Sample records for charged particle sputtering

  1. Electrostatic particle trap for ion beam sputter deposition

    DOEpatents

    Vernon, Stephen P.; Burkhart, Scott C.

    2002-01-01

    A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.

  2. Proceeding of the 18th Intl. Workshop on Inelastic Ion-Surface Collisions (IISC-18)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinhold, Carlos O; Krstic, Predrag S; Meyer, Fred W

    2011-01-01

    The main topics of this proceedings were: (1) Energy loss of particles at surfaces; (2) Scattering of atoms, ions, molecules and clusters; (3) Charge exchange between particles and surfaces; (4) Ion induced desorption, electronic and kinetic sputtering; (5) Defect formation, surface modification and nanostructuring; (6) Electron, photon and secondary ion emission due to particle impact on surfaces; (7) Sputtering, fragmentation, cluster and ion formation in SIMS and SNMS; (8) Cluster/molecular and highly charged ion beams; and (9) Laser induced desorption.

  3. Plasma particle simulation of electrostatic ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Keefer, Dennis; Ruyten, Wilhelmus

    1990-01-01

    Charge exchange collisons between beam ions and neutral propellant gas can result in erosion of the accelerator grid surfaces of an ion engine. A particle in cell (PIC) is developed along with a Monte Carlo method to simulate the ion dynamics and charge exchange processes in the grid region of an ion thruster. The simulation is two-dimensional axisymmetric and uses three velocity components (2d3v) to investigate the influence of charge exchange collisions on the ion sputtering of the accelerator grid surfaces. An example calculation has been performed for an ion thruster operated on xenon propellant. The simulation shows that the greatest sputtering occurs on the downstream surface of the grid, but some sputtering can also occur on the upstream surface as well as on the interior of the grid aperture.

  4. Sputtering of sodium and potassium from nepheline: Secondary ion yields and velocity spectra

    NASA Astrophysics Data System (ADS)

    Martinez, R.; Langlinay, Th.; Ponciano, C. R.; da Silveira, E. F.; Palumbo, M. E.; Strazzulla, G.; Brucato, J. R.; Hijazi, H.; Agnihotri, A. N.; Boduch, P.; Cassimi, A.; Domaracka, A.; Ropars, F.; Rothard, H.

    2017-09-01

    Silicates are the dominant surface material of many Solar System objects, which are exposed to ion bombardment by solar wind ions and cosmic rays. Induced physico-chemical processes include sputtering which can contribute to the formation of an exosphere. We have measured sputtering yields and velocity spectra of secondary ions ejected from nepheline, an aluminosilicate thought to be a good analogue for Mercury's surface, as a laboratory approach to understand the evolution of silicate surfaces and the presence of Na and K vapor in the exosphere. Experiments were performed with highly charged ion beams (keV/u-MeV/u) delivered by GANIL using an imaging XY-TOF-SIMS device under UHV conditions. The fluence dependence of sputtering yields gives information about the evolution of surface stoichiometry during irradiation. From the energy distributions N(E) of sputtered particles, the fraction of particles which could escape from the gravitational field of Mercury, and of those falling back and possibly contributing to populate the exosphere can be roughly estimated.

  5. Low-Energy Sputtering Studies of Boron Nitride with Xenon Ions

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    Sputtering of boron nitride with xenon ions was investigated using secondary ion (SIMS) and secondary neutral (SNMS) mass spectrometry. The ions generated from the ion gun were incident on the target at an angle of 50' with respect to the surface'normal. The energy of ions ranged from 100 eV to 3 keV. A flood electron gun was used to neutralize the positive charge build-up on the target surface. The intensities of sputtered neutral and charged particles, including single atoms, molecules, and clusters, were measured as a function of ion energy. Positive SIMS spectra were dominated by the two boron isotopes whereas BN- and B- were the two major constituents of the negative SIMS spectra. Nitrogen could be detected only in the SNMS spectra. The intensity-energy curves of the sputtered particles were similar in shape. The knees in P-SIMS and SNMS intensity-energy curves appear at around I keV which is significantly higher that 100 to 200 eV energy range at which knees appear in the sputtering of medium and heavy elements by ions of argon and xenon. This difference in the position of the sputter yield knee between boron nitride and heavier targets is due to the reduced ion energy differences. The isotopic composition of secondary ions of boron were measured by bombarding boron nitride with xenon ions at energies ranging from 100 eV to 1.5 keV using a quadrupole mass spectrometer. An ion gun was used to generate the ion beam. A flood electron gun was used to neutralize the positive charge buildup on the target surface. The secondary ion flux was found to be enriched in heavy isotopes at lower incident ion energies. The heavy isotope enrichment was observed to decrease with increasing primary ion energy. Beyond 350 eV, light isotopes were sputtered preferentially with the enrichment increasing to an asymptotic value of 1.27 at 1.5 keV. The trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy range.

  6. Sputtering of Lunar Regolith Simulant by Protons and Multicharged Heavy Ions at Solar Wind Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Fred W; Harris, Peter R; Taylor, C. N.

    2011-01-01

    We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have highermore » physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis.« less

  7. Sputtering analysis of silicates by XY-TOF-SIMS: Astrophysical applications

    NASA Astrophysics Data System (ADS)

    Martinez, Rafael; Langlinay, Thomas; Ponciano, Cassia; da Silveira, Enio F.; Palumbo, Maria Elisabetta; Strazzulla, Giovanni; Brucato, John R.; Hijazi, Hussein; Boduch, Philippe; Cassimi, Amine; Domaracka, Alicja; Ropars, Frédéric; Rothard, Hermann

    2015-08-01

    Silicates are the dominant material of many objects in the Solar System, e.g. asteroids, the Moon, the planet Mercury and meteorites. Ion bombardment by cosmic rays and solar wind may alter the reflectance spectra of irradiated silicates by inducing physico-chemical changes known as “space weathering”. Furthermore, sputtered particles contribute to the composition of the exosphere of planets or moons. Mercury’s complex particle environment surrounding the planet is composed by thermal and directional neutral atoms (exosphere) originating via surface release and charge-exchange processes, and by ionized particles originated through photo-ionization and again by surface release processes such as ion induced sputtering.As a laboratory approach to understand the evolution of the silicate surfaces and the Na vapor (as well as, in lower concentration, K and Ca) discovered on the solar facing side of Mercury, we measured sputtering yields, velocity spectra and angular distributions of secondary ions from terrestrial silicate analogs. Experiments were performed using highly charged MeV/u and keV/u ions at GANIL in a new UHV set-up (under well controlled surface conditions) [1]. Other experiments were conducted at the Pontifical Catholic University of Rio de Janeiro (PUC-Rio) by using Cf fission fragments (~ 1 MeV/u). Nepheline, an aluminosilicate containing Na and K, evaporated on Si substrates (wafers) was used as model for silicates present in Solar System objects. Production yields, measured as a function of the projectile fluence, allow to study the possible surface stoichiometry changes during irradiation. In addition, from the energy distributions N(E) of sputtered particles it is possible to estimate the fraction of particles that can escape from the gravitational field of Mercury, and those that fall back to the surface and contribute to populate the atmosphere (exosphere) of the planet.The CAPES-COFECUB French-Brazilian exchange program, a CNPq postdoctoral grant, and the EU Cost Action “The Chemical Cosmos” supported this work.References[1] H.Hijazi, H. Rothard, et al. Nucl. Instrum. Meth. B269 (2011) 1003-1006

  8. Modeling carbonaceous particle formation in an argon graphite cathode dc discharge

    NASA Astrophysics Data System (ADS)

    Michau, A.; Lombardi, G.; Colina Delacqua, L.; Redolfi, M.; Arnas, C.; Bonnin, X.; Hassouni, K.

    2010-12-01

    We develop a model for the nucleation, growth and transport of carbonaceous dust particles in a non-reactive gas dc discharge where the carbon source is provided by cathode sputtering. We consider only the initial phase of the discharge when the dust charge density remains small with respect to the electron density. We find that an electric field reversal at the entrance of the negative glow region promotes trapping of negatively charged clusters and dust particles, confining them for long times in the plasma and favoring molecular growth. An essential ingredient for this process is electron attachment, which negatively charges the initially neutral clusters. We perform sensitivity studies on several number parameters: size of the largest molecular edifice, sticking coefficient, etc.

  9. Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Song, Liang; Wang, Xianping; Wang, Le; Zhang, Ying; Liu, Wang; Jiang, Weibing; Zhang, Tao; Fang, Qianfeng; Liu, Changsong

    2017-04-01

    He-charged oxide dispersion strengthened (ODS) FeCrNi films were prepared by a radio-frequency (RF) plasma magnetron sputtering method in a He and Ar mixed atmosphere at 150 °C. As a comparison, He-charged FeCrNi films were also fabricated at the same conditions through direct current (DC) plasma magnetron sputtering. The doping of He atoms and Y2O3 in the FeCrNi films was realized by the high backscattered rate of He ions and Y2O3/FeCrNi composite target sputtering method, respectively. Inductive coupled plasma (ICP) and x-ray photoelectron spectroscopy (XPS) analysis confirmed the existence of Y2O3 in FeCrNi films, and Y2O3 content hardly changed with sputtering He/Ar ratio. Cross-sectional scanning electron microscopy (SEM) shows that the FeCrNi films were composed of dense columnar nanocrystallines and the thickness of the films was obviously dependent on He/Ar ratio. Nanoindentation measurements revealed that the FeCrNi films fabricated through DC/RF plasma magnetron sputtering methods exhibited similar hardness values at each He/Ar ratio, while the dispersion of Y2O3 apparently increased the hardness of the films. Elastic recoil detection (ERD) showed that DC/RF magnetron sputtered FeCrNi films contained similar He amounts (˜17 at.%). Compared with the minimal change of He level with depth in DC-sputtered films, the He amount decreases gradually in depth in the RF-sputtered films. The Y2O3-doped FeCrNi films were shown to exhibit much smaller amounts of He owing to the lower backscattering possibility of Y2O3 and the inhibition effect of nano-sized Y2O3 particles on the He element.

  10. Specific spacecraft evaluation: Special report. [charged particle transport from a mercury ion thruster to spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1978-01-01

    Charged and neutral particle transport from an 8 cm mercury ion thruster to the surfaces of the P 80-1 spacecraft and to the Teal Ruby sensor and the ECOM-501 sensor of that spacecraft were investigated. Laboratory measurements and analyses were used to examine line-of-sight and nonline-of sight particle transport modes. The recirculation of Hg(+) ions in the magnetic field of the earth was analyzed for spacecraft velocity and Earth magnetic field vector configurations which are expected to occur in near Earth, circular, high inclination orbits. For these magnetic field and orbit conditions and for expected ion release distribution functions, in both angles and energies, the recirculation/re-interception of ions on spacecraft surfaces was evaluated. The refraction of weakly energetic ions in the electric fields of the thruster plasma plume and in the electric fields between this plasma plume and the material boundaries of the thruster, the thruster sputter shield, and the various spacecraft surfaces were examined. The neutral particle transport modes of interest were identified as sputtered metal atoms from the thruster beam shield. Results, conclusions, and future considerations are presented.

  11. New Active Region Sputtering with Small Flares

    NASA Image and Video Library

    2018-05-29

    An active region rotated into view and sputtered with numerous small flares and towering magnetic field lines that stretched out many times the diameter of Earth (May 23-25, 2018). Active regions are areas of intense magnetic energy. The field lines are illuminated by charged particles spiraling along them and easiest to discern when viewed in profile. The colorized images were taken in a wavelength of extreme ultraviolet light. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22461

  12. Energetic ion bombardment of Ag surfaces by C60+ and Ga+ projectiles.

    PubMed

    Sun, Shixin; Szakal, Christopher; Winograd, Nicholas; Wucher, Andreas

    2005-10-01

    The ion bombardment-induced release of particles from a metal surface is investigated using energetic fullerene cluster ions as projectiles. The total sputter yield as well as partial yields of neutral and charged monomers and clusters leaving the surface are measured and compared with corresponding data obtained with atomic projectile ions of similar impact kinetic energy. It is found that all yields are enhanced by about one order of magnitude under bombardment with the C60+ cluster projectiles compared with Ga+ ions. In contrast, the electronic excitation processes determining the secondary ion formation probability are unaffected. The kinetic energy spectra of sputtered particles exhibit characteristic differences which reflect the largely different nature of the sputtering process for both types of projectiles. In particular, it is found that under C60+ impact (1) the energy spectrum of sputtered atoms peaks at significantly lower kinetic energies than for Ga+ bombardment and (2) the velocity spectra of monomers and dimers are virtually identical, a finding which is in pronounced contrast to all published data obtained for atomic projectiles. The experimental findings are in reasonable agreement with recent molecular dynamics simulations.

  13. Sputtering by the Solar Wind: Effects of Variable Composition

    NASA Technical Reports Server (NTRS)

    Killen, R. M.; Arrell, W. M.; Sarantos, M.; Delory, G. T.

    2011-01-01

    It has long been recognized that solar wind bombardment onto exposed surfaces in the solar system will produce an energetic component to the exospheres about those bodies. Laboratory experiments have shown that there is no increase in the sputtering yield caused by highly charged heavy ions for metallic and for semiconducting surfaces, but the sputter yield can be noticeably increased in the case of a good insulating surface. Recently measurements of the solar wind composition have become available. It is now known that the solar wind composition is highly dependent on the origin of the particular plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into its various components, we have estimated the total sputter yield for each type of solar wind. Whereas many previous calculations of sputtering were limited to the effects of proton bombardment. we show that the heavy ion component. especially the He++ component. can greatly enhance the total sputter yield during times when the heavy ion population is enhanced. We will discuss sputtering of both neutrals and ions.

  14. Nanolaminate microfluidic device for mobility selection of particles

    DOEpatents

    Surh, Michael P [Livermore, CA; Wilson, William D [Pleasanton, CA; Barbee, Jr., Troy W.; Lane, Stephen M [Oakland, CA

    2006-10-10

    A microfluidic device made from nanolaminate materials that are capable of electrophoretic selection of particles on the basis of their mobility. Nanolaminate materials are generally alternating layers of two materials (one conducting, one insulating) that are made by sputter coating a flat substrate with a large number of layers. Specific subsets of the conducting layers are coupled together to form a single, extended electrode, interleaved with other similar electrodes. Thereby, the subsets of conducting layers may be dynamically charged to create time-dependent potential fields that can trap or transport charge colloidal particles. The addition of time-dependence is applicable to all geometries of nanolaminate electrophoretic and electrochemical designs from sinusoidal to nearly step-like.

  15. Studies of thin-film growth of sputtered hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Moustakas, T. D.

    1982-11-01

    The anticipated potential use of hydrogenated amorphous silicon (a-SiHx), or related materials, for large area thin film device applications has stimulated extensive research. Studies conducted by Ross and Messier (1981) have shown that the growth habit of the sputtered a-SiHx films is columnar. It is found that films produced at high argon pressure have columnar microstructure, while those produced at low argon pressure show no noticeable microstructure. The preferred interpretation for the lack of microstructure for the low argon pressure films is bombardment of the films by positive Ar(+) ions due to the substrate negative floating potential. Anderson et al. (1979) attribute the microstructural changes to the bombardment of the film by the neutral sputtered Si species from which the film grows. In connection with the present investigation, data are presented which clearly indicate that charged particle bombardment rather than neutral particle bombardment is the cause of the observed microstructural changes as a function of argon pressure.

  16. Current density distributions and sputter marks in electron cyclotron resonance ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panitzsch, Lauri; Peleikis, Thies; Boettcher, Stephan

    2013-01-15

    Most electron cyclotron resonance ion sources use hexapolar magnetic fields for the radial confinement of the plasma. The geometry of this magnetic structure is then-induced by charged particles-mapped onto the inner side of the plasma electrode via sputtering and deposition. The resulting structures usually show two different patterns: a sharp triangular one in the central region which in some cases is even sputtered deep into the material (referred to as thin groove or sharp structure), and a blurred but still triangular-like one in the surroundings (referred to as broad halo). Therefore, both patterns seem to have different sources. To investigatemore » their origins we replaced the standard plasma electrode by a custom-built plasma electrode acting as a planar, multi-segment current-detector. For different biased disc voltages, detector positions, and source biases (referred to the detector) we measured the electrical current density distributions in the plane of the plasma electrode. The results show a strong and sharply confined electron population with triangular shape surrounded by less intense and spatially less confined ions. Observed sputter- and deposition marks are related to the analysis of the results. Our measurements suggest that the two different patterns (thin and broad) indeed originate from different particle populations. The thin structures seem to be caused by the hot electron population while the broad marks seem to stem from the medium to highly charged ions. In this paper we present our measurements together with theoretical considerations and substantiate the conclusions drawn above. The validity of these results is also discussed.« less

  17. Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stranak, Vitezslav; University of South Bohemia, Institute of Physics and Biophysics, Branisovska 31, 370 05 Ceske Budejovice; Herrendorf, Ann-Pierra

    2012-11-01

    This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 {mu}s after the onset of the HiPIMS pulse. Further, a highmore » concentration of double charged Ti{sup ++} with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.« less

  18. A Closer Look at Solar Wind Sputtering of Lunar Surface Materials

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Adams, J. H., Jr.; Meyer, F.; Mansur, L.; Reinhold, C.

    2008-01-01

    Solar-wind induced potential sputtering of the lunar surface may be a more efficient erosive mechanism than the "standard" kinetic (or physical) sputtering. This is partly based on new but limited laboratory measurements which show marked enhancements in the sputter yields of slow-moving, highly-charged ions impacting oxides. The enhancements seen in the laboratory can be orders of magnitude for some surfaces and highly charged incident ions, but seem to depend very sensitively on the properties of the impacted surface in addition to the fluence, energy and charge of the impacting ion. For oxides, potential sputtering yields are markedly enhanced and sputtered species, especially hydrogen and light ions, show marked dependence on both charge and dose.

  19. Dust Transport from Enceladus to the moons of Saturn

    NASA Astrophysics Data System (ADS)

    Juhasz, A.; Hsu, H. W.; Kempf, S.; Horanyi, M.

    2016-12-01

    Saturn's vast E-ring engulfs the satellites Mimas, Enceladus, Tethys, Dione, and Rea, reaching even beyond Titan, while its inner edge is adjacent with the outskirts of the A-ring. The E-ring is comprised of characteristically micron and submicron sized particles, originating mainly from the active plumes of Enceladus, and possibly the other moons as well due to their continual bombardment by interplanetary dust particles. The dynamics of the E-ring grains can be surprising as in addition to the gravity of Saturn and its moons, their motion is governed by radiation pressure, plasma drag, and electromagnetic forces as they collect charges interacting with the magnetospheric plasma environment of Saturn. Due to sputtering, their mass is diminishing and, hence, their charge-to-mass ratio is increasing in time. A "young" gravitationally dominated micron-sized particle will "mature" into a nanometer-sized grain whose motion resembles that of a heavy ion. Simultaneously with their mass loss, the dust particles are pushed outwards by plasma drag. Time to time, their evolving orbits intersect the orbits of the Saturnian moons and the E-ring particles can be deposited onto their surfaces, possibly altering their makeup and spectral properties. Using the Cassini magnetospheric observations, we have followed the orbital evolution of E-ring particles, through their entire life, starting at Enceladus, ending in: a) a collision with the A-ring or any of the satellites; or b) losing all their mass due to sputtering; or c) leave the magnetosphere of Saturn. This presentation will focus on the deposition rates and maps of E-ring particles to the surfaces of the moons.

  20. Charged particle modification of ices in the Saturnian and Jovian systems

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.; Barton, L. A.; Boring, J. W.; Jesser, W. A.; Brown, W. L.

    1985-01-01

    The modification by ion bombardment of the surfaces of icy objects in the Saturnian and Jovian systems is discussed. Chemical changes in ices are induced by breaking of bonds and by implantation of incident ions. Long-term irradiation by fast ions produces physical changes such as increasing the surface reflectivity and ability to scatter light. On large satellites, molecules which are ejected by ion bombardment are redistributed across the surfaces of large satellites. For small satellites and ring particles bombarded by ions, such as those of Saturn, most or all of the sputtered material is lost to space, forming a neutral torus in the locale of the satellite orbits and rings and supplying ions to the magnetosphere. Noting the existence of such a torus, the sputter erosion and possible stabilization of the E-ring of Saturn is discussed.

  1. The BepiColombo SERENA/ELENA unit development: a new technique to detect sputtered neutral atoms escaping from Mercury surface.

    NASA Astrophysics Data System (ADS)

    di Lellis, Andrea Maria; Selci, Stefano; de Angelis, Elisabetta; Leoni, Roberto; Milillo, Anna; Orsini, Stefano; Dandouras, Iannis

    2010-05-01

    ELENA (Emitted Low-Energy Neutral Atoms) is one of the four units of the SERENA experiment for the ESA cornerstone BepiColombo mission to Mercury. It is primarily devoted to understanding of Ion Sputtering processes and emission from planetary surfaces, particle back-scattering and Charge Exchange via neutral atoms detections in the energy range ~20 eV - 5 keV ELENA instrument is the first attempt of a new design techniques approached for the neutral particles identification in the low energy range. It is a Time-of-Flight system based on a peculiar Start section: an oscillating shutter (operated at frequencies up to a 100 kHz) and mechanical grating (two self-standing silicon nitride (Si3N4) membranes, patterned with arrays of long and narrow openings) that allows to identify the start time of the particles entering in the Time-of-Flight chamber. The Stop section at the end of the pattern is a 1-dimensional array composed by MCPs detector with discrete anodes corresponding to a Field of View of 4,5°x76°. This system allows having the determination of velocity and direction of the incoming particles. The instrument has a good capability to reject UV photons with the start section and to reject charged particle with a deflector system. In this paper the crucial parts of the instrument and test results will be described: the nano-structure membranes manufacturing, the shuttering system, the position encoder, the optical propriety of the membranes, the photon and particle test, the electronic box.

  2. Installation and Characterization of Charged Particle Sources for Space Environmental Effects Testing

    NASA Technical Reports Server (NTRS)

    Skevington, Jennifer L.

    2010-01-01

    Charged particle sources are integral devices used by Marshall Space Flight Center s Environmental Effects Branch (EM50) in order to simulate space environments for accurate testing of materials and systems. By using these sources inside custom vacuum systems, materials can be tested to determine charging and discharging properties as well as resistance to sputter damage. This knowledge can enable scientists and engineers to choose proper materials that will not fail in harsh space environments. This paper combines the steps utilized to build a low energy electron gun (The "Skevington 3000") as well as the methods used to characterize the output of both the Skevington 3000 and a manufactured Xenon ion source. Such characterizations include beam flux, beam uniformity, and beam energy. Both sources were deemed suitable for simulating environments in future testing.

  3. Kinetic and Potential Sputtering of Lunar Regolith: The Contribution of the Heavy Highly Charged (Minority) Solar Wind Ions

    NASA Technical Reports Server (NTRS)

    Meyer, F. W.; Barghouty, A. F.

    2012-01-01

    Solar wind sputtering of the lunar surface helps determine the composition of the lunar exosphere and contributes to surface weathering. To date, only the effects of the two dominant solar wind constituents, H+ and He+, have been considered. The heavier, less abundant solar wind constituents have much larger sputtering yields because they have greater mass (kinetic sputtering) and they are highly charged (potential sputtering) Their contribution to total sputtering can therefore be orders of magnitude larger than their relative abundances would suggest

  4. Positive and negative ion outflow at Rhea as observed by Cassini

    NASA Astrophysics Data System (ADS)

    Desai, Ravindra; Jones, Geraint; Regoli, Leonardo; Cowee, Misa; Coates, Andrew; Kataria, Dhiren

    2017-04-01

    Rhea is Saturn's largest icy moon and hosts an ethereal oxygen and carbon-dioxide atmosphere as was detected when Cassini observed positive and negative pickup ions outflowing from the moon and an extended neutral exosphere. These pickup ions can form current systems which, with the resulting jxB force, act to slow-down the incident magneto-plasma and cause field-line draping. As well as impacting the plasma interaction, the composition and density of picked up ions provide key diagnostics of the moon's sputter-induced atmosphere and surface. During the first Cassini-Rhea encounter (R1), the Cassini Plasma Spectrometer (CAPS) observed positively and negatively charged pickup ions before and after passing through the moon's plasma wake respectively, in agreement with their anticipated cycloidal trajectories. On the subsequent more distant wake encounter (R1.5) however, only positively charged pickup ions were observed, indicating high loss rates of the negative ions in Saturn's magnetosphere. Here, using an updated model of Cassini's Electron Spectrometer response function, we are able to estimate the outward flux of negatively charged pickup ions, the first time such a plasma population has been constrained. Using test-particle simulations we trace both the positive and negative particles back to Rhea's exobase to better understand their production and loss processes and the implications for Rhea's sputter-induced exosphere. We also look to examine whether the calculated ion densities could generate ion cyclotron wave activity.

  5. Solar Wind Sputtering of Lunar Surface Materials: Role and Some Possible Implications of Potential Sputtering

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Adams, J. H., Jr.; Meyer, F.; Reinhold, c.

    2010-01-01

    Solar-wind induced sputtering of the lunar surface includes, in principle, both kinetic and potential sputtering. The role of the latter mechanism, however, in many focused studies has not been properly ascertained due partly to lack of data but can also be attributed to the assertion that the contribution of solar-wind heavy ions to the total sputtering is quite low due to their low number density compared to solar-wind protons. Limited laboratory measurements show marked enhancements in the sputter yields of slow-moving, highly-charged ions impacting oxides. Lunar surface sputtering yields are important as they affect, e.g., estimates of the compositional changes in the lunar surface, its erosion rate, as well as its contribution to the exosphere as well as estimates of hydrogen and water contents. Since the typical range of solar-wind ions at 1 keV/amu is comparable to the thickness of the amorphous rim found on lunar soil grains, i.e. few 10s nm, lunar simulant samples JSC-1A AGGL are specifically enhanced to have such rims in addition to the other known characteristics of the actual lunar soil particles. However, most, if not all laboratory studies of potential sputtering were carried out in single crystal targets, quite different from the rim s amorphous structure. The effect of this structural difference on the extent of potential sputtering has not, to our knowledge, been investigated to date.

  6. Surface and material analytics based on Dresden-EBIS platform technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, M., E-mail: mike.schmidt@dreebit.com; König, J., E-mail: mike.schmidt@dreebit.com; Bischoff, L.

    2015-01-09

    Nowadays widely used mass spectrometry systems utilize energetic ions hitting a sample and sputter material from the surface of a specimen. The generated secondary ions are separated and detected with high mass resolution to determine the target materials constitution. Based on this principle, we present an alternative approach implementing a compact Electron Beam Ion Source (EBIS) in combination with a Liquid Metal Ion Source (LMIS). An LMIS can deliver heavy elements which generate high sputter yields on a target surface. More than 90% of this sputtered material consists of mono- and polyatomic neutrals. These particles are able to penetrate themore » magnetic field of an EBIS and they will be ionized within the electron beam. A broad spectrum of singly up to highly charged ions can be extracted depending on the operation conditions. Polyatomic ions will decay during the charge-up process. A standard bending magnet or a Wien filter is used to separate the different ion species due to their mass-to-charge ratio. Using different charge states of ions as it is common with EBIS it is also possible to resolve interfering charge-to-mass ratios of only singly charged ions. Different setups for the realization of feeding the electron beam with sputtered atoms of solids will be presented and discussed. As an example the analysis of a copper surface is used to show high-resolution spectra with low background noise. Individual copper isotopes and clusters with different isotope compositions can be resolved at equal atomic numbers. These results are a first step for the development of a new compact low-cost and high-resolution mass spectrometry system. In a more general context, the described technique demonstrates an efficient method for feeding an EBIS with atoms of nearly all solid elements from various solid target materials. The new straightforward design of the presented setup should be of high interest for a broad range of applications in materials research as well as for applications connected to analyzing the biosphere, hydrosphere, lithosphere, cosmosphere and technosphere.« less

  7. Ion beam sputtering of Ag - Angular and energetic distributions of sputtered and scattered particles

    NASA Astrophysics Data System (ADS)

    Feder, René; Bundesmann, Carsten; Neumann, Horst; Rauschenbach, Bernd

    2013-12-01

    Ion beam sputter deposition (IBD) provides intrinsic features which influence the properties of the growing film, because ion properties and geometrical process conditions generate different energy and spatial distribution of the sputtered and scattered particles. A vacuum deposition chamber is set up to measure the energy and spatial distribution of secondary particles produced by ion beam sputtering of different target materials under variation of geometrical parameters (incidence angle of primary ions and emission angle of secondary particles) and of primary ion beam parameters (ion species and energies).

  8. Alfven's critical ionization velocity observed in high power impulse magnetron sputtering discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenning, N.; Lundin, D.

    2012-09-15

    Azimuthally rotating dense plasma structures, spokes, have recently been detected in several high power impulse magnetron sputtering (HiPIMS) devices used for thin film deposition and surface treatment, and are thought to be important for plasma buildup, energizing of electrons, as well as cross-B transport of charged particles. In this work, the drift velocities of these spokes are shown to be strongly correlated with the critical ionization velocity, CIV, proposed by Alfven. It is proposed as the most promising approach in combining the CIV and HiPIMS research fields is to focus on the role of spokes in the process of electronmore » energization.« less

  9. Laboratory studies of charged particle erosion of SO2 ice and applications to the frosts of Io

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Brown, W. L.; Augustyniak, W. M.; Johnson, R. E.; Armstrong, T. P.

    1982-01-01

    The removal and/or redistribution of SO2 frosts on the surface of the first Galilean satellite, Io, can occur through the erosion of these frosts by the magnetosphere particle environment of the satellite. The energy, species, and temperature dependence of the erosion rates of SO2 ice films by charged particles have been studied in laboratory experiments. Rutherford backscattering and thin film techniques are used in the experiments. The ice temperature is varied between about 10 K and the sublimation temperature. The erosion rates are found to have a temperature-independent and a temperature-dependent regime and to be much greater, for 10-2000 keV ions, than those predicted by the usual sputtering process. The laboratory results are used together with measured magnetosphere particle fluxes in the vicinity of Io to estimate the erosion rates of SO2 ice films from the satellite and implications therefrom on an SO2 atmosphere on Io.

  10. Sputtering-growth of seeded Au nanoparticles for nanogap-assisted surface-enhanced Raman scattering (SERS) biosensing

    NASA Astrophysics Data System (ADS)

    Fu, Chit Yaw; U. S., Dinish; Rautela, Shashi; Goh, Douglas Wenda; Olivo, Malini

    2011-12-01

    Gold-coated array patterned with tightly-packed nanospheres was developed as a substrate base for constructing SERSenriched nanogaps with Au-nanoparticles (GNPs). Using 1,2-ethanedithiol as a linker, Au-NPs (=17-40nm) were anchored covalently on the sphere-array. Thin Au layer was sputtered on the substrate to mask the citrate coating of GNPs that could demote the sensing mechanism. The negatively-charged GNP surface warrants the colloidal stability, but the resulting repulsive force keeps the immobilized NPs apart by about 40nm. The attained gap size is inadequately narrow to sustain any intense enhancement owing to the near-field nature of SERS. Minimal amount of NaCl was then added to slightly perturb the colloidal stability by reducing their surface charge. Notably, the interparticle-gap reduces at increasing amount of salt, giving rise to increased packing density of GNPs. The SERS enhancement is also found to exponentially increase at decreasing gap size. Nevertheless, the minimum gap achieved is limited to merely 7nm. Excessive addition of salt would eventually induce complete aggregation of particles, forming clustered NPs on the array. A simple sputtering-growth approach is therefore proposed to further minimize the interparticle gap by enlarging the seeded NPs based on mild sputtering. The SEM images confirm that the gap below 7nm is achievable. With advent of the colloidal chemistry, the combined salt-induced aggregation and sputtering-growth techniques can be applied to engineer interparticle gap that is crucial to realize an ultrasensitive SERS biosensor. The proposed two-step preparation can be potentially adopted to fabricate the SERS-enriched nanogaps on the microfluidics platform.

  11. Implications of Voyager data for energetic ion erosion of the icy satellites of Saturn

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Maclennan, C. G.; Brown, W. L.; Johnson, R. E.; Barton, L. A.; Reimann, C. T.; Garrett, J. W.; Boring, J. W.

    1983-01-01

    The possible production of a neutral-particle torus by magnetosphere-particle sputtering of the icy satellites (Enceladus, Tethys, Dione, Rhea) of Saturn is discussed. Particle spectra from the Voyager low-energy-charged-particle experiment are used together with laboratory-derived erosion rates and velocity distributions for the ejected species. An extended torus region in the inner magnetosphere of Saturn is expected, with H2O escape fluxes in the vicinities of the satellites varying from about 2 to 7 x 10 to the 7th mol/sq cm sec for incident protons and from about 6 to 14 x 10 to the 9th mol/sq cm sec if the incident ions are all oxygen.

  12. Dust-wall and dust-plasma interaction in the MIGRAINe code

    NASA Astrophysics Data System (ADS)

    Vignitchouk, L.; Tolias, P.; Ratynskaia, S.

    2014-09-01

    The physical models implemented in the recently developed dust dynamics code MIGRAINe are described. A major update of the treatment of secondary electron emission, stemming from models adapted to typical scrape-off layer temperatures, is reported. Sputtering and plasma species backscattering are introduced from fits of available experimental data and their relative importance to dust charging and heating is assessed in fusion-relevant scenarios. Moreover, the description of collisions between dust particles and plasma-facing components, based on the approximation of elastic-perfectly plastic adhesive spheres, has been upgraded to take into account the effects of particle size and temperature.

  13. Energetic charged particle interactions at icy satellites

    NASA Astrophysics Data System (ADS)

    Nordheim, T.; Hand, K. P.; Paranicas, C.; Howett, C.; Hendrix, A. R.

    2016-12-01

    Satellites embedded within planetary magnetospheres are typically exposed to bombardment by charged particles, from thermal plasma to more energetic particles at radiation belt energies. At many planetary satellites, energetic charged particles are typically unimpeded by patchy atmospheres or induced satellite magnetic fields and instead are stopped in the surface itself. Most of these primaries have ranges in porous water ice that are at most centimeters, but some of their secondary photons, emitted during the deceleration process, can reach meter depths [Paranicas et al., 2002, 2004; Johnson et al., 2004]. Examples of radiation-induced surface alteration includes sputtering, radiolysis and grain sintering, processes that are capable of significantly altering the physical properties of surface material. Thus, accurate characterization of energetic charged particle weathering at icy satellites is crucial to a more comprehensive understanding of these bodies. At Saturn's inner mid-size moons remote sensing observations by several instruments onboard the Cassini spacecraft have revealed distinct weathering patterns which have been attributed to energetic electron bombardment of the surface [Howett et al., 2011, 2012, 2014; Schenk et al., 2011; Paranicas et al., 2014]. In the Jovian system, radiolytic production of oxidants has been invoked as a potential source of energy for life which may reside in the sub-surface ocean of its satellite Europa [Johnson et al., 2003; Hand et al., 2007; Vance et al., 2016]. Here we will discuss the near-surface energetic charged particle environment of icy satellites, with particular emphasis on comparative studies between the Saturnian and Jovian systems and interpretation of remote sensing observations by instruments onboard missions such as Cassini and Galileo. In addition, we will discuss implications for surface sampling by future lander missions (e.g. the proposed Europa lander now under study).

  14. Three-dimensional particle simulation of back-sputtered carbon in electric propulsion test facility

    NASA Astrophysics Data System (ADS)

    Zheng, Hongru; Cai, Guobiao; Liu, Lihui; Shang, Shengfei; He, Bijiao

    2017-03-01

    The back-sputtering deposition on thruster surface caused by ion bombardment on chamber wall material affects the performance of thrusters during the ground based electric propulsion endurance tests. In order to decrease the back-sputtering deposition, most of vacuum chambers applied in electric propulsion experiments are equipped with anti-sputtering targets. In this paper, a three-dimensional model of plume experimental system (PES) including double layer anti-sputtering target is established. Simulation cases are made to simulate the plasma environment and sputtering effects when an ion thruster is working. The particle in cell (PIC) method and direct simulation Monte Carlo (DSMC) method is used to calculate the velocity and position of particles. Yamamura's model is used to simulate the sputtering process. The distribution of sputtered anti-sputtering target material is presented. The results show that the double layer anti-sputtering target can significantly reduce the deposition on thruster surface. The back-sputtering deposition rates on thruster exit surface for different cases are compared. The chevrons on the secondary target are rearranged to improve its performance. The position of secondary target has relation with the ion beam divergence angle, and the radius of the vacuum chamber. The back-sputtering deposition rate is lower when the secondary target covers the entire ion beam.

  15. Ion-induced particle desorption in time-of-flight medium energy ion scattering

    NASA Astrophysics Data System (ADS)

    Lohmann, S.; Primetzhofer, D.

    2018-05-01

    Secondary ions emitted from solids upon ion impact are studied in a time-of-flight medium energy ion scattering (ToF-MEIS) set-up. In order to investigate characteristics of the emission processes and to evaluate the potential for surface and thin film analysis, experiments employing TiN and Al samples were conducted. The ejected ions exhibit a low initial kinetic energy of a few eV, thus, requiring a sufficiently high acceleration voltage for detection. Molecular and atomic ions of different charge states originating both from surface contaminations and the sample material are found, and relative yields of several species were determined. Experimental evidence that points towards a predominantly electronic sputtering process is presented. For emitted Ti target atoms an additional nuclear sputtering component is suggested.

  16. Heavy particle transport in sputtering systems

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan

    2015-09-01

    This contribution aims to discuss the theoretical background of heavy particle transport in plasma sputtering systems such as direct current magnetron sputtering (dcMS), high power impulse magnetron sputtering (HiPIMS), or multi frequency capacitively coupled plasmas (MFCCP). Due to inherently low process pressures below one Pa only kinetic simulation models are suitable. In this work a model appropriate for the description of the transport of film forming particles sputtered of a target material has been devised within the frame of the OpenFOAM software (specifically dsmcFoam). The three dimensional model comprises of ejection of sputtered particles into the reactor chamber, their collisional transport through the volume, as well as deposition of the latter onto the surrounding surfaces (i.e. substrates, walls). An angular dependent Thompson energy distribution fitted to results from Monte-Carlo simulations is assumed initially. Binary collisions are treated via the M1 collision model, a modified variable hard sphere (VHS) model. The dynamics of sputtered and background gas species can be resolved self-consistently following the direct simulation Monte-Carlo (DSMC) approach or, whenever possible, simplified based on the test particle method (TPM) with the assumption of a constant, non-stationary background at a given temperature. At the example of an MFCCP research reactor the transport of sputtered aluminum is specifically discussed. For the peculiar configuration and under typical process conditions with argon as process gas the transport of aluminum sputtered of a circular target is shown to be governed by a one dimensional interaction of the imposed and backscattered particle fluxes. The results are analyzed and discussed on the basis of the obtained velocity distribution functions (VDF). This work is supported by the German Research Foundation (DFG) in the frame of the Collaborative Research Centre TRR 87.

  17. Efficient Suppression of Defects and Charge Trapping in High Density In-Sn-Zn-O Thin Film Transistor Prepared using Microwave-Assisted Sputter.

    PubMed

    Goh, Youngin; Ahn, Jaehan; Lee, Jeong Rak; Park, Wan Woo; Ko Park, Sang-Hee; Jeon, Sanghun

    2017-10-25

    Amorphous oxide semiconductor-based thin film transistors (TFTs) have been considered as excellent switching elements for driving active-matrix organic light-emitting diodes (AMOLED) owing to their high mobility and process compatibility. However, oxide semiconductors have inherent defects, causing fast transient charge trapping and device instability. For the next-generation displays such as flexible, wearable, or transparent displays, an active semiconductor layer with ultrahigh mobility and high reliability at low deposition temperature is required. Therefore, we introduced high density plasma microwave-assisted (MWA) sputtering method as a promising deposition tool for the formation of high density and high-performance oxide semiconductor films. In this paper, we present the effect of the MWA sputtering method on the defects and fast charge trapping in In-Sn-Zn-O (ITZO) TFTs using various AC device characterization methodologies including fast I-V, pulsed I-V, transient current, low frequency noise, and discharge current analysis. Using these methods, we were able to analyze the charge trapping mechanism and intrinsic electrical characteristics, and extract the subgap density of the states of oxide TFTs quantitatively. In comparison to conventional sputtered ITZO, high density plasma MWA-sputtered ITZO exhibits outstanding electrical performance, negligible charge trapping characteristics and low subgap density of states. High-density plasma MWA sputtering method has high deposition rate even at low working pressure and control the ion bombardment energy, resulting in forming low defect generation in ITZO and presenting high performance ITZO TFT. We expect the proposed high density plasma sputtering method to be applicable to a wide range of oxide semiconductor device applications.

  18. Electronic sputtering of LiF, CaF2, LaF3 and UF4 with 197 MeV Au ions. Is the stoichiometry of atom emission preserved?

    NASA Astrophysics Data System (ADS)

    Toulemonde, M.; Assmann, W.; Muller, D.; Trautmann, C.

    2017-09-01

    Sputtering experiments with swift heavy ions in the electronic energy loss regime were performed by using the catcher technique in combination with elastic recoil detection analysis. Four different fluoride targets, LiF, CaF2, LaF3 and UF4 were irradiated in the electronic energy loss regime using 197 MeV Au ions. The angular distribution of particles sputtered from the surface of freshly cleaved LiF and CaF2 single crystals is composed of a broad cosine distribution superimposed by a jet-like peak that appears perpendicular to the surface independent of the angle of beam incidence. For LiF, the particle emission in the entire angular distribution (jet plus broad cosine component) is stoichiometric, whereas for CaF2 the ratio of the sputtered F to Ca particles is at large angles by a factor of two smaller than the stoichiometry of the crystal. For single crystalline LaF3 no jet component is observed and the angular distribution is non-stoichiometric with the number of sputtered F particles being slightly larger than the number of sputtered La particles. In the case of UF4, the target was polycrystalline and had a much rougher surface compared to cleaved crystals. This destroys the appearance of a possible jet component leading to a broad angular distribution. The ratio of sputtered U atoms compared to F atoms is in the order of 1-2, i.e. the number of collected particles on the catcher is also non-stoichiometric. Such unlike behavior of particles sputtered from different fluoride crystals creates new questions.

  19. Angular and velocity distributions of tungsten sputtered by low energy argon ions

    NASA Astrophysics Data System (ADS)

    Marenkov, E.; Nordlund, K.; Sorokin, I.; Eksaeva, A.; Gutorov, K.; Jussila, J.; Granberg, F.; Borodin, D.

    2017-12-01

    Sputtering by ions with low near-threshold energies is investigated. Experiments and simulations are conducted for tungsten sputtering by low-energy, 85-200 eV Ar atoms. The angular distributions of sputtered particles are measured. A new method for molecular dynamics simulation of sputtering taking into account random crystallographic surface orientation is developed, and applied for the case under consideration. The simulations approximate experimental results well. At low energies the distributions acquire "butterfly-like" shape with lower sputtering yields for close to normal angles comparing to the cosine distribution. The energy distributions of sputtered particles were simulated. The Thompson distribution remains valid down to near-threshold 85 eV case.

  20. Microstructure Evolution and Composition Control during the Processing of Thin-gage Metallic Foil (Preprint)

    DTIC Science & Technology

    2012-02-01

    the presence of somewhat randomly-distributed carbides and borides (white particles in BSE images), this grain size was comparable to that observed...pinned by carbide/ boride particles (imaging white in Figure 8c). The very fine gamma-prime precipitates likely produced during magnetron sputtering...sputtered material. First, the carbide/ boride particles were nucleated and hence located preferentially at the grain boundaries in the sputtered

  1. Sputtering yields of carbon based materials under high particle flux with low energy

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Nagase, A.; Dairaku, M.; Akiba, M.; Araki, M.; Okumura, Y.

    1995-04-01

    A new ion source which can produce high particle flux beams at low energies has been developed. This paper presents preliminary results on the sputtering yield of the carbon fiber reinforced composites (CFCs) measured with the new ion source. The sputtering yields of 1D and 2D CFCs, which are candidate materials for the divertor armour tiles, have been measured by the weight loss method under the hydrogen and deuterium particle fluxes of 2 ˜ 7 × 10 20/m 2 s at 50 ˜ 150 eV. Preferential sputtering of the matrix was observed on CFCs which included the matrix of 40 ˜ 60 w%. The energy dependence of the sputtering yields was weak. The sputtering yields of CFCs normally irradiated with deuterium beam were from 0.073 to 0.095, and were around three times larger than those with hydrogen beam.

  2. Noncontact measurement of substrate temperature by optical low-coherence interferometry in high-power pulsed magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hattori, Katsuhiro; Ohta, Takayuki; Oda, Akinori; Kousaka, Hiroyuki

    2018-01-01

    Substrate temperature is one of the important parameters that affect the quality of deposited films. The monitoring of the substrate temperature is an important technique of controlling the deposition process precisely. In this study, the Si substrate temperature in high-power pulse magnetron sputtering (HPPMS) was measured by a noncontact method based on optical low-coherence interferometry (LCI). The measurement was simultaneously performed using an LCI system and a thermocouple (TC) as a contact measurement method. The difference in measured value between the LCI system and the TC was about 7.4 °C. The reproducibilities of measurement for the LCI system and TC were ±0.7 and ±2.0 °C, respectively. The heat influx from the plasma to the substrate was estimated using the temporal variation of substrate temperature and increased from 19.7 to 160.0 mW/cm2 with increasing target applied voltage. The major factor for the enhancement of the heat influx would be charged species such as ions and electrons owing to the high ionization degree of sputtered metal particles in HPPMS.

  3. Consistent kinetic simulation of plasma and sputtering in low temperature plasmas

    NASA Astrophysics Data System (ADS)

    Schmidt, Frederik; Trieschmann, Jan; Mussenbrock, Thomas

    2016-09-01

    Plasmas are commonly used in sputtering applications for the deposition of thin films. Although magnetron sources are a prominent choice, capacitively coupled plasmas have certain advantages (e.g., sputtering of non-conducting and/or ferromagnetic materials, aside of excellent control of the ion energy distribution). In order to understand the collective plasma and sputtering dynamics, a kinetic simulation model is helpful. Particle-in-Cell has been proven to be successful in simulating the plasma dynamics, while the Test-Multi-Particle-Method can be used to describe the sputtered neutral species. In this talk a consistent combination of these methods is presented by consistently coupling the simulated ion flux as input to a neutral particle transport model. The combined model is used to simulate and discuss the spatially dependent densities, fluxes and velocity distributions of all particles. This work is supported by the German Research Foundation (DFG) in the frame of Transregional Collaborative Research Center (SFB) TR-87.

  4. Plasmon-induced charge separation at two-dimensional gold semishell arrays on SiO2@TiO2 colloidal crystals

    NASA Astrophysics Data System (ADS)

    Wu, Ling; Nishi, Hiroyasu; Tatsuma, Tetsu

    2015-10-01

    Photoelectrodes based on plasmonic Au semishell (or halfshell) arrays are developed. A colloidal crystal consisting of SiO2@TiO2 core-shell particles is prepared on a TiO2-coated transparent electrode. A Au semishell (or halfshell) array is deposited by sputtering or evaporation on the colloidal crystal. An electrode with the semishell (or halfshell) array exhibits negative photopotential shifts and anodic photocurrents under visible light at 500-800 nm wavelengths in an aqueous electrolyte containing an electron donor. In particular, hydroquinone and ethanol are good electron donors. The photocurrents can be explained in terms of plasmon-induced charge separation at the Au-TiO2 interface.

  5. Plasmon-induced charge separation at two-dimensional gold semishell arrays on SiO{sub 2}@TiO{sub 2} colloidal crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ling; Nishi, Hiroyasu; Tatsuma, Tetsu, E-mail: tatsuma@iis.u-tokyo.ac.jp

    2015-10-01

    Photoelectrodes based on plasmonic Au semishell (or halfshell) arrays are developed. A colloidal crystal consisting of SiO{sub 2}@TiO{sub 2} core-shell particles is prepared on a TiO{sub 2}-coated transparent electrode. A Au semishell (or halfshell) array is deposited by sputtering or evaporation on the colloidal crystal. An electrode with the semishell (or halfshell) array exhibits negative photopotential shifts and anodic photocurrents under visible light at 500-800 nm wavelengths in an aqueous electrolyte containing an electron donor. In particular, hydroquinone and ethanol are good electron donors. The photocurrents can be explained in terms of plasmon-induced charge separation at the Au-TiO{sub 2} interface.

  6. Properties of barium strontium titanate and niobate nanoparticles produced in gas discharge

    NASA Astrophysics Data System (ADS)

    Plyaka, Pavel; Kazaryan, Mishik; Pavlenko, Anatoly

    2018-03-01

    Dust particles produced in the gas-discharge plasma by barium-strontium titanate and niobate targets sputtering have been investigated in the paper. Particles shape, size and chemical composition were identified. It have been established by Raman scattering investigation and X-ray structure analysis that a part of the collected dust particles retained original crystal structure of the sputtering target. For electro-physical investigations two discs were formed by pressuring from produced particles, and electrodes were deposited on disc flat surface. Capacitance and dielectric loss temperature dependences measurement resulted in the frequency range proving the ferroelectric properties of assembled nanoparticles, similar to the sputtered material.

