of solvent vapor in the bath gas constitutes persuasive evidence that the observed solute ions cannot have been produced by the charged residue mechanism originally suggested by Dole et al. [Dole M, et al. (1968) J Chem Phys 49:2240–2249 and Dole M, Rheude A, Mack LL (1970) J Chem Phys 52:4977–4986]. It is therefore concluded that electrospray ions are most likely produced by the ion evaporation mechanism of Iribarne and Thomson [Iribarne JV, Thomson BA (1975) J Chem Phys 64:2287–2294]. Moreover, and probably as important, this observed signal enhancement constitutes a welcome increase in detection sensitivity. PMID:17213314

  7. Ion selection of charge-modified large nanopores in a graphene sheet.

    PubMed

    Zhao, Shijun; Xue, Jianming; Kang, Wei

    2013-09-21

    Water desalination becomes an increasingly important approach for clean water supply to meet the rapidly growing demand of population boost, industrialization, and urbanization. The main challenge in current desalination technologies lies in the reduction of energy consumption and economic costs. Here, we propose to use charged nanopores drilled in a graphene sheet as ion exchange membranes to promote the efficiency and capacity of desalination systems. Using molecular dynamics simulations, we investigate the selective ion transport behavior of electric-field-driven KCl electrolyte solution through charge modified graphene nanopores. Our results reveal that the presence of negative charges at the edge of graphene nanopore can remarkably impede the passage of Cl(-) while enhance the transport of K(+), which is an indication of ion selectivity for electrolytes. We further demonstrate that this selectivity is dependent on the pore size and total charge number assigned at the nanopore edge. By adjusting the nanopore diameter and electric charge on the graphene nanopore, a nearly complete rejection of Cl(-) can be realized. The electrical resistance of nanoporous graphene, which is a key parameter to evaluate the performance of ion exchange membranes, is found two orders of magnitude lower than commercially used membranes. Our results thus suggest that graphene nanopores are promising candidates to be used in electrodialysis technology for water desalinations with a high permselectivity.

  8. Simulation and design of an electron beam ion source charge breeder for the californium rare isotope breeder upgrade

    NASA Astrophysics Data System (ADS)

    Dickerson, Clayton; Mustapha, Brahim; Pikin, Alexander; Kondrashev, Sergey; Ostroumov, Peter; Levand, Anthony; Fischer, Rick

    2013-02-01

    An electron beam ion source (EBIS) will be constructed and used to charge breed ions from the californium rare isotope breeder upgrade (CARIBU) for postacceleration into the Argonne tandem linear accelerator system (ATLAS). Simulations of the EBIS charge breeder performance and the related ion transport systems are reported. Propagation of the electron beam through the EBIS was verified, and the anticipated incident power density within the electron collector was identified. The full normalized acceptance of the charge breeder with a 2 A electron beam, 0.024πmmmrad for nominal operating parameters, was determined by simulating ion injection into the EBIS. The optics of the ion transport lines were carefully optimized to achieve well-matched ion injection, to minimize emittance growth of the injected and extracted ion beams, and to enable adequate testing of the charge bred ions prior to installation in ATLAS.

  9. Dependence of multiply charged ions on the polarization state in nanosecond laser-benzene cluster interaction

    NASA Astrophysics Data System (ADS)

    Wang, Weiguo; Zhao, Wuduo; Hua, Lei; Hou, Keyong; Li, Haiyang

    2016-05-01

    This paper investigated the dependence of multiply charged ions on the laser polarization state when benzene cluster was irradiated with 532 and 1064 nm nanosecond laser. A circle, square and flower distribution for C2+, C3+ and C4+ were observed with 532 nm laser respectively, while flower petals for C2+, C3+ and C4+ were observed at 1064 nm as the laser polarization varied. A theoretical calculation was performed to interpret the polarization state and wavelength dependence of the multiply charged ions. The simulated results agreed well with the experimental observation with considering the contribution from the cluster disintegration.

  10. Theory of a stationary microwave discharge with multiply charged ions in an expanding gas jet

    NASA Astrophysics Data System (ADS)

    Shalashov, A. G.; Abramov, I. S.; Golubev, S. V.; Gospodchikov, E. D.

    2016-08-01

    The formation of a jet of a nonequilibrium multiply charged ion plasma is studied in the inhomogeneous gas jet. It is shown that the geometrical divergence of the jet restricts the maximum ion charge state and results in the spatial localization of the discharge. Stationary solutions corresponding to such regimes are constructed. The model proposed can be used to optimize modern experiments on generation of hard UV radiation due to the line emission of multiply ionized atoms in a gas jet heated by high-power millimeter and submillimeter radiation.

  11. Simulation of charge exchange plasma propagation near an ion thruster propelled spacecraft

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.; Winder, D. R.

    1981-01-01

    A model describing the charge exchange plasma and its propagation is discussed, along with a computer code based on the model. The geometry of an idealized spacecraft having an ion thruster is outlined, with attention given to the assumptions used in modeling the ion beam. Also presented is the distribution function describing charge exchange production. The barometric equation is used in relating the variation in plasma potential to the variation in plasma density. The numerical methods and approximations employed in the calculations are discussed, and comparisons are made between the computer simulation and experimental data. An analytical solution of a simple configuration is also used in verifying the model.

  12. Shock wave in magnetized dusty plasmas with dust charging and nonthermal ion effects

    SciTech Connect

    Zhang Liping; Xue Jukui

    2005-04-15

    The effects of the external magnetized field, nonadiabatic dust charge fluctuation, and nonthermally distributed ions on three-dimensional dust acoustic shock wave in dusty plasmas have been investigated. By using the reductive perturbation method, a Korteweg-de Vries (KdV) Burger equation governing the dust acoustic shock wave is derived. The results of numerical integrations of KdV Burger equation show that the external magnetized field, nonthermally distributed ions, and nonadiabatic dust charge fluctuation have strong influence on the shock structures.

  13. Magnetic mirror trap with electron-cyclotron plasma heating as a source of multiply charged ions

    SciTech Connect

    Golovanivskii, K.S.

    1986-03-01

    This paper presents the physical operating principles of sources of multiply charged ions using electron cyclotron resonance. It is shown that the conditions that must be satisfied for multiple ionization are well matched to the conditions of effective plasma confinement in a magnetic mirror trap when a collision mode of confinement is provided. Plasma stability with hot electrons in the mirror magnetic trap and the mechanisms of plasma heating by highfrequency fields are analyzed. Two sources of multiply charged ions with ECR plasma heating are examined. Evaluations of the future of this area are given.

  14. Chapter 11 Experiments on Highly Charged Heavy Ions in Conjunction with Exotic Atoms

    NASA Astrophysics Data System (ADS)

    Indelicato, P.; Trassinelli, M.; Anagnostopoulos, D. F.; Boucard, S.; Covita, D. S.; Borchert, G.; Dax, A.; Egger, J. P.; Gotta, D.; Gruber, A.; Hirtl, A.; Hennebach, M.; Fuhrmann, H.; Le Bigot, E.-O.; Liu, Y.-W.; Manil, B.; Nelms, N.; Schlesser, S.; Dos Santos, J. M. F.; Simons, L. M.; Stingelin, L.; Veloso, J.; Wasser, A.; Wells, A.; Zmeskal, J.

    We demonstrate how combining highly-charged ions and exotic atoms measurements can provide high-accuracy information on particle properties, like the pion mass, on interactions, like the pion-proton strong interaction at low energy, and bound-state QED in strong fields. The use of highly-charged ion X-rays emitted by the plasma inside a super-conducting ion source provides a very detailed characterization of the response function of the X-ray spectrometer used to study exotic atoms, allowing for very accurate measurements. Conversely the use of the same high-resolution and high transmission spectrometer provides very accurate measurements of X-ray lines of few-electron ions.

  15. Dust acoustic solitons with variable particle charge: role of the ion distribution.

    PubMed

    Ivlev, A V; Morfill, G

    2001-02-01

    Dust-acoustic solitons of large amplitude with variable particle charge are studied using the Sagdeev quasipotential analysis. Two limiting cases of ion distribution are considered separately: Boltzmann and highly energetic cold ions. It is shown that in both cases only compressive (density) solitons are possible. The charge variation is not important in rarefied particle clouds, but becomes crucial if the particle number density is sufficiently high. Analytical expressions for the range of Mach numbers where solitons might exist are obtained. It is found that solitons are allowed in the supersonic regime, and that in dense clouds the width of the Mach number range remains finite for the Boltzmann ions, but tends to zero for highly energetic ions.

  16. Surface charging of thick porous water ice layers relevant for ion sputtering experiments

    NASA Astrophysics Data System (ADS)

    Galli, A.; Vorburger, A.; Pommerol, A.; Wurz, P.; Jost, B.; Poch, O.; Brouet, Y.; Tulej, M.; Thomas, N.

    2016-07-01

    We use a laboratory facility to study the sputtering properties of centimeter-thick porous water ice subjected to the bombardment of ions and electrons to better understand the formation of exospheres of the icy moons of Jupiter. Our ice samples are as similar as possible to the expected moon surfaces but surface charging of the samples during ion irradiation may distort the experimental results. We therefore monitor the time scales for charging and discharging of the samples when subjected to a beam of ions. These experiments allow us to derive an electric conductivity of deep porous ice layers. The results imply that electron irradiation and sputtering play a non-negligible role for certain plasma conditions at the icy moons of Jupiter. The observed ion sputtering yields from our ice samples are similar to previous experiments where compact ice films were sputtered off a micro-balance.

  17. Dynamics of charge evolution in glass capillaries for 230-keV Xe23+ ions

    NASA Astrophysics Data System (ADS)

    Cassimi, A.; Ikeda, T.; Maunoury, L.; Zhou, C. L.; Guillous, S.; Mery, A.; Lebius, H.; Benyagoub, A.; Grygiel, C.; Khemliche, H.; Roncin, P.; Merabet, H.; Tanis, J. A.

    2012-12-01

    We have measured the transmission of 230-keV (10-keV/q) Xe23+ ions through insulating tapered glass capillaries of microscopic dimensions. The dynamics of charging and discharging processes have been investigated, evidencing an unexpected slow alignment of the beam along the capillary axis. Oscillations of the exiting beam position have been observed during the charging process associated to the formation of charge patches on the capillary inner walls. The emerging ions are guided with a characteristic guiding angle falling on a universal curve proposed for PET polymer nanocapillaries. This result, very similar to the channeling process, is somewhat surprising in view of the significant differences between the straight nanocapillary polymer foils and the tapered microscopic single glass capillary used here. The transmitted ions show no evidence of energy loss or charge changing except for the production of a small neutral fraction that was determined to be due to ions that had become neutralized to form atoms rather than due to photon emission. These results thus test and confirm the validity of transmission and guiding and provide insight into the dynamics of higher-energy ions than have been previously studied in this regard, allowing a determination of the maximum energy for which the guiding process might occur.

  18. Future prospects for ECR ion sources with improved charge state distributions

    SciTech Connect

    Alton, G.D.

    1995-12-31

    Despite the steady advance in the technology of the ECR ion source, present art forms have not yet reached their full potential in terms of charge state and intensity within a particular charge state, in part, because of the narrow band width. single-frequency microwave radiation used to heat the plasma electrons. This article identifies fundamentally important methods which may enhance the performances of ECR ion sources through the use of: (1) a tailored magnetic field configuration (spatial domain) in combination with single-frequency microwave radiation to create a large uniformly distributed ECR ``volume`` or (2) the use of broadband frequency domain techniques (variable-frequency, broad-band frequency, or multiple-discrete-frequency microwave radiation), derived from standard TWT technology, to transform the resonant plasma ``surfaces`` of traditional ECR ion sources into resonant plasma ``volume``. The creation of a large ECR plasma ``volume`` permits coupling of more power into the plasma, resulting in the heating of a much larger electron population to higher energies, thereby producing higher charge state ions and much higher intensities within a particular charge state than possible in present forms of` the source. The ECR ion source concepts described in this article offer exciting opportunities to significantly advance the-state-of-the-art of ECR technology and as a consequence, open new opportunities in fundamental and applied research and for a variety of industrial applications.

  19. Ion exchange phase transitions in water-filled channels with charged walls.

    PubMed

    Zhang, J; Kamenev, A; Shklovskii, B I

    2006-05-01

    Ion transport through narrow water-filled channels is impeded by a high electrostatic barrier. The latter originates from the large ratio of the dielectric constants of the water and the surrounding media. We show that "doping," i.e., immobile charges attached to the walls of the channel, substantially reduces the barrier. This explains why most of the biological ion channels are "doped." We show that at rather generic conditions the channels may undergo ion exchange phase transitions (typically of the first order). Upon such a transition a finite latent concentration of ions may either enter or leave the channel, or be exchanged between the ions of different valences. We discuss possible implications of these transitions for the Ca-vs-Na selectivity of biological Ca channels. We also show that transport of divalent Ca ions is assisted by their fractionalization into two separate excitations.