  7. Rarefaction windows in a high-power impulse magnetron sputtering plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmucci, Maria; Britun, Nikolay; Konstantinidis, Stephanos

    2013-09-21

    The velocity distribution function of the sputtered particles in the direction parallel to the planar magnetron cathode is studied by spatially- and time-resolved laser-induced fluorescence spectroscopy in a short-duration (20 μs) high-power impulse magnetron sputtering discharge. The experimental evidence for the neutral and ionized sputtered particles to have a constant (saturated) velocity at the end of the plasma on-time is demonstrated. The velocity component parallel to the target surface reaches the values of about 5 km/s for Ti atoms and ions, which is higher that the values typically measured in the direct current sputtering discharges before. The results point outmore » on the presence of a strong gas rarefaction significantly reducing the sputtered particles energy dissipation during a certain time interval at the end of the plasma pulse, referred to as “rarefaction window” in this work. The obtained results agree with and essentially clarify the dynamics of HiPIMS discharge studied during the plasma off-time previously in the work: N. Britun, Appl. Phys. Lett. 99, 131504 (2011)« less

  8. Monte Carlo simulation of ion-neutral charge exchange collisions and grid erosion in an ion thruster

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1991-01-01

    A combined particle-in-cell (PIC)/Monte Carlo simulation model has been developed in which the PIC method is used to simulate the charge exchange collisions. It is noted that a number of features were reproduced correctly by this code, but that its assumption of two-dimensional axisymmetry for a single set of grid apertures precluded the reproduction of the most characteristic feature of actual test data; namely, the concentrated grid erosion at the geometric center of the hexagonal aperture array. The first results of a three-dimensional code, which takes into account the hexagonal symmetry of the grid, are presented. It is shown that, with this code, the experimentally observed erosion patterns are reproduced correctly, demonstrating explicitly the concentration of sputtering between apertures.

  9. Metal copper films deposited on cenosphere particles by magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Yu, Xiaozheng; Xu, Zheng; Shen, Zhigang

    2007-05-01

    Metal copper films with thicknesses from several nanometres to several micrometres were deposited on the surface of cenosphere particles by the magnetron sputtering method under different working conditions. An ultrasonic vibrating generator equipped with a conventional magnetron sputtering apparatus was used to prevent the cenosphere substrates from accumulating during film growth. The surface morphology, the chemical composition, the average grain size and the crystallization of cenosphere particles were characterized by field emission scanning electron microscopy (FE-SEM), inductively coupled plasma-atom emission spectrometer, x-ray photoelectron spectroscopy and x-ray diffraction (XRD) analysis, respectively, before and after the plating process. The results indicate that the copper films were successfully deposited on cenosphere particles. It was found from the FE-SEM results that the films were well compacted and highly uniform in thickness. The XRD results show that the copper film coated on cenospheres has a face centred cubic structure and the crystallization of the film sample increases with increasing sputtering power.

  10. Matrix Sputtering Method: A Novel Physical Approach for Photoluminescent Noble Metal Nanoclusters.

    PubMed

    Ishida, Yohei; Corpuz, Ryan D; Yonezawa, Tetsu

    2017-12-19

    Noble metal nanoclusters are believed to be the transition between single metal atoms, which show distinct optical properties, and metal nanoparticles, which show characteristic plasmon absorbance. The interesting properties of these materials emerge when the particle size is well below 2 nm, such as photoluminescence, which has potential application particularly in biomedical fields. These photoluminescent ultrasmall nanoclusters are typically produced by chemical reduction, which limits their practical application because of the inherent toxicity of the reagents used in this method. Thus, alternative strategies are sought, particularly in terms of physical approaches, which are known as "greener alternatives," to produce high-purity materials at high yields. Thus, a new approach using the sputtering technique was developed. This method was initially used to produce thin films using solid substrates; now it can be applied even with liquid substrates such as ionic liquids or polyethylene glycol as long as these liquids have a low vapor pressure. This revolutionary development has opened up new areas of research, particularly for the synthesis of colloidal nanoparticles with dimensions below 10 nm. We are among the first to apply the sputtering technique to the physical synthesis of photoluminescent noble metal nanoclusters. Although typical sputtering systems have relied on the effect of surface composition and viscosity of the liquid matrix on controlling particle diameters, which only resulted in diameters ca. 3-10 nm, that were all plasmonic, our new approach introduced thiol molecules as stabilizers inspired from chemical methods. In the chemical syntheses of metal nanoparticles, controlling the concentration ratio between metal ions and stabilizing reagents is a possible means of systematic size control. However, it was not clear whether this would be applicable in a sputtering system. Our latest results showed that we were able to generically produce a variety of photoluminescent monometallic nanoclusters of Au, Ag, and Cu, all of which showed stable emission in both solution and solid form via our matrix sputtering method with the induction of cationic-, neutral-, and anionic-charged thiol ligands. We also succeeded in synthesizing photoluminescent bimetallic Au-Ag nanoclusters that showed tunable emission within the UV-NIR region by controlling the composition of the atomic ratio by a double-target sputtering technique. Most importantly, we have revealed the formation mechanism of these unique photoluminescent nanoclusters by sputtering, which had relatively larger diameters (ca. 1-3 nm) as determined using TEM and stronger emission quantum yield (max. 16.1%) as compared to typical photoluminescent nanoclusters prepared by chemical means. We believe the high tunability of sputtering systems presented here has significant advantages for creating novel photoluminescent nanoclusters as a complementary strategy to common chemical methods. This Account highlights our journey toward understanding the photophysical properties and formation mechanism of photoluminescent noble metal nanoclusters via the sputtering method, a novel strategy that will contribute widely to the body of scientific knowledge of metal nanoparticles and nanoclusters.

  11. Dusty waves and vortices in rf magnetron discharge plasma

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Pal, A. F.; Ryabinkin, A. N.; Serov, A. O.; Shugaev, F. V.

    2018-01-01

    The appearance and subsequent growth of metallic particles in plasma of planar rf magnetron sputter were observed. The origin of the particles is sputtering of the rf electrode by ion flux from the plasma. In some regions of formed dust cloud the particles were involved in the horizontal or vertical circular movement. The horizontal rotation along the sputtered track in the cyclotron drift direction was observed close to the main magnetron plasma. The torus-shaped dust vortex ring engirdled the secondary plasma of the discharge at height of a few centimeters over the electrode. Close to this region particle density waves propagated through the cloud. The possible role of discharge plasma azimuthal inhomogeneity and gas dynamics effects in the forming the observed structures was considered.

  12. Unusual photoelectric behaviors of Mo-doped TiO2 multilayer thin films prepared by RF magnetron co-sputtering: effect of barrier tunneling on internal charge transfer

    NASA Astrophysics Data System (ADS)

    Yan, B. X.; Luo, S. Y.; Mao, X. G.; Shen, J.; Zhou, Q. F.

    2013-01-01

    Mo-doped TiO2 multilayer thin films were prepared by RF magnetron co-sputtering. Microstructures, crystallite parameters and the absorption band were investigated with atomic force microscopy, X-ray diffraction and ultraviolet-visible spectroscopy. Internal carrier transport characteristics and the photoelectric property of different layer-assemble modes were examined on an electrochemical workstation under visible light. The result indicates that the double-layer structure with an undoped surface layer demonstrated a red-shifted absorption edge and a much stronger photocurrent compared to the uniformly doped sample, signifying that the electric field implanted at the interface between particles in different layers accelerated internal charge transfer effectively. However, a heavily doped layer implanted at the bottom of the three-layer film merely brought about negative effects on the photoelectric property, mainly because of the Schottky junction existing above the substrate. Nevertheless, this obstacle was successfully eliminated by raising the Mo concentration to 1020 cm-3, where the thickness of the depletion layer fell into the order of angstroms and the tunneling coefficient manifested a dramatic increase. Under this circumstance, the Schottky junction disappeared and the strongest photocurrent was observed in the three-layer film.

  13. A new setup for experimental investigations of solar wind sputtering

    NASA Astrophysics Data System (ADS)

    Szabo, Paul S.; Berger, Bernhard M.; Chiba, Rimpei; Stadlmayr, Reinhard; Aumayr, Friedrich

    2017-04-01

    The surfaces of Mercury and Moon are not shielded by a thick atmosphere and therefore they are exposed to bombardment by charged particles, ultraviolet photons and micrometeorites. These influences lead to an alteration and erosion of the surface, and the emitted atoms and molecules form a thin atmosphere, an exosphere, around these celestial bodies [1]. The composition of these exospheres is connected to the surface composition and has been subject to flyby measurements by satellites. Model calculations which include the erosion mechanisms can be used as a method of comparison for such exosphere measurements and allow conclusions about the surface composition. Surface sputtering induced by solar wind ions hereby represents a major contribution to the erosion of the surfaces of Mercury and Moon [1]. However, the experimental database for sputtering of respective analogue materials by solar wind ions, which would be necessary for exact modelling of the space weathering process, is still in its early stages. Sputtering experiments have been performed at TU Wien during the past years using a quartz crystal microbalance (QCM) technique [2]. Target material is deposited on the quartz surface as a thin layer and the quartz's resonance frequency is measured under ion bombardment. The sputter yield can then be calculated from the frequency change and the ion current [2]. In order to remove the restrictions of a thin layer QCM target and simplify experiments with composite targets, a new QCM catcher setup was developed. In the new design, the QCM is placed beside the target holder and acts as a catcher for material that is sputtered from the target surface. By comparing the catcher signal to reference measurements and SDTrimSP simulations [3], the target sputter yield can be determined. In order to test the setup, we have performed experiments with a Au-coated QCM target under 2 keV Ar+ bombardment so that both the mass changes at the target and at the catcher could be obtained simultaneously. The results coincide very well with SDTrimSP predictions showing the feasibility of the new design [4]. Furthermore, Fe-coated QCM targets with different surface roughness were investigated in the new setup. The surface roughness represents a key factor for the solar wind induced erosion of planetary or lunar rocks. It has a strong influence on the absolute sputtering yield as well as on the spatial distribution of sputtered particles and was therefore investigated. As a next step, sputtering experiments with Mercury or Moon analogues will be conducted. Knowledge gained in the course of this research will enhance the understanding of surface sputtering by solar wind ions and used to improve theoretical models of the Mercury's and Moon's exosphere formation. References: [1] E. Kallio, et al., Planetary and Space Science, 56, 1506 (2008). [2] G. Hayderer, et al., Review of Scientific Instruments, 70, 3696 (1999). [3] A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, SDTrimSP: Version 5.00, IPP Report, 12/8, (2011). [4] B. M. Berger, P. S. Szabo, R. Stadlmayr, F. Aumayr, Nucl. Instrum. Meth. Phys. Res. B, doi: 10.1016/j.nimb.2016.11.039

  14. Space Weathering Impact on Solar System Surfaces and Planetary Mission Science

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2011-01-01

    We often look "through a glass, darkly" at solar system bodies with tenuous atmospheres and direct surface exposure to the local space environment. Space weathering exposure acts via universal space-surface interaction processes to produce a thin patina of outer material covering, potentially obscuring endogenic surface materials of greatest interest for understanding origins and interior evolution. Examples of obscuring exogenic layers are radiation crusts on cometary nuclei and iogenic components of sulfate hydrate deposits on the trailing hemisphere of Europa. Weathering processes include plasma ion implantation into surfaces, sputtering by charged particles and solar ultraviolet photons, photolytic chemistry driven by UV irradiation, and radiolytic chemistry evolving from products of charged particle irradiation. Regolith structure from impacts, and underlying deeper structures from internal evolution, affects efficacy of certain surface interactions, e.g. sputtering as affected by porosity and surface irradiation dosage as partly attenuated by local topographic shielding. These processes should be regarded for mission science planning as potentially enabling, e.g. since direct surface sputtering, and resultant surface-bound exospheres, can provide in-situ samples of surface composition to ion and neutral mass spectrometers on orbital spacecraft. Sample return for highest sensitivity compOSitional and structural analyses at Earth will usually be precluded by limited range of surface sampling, long times for return, and high cost. Targeted advancements in instrument technology would be more cost efficient for local remote and in-situ sample analysis. More realistic laboratory simulations, e.g. for bulk samples, are needed to interpret mission science observations of weathered surfaces. Space environment effects on mission spacecraft and science operations must also be specified and mitigated from the hourly to monthly changes in space weather and from longer term (e.g., solar cycle) evolution of space climate. Capable instrumentation on planetary missions can and should be planned to contribute to knowledge of interplanetary space environments. Evolving data system technologies such as virtual observatories should be explored for more interdisciplinary application to the science of planetary surface, atmospheric, magnetospheric, and interplanetary interactions.

  15. Low energy high angular resolution neutral atom detection by means of micro-shuttering techniques: the BepiColombo SERENA/ELENA unit development

    NASA Astrophysics Data System (ADS)

    Orsini, S.; di Lellis, A. M.; Milillo, A.; Selci, S.; Leoni, R.; Dandouras, I.

    2009-04-01

    ELENA (Emitted Low-Energy Neutral Atoms) is a Time-of-Flight (ToF) system, based on oscillating shutter (operated at frequencies up to a 100 kHz) and mechanical gratings devoted to sputtering emission from planetary surfaces, from E ~20 eV up to E ~5 keV. This new kind of low energetic neutral atoms instrument is one of the four units of the SERENA experiment for the ESA cornerstone BepiColombo mission to Mercury. The low energetic neutral particles that are likely to be detected by ELENA come primarily from ion-sputtering process, and secondarily from back-scattering and from charge exchange. ELENA will resolve intensity, velocity and direction of the incoming particle flux: the entrance of the start section (an aperture of about 1 cm2consisting of two self-standing silicon nitride (Si3N4) membranes, patterned with arrays of long and narrow openings) allows the impinging neutral particles to enter through the shuttering system with a definite timing. Particles are then flown in a ToF chamber, and finally detected by a 1-dimensional array composed by MCPs and a discrete anodes set corresponding to a Field of View (FOV) of 4.5"x76", allowing the reconstruction of both velocity and direction of the incoming events. This poster will present the new results of the ELENA development in the frame of the scientific items, instrument simulation, laboratory activity and testing. In particular, the ELENA input section and shuttering system will be reported (new deflector system, shuttering functionality test, membranes VUV optical proprieties and particle beam interactions).

  16. Investigation of ion-beam machining methods for replicated x-ray optics

    NASA Technical Reports Server (NTRS)

    Drueding, Thomas W.

    1996-01-01

    The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and accelerate ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drueding, T.W.

    The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and acceleratemore » ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.« less

  18. In-situ observation of sputtered particles for carbon implanted tungsten during energetic isotope ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oya, Y.; Sato, M.; Uchimura, H.

    2015-03-15

    Tungsten is a candidate for plasma facing materials in future fusion reactors. During DT plasma operations, carbon as an impurity will bombard tungsten, leading to the formation of tungsten-carbon (WC) layer and affecting tritium recycling behavior. The effect of carbon implantation for the dynamic recycling of deuterium, which demonstrates tritium recycling, including retention and sputtering, has been investigated using in-situ sputtered particle measurements. The C{sup +} implanted W, WC and HOPG were prepared and dynamic sputtered particles were measured during H{sub 2}{sup +} irradiation. It has been found that the major hydrocarbon species for C{sup +} implanted tungsten is CH{submore » 3}, while for WC and HOPG (Highly Oriented Pyrolytic Graphite) it is CH{sub 4}. The chemical state of hydrocarbon is controlled by the H concentration in a W-C mixed layer. The amount of C-H bond and the retention of H trapped by carbon atom should control the chemical form of hydrocarbon sputtered by H{sub 2}{sup +} irradiation and the desorption of CH{sub 3} and CH{sub 2} are due to chemical sputtering, although that for CH is physical sputtering. The activation energy for CH{sub 3} desorption has been estimated to be 0.4 eV, corresponding to the trapping process of hydrogen by carbon through the diffusion in W. It is concluded that the chemical states of hydrocarbon sputtered by H{sub 2}{sup +} irradiation for W is determined by the amount of C-H bond on the W surface. (authors)« less

  19. Sputtered Pd as hydrogen storage for a chip-integrated microenergy system.

    PubMed

    Slavcheva, E; Ganske, G; Schnakenberg, U

    2014-01-01

    The work presents a research on preparation and physical and electrochemical characterisation of dc magnetron sputtered Pd films envisaged for application as hydrogen storage in a chip-integrated hydrogen microenergy system. The influence of the changes in the sputtering pressure on the surface structure, morphology, and roughness was analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AMF). The electrochemical activity towards hydrogen adsorption/desorption and formation of PdH were investigated in 0.5 M H2SO4 using the methods of cyclic voltammetry and galvanostatic polarisation. The changes in the electrical properties of the films as a function of the sputtering pressure and the level of hydrogenation were evaluated before and immediately after the electrochemical charging tests, using a four-probe technique. The research resulted in establishment of optimal sputter regime, ensuring fully reproducible Pd layers with highly developed surface, moderate porosity, and mechanical stability. Selected samples were integrated as hydrogen storage in a newly developed unitized microenergy system and tested in charging (water electrolysis) and discharging (fuel cell) operative mode at ambient conditions demonstrating a stable recycling performance.

  20. Experimental Investigation of Neutral Species from Micrometeoroid Bombardment

    NASA Astrophysics Data System (ADS)

    Collette, A.; Sternovsky, Z.; Rocha, J. R.; Munsat, T. L.; Horanyi, M.

    2014-12-01

    Surface-boundary exospheres exist in a balance between source and loss processes. An important area of uncertainty, highlighted by the MESSENGER observations of Mg and Ca at Mercury, and the recently concluded LADEE observations at the Moon, is the role of micrometeoroid bombardment as a source process for liberating surface species. Unlike sputtering or photon stimulated desorption processes, the physics of micrometeoroid impacts are still poorly understood; in particular, no comprehensive model exists to predict partitioning of impact products between ejecta fragments, charged particles, and neutrals. We present initial experiments at the IMPACT dust accelerator facility (University of Colorado Boulder) aimed at directly measuring the fraction of neutral species liberated in micrometeoroid impacts. Simulated micrometeoroids (micron- and submicron-sized iron spheres) are fired at targets containing refractory elements, including fused silica (SiO2), sapphire (Al2O3), and magnesium fluoride (MgF2). Total quantities of specific impact-generated neutral species are measured using a mass spectrometer, as a function of impactor speed and mass, and compared with well-established scaling laws for charged particle production.

  1. Estimates of Sputter Yields of Solar-Wind Heavy Ions of Lunar Regolith Materials

    NASA Technical Reports Server (NTRS)

    Barghouty, Abdulmasser F.; Adams, James H., Jr.

    2008-01-01

    At energies of approximately 1 keV/amu, solar-wind protons and heavy ions interact with the lunar surface materials via a number of microscopic interactions that include sputtering. Solar-wind induced sputtering is a main mechanism by which the composition of the topmost layers of the lunar surface can change, dynamically and preferentially. This work concentrates on sputtering induced by solar-wind heavy ions. Sputtering associated with slow (speeds the electrons speed in its first Bohr orbit) and highly charged ions are known to include both kinetic and potential sputtering. Potential sputtering enjoys some unique characteristics that makes it of special interest to lunar science and exploration. Unlike the yield from kinetic sputtering where simulation and approximation schemes exist, the yield from potential sputtering is not as easy to estimate. This work will present a preliminary numerical scheme designed to estimate potential sputtering yields from reactions relevant to this aspect of solar-wind lunar-surface coupling.

  2. Modeling of hydrocarbon sputtering in Tore Supra

    NASA Astrophysics Data System (ADS)

    Hogan, J.; Gauthier, E.; Cambe, A.; Layet, J.-M.

    2002-11-01

    The use of carbon in fusion devices introduces problems of erosion and tritium retention which are related to chemical sputtering. The in-situ chemical sputtering yield of carbon has recently been measured in a well-diagnosed SOL plasma near the neutralizer plate in the Tore-Supra Outboard Pump Limiter. Methane and heavier hydrocarbon (C2DX and C3DY) emission has been measured in ohmic and lower hybrid heated discharges, using mass and optical molecular spectroscopy [1]. The Monte Carlo code BBQ has been used both to validate the method used to obtain the sputtering yields, and for direct comparison with available values reported for accelerator-based sputtering yields. A comparison with predicted surface temperature and particle flux dependence is also presented, for both CD4 and the heavier hydrocarbon yields. The particle flux dependence comparison is found to be complex, since changes in mean free path also accompany variation in particle flux. For the temperature dependence of methane erosion, the Roth annealing model is found to provide a better fit than the hydrogenation-moderated model. [1] A. Cambe, thesis, 2002; ORNL: Supported by U.S.DOE Contract DE-AC05-00OR22725

  3. Kinetic and potential sputtering of an anorthite-like glassy thin film

    DOE PAGES

    Hijazi, H.; Bannister, M. E.; Meyer, H. M.; ...

    2017-07-28

    In this paper, we present measurements of He + and He +2 ion-induced sputtering of an anorthite-like thin film at a fixed solar wind-relevant impact energy of ~0.5 keV/amu using a quartz crystal microbalance approach (QCM) for determination of total absolute sputtering yields. He +2 ions are the most abundant multicharged ions in the solar wind, and increased sputtering by these ions in comparison to equivelocity He + ions is expected to have the biggest effect on the overall sputtering efficiency of solar wind impact on the Moon. These measurements indicate an almost 70% increase of the sputtering yield formore » doubly charged incident He ions compared to that for same velocity He + impact (14.6 amu/ion for He +2 vs. 8.7 amu/ion for He+). Using a selective sputtering model, the new QCM results presented here, together with previously published results for Ar +q ions and SRIM results for the relevant kinetic-sputtering yields, the effect due to multicharged-solar-wind-ion impact on local near-surface modification of lunar anorthite-like soil is explored. It is shown that the multicharged-solar-wind component leads to a more pronounced and significant differentiation of depleted and enriched surface elements as well as a shortening of the timescale over which such surface-compositional modifications might occur in astrophysical settings. Additionally, to validate previous and future determinations of multicharged-ion-induced sputtering enhancement for those cases where the QCM approach cannot be used, relative quadrupole mass spectrometry (QMS)-based measurements are presented for the same anorthite-like thin film as were investigated by QCM, and their suitability and limitations for charge state-enhanced yield measurements are discussed.« less

  4. Kinetic and potential sputtering of an anorthite-like glassy thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hijazi, H.; Bannister, M. E.; Meyer, H. M.

    In this paper, we present measurements of He + and He +2 ion-induced sputtering of an anorthite-like thin film at a fixed solar wind-relevant impact energy of ~0.5 keV/amu using a quartz crystal microbalance approach (QCM) for determination of total absolute sputtering yields. He +2 ions are the most abundant multicharged ions in the solar wind, and increased sputtering by these ions in comparison to equivelocity He + ions is expected to have the biggest effect on the overall sputtering efficiency of solar wind impact on the Moon. These measurements indicate an almost 70% increase of the sputtering yield formore » doubly charged incident He ions compared to that for same velocity He + impact (14.6 amu/ion for He +2 vs. 8.7 amu/ion for He+). Using a selective sputtering model, the new QCM results presented here, together with previously published results for Ar +q ions and SRIM results for the relevant kinetic-sputtering yields, the effect due to multicharged-solar-wind-ion impact on local near-surface modification of lunar anorthite-like soil is explored. It is shown that the multicharged-solar-wind component leads to a more pronounced and significant differentiation of depleted and enriched surface elements as well as a shortening of the timescale over which such surface-compositional modifications might occur in astrophysical settings. Additionally, to validate previous and future determinations of multicharged-ion-induced sputtering enhancement for those cases where the QCM approach cannot be used, relative quadrupole mass spectrometry (QMS)-based measurements are presented for the same anorthite-like thin film as were investigated by QCM, and their suitability and limitations for charge state-enhanced yield measurements are discussed.« less

  5. Kinetic and potential sputtering of an anorthite-like glassy thin film

    NASA Astrophysics Data System (ADS)

    Hijazi, H.; Bannister, M. E.; Meyer, H. M.; Rouleau, C. M.; Meyer, F. W.

    2017-07-01

    In this paper, we present measurements of He+ and He+2 ion-induced sputtering of an anorthite-like thin film at a fixed solar wind-relevant impact energy of 0.5 keV/amu using a quartz crystal microbalance approach (QCM) for determination of total absolute sputtering yields. He+2 ions are the most abundant multicharged ions in the solar wind, and increased sputtering by these ions in comparison to equivelocity He+ ions is expected to have the biggest effect on the overall sputtering efficiency of solar wind impact on the Moon. Our measurements indicate an almost 70% increase of the sputtering yield for doubly charged incident He ions compared to that for same velocity He+ impact (14.6 amu/ion for He+2 vs. 8.7 amu/ion for He+). Using a selective sputtering model, the new QCM results presented here, together with previously published results for Ar+q ions and SRIM results for the relevant kinetic-sputtering yields, the effect due to multicharged-solar-wind-ion impact on local near-surface modification of lunar anorthite-like soil is explored. It is shown that the multicharged-solar-wind component leads to a more pronounced and significant differentiation of depleted and enriched surface elements as well as a shortening of the timescale over which such surface-compositional modifications might occur in astrophysical settings. In addition, to validate previous and future determinations of multicharged-ion-induced sputtering enhancement for those cases where the QCM approach cannot be used, relative quadrupole mass spectrometry (QMS)-based measurements are presented for the same anorthite-like thin film as were investigated by QCM, and their suitability and limitations for charge state-enhanced yield measurements are discussed.

  6. Ultrasonic Remove of Particle Aggregation in Carbon Based Counter Electrodes for Dye-Sensitized Solar Cells.

    PubMed

    Yang, Pan; Hu, Zi-Jun; Lin, Hong; Lai, Xin-Chun; Zhao, Xiao-Chong; Yang, Li-Jun

    2018-06-01

    Low-cost carbon materials (carbon black and graphite power) were applied as substitution of platinum (Pt) in counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). Three fabrication methods, such as ball-milled, pulp-refined, and ultrasonic-crushed, were applied to remove the particle aggregation in the carbon pastes. Then the carbon based pastes were printed on fluorine-doped transparent conducting oxide (FTO) glasses, used as the CEs for DSSCs. Under illumination of 100 mW/cm2, DSSCs with ultrasonic-crushed CEs (U-CEs) show an energy conversion efficiency of 3.57%, which reach to 65.38% of that with conventional sputtered platinum CEs (5.46%). In addition, U-CEs exhibit a higher catalytic activity and a faster charge transfer rate toward the reduction of I-3 to I-.

  7. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    NASA Astrophysics Data System (ADS)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; de los Arcos, Teresa; Benedikt, Jan; von Keudell, Achim

    2013-10-01

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP).

  8. Sputtering of water ice films: A re-assessment with singly and doubly charged oxygen and argon ions, molecular oxygen, and electrons

    NASA Astrophysics Data System (ADS)

    Galli, A.; Vorburger, A.; Wurz, P.; Tulej, M.

    2017-07-01

    We studied the erosion rates from thin water ice films on a microbalance upon irradiation with ions (O+, O2+, O2+ , Ar+ , and Ar2+) and electrons at energies between 0.1 keV and 80 keV. The results with O+ and Ar+ irradiation confirm previous results of other research groups that relied on the same experiment set-up. In addition, we assessed how the ice film thickness affects the results and we compared the results for singly versus doubly charged ions and for O+ versus O2+ ions. The irradiation with 1 keV and 3 keV electrons offer the first experimental results at these energies. Our results confirm theoretical predictions that the yield per impacting electron does not increase with energy ad infinitum but rather levels off between 0.1 and 1 keV. The results for ion and electron sputtering have important implications for atmosphere-less icy bodies in a plasma environment. We briefly discuss the implications for the icy moons of Jupiter. Finally, the experiments also allow us to assess the viability of two methods to measure the erosion rate in the case that the icy sample cannot be attached on a microbalance. This is an important step for future laboratory studies where regolith ice samples and their reaction to particle irradiation are to be characterized.

  9. In2Ga2ZnO7 oxide semiconductor based charge trap device for NAND flash memory.

    PubMed

    Hwang, Eun Suk; Kim, Jun Shik; Jeon, Seok Min; Lee, Seung Jun; Jang, Younjin; Cho, Deok-Yong; Hwang, Cheol Seong

    2018-04-01

    The programming characteristics of charge trap flash memory device adopting amorphous In 2 Ga 2 ZnO 7 (a-IGZO) oxide semiconductors as channel layer were evaluated. Metal-organic chemical vapor deposition (MOCVD) and RF-sputtering processes were used to grow a 45 nm thick a-IGZO layer on a 20 nm thick SiO 2 (blocking oxide)/p ++ -Si (control gate) substrate, where 3 nm thick atomic layer deposited Al 2 O 3 (tunneling oxide) and 5 nm thick low-pressure CVD Si 3 N 4 (charge trap) layers were intervened between the a-IGZO and substrate. Despite the identical stoichiometry and other physicochemical properties of the MOCVD and sputtered a-IGZO, a much faster programming speed of MOCVD a-IGZO was observed. A comparable amount of oxygen vacancies was found in both MOCVD and sputtered a-IGZO, confirmed by x-ray photoelectron spectroscopy and bias-illumination-instability test measurements. Ultraviolet photoelectron spectroscopy analysis revealed a higher Fermi level (E F ) of the MOCVD a-IGZO (∼0.3 eV) film than that of the sputtered a-IGZO, which could be ascribed to the higher hydrogen concentration in the MOCVD a-IGZO film. Since the programming in a flash memory device is governed by the tunneling of electrons from the channel to charge trapping layer, the faster programming performance could be the result of a higher E F of MOCVD a-IGZO.

  10. In2Ga2ZnO7 oxide semiconductor based charge trap device for NAND flash memory

    NASA Astrophysics Data System (ADS)

    Hwang, Eun Suk; Kim, Jun Shik; Jeon, Seok Min; Lee, Seung Jun; Jang, Younjin; Cho, Deok-Yong; Hwang, Cheol Seong

    2018-04-01

    The programming characteristics of charge trap flash memory device adopting amorphous In2Ga2ZnO7 (a-IGZO) oxide semiconductors as channel layer were evaluated. Metal-organic chemical vapor deposition (MOCVD) and RF-sputtering processes were used to grow a 45 nm thick a-IGZO layer on a 20 nm thick SiO2 (blocking oxide)/p++-Si (control gate) substrate, where 3 nm thick atomic layer deposited Al2O3 (tunneling oxide) and 5 nm thick low-pressure CVD Si3N4 (charge trap) layers were intervened between the a-IGZO and substrate. Despite the identical stoichiometry and other physicochemical properties of the MOCVD and sputtered a-IGZO, a much faster programming speed of MOCVD a-IGZO was observed. A comparable amount of oxygen vacancies was found in both MOCVD and sputtered a-IGZO, confirmed by x-ray photoelectron spectroscopy and bias-illumination-instability test measurements. Ultraviolet photoelectron spectroscopy analysis revealed a higher Fermi level (E F) of the MOCVD a-IGZO (∼0.3 eV) film than that of the sputtered a-IGZO, which could be ascribed to the higher hydrogen concentration in the MOCVD a-IGZO film. Since the programming in a flash memory device is governed by the tunneling of electrons from the channel to charge trapping layer, the faster programming performance could be the result of a higher E F of MOCVD a-IGZO.

  11. Sputtered Pd as Hydrogen Storage for a Chip-Integrated Microenergy System

    PubMed Central

    Slavcheva, E.; Ganske, G.; Schnakenberg, U.

    2014-01-01

    The work presents a research on preparation and physical and electrochemical characterisation of dc magnetron sputtered Pd films envisaged for application as hydrogen storage in a chip-integrated hydrogen microenergy system. The influence of the changes in the sputtering pressure on the surface structure, morphology, and roughness was analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AMF). The electrochemical activity towards hydrogen adsorption/desorption and formation of PdH were investigated in 0.5 M H2SO4 using the methods of cyclic voltammetry and galvanostatic polarisation. The changes in the electrical properties of the films as a function of the sputtering pressure and the level of hydrogenation were evaluated before and immediately after the electrochemical charging tests, using a four-probe technique. The research resulted in establishment of optimal sputter regime, ensuring fully reproducible Pd layers with highly developed surface, moderate porosity, and mechanical stability. Selected samples were integrated as hydrogen storage in a newly developed unitized microenergy system and tested in charging (water electrolysis) and discharging (fuel cell) operative mode at ambient conditions demonstrating a stable recycling performance. PMID:24516356

  12. Enhanced spin-dependent charge transport of Co-(Al-fluoride) granular nanocomposite by co-separate sputtering

    NASA Astrophysics Data System (ADS)

    Cao, Yang; Kobayashi, Nobukiyo; Zhang, Yi-Wen; Ohnuma, Shigehiro; Masumoto, Hiroshi

    2017-10-01

    Spin-dependent charge transport behavior involving the recently discovered tunnel-type magneto-dielectric (TMD) and magnetoresistance (TMR) effects was studied in Co-(Al-fluoride) granular nanocomposites. By setting a changeable partition height (t = 1-4 cm) on a substrate holder in a conventional co-sputtering (CS) deposition system, we developed a co-separate sputtering (CSS) method to fabricate Co-(Al-F) granular nanocomposites. XPS analysis shows that the Al content remains balanced between the Al metal and Al-F compounds by controlling t. This phenomenon can be attributed to the magnetron plasma interference from the two target sources. Fittings between TMR and normalized magnetization suggest that the CSS films with clear granular structures may have high spin polarization. Compared with the CS samples (t = 0 cm), the CSS films with t = 4 cm show enhanced charge transport properties with a maximum TMD ratio (0.5%) and TMR ratio (7.2%) under a magnetic field of H = 10 kOe. This study demonstrates that the Al-F tunnel barrier between Co granules plays an essential role in controlling the charge transport behavior and will be of significance for applications in field sensors and impedance-tunable devices with large magnetic-field response.

  13. Saturn's E, G, and F rings - Modulated by the plasma sheet?

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Gruen, E.; Johnson, T. V.

    1983-01-01

    Saturn's broad E ring, the narrow G ring, and the structured and apparently time-variable F ring(s) contain many micron and submicron-sized particles, which make up the 'visible' component. These rings (or ring systems) are in direct contact with magnetospheric plasma. Fluctuations in the plasma density and/or mean energy, due to magnetospheric and solar wind processes, may induce stochastic charge variations on the dust particles, which in turn lead to an orbit perturbation and spatial diffusion. In addition, Coulomb drag forces may be important, in particular for the E ring. The possibility that electromagnetic effects may play a role in determining the F ring structure and its possible time variations is critically examined. Sputtering of micron-sized dust particles in the E ring by magnetospheric ions yields lifetimes of 100 to 10,000 years. This effect as well as the plasma induced transport processes require an active source for the E ring, probably Enceladus.

  14. Chemically induced porosity on BiVO4 films produced by double magnetron sputtering to enhance the photo-electrochemical response.

    PubMed

    Thalluri, Sitaramanjaneya Mouli; Rojas, Roberto Mirabal; Rivera, Osmary Depablos; Hernández, Simelys; Russo, Nunzio; Rodil, Sandra Elizabeth

    2015-07-21

    Double magnetron sputtering (DMS) is an efficient system that is well known because of its precise control of the thin film synthesizing process over any kind of substrate. Here, DMS has been adopted to synthesize BiVO4 films over a conducting substrate (FTO), using metallic vanadium and ceramic Bi2O3 targets simultaneously. The films were characterized using different techniques, such as X-ray diffraction (XRD), UV-Vis spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and profilometry. The photo-electrochemical analysis was performed using linear scan voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS) under the illumination of simulated solar light at 1 Sun. The photocurrent density of the sputtered BiVO4 thin films could be improved from 0.01 mA cm(-2) to 1.19 mA cm(-2) at 1.23 V vs. RHE by chemical treatment using potassium hydroxide (KOH). The effect of KOH was the removal of impurities from the grain boundaries, leading to a more porous structure and more pure crystalline monoclinic BiVO4 particles. Such variations in the microstructure as well as the improvement of the charge transfer properties of the BiVO4 film after the KOH treatment were confirmed and studied in depth by EIS analysis.

  15. Reduced atomic shadowing in HiPIMS: Role of the thermalized metal ions

    NASA Astrophysics Data System (ADS)

    Oliveira, João Carlos; Ferreira, Fábio; Anders, André; Cavaleiro, Albano

    2018-03-01

    In magnetron sputtering, the ability to tailor film properties depends primarily on the control of the flux of particles impinging on the growing film. Among deposition mechanisms, the shadowing effect leads to the formation of a rough surface and a porous, columnar microstructure. Re-sputtered species may be re-deposited in the valleys of the films surface and thereby contribute to a reduction of roughness and to fill the underdense regions. Both effects are non-local and they directly compete to shape the final properties of the deposited films. Additional control of the bombarding flux can be obtained by ionizing the sputtered flux, because ions can be controlled with respect to their energy and impinging direction, such as in High-Power Impulse Magnetron Sputtering (HiPIMS). In this work, the relation between ionization of the sputtered species and thin film properties is investigated in order to identify the mechanisms which effectively influence the shadowing effect in Deep Oscillation Magnetron Sputtering (DOMS), a variant of HiPIMS. The properties of two Cr films deposited using the same averaged target power by d.c. magnetron sputtering and DOMS have been compared. Additionally, the angle distribution of the Cr species impinging on the substrate was simulated using Monte Carlo-based programs while the energy distribution of the energetic particles bombarding the substrate was evaluated by energy-resolved mass analysis. It was found that the acceleration of the thermalized chromium ions at the substrate sheath in DOMS significantly reduces the high angle component of their impinging angle distribution and, thus, efficiently reduces atomic shadowing. Therefore, a high degree of ionization in HiPIMS results in almost shadowing effect-free film deposition and allows us to deposit dense and compact films without the need of high energy particle bombardment during growth.

  16. Carbon distribution profiles in lunar fines

    NASA Technical Reports Server (NTRS)

    Hart, R. K.

    1977-01-01

    Radial distribution profiles of elemental carbon in lunar soils consisting of particles in the size range of 50 to 150 microns were investigated. Initial experiments on specimen preparation and the analysis of prepared specimens by Auger electron spectrometry (AES) and scanning electron microscopy (SEM) are described. Results from splits of samples 61501,84 and 64421,11, which were mounted various ways in several specimen holders, are presented. A low carbon content was observed in AES spectra from soil particles that were subjected to sputter-ion cleaning with 960eV argon ions for periods of time up to a total exposure for one hour. This ion charge was sufficient to remove approximately 70 nm of material from the surface. All of the physically adsorbed carbon (as well as water vapor, etc.) would normally be removed in the first few minutes, leaving only carbon in the specimen, and metal support structure, to be detected thereafter.

  17. The Plasma Environment at Enceladus

    NASA Astrophysics Data System (ADS)

    Rymer, Abigail; Morooka, Michiko; Persoon, Ann

    2016-10-01

    The plasma environment near Enceladus is complex. The well documented Enceladus plumes create a dusty, asymmetric exosphere in which electrons can attach to small ice particles - forming anions, and negatively charged nanograins and dust - to the extent that cations can be the lightest charged particles present and, as a result, the dominant current carriers. Several instruments on the Cassini spacecraft are able to measure this environment in both expected and unexpected ways. Cassini Plasma Spectrometer (CAPS) is designed and calibrated to measure the thermal plasma ions and electrons and also measures the energy/charge of charged nanograins when present. Cassini Radio Plasma Wave Sensor (RPWS) measures electron density as derived from the 'upper hybrid frequency' which is a function of the total free electron density and magnetic field strength and provides a vital ground truth measurement for Cassini calibration when the density is sufficiently high for it to be well measured. Cassini Langmuir Probe (LP) measures the electron density and temperature via direct current measurement, and both CAPS and LP can provide estimates for the spacecraft potential which we compare. Cassini Magnetospheric Imaging Instrument (MIMI) directly measures energetic particles that are manifest in the CAPS measurements as penetrating background in this region and, while not particularly efficient ionisers, create sputtering and surface weathering of Enceladus surface, MIMI also measures energetic neutral atoms produced during the charge exchange interactions in and near the plumes.In this presentation we exploit two almost identical Cassini-Enceladus flybys 'E17' and 'E18' which took place in March/April 2012. We present a detailed comparison of data from these Cassini sensors in order to assess the plasma environment observed by the different instruments, discuss what is consistent and otherwise, and the implications for the plasma environment at Enceladus in the context of work to date as well as implications for future studies.

  18. Photoluminescence and charge-transport characteristics of nano-columnar titanium dioxide films prepared by rf-sputtering on alumina templates

    NASA Astrophysics Data System (ADS)

    Kheirandish, E.; Hosseini, T.; Yavarishad, N.; King, S.; Kouklin, N.

    2018-02-01

    The current study presents the synthesis and characterization of poly-crystalline TiO2 thin-film prepared by rf-sputtering on top of a highly regimented nanoporous Au-coated Al2O3 substrate. The film’s physical and electronic properties were characterized via SEM, EDS, x-ray diffraction and RAMAN spectroscopy as well as temperature dependent photoluminescence (PL) and I-V measurements. The films feature a 1D, columnar-like structure and exhibit a medium strength, spectrally-broad light emission in the UV-visible range. PL emission shows a weak T-dependence and is attributed to interband electronic transitions and defect-assisted radiative recombinations. The charge transport is confirmed to be polaronic in nature with both thermally-assisted hopping and quantum mechanical tunneling regulating a charge flow within the columns in the intermediate temperature regime of ˜200-320 K. These results open a door to utilizing nano-textured substrates/scaffolds to produce electronic-grade anatase TiO2 by sputtering for advanced opto-electronic device applications.

  19. Surface characterization of hydrogen charged and uncharged alpha-2 and gamma titanium aluminide alloys using AES and REELS

    NASA Technical Reports Server (NTRS)

    Shanabarger, M. R.

    1990-01-01

    The surfaces of selected uncharged and hydrogen charged alpha-2 and gamma titanium aluminide alloys with Nb additions were characterized by Auger electron (AES) and reflected electron energy loss (REELS) spectroscopy. The alloy surfaces were cleaned before analysis at room temperature by ion sputtering. The low energy (500 eV) ion sputtering process preferentially sputtered the surface concentration. The surface concentrations were determined by comparing AES data from the alloys with corresponding data from elemental references. No differences were observed in the Ti or Nb Auger spectra for the uncharged and hydrogen charged alloys, even though the alpha-2 alloy had 33.4 atomic percent dissolved hydrogen. Also, no differences were observed in the AES spectra when hydrogen was adsorbed from the gas phase. Bulk plasmon energy shifts were observed in all alloys. The energy shifts were induced either by dissolved hydrogen (alpha-2 alloy) or hydrogen adsorbed from the gas phase (alpha-2 and gamma alloys). The adsorption induced plasmon energy shifts were greatest for the gamma alloy and cp-Ti metal.

  20. Pulsed-DC selfsputtering of copper

    NASA Astrophysics Data System (ADS)

    Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.

    2008-03-01

    At standard magnetron sputtering conditions (argon pressure ~0.5 Pa) inert gas particles are often entrapped in the formed films. Inert gas contamination can be eliminated by using the self-sustained magnetron sputtering process because it is done in the absence of the inert gas atmosphere. The self-sustained sputtering (SSS) gives also a unique condition during the transport of sputtered particles to the substrate. It is especially useful for filling high aspect ratio submicron scale structures for microelectronics. So far it has been shown that the self-sputtering process can be sustained in the DC operation mode (DC-SSS) only. The main disadvantage of DC-SSS process is instability related to possible arc formation. Usage of pulsed sputtering, similarly to reactive pulsed magnetron sputtering, could eliminate this problem. In this paper results of pulsed-DC self-sustained magnetron sputtering (pulsed DC-SSS) of copper are presented for the first time. The planar magnetron equipped with a 50 mm in diameter and 6 mm thick copper target was powered by DC-power supply modulated by power switch. The maximum target power was about 11 kW (~550W/cm2). The magnetron operation was investigated as a function of pulsing frequency (20-100 kHz) and duty factor (50-90%). The discharge extinction pressure was determined for these conditions. The plasma emission spectra (400-410nm range) and deposition rates were observed for both DC and pulsed DC sustained self-sputtering processes. The presented results illustrate that stable pulsed DC-SSS process can be obtained at pulsing frequency in the range of 60-100 kHz and duty factor of 70-90%.

  1. Direct Imaging Mass Spectrometry of Plant Leaves Using Surface-assisted Laser Desorption/Ionization with Sputter-deposited Platinum Film.

    PubMed

    Ozawa, Tomoyuki; Osaka, Issey; Hamada, Satoshi; Murakami, Tatsuya; Miyazato, Akio; Kawasaki, Hideya; Arakawa, Ryuichi

    2016-01-01

    Plant leaves administered with systemic insecticides as agricultural chemicals were analyzed using imaging mass spectrometry (IMS). Matrix-assisted laser desorption/ionization (MALDI) is inadequate for the detection of insecticides on leaves because of the charge-up effect that occurs on the non-conductive surface of the leaves. In this study, surface-assisted laser desorption/ionization with a sputter-deposited platinum film (Pt-SALDI) was used for direct analysis of chemicals in plant leaves. Sputter-deposited platinum (Pt) films were prepared on leaves administered with the insecticides. A sputter-deposited Pt film with porous structure was used as the matrix for Pt-SALDI. Acephate and acetamiprid contained in the insecticides on the leaves could be detected using Pt-SALDI-MS, but these chemical components could not be adequately detected using MALDI-MS because of the charge-up effect. Enhancement of ion yields for the insecticides was achieved using Pt-SALDI, accompanied by prevention of the charge-up effect by the conductive Pt film. The movement of systemic insecticides in plants could be observed clearly using Pt-SALDI-IMS. The distribution and movement of components of systemic insecticides on leaves could be analyzed directly using Pt-SALDI-IMS. Additionally, changes in the properties of the chemicals with time, as an indicator of the permeability of the insecticides, could be evaluated.

  2. Metal-Coated Cenospheres Obtained via Magnetron Sputter Coating: A New Precursor for Syntactic Foams

    NASA Astrophysics Data System (ADS)

    Shishkin, A.; Hussainova, I.; Kozlov, V.; Lisnanskis, M.; Leroy, P.; Lehmhus, D.

    2018-05-01

    Syntactic foams (SFs) and metal matrix syntactic foams (MMSFs) represent an advanced type of metal matrix composites (MMCs) based on hollow microspheres as particulate reinforcement. In general, SF and MMSFs allow tailoring of properties through choice of matrix, reinforcement, and volume fraction of the latter. A further handle for property adjustment is surface modification of the reinforcing particles. The present study introduces cenospheres for use as filler material in SF and MMSFs and as lightweight filler with electromagnetic interference shielding properties in civil engineering, which have been surface coated by means of physical vapor deposition, namely vibration-assisted sputter coating using a magnetron sputtering system. Altogether four types of such cenosphere-based composite powders (CPs) with an original particle size range of 50-125 µm (average particle size d50 75 µm) were studied. Surface films deposited on these were composed of Cu, stainless steel, Ti, and Ti-TiN double layers. For Cu coatings, the deposited metal film thickness was shown to be dependent on the sputtering energy. Scanning electron microscope backscattering images revealed nonporous films uniform in thickness directly after sputtering. Film thickness varied between 0.15 µm and 2.5 µm, depending on coating material and sputtering parameters. From these materials, samples were produced without addition of metal powders, exhibiting metal contents as low as 8-10 wt.% based on the coating alone. Obtained samples had an apparent density of 1.1-1.9 g/cm3 and compressive strengths ranging from 22 MPa to 135 MPa.

  3. Fabrication and characterization of flaky core-shell particles by magnetron sputtering silver onto diatomite

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyuan; Zhang, Deyuan; Cai, Jun

    2016-02-01

    Diatomite has delicate porous structures and various shapes, making them ideal templates for microscopic core-shell particles fabrication. In this study, a new process of magnetron sputtering assisted with photoresist positioning was proposed to fabricate lightweight silver coated porous diatomite with superior coating quality and performance. The diatomite has been treated with different sputtering time to investigate the silver film growing process on the surface. The morphologies, constituents, phase structures and surface roughness of the silver coated diatomite were analyzed with SEM, EDS, XRD and AFM respectively. The results showed that the optimized magnetron sputtering time was 8-16 min, under which the diatomite templates were successfully coated with uniform silver film, which exhibits face centered cubic (fcc) structure, and the initial porous structures were kept. Moreover, this silver coating has lower surface roughness (RMS 4.513 ± 0.2 nm) than that obtained by electroless plating (RMS 15.692 ± 0.5 nm). And the infrared emissivity of coatings made with magnetron sputtering and electroless plating silver coated diatomite can reach to the lowest value of 0.528 and 0.716 respectively.

  4. Secondary ion emission from Ti, V, Cu, Ag and Au surfaces under KeV Cs + irradiation

    NASA Astrophysics Data System (ADS)

    van der Heide, P. A. W.

    2005-02-01

    Low energy mono-atomic singly charged secondary ion emissions from Ti, V, Cu, Ag and Au substrates during the initial stages of sputtering with Cs + primary ions have been studied. With the exception of the Ag - secondary ions, all exhibited exponential like correlations with the Cs induced work function changes. This, along with the lack of variations in the valence band structure around the Fermi edge, is consistent with resonance charge transfer to/from states located at the Fermi edge. The insensitivity of Ag - to work function appears to stem from the dominance of a separate ion formation process, namely charge transfer into vacant 4d states in the sputtered population, which themselves appear to be produced through collective oscillations. A similar excitation-mediated process involving different levels also appears to be active in the formation of other negatively charged transition metal ions, albeit to a much lesser degree.