  20. Ion mobility-mass spectrometry of phosphorylase B ions generated with supercharging reagents but in charge-reducing buffer.

    PubMed

    Hogan, Christopher J; Ogorzalek Loo, Rachel R; Loo, Joseph A; de la Mora, Juan Fernandez

    2010-11-01

    We investigate whether "supercharging" reagents able to shift the charge state distributions (CSDs) of electrosprayed protein ions upward also influence gas-phase protein structure. A differential mobility analyzer and a mass spectrometer are combined in series (DMA-MS) to measure the mass and mobility of monomer and multimeric phosphorylase B ions (monomer molecular weight ∼97 kDa) in atmospheric pressure air. Proteins are electrosprayed from charge-reducing triethylammonium formate in water (pH = 6.8) with and without the addition of the supercharging reagent tetramethylene sulfone (sulfolane). Because the DMA measures ion mobility prior to collisional heating or declustering, it probes the structure of supercharged protein ions immediately following solvent (water) evaporation. As in prior studies, the addition of sulfolane is found to drastically increase both the mean and maximum charge state of phosphorylase B ions. Ions from all protein n-mers were found to yield mobilities that, for a given charge state, were ∼6-10% higher in the absence of sulfolane. We find that the mobility decrease which arises with sulfolane is substantially smaller than that typically observed for folded-to-unfolded transitions in protein ions (where a ∼60% decrease in mobility is typical), suggesting that supercharging reagents do not cause structural protein modifications in solution as large as noted recently by Williams and colleagues [E. R. Williams et al., J. Am. Soc. Mass Spectrom., 2010, 21, 1762-1774]. In fact, the measurements described here indicate that the modest mobility decrease observed can be partly attributed to sulfolane trapping within the protein ions during DMA measurements, and probably also in solution. As the most abundant peaks in measured mass-mobility spectra for ions produced with and without sulfolane correspond to non-covalently bound phosphorylase B dimers, we find that in spite of a change in mobility/cross section, sulfolane addition does not

  1. Charge-exchange Induced Modulation of the Heliosheath Ion Distribution Downstream of the Termination Shock

    NASA Astrophysics Data System (ADS)

    Fahr, H. J.; Fichtner, H.; Scherer, K.

    2015-12-01

    We consider the evolution of the solar wind ion distribution function alongthe plasma flow downstream from the termination shock induced by chargeexchange processes with cold interstellar H-atoms. We start from a kineticphase space transport equation valid in the bulk frame of the plasma flowthat takes into account convective changes, cooling processes, energydiffusion and ion injection, and describes solar wind and pick-up ionsas a co-moving, isotropic, joint ion population. From this kinetic transportequation one can ascend to an equation for the pressure moment of the iondistribution function, a so-called pressure transport equation, describingthe evolution of the ion pressure in the comoving rest frame. Assuming thatthe local ion distribution can be represented by an adequate kappa functionwith a kappa parameter that varies with the streamline coordinate, weobtain an ordinary differential equation for kappa as function of thestreamline coordinate s. With this result then we gain the heliosheath iondistribution function downstream of the termination shock. The latter thencan be used to predict the Voyager-2 measured moments of the distributionfunction like ion density and ion temperature, and it can also be used topredict spectral fluxes of ENA`s originating from these ions and registeredby IBEX-Hi and IBEX-Lo.We especially analyse the solar wind ion temperature decreasemeasured by Voyager-2 between the years 2008 to 2011 and try to explain itas a charge-exchange induced cooling of the ion distribution function duringthe associated ion convection period.

  2. Cathode material comparison of thermal runaway behavior of Li-ion cells at different state of charges including over charge

    NASA Astrophysics Data System (ADS)

    Mendoza-Hernandez, Omar Samuel; Ishikawa, Hiroaki; Nishikawa, Yuuki; Maruyama, Yuki; Umeda, Minoru

    2015-04-01

    The analysis of Li-ion secondary cells under outstanding conditions, as overcharge and high temperatures, is important to determine thermal abuse characteristics of electroactive materials and precise risk assessments on Li-ion cells. In this work, the thermal runaway behavior of LiCoO2 and LiMn2O4 cathode materials were compared at different state of charges (SOCs), including overcharge, by carrying out accelerating rate calorimetry (ARC) measurements using 18650 Li-ion cells. Onset temperatures of self-heating reactions and thermal runaway behavior were identified, and by using these onset points thermal mapping plots were made. We were able to identify non-self-heating, self-heating and thermal runaway regions as a function of state of charge and temperature. The cell using LiMn2O4 cathode material was found to be more thermally stable than the cell using LiCoO2. In parallel with the ARC measurements, the electrochemical behavior of the cells was monitored by measuring the OCV and internal resistance of the cells. The electrochemical behavior of the cells showed a slightly dependency on SOC.

  3. Target-thickness-dependent electron emission from carbon foils bombarded with swift highly charged heavy ions

    SciTech Connect

    Rothard, H.; Caraby, C.; Cassimi, A.; Gervais, B.; Grandin, J.; Jardin, P.; Jung, M. ); Billebaud, A.; Chevallier, M. , 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex ); Groeneveld, K.; Maier, R. )

    1995-04-01

    We have measured electron yields from the beam entrance and exit surfaces of thin carbon foils ([ital d][approx]4--700 [mu]g/cm[sup 2]) bombarded with swift (13.6 MeV/u) highly charged ([ital q]=16--18) argon ions. The dependence of the electron yields on target thickness and charge state of the ions is analyzed within the framework of an extended semiempirical model. Due to the high velocity of the ions, it is possible to distinguish electron production in primary ionization (related to the stopping power and the effective charge of the ions) from secondary electron production due to the transport of so-called [delta] electrons (cascade multiplication). By combining the experimental results with numerical simulations of electron transport in matter by a Monte Carlo method, we have obtained electron transport lengths of high energy ([ital E][much gt]100 eV) [delta] electrons parallel and perpendicular to the ion trajectory, as well as diffusion lengths of slow electrons ([ital E][much lt]100 eV). In order to study the velocity dependence of these transport lengths, we have not only investigated 13.6 MeV/u Ar ions, but also 1 MeV/u C and 3.9 MeV/u S, for which experimental results are available [Koschar [ital et] [ital al]., Phys. Rev. A 40, 3632 (1989)]. We discuss the origin of electron yield reductions (compared to a simple scaling with the square of the nuclear charge) with heavy ions and present measurements of double differential energy and angular electron distributions of 13.6 MeV/u Ar[sup 17+] ions.

  4. Target-thickness-dependent electron emission from carbon foils bombarded with swift highly charged heavy ions

    NASA Astrophysics Data System (ADS)

    Rothard, Hermann; Caraby, Christophe; Cassimi, Amine; Gervais, Benoit; Grandin, Jean-Pierre; Jardin, Pascal; Jung, Matthias; Billebaud, Annick; Chevallier, Michel; Groeneveld, Karl-Ontjes; Maier, Robert

    1995-04-01

    We have measured electron yields from the beam entrance and exit surfaces of thin carbon foils (d~=4-700 μg/cm2) bombarded with swift (13.6 MeV/u) highly charged (q=16-18) argon ions. The dependence of the electron yields on target thickness and charge state of the ions is analyzed within the framework of an extended semiempirical model. Due to the high velocity of the ions, it is possible to distinguish electron production in primary ionization (related to the stopping power and the effective charge of the ions) from secondary electron production due to the transport of so-called δ electrons (cascade multiplication). By combining the experimental results with numerical simulations of electron transport in matter by a Monte Carlo method, we have obtained electron transport lengths of high energy (E>>100 eV) δ electrons parallel and perpendicular to the ion trajectory, as well as diffusion lengths of slow electrons (E<<100 eV). In order to study the velocity dependence of these transport lengths, we have not only investigated 13.6 MeV/u Ar ions, but also 1 MeV/u C and 3.9 MeV/u S, for which experimental results are available [Koschar et al., Phys. Rev. A 40, 3632 (1989)]. We discuss the origin of electron yield reductions (compared to a simple scaling with the square of the nuclear charge) with heavy ions and present measurements of double differential energy and angular electron distributions of 13.6 MeV/u Ar17+ ions.

  5. Isotope-Shift Measurement of High-energy Highly Charged Ion Beams

    NASA Astrophysics Data System (ADS)

    Ozawa, S.; Ariga, T.; Inabe, N.; Kase, M.; Tanihata, I.; Wakasugi, M.; Yano, Y.

    2001-10-01

    Isotope-shift measurement by the laser spectroscopic method was aimed to apply for radioactive isotope beams up to uranium created by projectile fragmentation at RIKEN RI beam factory (T. Katayama, et al.,): Nucl. Phys., A626, 545c (1997).to make a systematic study of the mean square nuclear charge radii. The present work was started to verify the feasibility of the method. Projectile fragments are high-energy highly charged ions and weak currents. Therefore we designed ultralow-background photon-detection system (M. Wakasugi, et al.,): Nucl. Instr. and Meth., A419, 50 (1998).for collinear laser spectroscopy of such ion beams. To demonstrate isotope-shift measurement, we measured precisely the 1s2s ^3S_1-1s2p ^3P_0,1,2 transition energy of He-like ^12C ion accelerated up to 0.9 MeV/u and ^13C ion 0.6 MeV/u. For the precision measurement, the uncertainty coming from the ambiguity in the absolute ion beam velocity was suppressed by means of that the resonance energy was measured by two laser beams which propagate in parallel and anti-parallel directions to the ion beam. As the result, isotope shifts of these transitions were obtained with the accuracy of 10 %. The lower limit of the ion-beam intensity for the measurement is estimated to be 2000 ions/s.

  6. Contribution of charge-transfer processes to ion-induced electron emission

    SciTech Connect

    Roesler, M.

    1996-12-01

    Charge changing events of ions moving inside metals are shown to contribute significantly to electron emission in the intermediate velocity regime via electrons coming from projectile ionization. Inclusion of equilibrium charge state fractions, together with two-electron Auger processes and resonant-coherent electron loss from the projectile, results in reasonable agreement with previous calculations for frozen protons, though a significant part of the emission is now interpreted in terms of charge exchange. The quantal character of the surface barrier transmission is shown to play an important role. The theory compares well with experimental observations for {ital H} projectiles. {copyright} {ital 1996 The American Physical Society.}

  7. Heavy ion beam-ionosphere interactions - Charging and neutralizing the payload

    NASA Technical Reports Server (NTRS)

    Kaufmann, R. L.; Arnoldy, R. L.; Walker, D. N.; Holmes, J. C.; Pollock, C. J.

    1989-01-01

    Three different electrical charging and neutralization processes were experienced during gun operation in the Argon Release Controlled Studies rocket flights, which carried ion generators to 400-500 km in the nighttime auroral ionosphere: DC charging of the vehicle, brief charging at gun turn-on, and extended oscillatory sequences. The present analysis of these phenomena has determined that, during oscillatory events, the entire environment of a payload could alternate between hot electron and cold electron configurations at rates which may have been in excess of 10 kHz.

  8. Atomic physics and synchrotron radiation: The production and accumulation of highly charged ions

    NASA Astrophysics Data System (ADS)

    Johnson, B. M.; Meron, M.; Agagu, A.; Jones, K. W.

    1987-04-01

    Synchrotron radiation can be used to produce highly-charged ions, and to study photoexcitation and photoionization for ions of virtually any element in the periodic table. To date, with few exceptions, atomic physics studies have been limited to rare gases and a few metal vapors, and to photoexcitation energies in the VUV region of the electromagnetic spectrum. These limitations can now be overcome using photons produced by high-brightness synchrotron storage rings, such as the X-ray ring at the National Synchrotron Light Source (NSLS) at Brookhaven. Furthermore, calculations indicate that irradiation of an ion trap with an intense energetic photon beam will result in a viable source of highly-charged ions that can be given the name PHOBIS: the photon beam ion source. Promising results, which encourage the wider systematic use of synchrotron radiation in atomic physics research, have been obtained in recent experiments on VUV photoemission and the production and storage of multiply-charged ions. An overview of the field, current plans, and future possibilities will be presented.

  9. Image Charge Method for Reaction Fields in a Hybrid Ion-Channel Model

    SciTech Connect

    Xu, Zhenli; Cai, Wei; Cheng, Xiaolin

    2011-01-01

    A multiple-image method is proposed to approximate the reaction-field potential of a source charge inside a finite length cylinder due to the electric polarization of the surrounding membrane and bulk water. When applied to a hybrid ion-channel model, this method allows a fast and accurate treatment of the electrostatic interactions of protein with membrane and solvent. To treat the channel/membrane interface boundary conditions of the electric potential, an optimization approach is used to derive image charges by fitting the reaction-field potential expressed in terms of cylindric harmonics. Meanwhile, additional image charges are introduced to satisfy the boundary conditions at the planar membrane interfaces. In the end, we convert the electrostatic interaction problem in a complex inhomogeneous system of ion channel/membrane/water into one in a homogeneous free space embedded with discrete charges (the source charge and image charges). The accuracy of this method is then validated numerically in calculating the solvation self-energy of a point charge.

  10. Potential energy, force distribution and oscillatory motion of chloride ion inside electrically charged carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sadeghi, F.; Ansari, R.; Darvizeh, M.

    2016-06-01

    In this research, a continuum-based model is presented to explore potential energy, force distribution and oscillatory motion of ions, and in particular chloride ion, inside carbon nanotubes (CNTs) decorated by functional groups at two ends. To perform this, van der Waals (vdW) interactions between ion and nanotube are modeled by the 6-12 Lennard-Jones (LJ) potential, whereas the electrostatic interactions between ion and functional groups are modeled by the Coulomb potential and the total interactions are analytically derived by summing the vdW and electrostatic interactions. Making the assumption that carbon atoms and charge of functional groups are all uniformly distributed over the nanotube surface and the two ends of nanotube, respectively, a continuum approach is utilized to evaluate the related interactions. Based on the actual force distribution, the equation of motion is also solved numerically to arrive at the time history of displacement and velocity of inner core. With respect to the proposed formulations, comprehensive studies on the variations of potential energy and force distribution are carried out by varying functional group charge and nanotube length. Moreover, the effects of these parameters together with initial conditions on the oscillatory behavior of system are studied and discussed in detail. It is found out that chloride ion escapes more easily from negatively charged CNTs which is followed by uncharged and positively charged ones. It is further shown that the presence of functional groups leads to enhancing the operating frequency of such oscillatory systems especially when the electric charges of ion and functional groups have different signs.

  11. Ion/ion reactions of MALDI-derived peptide ions: increased sequence coverage via covalent and electrostatic modification upon charge inversion.

    PubMed

    Stutzman, John R; McLuckey, Scott A

    2012-12-18

    Atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI)-derived tryptic peptide ions have been subjected to ion/ion reactions with doubly deprotonated 4-formyl-1,3-benzenedisulfonic acid (FBDSA) in the gas-phase. The ion/ion reaction produces a negatively charged electrostatic complex composed of the peptide cation and reagent dianion, whereupon dehydration of the complex via collision-induced dissociation (CID) produces a Schiff base product anion. Collisional activation of modified lysine-terminated tryptic peptide anions is consistent with a covalent modification of unprotonated primary amines (i.e., N-terminus and ε-NH(2) of lysine). Modified arginine-terminated tryptic peptides have shown evidence of a covalent modification at the N-terminus and a noncovalent interaction with the arginine residue. The modified anions yield at least as much sequence information upon CID as the unmodified cations for the small tryptic peptides examined here and more sequence information for the large tryptic peptides. This study represents the first demonstration of gas-phase ion/ion reactions involving MALDI-derived ions. In this case, covalent and electrostatic modification charge inversion is shown to enhance MALDI tandem mass spectrometry of tryptic peptides. PMID:23078018

  12. Highly charged ions in exotic atoms research at PSI

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, D. F.; Biri, S.; Boisbourdain, V.; Demeter, M.; Borchert, G.; Egger, J. P.; Fuhrmann, H.; Gotta, D.; Gruber, A.; Hennebach, M.; Indelicato, P.; Liu, Y. W.; Manil, B.; Markushin, V. E.; Marton, H.; Nelms, N.; Rusi El Hassani, A. J.; Simons, L. M.; Stingelin, L.; Wasser, A.; Wells, A.; Zmeskal, J.

    2003-05-01

    During their de-excitation, exotic atoms formed in low pressure gases reach a state of high or even complete ionization. X-rays emitted from higher n-states of electron-free atoms have well defined energies with the error originating only from the error in the mass values of the constituent particles. They served as a basis for a new determination of the pion mass as well as for a high precision measurement of the pionic hydrogen ground state shift. The response function of the Bragg spectrometer has been determined with X-rays from completely ionized pionic carbon and with a dedicated electron cyclotron resonance ion trap (ECRIT). A further extension of the ECRIT method implemented in the experiment allows a direct calibration of exotic atom transitions as well as a precise determination of the energy of fluorescence lines.

  13. Avoided level crossings in very highly charged ions

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Scofield, J. H.; Brown, G. V.; Chen, M. H.; Hell, N.; Osterheld, A. L.; Vogel, D. A.; Wong, K. L.

    2016-05-01

    We report a systematic measurement of the (2p1/2 -13 d3/2) J =1 and (2s1/2 -13 p1/2) J =1 levels in 14 neonlike ions between Ba46 + and Pb72 + and document the effects of their avoided crossing near Z =68 . Strong mixing affects the oscillator strengths over a surprisingly wide range of atomic numbers and leads to the vanishing of one transition two atomic numbers below the crossing. The crossing voids the otherwise correct expectation that the (2p1/2 -13 d3/2) J =1 level energy is only weakly affected by quantum electrodynamics (QED). For about 10 atomic numbers surrounding the crossing, its QED contributions are anomalously large, attaining almost equality to those affecting the (2s1/2 -13 p1/2) J =1 level. As a result, the accuracy of energy level calculations appears compromised near the crossing.

  14. Effect of trapped ions on shielding of a charged spherical object in a plasma.

    PubMed

    Lampe, M; Gavrishchaka, V; Ganguli, G; Joyce, G

    2001-06-01

    Collisions have traditionally been neglected in calculating the shielding around a small spherical collector in a plasma, and the plasma flow to the collector. We show analytically that, in dusty plasmas under typical discharge conditions, ion charge-exchange collisions lead to the buildup of negative-energy trapped ions which dominate the shielding cloud in the nonlinear region near a dust grain and substantially increase the ion current to the grain, even when the mean-free path is much greater than the Debye length.

  15. Radical-Ion-Pair Spin Decoherence and the Quantum Efficiency of Photosynthetic Charge Separation

    NASA Astrophysics Data System (ADS)

    Kominis, Iannis; Dellis, A. T.

    2014-03-01

    We have pioneered the fundamental quantum dynamics of radical-ion-pair reactions, elucidating the basic spin-decoherence mechanism pertaining to these biochemical reactions. Radical-ion pair reactions appear in the avian magnetic compass, but more importantly, they participate in the cascade of electron-transfer reactions taking place in photosynthetic reaction centers. We will here present new insights on how the fundamental quantum dynamics of radical-ion pair reactions affect the quantum efficiency of charge separation in photosynthetic reaction centers.

  16. Response of a delta-doped charge-coupled device to low energy protons and nitrogen ions

    SciTech Connect

    Lepri, S.T.; Nikzad, Shouleh; Jones, T.; Blacksberg, J.; Zurbuchen, T.H.

    2006-05-15

    We present the results of a study of the response of a delta-doped charge-coupled device (CCD) exposed to ions with energies less than 10 keV. The study of ions in the solar wind, the majority having energies in the 1-5 keV range, has proven to be vital in understanding the solar atmosphere and the near Earth space environment. Delta-doped CCD technology has essentially removed the dead layer of the silicon detector. Using the delta-doped detector, we are able to detect H{sup +} and N{sup +} ions with energies ranging from 1 to 10 keV in the laboratory. This is a remarkable improvement in the low energy detection threshold over conventional solid-state detectors, such as those used in space sensors, one example being the solar wind ion composition spectrometer (SWICS) on the Advanced Composition Explorer spacecraft, which can only detect ions with energies greater than 30 keV because of the solid-state detector's minimum energy threshold. Because this threshold is much higher than the average energy of the solar wind ions, the SWICS instrument employs a bulky high voltage postacceleration stage that accelerates ions above the 30 keV detection threshold. This stage is massive, exposes the instrument to hazardous high voltages, and is therefore problematic both in terms of price and its impact on spacecraft resources. Adaptation of delta-doping technology in future space missions may be successful in reducing the need for heavy postacceleration stages allowing for miniaturization of space-borne ion detectors.

  17. Properties of acceleration sites in active regions as derived from heavy ion charge states

    NASA Astrophysics Data System (ADS)

    Kartavykh, Y.; Dröge, W.; Klecker, B.; Möbius, E.; Popecki, M.; Mason, G.; Krucker, S.

    Charge states of heavy ions in solar energetic particle SEP events are determined by both the plasma conditions in the acceleration region and propagation effects The steep increase of the ionic charge of heavy ions as observed in all 3He- and Fe-rich SEP events suggests that stripping in a dense environment in the low corona is important in all these events The observed charge states and energy spectra of iron ions are used to infer the plasma conditions in the acceleration region by modelling the observations with a combined acceleration and propagation model that includes charge stripping acceleration coulomb losses and recombination in the corona and interplanetary propagation The interplanetary propagation includes anisotropic pitch-angle scattering on magnetic irregularities as well as magnetic focusing convection and adiabatic deceleration in the expanding solar wind To accurately derive the value of the scattering mean free path of particles the intensity profiles and anisotropy data from ACE and Wind spacecraft were used The comparison of the deduced parameters of the acceleration region with coronal density profiles shows that the acceleration of these ions takes place in closed magnetic structures in the low corona

  18. Observations of solar wind ion charge exchange in the comet Halley coma

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Shelley, E. G.; Goldstein, B. E.; Goldstein, R.; Neugebauer, M.; Ip, W.-H.; Balsiger, H.; Reme, H.

    1991-01-01

    Giotto Ion Mass Spectrometer/High Energy Range Spectrometer (IMS/HERS) observations of solar wind ions show charge exchange effects and solar wind compositional changes in the coma of comet Halley. As the comet was approached, the He(++) to proton density ratio increased until about 1 hour before closest approach after which time it decreased. Abrupt increases in this ratio were also observed in the beginning and near the end of the so-called Mystery Region (8.6 - 5.5(10)(exp 5) km from the comet along the spacecraft trajectory). These abrupt increases in the density ratio were well correlated with enhanced fluxes of keV electrons as measured by the Giotto plasma electron spectrometer. The general increase and then decrease of the He(++) to proton density ratio is quantitatively consistent with a combination of the addition of protons of cometary origin to the plasma and loss of plasma through charge exchange of protons and He(++). In general agreement with the solar wind proton and He(++) observations, solar wind oxygen and carbon ions were observed to charge exchange from higher to lower charge states with decreasing distance to the comet. The more abrupt increases in the He(++) to proton and the He(++) to O(6+) density ratios in the mystery region require a change in the solar wind ion composition in this region while the correlation with energetic electrons indicates processes associated with the comet.

  19. Measurements of Charge States of Solar Energetic Ions Observed by the STEREO Instruments

    NASA Astrophysics Data System (ADS)

    Dietrich, W. F.; Tylka, A. J.

    2012-12-01

    The measurements of the Time To Maximums (TTMs) of elemental particle rates in Solar Energetic Particle events employing near Earth instruments in space affords a method by which the charge states of ions, and in particular Fe, can indirectly measured for some SEP events. For some events the TTM is observed to vary strongly as some function of energy and charge to mass ratio (Q/M). When the observed TTMs are plotted as a function of rigidity, the TTMS are seen to vary inversely as a power law over a substantial energy range. The difference between the Q/M ratio of protons and heavier ions (generally near 2) allows the establishment of the spectral index alpha, when the TTMs are plotted not as a function of rigidity R, but instead as β R** α ,where. β is v/c, and α frequently near 1/2. The loci of all the TTMs should be the same for Q>1 ions that are fully stripped, and to the degree they are not, the charge state assumed can be reduced to bring the TTMs for these species into concert with the remainder. The results are clearest for Fe. Because the method depends only on TTMs, we can explore the possibility measuring ion charge states at the STEREO spacecraft as we have done with near Earth instruments.

  20. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions

    SciTech Connect

    Yigit, Cemil; Dzubiella, Joachim; Heyda, Jan

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.

  1. Theory of Bound-Electron g Factor in Highly Charged Ions

    SciTech Connect

    Shabaev, V. M.; Glazov, D. A.; Plunien, G.; Volotka, A. V.