  5. Advances in Charge-Compensation in Secondary Ion Mass Spectrometry (SIMS)

    NASA Astrophysics Data System (ADS)

    Hervig, R. L.; Chen, J.; Schauer, S.; Stanley, B. D.; Moore, G. M.; Roggensack, K.

    2012-12-01

    In secondary ion mass spectrometry (SIMS), a sample is bombarded by a charged particle beam (the primary ion) and sputtered positive or negative secondary ions are analyzed in a mass spectrometer. When the target is not conducting (like many geological materials), sample charging can result in variable deflection of secondary ions away from the mass spectrometer and a low, unstable, or absent signal. Applying a thin conducting coat (e.g., C, Au) to polished samples is required, and if the primary ion beam is negatively-charged, the build-up of negative charge can be alleviated by secondary electrons draining to the conducting coat at the edge of the crater (if a positive potential is applied to the sample for the collection of positive secondary ions) or accelerated away from the crater (if a negative potential is applied for negative ion study). Unless the sputtered crater in the conducting coat becomes too large, sample charging can be kept at a controllable level, and high-quality trace element analyses and isotope ratios have been obtained using this technique over the past 3+ decades. When a positive primary beam is used, the resulting build-up of positive charge in the sample requires an electron gun to deliver sufficient negative charge to the sputtered crater. While there are many examples of successful analyses using this approach, the purpose of this presentation is to describe a very simple technique for aligning the electron gun on Cameca nf and 1270/80 SIMS instruments. This method allows reproducible analyses of insulating phases with a Cs+ primary beam and detection of negative secondary ions. Normally, the filament voltage on the E-gun is the same as the sample voltage; thus electrons do not strike the sample except when a positive charge has built up (e.g., in the analysis crater!). In this method, we decrease the sample voltage by 3 or more kV, so that the impact energy of the electrons is sufficient to induce a cathodoluminescent (CL) image on an appropriate sample (e.g., GaN). The CL image is made circular and homogeneous by adjusting the deflectors and a lens in the electron steering assembly, and the sample voltage is subsequently returned to the same value as the filament. Very minor corrections of the electron tuning (mostly by an external magnet known as Bx or B1) will then produce a uniform secondary ion image on a test insulator (a gold-coated glass slide) under Cs bombardment. The uniform electron density is correlated with reproducible calibration for hydrogen and carbon concentrations over a multi-day session and from session to session over a period of months. Outside visitors to the lab can use this set-up and obtain high-quality analyses with little to no previous training. Obtaining a homogeneous distribution of electrons over a maximum diameter (100+ microns) also reduces problems associated with changes in the position of the electron beam induced by stray magnetic fields. As a result, analyses of hydrogen isotopes and/or multi-element analysis routines using elemental H species are simplified.

  6. Systematic investigations of low energy Ar ion beam sputtering of Si and Ag

    NASA Astrophysics Data System (ADS)

    Feder, R.; Frost, F.; Neumann, H.; Bundesmann, C.; Rauschenbach, B.

    2013-12-01

    Ion beam sputter deposition (IBD) delivers some intrinsic features influencing the growing film properties, because ion properties and geometrical process conditions generate different energy and spatial distributions of the sputtered and scattered particles. Even though IBD has been used for decades, the full capabilities are not investigated systematically and specifically used yet. Therefore, a systematic and comprehensive analysis of the correlation between the properties of the ion beam, the generated secondary particles and backscattered ions and the deposited films needs to be done.A vacuum deposition chamber has been set up which allows ion beam sputtering of different targets under variation of geometrical parameters (ion incidence angle, position of substrates and analytics in respect to the target) and of ion beam parameters (ion species, ion energy) to perform a systematic and comprehensive analysis of the correlation between the properties of the ion beam, the properties of the sputtered and scattered particles, and the properties of the deposited films. A set of samples was prepared and characterized with respect to selected film properties, such as thickness and surface topography. The experiments indicate a systematic influence of the deposition parameters on the film properties as hypothesized before. Because of this influence, the energy distribution of secondary particles was measured using an energy-selective mass spectrometer. Among others, experiments revealed a high-energetic maximum for backscattered primary ions, which shifts with increasing emission angle to higher energies. Experimental data are compared with Monte Carlo simulations done with the well-known Transport and Range of Ions in Matter, Sputtering version (TRIM.SP) code [J.P. Biersack, W. Eckstein, Appl. Phys. A: Mater. Sci. Process. 34 (1984) 73]. The thicknesses of the films are in good agreement with those calculated from simulated particle fluxes. For the positions of the high-energetic maxima in the energy distribution of the backscattered primary ions, a deviation between simulated and measured data was found, most likely originating in a higher energy loss under experimental conditions than considered in the simulation.

  7. Solar-Wind Protons and Heavy Ions Sputtering of Lunar Surface Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barghouty, N.; Meyer, Fred W; Harris, Peter R

    2011-01-01

    Lunar surface materials are exposed to {approx}1 keV/amu solar-wind protons and heavy ions on almost continuous basis. As the lunar surface consists of mostly oxides, these materials suffer, in principle, both kinetic and potential sputtering due to the actions of the solar-wind ions. Sputtering is an important mechanism affecting the composition of both the lunar surface and its tenuous exosphere. While the contribution of kinetic sputtering to the changes in the composition of the surface layer of these oxides is well understood and modeled, the role and implications of potential sputtering remain unclear. As new potential-sputtering data from multi-charged ionsmore » impacting lunar regolith simulants are becoming available from Oak Ridge National Laboratory's MIRF, we examine the role and possible implications of potential sputtering of Lunar KREEP soil. Using a non-equilibrium model we demonstrate that solar-wind heavy ions induced sputtering is critical in establishing the timescale of the overall solar-wind sputtering process of the lunar surface. We also show that potential sputtering leads to a more pronounced and significant differentiation between depleted and enriched surface elements. We briefly discuss the impacts of enhanced sputtering on the composition of the regolith and the exosphere, as well as of solar-wind sputtering as a source of hydrogen and water on the moon.« less

  8. Discharge Characteristic of VHF-DC Superimposed Magnetron Sputtering System

    NASA Astrophysics Data System (ADS)

    Toyoda, Hirotaka; Fukuoka, Yushi; Fukui, Takashi; Takada, Noriharu; Sasai, Kensuke

    2014-10-01

    Magnetron plasmas are one of the most important tools for sputter deposition of thin films. However, energetic particles from the sputtered target such as backscattered rare gas atoms or oxygen negative ions from oxide targets sometimes induce physical and chemical damages as well as surface roughening to the deposited film surface during the sputtering processes. To suppress kinetic energy of such particles, superposition of RF or VHF power to the DC power has been investigated. In this study, influence of the VHF power superposition on the DC target voltage, which is important factor to determine kinetic energy of high energy particles, is investigated. In the study, 40 MHz VHF power was superimposed to an ITO target and decrease in the target DC voltage was measured as well as deposited film deposition properties such as deposition rate or electrical conductivity. From systematic measurement of the target voltage, it was revealed that the target voltage can be determined by a very simple parameter, i.e., a ratio of VHF power to the total input power (DC and VHF powers) in spite of the DC discharge current. Part of this work was supported by ASTEP, JST.

  9. Carbon atom and cluster sputtering under low-energy noble gas plasma bombardment

    NASA Astrophysics Data System (ADS)

    Oyarzabal, E.; Doerner, R. P.; Shimada, M.; Tynan, G. R.

    2008-08-01

    Exit-angle resolved carbon atom and cluster (C2 and C3) sputtering yields are measured during different noble gas (Xe, Kr, Ar, Ne, and He) ion bombardments from a plasma, for low incident energies (75-225 eV). A quadrupole mass spectrometer (QMS) is used to detect the fraction of sputtered neutrals that is ionized in the plasma and to obtain the angular distribution by changing the angle between the target normal and the QMS aperture. A one-dimensional Monte Carlo code is used to simulate the interaction of the plasma and the sputtered particles in the region between the sample and the QMS. The effective elastic scattering cross sections of C, C2, and C3 with the different bombarding gas neutrals are obtained by varying the distance between the sample and the QMS and by performing a best fit of the simulation results to the experimental results. The total sputtering yield (C+C2+C3) for each bombarding gas is obtained from weight-loss measurements and the sputtering yield for C, C2, and C3 is then calculated from the integration of the measured angular distribution, taking into account the scattering and ionization of the sputtered particles between the sample and the QMS. We observe undercosine angular distributions of the sputtered atoms and clusters for all the studied bombarding gases and a clear decrease of the atom to cluster (C2 and C3) sputtering ratio as the incident ion mass increases, changing from a carbon atom preferential erosion for the lower incident ion masses (He, Ne, and Ar) to a cluster preferential erosion for the higher incident ion masses (Kr and Xe).

  10. Molybdenum and carbon atom and carbon cluster sputtering under low-energy noble gas plasma bombardment

    NASA Astrophysics Data System (ADS)

    Oyarzabal, Eider

    Exit-angle resolved Mo atom sputtering yield under Xe ion bombardment and carbon atom and cluster (C2 and C3) sputtering yields under Xe, Kr, Ar, Ne and He ion bombardment from a plasma are measured for low incident energies (75--225 eV). An energy-resolved quadrupole mass spectrometer (QMS) is used to detect the fraction of un-scattered sputtered neutrals that become ionized in the plasma; the angular distribution is obtained by changing the angle between the target and the QMS aperture. A one-dimensional Monte Carlo code is used to simulate the interaction of the plasma and the sputtered particles between the sample and the QMS. The elastic scattering cross-sections of C, C2 and C3 with the different bombarding gas neutrals is obtained by varying the distance between the sample and the QMS and by performing a best fit of the simulation results to the experimental results. Because the results obtained with the QMS are relative, the Mo atom sputtering results are normalized to the existing data in the literature and the total sputtering yield for carbon (C+C 2+C3) for each bombarding gas is obtained from weight loss measurements. The absolute sputtering yield for C, C2 and C 3 is then calculated from the integration of the measured angular distribution, taking into account the scattering and ionization of the sputtered particles between the sample and the QMS. The angular sputtering distribution for Mo has a maximum at theta=60°, and this maximum becomes less pronounced as the incident ion energy increases. The results of the Monte Carlo TRIDYN code simulation for the angular distribution of Mo atoms sputtered by Xe bombardment are in agreement with the experiments. For carbon sputtering under-cosine angular distributions of the sputtered atoms and clusters for all the studied bombarding gases are also observed. The C, C2 and C3 sputtering yield data shows a clear decrease of the atom to cluster (C/C2 and C/C3) sputtering ratio as the incident ion mass increases, changing from a carbon atom preferential erosion for the lower incident ion masses (He, Ne and Ar) to a cluster preferential erosion for the higher incident ion masses (Kr and Xe).

  11. Deposition of gold nano-particles and nano-layers on polyethylene modified by plasma discharge and chemical treatment

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Chaloupka, A.; Záruba, K.; Král, V.; Bláhová, O.; Macková, A.; Hnatowicz, V.

    2009-08-01

    Polyethylene (PE) was treated in Ar plasma discharge and then grafted from methanol solution of 1,2-ethanedithiol to enhance adhesion of gold nano-particles or sputtered gold layers. The modified PE samples were either immersed into freshly prepared colloid solution of Au nano-particles or covered by sputtered, 50 nm thick gold nano-layer. Properties of the plasma modified, dithiol grafted and gold coated PE were studied using XPS, UV-VIS, AFM, EPR, RBS methods and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain, creation of excessive free radicals and conjugated double bonds. After grafting with 1,2-ethanedithiol the concentration of free radicals declined but the concentration of double bonds remained unchanged. Plasma treatment changes PE surface morphology and increases surface roughness too. Another significant change in the surface morphology and roughness was observed after deposition of Au nano-particles. The presence of Au on the sample surface after the coating with Au nano-particles was proved by XPS and RBS methods. Nanoindentation measurements shown that the grafting of plasma activated PE surface with dithiol increases significantly adhesion of sputtered Au nano-layer.

  12. Particle visualization in high-power impulse magnetron sputtering. I. 2D density mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britun, Nikolay, E-mail: nikolay.britun@umons.ac.be; Palmucci, Maria; Konstantinidis, Stephanos

    2015-04-28

    Time-resolved characterization of an Ar-Ti high-power impulse magnetron sputtering discharge has been performed. This paper deals with two-dimensional density mapping in the discharge volume obtained by laser-induced fluorescence imaging. The time-resolved density evolution of Ti neutrals, singly ionized Ti atoms (Ti{sup +}), and Ar metastable atoms (Ar{sup met}) in the area above the sputtered cathode is mapped for the first time in this type of discharges. The energetic characteristics of the discharge species are additionally studied by Doppler-shift laser-induced fluorescence imaging. The questions related to the propagation of both the neutral and ionized discharge particles, as well as to theirmore » spatial density distributions, are discussed.« less

  13. Preparation and characterization of ceramic sensors for use at elevated temperatures

    NASA Astrophysics Data System (ADS)

    You, Tao

    Ceramic ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures. The thickness of the active ITO strain elements played a significant role in the high temperature stability and piezoresistive properties, specifically, these results indicated that both gauge factor and drift rate were affected by the thickness of ITO films comprising the active strain elements. The influence of nitrogen in the reactive sputtered ITO films on the microstructure and the high temperature piezoresistive properties was also investigated. Scanning electron microscopy (SEM) revealed a partially sintered microstructure consisting of a contiguous network of sub-micron ITO particles with well-defined necks and isolated nanoporosity. Sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established. Aluminum doped indium tin oxide thin film exhibited an enhanced high temperature stability compared with undoped ITO thin film. The effect of aluminum doped ITO was investigated under various preparation and testing environments. Electron spectroscopy for chemical analysis (ESCA) studies indicated that interfacial reactions between ITO and aluminum increased the stability of ITO at elevated temperatures. These binding energies of indium-indium are significantly higher than those associated with stoichiometric indium oxide. A robust ceramic temperature sensor was fabricated by two different ITO elements, each with substantially different charge carrier concentrations. Thermal cycling of ITO thin films in a varied of partial oxygen pressures conditions showed that temperature coefficient of resistance (TCR) was nearly independent of oxygen partial pressure. A thermoelectric power of 6.0muV/°C and a linear voltage-temperature response were measured for an ITO thin film ceramic thermocouple over the temperature range 25--1250°C.

  14. Collision-spike sputtering of Au nanoparticles

    DOE PAGES

    Sandoval, Luis; Urbassek, Herbert M.

    2015-08-06

    Ion irradiation of nanoparticles leads to enhanced sputter yields if the nanoparticle size is of the order of the ion penetration depth. While this feature is reasonably well understood for collision-cascade sputtering, we explore it in the regime of collision-spike sputtering using molecular-dynamics simulation. For the particular case of 200-keV Xe bombardment of Au particles, we show that collision spikes lead to abundant sputtering with an average yield of 397 ± 121 atoms compared to only 116 ± 48 atoms for a bulk Au target. Only around 31 % of the impact energy remains in the nanoparticles after impact; themore » remainder is transported away by the transmitted projectile and the ejecta. As a result, the sputter yield of supported nanoparticles is estimated to be around 80 % of that of free nanoparticles due to the suppression of forward sputtering.« less

  15. Fe embedded in ice: The impacts of sublimation and energetic particle bombardment

    NASA Astrophysics Data System (ADS)

    Frankland, Victoria L.; Plane, John M. C.

    2015-05-01

    Icy particles containing a variety of Fe compounds are present in the upper atmospheres of planets such as the Earth and Saturn. In order to explore the role of ice sublimation and energetic ion bombardment in releasing Fe species into the gas phase, Fe-dosed ice films were prepared under UHV conditions in the laboratory. Temperature-programmed desorption studies of Fe/H2O films revealed that no Fe atoms or Fe-containing species co-desorbed along with the H2O molecules. This implies that when noctilucent ice cloud particles sublimate in the terrestrial mesosphere, the metallic species embedded in them will coalesce to form residual particles. Sputtering of the Fe-ice films by energetic Ar+ ions was shown to be an efficient mechanism for releasing Fe into the gas phase, with a yield of 0.08 (Ar+ energy=600 eV). Extrapolating with a semi-empirical sputtering model to the conditions of a proton aurora indicates that sputtering by energetic protons (>100 keV) should also be efficient. However, the proton flux in even an intense aurora will be too low for the resulting injection of Fe species into the gas phase to compete with that from meteoric ablation. In contrast, sputtering of the icy particles in the main rings of Saturn by energetic O+ ions may be the source of recently observed Fe+ in the Saturnian magnetosphere. Electron sputtering (9.5 keV) produced no detectable Fe atoms or Fe-containing species. Finally, it was observed that Fe(OH)2 was produced when Fe was dosed onto an ice film at 140 K (but not at 95 K). Electronic structure theory shows that the reaction which forms this hydroxide from adsorbed Fe has a large barrier of about 0.7 eV, from which we conclude that the reaction requires both translationally hot Fe atoms and mobile H2O molecules on the ice surface.

  16. Analysis of a tungsten sputtering experiment in DIII-D and code/data validation of high redeposition/reduced erosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wampler, William R.; Brooks, J. N.; Elder, J. D.

    2015-03-29

    We analyze a DIII-D tokamak experiment where two tungsten spots on the removable DiMES divertor probe were exposed to 12 s of attached plasma conditions, with moderate strike point temperature and density (~20 eV, ~4.5 × 10 19 m –3), and 3% carbon impurity content. Both very small (1 mm diameter) and small (1 cm diameter) deposited samples were used for assessing gross and net tungsten sputtering erosion. The analysis uses a 3-D erosion/redeposition code package (REDEP/WBC), with input from a diagnostic-calibrated near-surface plasma code (OEDGE), and with focus on charge state resolved impinging carbon ion flux and energy. Themore » tungsten surfaces are primarily sputtered by the carbon, in charge states +1 to +4. We predict high redeposition (~75%) of sputtered tungsten on the 1 cm spot—with consequent reduced net erosion—and this agrees well with post-exposure DiMES probe RBS analysis data. As a result, this study and recent related work is encouraging for erosion lifetime and non-contamination performance of tokamak reactor high-Z plasma facing components.« less

  17. Generation and Characterization of Nanoaerosols Using a Portable Scanning Mobility Particle Sizer and Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Marty, Adam J.

    The purpose of this research is to demonstrate the ability to generate and characterize a nanometer sized aerosol using solutions, suspensions, and a bulk nanopowder, and to research the viability of using an acoustic dry aerosol generator/elutriator (ADAGE) to aerosolize a bulk nanopowder into a nanometer sized aerosol. The research compares the results from a portable scanning mobility particle sizer (SMPS) to the more traditional method of counting and sizing particles on a filter sample using scanning electron microscopy (SEM). Sodium chloride aerosol was used for the comparisons. The sputter coating thickness, a conductive coating necessary for SEM, was measured on different sizes of polystyrene latex spheres (PSLS). Aluminum oxide powder was aerosolized using an ADAGE and several different support membranes and sound frequency combinations were explored. A portable SMPS was used to determine the size distributions of the generated aerosols. Polycarbonate membrane (PCM) filter samples were collected for subsequent SEM analysis. The particle size distributions were determined from photographs of the membrane filters. SMPS data and membrane samples were collected simultaneously. The sputter coating thicknesses on four different sizes of PSLS, range 57 nanometers (nm) to 220 nm, were measured using transmission electron microscopy and the results from the SEM and SMPS were compared after accounting for the sputter coating thickness. Aluminum oxide nanopowder (20 nm) was aerosolized using a modified ADAGE technique. Four different support membranes and four different sound frequencies were tested with the ADAGE. The aerosol was collected onto PCM filters and the samples were examined using SEM. The results indicate that the SMPS and SEM distributions were log-normally distributed with a median diameter of approximately 42 nm and 55 nm, respectively, and geometric standard deviations (GSD) of approximately 1.6 and 1.7, respectively. The two methods yielded similar distributional trends with a difference in median diameters of approximately 11 -- 15 nm. The sputter coating thickness on the different sizes of PSLSs ranged from 15.4 -- 17.4 nm. The aerosols generated, using the modified ADAGE, were low in concentration. The particles remained as agglomerates and varied widely in size. An aluminum foil support membrane coupled with a high sound frequency generated the smallest agglomerates. A well characterized sodium chloride aerosol was generated and was reproducible. The distributions determined using SEM were slightly larger than those obtained from SMPS, however, the distributions had relatively the same shape as reflected in their GSDs. This suggests that a portable SMPS is a suitable method for characterizing a nanoaerosol. The sizing techniques could be compared after correcting for the effects of the sputter coating necessary for SEM examination. It was determined that the sputter coating thickness on nano-sized particles and particles up to approximately 220 nm can be expected to be the same and that the sputter coating can add considerably to the size of a nanoparticle. This has important implications for worker health where nanoaerosol exposure is a concern. The sputter coating must be considered when SEM is used to describe a nanoaerosol exposure. The performance of the modified ADAGE was less than expected. The low aerosol output from the ADAGE prevented a more detailed analysis and was limited to only a qualitative comparison. Some combinations of support membranes and sound frequencies performed better than others, particularly conductive support membranes and high sound frequencies. In conclusion, a portable SMPS yielded results similar to those obtained by SEM. The sputter coating was the same thickness on the PSLSs studied. The sputter coating thickness must be considered when characterizing nanoparticles using SEM. Finally, a conductive support membrane and higher frequencies appeared to generate the smallest agglomerates using the ADAGE technique.

  18. Theoretical investigations on plasma processes in the Kaufman thruster. [electron and ion velocity distribution

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1974-01-01

    An analysis of the sputtering of metal surfaces and grids by ions of medium energies is given and it is shown that an exact, nonlinear, hyperbolic wave equation for the temperature field describes the transient transport of heat in metals. Quantum statistical and perturbation theoretical analysis of surface sputtering by low energy ions are used to develop the same expression for the sputtering rate. A transport model is formulated for the deposition of sputtered atoms on system components. Theoretical efforts in determining the potential distribution and the particle velocity distributions in low pressure discharges are briefly discussed.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaoying; Liu, Bingwen; Zhao, Evan

    For the first time, the use of an argon cluster ion sputtering source has been demonstrated to perform superiorly relative to traditional oxygen and cesium ion sputtering sources for ToF-SIMS depth profiling of insulating materials. The superior performance has been attributed to effective alleviation of surface charging. A simulated nuclear waste glass, SON68, and layered hole-perovskite oxide thin films were selected as model systems due to their fundamental and practical significance. Our study shows that if the size of analysis areas is same, the highest sputter rate of argon cluster sputtering can be 2-3 times faster than the highest sputtermore » rates of oxygen or cesium sputtering. More importantly, high quality data and high sputter rates can be achieved simultaneously for argon cluster sputtering while this is not the case for cesium and oxygen sputtering. Therefore, for deep depth profiling of insulating samples, the measurement efficiency of argon cluster sputtering can be about 6-15 times better than traditional cesium and oxygen sputtering. Moreover, for a SrTiO3/SrCrO3 bi-layer thin film on a SrTiO3 substrate, the true 18O/16O isotopic distribution at the interface is better revealed when using the argon cluster sputtering source. Therefore, the implementation of an argon cluster sputtering source can significantly improve the measurement efficiency of insulating materials, and thus can expand the application of ToF-SIMS to the study of glass corrosion, perovskite oxide thin films, and many other potential systems.« less

  20. Sputter deposition of indium tin oxide onto zinc pthalocyanine: Chemical and electronic properties of the interface studied by photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Gassmann, Jürgen; Brötz, Joachim; Klein, Andreas

    2012-02-01

    The interface chemistry and the energy band alignment at the interface formed during sputter deposition of transparent conducting indium tin oxide (ITO) onto the organic semiconductor zinc phtalocyanine (ZnPc), which is important for inverted, transparent, and stacked organic light emitting diodes, is studied by in situ photoelectron spectroscopy (XPS and UPS). ITO was sputtered at room temperature and a low power density with a face to face arrangement of the target and substrate. With these deposition conditions, no chemical reaction and a low barrier height for charge injection at this interface are observed. The barrier height is comparable to those observed for the reverse deposition sequence, which also confirms the absence of sputter damage.

  1. A thermalized ion explosion model for high energy sputtering and track registration

    NASA Technical Reports Server (NTRS)

    Seiberling, L. E.; Griffith, J. E.; Tombrello, T. A.

    1980-01-01

    A velocity spectrum of neutral sputtered particles as well as a low resolution mass spectrum of sputtered molecular ions was measured for 4.74 MeV F-19(+2) incident of UF4. The velocity spectrum is dramatically different from spectra taken with low energy (keV) bombarding ions, and is shown to be consistent with a hot plasma of atoms in thermal equilibrium inside the target. A thermalized ion explosion model is proposed for high energy sputtering which is expected to describe track formation in dielectric materials. The model is shown to be consistent with the observed total sputtering yield and the dependence of the yield on the primary ionization rate of the incident ion.

  2. Ion and neutral energy flux distributions to the cathode in glow discharges in Ar/Ne and Xe/Ne mixtures

    NASA Astrophysics Data System (ADS)

    Capdeville, H.; Pédoussat, C.; Pitchford, L. C.

    2002-02-01

    The work presented in the article is a study of the heavy particle (ion and neutral) energy flux distributions to the cathode in conditions typical of discharges used for luminous signs for advertising ("neon" signs). The purpose of this work is to evaluate the effect of the gas mixture on the sputtering of the cathode. We have combined two models for this study: a hybrid model of the electrical properties of the cathode region of a glow discharge and a Monte Carlo simulation of the heavy particle trajectories. Using known sputtering yields for Ne, Ar, and Xe on iron cathodes, we estimate the sputtered atom flux for mixtures of Ar/Ne and Xe/Ne as a function of the percent neon in the mixture.

  3. High voltage stability of LiCoO2 particles with a nano-scale Lipon coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yoongu; Veith, Gabriel M; Nanda, Jagjit

    2011-01-01

    For high-voltage cycling of rechargeable Li batteries, a nano-scale amorphous Li-ion conductor, lithium phosphorus oxynitride (Lipon), has been coated on surfaces of LiCoO{sub 2} particles by combining a RF-magnetron sputtering technique and mechanical agitation of LiCoO{sub 2} powders. LiCoO{sub 2} particles coated with 0.36 wt% ({approx}1 nm thick) of the amorphous Lipon, retain 90% of their original capacity compared to non-coated cathode materials that retain only 65% of their original capacity after more than 40 cycles in the 3.0-4.4 V range with a standard carbonate electrolyte. The reason for the better high-voltage cycling behavior is attributed to reduction in themore » side reactions that cause increase of the cell resistance during cycling. Further, Lipon coated particles are not damaged, whereas uncoated particles are badly cracked after cycling. Extending the charge of Lipon-coated LiCoO{sub 2} to higher voltage enhances the specific capacity, but more importantly the Lipon-coated material is also more stable and tolerant of high voltage excursions. A drawback of Lipon coating, particularly as thicker films are applied to cathode powders, is the increased electronic resistance that reduces the power performance.« less

  4. Ring and plasma - The enigmae of Enceladus

    NASA Technical Reports Server (NTRS)

    Haff, P. K.; Siscoe, G. L.; Eviatar, A.

    1983-01-01

    The E ring associated with the Kronian moon Enceladus has a lifetime of only a few thousand years against sputtering by slow corotating O ions. The existence of the ring implies the necessity for a continuous supply of matter. Possible particle source mechanisms on Enceladus include meteoroidal impact ejection and geysering. Estimates of ejection rates of particulate debris following small meteoroid impact are on the order of 3 x 10 to the -18th g/(sq cm sec), more than an order of magnitude too small to sustain the ring. A geyser source would need to generate a droplet supply at a rate of approximately 10 to the -16th g/(sq cm sec) in order to account for a stable ring. Enceladus and the ring particles also directly supply both plasma and vapor to space via sputtering. The absence of a 60 eV plasma at the Voyager 2 Enceladus L-shell crossing, such as might have been expected from sputtering, cannot be explained by absorption and moderation of plasma ions by ring particles, because the ring is too diffuse. Evidently, the effective sputtering yield in the vicinity of Enceladus is on the order of, or smaller than, 0.4, about an order of magnitude less than te calculated value. Small scale surface roughness may account for some of this discrepancy.

  5. The Plasma Wake Downstream of Lunar Topographic Obstacles: Preliminary Results from 2D Particle Simulations

    NASA Technical Reports Server (NTRS)

    Zimmerman, Michael I.; Farrell, W. M.; Snubbs, T. J.; Halekas, J. S.

    2011-01-01

    Anticipating the plasma and electrical environments in permanently shadowed regions (PSRs) of the moon is critical in understanding local processes of space weathering, surface charging, surface chemistry, volatile production and trapping, exo-ion sputtering, and charged dust transport. In the present study, we have employed the open-source XOOPIC code [I] to investigate the effects of solar wind conditions and plasma-surface interactions on the electrical environment in PSRs through fully two-dimensional pattic1e-in-cell simulations. By direct analogy with current understanding of the global lunar wake (e.g., references) deep, near-terminator, shadowed craters are expected to produce plasma "mini-wakes" just leeward of the crater wall. The present results (e.g., Figure I) are in agreement with previous claims that hot electrons rush into the crater void ahead of the heavier ions, fanning a negative cloud of charge. Charge separation along the initial plasma-vacuum interface gives rise to an ambipolar electric field that subsequently accelerates ions into the void. However, the situation is complicated by the presence of the dynamic lunar surface, which develops an electric potential in response to local plasma currents (e.g., Figure Ia). In some regimes, wake structure is clearly affected by the presence of the charged crater floor as it seeks to achieve current balance (i.e. zero net current to the surface).

  6. Method of producing non-agglomerating submicron size particles

    DOEpatents

    Bourne, Roy S.; Eichman, Clarence C.; Welbon, William W.

    1989-01-01

    Submicron size particles are produced by using a sputtering process to deposit particles into a liquid. The liquid is processed to recover the particles therefrom, and the particles have sizes in the range of twenty to two hundred Angstroms. Either metallic or non-metallic particles can be produced, and the metallic particles can be used in "metallic inks".

  7. Matilda: A mass filtered nanocluster source

    NASA Astrophysics Data System (ADS)

    Kwon, Gihan

    Cluster science provides a good model system for the study of the size dependence of electronic properties, chemical reactivity, as well as magnetic properties of materials. One of the main interests in cluster science is the nanoscale understanding of chemical reactions and selectivity in catalysis. Therefore, a new cluster system was constructed to study catalysts for applications in renewable energy. Matilda, a nanocluster source, consists of a cluster source and a Retarding Field Analyzer (RFA). A moveable AJA A310 Series 1"-diameter magnetron sputtering gun enclosed in a water cooled aggregation tube served as the cluster source. A silver coin was used for the sputtering target. The sputtering pressure in the aggregation tube was controlled, ranging from 0.07 to 1torr, using a mass flow controller. The mean cluster size was found to be a function of relative partial pressure (He/Ar), sputtering power, and aggregation length. The kinetic energy distribution of ionized clusters was measured with the RFA. The maximum ion energy distribution was 2.9 eV/atom at a zero pressure ratio. At high Ar flow rates, the mean cluster size was 20 ˜ 80nm, and at a 9.5 partial pressure ratio, the mean cluster size was reduced to 1.6nm. Our results showed that the He gas pressure can be optimized to reduce the cluster size variations. Results from SIMION, which is an electron optics simulation package, supported the basic function of an RFA, a three-element lens and the magnetic sector mass filter. These simulated results agreed with experimental data. For the size selection experiment, the channeltron electron multiplier collected ionized cluster signal at different positions during Ag deposition on a TEM grid for four and half hours. The cluster signal was high at the position for neutral clusters, which was not bent by a magnetic field, and the signal decreased rapidly far away from the neutral cluster region. For cluster separation according to mass to charge ratio in a magnetic sector mass filter, the ion energy of the cluster and its distribution must be precisely controlled by acceleration or deceleration. To verify the size separation, a high resolution microscope was required. Matilda provided narrow particle sized distribution from atomic scale to 4nm in size with different pressure ratio without additional mass filter. It is very economical way to produce relatively narrow particle size distribution.

  8. Space Weathering Agent: Solar Wind

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2009-08-01

    In the vacuum of space, the interactions of energetic particles with the surfaces of airless planetary bodies cause radiation damage, chemical changes, optical changes, erosional sputtering, and heat. This is an essential part of the process called space weathering. A group at the Laboratory for Atomic and Surface Physics at the University of Virginia specialize in experiments, among other things, where they bombard surfaces with charged particles to see what happens. Recent work by Mark Loeffler, Cathy Dukes, and Raul Baragiola focused on what happens to olivine mineral grains when they are irradiated by helium ions to better understand the effects of solar wind on the surface composition and, therefore, appearance of asteroids. Their experiments were the first to measure chemical and reflectance changes in olivine before and after irradiation while still under vacuum conditions. The resulting changes in the reflectance spectra of olivine slabs and powders are directly correlated with the formation of metallic iron in the very outer surface of the mineral grains.

  9. Transparent, Weakly Conductive Films for Space Applications

    NASA Technical Reports Server (NTRS)

    Griffin, John; Morgan, Ashraf; Hambourger, Paul D.

    2004-01-01

    Electrically insulating spacecraft surfaces are vulnerable to nonuniform charge buildup due to particles emitted by the sun. On Mars, insulating surfaces of exploration vehicles and structures will be affected by dust coatings possibly held in place by triboelectric surface charge. Application of a conductive film may be a solution to the charging problem, but the coating must be highly transparent if used on solar panels, lenses, etc. Sheet resistivity requirements depend on the application and are in the range 10(exp 2) - 10(exp 8) ohms/square. Co-deposited indium tin oxide (ITO) and MgF2 is promising, with high transparency, tailorable electrical properties, and durability to atomic oxygen. Due to ITO's relatively narrow bandgap (approximately 3.5 eV), the film might absorb enough ultraviolet to protect polymeric substrates. Recent work on dual-magnetron-sputtered ITO-MgF2 showed that a variety of polymeric substrates can be coated at room temperature. However, the sheet resistivity is very sensitive to composition, suggestive of a percolation transition. This could be a serious problem for large-scale coating production. We will report on attempts to control film composition by plasma emission monitoring of the ITO and MgF2 guns.

  10. Transmission sputtering under diatomic molecule bombardment. Model calculations

    NASA Astrophysics Data System (ADS)

    Bitensky, I. S.

    1996-04-01

    Transmission sputtering means that emission of secondary particles is studied from the downstream side of a bombarded foil. Nonlinear effects in sputtering manifest themselves as a deviation of sputtering yield under molecular ion bombardment from the sum of the yields induced by the constituents at the same velocity. In the reflection geometry the overlap of the spike regions reaches maximum, while in transmission the degree of overlap depends on the projectile and on the foil thickness. It has been shown that the transmission sputtering yield can be described by a function of a scaling parameter determined by beam-foil characteristics and a mechanism of nonlinear sputtering. Calculations of the transmission yield have been made in the thermal spike and shock wave models. The results of calculations are compared with experimental data on phenylalanine molecular ion desorption from organic targets induced by Au + and Au 2+ impact. Suggestions for further experimental study are made.

  11. Structure of the metallic films deposited on small spheres trapped in the rf magnetron plasma

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Pal, A. F.; Ryabinkin, A. N.; Serov, A. O.

    2016-11-01

    Metallic coatings were deposited onto glass spheres having diameters from several to one hundred micrometers by the magnetron sputtering. Two different experimental schemes were exploited. One of them had the traditional configuration where a magnetron sputter was placed at one hundred millimeters from particles. In this scheme, continuous mechanical agitation in a fluidized bed was used to achieve uniformity of coatings. In the second scheme the treated particles (substrates) levitated in a magnetron rf plasma over a sputtered rf electrode (target) at the distance d of few mm from it and at gas pressure p values of 30-100 mTorr. These parameters are essentially different from those in the traditional sputtering. Agitation due to the features of a particle confinement in dusty plasma was used here to obtain uniform coatings. Thickness and morphology of the obtained coatings were studied. As it is known, film growth rate and structure are determined by the substrate temperature, the densities of ion and neutral atom fluxes to the substrate surface, the radiation flux density, and the heat energy produced due to the surface condensation of atoms and recombination of electrons and ions. These parameters particularly depend on the product of p and d. In the case of magnetron rf dusty plasma, it is possible to achieve the pd value several times lower than the lowest value proper to the first traditional case. Completely different dependencies of the film growth rate and structure on the pd value in these sputtering processes were observed and qualitatively explained.

  12. High temperature strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); You, Tao (Inventor)

    2011-01-01

    A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.

  13. Sputtering erosion in ion and plasma thrusters

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1995-01-01

    An experimental set-up to measure low-energy (below 1 keV) sputtering of materials is described. The materials to be bombarded represent ion thruster components as well as insulators used in the stationary plasma thruster. The sputtering takes place in a 9 inch diameter spherical vacuum chamber. Ions of argon, krypton and xenon are used to bombard the target materials. The sputtered neutral atoms are detected by a secondary neutral mass spectrometer (SNMS). Samples of copper, nickel, aluminum, silver and molybdenum are being sputtered initially to calibrate the spectrometer. The base pressure of the chamber is approximately 2 x 10(exp -9) Torr. the primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a size approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and at 90 deg angle to the primary ion beam direction. The ion beam impinges on the target at 45 deg. For sputtering of insulators, charge neutralization is performed by flooding the sample with electrons generated from an electron gun. Preliminary sputtering results, methods of calculating the instrument response function of the spectrometer and the relative sensitivity factors of the sputtered elements will be discussed.

  14. Electrical properties of Si-Si interfaces obtained by room temperature covalent wafer bonding

    NASA Astrophysics Data System (ADS)

    Jung, A.; Zhang, Y.; Arroyo Rojas Dasilva, Y.; Isa, F.; von Känel, H.

    2018-02-01

    We study covalent bonds between p-doped Si wafers (resistivity ˜10 Ω cm) fabricated on a recently developed 200 mm high-vacuum system. Oxide- and void free interfaces were obtained by argon (Ar) or neon (Ne) sputtering prior to wafer bonding at room temperature. The influence of the sputter induced amorphous Si layer at the bonding interface on the electrical behavior is accessed with temperature-dependent current-voltage measurements. In as-bonded structures, charge transport is impeded by a potential barrier of 0.7 V at the interface with thermionic emission being the dominant charge transport mechanism. Current-voltage characteristics are found to be asymmetric which can tentatively be attributed to electric dipole formation at the interface as a result of the time delay between the surface preparation of the two bonding partners. Electron beam induced current measurements confirm the corresponding asymmetric double Schottky barrier like band-alignment. Moreover, we demonstrate that defect annihilation at a low temperature of 400 °C increases the electrical conductivity by up to three orders of magnitude despite the lack of recrystallization of the amorphous layer. This effect is found to be more pronounced for Ne sputtered surfaces which is attributed to the lighter atomic mass compared to Ar, inducing weaker lattice distortions during the sputtering.

  15. On Both Spatial And Velocity Distribution Of Sputtered Particles In Magnetron Discharge

    NASA Astrophysics Data System (ADS)

    Vitelaru, C.; Pohoata, V.; Tiron, V.; Costin, C.; Popa, G.

    2012-12-01

    The kinetics of the sputtered atoms from the metallic target as well as the time-space distribution of the argon metastable atoms have been investigated for DC and high power pulse magnetron discharge by means of Tunable Diode - Laser Absorption Spectroscopy (TD-LAS) and Tunable Diode - Laser Induced Fluorescence (TD-LIF). The discharge was operated in argon (5-30 mTorr) with two different targets, tungsten and aluminum, for pulses of 1 to 20 μs, at frequencies of 0.2 to 1 kHz. Peak current intensity of ~100 A has been attained at cathode peak voltage of ~1 kV. The mean velocity distribution functions and particle fluxes of the sputtered metal atoms, in parallel and perpendicular direction to the target, have been obtained and compared for DC and pulse mode.

  16. Method of producing submicron size particles and product produced thereby

    DOEpatents

    Bourne, R.S.; Eichman, C.C.; Welbon, W.W.

    1988-05-11

    Submicron size particles are produced by using a sputtering process to deposit particles into a liquid. The liquid is processed to recover the particles therefrom, and the particles have sizes in the range of twenty to two hundred Angstroms. Either metallic or non-metallic particles can be produced, and the metallic particles can be used in ''metallic inks.'' 4 figs.

  17. Anorthite sputtering by H + and Ar q+ (q = 1-9) at solar wind velocities

    DOE PAGES

    Hijazi, Hussein Dib; Bannister, Mark E.; Meyer, III, Harry M.; ...

    2014-10-16

    Here, we report sputtering measurements of anorthite-like material, taken to be representative of soils found in the lunar highlands, impacted by singly and multicharged ions representative of the solar wind. The ions investigated include protons, as well as singly and multicharged Ar ions (as proxies for the nonreactive heavy solar wind constituents), in the charge state range +1 to +9, at fixed solar wind-relevant impact velocities of 165 and 310 km/s (0.25 keV/amu and 0.5 keV/amu). A quartz microbalance approach (QCM) for determination of total sputtering yields was used. The goal of the measurements was to determine the sputtering contributionmore » of the heavy, multicharged minority solar wind constituents in comparison to that due to the dominant H + fraction. The QCM results show a yield increase of a factor of about 80 for Ar + versus H + sputtering and an enhancement by a factor of 1.67 between Ar 9+ and Ar +, which is a clear indication of a potential sputtering effect.« less

  18. Effects of Io ejecta on Europa

    NASA Astrophysics Data System (ADS)

    Eviatar, A.; Siscoe, G. L.; Johnson, T. V.; Matson, D. L.

    1981-07-01

    The effects of plasma ejected from Io on the nature and evolution of the surface of Europa and on the relative importance of the roles played by the two satellites in the Jupiter magnetosphere are examined. Observations of an ultraviolet absorption feature on the trailing side of Europa are interpreted as due to an equilibrium column density of SO2 in a steady-state model of the implantation of iogenic ions into the surface of Europa and their subsequent sputtering. The observed sulfur column density of 2 x 10 to the 16th/sq cm implies a slow loss of material from Europa, mainly water ice, and indicates that the spectrum of particles sputtered is soft. Considerations of the comparative roles of corotating and energetic heavy ions are shown to suggest that the implantation and sputtering is primarily the result of the proton and light ion component of the plasma. The weakness of Europa as a plasma source resulting from the soft sputtered particle spectrum thus leads to the dominance of Io in contributing to the magnetospheric plasma.

  19. Hybrid-PIC simulation of sputtering product distribution in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Cao, Xifeng; Hang, Guanrong; Liu, Hui; Meng, Yingchao; Luo, Xiaoming; Yu, Daren

    2017-10-01

    Hall thrusters have been widely used in orbit correction and the station-keeping of geostationary satellites due to their high specific impulse, long life, and high reliability. During the operating life of a Hall thruster, high-energy ions will bombard the discharge channel and cause serious erosion. As time passes, this sputtering process will change the macroscopic surface morphology of the discharge channel, especially near the exit, thus affecting the performance of the thruster. Therefore, it is necessary to carry out research on the motion of the sputtering products and erosion process of the discharge wall. To better understand the moving characteristics of sputtering products, based on the hybrid particle-in-cell (PIC) numerical method, this paper simulates the different erosion states of the thruster discharge channel in different moments and analyzes the moving process of different particles, such as B atoms and B+ ions. In this paper, the main conclusion is that B atoms are mainly produced on both sides of the channel exit, and B+ ions are mainly produced in the middle of the channel exit. The ionization rate of B atoms is approximately 1%.

  20. Combined experimental and theoretical description of direct current magnetron sputtering of Al by Ar and Ar/N2 plasma

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Ries, Stefan; Bibinov, Nikita; Awakowicz, Peter; Mráz, Stanislav; Schneider, Jochen M.; Mussenbrock, Thomas

    2018-05-01

    Direct current magnetron sputtering of Al by Ar and Ar/N2 low pressure plasmas was characterized by experimental and theoretical means in a unified consideration. Experimentally, the plasmas were analyzed by optical emission spectroscopy, while the film deposition rate was determined by weight measurements and laser optical microscopy, and the film composition by energy dispersive x-ray spectroscopy. Theoretically, a global particle and power balance model was used to estimate the electron temperature T e and the electron density n e of the plasma at constant discharge power. In addition, the sputtering process and the transport of the sputtered atoms were described using Monte Carlo models—TRIDYN and dsmcFoam, respectively. Initially, the non-reactive situation is characterized based on deposition experiment results, which are in agreement with predictions from simulations. Subsequently, a similar study is presented for the reactive case. The influence of the N2 addition is found to be twofold, in terms of (i) the target and substrate surface conditions (e.g., sputtering, secondary electron emission, particle sticking) and (ii) the volumetric changes of the plasma density n e governing the ion flux to the surfaces (e.g., due to additional energy conversion channels). It is shown that a combined experimental/simulation approach reveals a physically coherent and, in particular, quantitative understanding of the properties (e.g., electron density and temperature, target surface nitrogen content, sputtered Al density, deposited mass) involved in the deposition process.

  1. FeOx-TiO2 Film with Different Microstructures Leading to Femtosecond Transients with Different Properties: Biological Implications under Visible Light

    PubMed Central

    Rtimi, Sami; Pulgarin, Cesar; Nadtochenko, Victor A.; Gostev, Fedor E.; Shelaev, Ivan V.; Kiwi, John

    2016-01-01

    This study presents the first report addressing the effect of FeOx-TiO2 films microstructure on the transients detected by fast spectroscopy related to the long-range bacterial inactivation performance. The different fast kinetic femtosecond transient spectroscopy is reported for each FeOx+TiO2 microstructure. The lifetime of the short transient-species and the oxidative intermediate radicals generated under light were identified. Co-sputtered FeOx-TiO2 on polyethylene films presenting random distribution for both oxides were compared with sequentially sputtered FeOx/TiO2 films made up only by FeOx in the topmost layers. The ratio FeOx:TiO2 was optimized to attain the highest photo-conversion. By X-ray fluorescence, the Fe:Ti ration was found to be ~1.4 in the film bulk and by XPS-etching a ratio of 4:1 was found on the photocatalyst top-most layers. For co-sputtered FeOx-TiO2-PE films, the FeOx-TiO2 heterojunction led to electron injection from the FeOx to lower-lying TiO2 trapping states. The film optical properties, particle size, roughness, hydrophobic-hydrophilic shift and temporal evolution of the transient redox states were characterized in detail. Films with different microstructure led to different antibacterial activity. This suggests that the FeOx-TiO2-PE microstructure and not the position of the potential energy level of the semiconductors FeOx and TiO2 control the charge transfer under light irradiation. PMID:27443505

  2. FeOx-TiO2 Film with Different Microstructures Leading to Femtosecond Transients with Different Properties: Biological Implications under Visible Light.

    PubMed

    Rtimi, Sami; Pulgarin, Cesar; Nadtochenko, Victor A; Gostev, Fedor E; Shelaev, Ivan V; Kiwi, John

    2016-07-22

    This study presents the first report addressing the effect of FeOx-TiO2 films microstructure on the transients detected by fast spectroscopy related to the long-range bacterial inactivation performance. The different fast kinetic femtosecond transient spectroscopy is reported for each FeOx+TiO2 microstructure. The lifetime of the short transient-species and the oxidative intermediate radicals generated under light were identified. Co-sputtered FeOx-TiO2 on polyethylene films presenting random distribution for both oxides were compared with sequentially sputtered FeOx/TiO2 films made up only by FeOx in the topmost layers. The ratio FeOx:TiO2 was optimized to attain the highest photo-conversion. By X-ray fluorescence, the Fe:Ti ration was found to be ~1.4 in the film bulk and by XPS-etching a ratio of 4:1 was found on the photocatalyst top-most layers. For co-sputtered FeOx-TiO2-PE films, the FeOx-TiO2 heterojunction led to electron injection from the FeOx to lower-lying TiO2 trapping states. The film optical properties, particle size, roughness, hydrophobic-hydrophilic shift and temporal evolution of the transient redox states were characterized in detail. Films with different microstructure led to different antibacterial activity. This suggests that the FeOx-TiO2-PE microstructure and not the position of the potential energy level of the semiconductors FeOx and TiO2 control the charge transfer under light irradiation.

  3. FeOx-TiO2 Film with Different Microstructures Leading to Femtosecond Transients with Different Properties: Biological Implications under Visible Light

    NASA Astrophysics Data System (ADS)

    Rtimi, Sami; Pulgarin, Cesar; Nadtochenko, Victor A.; Gostev, Fedor E.; Shelaev, Ivan V.; Kiwi, John

    2016-07-01

    This study presents the first report addressing the effect of FeOx-TiO2 films microstructure on the transients detected by fast spectroscopy related to the long-range bacterial inactivation performance. The different fast kinetic femtosecond transient spectroscopy is reported for each FeOx+TiO2 microstructure. The lifetime of the short transient-species and the oxidative intermediate radicals generated under light were identified. Co-sputtered FeOx-TiO2 on polyethylene films presenting random distribution for both oxides were compared with sequentially sputtered FeOx/TiO2 films made up only by FeOx in the topmost layers. The ratio FeOx:TiO2 was optimized to attain the highest photo-conversion. By X-ray fluorescence, the Fe:Ti ration was found to be ~1.4 in the film bulk and by XPS-etching a ratio of 4:1 was found on the photocatalyst top-most layers. For co-sputtered FeOx-TiO2-PE films, the FeOx-TiO2 heterojunction led to electron injection from the FeOx to lower-lying TiO2 trapping states. The film optical properties, particle size, roughness, hydrophobic-hydrophilic shift and temporal evolution of the transient redox states were characterized in detail. Films with different microstructure led to different antibacterial activity. This suggests that the FeOx-TiO2-PE microstructure and not the position of the potential energy level of the semiconductors FeOx and TiO2 control the charge transfer under light irradiation.

  4. Observing Planets and Small Bodies in Sputtered High Energy Atom (SHEA) Fluxes

    NASA Technical Reports Server (NTRS)

    Milillo, A.; Orsini, S.; Hsieh, K. C.; Baragiola, R.; Fama, M.; Johnson, R.; Mura, A.; Plainaki, Ch.; Sarantos, M.; Cassidy, T. A.; hide

    2012-01-01

    The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA and suggests the need for quantitative results from laboratory simulations and molecular physic modeling in order to understand SHEA data from planetary missions. In the Appendix, referenced computer simulations using existing sputtering data are reviewed.

  5. Attempt to form hydride and amorphous particles, and introduction of a new evaporation method

    NASA Astrophysics Data System (ADS)

    Yatsuya, S.; Yamauchi, K.; Kamakura, T.; Yanagida, A.; Wakayama, H.; Mihama, K.

    1985-06-01

    Al and TiH 2 particles of fcc structure can be produced in an atmosphere of gaseous H 2 at reduced pressure. Al particles with definite habit are obtained, which has been never observed in the ordinary gas evaporation technique using a HV system. The habit of TiH 2 particles grown in the intermediate zone of the smoke is determined to be a dodecahedron. The growth is considered as the result of the martensite transformation from the bcc structure initially formed to the fcc structure accompanying a slight modification of the characteristic habit as observed for Ti particles. For the preparation of amorphous particles, first, the quenching rate of a particle, {dT}/{dt} was estimated to be more than {10 4°C }/{s}. Ultrafine particles of Pd 80Si 20 chosen as a test sample did not show the amorphous structure, but the crystalline. Application of the sputtering method as a new evaporation source in the gas evaporation technique is attempted. With the sputtering method, W particles with definite habits are produced.

  6. The sodium exosphere and magnetosphere of Mercury

    NASA Astrophysics Data System (ADS)

    Ip, W.-H.

    1986-05-01

    Following the recent optical discovery of intense sodium D-line emission from Mercury, the scenario of an extended exosphere of sodium and other metallic atoms is explored. It is shown that the strong effect of solar radiation pressure acceleration would permit the escape of Na atoms from Mercury's surface even if they are ejected at a velocity lower than the surface escape velocity. Fast photoionization of the Na atoms is effective in limiting the tailward extension of the sodium exosphere, however. The subsequent loss of the photoions to the magnetosphere could be a significant source of the magnetospheric plasma. The recirculation of the magnetospheric charged particles to the planetary surface could also play an important role in maintaining an extended sodium exosphere as well as a magnetosphere of sputtered metallic ions.

  7. Europa's surface radiation environment and considerations for in-situ sampling and biosignature detection

    NASA Astrophysics Data System (ADS)

    Nordheim, T.; Paranicas, C.; Hand, K. P.

    2017-12-01

    Jupiter's moon Europa is embedded deep within the Jovian magnetosphere and is thus exposed to bombardment by charged particles, from thermal plasma to more energetic particles at radiation belt energies. In particular, energetic charged particles are capable of affecting the uppermost layer of surface material on Europa, in some cases down to depths of several meters (Johnson et al., 2004; Paranicas et al., 2009, 2002). Examples of radiation-induced surface alteration include sputtering, radiolysis and grain sintering; processes that are capable of significantly altering the physical properties of surface material. Radiolysis of surface ices containing sulfur-bearing contaminants from Io has been invoked as a possible explanation for hydrated sulfuric acid detected on Europa's surface (Carlson et al., 2002, 1999) and radiolytic production of oxidants represents a potential source of energy for life that could reside within Europa's sub-surface ocean (Chyba, 2000; Hand et al., 2007; Johnson et al., 2003; Vance et al., 2016). Accurate knowledge of Europa's surface radiation environment is essential to the interpretation of space and Earth-based observations of Europa's surface and exosphere. Furthermore, future landed missions may seek to sample endogenic material emplaced on Europa's surface to investigate its chemical composition and to search for biosignatures contained within. Such material would likely be sampled from the shallow sub-surface, and thus, it becomes crucial to know to which degree this material is expected to have been radiation processed.Here we will present modeling results of energetic electron and proton bombardment of Europa's surface, including interactions between these particles and surface material. In addition, we will present predictions for biosignature destruction at different geographical locations and burial depths and discuss the implications of these results for surface sampling by future missions to Europa's surface.

  8. Electrical Conductivity and Barrier Properties of Lithium Niobate Thin Films

    NASA Astrophysics Data System (ADS)

    Gudkov, S. I.; Baklanova, K. D.; Kamenshchikov, M. V.; Solnyshkin, A. V.; Belov, A. N.

    2018-04-01

    The thin-film structures made of LiNbO3 and obtained via laser ablation and magnetron sputtering are studied with volt-farad and volt-ampere characteristics. A potential barrier on the Si-LiNbO3 interface was found for both types of the films with the capacitance-voltage characteristics. The current-voltage characteristics showed that there are several conduction mechanisms in the structures studied. The Poole-Frenkel effect and the currents limited by a space charge mainly contribute to the electrical conductivity in the LiNbO3 film produced with the laser ablation method. The currents limited by a space charge contribute to the main mechanism in the film heterostructure obtained with the magnetron sputtering method.

  9. Improvement of silicon solar cell efficiency by ion beam sputtered deposition of AlOxNy thin films.

    PubMed

    Chen, Sheng-Hui; Hsu, Chun-Che; Wang, Hsuan-Wen; Yeh, Chi-Li; Tseng, Shao-Ze; Lin, Hung-Ju; Lee, Cheng-Chung; Peng, Cheng-Yu

    2011-03-20

    Negative charge material, AlOxNy, has been fabricated to passivate the surface of p-type silicon. The fabrication of AlOxNy was possible by using ion beam sputtering deposition to deposit AlN thin film on the surface of a p-type silicon wafer and following annealing in oxygen ambient. Capacitance-voltage analysis shows the fixed charge density has increased from 10(11) cm(-2) to 2.26×10(12) cm(-2) after annealing. The solar cell efficiency increased from 15.9% to 17.3%, which is also equivalent to the reduction of surface recombination velocity from 1×10(5)  to 32 cm/s.

  10. Characterization of sputtered iridium oxide thin films on planar and laser micro-structured platinum thin film surfaces for neural stimulation applications

    NASA Astrophysics Data System (ADS)

    Thanawala, Sachin

    Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.

  11. A new method of nanocrystalline nickel powder formation by magnetron sputtering on the water-soluble substrates

    NASA Astrophysics Data System (ADS)

    Tučkutė, S.; Urbonavičius, M.; Lelis, M.; Maiorov, M.; Díaz Ordaz, J. R.; Milčius, D.

    2018-01-01

    Due to the accurate and relatively easy control magnetron sputtering is an attractive technique for the synthesis of metallic particles. This work describes a new method of nickel powder production by depositing nickel on the surface of sodium chloride particles which were used as the template and are soluble in water. Ni powder with flake-like structure was obtained after washing Ni coated salt particles in ultrasonic cleaner. Salt particles and nickel powder were characterized using scanning electron microscope (SEM), energy-dispersive x-ray spectrometer, XRD and X-ray photoelectron spectroscopy (XPS) techniques. SEM images showed that thickness of the received Ni particles varied in the nanoscale and depended on the magnetron deposition time but did not depend on the size of salt particles. On the other hand initial size of the salt particles was successfully employed a measure to control lateral dimensions of Ni powder. XRD and XPS analysis results revealed that Ni particles had metallic core and oxidized shell which was a cause of the slightly deteriorated magnetic properties.

  12. SERENA: A Neutral Atoms Detector to be proposed for the ESA's BepiColombo Planetary Orbiter

    NASA Astrophysics Data System (ADS)

    di Lellis, A.; Orsini, S.; Livi, S.; Wurz, P.; Milillo, A.; Barabash, S.

    2003-04-01

    A comprehensive suite for the neutral particles detection in the Mercury environment is under development and it will be proposed in the frame of the ESA cornerstone’s BepiColombo mission. The package, namely NPA - SERENA (Neutral Particle Analyser - Searching for Exospheric Refilling and Emitted Neutral Abundances), consists of three dedicated spectrometers (MAIA, ELENA, and M/H-ENA) identifying and measuring the particles and their energies, namely from fraction of eV to tens of keV. The proposed sensors will observe and analyse the bulk of the sub-thermal / thermal exospheric (0-50 eV) gas along the ram direction (MAIA), the sputtering emission (E min < 100eV; E max > 1 keV) within 1-D (2 deg x 60 deg) nadir cross track slices from the planet surface (ELENA), and the charge exchange between ions and exospheric gas (E min < 5 keV; E max > 30 keV) in order to monitor the Mercury’s magnetosphere dynamics (M/H-ENA). The paper describes the progress achieved in the system and sensor level design and provides a summary report on the laboratory test of the investigated techniques and of the expected performances of the ELENA detector head.

  13. Development of long-lived thick carbon stripper foils for high energy heavy ion accelerators by a heavy ion beam sputtering method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muto, Hideshi; Ohshiro, Yukimitsu; Kawasaki, Katsunori

    2013-04-19

    In the past decade, we have developed extremely long-lived carbon stripper foils of 1-50 {mu}g/cm{sup 2} thickness prepared by a heavy ion beam sputtering method. These foils were mainly used for low energy heavy ion beams. Recently, high energy negative Hydrogen and heavy ion accelerators have started to use carbon stripper foils of over 100 {mu}g/cm{sup 2} in thickness. However, the heavy ion beam sputtering method was unsuccessful in production of foils thicker than about 50 {mu}g/cm{sup 2} because of the collapse of carbon particle build-up from substrates during the sputtering process. The reproduction probability of the foils was lessmore » than 25%, and most of them had surface defects. However, these defects were successfully eliminated by introducing higher beam energies of sputtering ions and a substrate heater during the sputtering process. In this report we describe a highly reproducible method for making thick carbon stripper foils by a heavy ion beam sputtering with a Krypton ion beam.« less

  14. Development of a laser cleaning method for the first mirror surface of the charge exchange recombination spectroscopy diagnostics on ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, A. P., E-mail: APKuznetsov@mephi.ru; Buzinskij, O. I.; Gubsky, K. L.

    A set of optical diagnostics is expected for measuring the plasma characteristics in ITER. Optical elements located inside discharge chambers are exposed to an intense radiation load, sputtering due to collisions with energetic atoms formed in the charge transfer processes, and contamination due to recondensation of materials sputtered from different parts of the construction of the chamber. Removing the films of the sputtered materials from the mirrors with the aid of pulsed laser radiation is an efficient cleaning method enabling recovery of the optical properties of the mirrors. In this work, we studied the efficiency of removal of metal oxidemore » films by pulsed radiation of a fiber laser. Optimization of the laser cleaning conditions was carried out on samples representing metal substrates polished with optical quality with deposition of films on them imitating the chemical composition and conditions expected in ITER. It is shown that, by a proper selection of modes of radiation exposure to the surface with a deposited film, it is feasible to restore the original high reflection characteristics of optical elements.« less

  15. One-dimensional analysis of the rate of plasma-assisted sputter deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmero, A.; Rudolph, H.; Habraken, F. H. P. M.

    2007-04-15

    In this article a recently developed model [A. Palmero, H. Rudolph, and F. H. P. M. Habraken, Appl. Phys. Lett. 89, 211501 (2006)] is applied to analyze the transport of sputtered material from the cathode toward the growing film when using a plasma-assisted sputtering deposition technique. The argon pressure dependence of the deposition rate of aluminum, silicon, vanadium, chromium, germanium, tantalum, and tungsten under several different experimental conditions has been analyzed by fitting experimental results from the literature to the above-mentioned theory. Good fits are obtained. Three quantities are deduced from the fit: the temperature of the cathode and ofmore » the growing film, and the value of the effective cross section for thermalization due to elastic scattering of a sputtered particle on background gas atoms. The values derived from the fits for the growing film and cathode temperature are very similar to those experimentally determined and reported in the literature. The effective cross sections have been found to be approximately the corresponding geometrical cross section divided by the average number of collisions required for the thermalization, implying that the real and effective thermalization lengths have a similar value. Finally, the values of the throw distance appearing in the Keller-Simmons model, as well as its dependence on the deposition conditions have been understood invoking the values of the cathode and film temperature, as well as of the value of the effective cross section. The analysis shows the overall validity of this model for the transport of sputtered particles in sputter deposition.« less

  16. [Study on anti-coagulant property of radio frequency sputtering nano-sized TiO2 thin films].

    PubMed

    Tang, Xiaoshan; Li, Da

    2010-12-01

    Nano-TiO2 thin films were prepared by Radio frequency (RF) sputtering on pyrolytic carbon substrates. The influences of sputtering power on the structure and the surface morphology of TiO2 thin films were investigated by X-ray diffraction (XRD), and by scanning electron microscopy (SEM). The results show that the TiO2 films change to anatase through the optimum of sputtering power. The mean diameter of nano-particle is about 30 nm. The anti-coagulant property of TiO2 thin films was observed through platelet adhesion in vitro. The result of experiment reveals the amount of thrombus on the TiO2 thin films being much less than that on the pyrolytic carbon. It also indicates that the RF sputtering Nano-sized TiO2 thin films will be a new kind of promising materials applied to artificial heart valve and endovascular stent.

  17. A model for sputtering from solid surfaces bombarded by energetic clusters

    NASA Astrophysics Data System (ADS)

    Benguerba, Messaoud

    2018-04-01

    A model is developed to explain and predict the sputtering from solid surfaces bombarded by energetic clusters, on the basis of shock wave generated at the impact of cluster. Under the shock compression the temperature increases causing the vaporization of material that requires an internal energy behind the shock, at least, of about twice the cohesive energy of target. The sputtering is treated as a gas of vaporized particles from a hemispherical volume behind the shock front. The sputter yield per cluster atoms is given as a universal function depending on the ratio of target to cluster atomic density and the ratio of cluster velocity to the velocity calculated on the basis of an internal energy equals about twice cohesive energy. The predictions of the model for self sputter yield of copper, gold, tungsten and of silver bombarded by C60 clusters agree well, with the corresponding data simulated by molecular dynamics.

  18. Computer Modeling of High-Intensity Cs-Sputter Ion Sources

    NASA Astrophysics Data System (ADS)

    Brown, T. A.; Roberts, M. L.; Southon, J. R.

    The grid-point mesh program NEDLab has been used to computer model the interior of the high-intensity Cs-sputter source used in routine operations at the Center for Accelerator Mass Spectrometry (CAMS), with the goal of improving negative ion output. NEDLab has several features that are important to realistic modeling of such sources. First, space-charge effects are incorporated in the calculations through an automated ion-trajectories/Poissonelectric-fields successive-iteration process. Second, space charge distributions can be averaged over successive iterations to suppress model instabilities. Third, space charge constraints on ion emission from surfaces can be incorporate under Child's Law based algorithms. Fourth, the energy of ions emitted from a surface can be randomly chosen from within a thermal energy distribution. And finally, ions can be emitted from a surface at randomized angles The results of our modeling effort indicate that significant modification of the interior geometry of the source will double Cs+ ion production from our spherical ionizer and produce a significant increase in negative ion output from the source.

  19. Study of the key factors affecting the triple grid lifetime of the LIPS-300 ion thruster

    NASA Astrophysics Data System (ADS)

    Mingming, SUN; Liang, WANG; Juntai, YANG; Xiaodong, WEN; Yongjie, HUANG; Meng, WANG

    2018-04-01

    In order to ascertain the key factors affecting the lifetime of the triple grids in the LIPS-300 ion thruster, the thermal deformation, upstream ion density and component lifetime of the grids are simulated with finite element analysis, fluid simulation and charged-particle tracing simulation methods on the basis of a 1500 h short lifetime test. The key factor affecting the lifetime of the triple grids in the LIPS-300 ion thruster is obtained and analyzed through the test results. The results show that ion sputtering erosion of the grids in 5 kW operation mode is greater than in the case of 3 kW. In 5 kW mode, the decelerator grid shows the most serious corrosion, the accelerator grid shows moderate corrosion, and the screen grid shows the least amount of corrosion. With the serious corrosion of the grids in 5 kW operation mode, the intercept current of the acceleration and deceleration grids increases substantially. Meanwhile, the cold gap between the accelerator grid and the screen grid decreases from 1 mm to 0.7 mm, while the cold gap between the accelerator grid and the decelerator grid increases from 1 mm to 1.25 mm after 1500 h of thruster operation. At equilibrium temperature with 5 kW power, the finite element method (FEM) simulation results show that the hot gap between the screen grid and the accelerator grid reduces to 0.2 mm. Accordingly, the hot gap between the accelerator grid and the decelerator grid increases to 1.5 mm. According to the fluid method, the plasma density simulated in most regions of the discharge chamber is 1 × 1018‑8 × 1018 m‑3. The upstream plasma density of the screen grid is in the range 6 × 1017‑6 × 1018 m‑3 and displays a parabolic characteristic. The charged particle tracing simulation method results show that the ion beam current without the thermal deformation of triple grids has optimal perveance status. The ion sputtering rates of the accelerator grid hole and the decelerator hole are 5.5 × 10‑14 kg s‑1 and 4.28 × 10‑14 kg s‑1, respectively, while after the thermal deformation of the triple grids, the ion beam current has over-perveance status. The ion sputtering rates of the accelerator grid hole and the decelerator hole are 1.41 × 10‑13 kg s‑1 and 4.1 × 10‑13 kg s‑1, respectively. The anode current is a key factor for the triple grid lifetime in situations where the structural strength of the grids does not change with temperature variation. The average sputtering rates of the accelerator grid and the decelerator grid, which were measured during the 1500 h lifetime test in 5 kW operating conditions, are 2.2 × 10‑13 kg s‑1 and 7.3 × 10‑13 kg s‑1, respectively. These results are in accordance with the simulation, and the error comes mainly from the calculation distribution of the upstream plasma density of the grids.

  20. ERO modelling of tungsten erosion and re-deposition in EAST L mode discharges

    NASA Astrophysics Data System (ADS)

    Xie, H.; Ding, R.; Kirschner, A.; Chen, J. L.; Ding, F.; Mao, H. M.; Feng, W.; Borodin, D.; Wang, L.

    2017-09-01

    Tungsten erosion and re-deposition at the upper outer divertor of the Experimental Advanced Superconducting Tokamak has been modelled using the 3D Monte Carlo code ERO. The measured divertor plasma condition in attached L mode discharges with upper single null configuration has been used to build the background plasma in the simulations. The tungsten gross erosion rate is mainly determined by carbon impurity in the background plasma. Increasing carbon concentration can first increase and afterwards suppress the tungsten erosion rate. Taking into account the material mixing surface model, the influence of eroded particles returning to the surface on sputtering has been studied. Sputtering by eroded particles returning to the surface can significantly enhance the gross erosion by reduction of the carbon ratio within the surface interaction layer and by increasing the erosion rate due to sputtering by both eroded tungsten and carbon particles. Modelling indicates that carbon deposition occurs on the dome plate and part of the vertical plate close to the dome plate, whereas tungsten net erosion occurs on most of the vertical plate. The modelling results are in reasonable agreement with the experimental WI spectroscopy.

  1. Neutral atom imaging at Mercury

    NASA Astrophysics Data System (ADS)

    Mura, A.; Orsini, S.; Milillo, A.; Di Lellis, A. M.; De Angelis, E.

    2006-02-01

    The feasibility of neutral atom detection and imaging in the Hermean environment is discussed in this study. In particular, we consider those energetic neutral atoms (ENA) whose emission is directly related to solar wind entrance into Mercury's magnetosphere. In fact, this environment is characterised by a weak magnetic field; thus, cusp regions are extremely large if compared to the Earth's ones, and intense proton fluxes are expected there. Our study includes a model of H + distribution in space, energy and pitch angle, simulated by means of a single-particle, Monte-Carlo simulation. Among processes that could generate neutral atom emission, we focus our attention on charge-exchange and ion sputtering, which, in principle, are able to produce directional ENA fluxes. Simulated neutral atom images are investigated in the frame of the neutral particle analyser-ion spectrometer (NPA-IS) SERENA experiment, proposed to fly on board the ESA mission BepiColombo/MPO. The ELENA (emitted low-energy neutral atoms) unit, which is part of this experiment, will be able to detect such fluxes; instrumental details and predicted count rates are given.

  2. Characterization of Lunar Swirls at Mare Ingenii: A Model for Space Weathering at Magnetic Anomalies

    NASA Technical Reports Server (NTRS)

    Kramer, Georgianna Y.; Combe, Jean-Philippe; Harnett, Erika M.; Hawke, Bernard Ray; Noble, Sarah K.; Blewett, David T.; McCord, Thomas B.; Giguere, Thomas A.

    2011-01-01

    Analysis of spectra from the Clementine ultraviolet-visible and near-infrared cameras of small, immature craters and surface soils both on and adjacent to the lunar swirls at Marc Ingenii has yielded the following conclusions about space weathering at a magnetic anomaly. (l) Despite having spectral characteristics of immaturity, the lunar swirls arc not freshly exposed surfaces. (2) The swirl surfaces arc regions of retarded weathering, while immediately adjacent regions experience accelerated weathering, (3) Weathering in the off-swirl regions darkens and flattens the spectrum with little to no reddening, which suggests that the production of larger (greater than 40 nm) nanophase iron dominates in these locations as a result of charged particle sorting by the magnetic field. Preliminaty analysis of two other lunar swirl regions, Reiner Gamma and Mare Marginis, is consistent with our observations at Mare Ingenii. Our results indicate that sputtering/vapor deposition, implanted solar wind hydrogen, and agglutination share responsibility for creating the range in npFe(sup 0) particle sizes responsible for the spectral effects of space weathering.

  3. Superconducting Thin Films for the Enhancement of Superconducting Radio Frequency Accelerator Cavities

    NASA Astrophysics Data System (ADS)

    Burton, Matthew C.

    Bulk niobium (Nb) superconducting radio frequency (SRF) cavities are currently the preferred method for acceleration of charged particles at accelerating facilities around the world. However, bulk Nb cavities have poor thermal conductance, impose material and design restrictions on other components of a particle accelerator, have low reproducibility and are approaching the fundamental material-dependent accelerating field limit of approximately 50MV/m. Since the SRF phenomena occurs at surfaces within a shallow depth of ˜1 microm, a proposed solution to this problem has been to utilize thin film technology to deposit superconducting thin films on the interior of cavities to engineer the active SRF surface in order to achieve cavities with enhanced properties and performance. Two proposed thin film applications for SRF cavities are: 1) Nb thin films coated on bulk cavities made of suitable castable metals (such as copper or aluminum) and 2) multilayer films designed to increase the accelerating gradient and performance of SRF cavities. While Nb thin films on copper (Cu) cavities have been attempted in the past using DC magnetron sputtering (DCMS), such cavities have never performed at the bulk Nb level. However, new energetic condensation techniques for film deposition, such as High Power Impulse Magnetron Sputtering (HiPIMS), offer the opportunity to create suitably thick Nb films with improved density, microstructure and adhesion compared to traditional DCMS. Clearly use of such novel technique requires fundamental studies to assess surface evolution and growth modes during deposition and resulting microstructure and surface morphology and the correlation with RF superconducting properties. Here we present detailed structure-property correlative research studies done on Nb/Cu thin films and NbN- and NbTiN-based multilayers made using HiPIMS and DCMS, respectively.

  4. Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Jun Tae; Kim, Dong Myong; Choi, Sung-Jin

    The effect of direct current sputtering power of indium-gallium-zinc-oxide (IGZO) on the performance and stability of the corresponding thin-film transistor devices was studied. The field effect mobility increases as the IGZO sputter power increases, at the expense of device reliability under negative bias illumination stress (NBIS). Device simulation based on the extracted sub-gap density of states indicates that the field effect mobility is improved as a result of the number of acceptor-like states decreasing. The degradation by NBIS is suggested to be induced by the formation of peroxides in IGZO rather than charge trapping.

  5. Neutral beam dose and sputtering characteristics in an ion implantation system

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Ash, R. L.; Berger, M. H.

    1973-01-01

    A technique and instrument design for calorimetric detection of the neutral atom content of a 60 keV argon ion beam. A beam sampling method is used to measure local heat flux to a small platinum wire at steady state; integration of power density profiles leads to a determination of equivalent neutral beam current. The fast neutral production occurs as a result of charge transfer processes in the region of the beam system between analyzing magnet and beam stop where the pressure remains less than .00001 torr. A description of the neutral beam detector is given in section along with a presentation of results. An elementary analysis of sputter material transport from target to substrate was performed; the analysis relates to semiconductor sputtering.

  6. The study of surface acoustic wave charge transfer device

    NASA Technical Reports Server (NTRS)

    Papanicolaou, N.; Lin, H. C.

    1978-01-01

    A surface acoustic wave-charge transfer device, consisting of an n-type silicon substrate, a thermally grown silicon dioxide layer, and a sputtered film of piezoelectric zinc oxide is proposed as a means of circumventing problems associated with charge-coupled device (CCD) applications in memory, signal processing, and imaging. The proposed device creates traveling longitudinal electric fields in the silicon and replaces the multiphase clocks in CCD's. The traveling electric fields create potential wells which carry along charges stored there. These charges may be injected into the wells by light or by using a p-n junction as in conventional CCD's.

  7. Influence of sputtering power on structural and magnetic properties of as-deposited, annealed and ERTA Co2FeSi films: A comparative study

    NASA Astrophysics Data System (ADS)

    Saravanan, L.; Raja, M. Manivel; Prabhu, D.; Therese, H. A.

    2018-02-01

    We report the effect of sputtering power (200 W - 350 W) on the structural, topographical and magnetic properties of Co2FeSi (CFS) films deposited at ambient temperatures as compared to the films which were either annealed at 300 °C or were subjected to Electron beam Rapid Thermal Annealed (ERTA) treatment. The structural and morphological analyses reveal changes in their crystalline phases and particle sizes. All the as-deposited and annealed CFS films showed A2 phase crystal structure. Whereas the CFS film sputtered at 350 W followed by ERTA displayed the fully ordered L21 structure. The particles are spherical in shape and their sizes increased gradually with increase in the sputtering power of the as-deposited and annealed CFS films. However, ERTA CFS films had spherical as well as columnar (elongated) shaped grains and their grain sizes increased nonlinearly with sputtering power. M-H studies on as-deposited, annealed and ERTA CFS films show ferromagnetic responses. The comparatively stronger ferromagnetic response was observed for the ERTA samples with low saturation field which depends on the enrichment of fine crystallites in these films. This indicates that, apart from higher sputtering powers used for deposition of CFS films, ERTA process plays a significant role in the enhancement of their magnetic responses. 350 W ERTA film has the considerable saturation magnetization (∼816 emu/cc), coercivity (∼527 Oe) and a good squareness values at 100 K than at 300 K, which could originate from the spin wave excitation effect. Further, the optimized parameters to achieve a CFS film with good structural and magnetic properties are discussed from the perspective of spintronics.

  8. Molecular dynamics study of Al and Ni 3Al sputtering by Al clusters bombardment

    NASA Astrophysics Data System (ADS)

    Zhurkin, Eugeni E.; Kolesnikov, Anton S.

    2002-06-01

    The sputtering of Al and Ni 3Al (1 0 0) surfaces induced by impact of Al ions and Al N clusters ( N=2,4,6,9,13,55) with energies of 100 and 500 eV/atom is studied at atomic scale by means of classical molecular dynamics (MD). The MD code we used implements many-body tight binding potential splined to ZBL at short distances. Special attention has been paid to model dense cascades: we used quite big computation cells with lateral periodic and damped boundary conditions. In addition, long simulation times (10-25 ps) and representative statistics (up to 1000 runs per each case) were considered. The total sputtering yields, energy and time spectrums of sputtered particles, as well as preferential sputtering of compound target were analyzed, both in the linear and non-linear regimes. The significant "cluster enhancement" of sputtering yield was found for cluster sizes N⩾13. In parallel, we estimated collision cascade features depending on cluster size in order to interpret the nature of observed non-linear effects.

  9. Investigations into the Anti-Felting Properties of Sputtered Wool Using Plasma Treatment

    NASA Astrophysics Data System (ADS)

    M. Borghei, S.; Shahidi, S.; Ghoranneviss, M.; Abdolahi, Z.

    2013-01-01

    In this research the effects of mordant and plasma sputtering treatments on the crystallinity and morphological properties of wool fabrics were investigated. The felting behavior of the treated samples was also studied. We used madder as a natural dye and copper sulfate as a metal mordant. We also used copper as the electrode material in a DC magnetron plasma sputtering device. The anti-felting properties of the wool samples before and after dying was studied, and it was shown that the shrink resistance and anti-felting behavior of the wool had been significantly improved by the plasma sputtering treatment. In addition, the percentage of crystallinity and the size of the crystals were investigated using an X-ray diffractometer, and a scanning electron microscope was used for morphological analysis. The amount of copper particles on the surface of the mordanted and sputtered fabrics was studied using the energy dispersive X-ray (EDX) method, and the hydrophobic properties of the samples were examined using the water drop test. The results show that with plasma sputtering treatment, the hydrophobic properties of the surface of wool become super hydrophobic.

  10. Simple model of surface roughness for binary collision sputtering simulations

    NASA Astrophysics Data System (ADS)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-02-01

    It has been shown that surface roughness can strongly influence the sputtering yield - especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the "density gradient model") which imitates surface roughness effects. In the model, the target's atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient - leading to increased sputtering yields, similar in effect to surface roughness.

  11. The Effect on the Lunar Exosphere of a Coroual Mass Ejection Passage

    NASA Technical Reports Server (NTRS)

    Killen, R. M.; Hurley, D. M.; Farrell, W. M.

    2011-01-01

    Solar wind bombardment onto exposed surfaces in the solar system produces an energetic component to the exospheres about those bodies. The solar wind energy and composition are highly dependent on the origin of the plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into their various components, we have estimated the total sputter yield for each type of solar wind. We show that the heavy ion component, especially the He++ and 0+7 can greatly enhance the total sputter yield during times when the heavy ion population is enhanced. Folding in the flux, we compute the source rate for several species during different types of solar wind. Finally, we use a Monte Carlo model developed to simulate the time-dependent evolution of the lunar exosphere to study the sputtering component of the exosphere under the influence of a CME passage. We simulate the background exosphere of Na, K, Ca, and Mg. Simulations indicate that sputtering increases the mass of those constituents in the exosphere a few to a few tens times the background values. The escalation of atmospheric density occurs within an hour of onset The decrease in atmospheric density after the CME passage is also rapid, although takes longer than the increase, Sputtered neutral particles have a high probability of escaping the moon,by both Jeans escape and photo ionization. Density and spatial distribution of the exosphere can be tested with the LADEE mission.

  12. Ion-source modeling and improved performance of the CAMS high-intensity Cs-sputter ion source

    NASA Astrophysics Data System (ADS)

    Brown, T. A.; Roberts, M. L.; Southon, J. R.

    2000-10-01

    The interior of the high-intensity Cs-sputter source used in routine operations at the Center for Accelerator Mass Spectrometry (CAMS) has been computer modeled using the program NEDLab, with the aim of improving negative ion output. Space charge effects on ion trajectories within the source were modeled through a successive iteration process involving the calculation of ion trajectories through Poisson-equation-determined electric fields, followed by calculation of modified electric fields incorporating the charge distribution from the previously calculated ion trajectories. The program has several additional features that are useful in ion source modeling: (1) averaging of space charge distributions over successive iterations to suppress instabilities, (2) Child's Law modeling of space charge limited ion emission from surfaces, and (3) emission of particular ion groups with a thermal energy distribution and at randomized angles. The results of the modeling effort indicated that significant modification of the interior geometry of the source would double Cs + ion production from our spherical ionizer and produce a significant increase in negative ion output from the source. The results of the implementation of the new geometry were found to be consistent with the model results.

  13. Piezoelectric Behaviour of Sputtered Aluminium Nitride Thin Film for High Frequency Ultrasonic Sensors

    NASA Astrophysics Data System (ADS)

    Herzog, T.; Walter, S.; Bartzsch, H.; Gittner, M.; Gloess, D.; Heuer, H.

    2011-06-01

    Many new materials and processes require non destructive evaluation in higher resolutions by phased array ultrasonic techniques in a frequency range up to 250 MHz. This paper presents aluminium nitride, a promising material for the use as a piezoelectric sensor material in the considered frequency range, which contains the potential for high frequency phased array application in the future. This work represents the fundamental development of piezoelectric aluminium nitride films with a thickness of up to 10 μm. We have investigated and optimized the deposition process of the aluminium nitride thin film layers regarding their piezoelectric behavior. Therefore a specific test setup and a measuring station were created to determine the piezoelectric charge constant (d33) and the electro acoustic behavior of the sensor. Single element transducers were deposited on silicon substrates with aluminium electrodes for top and bottom, using different parameters for the magnetron sputter process, like pressure and bias voltage. Afterwards acoustical measurements up to 500 MHz in pulse echo mode have been carried out and the electrical and electromechanical properties were qualified. In two different parameter sets for the sputtering process excellent piezoelectric charge constant of about 8.0 pC/N maximum were obtained.

  14. Cyclic voltammetry on sputter-deposited films of electrochromic Ni oxide: Power-law decay of the charge density exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Rui-Tao, E-mail: Ruitao.Wen@angstrom.uu.se; Granqvist, Claes G.; Niklasson, Gunnar A.

    2014-10-20

    Ni-oxide-based thin films were produced by reactive direct-current magnetron sputtering and were characterized by X-ray diffraction and Rutherford backscattering spectroscopy. Intercalation of Li{sup +} ions was accomplished by cyclic voltammetry (CV) in an electrolyte of LiClO{sub 4} in propylene carbonate, and electrochromism was documented by spectrophotometry. The charge density exchange, and hence the optical modulation span, decayed gradually upon repeated cycling. This phenomenon was accurately described by an empirical power law, which was valid for at least 10{sup 4} cycles when the applied voltage was limited to 4.1 V vs Li/Li{sup +}. Our results allow lifetime assessments for one of themore » essential components in an electrochromic device such as a “smart window” for energy-efficient buildings.« less

  15. Sputtering Deposition of Sn-Mo-Based Composite Anode for Thin-Film Li-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Mani Chandran, T.; Balaji, S.

    2016-06-01

    The role of electrochemically inactive molybdenum in alleviating the anomalous volume expansion of tin anode upon charge-discharge cycling has been investigated. Tin-molybdenum thin-film composite anodes for Li-ion batteries were prepared using a direct-current sputtering method from a tin metal target incorporating molybdenum element. Results of structural and compositional analyses confirmed the presence of tin and molybdenum. The elemental ratio obtained from energy-dispersive x-ray spectroscopy confirmed the feasibility of tailoring the thin-film composition by varying the ratio of metallic elements present in the sputtering target. Scanning electron micrographs of the samples revealed the occurrence of flower-like open morphology with Mo inclusion in a Sn matrix. The gravimetric discharge capacity for pure Sn, Sn-rich, and Mo-rich samples was 733 mAh g-1, 572 mAh g-1, and 439 mAh g-1, respectively, with capacity retention after 50 cycles of 22%, 61%, and 74%, respectively. Mo inclusion reduced the surface resistivity of the Sn anode after the initial charge-discharge cycle. The charge-transfer resistance after the first cycle for pure Sn, Sn-rich, and Mo-rich samples was 17.395 Ω, 5.345 Ω, and 2.865 Ω, respectively. The lithium-ion diffusion coefficient also increased from 8.68 × 10-8 cm2S-1 for the pure Sn sample to 2.98 × 10-5 cm2S-1 for the Mo-rich sample.

  16. Measuring momentum for charged particle tomography

    DOEpatents

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  17. Stimulated Desorption from Icy Aerosol Particles: A Possible Relevance To Titan's Ionospheric Conditions

    NASA Astrophysics Data System (ADS)

    Bordalo, Vinicius; Mejia, Christian; da Silveira, Enio F.; Seperuelo Duarte, Eduardo; Pilling, Sergio

    Saturn's largest moon, Titan, has a dense atmosphere primarily composed of molecular nitro-gen (N2 , 96%) and methane (CH4 , 4%). Its atmospheric structure has been intensively studied recently due to the large amount of data obtained in situ by the Huygens probe during its de-cent to the surface on 14 January 2005. The probe could diagnose the composition of the haze particles made up organic chains containing H, C and N. Hydrocarbons and nitriles produced by photolysis of CH4 at high altitudes (˜ 2,000 km) act as embryos of aerosols of Titan as they fall to the surface. It is expected that CH4 condenses on these particles forming a layer of ice by adsorption or nucleation. Due to the high abundance of these aerosols throughout the atmo-sphere of Titan, their presence are relevant for the ionic balance of the atmosphere, especially the lower ionosphere promoted mainly by the flux of galactic cosmic rays (GCR). We have investigated the production of ions by electronic sputtering process due to the bombardment of the surfaces of aerosols by heavy ions. Time-of-flight (TOF) technique was used to obtain ion sputtering yields. An ice layer of CH4 was grown by condensation over a pre-condensed N2 ice in high vacuum chamber (1 × 10-7 mbar) at cryogenic temperature (10 K). Relative sputtering yields due to fast projectiles (252 Cf fission fragment ˜ 65 MeV) on the ice surfaces were measured. The bombardment was continued during the successive growth of both con-densed layers; the negative and positive sputtered ions were identified by TOF. Hybrid species including NH+ (17 u), HCN+ (27 u) and CN- (26 u) were formed, as well as the acetonitrile 3 ion (CH3 CN+ , 41 u). We argue that a similar process of continued ion replenishment into the gas phase by sputtering in aerosols ubiquitous in the lower ionosphere of Titan may occur and should be further investigated.

  18. Sputtering ultra-small Pt on nanographitic flakes deposited by electrophoresis for ethanol electro oxidation

    NASA Astrophysics Data System (ADS)

    Daryakenari, Ahmad Ahmadi; Daryakenari, Mohammad Ahmadi; Omidvar, Hamid

    2018-01-01

    To acquire highly efficient and cost-effective fuel cells, numerous research works have been carried out to the development low cost and excellent performance of electrocatalysts. In this paper, a solution-based electrophoretic deposition (EPD) technique for fabrication of Pt-based catalyst layers is studied. Nanographitic flake coatings used as catalyst support for sputtered platinium (Pt) were fabricated via the electrophoretic deposition (EPD) of dispersed nanographitic flakes in isopropyl alcohol. Magnesium nitrate hexahydrate (MNH) was used as an additive binder in the EPD process. Subsequently, the platinium particles were deposited by a direct sputtering on the fabricated nanographitic flake coatings.

  19. Growth of Au nanoparticle films and the effect of nanoparticle shape on plasmon peak wavelength

    NASA Astrophysics Data System (ADS)

    Horikoshi, S.; Matsumoto, N.; Omata, Y.; Kato, T.

    2014-05-01

    Metal nanoparticles (NPs) exhibit localized surface plasmon resonance (LSPR) and thus have potential for use in a wide range of applications. A facile technique for the preparation of NP films using an electron-cyclotron-resonance plasma sputtering method without a dewetting process is described. Field emission scanning electron microscopy (FE-SEM) observations revealed that the Au NPs grew independently as island-like particles during the first stage of sputtering and then coalesced with one another as sputtering time increased to ultimately form a continuous film. A plasmon absorption peak was observed via optical measurement of absorption efficiency. The LSPR peak shifted toward longer wavelengths (red shift) with an increase in sputtering time. The cause of this plasmon peak shift was theoretically investigated using the finite-difference time-domain calculation method. A realistic statistical distribution of the particle shapes based on FE-SEM observations was applied for the analysis, which has not been previously reported. It was determined that the change in the shape of the NPs from spheroidal to oval or slender due to coalescence with neighbouring NPs caused the LSPR peak shift. These results may enable the design of LSPR devices by controlling the characteristics of the nanoparticles, such as their size, shape, number density, and coverage.

  20. Development of μ-PIC with resistive electrodes using sputtered carbon

    NASA Astrophysics Data System (ADS)

    Yamane, Fumiya; Ochi, Atsuhiko; Homma, Yasuhiro; Yamauchi, Satoru; Nagasaka, Noriko; Hasegawa, Hiroaki; Kawamoto, Tatsuo; Kataoka, Yosuke; Masubuchi, Tatsuya

    2018-02-01

    The Micro Pixel Chamber (μ-PIC) has been developed for a hadron-collider experiment. The main purpose is detecting Minimum Ionizing Particles (MIP) under high-rate Highly Ionizing Particles (HIP) environment. In such an environment, sufficient gain to detect MIP is needed, but continuous sparks will be caused by high-rate HIP. To reduce sparks, cathodes are made of resistive material. In this report, sputtered carbon was used as a new resistive cathode. Gas gain >104 was achieved using an 55Fe source. This value is sufficient to detect MIP without GEM or other floating structures. Also, thanks to production improvement, pixels are well aligned in the entire detection area.

  1. Monte Carlo simulation of the influence of pressure and target-substrate distance on the sputtering process for metal and semiconductor layers

    NASA Astrophysics Data System (ADS)

    Bouazza, Abdelkader; Settaouti, Abderrahmane

    2016-07-01

    The energy and the number of particles arriving at the substrate during physical vapor deposition (PVD) are in close relation with divers parameters. In this work, we present the influence of the distance between the target and substrate and the gas pressure in the sputtering process of deposited layers of metals (Cu, Al and Ag) and semiconductors (Ge, Te and Si) for substrate diameter of 40 cm and target diameter of 5 cm. The nascent sputter flux, the flux of the atoms and their energy arriving at the substrate have been simulated by Monte Carlo codes. A good agreement between previous works of other groups and our simulations for sputter pressures (0.3-1 Pa) and target-substrate distances (8-20 cm) is obtained.

  2. Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, David N.

    2017-10-01

    Recent advances in finite-difference time-domain (FDTD) modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers) are much smaller than the wavelengths of fast (tens of cm) and slow (millimeter) waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC) models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core) FDTD/PIC simulations of Alcator C-Mod antenna operation.

  3. Surface-enhanced Raman scattering from metal and transition metal nano-caped arrays

    NASA Astrophysics Data System (ADS)

    Sun, Huanhuan; Gao, Renxian; Zhu, Aonan; Hua, Zhong; Chen, Lei; Wang, Yaxin; Zhang, Yongjun

    2018-03-01

    The metal and transition metal cap-shaped arrays on polystyrene colloidal particle (PSCP) templates were fabricated to study the surface-enhanced Raman scattering (SERS) effect. We obtained the Ag and Fe complex film by a co-sputtering deposition method. The size of the deposited Fe particle was changed by the sputtering power. We also study the SERS enhancement mechanism by decorating the PATP probe molecule on the different films. The SERS signals increased firstly, and then decreased as the size of Fe particles grows gradually. The finite-difference time domain (FDTD) simulation and experimental Raman results manifest that SERS enhancement was mainly attributed to surface plasma resonance (SPR) between Ag and Ag nanoparticles. The SERS signals of PATP molecule were enhanced to reach a lowest detectable concentration of 10-8 mol/L. The research demonstrates that the SERS substrates with Ag-Fe cap-shaped arrays have a high sensitivity.

  4. Low-pressure large-area magnetron sputter deposition of YBa2Cu3O7-δ films for industrial applications

    NASA Astrophysics Data System (ADS)

    Wördenweber, Roger; Hollmann, Eugen; Poltiasev, Michael; Neumüller, Heinz-Werner

    2003-05-01

    This paper addresses the development of a technically relevant sputter-deposition process for YBa2Cu3O7-delta films. First, the simulation of the particle transport from target to substrate indicates that only at a reduced pressure of p approx 1-10 Pa can a sufficiently large deposition rate and homogeneous stoichiometric distribution of the particles during large-area deposition be expected. The results of the simulations are generally confirmed by deposition experiments on CeO2 buffered sapphire and LaAlO3 substrates using a magnetron sputtering system suitable for large-area deposition. However, it is shown that in addition to the effect of scattering during particle transport, the conditions at the substrate lead to a selective growth of Y-Ba-Cu-O phases that, among others, strongly affect the growth rate. For example, the growth rate is more than three times larger for optimized parameters compared to the same set of parameters but at 100 K lower substrate temperature. Stoichiometrical and structural perfect films can be grown at low pressure (p < 10 Pa). However, the superconducting transition temperature of these films is reduced. The Tc reduction seems to be correlated with the c-axis length of YBa2Cu3O7-delta. Two possible explanations for the increased c-axis length and the correlated reduced transition temperature are discussed, i.e. reduced oxygen content and strong cation site disorder due to the heavy particle bombardment.

  5. Monte Carlo Simulation of Callisto's Exosphere

    NASA Astrophysics Data System (ADS)

    Vorburger, Audrey; Wurz, Peter; Galli, André; Mousis, Olivier; Barabash, Stas; Lammer, Helmut

    2014-05-01

    Whereas Callisto's surface has been mapped as early as in 1980 by the two Voyager missions, Callisto's tenuous atmosphere, also called an exosphere, was not directly observed until the Galileo mission in 1999. The Galileo Near-Infrared Mapping Spectrometer detected a CO2 signal up to 100 km above the surface [Carlson, Science, 1999]. Radio occultation measurements, also conducted by Galileo, led to the detection of an ionosphere with inferred densities much higher than can be explained by the measured CO2 exosphere, though [Kliore et al., J. Geophys. Res, 2002]. Insight about Callisto's exosphere is expected to be boosted by the Neutral Ion Mass Spectrometer (NIM) of the Particle Environment Package (PEP) on board the planned JUpiter ICy moons Explorer (JUICE) mission, which will conduct the first-ever direct sampling of the exospheres of Europa, Ganymede, and Callisto. To ensure that NIM's mass resolution and mass range will be sufficient for NIM to detect most expected species in Callisto's exosphere, we model said exosphere ab initio. Since Callisto is thought to consist to about equal parts of both icy and rocky components [Showman and Malhotra, Science, 1999], we model particle release from an icy as well as from a mineral surface separately. For the ice component, we investigate two different compositions, for reducing and oxidising conditions, which find analogy in the initial gas phase conditions in the solar nebula [Mousis et al., Planet. Space Sci., submitted]. For the non-ice material, the mineral surface, we investigate surfaces with compositions similar to CI chondrites and L/LL type chondrites, both of which have been suggested to represent Callisto's non-ice material best [Kuskov and Kronrod, Icarus, 2005 and Moore et al., Cambridge University Press, 2004]. For all mentioned materials, we compute density profiles for particles released by either surface sublimation or ion induced sputtering up to an altitude of 100'000 km. Our results show that close to the surface the sublimated particles dominate the day-side exosphere, however, their density profiles (with the exception of H and H2) decrease much more rapidly with altitude than those of the sputtered particles, thus, the latter particles start to dominate at altitudes above ~1000 km. Since the JUICE flybys are as low as 200 km above Callisto's surface, NIM is expected to register both the sublimated as well as sputtered particle populations. Our simulations show that NIM's sensitivity is high enough to allow the detection of particles sputtered from the icy as well as the mineral surfaces, and to distinguish between the different composition models.

  6. Iron layer-dependent surface-enhanced raman scattering of hierarchical nanocap arrays

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Sun, Huanhuan; Zhao, Yue; Gao, Renxian; Wang, Yaxin; Liu, Yang; Zhang, Yongjun; Hua, Zhong; Yang, Jinghai

    2017-11-01

    In this report, we fabricated the multi-layer Ag/Fe/Ag sandwich cap-shaped films on monolayer non-closed packed (ncp) polystyrene colloidal particle (PSCP) templates through a layer-by-layer (LBL) depositing method. This research focused on the surface-enhanced Raman scattering (SERS) effect of the thickness of the deposited Fe film which was controlled by the sputtering time. The SERS intensities were increased firstly, and then decreased as the thickness of Fe layer grows gradually, which is attributed to the charge transition from the Fermi level of the Ag NPs to Fe layer. The use of multi-layer Ag/Fe/Ag sandwich cap-shaped films enables us to evaluate the contribution of surface plasmon resonance and charge distribution between Ag and Fe to SERS enhancement. Our work introduced a novel system (Ag/Fe/Ag) for high performance SERS and extended the SERS application of Fe. Furthermore, we have designed the Ag/Fe/Ag SERS-active substrate as the immunoassay chip for quantitative determination of AFP-L3 which is the biomarker of hepatocellular carcinoma (HCC). The proposed research demonstrates that the SERS substrates with Ag/Fe/Ag sandwich cap-shaped arrays have a high sensitivity for bioassay.

  7. Method and apparatus for sputtering with a plasma lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anders, Andre

    A plasma lens for enhancing the quality and rate of sputter deposition onto a substrate is described herein. The plasma lens serves to focus positively charged ions onto the substrate while deflecting negatively charged ions, while at the same time due to the line of sight positioning of the lens, allowing for free passage of neutrals from the target to the substrate. The lens itself is formed of a wound coil of multiple turns, inside of which are deposed spaced lens electrodes which are electrically paired to impress an E field overtop the B field generated by the coil, themore » potential applied to the electrodes increasing from end to end towards the center of the lens, where the applied voltage is set to a high potential at the center electrodes as to produce a potential minimum on the axis of the lens.« less

  8. Cyclic performance tests of Sn/MWCNT composite lithium ion battery anodes at different temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tocoglu, U., E-mail: utocoglu@sakarya.edu.tr; Cevher, O.; Akbulut, H.