    2015-09-15

    The paper presents the current status of the theory of bound-electron g factor in highly charged ions. The calculations of the relativistic, quantum electrodynamics (QED), nuclear recoil, nuclear structure, and interelectronic-interaction corrections to the g factor are reviewed. Special attention is paid to tests of QED effects at strong coupling regime and determinations of the fundamental constants.

  2. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions.

    PubMed

    Yigit, Cemil; Heyda, Jan; Dzubiella, Joachim

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions. PMID:26277163

  3. Ram ion scattering caused by Space Shuttle v x B induced differential charging

    NASA Technical Reports Server (NTRS)

    Katz, I.; Davis, V. A.

    1987-01-01

    Observations of secondary, high-inclination ions streams have been reported in the literature. The authors of these previous papers attributed the source of the secondary ions to a disturbed region in the plasma about 10 m from the Space Shuttle Orbiter. A new theory has been developed which shows how v x B induced differential charging on the plasma diagnostics package (PDP) can scatter the ram ion flux. Some of these ions are reflected back to the PDP and may be the sorce of the observed ion distributions. The effect is unique to large spacecraft; it occurs only when the magnitude of the induced v x B potentials are much larger than the electron thermal energy and of the order of the ion ram energy. That the ion streams observed at large angles must have been reflected from the PDP surface is demonstrated with three-dimensional sheath and particle trajectory calculations using the low earth orbit version of the NASA Charging Analyzer Program (NASCAP/LEO).

  4. Charge exchange of low-energy ions in thin carbon foils

    NASA Technical Reports Server (NTRS)

    Buergi, Alfred; Oetliker, Michael; Bochsler, Peter; Geiss, Johannes; Coplan, Michael A.

    1990-01-01

    In order to calibrate a time-of-flight mass spectrometer which is to be flown in the solar wind, the charge exchange properties of low-energy ions in thin carbon foils have been investigated. Incident ions of He, C, N, O, Ne, and Ar with energies in the range 0.5-2 keV/nucleon have been used to measure charge-state distribution, residual energy, and angular distribution after transmission through thin (1-6 microgram/sq cm) carbon foils. Within such foils, an equilibrium between ionization and recombination of the projectile is rapidly established, and, consequently, the charge state of the emerging particle depends essentially on its residual velocity. A comparison of the charge exchange properties of Ne-22 with Ne-20 demonstrates that indeed the velocity (and not the energy) of the emerging particle determines its final charge. A comparison of properties of different elements provides an indication of an electron shell effect. Predictions for the energy loss of ions within the carbon foils made with the TRIM code are in good agreement with the experimental results presented in this paper.

  5. Interaction of 3d transition metal atoms with charged ion projectiles from Electron Nuclear Dynamics computation

    NASA Astrophysics Data System (ADS)

    Hagelberg, Frank

    2003-03-01

    Computational results on atomic scattering between charged projectiles and transition metal target atoms are presented. This work aims at obtaining detailed information about charge, spin and energy transfer processes that occur between the interacting particles. An in-depth understanding of these phenomena is expected to provide a theoretical basis for the interpretation of various types of ion beam experiments, ranging from gas phase chromatography to spectroscopic observations of fast ions in ferromagnetic media. This contribution focuses on the scattering of light projectiles ranging from He to O, that are prepared in various initial charge states, by 3d transition metal atoms. The presented computations are performed in the framework of Electron Nuclear Dynamics (END)^1 theory which incorporates the coupling between electronic and nuclear degrees of freedom without reliance on the computationally cumbersome and frequently intractable determination of potential energy surfaces. In the present application of END theory to ion - transition metal atom scattering, a supermolecule approach is utilized in conjunction with a spin-unrestricted single determinantal wave function describing the electronic system. Integral scattering, charge and spin exchange cross sections are discussed as functions of the elementary parameters of the problem, such as projectile and target atomic numbers as well as projectile charge and initial kinetic energy. ^1 E.Deumens, A.Diz, R.Longo, Y.Oehrn, Rev.Mod.Phys. 66, 917 (1994)

  6. Propagation of charge-exchange plasma produced by an ion thruster

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Brady, M. E.

    1981-01-01

    Under the proper conditions there is an end-effect of a long, cylindrical Langmuir probe which allows a significant increase in collected ion current when the probe is aligned with a flowing plasma. This effect was used to determine the charge-exchange plasma flow direction at various locations relative to the ion thruster. The ion current collected by the probe as a function of its angle with respect to the plasma flow allows determination of the plasma density and plasma flow velocity at the probe's location upstream of the ion thruster optics. The density values obtained from the ion current agreed to within a factor of two of density values obtained by typical voltage-current Langmuir probe characteristics.

  7. Wavelength measurement of n = 3 - n' = 3 transitions in highly charged tungsten ions

    SciTech Connect

    Clementson, J; Beiersdorfer, P

    2010-03-10

    3s{sub 1/2} - 3p{sub 3/2} and 3p{sub 1/2} - 3d{sub 3/2} transitions have been studied in potassium-like W{sup 55+} through neon-like W{sup 64}+ ions at the electron-beam ion trap facility in Livermore. The wavelengths of the lines have been measured in high resolution relative to well known reference lines from oxygen and nitrogen ions. Using the high-energy SuperEBIT electron-beam ion trap and an R = 44.3 m grazing-incidence soft x-ray spectrometer, the lines were observed with a cryogenic charge-coupled device camera. The wavelength data for the sodium-like and magnesium-like tungsten lines are compared with theoretical predictions for ions along the isoelectronic sequences.

  8. Uncharted Frontiers in the Spectroscopy of Highly Charged Ions

    SciTech Connect

    Beiersdorfer, P.; Brown, G.; Crespo, J.; Kim, S.-H.; Neill, P.; Utter, S.; Widmann, K.

    2000-01-08

    The development of novel techniques is critical for maintaining a state-of-the-art core competency in atomic physics and readiness for evolving programmatic needs. We have carried out a three-year effort to develop novel spectroscopic instrumentation that added new dimensions to our capabilities for measuring energy levels, radiative transition probabilities, and electron-ion excitation processes. The new capabilities created were in areas that heretofore had been inaccessible to scientific scrutiny and included high-resolution spectroscopy of hard x rays, femtosecond lifetime measurements, measurements of transition probabilities of long-lived metastable levels, polarization spectroscopy, ultra-precise determinations of energy levels, and the establishment of absolute wavelength standards in x-ray spectroscopy. Instrumentation developed during the period included a transmission-type crystal spectrometer, a flat-field EUV spectrometer, and the development and deployment of absolutely calibrated monolithic crystals. The new capabilities enabled very sensitive tests of atomic wave functions, of calculations of magnetic sublevel populations, and of fundamental theories in uncharted regimes, and provided the basis for developing new diagnostic techniques of high-density plasmas.

  9. Correlated charge-changing ion-atom collisions. Progress report, March 16, 1991--March 15, 1992

    SciTech Connect

    Tanis, J.A.

    1992-04-01

    This report summarizes the progress and accomplishments in accelerator atomic physics research supported by DOE grant DE-FG02-87ER13778 from March 16, 1991 through March 15, 1992. This work involves the experimental investigation of fundamental atomic processes in collisions of charged projectiles with neutral targets or electrons, with particular emphasis on two-electron interactions and electron correlation effects. Processes involving combinations of excitation, ionization, and charge transfer are investigated utilizing coincidence techniques in which projectiles charge-changing events are associated with x-ray emission, target recoil ions, or electron emission. New results have been obtained for studies involving (1) resonant recombination of atomic ions, (2) double ionization of helium, and (3) continuum electron emission. Experiments were conducted using accelerators at the Lawrence Berkeley Laboratory, Argonne National Laboratory, Michigan State University, Western Michigan University, and the Institute of Nuclear Research, Debrecen, Hungary. Brief summaries of work completed and work in progress are given in this report.

  10. The evolution of ion charge states in cathodic vacuum arc plasmas: a review

    SciTech Connect

    Anders, Andre

    2011-12-18

    Cathodic vacuum arc plasmas are known to contain multiply charged ions. 20 years after “Pressure Ionization: its role in metal vapour vacuum arc plasmas and ion sources” appeared in vol. 1 of Plasma Sources Science and Technology, it is a great opportunity to re-visit the issue of pressure ionization, a non-ideal plasma effect, and put it in perspective to the many other factors that influence observable charge state distributions, such as the role of the cathode material, the path in the density-temperature phase diagram, the “noise” in vacuum arc plasma as described by a fractal model approach, the effects of external magnetic fields and charge exchange collisions with neutrals. A much more complex image of the vacuum arc plasma emerges putting decades of experimentation and modeling in perspective.

  11. Spectroelectrochemical Signatures of Capacitive Charging and Ion Insertion in Doped Anatase Titania Nanocrystals.

    PubMed

    Dahlman, Clayton J; Tan, Yizheng; Marcus, Matthew A; Milliron, Delia J

    2015-07-22

    Solution-processed films of colloidal aliovalent niobium-doped anatase TiO2 nanocrystals exhibit modulation of optical transmittance in two spectral regions-near-infrared (NIR) and visible light-as they undergo progressive and reversible charging in an electrochemical cell. The Nb-TiO2 nanocrystal film supports a localized surface plasmon resonance in the NIR, which can be dynamically modulated via capacitive charging. When the nanocrystals are charged by insertion of lithium ions, inducing a well-known structural phase transition of the anatase lattice, strong modulation of visible transmittance is observed. Based on X-ray absorption near-edge spectroscopy, the conduction electrons localize only upon lithium ion insertion, thus rationalizing the two modes of optical switching observed in a single material. These multimodal electrochromic properties show promise for application in dynamic optical filters or smart windows. PMID:26154107

  12. Double Coincidence Studies of Molecular Dissociation Induced by Heavy Ion Impact.

    NASA Astrophysics Data System (ADS)

    Sampoll Ramirez, Gabriel

    Multielectron removal from an atom or molecule may be accomplished with high efficiency by the impact of a fast, highly-charged, heavy ion. When a diatomic molecule suffers the loss of electrons, it will generally dissociate into ions having considerable amounts of kinetic energy as a result of their mutual Coulomb repulsion. In the present work, experiments designed to examine the yield and kinetic energy distributions associated with different charge division pathways for the dissociation of multicharged CO, N_2 and O_2 molecular ions were performed. A beam of 96 MeV Ar ^{14+} ions was directed through a differentially pumped gas cell containing the molecules of interest into a microchannel plate detector. Dissociation products produced in ionizing collisions were accelerated out of the gas cell by an electric field into a time-of -flight (TOF) spectrometer. Upon reaching the end of the flight tube, the ions were detected by another set of microchannel plates. An acceptable binary dissociation event was one for which both dissociation-product ions were detected. The TOF of the first ion to reach the detector and the time difference between the arrival of the first ion and its partner were recorded on magnetic tape event-by-event so as to maintain their correlation. Separation of the time-difference (Delta t) distributions into sets correlated with the charge of the first ion was accomplished by off-line sorting of the event-by-event data. Transformation of the Deltat distributions into total kinetic energy distributions (TKED) required a detailed simulation of the ion trajectories in order to construct the response matrix of the spectrometer system. The average total kinetic energies were determined for all the observed dissociation channels and used to calculate the average excitation energies of the parent molecular ions. The TKED of CO^{2+} was in very good agreement with previous measurements obtained in a photoionization study using synchroton radiation. The

  13. Mass determination of megadalton-DNA electrospray ions using charge detection mass spectrometry.

    PubMed

    Schultz, J C; Hack, C A; Benner, W H

    1998-04-01

    Charge detection mass spectrometry (CD-MS) has been used to determine the mass of double-stranded, circular DNA and single-stranded, circular DNA in the range of 2500 to 8000 base pairs (1.5-5.0 MDa). Simultaneous measurement of the charge and velocity of an electrostatically accelerated ion allows a mass determination of the ion, with instrument calibration determined independently of samples. Positive ion mass spectra of electrosprayed commercial DNA samples supplied in tris(hydroxymethyl)ethylenediaminetetraacetic acid buffer, diluted in 50 vol. % acetonitrile, were obtained without cleanup of the sample. A CD mass spectrum constructed from 3000 ion measurements takes 10 min to acquire and yields the DNA molecular mass directly (mass resolution = 6). The data collected represent progress toward a more automatable alternative to sizing of DNA by gel electrophoresis. In addition to the mass spectra, CD-MS generates charge versus mass plots, which provide another means to investigate the creation and fate of large electrospray ions.