    In this study tin-multi walled carbon nanotube (Sn-MWCNT) lithium ion battery anodes were produced and their electrochemical galvanostatic charge/discharge tests were conducted at various (25 °C, 35 °C, 50 °C) temperatures to determine the cyclic behaviors of anode at different temperatures. Anodes were produced via vacuum filtration and DC magnetron sputtering technique. Tin was sputtered onto buckypapers to form composite structure of anodes. SEM analysis was conducted to determine morphology of buckypapers and Sn-MWCNT composite anodes. Structural and phase analyses were conducted via X-ray diffraction and Raman Spectroscopy technique. CR2016 coin cells were assembled for electrochemical tests. Cyclic voltammetry testmore » were carried out to determine the reversibility of reactions between anodes and reference electrode between 0.01-2.0 V potential window. Galvanostatic charge/discharge tests were performed to determine cycle performance of anodes at different temperatures.« less

  9. Synthesis and characterization of sputtered titanium nitride as a nucleation layer for novel neural electrode coatings

    NASA Astrophysics Data System (ADS)

    Sait, R. A.; Cross, R. B. M.

    2017-12-01

    A growing demand for chronically implantable electrodes has led to a search for the most suitable neural electrode interface material. Nobel metals such as platinum (Pt) are inadequate for electrode/neuron interfaces at small scales due to their poor electrochemical properties, low charge injection and high charge density per unit area. Titanium nitride (TiN) has been implemented in neural electrodes application due to its outstanding properties. In this work, TiNx films were deposited by non-reactive radio frequency (RF) magnetron sputtering towards the development of a novel TiN nanowires (NWs) neural interface. Although, there is substantial work on this material, its growth using non-reactive RF magnetron sputtering has not been reported previously and optimised towards the growth of TiN NWs and their use in neural interface applications. The sputtering parameters of RF power and argon (Ar) flow rate were varied in order to investigate their effects on the structural, electrical and electrochemical properties of the TiN films. A dense film morphology was observed in the scanning electron microscopy (SEM) images of TiN thin films showing a columnar structure. The film preferential orientation was changed between (200) and (111) with Ar flow rate due to the variation of the kinetic energy (KE) of the sputtered atoms. The crystallites size obtained were in the range of 13-95 nm. Surface roughness was found to increase from 0.69 to 1.95 nm as Ar flow rate increased. TiNx films showed a good electrical resistivity of 228 μΩ cm. Stoichiometry was found to vary with sputtering conditions in which the nitrogen content was found to deplete from the film at low Ar flow rate. The electrochemical behaviour of TiN films were characterised and the highest capacitance value obtained was 0.416 mF/cm2. From the results, it can be suggested that TiN thin film can be easily optimised to act as a nucleation layer for the growth of nanowires.

  10. Transparent, Weakly Conductive Films for Space Applications

    NASA Astrophysics Data System (ADS)

    Griffin, John; Morgan, Ashraf; Hambourger, Paul

    2004-10-01

    Electrically insulating spacecraft surfaces are vulnerable to nonuniform charge buildup due to particles emitted by the sun. On Mars, insulating surfaces of exploration vehicles and structures will be affected by dust coatings possibly held in place by triboelectric surface charge. Application of a conductive film may be a solution to the charging problem, but the coating must be highly transparent if used on solar panels, lenses, etc. Sheet resistivity requirements depend on the application and are in the range 10^2-10^8 ohms/square. Co-deposited indium tin oxide (ITO) and MgF2 is promising, with high transparency, tailorable electrical properties, and durability to atomic oxygen.(Joyce A. Dever et al., NASA TM 1998-208499 (August 1998).) Due to ITO's relatively narrow bandgap ( ˜3.5 eV), the film might absorb enough ultraviolet to protect polymeric substrates. Recent work on dual-magnetron-sputtered ITO-MgF2 showed that a variety of polymeric substrates can be coated at room temperature.(Thomas Cashman et al., Vacuum Technology & Coating, September 2003, p. 38.) However, the sheet resistivity is very sensitive to composition, suggestive of a percolation transition. This could be a serious problem for large-scale coating production. We will report on attempts to control film composition by plasma emission monitoring of the ITO and MgF2 guns. Supported by NASA Glenn Research Center, Cooperative Agreements NCC3-1033 and NCC3-1065.

  11. Multilayer coating of optical substrates by ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Daniel, M. V.; Demmler, M.

    2017-10-01

    Ion beam sputtering is well established in research and industry, despite its relatively low deposition rates compared to electron beam evaporation. Typical applications are coatings of precision optics, like filters, mirrors and beam splitter. Anti-reflective or high-reflective multilayer stacks benefit from the high mobility of the sputtered particles on the substrate surface and the good mechanical characteristics of the layers. This work gives the basic route from single layer optimization of reactive ion beam sputtered Ta2O5 and SiO2 thin films towards complex multilayer stacks for high-reflective mirrors and anti-reflective coatings. Therefore films were deposited using different oxygen flow into the deposition chamber Afterwards, mechanical (density, stress, surface morphology, crystalline phases) and optical properties (reflectivity, absorption and refractive index) were characterized. These knowledge was used to deposit a multilayer coating for a high reflective mirror.

  12. Particle-in-Cell Modeling of Magnetron Sputtering Devices

    NASA Astrophysics Data System (ADS)

    Cary, John R.; Jenkins, T. G.; Crossette, N.; Stoltz, Peter H.; McGugan, J. M.

    2017-10-01

    In magnetron sputtering devices, ions arising from the interaction of magnetically trapped electrons with neutral background gas are accelerated via a negative voltage bias to strike a target cathode. Neutral atoms ejected from the target by such collisions then condense on neighboring material surfaces to form a thin coating of target material; a variety of industrial applications which require thin surface coatings are enabled by this plasma vapor deposition technique. In this poster we discuss efforts to simulate various magnetron sputtering devices using the Vorpal PIC code in 2D axisymmetric cylindrical geometry. Field solves are fully self-consistent, and discrete models for sputtering, secondary electron emission, and Monte Carlo collisions are included in the simulations. In addition, the simulated device can be coupled to an external feedback circuit. Erosion/deposition profiles and steady-state plasma parameters are obtained, and modifications due to self consistency are seen. Computational performance issues are also discussed. and Tech-X Corporation.

  13. Molecular dynamics investigation of hexagonal boron nitride sputtering and sputtered particle characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Brandon D., E-mail: bradenis@umich.edu; Boyd, Iain D.

    The sputtering of hexagonal boron nitride (h-BN) by impacts of energetic xenon ions is investigated using a molecular dynamics (MD) model. The model is implemented within an open-source MD framework that utilizes graphics processing units to accelerate its calculations, allowing the sputtering process to be studied in much greater detail than has been feasible in the past. Integrated sputter yields are computed over a range of ion energies from 20 eV to 300 eV, and incidence angles from 0° to 75°. Sputtering of boron is shown to occur at energies as low as 40 eV at normal incidence, and sputtering of nitrogen atmore » as low as 30 eV at normal incidence, suggesting a threshold energy between 20 eV and 40 eV. The sputter yields at 0° incidence are compared to existing experimental data and are shown to agree well over the range of ion energies investigated. The semi-empirical Bohdansky curve and an empirical exponential function are fit to the data at normal incidence, and the threshold energy for sputtering is calculated from the Bohdansky curve fit as 35 ± 2 eV. These results are shown to compare well with experimental observations that the threshold energy lies between 20 eV and 40 eV. It is demonstrated that h-BN sputters predominantly as atomic boron and diatomic nitrogen, and the velocity distribution function (VDF) of sputtered boron atoms is investigated. The calculated VDFs are found to reproduce the Sigmund-Thompson distribution predicted by Sigmund's linear cascade theory of sputtering. The average surface binding energy computed from Sigmund-Thompson curve fits is found to be 4.5 eV for ion energies of 100 eV and greater. This compares well to the value of 4.8 eV determined from independent experiments.« less

  14. Isotopic Enrichment of Boron in the Sputtering of Boron Nitride with Xenon Ions

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1998-01-01

    An experimental study is described to measure the isotopic enrichment of boron. Xenon ions from 100 eV to 1.5 keV were used to sputter a boron nitride target. An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 microA/sq cm. Xenon ions impinged on the target surface at 50 deg angle to the surface normal. Since boron nitride is an insulator, a flood electron gun was used in our experiments to neutralize the positive charge buildup on the target surface. The sputtered secondary ions of boron were detected by a quadrupole mass spectrometer. The spectrometer entrance aperture was located perpendicular to the ion beam direction and 10 mm away from the target surface. The secondary ion flux was observed to be enriched in the heavy isotopes at lower ion energies. The proportion of heavy isotopes in the sputtered secondary ion flux was found to decrease with increasing primary ion energy from 100 to 350 eV. Beyond 350 eV, light isotopes were sputtered preferentially. The light isotope enrichment factor was observed to reach an asymptotic value of 1.27 at 1.5 keV. This trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy range.

  15. Development of 1D Particle-in-Cell Code and Simulation of Plasma-Wall Interactions

    NASA Astrophysics Data System (ADS)

    Rose, Laura P.

    This thesis discusses the development of a 1D particle-in-cell (PIC) code and the analysis of plasma-wall interactions. The 1D code (Plasma and Wall Simulation -- PAWS) is a kinetic simulation of plasma done by treating both electrons and ions as particles. The goal of this thesis is to study near wall plasma interaction to better understand the mechanism that occurs in this region. The main focus of this investigation is the effects that secondary electrons have on the sheath profile. The 1D code is modeled using the PIC method. Treating both the electrons and ions as macroparticles the field is solved on each node and weighted to each macro particle. A pre-ionized plasma was loaded into the domain and the velocities of particles were sampled from the Maxwellian distribution. An important part of this code is the boundary conditions at the wall. If a particle hits the wall a secondary electron may be produced based on the incident energy. To study the sheath profile the simulations were run for various cases. Varying background neutral gas densities were run with the 2D code and compared to experimental values. Different wall materials were simulated to show their effects of SEE. In addition different SEE yields were run, including one study with very high SEE yields to show the presence of a space charge limited sheath. Wall roughness was also studied with the 1D code using random angles of incidence. In addition to the 1D code, an external 2D code was also used to investigate wall roughness without secondary electrons. The roughness profiles where created upon investigation of wall roughness inside Hall Thrusters based off of studies done on lifetime erosion of the inner and outer walls of these devices. The 2D code, Starfish[33], is a general 2D axisymmetric/Cartesian code for modeling a wide a range of plasma and rarefied gas problems. These results show that higher SEE yield produces a smaller sheath profile and that wall roughness produces a lower SEE yield. Modeling near wall interactions is not a simple or perfected task. Due to the lack of a second dimension and a sputtering model it is not possible with this study to show the positive effects wall roughness could have on Hall thruster performance since roughness occurs from the negative affect of sputtering.

  16. Nylon-sputtered nanoparticles: fabrication and basic properties

    NASA Astrophysics Data System (ADS)

    Polonskyi, O.; Kylián, O.; Solař, P.; Artemenko, A.; Kousal, J.; Slavínská, D.; Choukourov, A.; Biederman, H.

    2012-12-01

    Nylon-sputtered nanoparticles were prepared using a simple gas aggregation cluster source based on a planar magnetron (Haberland type) and equipped with a nylon target. Plasma polymer particles originated in an aggregation chamber and travelled to a main (deposition) chamber with a gas flow through an orifice. The deposited nanoparticles were observed to have a cauliflower-like structure. The nanoparticles were found to be nitrogen-rich with N/C ratio close to 0.5. An increase in rf power from 60 to 100 W resulted in a decrease in mean particle size from 210 to 168 nm whereas an increase in their residence time in the cluster source from 0.7 to 4.6 s resulted in an increase in the size from 73 to 231 nm.

  17. Improved non-invasive method for aerosol particle charge measurement employing in-line digital holography

    NASA Astrophysics Data System (ADS)

    Tripathi, Anjan Kumar

    Electrically charged particles are found in a wide range of applications ranging from electrostatic powder coating, mineral processing, and powder handling to rain-producing cloud formation in atmospheric turbulent flows. In turbulent flows, particle dynamics is influenced by the electric force due to particle charge generation. Quantifying particle charges in such systems will help in better predicting and controlling particle clustering, relative motion, collision, and growth. However, there is a lack of noninvasive techniques to measure particle charges. Recently, a non-invasive method for particle charge measurement using in-line Digital Holographic Particle Tracking Velocimetry (DHPTV) technique was developed in our lab, where charged particles to be measured were introduced to a uniform electric field, and their movement towards the oppositely charged electrode was deemed proportional to the amount of charge on the particles (Fan Yang, 2014 [1]). However, inherent speckle noise associated with reconstructed images was not adequately removed and therefore particle tracking data was contaminated. Furthermore, particle charge calculation based on particle deflection velocity neglected the particle drag force and rebound effect of the highly charged particles from the electrodes. We improved upon the existing particle charge measurement method by: 1) hologram post processing, 2) taking drag force into account in charge calculation, 3) considering rebound effect. The improved method was first fine-tuned through a calibration experiment. The complete method was then applied to two different experiments, namely conduction charging and enclosed fan-driven turbulence chamber, to measure particle charges. In all three experiments conducted, the particle charge was found to obey non-central t-location scale family of distribution. It was also noted that the charge distribution was insensitive to the change in voltage applied between the electrodes. The range of voltage applied where reliable particle charges can be measured was also quantified by taking into account the rebound effect of highly charged particles. Finally, in the enclosed chamber experiment, it was found that using carbon conductive coating on the inner walls of the chamber minimized the charge generation inside the chamber when glass bubble particles were used. The value of electric charges obtained in calibration experiment through the improved method was found to have the same order as reported in the existing work (Y.C Ahn et al. 2004 [2]), indicating that the method is indeed effective.

  18. MnO2 ultrathin films deposited by means of magnetron sputtering: Relationships between process conditions, structural properties and performance in transparent supercapacitors

    NASA Astrophysics Data System (ADS)

    Borysiewicz, Michał A.; Wzorek, Marek; Myśliwiec, Marcin; Kaczmarski, Jakub; Ekielski, Marek

    2016-12-01

    This study focuses on the relationships between the process parameters during magnetron sputter deposition of MnO2 and the resulting film properties. Three MnO2 phases were identified - γ, β and λ and the dependence of MnO2 phase presence on the oxygen content in the sputtering atmosphere was found. Selected MnO2 phases were subsequently applied as ultrathin coatings on top of nanostructured ZnO electrodes for transparent supercapacitors with LiCl-based gel electrolyte. The films containing λ-MnO2 exhibited both the highest optical transparency of 62% at 550 nm as well as the highest specific capacitance in the supercapacitor structure, equal to 73.1 μF/cm2. Initially lower, the capacitance was elevated by charge-discharge conditioning.

  19. Non-imaging ray-tracing for sputtering simulation with apodization

    NASA Astrophysics Data System (ADS)

    Ou, Chung-Jen

    2018-04-01

    Although apodization patterns have been adopted for the analysis of sputtering sources, the analytical solutions for the film thickness equations are yet limited to only simple conditions. Empirical formulations for thin film sputtering lacking the flexibility in dealing with multi-substrate conditions, a suitable cost-effective procedure is required to estimate the film thickness distribution. This study reports a cross-discipline simulation program, which is based on discrete particle Monte-Carlo methods and has been successfully applied to a non-imaging design to solve problems associated with sputtering uniformity. Robustness of the present method is first proved by comparing it with a typical analytical solution. Further, this report also investigates the overall all effects cause by the sizes of the deposited substrate, such that the determination of the distance between the target surface and the apodization index can be complete. This verifies the capability of the proposed method for solving the sputtering film thickness problems. The benefit is that an optical thin film engineer can, using the same optical software, design a specific optical component and consider the possible coating qualities with thickness tolerance, during the design stage.

  20. Non-imaging ray-tracing for sputtering simulation with apodization

    NASA Astrophysics Data System (ADS)

    Ou, Chung-Jen

    2018-06-01

    Although apodization patterns have been adopted for the analysis of sputtering sources, the analytical solutions for the film thickness equations are yet limited to only simple conditions. Empirical formulations for thin film sputtering lacking the flexibility in dealing with multi-substrate conditions, a suitable cost-effective procedure is required to estimate the film thickness distribution. This study reports a cross-discipline simulation program, which is based on discrete particle Monte-Carlo methods and has been successfully applied to a non-imaging design to solve problems associated with sputtering uniformity. Robustness of the present method is first proved by comparing it with a typical analytical solution. Further, this report also investigates the overall all effects cause by the sizes of the deposited substrate, such that the determination of the distance between the target surface and the apodization index can be complete. This verifies the capability of the proposed method for solving the sputtering film thickness problems. The benefit is that an optical thin film engineer can, using the same optical software, design a specific optical component and consider the possible coating qualities with thickness tolerance, during the design stage.

  1. Fluidized Bed Sputtering for Particle and Powder Metallization

    DTIC Science & Technology

    2013-04-01

    Introduction Small particles are often added to material systems to modify mechanical, dielectric, optical, or other properties . However, the particle...the poor mechanical properties of the wax degrade the bulk mechanical properties of the composite material . Thin metal coatings on the catalyst...to create precisely tailored optical properties . Alternating layers of ceramic and metal thin films can be designed to create optical filters that

  2. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces

    PubMed Central

    Dalui, Malay; Wang, W.-M.; Trivikram, T. Madhu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J.; Ayyub, P.; Sheng, Z. M.; Krishnamurthy, M.

    2015-01-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25–30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018  W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration. PMID:26153048

  3. First storage of ion beams in the Double Electrostatic Ion-Ring Experiment: DESIREE.

    PubMed

    Schmidt, H T; Thomas, R D; Gatchell, M; Rosén, S; Reinhed, P; Löfgren, P; Brännholm, L; Blom, M; Björkhage, M; Bäckström, E; Alexander, J D; Leontein, S; Hanstorp, D; Zettergren, H; Liljeby, L; Källberg, A; Simonsson, A; Hellberg, F; Mannervik, S; Larsson, M; Geppert, W D; Rensfelt, K G; Danared, H; Paál, A; Masuda, M; Halldén, P; Andler, G; Stockett, M H; Chen, T; Källersjö, G; Weimer, J; Hansen, K; Hartman, H; Cederquist, H

    2013-05-01

    We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C(n)(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C2 (-) molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s ± 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10(-14) mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.

  4. Vacuum Sputtered and Ion-Plated Coatings for Wear and Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1982-01-01

    The plasma or ion-assisted coating techniques such as sputtering and ion plating are discussed in view of wear and corrosion protection. The basic processes and the unique features of the technique are discussed in regard to the synthesis and development of high reliability wear and corrosion resistant films. The ions of the plasma which transfer energy, momentum, and charge to the substrate and the growing films can be beneficially used. As a result, coating adherence and cohesion is improved. Favorable morphological growth such as high density and porosity-free films can be developed, and residual stresses can be reduced.

  5. Electrostatic wire for stabilizing a charged particle beam

    DOEpatents

    Prono, Daniel S.; Caporaso, George J.; Briggs, Richard J.

    1985-01-01

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  6. Electrostatic wire stabilizing a charged particle beam

    DOEpatents

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  7. Influence of the crystallinity of a sputtered hydroxyapatite film on its osteocompatibility.

    PubMed

    Ozeki, K; Goto, T; Aoki, H; Masuzawa, T

    2015-01-01

    Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering, and the sputtered films were crystallized using a hydrothermal treatment at 120°C and 170°C to evaluate the influence of the crystallinity of the HA film on its osteocompatibility. The crystallite size and surface morphology of the films were observed using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The alkaline phosphatase (ALP) expression, osteocalin (OCN) expression and bone formation of osteoblast cells on the films were measured to evaluate the osteocompatibility of the film.The crystallite size increased as the hydrothermal temperature increased, and the crystallite sizes of the film treated at 120°C and 170°C were 82.2±12.3 nm and 124.7±13.3 nm, respectively. Globular particles were observed in the hydrothermally treated film using SEM. The size of the particles on the film increased as the hydrothermal temperature increased, and the width of the particles on the film treated at 120°C and 170°C were approximately 120-190 nm and 300-500 nm, respectively. In the osteoblast cell culture experiments, the ALP expression, OCN expression and bone formation area on the films treated at 120°C were higher than those treated for films treated at 170°C.

  8. JPRS Report, Science & Technology, Japan, SOR Technology Update

    DTIC Science & Technology

    1990-12-18

    GUN Electron gun c3 GV Gate valve R- ± HL Helmholtz coil IG Ion vacuum gauge IP Ion pump KFC Klystron focusing coil KLY Klystron PB Pre-buncher Q...Therefore, we started studying the manufacture of this kind of film. Recently, such films have been placed on the market as test samples by some foreign... Mixing of sputtered particles from the two targets can also be prevented by making the structure of the bulkhead in the sputtering chamber most

  9. Oxygen Interaction With Space-Power Materials

    NASA Technical Reports Server (NTRS)

    Eck, Thomas G.; Hoffman, Richard W.

    1996-01-01

    Four investigations were undertaken during the period of this grant: (1 ) oxidation of molybdenum and of niobium-1 % zirconium, (2) preparation of and examination of EOIM-3 samples, (3) sputtering of Teflon by oxygen ion bombardment,and (4) sputtering of Ions from copper and aluminum by oxygen and argon ion bombardment. Investigations (1), (3), and (4) used a low-energy Ion gun to bombard surfaces within an ultra-high vacuum system. Particles ejected from the surfaces were detected by a mass spectrometer.

  10. Secondary ion formation during electronic and nuclear sputtering of germanium

    NASA Astrophysics Data System (ADS)

    Breuer, L.; Ernst, P.; Herder, M.; Meinerzhagen, F.; Bender, M.; Severin, D.; Wucher, A.

    2018-06-01

    Using a time-of-flight mass spectrometer attached to the UNILAC beamline located at the GSI Helmholtz Centre for Heavy Ion Research, we investigate the formation of secondary ions sputtered from a germanium surface under irradiation by swift heavy ions (SHI) such as 5 MeV/u Au by simultaneously recording the mass spectra of the ejected secondary ions and their neutral counterparts. In these experiments, the sputtered neutral material is post-ionized via single photon absorption from a pulsed, intensive VUV laser. After post-ionization, the instrument cannot distinguish between secondary ions and post-ionized neutrals, so that both signals can be directly compared in order to investigate the ionization probability of different sputtered species. In order to facilitate an in-situ comparison with typical nuclear sputtering conditions, the system is also equipped with a conventional rare gas ion source delivering a 5 keV argon ion beam. For a dynamically sputter cleaned surface, it is found that the ionization probability of Ge atoms and Gen clusters ejected under electronic sputtering conditions is by more than an order of magnitude higher than that measured for keV sputtered particles. In addition, the mass spectra obtained under SHI irradiation show prominent signals of GenOm clusters, which are predominantly detected as positive or negative secondary ions. From the m-distribution for a given Ge nuclearity n, one can deduce that the sputtered material must originate from a germanium oxide matrix with approximate GeO stoichiometry, probably due to residual native oxide patches even at the dynamically cleaned surface. The results clearly demonstrate a fundamental difference between the ejection and ionization mechanisms in both cases, which is interpreted in terms of corresponding model calculations.

  11. Nanoscale morphogenesis of nylon-sputtered plasma polymer particles

    NASA Astrophysics Data System (ADS)

    Choukourov, Andrei; Shelemin, Artem; Pleskunov, Pavel; Nikitin, Daniil; Khalakhan, Ivan; Hanuš, Jan

    2018-05-01

    Sub-micron polymer particles are highly important in various fields including astrophysics, thermonuclear fusion and nanomedicine. Plasma polymerization offers the possibility to produce particles with tailor-made size, crosslink density and chemical composition to meet the requirements of a particular application. However, the mechanism of nucleation and growth of plasma polymer particles as well as diversity of their morphology remain far from being clear. Here, we prepared nitrogen-containing plasma polymer particles by rf magnetron sputtering of nylon in a gas aggregation cluster source with variable length. The method allowed the production of particles with roughly constant chemical composition and number density but with the mean size changing from 80 to 320 nm. Atomic Force Microscopy with super-sharp probes was applied to study the evolution of the particle surface topography as they grow in size. Height–height correlation and power spectral density functions were obtained to quantify the roughness exponent α  =  0.78, the growth exponent β  =  0.35, and the dynamic exponent 1/z  =  0.50. The set of critical exponents indicates that the particle surface evolves in a self-affine mode and the overall particle growth is caused by the accretion of polymer-forming species from the gas phase and not by coagulation. Redistribution of the incoming material over the surface coupled with the inhomogeneous distribution of inner stress is suggested as the main factor that determines the morphogenesis of the plasma polymer particles.

  12. Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.; Johnson, Scott M.

    2010-01-01

    The charge-spot technique for modeling the static electric forces acting between charged fine particles entails treating electric charges on individual particles as small sets of discrete point charges, located near their surfaces. This is in contrast to existing models, which assume a single charge per particle. The charge-spot technique more accurately describes the forces, torques, and moments that act on triboelectrically charged particles, especially image-charge forces acting near conducting surfaces. The discrete element method (DEM) simulation uses a truncation range to limit the number of near-neighbor charge spots via a shifted and truncated potential Coulomb interaction. The model can be readily adapted to account for induced dipoles in uncharged particles (and thus dielectrophoretic forces) by allowing two charge spots of opposite signs to be created in response to an external electric field. To account for virtual overlap during contacts, the model can be set to automatically scale down the effective charge in proportion to the amount of virtual overlap of the charge spots. This can be accomplished by mimicking the behavior of two real overlapping spherical charge clouds, or with other approximate forms. The charge-spot method much more closely resembles real non-uniform surface charge distributions that result from tribocharging than simpler approaches, which just assign a single total charge to a particle. With the charge-spot model, a single particle may have a zero net charge, but still have both positive and negative charge spots, which could produce substantial forces on the particle when it is close to other charges, when it is in an external electric field, or when near a conducting surface. Since the charge-spot model can contain any number of charges per particle, can be used with only one or two charge spots per particle for simulating charging from solar wind bombardment, or with several charge spots for simulating triboelectric charging. Adhesive image-charge forces acting on charged particles touching conducting surfaces can be up to 50 times stronger if the charge is located in discrete spots on the particle surface instead of being distributed uniformly over the surface of the particle, as is assumed by most other models. Besides being useful in modeling particulates in space and distant objects, this modeling technique is useful for electrophotography (used in copiers) and in simulating the effects of static charge in the pulmonary delivery of fine dry powders.

  13. Surface charge accumulation of particles containing radionuclides in open air

    DOE PAGES

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify themore » particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.« less

  14. Investigation of ionized metal flux in enhanced high power impulse magnetron sputtering discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stranak, Vitezslav, E-mail: stranak@prf.jcu.cz; Hubicka, Zdenek; Cada, Martin

    2014-04-21

    The metal ionized flux fraction and production of double charged metal ions Me{sup 2+} of different materials (Al, Cu, Fe, Ti) by High Power Impulse Magnetron Sputtering (HiPIMS) operated with and without a pre-ionization assistance is compared in the paper. The Electron Cyclotron Wave Resonance (ECWR) discharge was employed as the pre-ionization agent providing a seed of charge in the idle time of HiPIMS pulses. A modified grid-free biased quartz crystal microbalance was used to estimate the metal ionized flux fraction ξ. The energy-resolved mass spectrometry served as a complementary method to distinguish particular ion contributions to the total ionizedmore » flux onto the substrate. The ratio between densities of doubly Me{sup 2+} and singly Me{sup +} charged metal ions was determined. It is shown that ECWR assistance enhances Me{sup 2+} production with respect of absorbed rf-power. The ECWR discharge also increases the metal ionized flux fraction of about 30% especially in the region of lower pressures. Further, the suppression of the gas rarefaction effect due to enhanced secondary electron emission of Me{sup 2+} was observed.« less

  15. Full System Model of Magnetron Sputter Chamber - Proof-of-Principle Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walton, C; Gilmer, G; Zepeda-Ruiz, L

    2007-05-04

    The lack of detailed knowledge of internal process conditions remains a key challenge in magnetron sputtering, both for chamber design and for process development. Fundamental information such as the pressure and temperature distribution of the sputter gas, and the energies and arrival angles of the sputtered atoms and other energetic species is often missing, or is only estimated from general formulas. However, open-source or low-cost tools are available for modeling most steps of the sputter process, which can give more accurate and complete data than textbook estimates, using only desktop computations. To get a better understanding of magnetron sputtering, wemore » have collected existing models for the 5 major process steps: the input and distribution of the neutral background gas using Direct Simulation Monte Carlo (DSMC), dynamics of the plasma using Particle In Cell-Monte Carlo Collision (PIC-MCC), impact of ions on the target using molecular dynamics (MD), transport of sputtered atoms to the substrate using DSMC, and growth of the film using hybrid Kinetic Monte Carlo (KMC) and MD methods. Models have been tested against experimental measurements. For example, gas rarefaction as observed by Rossnagel and others has been reproduced, and it is associated with a local pressure increase of {approx}50% which may strongly influence film properties such as stress. Results on energies and arrival angles of sputtered atoms and reflected gas neutrals are applied to the Kinetic Monte Carlo simulation of film growth. Model results and applications to growth of dense Cu and Be films are presented.« less

  16. The neon gas field ion source—a first characterization of neon nanomachining properties

    NASA Astrophysics Data System (ADS)

    Livengood, Richard H.; Tan, Shida; Hallstein, Roy; Notte, John; McVey, Shawn; Faridur Rahman, F. H. M.

    2011-07-01

    At the Charged Particle Optics Conference (CPO7) in 2006, a novel trimer based helium gas field ion source (GFIS) was introduced for use in a new helium ion microscope (HIM), demonstrating the novel source performance attributes and unique imaging applications of the HIM (Hill et al., 2008 [1]; Livengood et al., 2008 [2]). Since that time there have been numerous enhancements to the HIM source and platform demonstrating resolution scaling into the sub 0.5 nm regime (Scipioni et al., 2009 [3]; Pickard et al., 2010 [4]). At this Charged Particle Optics Conference (CPO8) we will be introducing a neon version of the trimer-GFIS co-developed by Carl Zeiss SMT and Intel Corporation. The neon source was developed as a possible supplement to the gallium liquid metal ion source (LMIS) used today in most focused ion beam (FIB) systems (Abramo et al., 1994 [5]; Young et al.,1998 [6]). The neon GFIS source has low energy spread (∼1 eV) and a small virtual source size (sub-nanometer), similar to that of the helium GFIS. However neon does differ from the helium GFIS in two significant ways: neon ions have high sputtering yields (e.g. 1 Si atom per incident ion at 20 keV); and have relatively shallow implant depth (e.g. 46 nm in silicon at 20 keV). Both of these are limiting factors for helium in many nanomachining applications. In this paper we will present both simulation and experimental results of the neon GFIS used for imaging and nanomachining applications.

  17. A Laboratory Study of the Charging/Discharging Mechanisms of a Dust Particle Exposed to an Electron Beam

    NASA Technical Reports Server (NTRS)

    Venturini, C. C.; Spann, J. F.; Comfort, R. H.

    1999-01-01

    The interaction of micron sized particles or "dust particles" with different space and planetary environments has become an important area of research. One particular area of interest is how dust particles interact with plasmas. Studies have shown that charged dust particles immersed in plasmas can alter plasma characteristics, while ions and electrons in plasmas can affect a particle's potential and thereby, its interaction with other particles. The basis for understanding these phenomena is the charging mechanisms of the dust particle, specifically, how the particle's charge and characteristics are affected when exposed to ions and electrons. At NASA Marshall Space Flight Center, a laboratory experiment has been developed to study the interaction of dust particles with electrons. Using a unique laboratory technique known as electrodynamic suspension, a single charged particle is suspended in a modified quadrupole trap. Once suspended, the particle is then exposed to an electron beam to study the charging/discharging mechanisms due to collisions of energetic electrons. The change in the particle's charge, approximations of the charging/discharging currents, and the charging/discharging yield are calculated.

  18. Electrochemical and microstructural characterization of magnetron-sputtered ATO thin films as Li–ion storage materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Pan; Zhang, Hong; Chen, Wenhao

    2015-01-15

    Highlights: • Nano-structured ATO thin films prepared by RF magnetron sputtering at 25 °C, 100 °C and 200 °C, respectively. • ATO thin films show a high reversible capacity and high rate performance. • Electrochemical reaction mechanism of the ATO thin film was revealed by transmission electron microscopy. - Abstract: Sb-doped SnO{sub 2} (ATO) nanostructured thin films were prepared by using radio frequency magnetron sputtering at the substrate temperatures of 25 °C, 100 °C and 200 °C, respectively. All the ATO thin films have the similar redox characteristics in the cyclic voltammetry measurements. The ATO thin film sputtered at 200more » °C shows the lowest charge transfer resistance and best electrochemical performance, and has a high reversible capacity of 679 mA h g{sup −1} at 100 mA g{sup −1} after 200 charge–discharge cycles and high rate performance of 483 mA h g{sup −1} at 800 mA g{sup −1}. The electrochemical mechanisms were investigated by analyzing the phase evolution of the ATO electrodes that had been electrochemically induced at various stages. The results reveal that the ATO underwent reversible lithiation/delithiation processes during the electrochemical cycles, i.e., the SnO{sub 2} reacted with Li{sup +} to produce metallic Sn and followed by the formation of the Li{sub x}Sn alloys during discharge process, and then Li{sub x}Sn alloys de-alloyed, Sn reacted with Li{sub 2}O, and even partially formed SnO{sub 2} during charge process.« less

  19. Computer simulation of sputtering induced by swift heavy ions

    NASA Astrophysics Data System (ADS)

    Kucharczyk, P.; Füngerlings, A.; Weidtmann, B.; Wucher, A.

    2018-07-01

    New experimental results regarding the mass and charge state distribution of material sputtered under irradiation with swift heavy ions suggest fundamental differences between the ejection mechanisms under electronic and nuclear sputtering conditions. In order to illustrate the difference, computer simulations based on molecular dynamics were performed to model the surface ejection process of atoms and molecules induced by a swift heavy ion track. In a first approach, the track is homogeneously energized by assigning a fixed energy to each atom with randomly oriented direction of motion within a cylinder of a given radius around the projectile ion trace. The remainder of the target crystal is assumed to be at rest, and the resulting lattice dynamics is followed by molecular dynamics. The resulting sputter yield is calculated as a function of track radius and energy and compared to corresponding experimental data in order to find realistic values for the effective deposited lattice energy density. The sputtered material is analyzed with respect to emission angle and energy as well as depth of origin. The results are compared to corresponding data from keV sputter simulations. As a second step of complexity, the homogeneous and monoenergetic lattice energization is replaced by a starting energy distribution described by a local lattice temperature. As a first attempt, the respective temperature is assumed constant within the track, and the results are compared with those obtained from monoenergetic energization with the same average energy per atom.

  20. Electrical characteristics of thin Ta2O5 films deposited by reactive pulsed direct-current magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kim, J.-Y.; Nielsen, M. C.; Rymaszewski, E. J.; Lu, T.-M.

    2000-02-01

    Room temperature deposition of tantalum oxide films on metallized silicon substrates was investigated by reactive pulsed magnetron sputtering of Ta in an Ar/O2 ambient. The dielectric constant of the tantalum oxide ranged from 19 to 31 depending on the oxygen percentage [P(%)=PO2/(PO2+PAr)] used during sputtering. The leakage current density was less than 10 nA/cm2 at 0.5 MV/cm electric field and the dielectric breakdown field was greater than 3.8 MV/cm for P=60%. A charge storage as high as 3.3 μF/cm2 was achieved for 70-Å-thick film. Pulse frequency variation (from 20 to 200 kHz) did not give a significant effect in the electrical properties (dielectric constant or leakage current density) of the Ta2O5 films.

  1. Charging and coagulation of radioactive and nonradioactive particles in the atmosphere

    DOE PAGES

    Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios; ...

    2016-01-01

    Charging and coagulation influence one another and impact the particle charge and size distributions in the atmosphere. However, few investigations to date have focused on the coagulation kinetics of atmospheric particles accumulating charge. This study presents three approaches to include mutual effects of charging and coagulation on the microphysical evolution of atmospheric particles such as radioactive particles. The first approach employs ion balance, charge balance, and a bivariate population balance model (PBM) to comprehensively calculate both charge accumulation and coagulation rates of particles. The second approach involves a much simpler description of charging, and uses a monovariate PBM and subsequentmore » effects of charge on particle coagulation. The third approach is further simplified assuming that particles instantaneously reach their steady-state charge distributions. It is found that compared to the other two approaches, the first approach can accurately predict time-dependent changes in the size and charge distributions of particles over a wide size range covering from the free molecule to continuum regimes. The other two approaches can reliably predict both charge accumulation and coagulation rates for particles larger than about 0.04 micrometers and atmospherically relevant conditions. These approaches are applied to investigate coagulation kinetics of particles accumulating charge in a radioactive neutralizer, the urban atmosphere, and an atmospheric system containing radioactive particles. Limitations of the approaches are discussed.« less

  2. Protection from high-velocity impact particles for quartz glass by coatings on the basis of Al-Si-N

    NASA Astrophysics Data System (ADS)

    Bozhko, I. A.; Rybalko, E. V.; Fedorischeva, M. V.; Solntsev, V. L.; Cherniavsky, A. G.; Kaleri, A. Yu.; Psakhie, S. G.; Sergeev, V. P.

    2016-11-01

    The paper presents the results of the research of the phase composition and the mechanical properties of the coatings on the basis of Al-Si-N system produced by pulsed magnetron sputtering on the KV glass substrates. By the X-ray diffraction method, it has been discovered that the coatings contain AlN phase (hcp) with different thickness. The deposition of Al-Si-N coating system allows both increasing the microhardness of the surface layer of the quartz glass up to 29 GPa, and maintaining high elastic properties (We > 0.70). The laboratory tests have been carried out involving the impact of high-speed flows of iron particles on the Al-Si-N protective coating with different thicknesses produced by pulsed magnetron sputtering. The increase of Al-Si-N coating thickness from 1µm to 10µm decreases 4-fold the surface density of the craters on the samples caused by a high-speed flow of iron particles.

  3. Circular, confined distribution for charged particle beams

    DOEpatents

    Garnett, Robert W.; Dobelbower, M. Christian

    1995-01-01

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

  4. Circular, confined distribution for charged particle beams

    DOEpatents

    Garnett, R.W.; Dobelbower, M.C.

    1995-11-21

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

  5. Origin and maintenance of the oxygen torus in Saturn's magnetosphere

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Havnes, O.; Goertz, C. K.

    1993-01-01

    Observations of thermal ions in Saturn's inner magnetosphere suggest distributed local sources rather than diffusive mass loading from a source located further out. We suggest that the plasma is produced and maintained mainly by 'self-sputtering' of E ring dust. Sputtered particles are 'picked up' by the planetary magnetospheric field and accelerated to corotation energies (of the order of 8 eV/amu). The sputter yield for oxygen on ice at, for example, 120 eV is about 5, which implies that an avalanche of self-sputtering occurs. The plasma density is built up until it is balanced by local losses, presumably pitch angle scattering into the loss cone and absorption in the planet's ionosphere. The plasma density determines the distribution of dust in the E ring through plasma drag. Thus a feedback mechanism between the plasma and the E ring dust is established. The model accounts for the principal plasma observations and simultaneously the radial optical depth profile of the E ring.

  6. Templated Growth of Pd Nanoparticles Using Sputtering Deposition Process and Its Catalytic Activities.

    PubMed

    Eberhardt, Dario; Migowski, Pedro; Teixeira, Sérgio R; Feil, Adriano F

    2018-03-01

    A simple method based on sputtering deposition of Pd onto mesoporous SiO2 (SBA-15) was employed to produce supported Pd nanoparticles (NPs) that can be used as hydrogenation catalysts. The use of sputtering deposition eliminates contaminants and avoids additional drawbacks of traditional chemical methods applied to prepare heterogeneous supported metal catalysts. A mechanical resonant stirrer was used to revolve the SBA-15 powder and ensure homogeneous distribution of the Pd NPs over the support. The SBA-15 pores act as templates for Pd NPs and drive nanostructure growth. Consequently, the NPs obtained have the same diameter as that of the SBA-15 channels (~5 nm) and elongated particles are formed as sputtering deposition increases. The SBA-15 supported Pd NPs (Pd NPs/SBA-15) were tested in a probe hydrogenation of cyclohexene reaction to evaluate the catalytic activity of the Pd NPs. Turnover frequency (TOF) of 2000 min-1 were achieved with the lower Pd NPs concentration (0.15 wt%) catalyst.

  7. A sputtered zirconia primer for improved thermal shock resistance of plasma sprayed ceramic turbine seals

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Sovey, J.; Allen, G. P.

    1981-01-01

    The development of plasma-sprayed yttria stabilized zirconia (YSZ) ceramic turbine blade tip seal components is discussed. The YSZ layers are quite thick (0.040 to 0.090 in.). The service potential of seal components with such thick ceramic layers is cyclic thermal shock limited. The most usual failure mode is ceramic layer delamination at or very near the interface between the plasma sprayed YSZ layer and the NiCrAlY bondcoat. Deposition of a thin RF sputtered YSZ primer to the bondcoat prior to deposition of the thick plasma sprayed YSZ layer was found to reduce laminar cracking in cyclic thermal shock testing. The cyclic thermal shock life of one ceramic seal design was increased by a factor of 5 to 6 when the sputtered YSZ primer was incorporated. A model based on thermal response of plasma sprayed YSZ particles impinging on the bondcoat surface with and without the sputtered YSZ primer provides a basis for understanding the function of the primer.

  8. Surface charge accumulation of particles containing radionuclides in open air.

    PubMed

    Kim, Yong-Ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. New instrument for tribocharge measurement due to single particle impacts.

    PubMed

    Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Ding, Yu Long; Pitt, Kendal G

    2007-02-01

    During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10 fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as approximately 100 microm impacting on the target at different incident angles with a velocity up to about 80 m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.

  10. New instrument for tribocharge measurement due to single particle impacts

    NASA Astrophysics Data System (ADS)

    Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Long Ding, Yu; Pitt, Kendal G.

    2007-02-01

    During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as ˜100μm impacting on the target at different incident angles with a velocity up to about 80m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.

  11. Erosion rate diagnostics in ion thrusters using laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gaeta, C. J.; Matossian, J. N.; Turley, R. S.; Beattie, J. R.; Williams, J. D.; Williamson, W. S.

    1993-01-01

    We have used laser-induced fluorescence (LIF) to monitor the charge-exchange ion erosion of the molybdenum accelerator electrode in ion thrusters. This real-time, nonintrusive method was implemented by operating a 30cm-diam ring-cusp thruster using xenon propellant. With the thruster operating at a total power of 5 kW, laser radiation at a wavelength of 390 nm (corresponding to a ground state atomic transition of molybdenum) was directed through the extracted ion beam adjacent to the downstream surface of the molybdenum accelerator electrode. Molybdenum atoms, sputtered from this surface as a result of charge-exchange ion erosion, were excited by the laser radiation. The intensity of the laser-induced fluorescence radiation, which is proportional to the sputter rate of the molybdenum atoms, was measured and correlated with variations in thruster operating conditions such as accelerator electrode voltage, accelerator electrode current, and test facility background pressure. We also demonstrated that the LIF technique has sufficient sensitivity and spatial resolution to evaluate accelerator electrode lifetime in ground-based test facilities.

  12. Altering surface charge nonuniformity on individual colloidal particles.

    PubMed

    Feick, Jason D; Chukwumah, Nkiru; Noel, Alexandra E; Velegol, Darrell

    2004-04-13

    Charge nonuniformity (sigmazeta) was altered on individual polystyrene latex particles and measured using the novel experimental technique of rotational electrophoresis. It has recently been shown that unaltered sulfated latices often have significant charge nonuniformity (sigmazeta = 100 mV) on individual particles. Here it is shown that anionic polyelectrolytes and surfactants reduce the native charge nonuniformity on negatively charged particles by 80% (sigmazeta = 20 mV), even while leaving the average surface charge density almost unchanged. Reduction of charge uniformity occurs as large domains of nonuniformity are minimized, giving a more random distribution of charge on individual particle surfaces. Targeted reduction of charge nonuniformity opens new opportunities for the dispersion of nanoparticles and the oriented assembly of particles.

  13. A-Si Photoreceptors At The Threshold Of Industrial Application

    NASA Astrophysics Data System (ADS)

    Senske, W.; Marschall, N.

    1986-03-01

    A-Si has become an attractive alternative for conventional electrophotographic photoreceptors. A-Si photoreceptors have been prepared by other laboratories by plasma deposition with blocking and protection layers. These photoreceptors are highly photosensitive and show low fatigue. Using sputtering we have shown that this technique is capable of produc-ing films with high charge acceptance. The increase of the deposition rate is presently un-der intensive investigation. High rates can be achieved by a higher degree of silane decomposition or by magnetron sputtering together with a higher power level. Deposition rates of more than 20 pm/h have been obtained by both techniques.

  14. Drifting potential humps in ionization zones: The “propeller blades” of high power impulse magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anders, André; Ni, Pavel; Panjan, Matjaž

    2013-09-30

    Ion energy distribution functions measured for high power impulse magnetron sputtering show features, such as a broad peak at several 10 eV with an extended tail, as well as asymmetry with respect to E×B, where E and B are the local electric and magnetic field vectors, respectively. Here it is proposed that those features are due to the formation of a potential hump of several 10 V in each of the traveling ionization zones. Potential hump formation is associated with a negative-positive-negative space charge that naturally forms in ionization zones driven by energetic drifting electrons.

  15. Platinum-gold nanoclusters as catalyst for direct methanol fuel cells.

    PubMed

    Giorgi, L; Giorgi, R; Gagliardi, S; Serra, E; Alvisi, M; Signore, M A; Piscopiello, E

    2011-10-01

    Nanosized platinum-gold alloys clusters have been deposited on gas diffusion electrode by sputter deposition. The deposits were characterized by FE-SEM, TEM and XPS in order to verify the formation of alloy nanoparticles and to study the influence of deposition technique on the nanomorphology. The deposition by sputtering process allowed a uniform distribution of metal particles on porous surface of carbon supports. Typical island growth mode was observed with the formation of a dispersed metal nanoclusters (mean size about 5 nm). Cyclic voltammetry was used to determine the electrochemical active surface and the electrocatalytic performance of the PtAu electrocatalysts for methanol oxidation reaction. The data were re-calculated in the form of mass specific activity (MSA). The sputter-catalyzed electrodes showed higher performance and stability compared to commercial catalysts.

  16. Charge interaction between particle-laden fluid interfaces.

    PubMed

    Xu, Hui; Kirkwood, John; Lask, Mauricio; Fuller, Gerald

    2010-03-02

    Experiments are described where two oil/water interfaces laden with charged particles move at close proximity relative to one another. The particles on one of the interfaces were observed to be attracted toward the point of closest approach, forming a denser particle monolayer, while the particles on the opposite interface were repelled away from this point, forming a particle depletion zone. Such particle attraction/repulsion was observed even if one of the interfaces was free of particles. This phenomenon can be explained by the electrostatic interaction between the two interfaces, which causes surface charges (charged particles and ions) to redistribute in order to satisfy surface electric equipotential at each interface. In a forced particle oscillation experiment, we demonstrated the control of charged particle positions on the interface by manipulating charge interaction between interfaces.

  17. Formation of charged nanoparticles in hydrocarbon flames: principal mechanisms

    NASA Astrophysics Data System (ADS)

    Starik, A. M.; Savel'ev, A. M.; Titova, N. S.

    2008-11-01

    The processes of charged gaseous and particulate species formation in sooting hydrocarbon/air flame are studied. The original kinetic model, comprising the chemistry of neutral and charged gaseous species, generation of primary clusters, which then undergo charging due to attachment of ions and electrons to clusters and via thermoemission, and coagulation of charged-charged, charged-neutral and neutral-neutral particles, is reported. The analysis shows that the principal mechanisms of charged particle origin in hydrocarbon flames are associated with the attachment of ions and electrons produced in the course of chemoionization reactions to primary small clusters and particles and coagulation via charged-charged and charged-neutral particle interaction. Thermal ionization of particles does not play a significant role in the particle charging. This paper was presented at the Third International Symposium on Nonequilibrium Process, combustion, and Atmospheric Phenomena (Dagomys, Sochi, Russia, 25-29 June 2007).

  18. The structure, surface topography and mechanical properties of Si-C-N films fabricated by RF and DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Shi, Zhifeng; Wang, Yingjun; Du, Chang; Huang, Nan; Wang, Lin; Ning, Chengyun

    2011-12-01

    Silicon carbon nitride thin films were deposited on Co-Cr alloy under varying deposition conditions such as sputtering power and the partial pressure ratio of N2 to Ar by radio frequency and direct current magnetron sputtering techniques. The chemical bonding configurations, surface topography and hardness were characterized by means of X-ray photoelectron spectroscopy, atomic force microscopy and nano-indentation technique. The sputtering power exhibited important influence on the film composition, chemical bonding configurations and surface topography, the electro-negativity had primary effects on chemical bonding configurations at low sputtering power. A progressive densification of the film microstructure occurring with the carbon fraction was increased. The films prepared by RF magnetron sputtering, the relative content of the Si-N bond in the films increased with the sputtering power increased, and Si-C and Si-Si were easily detachable, and C-O, N-N and N-O on the film volatile by ion bombardment which takes place very frequently during the film formation process. With the increase of sputtering power, the films became smoother and with finer particle growth. The hardness varied between 6 GPa and 11.23 GPa depending on the partial pressure ratio of N2 to Ar. The tribological characterization of Co-Cr alloy with Si-C-N coating sliding against UHMWPE counter-surface in fetal bovine serum, shows that the wear resistance of the Si-C-N coated Co-Cr alloy/UHMWPE sliding pair show much favourable improvement over that of uncoated Co-Cr alloy/UHMWPE sliding pair. This study is important for the development of advanced coatings with tailored mechanical and tribological properties.

  19. Effects of Charged Particles on Human Tumor Cells

    PubMed Central

    Held, Kathryn D.; Kawamura, Hidemasa; Kaminuma, Takuya; Paz, Athena Evalour S.; Yoshida, Yukari; Liu, Qi; Willers, Henning; Takahashi, Akihisa

    2016-01-01

    The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles. PMID:26904502

  20. Particle separation

    NASA Technical Reports Server (NTRS)

    Arnott, W. Patrick (Inventor); Chakrabarty, Rajan K. (Inventor); Moosmuller, Hans (Inventor)

    2011-01-01

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  1. Particle separation

    DOEpatents

    Moosmuller, Hans [Reno, NV; Chakrabarty, Rajan K [Reno, NV; Arnott, W Patrick [Reno, NV

    2011-04-26

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  2. MOSFET Electric-Charge Sensor

    NASA Technical Reports Server (NTRS)

    Robinson, Paul A., Jr.

    1988-01-01

    Charged-particle probe compact and consumes little power. Proposed modification enables metal oxide/semiconductor field-effect transistor (MOSFET) to act as detector of static electric charges or energetic charged particles. Thickened gate insulation acts as control structure. During measurements metal gate allowed to "float" to potential of charge accumulated in insulation. Stack of modified MOSFET'S constitutes detector of energetic charged particles. Each gate "floats" to potential induced by charged-particle beam penetrating its layer.

  3. Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles

    NASA Astrophysics Data System (ADS)

    Frost, David L.; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2009-12-01

    The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behaviour of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, whereas large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations after a delay. Hence the charge geometry, as well as particle morphology, influences the reaction behaviour of the particles.

  4. Advanced electric propulsion research, 1991

    NASA Technical Reports Server (NTRS)

    Monheiser, Jeffery M.

    1992-01-01

    A simple model for the production of ions that impinge on and sputter erode the accelerator grid of an ion thruster is presented. Charge-exchange and electron-impact ion production processes are considered, but initial experimental results suggest the charge-exchange process dominates. Additional experimental results show the effects of changes in thruster operating conditions on the length of the region from which these ions are drawn upstream into the grid. Results which show erosion patterns and indicate molybdenum accelerator grids erode more rapidly than graphite ones are also presented.

  5. Image quality method as a possible way of in situ monitoring of in-vessel mirrors in a fusion reactor

    NASA Astrophysics Data System (ADS)

    Konovalov, V. G.; Voitsenya, V. S.; Makhov, M. N.; Ryzhkov, I. V.; Shapoval, A. N.; Solodovchenko, S. I.; Stan, A. F.; Bondarenko, V. N.; Donné, A. J. H.; Litnovsky, A.

    2016-09-01

    The plasma-facing (first) mirrors in ITER will be subject to sputtering and/or contamination with rates that will depend on the precise mirror locations. The resulting influence of both these factors can reduce the mirror reflectance (R) and worsen the transmitted image quality (IQ). This implies that monitoring the mirror quality in situ is an actual desire, and the present work is an attempt towards a solution. The method we propose is able to elucidate the reason for degradation of the mirror reflectance: sputtering by charge exchange atoms or deposition of contaminated layers. In case of deposition of contaminants, the mirror can be cleaned in situ, but a rough mirror (due to sputtering) cannot be used anymore and has to be replaced. To demonstrate the feasibility of the IQ method, it was applied to mirror specimens coated with carbon film in laboratory conditions and to mirrors coated with contaminants during exposure in fusion devices (TRIAM-1M and Tore Supra), as well as to mirrors of different materials exposed to sputtering by plasma ions in the DSM-2 plasma stand (in IPP NSC KIPT).

  6. Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method

    PubMed Central

    Hussain, Sajjad; Singh, Jai; Vikraman, Dhanasekaran; Singh, Arun Kumar; Iqbal, Muhammad Zahir; Khan, Muhammad Farooq; Kumar, Pushpendra; Choi, Dong-Chul; Song, Wooseok; An, Ki-Seok; Eom, Jonghwa; Lee, Wan-Gyu; Jung, Jongwan

    2016-01-01

    We report a simple and mass-scalable approach for thin MoS2 films via RF sputtering combined with the post-deposition annealing process. We have prepared as-sputtered film using a MoS2 target in the sputtering system. The as-sputtered film was subjected to post-deposition annealing to improve crystalline quality at 700 °C in a sulfur and argon environment. The analysis confirmed the growth of continuous bilayer to few-layer MoS2 film. The mobility value of ~29 cm2/Vs and current on/off ratio on the order of ~104 were obtained for bilayer MoS2. The mobility increased up to ~173–181 cm2/Vs, respectively, for few-layer MoS2. The mobility of our bilayer MoS2 FETs is larger than any previously reported values of single to bilayer MoS2 grown on SiO2/Si substrate with a SiO2 gate oxide. Moreover, our few-layer MoS2 FETs exhibited the highest mobility value ever reported for any MoS2 FETs with a SiO2 gate oxide. It is presumed that the high mobility behavior of our film could be attributed to low charged impurities of our film and dielectric screening effect by an interfacial MoOxSiy layer. The combined preparation route of RF sputtering and post-deposition annealing process opens up the novel possibility of mass and batch production of MoS2 film. PMID:27492282

  7. The Stanford-U.S. Geological Survey SHRIMP ion microprobe--a tool for micro-scale chemical and isotopic analysis

    USGS Publications Warehouse

    Bacon, Charles R.; Grove, Marty; Vazquez, Jorge A.; Coble, Matthew A.

    2012-01-01

    Answers to many questions in Earth science require chemical analysis of minute volumes of minerals, volcanic glass, or biological materials. Secondary Ion Mass Spectrometry (SIMS) is an extremely sensitive analytical method in which a 5–30 micrometer diameter "primary" beam of charged particles (ions) is focused on a region of a solid specimen to sputter secondary ions from 1–5 nanograms of the sample under high vacuum. The elemental abundances and isotopic ratios of these secondary ions are determined with a mass spectrometer. These results can be used for geochronology to determine the age of a region within a crystal thousands to billions of years old or to precisely measure trace abundances of chemical elements at concentrations as low as parts per billion. A partnership of the U.S. Geological Survey and the Stanford University School of Earth Sciences operates a large SIMS instrument, the Sensitive High-Resolution Ion Microprobe with Reverse Geometry (SHRIMP–RG) on the Stanford campus.

  8. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system is a device that produces by acceleration high energy charged particles (e.g., electrons and protons...

  9. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system is a device that produces by acceleration high energy charged particles (e.g., electrons and protons...

  10. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system is a device that produces by acceleration high energy charged particles (e.g., electrons and protons...

  11. Coupled electrostatic and material surface stresses yield anomalous particle interactions and deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, B. A., E-mail: bkemp@astate.edu; Nikolayev, I.; Sheppard, C. J.

    2016-04-14

    Like-charges repel, and opposite charges attract. This fundamental tenet is a result of Coulomb's law. However, the electrostatic interactions between dielectric particles remain topical due to observations of like-charged particle attraction and the self-assembly of colloidal systems. Here, we show, using both an approximate description and an exact solution of Maxwell's equations, that nonlinear charged particle forces result even for linear material systems and can be responsible for anomalous electrostatic interactions such as like-charged particle attraction and oppositely charged particle repulsion. Furthermore, these electrostatic interactions and the deformation of such particles have fundamental implications for our understanding of macroscopic electrodynamics.

  12. Measurements of ultrafine particles carrying different number of charges in on- and near-freeway environments

    NASA Astrophysics Data System (ADS)

    Lee, Eon S.; Xu, Bin; Zhu, Yifang

    2012-12-01

    This paper presents measurements of electrical charges on ultrafine particles (UFPs) of different electrical mobility diameters (30, 50, 80, and 100 nm) in on- and near-freeway environments. Using a tandem Differential Mobility Analyzer (DMA) system, we first examined the fraction of UFPs carrying different number of charges on two distinctive freeways: a gasoline-vehicle dominated freeway (I-405) and a heavy-duty diesel truck dominated freeway (I-710). The fractions of UFPs of a given size carrying one or more charges were significantly higher on the freeways than in the background. The background UFPs only carried up to two charges but freeway UFPs could have up to three charges. The total fraction of charged particles was higher on the I-710 than I-405 across the studied electrical mobility diameters. Near the I-405 freeway, we observed a strong decay of charged particles on the downwind side of the freeway. We also found fractional decay of the charged particles was faster than total particle number concentrations, but slower than total ion concentrations downwind from the freeway I-405. Among charged particles, the highest decay rate was observed for particles carrying three charges. Near the I-710 freeway, we found strong net positive charges on nucleation mode particles, suggesting that UFPs were not at steady-state charge equilibrium near freeways.

  13. Positively charged particles in dusty plasmas.

    PubMed

    Samarian, A A; Vaulina, O S; Nefedov, A P; Fortov, V E; James, B W; Petrov, O F

    2001-11-01

    The trapping of dust particles has been observed in a dc abnormal glow discharge dominated by electron attachment. A dust cloud of several tens of positively charged particles was found to form in the anode sheath region. An analysis of the experimental conditions revealed that these particles were positively charged due to emission process, in contrast to most other experiments on the levitation of dust particles in gas-discharge plasmas where negatively charged particles are found. An estimate of the particle charge, taking into account the processes of photoelectron and secondary electron emission from the particle surface, is in agreement with the experimental measured values.

  14. Electrification of particulate entrained fluid flows-Mechanisms, applications, and numerical methodology

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Gu, Zhaolin

    2015-10-01

    Particulates in natural and industrial flows have two basic forms: liquid (droplet) and solid (particle). Droplets would be charged in the presence of the applied electric field (e.g. electrospray). Similar to the droplet charging, particles can also be charged under the external electric field (e.g. electrostatic precipitator), while in the absence of external electric field, tribo-electrostatic charging is almost unavoidable in gas-solid two-phase flows due to the consecutive particle contacts (e.g. electrostatic in fluidized bed or wind-blown sand). The particle charging may be beneficial, or detrimental. Although electrostatics in particulate entrained fluid flow systems have been so widely used and concerned, the mechanisms of particulate charging are still lack of a thorough understanding. The motivation of this review is to explore a clear understanding of particulate charging and movement of charged particulate in two-phase flows, by summarizing the electrification mechanisms, physical models of particulate charging, and methods of charging/charged particulate entrained fluid flow simulations. Two effective methods can make droplets charged in industrial applications: corona charging and induction charging. The droplet charge to mass ratio by corona charging is more than induction discharge. The particle charging through collisions could be attributed to electron transfer, ion transfer, material transfer, and/or aqueous ion shift on particle surfaces. The charges on charged particulate surface can be measured, nevertheless, the charging process in nature or industry is difficult to monitor. The simulation method might build a bridge of investigating from the charging process to finally charged state on particulate surface in particulate entrained fluid flows. The methodology combining the interface tracking under the action of the applied electric with the fluid flow governing equations is applicable to the study of electrohydrodynamics problems. The charge distribution and mechanical behaviors of liquid surface can be predicted by using this method. The methodology combining particle charging model with Computational Fluid Dynamics (CFD) and Discrete element method (DEM) is applicable to study the particle charging/charged processes in gas-solid two phase flows, the influence factors of particle charging, such as gas-particle interaction, contact force, contact area, and various velocities, are described systematically. This review would explore a clear understanding of the particulate charging and provide theoretical references to control and utilize the charging/charged particulate entrained fluid system.

  15. Complexation of ferric oxide particles with pectins of different charge density.

    PubMed

    Milkova, Viktoria; Kamburova, Kamelia; Petkanchin, Ivana; Radeva, Tsetska

    2008-09-02

    The effect of polyelectrolyte charge density on the electrical properties and stability of suspensions of oppositely charged oxide particles is followed by means of electro-optics and electrophoresis. Variations in the electro-optical effect and the electrophoretic mobility are examined at conditions where fully ionized pectins of different charge density adsorb onto particles with ionizable surfaces. The charge neutralization point coincides with the maximum of particle aggregation in all suspensions. We find that the concentration of polyelectrolyte, needed to neutralize the particle charge, decreases with increasing charge density of the pectin. The most highly charged pectin presents an exception to this order, which is explained with a reduction of the effective charge density of this pectin due to condensation of counterions. The presence of condensed counterions, remaining bound to the pectin during its adsorption on the particle surface, is proved by investigation of the frequency behavior of the electro-optical effect at charge reversal of the particle surface.

  16. A Neutral Particle Analyser Proposed On Board Bepicolombo Planetary Orbiter: Serena (searching For Exospheric Refilling and Emitted Neutral Abundances)

    NASA Astrophysics Data System (ADS)

    Orsini, S.; Npa-Serena Team

    The Neutral Particle Analyser SERENA, proposed on board the BepiColombo Mer- cury Planetary Orbiter (MPO), has the purpose of investigating the Hermean exo- spheric and energetic neutral populations. Local and detailed analysis of the exo- spheric composition will be performed by a ram-pointing sensor (MAIA), while en- ergetic neutrals produced through sputtering and charge-exchange processes will be collected by two nadir-pointing sensors (L-ENA, MH-ENA). A central problem in the understanding of the evolution of solar system bodies is the role played by the so- lar wind, solar radiation and micro-meteorite bombardment in controlling mass losses. The direct in situ detection of the Hermean exosphere, the gas evolving from the planet as a product of the different physical processes acting onto the surface, is of crucial importance to understand the past and present evolution of the crust. Current knowl- edge of the origin and evolution of the solar system is based on detailed measurement of chemical, elemental, and isotopic composition of matter. The proposed instrument suite is unique in its capability to perform quantitative analysis and resolve exospheric gas composition under all these three aspects. The value of neutral particles mea- surements for getting a comprehensive picture of the solar wind-planets interaction has been appreciated since the late eighties. Comparison of the measurements in the Mercury environment with those achieved by neutral particle imagers already flying around Earth (IMAGE), Mars (Mars Express), Jupiter and Saturn (Cassini) will allow comparative investigations of evolution and dynamics of planetary magnetospheres.

  17. Single charging events on colloidal particles in a nonpolar liquid with surfactant

    NASA Astrophysics Data System (ADS)

    Schreuer, Caspar; Vandewiele, Stijn; Brans, Toon; Strubbe, Filip; Neyts, Kristiaan; Beunis, Filip

    2018-01-01

    Electrical charging of colloidal particles in nonpolar liquids due to surfactant additives is investigated intensively, motivated by its importance in a variety of applications. Most methods rely on average electrophoretic mobility measurements of many particles, which provide only indirect information on the charging mechanism. In the present work, we present a method that allows us to obtain direct information on the charging mechanism, by measuring the charge fluctuations on individual particles with a precision higher than the elementary charge using optical trapping electrophoresis. We demonstrate the capabilities of the method by studying the influence of added surfactant OLOA 11000 on the charging of single colloidal PMMA particles in dodecane. The particle charge and the frequency of charging events are investigated both below and above the critical micelle concentration (CMC) and with or without applying a DC offset voltage. It is found that at least two separate charging mechanisms are present below the critical micelle concentration. One mechanism is a process where the particle is stripped from negatively charged ionic molecules. An increase in the charging frequency with increased surfactant concentration suggests a second mechanism that involves single surfactant molecules. Above the CMC, neutral inverse micelles can also be involved in the charging process.

  18. Electrostatic Charging and Particle Interactions in Microscopic Insulating Grains

    NASA Astrophysics Data System (ADS)

    Lee, Victor

    In this thesis, we experimentally investigate the electrostatic charging as well as the particle interactions in microscopic insulating grains. First, by tracking individual grains accelerated in an electric field, we quantitatively demonstrate that tribocharging of same-material grains depends on particle size. Large grains tend to charge positively, and small ones tend to charge negatively. Theories based on the transfer of trapped electrons can explain this tendency but have not been validated. Here we show that the number of trapped electrons, measured independently by a thermoluminescence technique, is orders of magnitude too small to be responsible for the amount of charge transferred. This result reveals that trapped electrons are not responsible for same-material tribocharging of dielectric particles. Second, same-material tribocharging in grains can result in important long-range electrostatic interactions. However, how these electrostatic interactions contribute to particle clustering remains elusive, primarily due to the lack of direct, detailed observations. Using a high-speed camera that falls with a stream charged grains, we observe for the first time how charged grains can undergo attractive as well as repulsive Kepler-like orbits. Charged particles can be captured in their mutual electrostatic potential and form clusters via multiple bounces. Dielectric polarization effects are directly observed, which lead to additional attractive forces and stabilize "molecule-like" arrangements of charged particles. Third, we have developed a new method to study the charge transfer of microscopic particles based on acoustic levitation techniques. This method allows us to narrow the complex problem of many-particle charging down to precise charge measurements of a single sub-millimeter particle colliding with a target plate. By simply attaching nonpolar groups onto glass surfaces, we show that the contact charging of a particle is highly dependent on hydrophobicity. Charging between a hydrophilic and a hydrophobic surface is enhanced in a basic atmosphere and suppressed in an acidic one. Moreover, hydrophobicity is also found to play a key role in particle charging driven by an external electric field. These results strongly support the idea that aqueous-ion transfer is responsible for the particle contact charging phenomenon.

  19. Characterization of SrTiO3 target doped with Co ions, SrCoxTi1-xO3-δ, and their thin films prepared by pulsed laser ablation (PLA) in water for visible light response

    NASA Astrophysics Data System (ADS)

    Ichihara, Fumihiko; Murata, Yuma; Ono, Hiroshi; Choo, Cheow-keong; Tanaka, Katsumi

    2017-10-01

    SrTiO3 (STO) and Co-doped SrTiO3 (Co-STO) sintered targets were synthesized and were Ar+ sputtered to elucidate the charge compensation effect between Sr, Ti and Co cations following the reduction by oxygen desorption. Following exposure of the Ar+-sputtered target to the air, charge transfer reactions occurred among Co2+, Ti3+, O2- and Sr2+ species which were studied by their XPS spectra. Pulsed laser ablation (PLA) of these targets was carried out in water to prepare the nanoparticles which could be supplied to the thin films with much higher surface reactivity expected for photocatalytic reactions. The roles of Co ions were studied for the stoichiometry and crystallinity of the nanoparticles which constituted the thin films. Photo-degradation of methylene blue was carried out on the PLA thin films under very weak visible light at 460 nm. The PLA thin films showed the photocatalytic activities, which were enhanced by the presence of Co ions. Such the effect of Co ions was considered from viewpoint of the d-d transition and the charge-transfer between Co ions and the ligand oxygen.

  20. Influence of ionisation zone motion in high power impulse magnetron sputtering on angular ion flux and NbO x film growth

    DOE PAGES

    Franz, Robert; Clavero, César; Kolbeck, Jonathan; ...

    2016-01-21

    Here, the ion energies and fluxes in the high power impulse magnetron sputtering plasma from a Nb target were analysed angularly resolved along the tangential direction of the racetrack. A reactive oxygen-containing atmosphere was used as such discharge conditions are typically employed for the synthesis of thin films. Asymmetries in the flux distribution of the recorded ions as well as their energies and charge states were noticed when varying the angle between mass-energy analyser and target surface. More positively charged ions with higher count rates in the medium energy range of their distributions were detected in +E x B thanmore » in -E x B direction, thus confirming the notion that ionisation zones (also known as spokes or plasma bunches) are associated with moving potential humps. The motion of the recorded negatively charged high-energy oxygen ions was unaffected. NbO x thin films at different angles and positions were synthesised and analysed as to their structure and properties in order to correlate the observed plasma properties to the film growth conditions. The chemical composition and the film thickness varied with changing deposition angle, where the latter, similar to the ion fluxes, was higher in +E x B than in -E x B direction.« less

  1. The Influence of Particle Charge on Heterogeneous Reaction Rate Coefficients

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Pesnell, W. D.

    2000-01-01

    The effects of particle charge on heterogeneous reaction rates are presented. Many atmospheric particles, whether liquid or solid are charged. This surface charge causes a redistribution of charge within a liquid particle and as a consequence a perturbation in the gaseous uptake coefficient. The amount of perturbation is proportional to the external potential and the square of the ratio of debye length in the liquid to the particle radius. Previous modeling has shown how surface charge affects the uptake coefficient of charged aerosols. This effect is now included in the heterogeneous reaction rate of an aerosol ensemble. Extension of this analysis to ice particles will be discussed and examples presented.

  2. Gold-carbon composite thin films for electrochemical gas sensor prepared by reactive plasma sputtering

    NASA Astrophysics Data System (ADS)

    Okamoto, A.; Suzuki, Y.; Yoshitake, M.; Ogawa, S.; Nakano, N.

    1997-01-01

    We have investigated the properties of gold-carbon composite thin films prepared by a plasma sputtering deposition using argon and methane mixture gas. These composite films have an uneven surface in submicron scale or consist of nano-scale particles of gold polycrystalline. Such morphological properties can be controlled by the sputtering voltage and the partial pressure of methane gas. The working electrode of electrochemical gas sensor has needed a stable gas sensitivity and a good gas selectivity. Our composite film is one of the excellent candidates for a thin film working electrode of electrochemical gas sensor. It is described that the output current of sensor is related to the preparation conditions of the thin films and increase linearly as the concentration of PH 3 gas ranging from 0.1 to 1.0 ppm is increasing.

  3. Persistent photoconductivity due to trapping of induced charges in Sn/ZnO thin film based UV photodetector

    NASA Astrophysics Data System (ADS)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay

    2010-05-01

    Photoconductivity relaxation in rf magnetron sputtered ZnO thin films integrated with ultrathin tin metal overlayer is investigated. Charge carriers induced at the ZnO-metal interface by the tin metal overlayer compensates the surface lying trap centers and leads to the enhanced photoresponse. On termination of ultraviolet radiation, recombination of the photoexcited electrons with the valence band holes leaves the excess carriers deeply trapped at the recombination center and holds the dark conductivity level at a higher value. Equilibrium between the recombination centers and valence band, due to trapped charges, eventually stimulates the persistent photoconductivity in the Sn/ZnO photodetectors.

  4. Complex (dusty) plasmas-kinetic studies of strong coupling phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morfill, Gregor E.; Ivlev, Alexei V.; Thomas, Hubertus M.

    2012-05-15

    'Dusty plasmas' can be found almost everywhere-in the interstellar medium, in star and planet formation, in the solar system in the Earth's atmosphere, and in the laboratory. In astrophysical plasmas, the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry, and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption, and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory, there is great interest in industrial processes (e.g., etching, vapor deposition) and-at the fundamental level-in the physics ofmore » strong coupling phenomena. Here, the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and space, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many-particle systems, including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10{sup -12}to10{sup -9}g), precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.« less

  5. Collisional charging of individual submillimeter particles: Using ultrasonic levitation to initiate and track charge transfer

    NASA Astrophysics Data System (ADS)

    Lee, Victor; James, Nicole M.; Waitukaitis, Scott R.; Jaeger, Heinrich M.

    2018-03-01

    Electrostatic charging of insulating fine particles can be responsible for numerous phenomena ranging from lightning in volcanic plumes to dust explosions. However, even basic aspects of how fine particles become charged are still unclear. Studying particle charging is challenging because it usually involves the complexities associated with many-particle collisions. To address these issues, we introduce a method based on acoustic levitation, which makes it possible to initiate sequences of repeated collisions of a single submillimeter particle with a flat plate, and to precisely measure the particle charge in situ after each collision. We show that collisional charge transfer between insulators is dependent on the hydrophobicity of the contacting surfaces. We use glass, which we modify by attaching nonpolar molecules to the particle, the plate, or both. We find that hydrophilic surfaces develop significant positive charges after contacting hydrophobic surfaces. Moreover, we demonstrate that charging between a hydrophilic and a hydrophobic surface is suppressed in an acidic environment and enhanced in a basic one. Application of an electric field during each collision is found to modify the charge transfer, again depending on surface hydrophobicity. We discuss these results within the context of contact charging due to ion transfer, and we show that they lend strong support to O H- ions as the charge carriers.

  6. Search for fractional-charge particles in meteoritic material.

    PubMed

    Kim, Peter C; Lee, Eric R; Lee, Irwin T; Perl, Martin L; Halyo, Valerie; Loomba, Dinesh

    2007-10-19

    We have used an automated Millikan oil drop method to search for free fractional-charge particles in a sample containing in total 3.9 mg of pulverized Allende meteorite suspended in 259 mg of mineral oil. The average diameter of the drops was 26.5 microm with the charge on about 42 500 000 drops being measured. This search was motivated by the speculation that isolatable, fractional-charge particles produced in the early Universe and present in our Solar System are more likely to be accumulated in asteroids than on Earth's surface. No evidence for fractional-charge particles was found. With 95% confidence, the concentration of particles with fractional-charge more than 0.25 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 1.3 x 10(-21) particles per nucleon in the meteoritic material and less than 1.9 x 10(-23) particles per nucleon in the mineral oil.

  7. Charged-particle emission tomography

    PubMed Central

    Ding, Yijun; Caucci, Luca; Barrett, Harrison H.

    2018-01-01

    Purpose Conventional charged-particle imaging techniques —such as autoradiography —provide only two-dimensional (2D) black ex vivo images of thin tissue slices. In order to get volumetric information, images of multiple thin slices are stacked. This process is time consuming and prone to distortions, as registration of 2D images is required. We propose a direct three-dimensional (3D) autoradiography technique, which we call charged-particle emission tomography (CPET). This 3D imaging technique enables imaging of thick tissue sections, thus increasing laboratory throughput and eliminating distortions due to registration. CPET also has the potential to enable in vivo charged-particle imaging with a window chamber or an endoscope. Methods Our approach to charged-particle emission tomography uses particle-processing detectors (PPDs) to estimate attributes of each detected particle. The attributes we estimate include location, direction of propagation, and/or the energy deposited in the detector. Estimated attributes are then fed into a reconstruction algorithm to reconstruct the 3D distribution of charged-particle-emitting radionuclides. Several setups to realize PPDs are designed. Reconstruction algorithms for CPET are developed. Results Reconstruction results from simulated data showed that a PPD enables CPET if the PPD measures more attributes than just the position from each detected particle. Experiments showed that a two-foil charged-particle detector is able to measure the position and direction of incident alpha particles. Conclusions We proposed a new volumetric imaging technique for charged-particle-emitting radionuclides, which we have called charged-particle emission tomography (CPET). We also proposed a new class of charged-particle detectors, which we have called particle-processing detectors (PPDs). When a PPD is used to measure the direction and/or energy attributes along with the position attributes, CPET is feasible. PMID:28370094

  8. Charged-particle emission tomography.

    PubMed

    Ding, Yijun; Caucci, Luca; Barrett, Harrison H

    2017-06-01

    Conventional charged-particle imaging techniques - such as autoradiography - provide only two-dimensional (2D) black ex vivo images of thin tissue slices. In order to get volumetric information, images of multiple thin slices are stacked. This process is time consuming and prone to distortions, as registration of 2D images is required. We propose a direct three-dimensional (3D) autoradiography technique, which we call charged-particle emission tomography (CPET). This 3D imaging technique enables imaging of thick tissue sections, thus increasing laboratory throughput and eliminating distortions due to registration. CPET also has the potential to enable in vivo charged-particle imaging with a window chamber or an endoscope. Our approach to charged-particle emission tomography uses particle-processing detectors (PPDs) to estimate attributes of each detected particle. The attributes we estimate include location, direction of propagation, and/or the energy deposited in the detector. Estimated attributes are then fed into a reconstruction algorithm to reconstruct the 3D distribution of charged-particle-emitting radionuclides. Several setups to realize PPDs are designed. Reconstruction algorithms for CPET are developed. Reconstruction results from simulated data showed that a PPD enables CPET if the PPD measures more attributes than just the position from each detected particle. Experiments showed that a two-foil charged-particle detector is able to measure the position and direction of incident alpha particles. We proposed a new volumetric imaging technique for charged-particle-emitting radionuclides, which we have called charged-particle emission tomography (CPET). We also proposed a new class of charged-particle detectors, which we have called particle-processing detectors (PPDs). When a PPD is used to measure the direction and/or energy attributes along with the position attributes, CPET is feasible. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  9. Highly charged ion based time of flight emission microscope

    DOEpatents

    Barnes, Alan V.; Schenkel, Thomas; Hamza, Alex V.; Schneider, Dieter H.; Doyle, Barney

    2001-01-01

    A highly charged ion based time-of-flight emission microscope has been designed, which improves the surface sensitivity of static SIMS measurements because of the higher ionization probability of highly charged ions. Slow, highly charged ions are produced in an electron beam ion trap and are directed to the sample surface. The sputtered secondary ions and electrons pass through a specially designed objective lens to a microchannel plate detector. This new instrument permits high surface sensitivity (10.sup.10 atoms/cm.sup.2), high spatial resolution (100 nm), and chemical structural information due to the high molecular ion yields. The high secondary ion yield permits coincidence counting, which can be used to enhance determination of chemical and topological structure and to correlate specific molecular species.

  10. Highly charged ion secondary ion mass spectroscopy

    DOEpatents

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  11. Study of talcum charging status in parallel plate electrostatic separator based on particle trajectory analysis

    NASA Astrophysics Data System (ADS)

    Yunxiao, CAO; Zhiqiang, WANG; Jinjun, WANG; Guofeng, LI

    2018-05-01

    Electrostatic separation has been extensively used in mineral processing, and has the potential to separate gangue minerals from raw talcum ore. As for electrostatic separation, the particle charging status is one of important influence factors. To describe the talcum particle charging status in a parallel plate electrostatic separator accurately, this paper proposes a modern images processing method. Based on the actual trajectories obtained from sequence images of particle movement and the analysis of physical forces applied on a charged particle, a numerical model is built, which could calculate the charge-to-mass ratios represented as the charging status of particle and simulate the particle trajectories. The simulated trajectories agree well with the experimental results obtained by images processing. In addition, chemical composition analysis is employed to reveal the relationship between ferrum gangue mineral content and charge-to-mass ratios. Research results show that the proposed method is effective for describing the particle charging status in electrostatic separation.

  12. Level-energy-dependent mean velocities of excited tungsten atoms sputtered by krypton-ion bombardment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota

    2015-11-15

    Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.

  13. NSTAR Extended Life Test Discharge Chamber Flake Analysis

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Karniotis, Christina A.

    2005-01-01

    The Extended Life Test (ELT) of the NASA Solar Electric Propulsion Technology Readiness (NSTAR) ion thruster was concluded after 30,352 hours of operation. The ELT was conducted using the Deep Space 1 (DS1) back-up flight engine, a 30 cm diameter xenon ion thruster. Post-test inspection of the ELT engine revealed numerous contaminant flakes distributed over the bottom of the cylindrical section of the anode within the discharge chamber (DC). Extensive analyses were conducted to determine the source of the particles, which is critical to the understanding of degradation mechanisms of long life ion thruster operation. Analyses included: optical microscopy (OM) and particle length histograms, field emission scanning electron microscopy (FESEM) combined with energy dispersive spectroscopy (EDS), and atomic oxygen plasma exposure tests. Analyses of the particles indicate that the majority of the DC flakes consist of a layered structure, typically with either two or three layers. The flakes comprising two layers were typically found to have a molybdenum-rich (Mo-rich) layer on one side and a carbon-rich (C-rich) layer on the other side. The flakes comprising three layers were found to be sandwich-like structures with Mo-rich exterior layers and a C-rich interior layer. The presence of the C-rich layers indicates that these particles were produced by sputter deposition build-up on a surface external to the discharge chamber from ion sputter erosion of the graphite target in the test chamber. This contaminant layer became thick enough that particles spalled off, and then were electro-statically attracted into the ion thruster interior, where they were coated with Mo from internal sputter erosion of the screen grid and cathode components. Atomic oxygen tests provided evidence that the DC chamber flakes are composed of a significant fraction of carbon. Particle size histograms further indicated that the source of the particles was spalling of carbon flakes from downstream surfaces. Analyses of flakes taken from the downstream surface of the accelerator grid provided additional supportive information. The production of the downstream carbon flakes, and hence the potential problems associated with the flake particles in the ELT ion thruster engine is a facility induced effect and would not occur in the space environment.

  14. High-temperature thermogravimetric analysis and differential scanning calorimetry of nanocomposites (FeCoZr)x(CaF2)100-x

    NASA Astrophysics Data System (ADS)

    Bondariev, Vitalii

    2016-09-01

    In this work thermogravimetric-DTG/DSC analysis result for samples of nanocomposite metal-dielectric (FeCoZr)x(CaF2)100-x are presents. Series of samples with, metallic phase content x = 24 - 68 at.% were produced by ionbeam sputtering method in mixed atmosphere of gas argon and oxygen. Study of thermal properties, phase shifts and process of change in mass of nanocomposites were performed using the thermoanalytical system TGA/DSC-1/1600 HF (MettlerToledoInstruments). High-precision weight has a weighing range 1μg - 1g with an accuracy 1μg. The furnace makes it possible to regulate the temperature in range from room temperature to 1600°C and heating rate is 0.01 - 150°C min. After analysis of the results established that initial and final mass of samples of the nanocomposite (FeCoZr)x(CaF2)100-x are different, namely the sample mass is increased by 2 - 20%. It is related to the oxidation of metallic phase particles of nanocomposite. DTG and DSC analysis demonstrated that oxidation of metallic phase is held in two steps, at first oxidized iron atoms, and followed oxidation of the cobalt atoms, what can be seen on the waveform in the form of two humps and whereby oxides Fe2O3, Fe3O4, Co2O3, Co3O4 are formed. Oxide coatings on the surface of atoms represents an additional barrier to electron transfer charges. When a voltage is applied to the layer of the nanocomposite are three possible ways to transfer of charges between atoms and particles of metal, whereby each has its own relaxation time.

  15. Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering.

    PubMed

    Bünting, Aiko; Uhlenbruck, Sven; Sebold, Doris; Buchkremer, H P; Vaßen, R

    2015-10-14

    Crystalline, three-dimensional (3D) structured lithium iron phosphate (LiFePO4) thin films with additional carbon are fabricated by a radio frequency (RF) magnetron-sputtering process in a single step. The 3D structured thin films are obtained at deposition temperatures of 600 °C and deposition times longer than 60 min by using a conventional sputtering setup. In contrast to glancing angle deposition (GLAD) techniques, no tilting of the substrate is required. Thin films are characterized by X-ray diffraction (XRD), Raman spectrospcopy, scanning electron microscopy (SEM), cyclic voltammetry (CV), and galvanostatic charging and discharging. The structured LiFePO4+C thin films consist of fibers that grow perpendicular to the substrate surface. The fibers have diameters up to 500 nm and crystallize in the desired olivine structure. The 3D structured thin films have superior electrochemical properties compared with dense two-dimensional (2D) LiFePO4 thin films and are, hence, very promising for application in 3D microbatteries.

  16. Laser-driven deflection arrangements and methods involving charged particle beams

    DOEpatents

    Plettner, Tomas [San Ramon, CA; Byer, Robert L [Stanford, CA

    2011-08-09

    Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle .alpha., relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam.

  17. Charging of particles on a surface

    NASA Astrophysics Data System (ADS)

    Heijmans, Lucas; Nijdam, Sander

    2016-09-01

    This contribution focusses on the seemingly easy problem of the charging of micrometer sized particles on a substrate in a plasma. This seems trivial, because much is known about both the charging of surfaces near a plasma and of particles in the plasma bulk. The problem, however, becomes much more complicated when the particle is on the substrate surface. The charging currents to the particle are then highly altered by the substrate plasma sheath. Currently there is no consensus in literature about the resulting particle charge. We shall present both experimental measurements and numerical simulations of the charge on these particles. The experimental results are acquired by measuring the particle acceleration in an external electric field. For the simulations we have used our specially developed model. We shall compare these results to other estimates found in literature.

  18. Quantitative evaluation of high-energy O- ion particle flux in a DC magnetron sputter plasma with an indium-tin-oxide target

    NASA Astrophysics Data System (ADS)

    Suyama, Taku; Bae, Hansin; Setaka, Kenta; Ogawa, Hayato; Fukuoka, Yushi; Suzuki, Haruka; Toyoda, Hirotaka

    2017-11-01

    O- ion flux from the indium tin oxide (ITO) sputter target under Ar ion bombardment is quantitatively evaluated using a calorimetry method. Using a mass spectrometer with an energy analyzer, O- energy distribution is measured with spatial dependence. Directional high-energy O- ion ejected from the target surface is observed. Using a calorimetry method, localized heat flux originated from high-energy O- ion is measured. From absolute evaluation of the heat flux from O- ion, O- particle flux in order of 1018 m-2 s-1 is evaluated at a distance of 10 cm from the target. Production yield of O- ion on the ITO target by one Ar+ ion impingement at a kinetic energy of 244 eV is estimated to be 3.3  ×  10-3 as the minimum value.

  19. A facility to study the particles released by ion sputtering process

    NASA Astrophysics Data System (ADS)

    de Angelis, E.; di Lellis, A. M.; Vannaroni, G.; Orsini, S.; Mangano, V.; Milillo, A.; Massetti, S.; Mura, A.; Vertolli, N.

    2007-08-01

    Research on the planetary surface erosion and planetary evolution could be enriched with the detection of the escaping material, in terms of energy and direction, caused by ions sputtering. A complete study of emitted neutral distribution from which infers the processes occurring on the impacted surface requires dedicated instrumentation, tailored on the peculiarity on the low energy profile of the sputtered signal. We propose a comprehensive facility at INAF/IFSI in Rome intended to provide the opportunity to investigate the interaction of selectable ion beam with planetary analogues through the detection of sputtered neutral atoms. The laboratory is equipped with a high volume UHV chamber, ion selectable sources in the range 0 to 10 keV, a set of 3D sample/sensor orientation motion actuation motors down to 1/100 deg resolution. The laboratory will support a set of neutral sensor heads sets derived from the Emitted for Low Energetic Neutral Atoms (ELENA) instrument under development for the ESA BepiColombo Mercury mission able to detect neutral atoms (few eV-up to 5 keV).

  20. Nanomesh of Cu fabricated by combining nanosphere lithography and high power pulsed magnetron sputtering and a preliminary study about its function

    NASA Astrophysics Data System (ADS)

    Xie, Wanchuan; Chen, Jiang; Jiang, Lang; Yang, Ping; Sun, Hong; Huang, Nan

    2013-10-01

    The Cu nanomesh was obtained by a combination of nanosphere lithography (NSL) and high power pulsed magnetron sputtering (HiPPMS). A deposition mask was formed on TiO2 substrates by the self-assembly of polystyrene latex spheres with a diameter of 1 μm, then Cu nanomesh structure was produced on the substrate using sputtering. The structures were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results show the increase of temperature of the polystyrene mask caused by the thermal radiation from the target and the bombardment of sputtering particles would affect the quality of the final nanopattern. The tests of photocatalytic degradation, platelet adhesion and human umbilical artery smooth muscle cells (HUASMCs) culture show Cu deposition could promote the photocatalytic efficiency of TiO2, affect platelet adhesion and inhibit smooth muscle cell adhesion and proliferation. It is highlighted that these findings may serve as a guide for the research of multifunctional surface structure.

  1. Developing an in-situ Detector of Neutron-Induced Fission for Actinide Sputtering Characterization

    NASA Astrophysics Data System (ADS)

    Fellers, Deion

    2016-09-01

    The physical mechanism describing the transfer of large amounts of energy due to fission in a material is not well understood and represents one of the modern challenges facing nuclear scientists, with applications including nuclear energy and national defense. Fission fragments cause damage to the material from sputtering of matter as they pass through or near the material's surface. We have developed a new technique at the Los Alamos Neutron Science Center for characterizing the ejecta by using ultracold neutrons (neutrons with kinetic energy less than 300 neV) to induce fission at finely controlled depths in an actinide. This program will ultimately provide a detailed description of the properties of the sputtered particles as a function of the depth of the fission in the material. A key component of this project is accurately quantifying the number of neutron induced fissions in the sample. This poster depicts the development of an in-situ detector of neutron-induced fission for the AShES (Actinide Sputtering from ultracold neutron Exposure at the Surface) experiment.

  2. Simulation of the electric potential and plasma generation coupling in magnetron sputtering discharges

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Krueger, Dennis; Schmidt, Frederik; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2016-09-01

    Magnetron sputtering typically operated at low pressures below 1 Pa is a widely applied deposition technique. For both, high power impulse magnetron sputtering (HiPIMS) as well as direct current magnetron sputtering (dcMS) the phenomenon of rotating ionization zones (also referred to as spokes) has been observed. A distinct spatial profile of the electric potential has been associated with the latter, giving rise to low, mid, and high energy groups of ions observed at the substrate. The adherent question of which mechanism drives this process is still not fully understood. This query is approached using Monte Carlo simulations of the heavy particle (i.e., ions and neutrals) transport consistently coupled to a pre-specified electron density profile via the intrinsic electric field. The coupling between the plasma generation and the electric potential, which establishes correspondingly, is investigated. While the system is observed to strive towards quasi-neutrality, distinct mechanisms governing the shape of the electric potential profile are identified. This work is supported by the German Research Foundation (DFG) in the frame of the transregional collaborative research centre TRR 87.

  3. Artificial twin-layer configurations of Zn(O,S) films by radio frequency sputtering in all dry processed eco-friendly Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Fan, Yu; Li, Xiaodong; Lin, Shuping; Liu, Yang; Shi, Sihan; Wang, He; Zhou, Zhiqiang; Zhang, Yi; Sun, Yun

    2018-03-01

    Cu(In,Ga)Se2 thin film solar cells are of great interest for research and industrial applications with their high conversion efficiencies, long-term stability and significant lifetimes. Such a solar cell of a p-n junction consists of p-type Cu(In,Ga)Se2 films as a light absorber and n-type CdS as a buffer layer, which often emerges with intrinsic ZnO. Aimed at eco-friendly fabrication protocols, a large number of strategies have been investigated to fabricate a Cd-free n-type buffer layer such as Zn(O,S) in Cu(In,Ga)Se2 solar cells. Also, if the Zn(O,S) films are prepared by coevaporation or sputtering, it will offer high compatibility with the preferred mass production. Here, we propose and optimize a dry method for Zn(O,S) deposition in a radio frequency sputtering. In particular, the strategy for the twin-layer configurations of Zn(O,S) films not only greatly improve their electrical conductance and suppress charge carrier recombination, but also avoid degradation of the Zn(O,S)/Cu(In,Ga)Se2 interfaces. Indeed, the high quality of such twin Zn(O,S) layers have been reflected in the similar conversion efficiencies of the complete solar cells as well as the large short-circuit current density, which exceeds the CdS reference device. In addition, Zn(O,S) twin layers have reduced the production time and materials by replacing the CdS/i-ZnO layers, which removes two fabrication steps in the multilayered thin film solar cells. Furthermore, the device physics for such improvements have been fully unveiled with both experimental current-voltage and capacitance-voltage spectroscopies and device simulations via wxAMPS program. Finally, the proposed twin-layer Zn(O,S)/Cu(In,Ga)Se2 interfaces account for the broadening of the depletion region of photogenerated charge carriers, which greatly suppress the carrier recombination at the space charge region, and eventually lead to the more efficient collection of charge carriers at both electrodes.

  4. Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chunwei, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001; Tian, Xiubo, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com

    2016-08-15

    The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process wasmore » simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.« less

  5. Particle-in-cell/Monte Carlo collisions treatment of an Ar/O2 magnetron discharge used for the reactive sputter deposition of TiOx films

    NASA Astrophysics Data System (ADS)

    Bultinck, E.; Bogaerts, A.

    2009-10-01

    The physical processes in an Ar/O2 magnetron discharge used for the reactive sputter deposition of TiOx thin films were simulated with a 2d3v particle-in-cell/Monte Carlo collisions (PIC/MCC) model. The plasma species taken into account are electrons, Ar+ ions, fast Arf atoms, metastable Arm* atoms, Ti+ ions, Ti atoms, O+ ions, O2+ ions, O- ions and O atoms. This model accounts for plasma-target interactions, such as secondary electron emission and target sputtering, and the effects of target poisoning. Furthermore, the deposition process is described by an analytical surface model. The influence of the O2/Ar gas ratio on the plasma potential and on the species densities and fluxes is investigated. Among others, it is shown that a higher O2 pressure causes the region of positive plasma potential and the O- density to be more spread, and the latter to decrease. On the other hand, the deposition rates of Ti and O are not much affected by the O2/Ar proportion. Indeed, the predicted stoichiometry of the deposited TiOx film approaches x=2 for nearly all the investigated O2/Ar proportions.

  6. Rational design of Ag/TiO2 nanosystems by a combined RF-sputtering/sol-gel approach.

    PubMed

    Armelao, Lidia; Barreca, Davide; Bottaro, Gregorio; Gasparotto, Alberto; Maccato, Chiara; Tondello, Eugenio; Lebedev, Oleg I; Turner, Stuart; Van Tendeloo, Gustaaf; Sada, Cinzia; Stangar, Urska Lavrencic

    2009-12-21

    The present work is devoted to the preparation of Ag/TiO(2) nanosystems by an original synthetic strategy, based on the radio-frequency (RF) sputtering of silver particles on titania-based xerogels prepared by the sol-gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF-sputtering, whose combination enables the obtainment of a tailored dispersion of Ag-containing particles into the titania matrix. In addition, the system's chemico-physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 degrees C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), secondary ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning TEM (HAADF-STEM), energy-filtered TEM (EF-TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo-dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties.

  7. Measurements and Modelling of Sputtering Rates with Low Energy Ions

    NASA Astrophysics Data System (ADS)

    Ruzic, David N.; Smith, Preston C.; Turkot, Robert B., Jr.

    1996-10-01

    The angular-resolved sputtering yield of Be by D+, and Al by Ar+ was predicted and then measured. A 50 to 1000 eV ion beam from a Colutron was focused on to commercial grade and magnetron target grade samples. The S-65 C grade beryllium samples were supplied by Brush Wellman and the Al samples from TOSOH SMD. In our vacuum chamber the samples can be exposed to a dc D or Ar plasma to remove oxide, load the surface and more-nearly simulate steady state operating conditions in the plasma device. The angular distribution of the sputtered atoms was measured by collection on a single crystal graphite witness plate. The areal density of Be or Al (and BeO2 or Al2O3, after exposure to air) was then measured using a Scanning Auger Spectrometer. Total yield was also measured by deposition onto a quartz crystal oscillator simultaneously to deposition onto the witness plate. A three dimensional version of vectorized fractal TRIM (VFTRIM3D), a Monte-Carlo computer code which includes surface roughness characterized by fractal geometry, was used to predict the angular distribution of the sputtered particles and a global sputtering coefficient. Over a million trajectories were simulated for each incident angle to determine the azimuthal and polar angle distributions of the sputtered atoms. The experimental results match closely with the simulations for total yield, while the measured angular distributions depart somewhat from the predicted cosine curve.

  8. ELECTROSTATIC EFFECTS IN FABRIC FILTRATION: VOLUME I. FIELDS, FABRICS, AND PARTICLES. (ANNOTATED DATA)

    EPA Science Inventory

    The report examines the effect of particle charge and electric fields on the filtration of dust by fabrics. Both frictional charging and charging by corona are studied. Charged particles and an electric field driving particles toward the fabric can greatly reduce the initial pres...

  9. Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ratova, Marina; Kelly, Peter J.; West, Glen T.; Tosheva, Lubomira; Edge, Michele

    2017-01-01

    Titanium dioxide - bismuth tungstate composite materials were prepared by pulsed DC reactive magnetron sputtering of bismuth and tungsten metallic targets in argon/oxygen atmosphere onto anatase and rutile titania nanoparticles. The use of an oscillating bowl placed beneath the two magnetrons arranged in a co-planar closed field configuration enabled the deposition of bismuth tungstate onto loose powders, rather than a solid substrate. The atomic ratio of the bismuth/tungsten coatings was controlled by varying the power applied to each target. The effect of the bismuth tungstate coatings on the phase, optical and photocatalytic properties of titania was investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area measurements, transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy and an acetone degradation test. The latter involved measurements of the rate of CO2 evolution under visible light irradiation of the photocatalysts, which indicated that the deposition of bismuth tungstate resulted in a significant enhancement of visible light activity, for both anatase and rutile titania particles. The best results were achieved for coatings with a bismuth to tungsten atomic ratio of 2:1. In addition, the mechanism by which the photocatalytic activity of the TiO2 nanoparticles was enhanced by compounding it with bismuth tungstate was studied by microwave cavity perturbation. The results of these tests confirmed that such enhancement of the photocatalytic properties is due to more efficient photogenerated charge carrier separation, as well as to the contribution of the intrinsic photocatalytic properties of Bi2WO6.