  14. Mass determination of megadalton-DNA Electrospray Ions usingCharge Detection Mass Spectrometry

    SciTech Connect

    Schultz, Jocelyn C.; Hack, Christopher; Benner, Henry W.

    1997-10-01

    Charge detection mass spectrometry (CD-MS) has been used to determine the mass of double-stranded, circular DNA and single-stranded, circular DNA in the range of 2500 to 8000 base pairs (1.5-5.0 MDa). Simultaneous measurement of the charge and velocity of an electrostatically accelerated ion allows a mass determination of the ion, with instrument calibration determined independently of samples. Positive ion mass spectra of electrosprayed commercial DNA samples supplied in tris(hydroxymethyl)ethylenediamine tetraacetic acid buffer, diluted in 50 vol. percent acetonitrile, were obtained without cleanup of the sample. ACD mass spectrum constructed from 3000 ion measurements takes 10 min to acquire and yields the DNA molecular mass directly (mass resolution = 6). The data collected represent progress toward a more automatable alternative to sizing of DNA by gel electrophoresis. In addition to the mass spectra, CD-MS generates charge versus mass plots, which provide another means to investigate the creation and fate of large electrospray ions.

  15. Monte Carlo simulation of radiation doses to human body exposed to heavy charged ion beams.

    NASA Astrophysics Data System (ADS)

    Gudowska, I.; Kopec, M.; Sobolevsky, N.

    Studies of heavy charged ion interactions with human organs are of importance for evaluation of biologically equivalent doses delivered to astronauts in long-term manned interplanetary missions and to patients undergoing radiation therapy Calculations of particle spectra energy deposition and the dose - LET distributions in tissues from primary particles and their secondaries are necessary for accurate evaluation of radiation doses to human body and the biological effects of heavy charged ions Computation methods using radiation transport codes are especially important in the prediction of radiation doses to astronauts since the dedicated experimental studies are in most cases impossible or strongly limited Calculations of the absorbed and effective doses in specific organs and tissues of human body due to irradiation by heavy charged ion beams were performed using the SHIELD-HIT 1 2 and MCNPX 3 Monte Carlo codes In these studies different ions of Z le 26 were transported through human body phantoms in the wide range of energies up to hundreds of MeV u Calculations with the MCNPX code were limited to ions of Z le 4 The mathematical anthropomorphical phantoms ADAM male and EVA female were applied in the evaluations with MCNPX whereas in the SHIELD-HIT calculations a simplified body phantom was used The track lengths differential in energy of the primary and secondary particles at different sites in the specific organs calculated by SHIELD-HIT and MCNPX are compared for proton and helium beams A careful analysis of the low- and

  16. Effect of dielectric interface on charge aggregation in the voltage-gated K+ ion channel

    PubMed Central

    Adhya, Lipika; Mapder, Tarunendu; Adhya, Samit

    2015-01-01

    Background: There is experimental evidence of many cases of stable macromolecular conformations with charged amino-acids facing lipid, an arrangement thought to be energetically unfavourable. Methods and Objectives: Employing classical electrostatics, we show that, this is not necessarily the case and studied the physical basis of the specific role of proximity of charges to the dielectric interface between two different environments. We illustrate how self and induced energies due to the dielectric medium polarization, on either side of the interface, contribute differentially to the stability of a pair of charges and hence the mutual conformation of the S3b-S4 α-helix pair of the voltage-gated K+ channel. Results and Conclusion: We show that (1) a pair of opposite charges on either side of lipid-protein interface confers significant stability; (2) hydrophobic media has an important role in holding together two similar repelling charges; (3) dielectric interface has stabilizing effect on a pair of charges, when an ion is closer to its interface than its neighboring charge; (4) in spite of the presence of dielectric interface, there is a nonexistence of any dielectric effect, when an ion is equidistant from its image and neighboring charge. We also demonstrate that, variation in dielectric media of the surrounding environment confers new mutual conformations to S3b-S4 α-helices of voltage sensor domain at zero potential, especially lipid environment on the helix side, which improved stability to the configuration by lowering the potential energy. Our results provide an answer to the long standing question of why charges face hydrophobic lipid membranes in the stable conformation of a protein. PMID:25810659

  17. Thermodynamics of Ion Pair Formations Between Charged Poly(Amino Acid)s.

    PubMed

    Petrauskas, Vytautas; Maximowitsch, Eglė; Matulis, Daumantas

    2015-09-17

    Electrostatic interactions between the positively and negatively charged amino acids in proteins play an important role in macromolecular stability, binding, and recognition. Numerous amino acids in proteins are ionizable and may exist in negatively (e.g., Glu, Asp, Cys, Tyr) or positively (e.g., Arg, Lys, His, Orn) charged form dependent on pH and their pKas. In this work, isothermal titration calorimetry was used to determine the average standard values of thermodynamic parameters (the Gibbs free energy, enthalpy, entropy, and the heat capacity) of interaction between the positively charged amino acid homopolymers (polyarginine, polylysine, and polyornithine) and the negatively charged homopolymers (polyaspartic and polyglutamic acids). These values are of potential use in the computational models of interacting proteins and other biological macromolecules. The study showed that oppositely charged poly(amino acid)s bound each other with the stoichiometry of one positive to one negative charge. Arginine bound to the negatively charged amino acids with exothermic enthalpy and higher affinity than lysine. This result also suggests that positive charges in proteins should not be considered entirely equivalent if carried by lysine or arginine. The difference in binding energy of arginine and lysine association with the negatively charged amino acids was attributed to the enthalpy of the second ionic hydrogen bond formation between the guanidine and carboxylic groups. Despite the favorable enthalpic contribution, all such ion pair formation reactions were largely entropy-driven. Consistent with previously observed ionic interactions, the positive heat capacity was always observed during the amino acid ion pair formation.

  18. Effects of the internal structure of spheroidal divalent ions on the charge density profiles of the electric double layer.

    PubMed

    Ibarra-Armenta, José Guadalupe; Martín-Molina, Alberto; Bohinc, Klemen; Quesada-Pérez, Manuel

    2012-12-14

    In this work, the effects of the internal structure of charge for ions are analyzed by means of Monte Carlo simulations within a modified primitive model of electric double layer with spheroidal ions. The simulation results are compared to those obtained from a generalized Poisson-Boltzmann theory, where the separation of the charges within the spheroidal ions is considered. The spheroidal divalent ions have finite dimensions and two identical unitary charges separated by a distance of one diameter. Two structurally equivalent but oppositely charged ionic species are considered: coions and counterions. In the simulation, the number of particles is not fixed and the grand canonical ensemble is employed to reach the thermodynamic equilibrium. Meanwhile, the variational theory is applied to the analytical density functional. The fixed separation between charges within the spheroidal ions causes the orientational ordering of the spheroidal ions (with quadrupolar charge distributions) leading to very different charge distributions than those of the regular divalent ions from the primitive model of electrolyte. The internal structure of ions could be dramatically relevant for the modelling of large molecules, which are known to posses complex charge distributions. PMID:23249020

  19. Ion impact distribution over plasma exposed nanocone arrays

    SciTech Connect

    Mehrabian, S.; Xu, S.; Qaemi, A. A.; Shokri, B.; Ostrikov, K.

    2013-03-15

    The effect of an ordered array of nanocones on a conducting substrate immersed in the plasma on the transport of the plasma ions is investigated. The real conical shape of the cones is rigorously incorporated into the model. The movement of 10{sup 5} CH{sub 3}{sup +} ions in the plasma sheath modified by the nanocone array is simulated. The ions are driven by the electric fields produced by the sheath and the nanostructures. The surface charge density and the total charge on the nanotips with different aspect ratios are computed. The ion transport simulation provides important characteristics of the displacement and velocity of the ions. The relative ion distribution along the lateral surfaces of the carbon nanotips is computed as well. It is shown that a rigorous account of the realistic nanostructure shape leads to very different distribution of the ion fluxes on the nanostructured surfaces compared to the previously reported works. The ion flux distribution is a critical factor in the nucleation process on the substrate and determines the nanostructure growth patterns.

  20. Ion permeation inside microgel particles induced by specific interactions: from charge inversion to overcharging.

    PubMed

    Moncho-Jordá, A; Adroher-Benítez, I

    2014-08-21

    In this work we have performed a theoretical study of a system formed by ionic microgels in the presence of monovalent salt with the help of Ornstein-Zernike integral equations within the hypernetted-chain (HNC) approximation. We focus in particular on analysing the role that the short-range specific interactions between the polymer fibres of the microgel and the incoming ions have on the equilibrium ion distribution inside and outside the microgel. For this purpose, a theoretical model based on the equilibrium partitioning effect is developed to determine the interaction between the microgel particle and a single ion. The results indicate that when counterions are specifically attracted to the polymer fibres of the microgel, an enhanced counterion accumulation occurs that induces the charge inversion of the microgel and a strong increase of the microgel net charge (or overcharging). In the case of coions, the specific attraction is also able to provoke the coion adsorption even though they are electrostatically repelled, and so increasing the microgel charge (true overcharging). Moreover, we show that ion adsorption onto the microgel particle is very different in swollen and shrunken states due to the competition between specific attraction and steric repulsion. In particular, ion adsorption occurs preferentially in the internal core of the particle for swollen states, whereas it is mainly concentrated in the external shell for de-swollen configurations. Finally, we observe the existence of a critical salt concentration, where the net charge of the microgels vanishes; above this inversion point the net charge of the microgels increases again, thus leading to reentrant stability of microgel suspensions.

  1. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    SciTech Connect

    Zanni, Martin T.

    1999-12-17

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  2. Charge generation by heavy ions in power MOSFETs, burnout space predictions, and dynamic SEB sensitivity

    NASA Astrophysics Data System (ADS)

    Stassinopoulos, E. G.; Brucker, G. J.; Calvel, P.; Baiget, A.; Peyrotte, C.; Gaillard, R.

    1992-12-01

    The transport, energy loss, and charge production of heavy ions in the sensitive regions of IRF 150 power MOSFETs are described. The dependence and variation of transport parameters with ion type and energy relative to the requirements for single event burnout in this part type are discussed. Test data taken with this power MOSFET are used together with analyses by means of a computer code of the ion energy loss and charge production in the device to establish criteria for burnout and parameters for space predictions. These parameters are then used in an application to predict burnout rates in a geostationary orbit for power converters operating in a dynamic mode. Comparisons of rates for different geometries in simulating SEU (single event upset) sensitive volumes are presented.

  3. Charge generation by heavy ions in power MOSFETs, burnout space predictions, and dynamic SEB sensitivity

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Brucker, G. J.; Calvel, P.; Baiget, A.; Peyrotte, C.; Gaillard, R.

    1992-01-01

    The transport, energy loss, and charge production of heavy ions in the sensitive regions of IRF 150 power MOSFETs are described. The dependence and variation of transport parameters with ion type and energy relative to the requirements for single event burnout in this part type are discussed. Test data taken with this power MOSFET are used together with analyses by means of a computer code of the ion energy loss and charge production in the device to establish criteria for burnout and parameters for space predictions. These parameters are then used in an application to predict burnout rates in a geostationary orbit for power converters operating in a dynamic mode. Comparisons of rates for different geometries in simulating SEU (single event upset) sensitive volumes are presented.

  4. Ion Compensation for Space Charge in the Helical Electron Beams of Gyrotrons

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Semenov, V. E.

    2016-06-01

    We solve analytically the problem about ion compensation for the space charge of a helical electron beam in a gyrotron operated in the long-pulse regime. Elementary processes, which take place during ionization of residual gas in the tube under typical pressures of 10-6-10-7 mm Hg, are considered. It is shown that distribution of the space charge is affected mainly by the electrons of the initial beam and slow-moving ions produced by ionization of the residual gas. Steady-state density of ions in the operating space of the gyrotron after the end of the transitional processes is found, as well as the electron density profile in the channel of electron beam transportation. The results obtained allow us to evaluate the pitch-factor variations caused by partial compensations for the potential "sagging" in the gyrotron cavity, thus being useful for analysis of starting currents, efficiency, and mode competition in high-power gyrotrons.