  10. Investigation of electric charge on inertial particle dynamics in turbulence

    NASA Astrophysics Data System (ADS)

    Lu, Jiang; Shaw, Raymond

    2014-11-01

    The behavior of electrically charged, inertial particles in homogeneous, isotropic turbulence is investigated. Both like-charged and oppositely-charged particle interactions are considered. Direct numerical simulations (DNS) of turbulence in a periodic box using the pseudospectral numerical method are performed, with Lagrangian tracking of the particles. We study effects of mutual electrostatic repulsion and attraction on the particle dynamics, as quantified by the radial distribution function (RDF) and the radial relative velocity. For the like-charged particle case, the Coulomb force leads to a short range repulsion behavior and an RDF reminiscent of that for a dilute gas. For the oppositely-charged particle case, the Coulomb force increases the RDF beyond that already occurring for neutral inertial particles. For both cases, the relative velocities are calculated as a function of particle separation distance and show distinct deviations from the expected scaling within the dissipation range. This research was supported by NASA Grant NNX113AF90G.

  11. Reaction of Titanium and Zirconium Particles in Cylindrical Explosive Charges

    NASA Astrophysics Data System (ADS)

    Frost, David L.; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2007-12-01

    The critical conditions for the reaction of particles of the transition metals titanium (Ti) and zirconium (Zr) dispersed during the detonation of long cylindrical explosive charges have been investigated experimentally. The charges consisted of packed beds of either spherical Ti particles or irregularly shaped Zr particles saturated with sensitized liquid nitromethane. For the Ti particles, a threshold particle diameter exists of 65±25 μm, above which self-sustained particle reaction is not observed for charge diameters up to 49 mm, although some particle reaction occurs immediately behind the detonation front then rapidly quenches. For the smallest particles (40 μm), the proportion of the conical particle cloud that reacts increases with charge diameter, suggesting that the reaction is a competition between particle heating and expansion cooling of the products. For 375 and 550 μm Zr particles, particle ignition was observed for 19 and 41 mm dia charges. In this case, interaction of the detonation wave with the particles is sufficient to initiate reaction at the particle surface after a delay time (˜5 μs), which is much less than the time required for thermal equilibration of the particles.

  12. Structure and physicochemical properties of thin film photosemiconductor cells based on porphine derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazak, A. V., E-mail: alexkazak86@gmail.com; Usol’tseva, N. V.; Smirnova, A. I.

    2016-05-15

    Photosemiconductor thin films based on two organic porphine derivatives have been investigated. These compounds have different pendent groups; the film morphology, along with the specific fabrication technique, is determined to a great extent by these groups. The films have been fabricated by vacuum sputtering and using the Langmuir−Schaefer method. According to the atomic force microscopy (AFM) data, the Langmuir−Schaefer films are more homogeneous than the sputtered ones. It is shown that the sputtered films based on substituted porphine have a looser stacking than the initial analog. A spectroscopy study revealed a bathochromic shift of the Soret band in the Langmuir−Schaefermore » films–sputtered films series. This shift is explained by the increase in the concentration and size of molecular aggregates in sputtered films. It is shown that a polycrystalline C{sub 60} fullerene film deposited onto an amorphous substituted porphine layer improves the photoelectric characteristics of the latter. Both the time stability of the photodiode structure and its ampere‒watt sensitivity increase (by a factor of 10 in the transition regime). The steady-state current does not change. The effect of polarity reversal of the photovoltaic signal is observed in a planar C{sub 60}‒substituted metalloporphine heterostructure, which is similar to the pyroelectric effect. The polarity reversal can be explained by the contribution of the trap charge and discharge current at the interface between the amorphous photosemiconductor and crystalline photosemiconductor to the resulting photoelectric current.« less

  13. Sputtering Erosion in Ion and Plasma Thrusters

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1996-01-01

    Low energy sputtering of molybdenum, tantalum and boron nitride with xenon ions are being studied using secondary neutral and secondary ion mass spectrometry (SNMS/SIMS). An ultrahigh vacuum chamber was used to conduct the experiment at a base pressure of 1x10(exp -9) torr. The primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a spot size of approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and 90 deg to the primary ion beam direction. SNMS and SIMS spectra were collected at various incident angles and different ion energies. For boron nitride sputtering, the target was flooded with an electron beam to neutralize the charge buildup on the surface. In the SNMS mode, sputtering of Mo and Ta can be detected at an ion energy as low as 100 eV whereas in boron nitride the same was observed up to an energy of 300 eV. However, in the positive-SIMS mode, the sputtering of Mo was observed at 10 eV incident ion energy. The SIMS spectra obtained for boron nitride clearly identifies the two isotopes of boron as well as cluster ions such as B2(sup +) and molecular ions such as BN(sup +). From the angle versus yields measurements, it was found that the maximum SNMS yield shifts towards lower incident angles at low ion energies for all three samples.

  14. Search for free fractional electric charge elementary particles using an automated millikan oil drop technique

    PubMed

    Halyo; Kim; Lee; Lee; Loomba; Perl

    2000-03-20

    We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied-about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0. 16e ( e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71x10(-22) particles per nucleon with 95% confidence.

  15. NSTAR Ion Thruster Plume Impact Assessments

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Pencil, Eric J.; Rawlin, Vincent K.; Kussmaul, Michael; Oden, Katessha

    1995-01-01

    Tests were performed to establish 30-cm ion thruster plume impacts, including plume characterizations via near and farfield ion current measurements, contamination, and sputtering assessments. Current density measurements show that 95% of the beam was enclosed within a 22 deg half-angle and that the thrust vector shifted by less than 0.3 deg during throttling from 2.3 to 0.5 kW. The beam flatness parameter was found to be 0.47, and the ratio of doubly charged to singly charged ion current density decreased from 15% at 2.3 kW to 5% at 0.5 kW. Quartz sample erosion measurements showed that the samples eroded at a rate of between 11 and 13 pm/khr at 25 deg from the thruster axis, and that the rate dropped by a factor of four at 40 deg. Good agreement was obtained between extrapolated current densities and those calculated from tantalum target erosion measurements. Quartz crystal microbalance and witness plate measurements showed that ion beam sputtering of the tank resulted in a facility material backflux rate of -10 A/hr in a large space simulation chamber.

  16. The use of the ion probe mass spectrometer in the measurement of hydrogen concentration gradients in Monel K 500

    NASA Technical Reports Server (NTRS)

    Truhan, J. J., Jr.; Hehemann, R. F.

    1974-01-01

    The ion probe mass spectrometer was used to measure hydrogen concentration gradients in cathodically charged Monel K 500. Initial work with the ion probe involved the calibration of the instrument and the establishment of a suitable experimental procedure for this application. Samples of Monel K 500 were cathodically charged in a weak sulfuric acid solution. By varying the current density, different levels of hydrogen were introduced into the samples. Hydrogen concentration gradients were taken by ion sputtering on the surface of these samples and monitoring the behavior of the hydrogen mass peak as a function of time. An attempt was made to determine the relative amounts of hydrogen in the bulk and grain boundaries by analyzing a fresh fracture surface with a higher proportion of grain boundary area. It was found that substantially more hydrogen was detected in the grain boundaries than in the bulk, confirming the predictions of previous workers. A sputter rate determination was made in order to establish the rate of erosion.

  17. The effects of changing deposition conditions on the similarity of sputter-deposited fluorocarbon thin films to bulk PTFE

    NASA Astrophysics Data System (ADS)

    Zandona, Philip

    Solid lubrication of space-borne mechanical components is essential to their survival and the continued human exploration of space. Recent discoveries have shown that PTFE when blended with alumina nanofillers exhibits greatly improved physical performance properties, with wear rates being reduced by several orders of magnitude. The bulk processes used to produce the PTFE-alumina blends are limiting. Co-sputter deposition of PTFE and a filler material overcomes several of these limitations by enabling the reduction of particle size to the atomic level and also by allowing for the even coating of the solid lubricant on relatively large areas and components. The goal of this study was to establish a baseline performance of the sputtered PTFE films as compared to the bulk material, and to establish deposition conditions that would result in the most bulk-like film possible. In order to coax change in the structure of the sputtered films, sputtering power and deposition temperature were increased independently. Further, post-deposition annealing was applied to half of the deposited film in an attempt to affect change in the film structure. Complications in the characterization process due to increasing film thickness were also examined. Bulk-like metrics for characterization processes the included Fourier transform infrared spectroscopy (FTIR), X-ray spectroscopy (XPS), nanoindentation via atomic force microscopy, and contact angle of water on surface measurements were established. The results of the study revealed that increasing sputtering power and deposition temperature resulted in an increase in the similarity between the fluorocarbon films and the bulk PTFE, at a cost of affecting the potential of the film thicknesses, either by affecting the deposition process directly, or by decreasing the longevity of the sputtering targets.

  18. AZO films with Al nano-particles to improve the light extraction efficiency of GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chou, Ying-Hung; Yan, Jheng-Tai; Lee, Hsin-Ying; Lee, Ching-Ting

    2008-02-01

    The co-sputtering Al-doped ZnO (AZO) films with Al nano-particles were used to increase the extraction efficiency of GaN-based light-emitting diodes (LEDs). Fixing the ZnO radio frequency (RF) power of 100W and changing the Al DC power from 0 to 13W, the AZO films with various Al contents can be obtained. In the experimental results, the AZO films deposited with Al DC power of 0, 4.5 and 7W do not have Al segregation. However, the segregated Al nano-particles can be found in the AZO films deposited by Al DC power of 10W and 13W. The co-sputtering 170 nm-thick AZO films with and without Al nano-particles were deposited on the transparent area of LEDs and compared the light output intensity of conventional LEDs. The light intensity of LEDs with AZO films with Al DC power 0, 4.5 and 7W increased 10% than that of conventional LEDs. This was due to the AZO film played a role of anti-reflection coating (ARC) layer. The light intensity of LEDs with AZO film deposited using Al DC power of 10W and 13W increased about 35% and 30%, respectively. It can be deduced that the output light is scattered by the Al nano-particles existed in the AZO film.

  19. Measurement of limiter particle fluxes and carbon erosion in the helical scrape-off layer of startup plasmas at W7-X

    NASA Astrophysics Data System (ADS)

    Winters, V.; Biedermann, C.; Brezinsek, S.; Effenberg, F.; Frerichs, H.; Harris, J.; Schmitz, O.; Stephey, L.; Unterberg, E.; Wurden, G.; W7-X Team

    2016-10-01

    Measurement of the 2D recycling flux and calculations of the carbon erosion from the limiter in startup plasmas of W7-X provides a first insight into neutral particle release and impurity inflow into the helical scrape-off layer. H-alpha, C-II (514.5nm) and C-III (465.1nm) line emissions were collected with filter-scopes and a visible camera aimed at limiter 3 of W7-X. Local plasma parameters are considered to estimate physical and chemical sputtering contributions. The analytical model for chemical sputtering by Roth is used to convert the measured particle flux into a chemically eroded C flux. The particle flux as well as the extracted C erosion pattern deviates from the measured heat flux distribution and also from the predicted particle flux distribution from EMC3-EIRENE. Candidates to resolve this discrepancy are measurement uncertainties and physics related (e.g. asymmetry in the last closed flux surface position). Post-mortem analysis of the limiter will be taken into account and compared to these in-situ measurements to gather first detailed insight on the net C erosion distribution and the impurity sourcing into the helical scrape-off layer. This work was funded by DE-SC0014210, DE-AC5206NA25396, DE-AC05-00OR22725 and by EUROfusion under Grant No 633053.

  20. Using Dawn to Observe SEP Events Past 2 AU

    NASA Astrophysics Data System (ADS)

    Villarreal, M. N.; Russell, C. T.; Prettyman, T. H.

    2017-12-01

    The launch of the STEREO spacecraft provided much insight into the longitudinal and radial distribution of solar energetic particles (SEPs) relative to their origin site. However, almost all of the observations of SEP events have been made exclusively near 1 AU. The Dawn mission, which orbited around Vesta before arriving at Ceres, provides an opportunity to analyze these events at much further distances. Although Dawn's Gamma Ray and Neutron Detector (GRaND) is not optimized for SEP characterization, it is sensitive to protons greater than 4 MeV, making it capable of detecting a solar energetic particle event in its vicinity. Solar energetic particles in this area of the solar system are important as they are believed to cause sputtering at bodies such as Ceres and comets (Villarreal et al., 2017; Wurz et al., 2015). In this study, we use Dawn's GRaND data from 2011-2015 when Dawn was at distances between 2-3 AU. We compare the SEP events seen by Dawn with particle measurements at 1 AU using STEREO, Wind, and ACE to understand how the SEP events evolved past 1 AU.References: Villarreal, M. N., et al. (2017), The dependence of the Cerean exosphere on solar energetic particle events, Astrophys. J. Lett., 838, L8.Wurz, P. et al. (2015), Solar wind sputtering of dust on the surface of 67P/Churyumov-Gerasimenko, A&A, 583, A22.

  1. Using Dawn to Observe SEP Events Past 2 AU

    NASA Astrophysics Data System (ADS)

    Villarreal, Michaela; Russell, Christopher T.; Prettyman, Thomas H.

    2017-10-01

    The launch of the STEREO spacecraft provided much insight into the longitudinal and radial distribution of solar energetic particles (SEPs) relative to their origin site. However, almost all of the observations of SEP events have been made exclusively near 1 AU. The Dawn mission, which orbited around Vesta before arriving at Ceres, provides an opportunity to analyze these events at much further distances. Although Dawn's Gamma Ray and Neutron Detector (GRaND) is not optimized for SEP characterization, it is sensitive to protons greater than 4 MeV, making it capable of detecting a solar energetic particle event in its vicinity. Solar energetic particles in this area of the solar system are important as they are believed to cause sputtering at bodies such as Ceres and comets (Villarreal et al., 2017; Wurz et al., 2015). In this study, we use Dawn’s GRaND data from 2011-2015 when Dawn was at distances between 2-3 AU. We compare the SEP events seen by Dawn with particle measurements at 1 AU using STEREO, Wind, and ACE to understand how the SEP events evolved past 1 AU.References: Villarreal, M. N., et al. (2017), The dependence of the Cerean exosphere on solar energetic particle events, Astrophys. J. Lett., 838, L8.Wurz, P. et al. (2015), Solar wind sputtering of dust on the surface of 67P/Churyumov-Gerasimenko, A&A, 583, A22.

  2. Three-grid accelerator system for an ion propulsion engine

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1994-01-01

    An apparatus is presented for an ion engine comprising a three-grid accelerator system with the decelerator grid biased negative of the beam plasma. This arrangement substantially reduces the charge-exchange ion current reaching the accelerator grid at high tank pressures, which minimizes erosion of the accelerator grid due to charge exchange ion sputtering, known to be the major accelerator grid wear mechanism. An improved method for life testing ion engines is also provided using the disclosed apparatus. In addition, the invention can also be applied in materials processing.

  3. Characterization of polycrystalline nickel cobaltite nanostructures prepared by DC plasma magnetron co-sputtering for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Hammadi, Oday A.; Naji, Noor E.

    2018-03-01

    In this work, a gas sensor is fabricated from polycrystalline nickel cobaltite nano films deposited on transparent substrates by closed-field unbalanced dual-magnetrons (CFUBDM) co-sputtering technique. Two targets of nickel and cobalt are mounted on the cathode of discharge system and co-sputtered by direct current (DC) argon discharge plasma in presence of oxygen as a reactive gas. The total gas pressure is 0.5 mbar and the mixing ratio of Ar:O2 gases is 5:1. The characterization measurements performed on the prepared films show that their transmittance increases with the incident wavelength, the polycrystalline structure includes 5 crystallographic planes, the average particle size is about 35 nm, the electrical conductivity is linearly increasing with increasing temperature, and the activation energy is about 0.41 eV. These films show high sensitivity to ethanol vapor.

  4. Physical processes in directed ion beam sputtering. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1979-01-01

    The general operation of a discharge chamber for the production of ions is described. A model is presented for the magnetic containment of both primary and secondary or Maxwellian electrons in the discharge plasma. Cross sections were calculated for energy and momentum transfer in binary collisions between like pairs of Ar, Kr, and Xe atoms in the energy range from about 1 eV to 1000 eV. These calculations were made from available pair interaction potentials using a classical model. Experimental data from the literature were fit to a theoretical expression for the Ar resonance charge exchange cross section over the same energy range. A model was developed that describes the processes of conical texturing of a surface due to simultaneous directed ion beam etching and sputter deposition of an impurity material. This model accurately predicts both a minimum temperature for texturing to take place and the variation of cone density with temperature. It also provides the correct order of magnitude of cone separation. It was predicted from the model, and subsequently verified experimentally, that a high sputter yield material could serve as a seed for coning of a lower sputter yield substrate. Seeding geometries and seed deposition rates were studied to obtain an important input to the theoretical texturing model.

  5. Shell Layer Thickness-Dependent Photocatalytic Activity of Sputtering Synthesized Hexagonally Structured ZnO-ZnS Composite Nanorods

    PubMed Central

    Liang, Yuan-Chang; Lo, Ya-Ru; Wang, Chein-Chung; Xu, Nian-Cih

    2018-01-01

    ZnO-ZnS core-shell nanorods are synthesized by combining the hydrothermal method and vacuum sputtering. The core-shell nanorods with variable ZnS shell thickness (7–46 nm) are synthesized by varying ZnS sputtering duration. Structural analyses demonstrated that the as-grown ZnS shell layers are well crystallized with preferring growth direction of ZnS (002). The sputtering-assisted synthesized ZnO-ZnS core-shell nanorods are in a wurtzite structure. Moreover, photoluminance spectral analysis indicated that the introduction of a ZnS shell layer improved the photoexcited electron and hole separation efficiency of the ZnO nanorods. A strong correlation between effective charge separation and the shell thickness aids the photocatalytic behavior of the nanorods and improves their photoresponsive nature. The results of comparative degradation efficiency toward methylene blue showed that the ZnO-ZnS nanorods with the shell thickness of approximately 17 nm have the highest photocatalytic performance than the ZnO-ZnS nanorods with other shell layer thicknesses. The highly reusable catalytic efficiency and superior photocatalytic performance of the ZnO-ZnS nanorods with 17 nm-thick ZnS shell layer supports their potential for environmental applications. PMID:29316671

  6. Dielectric particle injector for material processing

    NASA Technical Reports Server (NTRS)

    Leung, Philip L. (Inventor)

    1992-01-01

    A device for use as an electrostatic particle or droplet injector is disclosed which is capable of injecting dielectric particles or droplets. The device operates by first charging the dielectric particles or droplets using ultraviolet light induced photoelectrons from a low work function material plate supporting the dielectric particles or droplets, and then ejecting the charged particles or droplets from the plate by utilizing an electrostatic force. The ejected particles or droplets are mostly negatively charged in the preferred embodiment; however, in an alternate embodiment, an ion source is used instead of ultraviolet light to eject positively charged dielectric particles or droplets.

  7. Cadmium telluride in tellurium—cadmium films consisting of ultradispersed particles

    NASA Astrophysics Data System (ADS)

    Tuleushev, Yu. Zh.; Volodin, V. N.; Migunova, A. A.; Lisitsyn, V. N.

    2015-08-01

    Solid solutions of tellurium in cadmium, cadmium in tellurium, and cadmium in cadmium telluride synthesized during sputtering are formed for the first time by ion-plasma sputtering and the codeposition of ultradispersed Te and Cd particle fluxes onto substrates moving with respect to the fluxes. This fact supports thermofluctuation melting and coalescence of small particles. The lattice parameter of cadmium telluride, which coexists with an amorphous solid solution of tellurium in cadmium in a coating, is smaller than the tabulated value and reaches it when the cadmium concentration in a coating increases to 70 at %. The lattice parameter of the fcc lattice of cadmium telluride increases with the cadmium concentration in a coating according to the linear relation a = 0.0002CCd + 0.6346 nm (where CCd is the cadmium concentration in the coating, at %), which is likely to indicate a certain broadening of the homogeneity area. The estimation of the particle size shows that the cadmium telluride grain size is 10-15 nm, which implies that the coatings are nanocrystalline. The absorption and transmission spectra of the tellurium—cadmium films at the fundamental absorption edge demonstrate that their energy gaps are larger than that of stoichiometric CdTe, which can be explained by the experimental conditions of crystal structure formation.

  8. Electric Double-Layer Interaction between Dissimilar Charge-Conserved Conducting Plates.

    PubMed

    Chan, Derek Y C

    2015-09-15

    Small metallic particles used in forming nanostructured to impart novel optical, catalytic, or tribo-rheological can be modeled as conducting particles with equipotential surfaces that carry a net surface charge. The value of the surface potential will vary with the separation between interacting particles, and in the absence of charge-transfer or electrochemical reactions across the particle surface, the total charge of each particle must also remain constant. These two physical conditions require the electrostatic boundary condition for metallic nanoparticles to satisfy an equipotential whole-of-particle charge conservation constraint that has not been studied previously. This constraint gives rise to a global charge conserved constant potential boundary condition that results in multibody effects in the electric double-layer interaction that are either absent or are very small in the familiar constant potential or constant charge or surface electrochemical equilibrium condition.

  9. Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles

    NASA Astrophysics Data System (ADS)

    Frost, David; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2009-06-01

    The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behavior of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, although large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations. In general, particle ignition is a competition between particle heating (which is influenced by particle morphology, size, number density and the local thermodynamic history) and expansion cooling of the products.

  10. Optimized dielectric properties of SrTiO3:Nb /SrTiO3 (001) films for high field effect charge densities

    NASA Astrophysics Data System (ADS)

    Cai, Xiuyu; Frisbie, C. Daniel; Leighton, C.

    2006-12-01

    The authors report the growth, structural and electrical characterizations of SrTiO3 films deposited on conductive SrTiO3:Nb (001) substrates by high pressure reactive rf magnetron sputtering. Optimized deposition parameters yield smooth epitaxial layers of high crystalline perfection with a room temperature dielectric constant ˜200 (for a thickness of 1150Å). The breakdown fields in SrTiO3:Nb /SrTiO3/Ag capacitors are consistent with induced charge densities >1×1014cm-2 for both holes and electrons, making these films ideal for high charge density field effect devices.

  11. Prospects of In/CdTe X- and γ-ray detectors with MoO Ohmic contacts

    NASA Astrophysics Data System (ADS)

    Maslyanchuk, Olena L.; Solovan, Mykhailo M.; Maistruk, Eduard V.; Brus, Viktor V.; Maryanchuk, Pavlo D.; Gnatyuk, Volodymyr A.; Aoki, Toru

    2018-01-01

    The present paper analyzes the charge transport mechanisms and spectrometric properties of In/CdTe/MoOx heterojunctions prepared by magnetron sputtering of indium and molybdenum oxide thin films onto semi-insulating p-type single-crystal CdTe semiconductor, produced by Acrorad Co. Ltd. Current-voltage characteristics of the detectors at different temperatures were investigated. The charge transport mechanisms in the heterostructures under investigation were determined: the generation-recombination in the space charge region (SCR) at relatively low voltages and the space charge limited currents at high voltages. The spectra of 137Cs and 241Am isotopes taken at different applied bias voltages are presented. It is shown that the In/CdTe/MoOx structures can be used as X/γ-ray detectors in the spectrometric mode.

  12. CHARGING AND COAGULATION OF DUST IN PROTOPLANETARY PLASMA ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, L. S.; Land, V.; Hyde, T. W., E-mail: lorin_matthews@baylor.edu

    2012-01-01

    Combining a particle-particle, particle-cluster, and cluster-cluster agglomeration model with an aggregate charging model, the coagulation and charging of dust particles in plasma environments relevant for protoplanetary disks have been investigated, including the effect of electron depletion in high dust density environments. The results show that charged aggregates tend to grow by adding small particles and clusters to larger particles and clusters, and that cluster-cluster aggregation is significantly more effective than particle-cluster aggregation. Comparisons of the grain structure show that with increasing aggregate charge the compactness factor, {phi}{sub {sigma}}, decreases and has a narrower distribution, indicating a fluffier structure. Neutral aggregatesmore » are more compact, with larger {phi}{sub {sigma}}, and exhibit a larger variation in fluffiness. Overall, increased aggregate charge leads to larger, fluffier, and more massive aggregates.« less

  13. FAST TRACK COMMUNICATION: Ferroelectric properties and dielectric responses of multiferroic BiFeO3 films grown by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoding; Tsai, Po-Chou; Chen, Yi-Chun; Ko, Cheng-Hung; Huang, Jung-Chun-Andrew; Chen, In-Gann

    2008-12-01

    Multiferroic BiFeO3 films have been grown on LaNiO3-x/SrTiO3 and Pt/Si substrates by RF magnetron sputtering. The films showed fully saturated ferroelectric hysteresis loops with large remanent polarization of 64 µC cm-2, suitable for most device applications. Piezoresponse force microscopy confirmed that the films were electrically writable. In addition to the high-frequency intrinsic dielectric loss of epitaxial films, the Argand diagram also revealed low-frequency contributions from both dc conductivity and interfacial polarization at electrodes. For polycrystalline films on Pt/Si, the dominant contribution to dielectric loss was space charge polarization at grain boundaries.

  14. Pseudorapidity and transverse-momentum distributions of charged particles in proton-proton collisions at √{ s} = 13 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yasar, C.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration

    2016-02-01

    The pseudorapidity (η) and transverse-momentum (pT) distributions of charged particles produced in proton-proton collisions are measured at the centre-of-mass energy √{ s} = 13 TeV. The pseudorapidity distribution in | η | < 1.8 is reported for inelastic events and for events with at least one charged particle in | η | < 1. The pseudorapidity density of charged particles produced in the pseudorapidity region | η | < 0.5 is 5.31 ± 0.18 and 6.46 ± 0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15

  15. Pseudorapidity and transverse-momentum distributions of charged particles in proton–proton collisions at s = 13  TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, J.; Adamová, D.; Aggarwal, M. M.

    2015-12-15

    We measure the pseudorapidity η and transverse-momentum (p T) distributions of charged particles produced in proton-proton collisions at the centre-of-mass energy √s = 13 TeV. The pseudorapidity distribution in |η| < 1.8 is reported for inelastic events and for events with at least one charged particle in |η| < 1. The pseudorapidity density of charged particles produced in the pseudorapidity region vertical bar eta vertical bar < 0.5 is 5.31 ± 0.18 and 6.46 ± 0.19 for the two event classes, respectively. Furthermore, the transverse-momentum distribution of charged particles is measured in the range 0.15 < p T < 20more » GeV/c and |η| < 0.8 for events with at least one charged particle in |η| < 1. The evolution of the transverse momentum spectra of charged particles is also investigated as a function of event multiplicity. Our results are compared with calculations from PYTHIA and EPOS Monte Carlo generators.« less

  16. Characterization of Pixelated Cadmium-Zinc-Telluride Detectors for Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    Comparisons of charge sharing and charge loss measurements between two pixelated Cadmium-Zinc-Telluride (CdZnTe) detectors are discussed. These properties along with the detector geometry help to define the limiting energy resolution and spatial resolution of the detector in question. The first detector consists of a 1-mm-thick piece of CdZnTe sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). Signal readout is via discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). This crystal is bonded to a custom-built readout chip (ASIC) providing all front-end electronics to each of the 256 independent pixels. These detectors act as precursors to that which will be used at the focal plane of the High Energy Replicated Optics (HERO) telescope currently being developed at Marshall Space Flight Center. With a telescope focal length of 6 meters, the detector needs to have a spatial resolution of around 200 microns in order to take full advantage of the HERO angular resolution. We discuss to what degree charge sharing will degrade energy resolution but will improve our spatial resolution through position interpolation.

  17. Structural and optical properties of gold-incorporated diamond-like carbon thin films deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Majeed, Shahbaz; Siraj, K.; Naseem, S.; Khan, Muhammad F.; Irshad, M.; Faiz, H.; Mahmood, A.

    2017-07-01

    Pure and gold-doped diamond-like carbon (Au-DLC) thin films are deposited at room temperature by using RF magnetron sputtering in an argon gas-filled chamber with a constant flow rate of 100 sccm and sputtering time of 30 min for all DLC thin films. Single-crystal silicon (1 0 0) substrates are used for the deposition of pristine and Au-DLC thin films. Graphite (99.99%) and gold (99.99%) are used as co-sputtering targets in the sputtering chamber. The optical properties and structure of Au-DLC thin films are studied with the variation of gold concentration from 1%-5%. Raman spectroscopy, atomic force microscopy (AFM), Vickers hardness measurement (VHM), and spectroscopic ellipsometry are used to analyze these thin films. Raman spectroscopy indicates increased graphitic behavior and reduction in the internal stresses of Au-DLC thin films as the function of increasing gold doping. AFM is used for surface topography, which shows that spherical-like particles are formed on the surface, which agglomerate and form larger clusters on the surface by increasing the gold content. Spectroscopy ellipsometry analysis elucidates that the refractive index and extinction coefficient are inversely related and the optical bandgap energy is decreased with increasing gold content. VHM shows that gold doping reduces the hardness of thin films, which is attributed to the increase in sp2-hybridization.

  18. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    NASA Astrophysics Data System (ADS)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact potential difference between the PMMA and the stainless steel. Furthermore, the current in air using the dual coaxial glass pipes was less than that using the ejector.

  19. Determination of time zero from a charged particle detector

    DOEpatents

    Green, Jesse Andrew [Los Alamos, NM

    2011-03-15

    A method, system and computer program is used to determine a linear track having a good fit to a most likely or expected path of charged particle passing through a charged particle detector having a plurality of drift cells. Hit signals from the charged particle detector are associated with a particular charged particle track. An initial estimate of time zero is made from these hit signals and linear tracks are then fit to drift radii for each particular time-zero estimate. The linear track having the best fit is then searched and selected and errors in fit and tracking parameters computed. The use of large and expensive fast detectors needed to time zero in the charged particle detectors can be avoided by adopting this method and system.

  20. Quantum and classical dissipation of charged particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.

    2013-08-15

    A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle.more » •Classical and quantum dynamics of a damped electric charge.« less

  1. Charge Loss and Charge Sharing Measurements for Two Different Pixelated Cadmium-Zinc-Telluride Detectors

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    As part of ongoing research at Marshall Space Flight Center, Cadmium-Zinc- Telluride (CdZnTe) pixilated detectors are being developed for use at the focal plane of the High Energy Replicated Optics (HERO) telescope. HERO requires a 64x64 pixel array with a spatial resolution of around 200 microns (with a 6m focal length) and high energy resolution (< 2% at 60keV). We are currently testing smaller arrays as a necessary first step towards this goal. In this presentation, we compare charge sharing and charge loss measurements between two devices that differ both electronically and geometrically. The first device consists of a 1-mm-thick piece of CdZnTe that is sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). The signal is read out using discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe that is sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). Instead of using discrete preamplifiers, the crystal is bonded to an ASIC that provides all of the front-end electronics to each of the 256 pixels. what degree the bias voltage (i.e. the electric field) and hence the drift and diffusion coefficients affect our measurements. Further, we compare the measured results with simulated results and discuss to

  2. Characterization of triboelectrically charged particles deposited on dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Nesterov, A.; Löffler, F.; Cheng, Yun-Chien; Torralba, G.; König, K.; Hausmann, M.; Lindenstruth, V.; Stadler, V.; Bischoff, F. R.; Breitling, F.

    2010-04-01

    A device for the measurement of q/m-values and charge degradation of triboelectrically charged particles deposited on a surface was developed. The setup is based on the integration of currents, which are induced in a Faraday cage by insertion of a solid support covered with charged particles. The conductivity of different particle supports was taken into account. The 'blow-off' method, in which the particles are first deposited, and then blown off using an air stream, can be used for characterization of triboelectric properties of particles relative to different surfaces.

  3. Apparatus for measuring charged particle beam

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Stocks, C. D. (Inventor)

    1984-01-01

    An apparatus to measure the incident charged particle beam flux while effectively eliminating losses to reflection and/or secondary emission of the charged particle beam being measured is described. It comprises a sense cup through which the charged particle beam enters. A sense cone forms the rear wall of the interior chamber with the cone apex adjacent the entry opening. An outer case surrounds the sense cup and is electrically insulated therefrom. Charged particles entering the interior chamber are trapped and are absorbed by the sense cup and cone and travel through a current measuring device to ground.

  4. Long-Ranged Oppositely Charged Interactions for Designing New Types of Colloidal Clusters

    NASA Astrophysics Data System (ADS)

    Demirörs, Ahmet Faik; Stiefelhagen, Johan C. P.; Vissers, Teun; Smallenburg, Frank; Dijkstra, Marjolein; Imhof, Arnout; van Blaaderen, Alfons

    2015-04-01

    Getting control over the valency of colloids is not trivial and has been a long-desired goal for the colloidal domain. Typically, tuning the preferred number of neighbors for colloidal particles requires directional bonding, as in the case of patchy particles, which is difficult to realize experimentally. Here, we demonstrate a general method for creating the colloidal analogs of molecules and other new regular colloidal clusters without using patchiness or complex bonding schemes (e.g., DNA coating) by using a combination of long-ranged attractive and repulsive interactions between oppositely charged particles that also enable regular clusters of particles not all in close contact. We show that, due to the interplay between their attractions and repulsions, oppositely charged particles dispersed in an intermediate dielectric constant (4 <ɛ <10 ) provide a viable approach for the formation of binary colloidal clusters. Tuning the size ratio and interactions of the particles enables control of the type and shape of the resulting regular colloidal clusters. Finally, we present an example of clusters made up of negatively charged large and positively charged small satellite particles, for which the electrostatic properties and interactions can be changed with an electric field. It appears that for sufficiently strong fields the satellite particles can move over the surface of the host particles and polarize the clusters. For even stronger fields, the satellite particles can be completely pulled off, reversing the net charge on the cluster. With computer simulations, we investigate how charged particles distribute on an oppositely charged sphere to minimize their energy and compare the results with the solutions to the well-known Thomson problem. We also use the simulations to explore the dependence of such clusters on Debye screening length κ-1 and the ratio of charges on the particles, showing good agreement with experimental observations.

  5. Hybrid method of making an amorphous silicon P-I-N semiconductor device

    DOEpatents

    Moustakas, Theodore D.; Morel, Don L.; Abeles, Benjamin

    1983-10-04

    The invention is directed to a hydrogenated amorphous silicon PIN semiconductor device of hybrid glow discharge/reactive sputtering fabrication. The hybrid fabrication method is of advantage in providing an ability to control the optical band gap of the P and N layers, resulting in increased photogeneration of charge carriers and device output.

  6. Design of asymmetric particles containing a charged interior and a neutral surface charge: comparative study on in vivo circulation of polyelectrolyte microgels.

    PubMed

    Chen, Kai; Xu, Jing; Luft, J Christopher; Tian, Shaomin; Raval, Jay S; DeSimone, Joseph M

    2014-07-16

    Lowering the modulus of hydrogel particles could enable them to bypass in vivo physical barriers that would otherwise filter particles with similar size but higher modulus. Incorporation of electrolyte moieties into the polymer network of hydrogel particles to increase the swelling ratio is a straightforward and quite efficient way to decrease the modulus. In addition, charged groups in hydrogel particles can also help secure cargoes. However, the distribution of charged groups on the surface of a particle can accelerate the clearance of particles. Herein, we developed a method to synthesize highly swollen microgels of precise size with near-neutral surface charge while retaining interior charged groups. A strategy was employed to enable a particle to be highly cross-linked with very small mesh size, and subsequently PEGylated to quench the exterior amines only without affecting the internal amines. Acidic degradation of the cross-linker allows for swelling of the particles to microgels with a desired size and deformability. The microgels fabricated demonstrated extended circulation in vivo compared to their counterparts with a charged surface, and could potentially be utilized in in vivo applications including as oxygen carriers or nucleic acid scavengers.

  7. Reaction of Titanium and Zirconium Particles in Cylindrical Explosive Charges

    NASA Astrophysics Data System (ADS)

    Frost, David; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2007-06-01

    The critical conditions for the reaction of high melting-point metallic particles (Ti, Zr) dispersed during the detonation of long cylindrical explosive charges have been investigated experimentally. The charges consisted of packed beds of either spherical titanium particles (with diameters of 35, 90, or 215 μm; AP&C, Inc.) or nonspherical zirconium particles (250 -- 500 μm or 500 -- 600 μm, Atlantic Equipment Eng., NJ) saturated with sensitized liquid nitromethane. For the titanium particles, a threshold particle diameter exists, above which self-sustained particle reaction is not observed, although some particle reaction occurs immediately behind the detonation front then rapidly quenches. For the smallest particles, the proportion of the conical particle cloud that reacts increases with charge diameter, suggesting that the reaction initiation is a competition between particle heating and expansion cooling of the products. For zirconium particles, no critical conditions exist; particle ignition was observed for all particle and charge diameters tested. In this case, interaction of the high pressure detonation wave with the particles is sufficient to initiate reaction at the particle surface after a delay time (˜ 10's μs), which is much less than the time required for thermal equilibration of the particles.

  8. Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping.

    PubMed

    Chueh, William C; El Gabaly, Farid; Sugar, Joshua D; Bartelt, Norman C; McDaniel, Anthony H; Fenton, Kyle R; Zavadil, Kevin R; Tyliszczak, Tolek; Lai, Wei; McCarty, Kevin F

    2013-03-13

    The intercalation pathway of lithium iron phosphate (LFP) in the positive electrode of a lithium-ion battery was probed at the ∼40 nm length scale using oxidation-state-sensitive X-ray microscopy. Combined with morphological observations of the same exact locations using transmission electron microscopy, we quantified the local state-of-charge of approximately 450 individual LFP particles over nearly the entire thickness of the porous electrode. With the electrode charged to 50% state-of-charge in 0.5 h, we observed that the overwhelming majority of particles were either almost completely delithiated or lithiated. Specifically, only ∼2% of individual particles were at an intermediate state-of-charge. From this small fraction of particles that were actively undergoing delithiation, we conclude that the time needed to charge a particle is ∼1/50 the time needed to charge the entire particle ensemble. Surprisingly, we observed a very weak correlation between the sequence of delithiation and the particle size, contrary to the common expectation that smaller particles delithiate before larger ones. Our quantitative results unambiguously confirm the mosaic (particle-by-particle) pathway of intercalation and suggest that the rate-limiting process of charging is initiating the phase transformation by, for example, a nucleation-like event. Therefore, strategies for further enhancing the performance of LFP electrodes should not focus on increasing the phase-boundary velocity but on the rate of phase-transformation initiation.

  9. Synthesis and properties of nanocrystalline copper indium oxide thin films deposited by Rf magnetron sputtering.

    PubMed

    Singh, Mandeep; Singh, V N; Mehta, B R

    2008-08-01

    Nanocrystalline copper indium oxide (CuInO2) thin films with particle size ranging from 25 nm to 71 nm have been synthesized from a composite target using reactive Rf magnetron sputtering technique. X-ray photoelectron spectroscopy (XPS) combined with glancing angle X-ray diffraction (GAXRD) analysis confirmed the presence of delafossite CuInO2 phase in these films. The optical absorption studies show the presence of two direct band gaps at 3.3 and 4.3 eV, respectively. The resistance versus temperature measurements show thermally activated hopping with activation energy of 0.84 eV to be the conduction mechanism.

  10. Self-sustaining coatings for fusion applications - copper lithium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, A.R.; Gruen, D.M.; Brooks, J.N.

    1985-01-01

    Auger electron spectroscopy has been used to monitor the surface composition of an alloy consisting of 3.0 at. % Li in Cu while sputtering with 1 to 3 keV Ar/sup +/ or He/sup +/ at a flux of 10/sup 12/ to 10/sup 14/ cm/sup -2/ sec/sup -1/ (corresponding to a gross erosion rate of several mm/yr) at temperatures up to 430/sup 0/C. It is found that the alloy is capable of reproducibly maintaining a complete lithium overlayer. The time-dependent thickness of the overlayer depends strongly on the mass and energy spectrum of the incident particle flux. It has been experimentallymore » demonstrated that a significant fraction of the sputtered lithium is in the form Li/sup +/ and is returned to the surface by an electric field such as the sheath potential at the limiter, or a tangential magnetic field such as the toroidal field at the first wall; consequently, the overlayer lifetime is essentially unlimited. The TRIM computer code has been used to calculate the sputtering yield for pure metals and the partial sputtering yields of binary alloy components for various assumed solute concentration profiles.« less

  11. Flexible Al-doped ZnO films grown on PET substrates using linear facing target sputtering for flexible OLEDs

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-A.; Shin, Hyun-Su; Choi, Kwang-Hyuk; Kim, Han-Ki

    2010-11-01

    We report the characteristics of flexible Al-doped zinc oxide (AZO) films prepared by a plasma damage-free linear facing target sputtering (LFTS) system on PET substrates for use as a flexible transparent conducting electrode in flexible organic light-emitting diodes (OLEDs). The electrical, optical and structural properties of LFTS-grown flexible AZO electrodes were investigated as a function of dc power. We obtained a flexible AZO film with a sheet resistance of 39 Ω/squ and an average transmittance of 84.86% in the visible range although it was sputtered at room temperature without activation of the Al dopant. Due to the effective confinement of the high-density plasma between the facing AZO targets, the AZO film was deposited on the PET substrate without plasma damage and substrate heating caused by bombardment of energy particles. Moreover, the flexible OLED fabricated on the AZO/PET substrate showed performance similar to the OLED fabricated on a ITO/PET substrate in spite of a lower work function. This indicates that LFTS is a promising plasma damage-free and low-temperature sputtering technique for deposition of flexible and indium-free AZO electrodes for use in cost-efficient flexible OLEDs.

  12. Effects of Ni particle morphology on cell performance of Na/NiCl2 battery

    NASA Astrophysics Data System (ADS)

    Kim, Mangi; Ahn, Cheol-Woo; Hahn, Byung-Dong; Jung, Keeyoung; Park, Yoon-Cheol; Cho, Nam-ung; Lee, Heesoo; Choi, Joon-Hwan

    2017-11-01

    Electrochemical reaction of Ni particle, one of active cathode materials in the Na/NiCl2 battery, occurs on the particle surface. The NiCl2 layer formed on the Ni particle surface during charging can disconnect the electron conduction path through Ni particles because the NiCl2 layer has very low conductivity. The morphology and size of Ni particles, therefore, need to be controlled to obtain high charge capacity and excellent cyclic retention. Effects of the Ni particle size on the cell performance were investigated using spherical Ni particles with diameters of 0.5 μm, 6 μm, and 50 μm. The charge capacities of the cells with spherical Ni particles increased when the Ni particle size becomes smaller because of their higher surface area but their charge capacities were significantly decreased with increasing cyclic tests owing to the disconnection of electron conduction path. The inferior cyclic retention of charge capacity was improved using reticular Ni particles which maintained the reliable connection for the electron conduction in the Na/NiCl2 battery. The charge capacity of the cell with the reticular Ni particles was higher than the cell with the small-sized spherical Ni particles approximately by 26% at 30th cycle.

  13. Dielectric-Particle Injector For Processing Of Materials

    NASA Technical Reports Server (NTRS)

    Leung, Philip L.; Gabriel, Stephen B.

    1992-01-01

    Device generates electrically charged particles of solid, or droplets of liquid, fabricated from dielectric material and projects them electrostatically, possibly injecting them into electrostatic-levitation chamber for containerless processing. Dielectric-particle or -droplet injector charges dielectric particles or droplets on zinc plate with photo-electrons generated by ultraviolet illumination, then ejects charged particles or droplets electrostatically from plate.

  14. Miniaturized ultrafine particle sizer and monitor

    NASA Technical Reports Server (NTRS)

    Qi, Chaolong (Inventor); Chen, Da-Ren (Inventor)

    2011-01-01

    An apparatus for measuring particle size distribution includes a charging device and a precipitator. The charging device includes a corona that generates charged ions in response to a first applied voltage, and a charger body that generates a low energy electrical field in response to a second applied voltage in order to channel the charged ions out of the charging device. The corona tip and the charger body are arranged relative to each other to direct a flow of particles through the low energy electrical field in a direction parallel to a direction in which the charged ions are channeled out of the charging device. The precipitator receives the plurality of particles from the charging device, and includes a disk having a top surface and an opposite bottom surface, wherein a predetermined voltage is applied to the top surface and the bottom surface to precipitate the plurality of particles.

  15. Space weathering on near-Earth objects investigated by neutral-particle detection

    NASA Astrophysics Data System (ADS)

    Plainaki, C.; Milillo, A.; Orsini, S.; Mura, A.; De Angelis, E.; Di Lellis, A. M.; Dotto, E.; Livi, S.; Mangano, V.; Massetti, S.; Palumbo, M. E.

    2009-03-01

    The ion-sputtering (IS) process is active in many planetary environments in the solar system where plasma precipitates directly on the surface (for instance, Mercury, Moon and Europa). In particular, solar wind sputtering is one of the most important agents for the surface erosion of a near-Earth object (NEO), acting together with other surface release processes, such as photon stimulated desorption (PSD), thermal desorption (TD) and micrometeoroid impact vaporization (MIV). The energy distribution of the IS-released neutrals peaks at a few eVs and extends up to hundreds of eVs. Since all other release processes produce particles of lower energies, the presence of neutral atoms in the energy range above 10 eV and below a few keVs (sputtered high-energy atoms (SHEA)) identifies the IS process. SHEA easily escape from the NEO, due to NEO's extremely weak gravity. Detection and analysis of SHEA will give important information on surface-loss processes as well as on surface elemental composition. The investigation of the active release processes, as a function of the external conditions and the NEO surface properties, is crucial for obtaining a clear view of the body's present loss rate as well as for getting clues on its evolution, which depends significantly on space weather. In this work, an attempt to analyze processes that take place on the surface of these small airless bodies, as a result of their exposure to the space environment, has been realized. For this reason, a new space weathering model (space weathering on NEO-SPAWN) is presented. Moreover, an instrument concept of a neutral-particle analyzer specifically designed for the measurement of neutral density and the detection of SHEA from a NEO is proposed.

  16. Space weathering on near-Earth objects investigated by neutral-particle detection

    NASA Astrophysics Data System (ADS)

    Plainaki, C.; Milillo, A.; Orsini, S.; Mura, A.; de Angelis, E.; di Lellis, A. M.; Dotto, E.; Livi, S.; Mangano, V.; Palumbo, M. E.

    2009-04-01

    The ion-sputtering (IS) process is active in many planetary environments in the solar system where plasma precipitates directly on the surface (for instance, Mercury, Moon and Europa). In particular, solar wind sputtering is one of the most important agents for the surface erosion of a near-Earth object (NEO), acting together with other surface release processes, such as photon stimulated desorption (PSD), thermal desorption (TD) and micrometeoroid impact vaporization (MIV). The energy distribution of the IS-released neutrals peaks at a few eVs and extends up to hundreds of eVs. Since all other release processes produce particles of lower energies, the presence of neutral atoms in the energy range above 10 eV and below a few keVs (sputtered high-energy atoms (SHEA)) identifies the IS process. SHEA easily escape from the NEO, due to NEO's extremely weak gravity. Detection and analysis of SHEA will give important information on surface-loss processes as well as on surface elemental composition. The investigation of the active release processes, as a function of the external conditions and the NEO surface properties, is crucial for obtaining a clear view of the body's present loss rate as well as for getting clues on its evolution, which depends significantly on space weather. In this work, an attempt to analyze processes that take place on the surface of these small airless bodies, as a result of their exposure to the space environment, has been realized. For this reason, a new space weathering model (space weathering on NEO-SPAWN) is presented. Moreover, an instrument concept of a neutral-particle analyzer specifically designed for the measurement of neutral density and the detection of SHEA from a NEO is proposed.

  17. Design of a device for simultaneous particle size and electrostatic charge measurement of inhalation drugs.

    PubMed

    Zhu, Kewu; Ng, Wai Kiong; Shen, Shoucang; Tan, Reginald B H; Heng, Paul W S

    2008-11-01

    To develop a device for simultaneous measurement of particle aerodynamic diameter and electrostatic charge of inhalation aerosols. An integrated system consisting of an add-on charge measurement device and a liquid impinger was developed to simultaneously determine particle aerodynamic diameter and electrostatic charge. The accuracy in charge measurement and fine particle fraction characterization of the new system was evaluated. The integrated system was then applied to analyze the electrostatic charges of a DPI formulation composed of salbutamol sulphate-Inhalac 230 dispersed using a Rotahaler. The charge measurement accuracy was comparable with the Faraday cage method, and incorporation of the charge measurement module had no effect on the performance of the liquid impinger. Salbutamol sulphate carried negative charges while the net charge of Inhalac 230 and un-dispersed salbutamol sulphate was found to be positive after being aerosolized from the inhaler. The instantaneous current signal was strong with small noise to signal ratio, and good reproducibility of charge to mass ratio was obtained for the DPI system investigated. A system for simultaneously measuring particle aerodynamic diameter and aerosol electrostatic charges has been developed, and the system provides a non-intrusive and reliable electrostatic charge characterization method for inhalation dosage forms.

  18. Location of Low-Energy Charged Particle Instrument

    NASA Image and Video Library

    2012-12-03

    This graphic shows the NASA Voyager 1 spacecraft and the location of its low-energy charged particle instrument. A labeled close-up of the low-energy charged particle instrument appears as the inset image.