  5. Polarization measurement of dielectronic recombination transitions in highly charged krypton ions

    NASA Astrophysics Data System (ADS)

    Shah, Chintan; Jörg, Holger; Bernitt, Sven; Dobrodey, Stepan; Steinbrügge, René; Beilmann, Christian; Amaro, Pedro; Hu, Zhimin; Weber, Sebastian; Fritzsche, Stephan; Surzhykov, Andrey; Crespo López-Urrutia, José R.; Tashenov, Stanislav

    2015-10-01

    We report linear polarization measurements of x rays emitted due to dielectronic recombination into highly charged krypton ions. The ions in the He-like through O-like charge states were populated in an electron-beam ion trap with the electron-beam energy adjusted to recombination resonances in order to produce K α x rays. The x rays were detected with a newly developed Compton polarimeter using a beryllium scattering target and 12 silicon x-ray detector diodes sampling the azimuthal distribution of the scattered x rays. The extracted degrees of linear polarization of several dielectronic recombination transitions agree with results of relativistic distorted-wave calculations. We also demonstrate a high sensitivity of the polarization to the Breit interaction, which is remarkable for a medium-Z element like krypton. The experimental results can be used for polarization diagnostics of hot astrophysical and laboratory fusion plasmas.

  6. Cross sections for charge transfer between mercury ions and other metals

    NASA Technical Reports Server (NTRS)

    Vroom, D. A.; Rutherford, J. A.

    1977-01-01

    Cross sections for charge transfer between several ions and metals of interest to the NASA electro propulsion program have been measured. Specifically, the ions considered were Hg(+), Xe(+) and Cs(+) and the metals Mo, Fe, Al, Ti, Ta, and C. Measurements were made in the energy regime from 1 to 5,000 eV. In general, the cross sections for charge transfer were found to be less than 10 to the minus 15 power sq cm for most processes over the total energy range. Exceptions are Hg(+) in collision with Ti and Ta. The results obtained for each reaction are given in both graphical and numerical form in the text. For quick reference, the data at several ion velocities are condensed into one table given in the summary.

  7. Plastic flow induced by single ion impacts on gold

    SciTech Connect

    Birtcher, R.C.; Donnelly, S.E.

    1996-12-01

    In situ TEM was used to follow RT irradiation of thinned bulk and 62nm thick gold films with Xe ions at 50-400 keV. Energy spikes from single ion impacts give rise to surface craters and holes which exist until annihilated by subsequent ion impacts. Video recording provided details with a time resolution of 33 ms. Craters were produced on the irradiated surface at all ion energies and on the opposite surface when the ions had enough energy to traverse the specimen. Crater sizes were as large as 12nm for the higher energy irradiations. On average, about 6% of impinging ions result in craters. A single 200 keV Xe ion may produce a hole in thin gold foils. Hole formation involves the movement by plastic flow of massive amounts of material, on the order of tens of thousand Au atoms per ion impact. Individual ion impacts also result in a filling of both holes and craters as well as a thickening of the gold foil. Change in morphology during irradiation is attributed to a localized, thermal-spike induced melting, coupled with plastic flow under the influence of surface forces.

  8. Experiments with highly charged ions up to bare U{sup 92+} on the electron beam ion trap

    SciTech Connect

    Beiersdorfer, P.

    1994-07-01

    An overview is given of the current experimental effort to investigate the level structure of highly charged ions with the Livermore electron beam ion trap (EBIT) facility. The facility allows the production and study of virtually any ionization state of any element up to bare U{sup 92+}. Precision spectroscopic measurements have been performed for a range of {Delta}n = 0 and {Delta}n = 1 transitions. Examples involving 3-4 and 2-3 as well as 3-3 and 2-2 transitions in uranium ions are discussed that illustrated some of the measurement and analysis techniques employed. The measurements have allowed tests of calculations of the the quantum electrodynamical contributions to the transitions energies at the 0.4% level in a regime where (Z{alpha}) {approx} 1.

  9. Soft-X-ray spectra of highly charged Os, Bi, Th, and U ions in an electron beam ion trap

    SciTech Connect

    Trabert, E; Beiersdorfer, P; Fournier, K B; Chen, M H

    2004-12-03

    Systematic variation of the electron-beam energy in an electron-beam ion trap has been employed to produce soft-X-ray spectra of Os, Bi, Th, and U with highest charge states ranging up to Ni-like ions. Guided by relativistic atomic structure calculations, the strongest lines have been identified with {Delta}n = 0 (n = 4 to n' = 4) transitions in Rb- to Cu-like ions. The rather weak 4p-4d transitions are much less affected by QED contributions than the dominant 4s-4p transitions. Our wavelength measurements consequently provide benchmarks with and (almost) without QED. Because the radiative corrections are not very sensitive to the number of electrons in the valence shell, our data, moreover, provide benchmarks for the evaluation of electron-electron interactions.

  10. Effect of magnetic field configuration on the multiply charged ion and plume characteristics in Hall thruster plasmas

    SciTech Connect

    Kim, Holak; Lim, Youbong; Choe, Wonho Park, Sanghoo; Seon, Jongho

    2015-04-13

    Multiply charged ions and plume characteristics in Hall thruster plasmas are investigated with regard to magnetic field configuration. Differences in the plume shape and the fraction of ions with different charge states are demonstrated by the counter-current and co-current magnetic field configurations, respectively. The significantly larger number of multiply charged and higher charge state ions including Xe{sup 4+} are observed in the co-current configuration than in the counter-current configuration. The large fraction of multiply charged ions and high ion currents in this experiment may be related to the strong electron confinement, which is due to the strong magnetic mirror effect in the co-current magnetic field configuration.

  11. Scaling law for total electron-impact ionization cross sections of Li-like ions

    SciTech Connect

    Ancarani, L.U.; Hervieux, P.-A.

    2005-09-15

    Experimental total cross sections for direct electron-impact ionization of the valence electron of several Li-like ions are seen to follow a new ab initio scaling law which is inspired by a Coulomb-Born model and the frozen-core Hartree-Fock approximation. The predictive character of this scaling law should be very useful to experimentalists and can be used to complete data tables needed for plasma or astrophysical studies. A single-parameter fit of the best available experimental data, once scaled, provides us with a single formula, for moderately charged Li-like ions, which is more accurate than Lotz semiempirical formula.

  12. The impact of neutral impurity concentration on charge drift mobility

    NASA Astrophysics Data System (ADS)

    Mei, Hao; Wang, Guojian; Mei, Dongming; Yang, Gang; Guan, Yutong

    High-purity germanium crystals are being grown using the Czochralski technique at the University of South Dakota. The carrier concentration, mobility and resistivity are measured by Hall Effect system. Many factors contribute to the overall mobility. We investigated the impact of neutral impurity concentration on charge drift mobility. Several samples with measured mobility lager than 35000 cm2/Vs from the grown crystals were used for this investigation. With the measured mobility and the ionized impurity concentration, we were able to calculate the neutral impurity concentration by the Matthiessen's rule. The correlations between the neutral impurity concentrations with the radius of the crystals were studied. We report that the concentration of neutral impurity constrains charge draft mobility for high-purity germanium crystals and the non-uniform distribution of neutral impurity could result in an anisotropy of draft time distribution in a given germanium detector. This work is supported by DOE Grant DE-FG02-10ER46709 and the state of South Dakota.

  13. Near resonance charge exchange in ion-atom collisions of lithium isotopes.

    PubMed

    Zhang, Peng; Bodo, Enrico; Dalgarno, Alexander

    2009-12-31

    Collisions of ions and atoms of (6)Li and (7)Li are explored theoretically over a wide range of energy from 10(-14) to 1 eV. Accurate ab initio calculations are carried out of the Born-Oppenheimer potentials and the nonadiabatic couplings that are responsible for the near resonance charge exchange. Scattering studies show that the calculated charge exchange cross section follows Wigner's law for inelastic processes for energies below 10(-10) eV and that the zero temperature rate constant for it is 2.1 x 10(-9) cm(3) s(-1). At collision energies much larger than the isotope shift of the ionization potentials of the atoms, we show that the near resonance charge exchange process is equivalent to the resonance charge exchange with cross sections having a logarithmic dependence on energy. A comparison with the Langevin model at intermediate energies is also presented.

  14. Charge stripping of U238 ion beam by helium gas stripper

    NASA Astrophysics Data System (ADS)

    Imao, H.; Okuno, H.; Kuboki, H.; Yokouchi, S.; Fukunishi, N.; Kamigaito, O.; Hasebe, H.; Watanabe, T.; Watanabe, Y.; Kase, M.; Yano, Y.

    2012-12-01

    Development of a nondestructive, efficient electric-charge-stripping method is a key requirement for next-generation high-intensity heavy-ion accelerators such as the RIKEN Radioactive-Isotope Beam Factory. A charge stripper employing a low-Z gas is an important candidate applicable to high-intensity uranium beams for replacing carbon-foil strippers. In this study, a high-beam-transmission charge-stripping system employing helium gas for U238 beams injected at 10.8MeV/u was developed and demonstrated for the first time. The charge-state evolution measured using helium in a thickness range of 0.24-1.83mg/cm2 is compared with theoretical predictions. Energy attenuation and energy spread due to the helium stripper are also investigated.

  15. Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL

    SciTech Connect

    Delahaye, P.; Jardin, P.; Maunoury, L.; Traykov, E.; Varenne, F.; Angot, J.; Lamy, T.; Sortais, P.; Thuillier, T.; Ban, G.; Celona, L.; Lunney, D.; Choinski, J.; Gmaj, P.; Jakubowski, A.; Steckiewicz, O.; Kalvas, T.; and others

    2012-02-15

    As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R and D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the guidelines of this R and D.

  16. Fragmentation of positively-charged biological ions activated with a beam of high-energy cations.

    PubMed

    Chingin, Konstantin; Makarov, Alexander; Denisov, Eduard; Rebrov, Oleksii; Zubarev, Roman A

    2014-01-01

    First results are reported on the fragmentation of multiply protonated polypeptide ions produced in electrospray ionization mass spectrometry (ESI-MS) with a beam of high-energy cations as a source of activation. The ion beam is generated with a microwave plasma gun installed on a benchtop Q Exactive mass spectrometer. Precursor polypeptide ions are activated when trapped inside the collision cell of the instrument (HCD cell), and product species are detected in the Orbitrap analyzer. Upon exposure to the beam of air plasma cations (∼100 μA, 5 s), model precursor species such as multiply protonated angiotensin I and ubiquitin dissociated across a variety of pathways. Those pathways include the cleavages of C-CO, C-N as well as N-Cα backbone bonds, accordingly manifested as b/y, a, and c/z fragment ion series in tandem mass spectra. The fragmentation pattern observed includes characteristic fragments of collision-induced dissociation (CID) (b/y/a fragments) as well as electron capture/transfer dissociation (ECD, ETD) (c/z fragments), suggesting substantial contribution of both vibrational and electronic excitation in our experiments. Besides backbone cleavages, notable amounts of nondissociated precursor species were observed with reduced net charge, formed via electron or proton transfer between the colliding partners. Peaks corresponding to increased charge states of the precursor ions were also detected, which is the major distinctive feature of ion beam activation.

  17. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS.

    PubMed

    Lu, W; Qian, C; Sun, L T; Zhang, X Z; Fang, X; Guo, J W; Yang, Y; Feng, Y C; Ma, B H; Xiong, B; Ruan, L; Zhao, H W; Zhan, W L; Xie, D

    2016-02-01

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O(7+), 620 eμA of Ar(11+), 430 eμA of Ar(12+), 430 eμA of Xe(20+), and so on. The comparison will be discussed in the paper. PMID:26931956

  18. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS

    NASA Astrophysics Data System (ADS)

    Lu, W.; Qian, C.; Sun, L. T.; Zhang, X. Z.; Fang, X.; Guo, J. W.; Yang, Y.; Feng, Y. C.; Ma, B. H.; Xiong, B.; Ruan, L.; Zhao, H. W.; Zhan, W. L.; Xie, D.

    2016-02-01

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O7+, 620 eμA of Ar11+, 430 eμA of Ar12+, 430 eμA of Xe20+, and so on. The comparison will be discussed in the paper.

  19. Investigation of ion beam space charge compensation with a 4-grid analyzer

    NASA Astrophysics Data System (ADS)

    Ullmann, C.; Adonin, A.; Berezov, R.; Chauvin, N.; Delferrière, O.; Fils, J.; Hollinger, R.; Kester, O.; Senée, F.; Tuske, O.

    2016-02-01

    Experiments to investigate the space charge compensation of pulsed high-current heavy ion beams are performed at the GSI ion source text benches with a 4-grid analyzer provided by CEA/Saclay. The technical design of the 4-grid analyzer is revised to verify its functionality for measurements at pulsed high-current heavy ion beams. The experimental investigation of space charge compensation processes is needed to increase the performance and quality of current and future accelerator facilities. Measurements are performed directly downstream a triode extraction system mounted to a multi-cusp ion source at a high-current test bench as well as downstream the post-acceleration system of the high-current test injector (HOSTI) with ion energies up to 120 keV/u for helium and argon. At HOSTI, a cold or hot reflex discharge ion source is used to change the conditions for the measurements. The measurements were performed with helium, argon, and xenon and are presented. Results from measurements with single aperture extraction systems are shown.

  20. Determination of plasma-ion velocity distribution via charge-exchange recombination spectroscopy

    NASA Astrophysics Data System (ADS)

    Fonck, R. J.; Darrow, D. S.; Jaehnig, K. P.

    1984-06-01

    Spectroscopy of line radiation from plasma impurity ions excited by charge-exchange recombination reactions with energetic neutral-beam atoms is rapidly becoming recognized as a powerful diagnostic for magnetically confined tokamak plasmas. Ion temperature, bulk plasma motion, impurity transport, and more exotic phenomena such as fast alpha-particle distributions can all be measured with this technique. In particular, it offers the capability of obtaining space- and time-resolved ion temperature and toroidal plasma rotation profiles with relatively simple optical systems. Cascade-corrected excitation rate coefficients for use in both fully stripped impurity density studies and ion-temperature measurements have been calculated for the principal Δn=1 transitions of He+, C5+, and O7+ with neutral-beam energies of 5-100 keV/amu. Line intensities and profiles can be affected by atomic fine structure, l-mixing collisions, motional Stark effects, and product ions created in the neutral-beam region which drift into the viewing sightline. General estimates of the importance of these effects for the transitions of interest are provided, along with specific examples calculated for the PDX (Poloidal Divertor Experiment) and TFTR (Tokamak Fusion Test Reactor) tokamaks. A fiber optically coupled spectrometer system has been used on PDX to measure visible He+ radiation excited by charge exchange to illustrate some of these points. Central ion temperatures up to 2.4 keV and toroidal rotation speeds up to 1.5×107 cm/s were observed.

  1. Charge exchange spectroscopy system calibration for ion temperature measurement in KSTARa)

    NASA Astrophysics Data System (ADS)

    Ko, Won-Ha; Lee, Hyungho; Seo, Dongcheol; Kwon, Myeun

    2010-10-01

    The charge exchange spectroscopy (CES) system including collection assemblies, lens design, and cassettes for the KSTAR experiment was installed to obtain profiles of the ion temperature and the toroidal rotation velocity from charge exchange emission between plasma ions and beam neutrals near the plasma axis by using a modulated neutral beam and a background system. We can measure the charge exchange spectra of an impurity line such as the 529 nm line of carbon VI to get ion temperature and rotation profiles in KSTAR. The CES and background systems will have absolute intensity and spectral calibrations using a calibrated source and various spectral lamps. The calibration was done inside the tokamak after all CES systems are installed and the optical systems are slid into the cassettes. This requires that the diagnostic systems are installed near the vacuum vessel inside the cryostat maintaining the superconducting state of the superconducting coils. Repeated spectral calibrations of the spectrometer and charge coupled device for CES will be made in the diagnostic room during the experimental campaign. We show a detailed description of the KSTAR CES system, how to calibrate, and the results of calibration.

  2. Heavy coronal ions in the heliosphere. I. Global distribution of charge-states of C, N, O, Mg, Si, and S

    NASA Astrophysics Data System (ADS)

    Grzedzielski, S.; Wachowicz, M. E.; Bzowski, M.; Izmodenov, V.

    2010-03-01

    Aims: Our aim is to investigate and study the de-charging of the elements C, N, O, Mg, Si and S-ions, and assess the fluxes of the resulting ENA in the heliosphere. Methods: The model treats the heavy ions as test particles convected by (and in a particular case also diffusing through) a hydrodynamically calculated background plasma flow from 1 AU to the termination shock (TS), the heliosheath (HS) and finally the heliospheric tail (HT). The ions undergo radiative and dielectronic recombinations, charge exchanges, photo- and electron impact ionizations with plasma particles, interstellar neutral atoms (calculated in a Monte-Carlo model) and solar photons. Results: Highly-charged heavy coronal ions flowing with the solar wind undergo successive de-ionizations, mainly in the heliosheath, which leads to charge-states much lower than in the supersonic solar wind. If Coulomb scattering is the main ion energy-loss mechanism, the end product of these deionizations are fluxes of ENA of ˜ 1 keV/nucleon originating in the upwind heliosheath that for C, Mg, Si and S may constitute sources of pickup ions (PUI), significantly exceeding the interstellar supply. Conclusions: Discussed processes result in (i) distinct difference of the ion charge q in the supersonic solar wind (approximately q≥+Z/2, Z = atomic number) compared to that in the HS (approximately 0 ≤ q ≤ +Z/2)); (ii) probable concentration of singly ionized atoms (q = +1) in the heliosheath towards the heliopause (HP) and in the HT; (iii) possible significant production of ENA in the HS offering natural explanation for production of PUI, and - after acceleration at the TS - anomalous cosmic rays (ACR) of species (like C, Mg, Si, S) unable to enter the heliospheric cavity from outside because of their total ionization in the local interstellar medium. Figures 6 to 16 are only available in electronic form at http://www.aanda.org

  3. Reliable operation of the Brookhaven EBIS for highly charged ion production for RHIC and NSRL

    SciTech Connect

    Beebe, E. Alessi, J. Binello, S. Kanesue, T. McCafferty, D. Morris, J. Okamura, M. Pikin, A. Ritter, J. Schoepfer, R.

    2015-01-09

    An Electron Beam Ion Source for the Relativistic Heavy Ion Collider (RHIC EBIS) was commissioned at Brookhaven in September 2010 and since then it routinely supplies ions for RHIC and NASA Space Radiation Laboratory (NSRL) as the main source of highly charged ions from Helium to Uranium. Using three external primary ion sources for 1+ injection into the EBIS and an electrostatic injection beam line, ion species at the EBIS exit can be switched in 0.2 s. A total of 16 different ion species have been produced to date. The length and the capacity of the ion trap have been increased by 20% by extending the trap by two more drift tubes, compared with the original design. The fraction of Au{sup 32+} in the EBIS Au spectrum is approximately 12% for 70-80% electron beam neutralization and 8 pulses operation in a 5 Hertz train and 4-5 s super cycle. For single pulse per super cycle operation and 25% electron beam neutralization, the EBIS achieves the theoretical Au{sup 32+} fractional output of 18%. Long term stability has been very good with availability of the beam from RHIC EBIS during 2012 and 2014 RHIC runs approximately 99.8%.

  4. Atmospheric ions, boreal forests and impacts on climate

    NASA Astrophysics Data System (ADS)

    Manninen, H. E.; Nieminen, T.; Franchin, A.; Järvinen, E.; Kontkanen, J.; Hirsikko, A.; Hõrrak, U.; Mirme, A.; Tammet, H.; Kerminen, V.-M.; Petäjä, T.; Kulmala, M.

    2012-04-01

    Aerosol particles play an important role in the Earth's atmosphere and in the climate system: They scatter and absorb solar radiation, facilitate chemical processes, and serve as seeds for cloud formation. The aerosol particles have direct cooling and warming effects on climate (IPCC, 2007). Secondary new particle formation (NPF) is a globally important source of aerosol particles (Kulmala and Kerminen, 2008). Currently, the mechanisms of particle formation and the vapors participating in this process are, however, not truly understood. Several formation and growth mechanisms have been proposed for the very first steps of the process: homogeneous, heterogeneous, ion-induced and kinetic nucleation and activation type cluster growth. Small ions are part of the atmospheric aerosol spectrum, and in atmospheric sciences study of ion-aerosol interactions is essential. Small ions are small molecular clusters carrying a net electric charge. They are produced by ionisation of molecules in the air. Typically the small ion concentrations vary in the range of 100-2000 cm-3 in both polarities (Hirsikko et al., 2011). Ion-induced NPF is limited by the ion production rate, which typically is around 10 ion pairs cm-3s-1 in the boundary layer over the ground. The ion production rate has strong spatial and temporal dependence. The ionisation mechanisms change with altitude: radon and gamma radiation from the ground and galactic cosmic rays dominate close to the Earth's surface, while higher in the free troposphere cosmic rays become the main driving factor. In order to fully explain atmospheric NPF and subsequent growth, we need to measure directly the very initial steps of the formation processes. Air ion spectrometers measure the mobility distributions of charged aerosol particles in the mobility diameter range of 0.8-42 nm (Mirme et al., 2007; Tammet et al., 2011). Neutral cluster and air ion spectrometers measure additionally the mobility distribution of neutral particles larger

  5. Specific ion effects induced by mono-valent salts in like charged aggregates in water.

    PubMed

    Huang, Ningdong; Tao, Jiaojiao; Liu, Jun; Wei, Shenghui; Li, Liangbin; Wu, Ziyu

    2014-06-28

    While salt mediated association between similarly charged poly-electrolytes occurs in a broad range of biological and colloidal systems, the effects of mono-valent salts remains little known experimentally. In this communication we systematically study influences of assorted mono-valent salts on structures of and interactions in two dimensional ordered bundles of charged fibrils assembled in water using Small Angle X-ray Scattering (SAXS). By quantitatively analyzing the scattering peak features, we discern two competing effects with opposite influences due to partitioning of salts in the aqueous complex. While electrostatic effects from salts residing between the fibrils suppress attraction between fibrils and expand the bundles, it is compensated by external osmotic pressure from peripheral salts in the aqueous media. The balance between the two effects varies for different salts and gives rise to ion-specific equilibrium behavior as well as structure of ordered bundles in salty water. The specific ions effects in like charged aggregates can be attributed to preferential distribution of ions inside or outside the bundles, correlated to the ranking of ions in Hofmeister series for macromolecules. Unlike conventional studies on Hofmeister effects by thermodynamic measurements relying on modeling for data interpretation, our study is based directly on structural analysis and is model-insensitive. PMID:24828119

  6. Charge dependent condensation of macro-ions at air-water interfaces

    NASA Astrophysics Data System (ADS)

    Bera, Mrinal; Antonio, Mark

    2015-03-01

    Ordering of ions at and near air-water interfaces is a century old problem for researchers and has implications on a host of physical, chemical and biological processes. The dynamic nature of water surface and the surface fluctuations created by thermally excited capillary waves have always limited measurement of near surface ionic-distributions. We demonstrate that this limitation can be overcome by using macro-ions of sizes larger than the capillary wave roughness ~3Å. Our attempts to measure distributions of inorganic macro-ions in the form of Keggin heteropolyanions (HPAs) of sizes ~10Å have unraveled novel charge-dependent condensation of macro-ions beneath air-water interfaces. Our results demonstrate that HPAs with -3 charges condense readily beneath air-water interfaces. This is in contrast to the absence of surface preference for HPAs with -4 charges. The similarity of HPA-HPA separations near air-water interfaces and in bulk crystal structures suggests the presence of the planar Zundel ions (H5O2+), which interact with HPAs and the water surface to facilitate the charge dependent condensation beneath the air-water interfaces.This work and the use of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility at Argonne National Laboratory, is based upon work supported by the U.S. DOE, Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Biosciences and Geosciences, under contract No DE-AC02-06CH11357.

  7. Lysozyme Net Charge and Ion Binding in Concentrated Aqueous Electrolyte Solutions

    SciTech Connect

    Kuehner, Daniel E.; Engmann, Jan; Fergg, Florian; Wernick, Meredith; Blanch, Harvey W.; Prausnitz, John M.

    1999-02-01

    Hydrogen-ion titrations were conducted for hen-egg-white lysozyme in solutions of potassium chloride, over the range of pH 2.5 - 11.5 and for ionic strengths to 2. 0 M. The dependence of lysozyme's net proton charge, zP' on pH and ionic-strength in potassium-chloride solution is measured. From the ionic-strength dependence of zP' interactions of lysozynie with potassium and chloride ions are calculated using the molecular-thennodynamic theory of Fraaije and Lyklema 1. Lysozyme interacts preferentially with up to 12 chloride ions at pH 2.5. The observed dependence of ion-protein interactions on pH and ionic strength is explained in terms of electricdouble-layer theory. New experimental pKa data are reported for eleven ammo acids in potassium-chloride solutions of ionic strength to 3.0 M.

  8. Lysozyme net charge and ion binding in concentrated aqueous electrolyte solutions

    SciTech Connect

    Kuehner, Daniel E.; Engmann, Jan; Fergg, Florian; Wernick, Meredith; Blanch, Harvey W.; Prausnitz, John M.

    1999-02-01

    Hydrogen-ion titrations were conducted for hen-egg-white lysozyme in solutions of potassium chloride over the range pH 2.5--11.5 and for ionic strengths to 2.0 M. The dependence of lysozyme`s net proton charge, z{sub p}, on pH and ionic strength in potassium chloride solution is measured. From the ionic-strength dependence of z{sub p}, interactions of lysozyme with potassium and chloride ions are calculated using the molecular-thermodynamic theory of Fraaije and Lyklema. Lysozyme interacts preferentially with up to 12 chloride ions at pH 2.5. The observed dependence of ion-protein interactions on pH and ionic strength is explained in terms of electric-double-layer theory. New experimental pK{sub a} data are reported for 11 amino acids in potassium chloride solutions of ionic strength to 3.0 M.

  9. Inference of the ring current ion composition by means of charge exchange decay

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Hoffman, R. A.; Bewtra, N. K.

    1981-01-01

    The analysis of data from the Explorer 45 (S3-A) electrostatic analyzer in the energy range 5-30 keV has provided some new results on the ring current ion composition. It has been well established that the storm time ring current has a decay time of several days, during which the particle fluxes decrease nearly monotonically. By analyzing the measured ion fluxes during the several day storm recovery period and assuming that beside hydrogen other ions were present and that the decays were exponential in nature, three separate lifetimes for the ions were established. These fitted decay lifetimes are in excellent agreement with the expected charge exchange decay lifetimes for H(+), O(+) and He(+) in the energy and L value range of the data.

  10. Charge-exchange recombination spectroscopy of the plasma ion temperature at the T-10 tokamak

    SciTech Connect

    Krupin, V. A.; Tugarinov, S. N.; Barsukov, A. G.; Dnestrovskij, A. Yu.; Klyuchnikov, L. A.; Korobov, K. V.; Krasnyanskii, S. A.; Naumenko, N. N.; Nemets, A. R.; Sushkov, A. V.; Tilinin, G. N.

    2013-08-15

    Charge-exchange recombination spectroscopy (CXRS) based on a diagnostic neutral beam has been developed at the T-10 tokamak. The diagnostics allows one to measure the ion temperature profile in the cross section of the plasma column. In T-10 experiments, the measurement technique was adjusted and the elements of the CXRS diagnostics for ITER were tested. The used spectroscopic equipment makes it possible to reliably determine the ion temperature from the Doppler broadening of impurity lines (helium, carbon), as well as of the spectral lines of the working gas. The profiles of the plasma ion temperature in deuterium and helium discharges were measured at different plasma currents and densities, including with the use of active Doppler measurements of lines of different elements. The validity and reliability of ion temperature measurements performed by means of the developed CXRS diagnostics are analyzed.

  11. EBIT spectroscopy of highly charged heavy ions relevant to hot plasmas

    SciTech Connect

    Nakamura, Nobuyuki; Ding Xiaobin; Dong Chenzhong; Hara, Hirohisa; Watanabe, Tetsuya; Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A.; Koike, Fumihiro; Nakano, Tomohide; Ohashi, Hayato; Watanabe, Hirofumi; Yamamoto, Norimasa

    2013-07-11

    We present spectra of highly charged iron, gadolinium, and tungsten ions obtained with electron beam ion traps. Spectroscopic studies of these ions are important to diagnose and control hot plasmas in several areas. For iron ions, the electron density dependence of the line intensity ratio in extreme ultraviolet spectra is investigated for testing the model calculation used in solar corona diagnostics. Soft x-ray spectra of gadolinium are studied to obtain atomic data required in light source development for future lithography. Tungsten is considered to be the main impurity in the ITER plasma, and thus visible and soft x-ray spectra of tungsten have been observed to explore the emission lines useful for the spectroscopic diagnostics of the ITER plasma.

  12. 16th international conference on the physics of highly charged ions

    NASA Astrophysics Data System (ADS)

    Fritzsche, Stephan; Stöhlker, Thomas; Surzhykov, Andrey

    2013-09-01

    This volume contains the proceedings of the 16th International Conference on the Physics of Highly Charged Ions (HCI 2012) held at the Ruprecht-Karls University in Heidelberg, Germany, 2-7 September 2012 (figure 1). This conference has been part of a biannual conference series that was started in Stockholm in 1982 and, since then, has been organized at various places around the world, with recent venues in Belfast (UK, 2006), Tokyo (Japan, 2008) and Shanghai (China, 2010). The physics of highly charged ions (HCI) is a rapidly developing and attractive field of research with impact upon many other research disciplines. Apart from fundamental studies on the structure and dynamics of matter in extreme fields, or the search for physics beyond the standard model, detailed knowledge about the properties and behavior of HCI is crucial for other areas, from astro- and solar physics to hot plasma and fusion research to extreme ultra-violet and ion lithography, or even to medical research, to name just a few. In fusion research, for example, of whether tokamak, stellarator or confinement fusion facilities, most models and diagnostics deeply rely on the understanding of HCI and the (theoretical) prediction of accurate atomic data for these systems. In life science, moreover, ion therapy or the laser acceleration of ions and electrons may help save and improve the quality of life in the future. Many of these and further topics are addressed in these proceedings. After 30 years, the HCI conference series, and especially the meeting in Heidelberg, is appreciated much as a key forum for bringing together senior experts with students, young researchers and scientists from related disciplines who make use and give back impact upon the research with HCI. More than 250 scientists from 23 countries participated in HCI 2012 and presented the current status of the field. About one third of them were post-graduate students, showing that the field attracts many young and talented

  13. Determination of Effective Stability Constants of Ion-Carrier Complexes in Ion Selective Nanospheres with Charged Solvatochromic Dyes.

    PubMed

    Xie, Xiaojiang; Bakker, Eric

    2015-11-17

    Ionophores are widely used ion carriers in ion selective sensors. The effective stability constant (β) is a key physical parameter providing valuable guidelines to the design of ionophores and carrier-based ion selective sensors. The β value of ion-carrier complex in plasticized poly(vinyl chloride) (PVC) membranes and solutions have been determined in the past by various techniques, but most of them are difficult to implement at the nanoscale owing to the ultrasmall sample volume. A new methodology based on charged solvatochromic dyes is introduced here for the first time to determine β values directly within ion selective nanospheres. Four ionophores with different selectivities toward Na(+), K(+), Ca(2+), and H(+), respectively, are successfully characterized in nanospheres composed of triblock copolymer Pluronic F-127 and bis(2-ethylhexyl) sebacate. The values determined in the nanospheres are smaller compared with those in plasticized PVC membranes, indicating a more polar nanosphere microenvironment and possible uneven distribution of the sensing components in the interfacial region. PMID:26502342

  14. How far can ion trap miniaturization go? Parameter scaling and space-charge limits for very small cylindrical ion traps.

    PubMed

    Tian, Yuan; Higgs, Jessica; Li, Ailin; Barney, Brandon; Austin, Daniel E

    2014-03-01

    A broad effort is underway to make radiofrequency (RF) ion trap mass spectrometers small enough for portable chemical analysis. A variety of trap geometries and fabrication approaches are under development from several research groups. A common issue is the reduced trapping capacity in smaller traps, with the associated reduction in sensitivity. This article explores the key variables that scale with trap size including RF voltage, frequency, electrical capacitance, power and pseudopotential well depth. High-field electric breakdown constrains the maximum RF voltages used in smaller ion traps. Simulations show the effects of space charge and the limits of trapping capacity as a function of trap dimensions for cylindrical ion traps down to the micrometer level. RF amplitudes that scale as the 1/3, 1/2 and 2/3 power of trap radius, r0, were studied. At a fixed level of performance, the number of analyzable ions scales as r0(n), with n ranging from 1.55 to 1.75 depending on the choice of voltage scaling. The implications for miniaturized ion trap mass spectrometry are discussed. PMID:24619549

  15. Fragmentation of amino acids induced by collisions with low-energy highly charged ions

    NASA Astrophysics Data System (ADS)

    Piekarski, D. G.; Maclot, S.; Domaracka, A.; Adoui, L.; Alcamí, M.; Rousseau, P.; Díaz-Tendero, S.; Huber, B. A.; Martín, F.

    2014-04-01

    Fragmentation of amino acids NH2-(CH2)n-COOH (n=1 glycine; n=2 β-alanine and n=3 γ-aminobutyric acid GABA) following collisions with slow highly charged ions has been studied in the gas phase by a combined experimental and theoretical approach. In the experiments, a multi-coincidence detection method was used to deduce the charge state of the molecules before fragmentation. Quantum chemistry calculations have been carried out in the basis of the density functional theory and ab initio molecular dynamics. The combination of both methodologies is essential to unambiguously unravel the different fragmentation pathways.

  16. Effect of charge imbalance parameter on LEKW in ion-implanted quantum semiconductor plasmas

    SciTech Connect

    Chaudhary, Sandhya; Yadav, Nishchhal; Ghosh, S.

    2015-07-31

    In this study we present an analytical investigation on the propagation characteristics of electro-kinetic wave modified through quantum correction term and charge imbalance parameter using quantum hydrodynamic model for an ion-implanted semiconductor plasma. The dispersion relation has been analyzed in two distinct velocity regimes. We found that as the number of negative charges resides on the colloids increases, their role become increasing effective. The present investigation is important for understanding of wave and instability phenomena and can be put to various interesting applications.

  17. Charge-state dependence of fast heavy-ion-induced desorption yields described in a thermal model

    SciTech Connect

    Nieschler, E.; Nees, B.; Voit, H.

    1988-11-01

    Yields for secondary ions desorbed from valine, tetrabutylammonium tetraphenylborate, and CsI samples by 13- and 30-MeV /sup 16/O ions have been measured as a function of the primary-ion charge state. The experimental data can be reproduced in terms of a simple thermal model.

  18. Implicit Water Simulations of Non-Equilibrium Charge Transport in Ion Channels

    NASA Astrophysics Data System (ADS)

    Ravaioli, U.; van der Straaten, T. A.; Kathawala, G.

    Ion channels are natural nano-channels found in the membranes of all living cells, which exhibit a broad range of specific device-like functions to help regulate cell physiology. The study of charge transport in ion channels is imperative to understand how charge regulation is accomplished at the molecular level if one is to develop nanoscale artificial systems that mimic biological function and detection. Although Molecular Dynamics is the most popular approach to simulate ion channel behavior, the computational cost of representing all water molecules and ions in the system is prohibitive to study the timescales required to resolve ionic current and lead to structure design. A hierarchy of models of decreasing complexity is needed to address simulation of different time and space scales, similar to the set of models developed to study transport in semiconductors. This paper discusses the application of Monte Carlo and Drift-diffusion methods to simulate transport in ion channels, using the ompF porin channel as a prototype.

  19. Determination of plasma ion velocity distribution via charge-exchange recombination spectroscopy

    SciTech Connect

    Fonck, R.J.; Darrow, D.S.; Jaehnig, K.P.

    1983-12-01

    Spectroscopy of line radiation from plasma impurity ions excited by charge-exchange recombination reactions with energetic neutral beam atoms is rapidly becoming recognized as a powerful technique for measuring ion temperature, bulk plasma motion, impurity transport, and more exotic phenomena such as fast alpha particle distributions. In particular, this diagnostic offers the capability of obtaining space- and time-resolved ion temperature and toroidal plasma rotation profiles with relatively simple optical systems. Cascade-corrected excitation rate coefficients for use in both fully stripped impurity density studies and ion temperature measurements have been calculated to the principal ..delta..n = 1 transitions of He+, C/sup 5 +/, and O/sup 7 +/ with neutral beam energies of 5 to 100 keV/amu. A fiber optically coupled spectrometer system has been used on PDX to measure visible He/sup +/ radiation excited by charge exchange. Central ion temperatures up to 2.4 keV and toroidal rotation speeds up to 1.5 x 10/sup 7/ cm/s were observed in diverted discharges with P/sub INJ/ less than or equal to 3.0 MW.

  20. A photodiode-based neutral particle bolometer for characterizing charge-exchanged fast-ion behavior

    SciTech Connect

    Clary, R.; Smirnov, A.; Dettrick, S.; Knapp, K.; Korepanov, S.; Ruskov, E.; Heidbrink, W. W.; Zhu, Y.

    2012-10-15

    A neutral particle bolometer (NPB) has been designed and implemented on Tri Alpha Energy's C-2 device in order to spatially and temporally resolve the charge-exchange losses of fast-ion populations originating from neutral beam injection into field-reversed configuration plasmas. This instrument employs a silicon photodiode as the detection device with an integrated tungsten filter coating to reduce sensitivity to light radiation. Here we discuss the technical aspects and calibration of the NPB, and report typical NPB measurement results of wall recycling effects on fast-ion losses.