  19. Charging and discharging of single colloidal particles at oil/water interfaces

    PubMed Central

    Gao, Peng; Xing, XiaoChen; Li, Ye; Ngai, To; Jin, Fan

    2014-01-01

    The physical behavior of solid colloids trapped at a fluid-fluid interface remains in itself an open fundamental issue. Here, we show that the gradients of surface tension can induce particles to jet towards the oil/water interface with velocities as high as ≈ 60 mm/s when particle suspensions come in contact with the interface. We hypothesize that rubbing between the particles and oil lead to the spontaneous accumulation of negative charges on the hemisphere of those interfacial particles that contact the oil phase by means of triboelectrification. The charging process is highly dependent on the sliding distances, and gives rise to long-ranged repulsions that protect interfacial particles from coagulating at the interface by the presence of electrolyte. These triboelectric charges, however, are compensated within several hours, which affect the stability of interfacial particles. Importantly, by charging different kinds of colloidal particles using various spreading solvents and dispersion methods, we have demonstrated that charging and discharging of single colloidal particles at oil/water interfaces impacts a broad range of dynamical behavior. PMID:24786477

  20. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  1. Effect of Stochastic Charge Fluctuations on Dust Dynamics

    NASA Astrophysics Data System (ADS)

    Matthews, Lorin; Shotorban, Babak; Hyde, Truell

    2017-10-01

    The charging of particles in a plasma environment occurs through the collection of electrons and ions on the particle surface. Depending on the particle size and the plasma density, the standard deviation of the number of collected elementary charges, which fluctuates due to the randomness in times of collisions with electrons or ions, may be a significant fraction of the equilibrium charge. We use a discrete stochastic charging model to simulate the variations in charge across the dust surface as well as in time. The resultant asymmetric particle potentials, even for spherical grains, has a significant impact on the particle coagulation rate as well as the structure of the resulting aggregates. We compare the effects on particle collisions and growth in typical laboratory and astrophysical plasma environments. This work was supported by the National Science Foundation under Grant PHY-1414523.

  2. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, David K.; Haverty, Thomas W.; Nordin, Carl W.; Tyree, William H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  3. Reactive magnetron sputtering of N-doped carbon thin films on quartz glass for transmission photocathode applications

    NASA Astrophysics Data System (ADS)

    Balalykin, N. I.; Huran, J.; Nozdrin, M. A.; Feshchenko, A. A.; Kobzev, A. P.; Sasinková, V.; Boháček, P.; Arbet, J.

    2018-03-01

    N-doped carbon thin films were deposited on a silicon substrate and quartz glass by RF reactive magnetron sputtering using a carbon target and an Ar+N2 gas mixture. During the magnetron sputtering, the substrate holder temperatures was kept at 800 °C. The carbon film thickness on the silicon substrate was about 70 nm, while on the quartz glass it was in the range 15 nm – 60 nm. The elemental concentration in the films was determined by RBS and ERD. Raman spectroscopy was used to evaluate the intensity ratios I D/I G of the D and G peaks of the carbon films. The transmission photocathodes prepared were placed in the hollow-cathode assembly of a Pierce-structure DC gun to produce photoelectrons. The quantum efficiency (QE) was calculated from the laser energy and cathode charge measured. The properties of the transmission photocathodes based on semitransparent N-doped carbon thin films on quartz glass and their potential for application in DC gun technology are discussed.

  4. Cassini CAPS Identification of Pickup Ion Compositions at Rhea

    NASA Astrophysics Data System (ADS)

    Desai, R. T.; Taylor, S. A.; Regoli, L. H.; Coates, A. J.; Nordheim, T. A.; Cordiner, M. A.; Teolis, B. D.; Thomsen, M. F.; Johnson, R. E.; Jones, G. H.; Cowee, M. M.; Waite, J. H.

    2018-02-01

    Saturn's largest icy moon, Rhea, hosts a tenuous surface-sputtered exosphere composed primarily of molecular oxygen and carbon dioxide. In this Letter, we examine Cassini Plasma Spectrometer velocity space distributions near Rhea and confirm that Cassini detected nongyrotropic fluxes of outflowing CO2+ during both the R1 and R1.5 encounters. Accounting for this nongyrotropy, we show that these possess comparable along-track densities of ˜2 × 10-3 cm-3. Negatively charged pickup ions, also detected during R1, are surprisingly shown as consistent with mass 26 ± 3 u which we suggest are carbon-based compounds, such as CN-, C2H-, C2-, or HCO-, sputtered from carbonaceous material on the moon's surface. The negative ions are calculated to possess along-track densities of ˜5 × 10-4 cm-3 and are suggested to derive from exogenic compounds, a finding consistent with the existence of Rhea's dynamic CO2 exosphere and surprisingly low O2 sputtering yields. These pickup ions provide important context for understanding the exospheric and surface ice composition of Rhea and of other icy moons which exhibit similar characteristics.

  5. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system...) intended for use in radiation therapy. This generic type of device may include signal analysis and display...

  6. Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation.

    PubMed

    Norris, Scott A; Samela, Juha; Bukonte, Laura; Backman, Marie; Djurabekova, Flyura; Nordlund, Kai; Madi, Charbel S; Brenner, Michael P; Aziz, Michael J

    2011-01-01

    Energetic particle irradiation can cause surface ultra-smoothening, self-organized nanoscale pattern formation or degradation of the structural integrity of nuclear reactor components. A fundamental understanding of the mechanisms governing the selection among these outcomes has been elusive. Here we predict the mechanism governing the transition from pattern formation to flatness using only parameter-free molecular dynamics simulations of single-ion impacts as input into a multiscale analysis, obtaining good agreement with experiment. Our results overturn the paradigm attributing these phenomena to the removal of target atoms via sputter erosion: the mechanism dominating both stability and instability is the impact-induced redistribution of target atoms that are not sputtered away, with erosive effects being essentially irrelevant. We discuss the potential implications for the formation of a mysterious nanoscale topography, leading to surface degradation, of tungsten plasma-facing fusion reactor walls. Consideration of impact-induced redistribution processes may lead to a new design criterion for stability under irradiation.

  7. Method and apparatus for simultaneous detection and measurement of charged particles at one or more levels of particle flux for analysis of same

    DOEpatents

    Denton, M Bonner [Tucson, AZ; Sperline, Roger , Koppenaal, David W. , Barinaga, Charles J. , Hieftje, Gary , Barnes, IV, James H.; Atlas, Eugene [Irvine, CA

    2009-03-03

    A charged particle detector and method are disclosed providing for simultaneous detection and measurement of charged particles at one or more levels of particle flux in a measurement cycle. The detector provides multiple and independently selectable levels of integration and/or gain in a fully addressable readout manner.

  8. The microphysics of ash tribocharging: New insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Joshua, M. S.; Dufek, J.

    2014-12-01

    The spectacular lightning strokes observed during eruptions testify to the enormous potentials that can be generated within plumes. Related to the charging of individual ash particles, large electric fields and volcanic lightning have been observed at Eyjafjallajokull, Redoubt, and Sakurajima, among other volcanoes. A number of mechanisms have been proposed for plume electrification, including charging from the brittle failure of rock, charging due to phase change as material is carried aloft, and triboelectric charging, also known as contact charging. While the first two mechanisms (fracto-emission and volatile charging) have been described by other authors (James et al, 2000 and McNutt et al., 2010, respectively), the physics of tribocharging--charging related to the collisions of particles--of ash are still relatively unknown. Because the electric fields and lightning present in volcanic clouds result from the multiphase dynamics of the plume itself, understanding the electrodynamics of these systems may provide a way to detect eruptions and probe the interior of plumes remotely. In the present work, we describe two sets of experiments designed to explore what controls the exchange of charge during particle collisions. We employ natural material from Colima, Mt. Saint Helens, and Tungurahua. Our experiments show that the magnitude and temporal behavior of ash charging depend on a number of factors, including particle size, shape, chemistry, and collisional energy. The first set of experiments were designed to determine the time-dependent electrostatic behavior of a parcel of ash. These experiments consist of fluidizing an ash bed and monitoring the current induced in a set of ring electrodes. As such, we are able to extract charging rates for ash samples driven by different flow rates. The second experimental setup allows us to measure how much charge is exchanged during a single particle-particle collision. Capable of measuring charges as small as 1 fC, this device allows us to methodically to characterize charges on particles with diameters down to 100 microns. Employing this instrument, we quantify the effect of particle pre-charging, mineralogy, and impact energy on the charge exchange between two colliding particles.

  9. Charged-particle multiplicity and pseudorapidity distributions measured with the PHOBOS detector in Au+Au, Cu+Cu, d+Au, and p+p collisions at ultrarelativistic energies

    NASA Astrophysics Data System (ADS)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kotuła, J.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2011-02-01

    Pseudorapidity distributions of charged particles emitted in Au+Au, Cu+Cu, d+Au, and p+p collisions over a wide energy range have been measured using the PHOBOS detector at the BNL Relativistic Heavy-Ion Collider (RHIC). The centrality dependence of both the charged particle distributions and the multiplicity at midrapidity were measured. Pseudorapidity distributions of charged particles emitted with |η|<5.4, which account for between 95% and 99% of the total charged-particle emission associated with collision participants, are presented for different collision centralities. Both the midrapidity density dNch/dη and the total charged-particle multiplicity Nch are found to factorize into a product of independent functions of collision energy, sNN, and centrality given in terms of the number of nucleons participating in the collision, Npart. The total charged particle multiplicity, observed in these experiments and those at lower energies, assumes a linear dependence of (lnsNN)2 over the full range of collision energy of sNN=2.7-200 GeV.

  10. Collection of biological and non-biological particles by new and used filters made from glass and electrostatically charged synthetic fibers.

    PubMed

    Raynor, P C; Kim, B G; Ramachandran, G; Strommen, M R; Horns, J H; Streifel, A J

    2008-02-01

    Synthetic filters made from fibers carrying electrostatic charges and fiberglass filters that do not carry electrostatic charges are both utilized commonly in heating, ventilating, and air-conditioning (HVAC) systems. The pressure drop and efficiency of a bank of fiberglass filters and a bank of electrostatically charged synthetic filters were measured repeatedly for 13 weeks in operating HVAC systems at a hospital. Additionally, the efficiency with which new and used fiberglass and synthetic filters collected culturable biological particles was measured in a test apparatus. Pressure drop measurements adjusted to equivalent flows indicated that the synthetic filters operated with a pressure drop less than half that of the fiberglass filters throughout the test. When measured using total ambient particles, synthetic filter efficiency decreased during the test period for all particle diameters. For particles 0.7-1.0 mum in diameter, efficiency decreased from 92% to 44%. It is hypothesized that this reduction in collection efficiency may be due to charge shielding. Efficiency did not change significantly for the fiberglass filters during the test period. However, when measured using culturable biological particles in the ambient air, efficiency was essentially the same for new filters and filters used for 13 weeks in the hospital for both the synthetic and fiberglass filters. It is hypothesized that the lack of efficiency reduction for culturable particles may be due to their having higher charge than non-biological particles, allowing them to overcome the effects of charge shielding. The type of particles requiring capture may be an important consideration when comparing the relative performance of electrostatically charged synthetic and fiberglass filters. Electrostatically charged synthetic filters with high initial efficiency can frequently replace traditional fiberglass filters with lower efficiency in HVAC systems because properly designed synthetic filters offer less resistance to air flow. Although the efficiency of charged synthetic filters at collecting non-biological particles declined substantially with use, the efficiency of these filters at collecting biological particles remained steady. These findings suggest that the merits of electrostatically charged synthetic HVAC filters relative to fiberglass filters may be more pronounced if collection of biological particles is of primary concern.

  11. Dust in magnetised plasmas - Basic theory and some applications. [to planetary rings

    NASA Technical Reports Server (NTRS)

    Northrop, T. G.; Morfill, G. E.

    1984-01-01

    In this paper the theory of charged test particle motion in magnetic fields is reviewed. This theory is then extended to charged dust particles, for which gravity and charge fluctuations play an important role. It is shown that systematic drifts perpendicular to the magnetic field and stochastic transport effects may then have to be considered none of which occur in the case of atomic particles (with the exception of charge exchange reactions). Some applications of charged dust particle transport theory to planetary rings are then briefly discussed.

  12. Experiments on Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  13. Structural investigations in helium charged titanium films using grazing incidence XRD and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Wan, Chubin; Zhou, Xiaosong; Wang, Yuting; Li, Shina; Ju, Xin; Peng, Shuming

    2014-01-01

    The crystal structure and local atomic arrangements surrounding Ti atoms were determined for He-charged hexagonal close-packed (hcp) Ti films and measured at glancing angles by synchrotron radiation X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively. The charged specimens were prepared by direct current magnetron sputtering with a He/Ar mixture. He atoms with a relatively medium concentration (He/Ti atomic ratio as high as 17 at.%) were incorporated evenly in the deposited films. XRD results showed the changes in the peak intensities in Ti films with different He contents. EXAFS Fourier Transform analysis indicated that the average Ti-Ti distance decreased significantly, and proved the existence of phase transition.

  14. Heavy ion therapy: Bevalac epoch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered. (GHH)

  15. Ionizing radiation effects on electrical and reliability characteristics of sputtered Ta2O5/Si interface

    NASA Astrophysics Data System (ADS)

    Rao, Ashwath; Verma, Ankita; Singh, B. R.

    2015-06-01

    This paper describes the effect of ionizing radiation on the interface properties of Al/Ta2O5/Si metal oxide semiconductor (MOS) capacitors using capacitance-voltage (C-V) and current-voltage (I-V) characteristics. The devices were irradiated with X-rays at different doses ranging from 100 rad to 1 Mrad. The leakage behavior, which is an important parameter for memory applications of Al/Ta2O5/Si MOS capacitors, along with interface properties such as effective oxide charges and interface trap density with and without irradiation has been investigated. Lower accumulation capacitance and shift in flat band voltage toward negative value were observed in annealed devices after exposure to radiation. The increase in interfacial oxide layer thickness after irradiation was confirmed by Rutherford Back Scattering measurement. The effect of post-deposition annealing on the electrical behavior of Ta2O5 MOS capacitors was also investigated. Improved electrical and interface properties were obtained for samples deposited in N2 ambient. The density of interface trap states (Dit) at Ta2O5/Si interface sputtered in pure argon ambient was higher compared to samples reactively sputtered in nitrogen-containing plasma. Our results show that reactive sputtering in nitrogen-containing plasma is a promising approach to improve the radiation hardness of Ta2O5/Si MOS devices.

  16. Impact of molybdenum out diffusion and interface quality on the performance of sputter grown CZTS based solar cells.

    PubMed

    Dalapati, Goutam Kumar; Zhuk, Siarhei; Masudy-Panah, Saeid; Kushwaha, Ajay; Seng, Hwee Leng; Chellappan, Vijila; Suresh, Vignesh; Su, Zhenghua; Batabyal, Sudip Kumar; Tan, Cheng Cheh; Guchhait, Asim; Wong, Lydia Helena; Wong, Terence Kin Shun; Tripathy, Sudhiranjan

    2017-05-02

    We have investigated the impact of Cu 2 ZnSnS 4 -Molybdenum (Mo) interface quality on the performance of sputter-grown Cu 2 ZnSnS 4 (CZTS) solar cell. Thin film CZTS was deposited by sputter deposition technique using stoichiometry quaternary CZTS target. Formation of molybdenum sulphide (MoS x ) interfacial layer is observed in sputter grown CZTS films after sulphurization. Thickness of MoS x layer is found ~142 nm when CZTS layer (550 nm thick) is sulphurized at 600 °C. Thickness of MoS x layer significantly increased to ~240 nm in case of thicker CZTS layer (650 nm) under similar sulphurization condition. We also observe that high temperature (600 °C) annealing suppress the elemental impurities (Cu, Zn, Sn) at interfacial layer. The amount of out-diffused Mo significantly varies with the change in sulphurization temperature. The out-diffused Mo into CZTS layer and reconstructed interfacial layer remarkably decreases series resistance and increases shunt resistance of the solar cell. The overall efficiency of the solar cell is improved by nearly five times when 600 °C sulphurized CZTS layer is applied in place of 500 °C sulphurized layer. Molybdenum and sulphur diffusion reconstruct the interface layer during heat treatment and play the major role in charge carrier dynamics of a photovoltaic device.

  17. Structure and Composition of the Distant Lunar Exosphere: Constraints from ARTEMIS Observations of Ion Acceleration in Time-Varying Fields

    NASA Technical Reports Server (NTRS)

    Halekas, J. S.; Poppe, A. R.; Farrell, W. M.; McFadden, J. P.

    2016-01-01

    By analyzing the trajectories of ionized constituents of the lunar exosphere in time-varying electromagnetic fields, we can place constraints on the composition, structure, and dynamics of the lunar exosphere. Heavy ions travel slower than light ions in the same fields, so by observing the lag between field rotations and the response of ions from the lunar exosphere, we can place constraints on the composition of the ions. Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) provides an ideal platform to utilize such an analysis, since its two-probe vantage allows precise timing of the propagation of field discontinuities in the solar wind, and its sensitive plasma instruments can detect the ion response. We demonstrate the utility of this technique by using fully time-dependent charged particle tracing to analyze several minutes of ion observations taken by the two ARTEMIS probes 3000-5000 km above the dusk terminator on 25 January 2014. The observations from this time period allow us to reach several interesting conclusions. The ion production at altitudes of a few hundred kilometers above the sunlit surface of the Moon has an unexpectedly significant contribution from species with masses of 40 amu or greater. The inferred distribution of the neutral source population has a large scale height, suggesting that micrometeorite impact vaporization and/or sputtering play an important role in the production of neutrals from the surface. Our observations also suggest an asymmetry in ion production, consistent with either a compositional variation in neutral vapor production or a local reduction in solar wind sputtering in magnetic regions of the surface.

  18. Generalized power-spectrum Larmor formula for an extended charged particle embedded in a harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Marengo, Edwin A.; Khodja, Mohamed R.

    2006-09-01

    The nonrelativistic Larmor radiation formula, giving the power radiated by an accelerated charged point particle, is generalized for a spatially extended particle in the context of the classical charged harmonic oscillator. The particle is modeled as a spherically symmetric rigid charge distribution that possesses both translational and spinning degrees of freedom. The power spectrum obtained exhibits a structure that depends on the form factor of the particle, but reduces, in the limit of an infinitesimally small particle and for the charge distributions considered, to Larmor’s familiar result. It is found that for finite-duration small-enough accelerations as well as perpetual uniform accelerations the power spectrum of the spatially extended particle reduces to that of a point particle. It is also found that when the acceleration is violent or the size parameter of the particle is very large compared to the wavelength of the emitted radiation the power spectrum is highly suppressed. Possible applications are discussed.

  19. Charged particle detectors with active detector surface for partial energy deposition of the charged particles and related methods

    DOEpatents

    Gerts, David W; Bean, Robert S; Metcalf, Richard R

    2013-02-19

    A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.

  20. Search for fractionally charged particles in pp collisions at s=7TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M., Jr.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Aldaya Martin, M.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Ganguly, S.; Guchait, M.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Tabarelli de Fatis, T.; Buontempo, S.; Carrillo Montoya, C. A.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Vilela Pereira, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Heo, S. G.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Martínez-Ortega, J.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Ansari, M. H.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Govoni, P.; Gowdy, S.; Guida, R.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y.-J.; Lenzi, P.; Lourenço, C.; Magini, N.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Asavapibhop, B.; Srimanobhas, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Cankocak, K.; Levchuk, L.; Bostock, F.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Pellett, D.; Ricci-tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Akgun, B.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kilminster, B.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., Iii; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Wright, D.; Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Krajczar, K.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Kubik, A.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2013-05-01

    A search is presented for free heavy long-lived fractionally charged particles produced in pp collisions at s=7TeV. The data sample was recorded by the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0fb-1. Candidate fractionally charged particles are identified by selecting tracks with associated low charge measurements in the silicon tracking detector. Observations are found to be consistent with expectations for background processes. The results of the search are used to set upper limits on the cross section for pair production of fractionally charged, massive spin-1/2 particles that are neutral under SU(3)C and SU(2)L. We exclude at 95% confidence level such particles with electric charge ±2e/3 with masses below 310 GeV, and those with charge ±e/3 with masses below 140 GeV.

  1. Search for fractionally charged particles in p p collisions at s = 7 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    A search is presented for free heavy long-lived fractionally charged particles produced in pp collisions atmore » $$\\sqrt{s}$$ = 7 TeV. The data sample was recorded by the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 inverse femtobarns. Candidate fractionally charged particles are identified by selecting tracks with associated low charge measurements in the silicon tracking detector. Observations are found to be consistent with expectations for background processes. The results of the search are used to set upper limits on the cross section for pair production of fractionally charged, massive spin-1/2 particles that are neutral under SU(3)$$_C$$ and SU(2)$$_L$$. We exclude at 95% confidence level such particles with electric charge $$\\pm$$2e/3 with masses below 310 GeV, and those with charge $$\\pm$$e/3 with masses below 140 GeV.« less

  2. Electrochemical characteristics of amorphous carbon nanorod synthesized by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chang, Hsin-Yueh; Huang, Yung-Jui; Chang, Hsuan-Chen; Su, Wei-Jhih; Shih, Yi-Ting; Chen, John L.; Honda, Shin-ichi; Huang, Ying-Sheng; Lee, Kuei-Yi

    2015-01-01

    Amorphous carbon nanorods (CNRs) were deposited directly using radio frequency magnetron sputtering. The synthesized CNR electrochemical properties were investigated using graphene as the current collector for an electric double layer capacitor. The CNRs were vertically aligned to the graphene to achieve higher specific surface area. The capacitor performance was characterized using electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge-discharge testing in 1 M KOH electrolyte at 30°C, 40°C, 50°C, and 60°C. The CNR specific capacitance was observed to increase with increasing measurement temperature and could reach up to 830 F/g at 60°C. Even after extensive measurements, the CNR electrode maintained good adhesion to the graphene current collector thereby suggesting electrode material stability.

  3. Electrochemical properties of magnetron sputtered WO{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhavi, V.; Kondaiah, P.; Hussain, O. M.

    2013-02-05

    Thin films of tungsten oxide (WO{sub 3}) were deposited on ITO substrates by using RF magnetron sputtering at oxygen and argon atmospheres of 6 Multiplication-Sign 10{sup -2}Pa and 4 Pa respectively. The chemical composition and surface morphology of the WO{sub 3} thin films have been studied by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) respectively. The results indicate that the deposited WO{sub 3} thin films are nearly stoichiometric. The electrochemical performances of the WO{sub 3} thin films have been evaluated by galvonostatic charging/discharging method. The discharge capacity was 15{mu}Ah/cm{sup 2}{mu}m at the initial cycle and faded rapidly inmore » the first few cycles and stabilized at a lesser stage.« less

  4. Effect of oxygen incorporation on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hans, M., E-mail: hans@mch.rwth-aachen.de; Baben, M. to; Music, D.

    2014-09-07

    Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies.more » Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds.« less

  5. Ball Rolling on a Turntable: Analog for Charged Particle Dynamics.

    ERIC Educational Resources Information Center

    Burns, Joseph A.

    1981-01-01

    Describes how a ball's motion duplicates that of a charged particle moving through a magnetic field and thereby allows students to visualize directly many aspects of charged particle dynamics otherwise not accessible to them. (Author/JN)

  6. Heavy Charged Particle Radiobiology: Using Enhanced Biological Effectiveness and Improved Beam Focusing to Advance Cancer Therapy

    PubMed Central

    Allen, Christopher; Borak, Thomas B.; Tsujii, Hirohiko; Nickoloff, Jac A.

    2011-01-01

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. PMID:21376738

  7. Anomalous mobility of highly charged particles in pores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Yinghua; Yang, Crystal; Hinkle, Preston

    2015-07-16

    Single micropores in resistive-pulse technique were used to understand a complex dependence of particle mobility on its surface charge density. We show that the mobility of highly charged carboxylated particles decreases with the increase of the solution pH due to an interplay of three effects: (i) ion condensation, (ii) formation of an asymmetric electrical double layer around the particle, and (iii) electroosmotic flow induced by the charges on the pore walls and the particle surfaces. The results are important for applying resistive-pulse technique to determine surface charge density and zeta potential of the particles. As a result, the experiments alsomore » indicate the presence of condensed ions, which contribute to the measured current if a sufficiently high electric field is applied across the pore.« less

  8. On coagulation mechanisms of charged nanoparticles produced by combustion of hydrocarbon and metallized fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savel'ev, A. M.; Starik, A. M.

    2009-02-15

    The contributions of van der Waals, Coulomb, and polarization interactions between nanometersized particles to the particle coagulation rate in both free-molecular and continuum regimes are analyzed for particle charges of various magnitudes and signs. Analytical expressions are obtained for the coagulation rate constant between particles whose interaction in the free-molecular regime is described by a singular potential. It is shown that van der Waals and polarization forces significantly increase the coagulation rate between a neutral and a charged particle (by a factor of up to 10) and can even suppress the Coulomb repulsion between like-charged particles of widely different sizes.

  9. Wide size range fast integrated mobility spectrometer

    DOEpatents

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  10. Particle accelerator employing transient space charge potentials

    DOEpatents

    Post, Richard F.

    1990-01-01

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles.

  11. Varying Radii of On-Axis Anode Hollows For kJ-Class Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Shaw, Brian; Chapman, Steven; Falabella, Steven; Pankin, Alexei; Liu, Jason; Link, Anthony; Schmidt, Andréa

    2017-10-01

    A dense plasma focus (DPF) is a compact plasma gun that produces high energy ion beams, up to several MeV, through strong potential gradients. Motivated by particle-in-cell simulations, we have tried a series of hollow anodes on our kJ-class DPF. Each anode has varying hollow sizes, and has been studied to optimize ion beam production in Helium, reduce anode sputter, and increase neutron yields in deuterium. We diagnose the rate at which electrode material is ablated and deposited onto nearby surfaces. This is of interest in the case of solid targets, which perform poorly in the presence of sputter. We have found that the larger the hollow radius produces more energetic ion beams, higher neutron yield, and sputter less than a flat top anode. A complete comparison is presented. This work was prepared by LLNL under Contract DE-AC52-07NA27344 and supported by Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy's National Nuclear Security Administration.

  12. Characteristic of Nano-Cu Film Prepared by Energy Filtrating Magnetron Sputtering Technique and Its Optical Property

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoyong; Hu, Xing; Yao, Ning

    2015-03-01

    At the optimized deposition parameters, Cu film was deposited by the direct current magnetron sputtering (DMS) technique and the energy filtrating magnetron sputtering (EFMS) technique. The nano-structure was charactered by x-ray diffraction. The surface morphology of the film was observed by atomic force microscopy. The optical properties of the film were measured by spectroscopic ellipsometry. The refractive index, extinction coefficient and the thickness of the film were obtained by the fitted spectroscopic ellipsometry data using the Drude-Lorentz oscillator optical model. Results suggested that a Cu film with different properties was fabricated by the EFMS technique. The film containing smaller particles is denser and the surface is smoother. The average transmission coefficient, the refractive index and the extinction coefficients are higher than those of the Cu film deposited by the DMS technique. The average transmission coefficient (400-800 nm) is more than three times higher. The refractive index and extinction coefficient (at 550 nm) are more than 36% and 14% higher, respectively.

  13. ITO nanoparticles reused from ITO scraps and their applications to sputtering target for transparent conductive electrode layer.

    PubMed

    Hong, Sung-Jei; Song, Sang-Hyun; Kim, Byeong Jun; Lee, Jae-Yong; Kim, Young-Sung

    2017-01-01

    In this study, ITO nanoparticles (ITO-NPs) were reused from ITO target scraps to synthesize low cost ITO-NPs and to apply to make sputtering target for transparent conductive electrodes (TCEs). By controlling heat-treatment temperature as 980 °C, we achieved reused ITO-NPs having Brunauer, Emmett and Teller specific surface area (BET SSA) and average particle size 8.05 m 2 /g and 103.8 nm, respectively. The BET SSA decreases along with increasing heat-treatment temperature. The ITO-NPs were grown as round mound shape, and highly crystallized to (222) preferred orientations. Also, applying the reused ITO-NPs, we achieved an ITO target of which density was 99.6%. Using the ITO target, we achieved high quality TCE layer of which sheet resistance and optical transmittance at 550 nm were 29.5 Ω/sq. and 82.3%. Thus, it was confirmed that the reused ITO-NPs was feasible to sputtering target for TCEs layer.

  14. ITO nanoparticles reused from ITO scraps and their applications to sputtering target for transparent conductive electrode layer

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Jei; Song, Sang-Hyun; Kim, Byeong Jun; Lee, Jae-Yong; Kim, Young-Sung

    2017-09-01

    In this study, ITO nanoparticles (ITO-NPs) were reused from ITO target scraps to synthesize low cost ITO-NPs and to apply to make sputtering target for transparent conductive electrodes (TCEs). By controlling heat-treatment temperature as 980 °C, we achieved reused ITO-NPs having Brunauer, Emmett and Teller specific surface area (BET SSA) and average particle size 8.05 m2/g and 103.8 nm, respectively. The BET SSA decreases along with increasing heat-treatment temperature. The ITO-NPs were grown as round mound shape, and highly crystallized to (222) preferred orientations. Also, applying the reused ITO-NPs, we achieved an ITO target of which density was 99.6%. Using the ITO target, we achieved high quality TCE layer of which sheet resistance and optical transmittance at 550 nm were 29.5 Ω/sq. and 82.3%. Thus, it was confirmed that the reused ITO-NPs was feasible to sputtering target for TCEs layer.

  15. Effect on the Lunar Exosphere of a CME Passage

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Hurley, Dana M.; Farrell, William M.; Sarantos, Menelaos

    2011-01-01

    It has long been recognized that solar wind bombardment onto exposed surfaces in the solar system will produce an energetic component to the exospheres about those bodies. Laboratory experiments have shown that the sputter yield can be noticeably increased in the case of a good insulating surface. It is now known that the solar wind composition is highly dependent on the origin of the particular plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into its various components, we have estimated the total sputter yield for each type of solar wind. The heavy ion component, especially the He++ component, greatly enhances the total sputter yield during times when the heavy ion population is enhanced, most notably during a coronal mass ejection. To simulate the effect on the lunar exosphere of a CME passage past the Moon, we ran a Monte Carlo code for the species Na, K, Mg and Ca.

  16. Calibration and Readiness of the ISS-RAD Charged Particle Detector

    NASA Technical Reports Server (NTRS)

    Rios, R.

    2015-01-01

    The International Space Station (ISS) Radiation Assessment Detector (RAD) is an intravehicular energetic particle detector designed to measure a broad spectrum of charged particle and neutron radiation unique to the ISS radiation environment. In this presentation, a summary of calibration and readiness of the RAD Sensor Head (RSH) - also referred to as the Charged Particle Detector (CPD) - for ISS will be presented. Calibration for the RSH consists of p, He, C, O, Si, and Fe ion data collected at the NASA Space Radiation Laboratory (NSRL) and Indiana University Cyclotron Facility (IUCF). The RSH consists of four detectors used in measuring the spectroscopy of charged particles - A, B, C, and D; high-energy neutral particles and charged particles are measured in E; and the last detector - F - is an anti-coincidence detector. A, B, and C are made from Si; D is made from BGO; E and F are made from EJ260XL plastic scintillator.

  17. Modelling of the reactive sputtering process with non-uniform discharge current density and different temperature conditions

    NASA Astrophysics Data System (ADS)

    Vašina, P; Hytková, T; Eliáš, M

    2009-05-01

    The majority of current models of the reactive magnetron sputtering assume a uniform shape of the discharge current density and the same temperature near the target and the substrate. However, in the real experimental set-up, the presence of the magnetic field causes high density plasma to form in front of the cathode in the shape of a toroid. Consequently, the discharge current density is laterally non-uniform. In addition to this, the heating of the background gas by sputtered particles, which is usually referred to as the gas rarefaction, plays an important role. This paper presents an extended model of the reactive magnetron sputtering that assumes the non-uniform discharge current density and which accommodates the gas rarefaction effect. It is devoted mainly to the study of the behaviour of the reactive sputtering rather that to the prediction of the coating properties. Outputs of this model are compared with those that assume uniform discharge current density and uniform temperature profile in the deposition chamber. Particular attention is paid to the modelling of the radial variation of the target composition near transitions from the metallic to the compound mode and vice versa. A study of the target utilization in the metallic and compound mode is performed for two different discharge current density profiles corresponding to typical two pole and multipole magnetics available on the market now. Different shapes of the discharge current density were tested. Finally, hysteresis curves are plotted for various temperature conditions in the reactor.

  18. Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications

    NASA Astrophysics Data System (ADS)

    Park, Seon-Yeong; Choe, Han-Cheol

    2018-02-01

    In this study, Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetrons sputtering for dental applications were studied using different experimental techniques. Mn coating films were formed on Ti-29Nb-xHf alloys by a radio frequency magnetron sputtering technique for 0, 1, 3, and 5 min at 45 W. The microstructure, composition, and phase structure of the coated alloys were examined by optical microscopy, field emission scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The microstructure of Ti-29Nb alloy showed α" phase in the needle-like structure and Ti-29Nb-15Hf alloy showed β phase in the equiaxed structure. As the sputtering time increased, the circular particles of Mn coatings on the Ti-29Nb alloy increased at inside and outside surfaces. As the sputtering time increased, [Mn + Ca/P] ratio of the plasma electrolytic oxidized films in Ti- 29Nb-xHf alloys increased. The corrosion potential (Ecorr) of Mn coatings on the Ti-29Nb alloy showed higher than that of Mn coatings on the Ti-29Nb-15Hf alloy. The passive current density (Ipass) of the Mn coating on the Ti-29Nb alloy and Mn coatings on the Ti-29Nb-15Hf alloy was less noble than the non-Mn coated Ti-29Nb and Ti-29Nb-15Hf alloys surface.

  19. Estimating carbon cluster binding energies from measured Cn distributions, n <= 10

    NASA Astrophysics Data System (ADS)

    Pargellis, A. N.

    1990-08-01

    Experimental data are presented for the cluster distribution of sputtered negative carbon clusters, C-n, with n≤10. Additionally, clusters have been observed with masses indicating they are CsC-2n, with n≤4. The C-n data are compared with the data obtained by other groups, for neutral and charged clusters, using a variety of sources such as evaporation, sputtering, and laser ablation. The data are used to estimate the cluster binding energies En, using the universal relation, En=(n-1)ΔHn+RTe [ln(Jn/J1)+0.5 ln(n)-α-(ΔSn-ΔS1)/R], derived from basic kinetic and thermodynamic relations. The estimated values agree astonishingly well with values from the literature, varying from published values by at most a few percent. In this equation, Jn is the observed current of n-atom clusters, ΔHn is the heat of vaporization, ΔH1=7.41 eV, and Te ≊0.25 eV (2900 K) is the effective source temperature. The relative change in cluster entropy during sublimation from the solid to vapor phase is approximated to first order by the relation (ΔSn-ΔS1)/R =3.1+0.9(n-2), and is fit to published data for n between 2 and 5 and temperatures between 2000 and 4000 K. The parameter α is empirical, obtained by fitting the data to known binding energies for Cn≤5 clusters. For evaporation sources, α must be zero, but α˜7 when sputtering with Cs+ ions, indicating the sputtered clusters appear to be in thermodynamic equilibrium, but not the atoms. Several possible mechanisms for the formation of clusters during sputtering are examined. One plausible mechanism is that atoms diffuse on the graphite surface to form clusters which are then desorbed by energetic, recoil atoms created in subsequent sputtering events.

  20. Reactive sputtering of δ-ZrH{sub 2} thin films by high power impulse magnetron sputtering and direct current magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Högberg, Hans, E-mail: hans.hogberg@liu.se; Tengdelius, Lina; Eriksson, Fredrik

    2014-07-01

    Reactive sputtering by high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (DCMS) of a Zr target in Ar/H{sub 2} plasmas was employed to deposit Zr-H films on Si(100) substrates, and with H content up to 61 at. % and O contents typically below 0.2 at. % as determined by elastic recoil detection analysis. X-ray photoelectron spectroscopy reveals a chemical shift of ∼0.7 eV to higher binding energies for the Zr-H films compared to pure Zr films, consistent with a charge transfer from Zr to H in a zirconium hydride. X-ray diffraction shows that the films are single-phase δ-ZrH{sub 2} (CaF{submore » 2} type structure) at H content >∼55 at. % and pole figure measurements give a 111 preferred orientation for these films. Scanning electron microscopy cross-section images show a glasslike microstructure for the HiPIMS films, while the DCMS films are columnar. Nanoindentation yield hardness values of 5.5–7 GPa for the δ-ZrH{sub 2} films that is slightly harder than the ∼5 GPa determined for Zr films and with coefficients of friction in the range of 0.12–0.18 to compare with the range of 0.4–0.6 obtained for Zr films. Wear resistance testing show that phase-pure δ-ZrH{sub 2} films deposited by HiPIMS exhibit up to 50 times lower wear rate compared to those containing a secondary Zr phase. Four-point probe measurements give resistivity values in the range of ∼100–120 μΩ cm for the δ-ZrH{sub 2} films, which is slightly higher compared to Zr films with values in the range 70–80 μΩ cm.« less

  1. Means for counteracting charged particle beam divergence

    DOEpatents

    Hooper, Jr., Edwin B.

    1978-01-01

    To counteract charge particle beam divergence, magnetic field-generating means are positioned along the edges of a charged particle beam to be controlled, such as to deflect and redirect particles tending to diverge from a desired beam direction. By selective arrangement of the magnetic field-generating means, the entire beam may be deflected and guided into different directions.

  2. Numerical Study of Charged Inertial Particles in Turbulence using a Coupled Fluid-P3M Approach

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Capecelatro, Jesse

    2017-11-01

    Non-trivial interactions between charged particles and turbulence play an important role in many engineering and environmental flows, including clouds, fluidized bed reactors, charged hydrocarbon sprays and dusty plasmas. Due to the long-range nature of electrostatic forces, Coulomb interactions in systems with many particles must be handled carefully to avoid O(N2) computations. The particle-mesh (PM) method is typically employed in Eulerian-Lagrangian (EL) simulations as it avoids computing direct pairwise sums, but it fails to capture short-range interactions that are anticipated to be important when particles cluster. In this presentation, the particle-particle-particle-mesh (P3M) method that scales with O(NlogN) is implemented within a EL framework to simulate charged particles accurately in a tractable manner. The EL-P3M method is used to assess the competition between drag and Coulomb forces for a range of Stokes numbers and charges. Simulations of like- and oppositely-charged particles suspended in a two-dimensional Taylor-Green vortex and three-dimensional homogeneous isotropic turbulence are reported. One-point and two-point statistics obtained using PM and P3M are compared to assess the effect of added accuracy on collision rate and clustering.

  3. The Impact of Back-Sputtered Carbon on the Accelerator Grid Wear Rates of the NEXT and NSTAR Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2013-01-01

    A study was conducted to quantify the impact of back-sputtered carbon on the downstream accelerator grid erosion rates of the NEXT (NASA's Evolutionary Xenon Thruster) Long Duration Test (LDT1). A similar analysis that was conducted for the NSTAR (NASA's Solar Electric Propulsion Technology Applications Readiness Program) Life Demonstration Test (LDT2) was used as a foundation for the analysis developed herein. A new carbon surface coverage model was developed that accounted for multiple carbon adlayers before complete surface coverage is achieved. The resulting model requires knowledge of more model inputs, so they were conservatively estimated using the results of past thin film sputtering studies and particle reflection predictions. In addition, accelerator current densities across the grid were rigorously determined using an ion optics code to determine accelerator current distributions and an algorithm to determine beam current densities along a grid using downstream measurements. The improved analysis was applied to the NSTAR test results for evaluation. The improved analysis demonstrated that the impact of back-sputtered carbon on pit and groove wear rate for the NSTAR LDT2 was negligible throughout most of eroded grid radius. The improved analysis also predicted the accelerator current density for transition from net erosion to net deposition considerably more accurately than the original analysis. The improved analysis was used to estimate the impact of back-sputtered carbon on the accelerator grid pit and groove wear rate of the NEXT Long Duration Test (LDT1). Unlike the NSTAR analysis, the NEXT analysis was more challenging because the thruster was operated for extended durations at various operating conditions and was unavailable for measurements because the test is ongoing. As a result, the NEXT LDT1 estimates presented herein are considered preliminary until the results of future posttest analyses are incorporated. The worst-case impact of carbon back-sputtering was determined to be the full power operating condition, but the maximum impact of back-sputtered carbon was only a four percent reduction in wear rate. As a result, back-sputtered carbon is estimated to have an insignificant impact on the first failure mode of the NEXT LDT at all operating conditions.

  4. Planckian charged black holes in ultraviolet self-complete quantum gravity

    NASA Astrophysics Data System (ADS)

    Nicolini, Piero

    2018-03-01

    We present an analysis of the role of the charge within the self-complete quantum gravity paradigm. By studying the classicalization of generic ultraviolet improved charged black hole solutions around the Planck scale, we showed that the charge introduces important differences with respect to the neutral case. First, there exists a family of black hole parameters fulfilling the particle-black hole condition. Second, there is no extremal particle-black hole solution but quasi extremal charged particle-black holes at the best. We showed that the Hawking emission disrupts the condition of particle-black hole. By analyzing the Schwinger pair production mechanism, the charge is quickly shed and the particle-black hole condition can ultimately be restored in a cooling down phase towards a zero temperature configuration, provided non-classical effects are taken into account.

  5. Optical and interfacial electronic properties of diamond-like carbon films

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Natarajan, V.; Lamb, J.; Khan, A. A.; Bu-Abbud, G.; Banks, B.; Pouch, J.; Gulino, D. A.; Domitz, S.; Liu, D. C.

    1984-01-01

    Hard, semitransparent carbon films were prepared on oriented polished crystal wafers of silicon, indium phosphide and gallium arsenide, as well as on KBr and quartz. Properties of the films were determined using IR and visible absorption spectrocopy, ellipsometry, conductance-capacitance spectroscopy and alpha particle-proton recoil spectroscopy. Preparation techniques include RF plasma decomposition of methane (and other hydrocarbons), ion beam sputtering, and dual-ion-beam sputter deposition. Optical energy band gaps as large as 2.7 eV and extinction coefficients lower than 0.1 at long wavelengths are found. Electronic state densities at the interface with silicon as low as 10 to the 10th states/eV sq cm per were found.

  6. A particle accelerator employing transient space charge potentials

    DOEpatents

    Post, R.F.

    1988-02-25

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles. 3 figs.

  7. Charging of multiple interacting particles by contact electrification.

    PubMed

    Soh, Siowling; Liu, Helena; Cademartiri, Rebecca; Yoon, Hyo Jae; Whitesides, George M

    2014-09-24

    Many processes involve the movement of a disordered collection of small particles (e.g., powders, grain, dust, and granular foods). These particles move chaotically, interact randomly among themselves, and gain electrical charge by contact electrification. Understanding the mechanisms of contact electrification of multiple interacting particles has been challenging, in part due to the complex movement and interactions of the particles. To examine the processes contributing to contact electrification at the level of single particles, a system was constructed in which an array of millimeter-sized polymeric beads of different materials were agitated on a dish. The dish was filled almost completely with beads, such that beads did not exchange positions. At the same time, during agitation, there was sufficient space for collisions with neighboring beads. The charge of the beads was measured individually after agitation. Results of systematic variations in the organization and composition of the interacting beads showed that three mechanisms determined the steady-state charge of the beads: (i) contact electrification (charging of beads of different materials), (ii) contact de-electrification (discharging of beads of the same charge polarity to the atmosphere), and (iii) a long-range influence across beads not in contact with one another (occurring, plausibly, by diffusion of charge from a bead with a higher charge to a bead with a lower charge of the same polarity).

  8. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy.

    PubMed

    Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A

    2011-06-03

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. 2011 Elsevier B.V. All rights reserved.

  9. Method of measuring a profile of the density of charged particles in a particle beam

    DOEpatents

    Hyman, L.G.; Jankowski, D.J.

    1975-10-01

    A profile of the relative density of charged particles in a beam is obtained by disposing a number of rods parallel to each other in a plane perpendicular to the beam and shadowing the beam. A second number of rods is disposed perpendicular to the first rods in a plane perpendicular to the beam and also shadowing the beam. Irradiation of the rods by the beam of charged particles creates radioactive isotopes in a quantity proportional to the number of charged particles incident upon the rods. Measurement of the radioactivity of each of the rods provides a measure of the quantity of radioactive material generated thereby and, together with the location of the rods, provides information sufficient to identify a profile of the density of charged particles in the beam.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Tetsuya; Matsuoka, Takaaki; Ohmi, Tadahiro

    Novel magnetron-sputtering equipment, called rotation magnet sputtering (ROT-MS), was developed to overcome various disadvantages of current magnetron-sputtering equipment. Disadvantages include (1) very low target utilization of less than 20%, (2) difficulty in obtaining uniform deposition on the substrate, and (3) charge-up damages and ion-bombardment-induced damages resulting from very high electron temperature (>3 eV) and that the substrate is set at the plasma excitation region. In ROT-MS, a number of moving high-density plasma loops are excited on the target surface by rotating helical magnets, resulting in very high target utilization with uniform target erosion and uniform deposition on the substrate. Thismore » excellent performance can be principally maintained even if equipment size increases for very large-substrate deposition. Because strong horizontal magnetic fields (>0.05 T) are produced within a very limited region just at the target surface, very low electron-temperature plasmas (<2.5 eV for Ar plasma and <1 eV for direct-current-excited Xe plasma) are excited at the very limited region adjacent to the target surface with a combination of grounded plate closely mounted on the strong magnetic field region. Consequently, the authors can establish charge-up damage-free and ion-bombardment-induced damage-free processes. ROT-MS has been applied for thin-film formation of LaB{sub 6}, which is well known as a stable, low-work-function bulk-crystal material for electron emissions. The work function of the LaB{sub 6} film decreased to 2.8 eV due to enhanced (100)-orientation crystallinity and reduced resistivity realized by adjusting the flux of low-energy bombarding ions impinging on the depositing surface, which work very efficiently, improving the performance of the electron emission devices.« less

  11. Scaling of charged particle production in d+Au collisions at √(sNN)=200GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.

    2005-09-01

    The measured pseudorapidity distributions of primary charged particles over a wide pseudorapidity range of |η|≤5.4 and integrated charged particle multiplicities in d+Au collisions at √(sNN)=200GeV are presented as a function of collision centrality. The longitudinal features of d+Au collisions at √(sNN)=200GeV are found to be very similar to those seen in p+A collisions at lower energies. The total multiplicity of charged particles is found to scale with the total number of participants according to NdAuch=1/2Nppch, and the energy dependence of the density of charged particles produced in the fragmentation region exhibits extended longitudinal scaling.

  12. Robust statistical reconstruction for charged particle tomography

    DOEpatents

    Schultz, Larry Joe; Klimenko, Alexei Vasilievich; Fraser, Andrew Mcleod; Morris, Christopher; Orum, John Christopher; Borozdin, Konstantin N; Sossong, Michael James; Hengartner, Nicolas W

    2013-10-08

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  13. ELECTROSTATIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    It is the purpose of this research to study electrostatic charging mechanisms related to electrostatic beneficiation of coal with the goal of improving models of separation and the design of electrostatic separators. Areas addressed in this technical progress report are (a) electrostatic beneficiation of Pittsburgh #8 coal powders as a function of grind size and processing atmosphere; (b) the use of fluorescent micro-spheres to probe the charge distribution on the surfaces of coal particles; (c) the use of electrostatic beneficiation to recover unburned carbon from flyash; (d) the development of research instruments for investigation of charging properties of coal. Pittsburghmore » #8 powders were beneficiated as a function of grind size and under three atmosphere conditions: fresh ground in air , after 24 hours of air exposure, or under N2 atmosphere. The feed and processed powders were analyzed by a variety of methods including moisture, ash, total sulfur, and pyritic sulfur content. Mass distribution and cumulative charge of the processed powders were also measured. Fresh ground coal performed the best in electrostatic beneficiation. Results are compared with those of similar studies conducted on Pittsburgh #8 powders last year (April 1, 1997 to September 30, 1997). Polystyrene latex spheres were charged and deposited onto coal particles that had been passed through the electrostatic separator and collected onto insulating filters. The observations suggest bipolar charging of individual particles and patches of charge on the particles which may be associated with particular maceral types or with mineral inclusions. A preliminary investigation was performed on eletrostatic separation of unburned carbon particles from flyash. Approximately 25% of the flyash acquired positive charge in the copper tribocharger. This compares with 75% of fresh ground coal. The negatively charged material had a slightly reduced ash content suggesting some enrichment of carbonaceous material. There was also evidence that the carbon is present at a higher ratio in larger particles than in small particles. An ultraviolet photoelectron counter for use in ambient atmosphere is nearing completion. The counter will be used to measure work functions of different maceral and mineral types in the coal matrix. A Particle Image Analyzer for measuring size and charge of airborne particles is also under contruction and its current status is presented. A charged, monodisperse, droplet generator is also being constructed for calibration of the Particle Image Analyzer and other airborne particle analyzers in our labs.« less

  14. Measurement of the charged-particle multiplicity inside jets from $$\\sqrt{s}=8$$ $${\\mathrm{TeV}}$$ pp collisions with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2016-06-13

    The number of charged particles inside jets is a widely used discriminant for identifying the quark or gluon nature of the initiating parton and is sensitive to both the perturbative and non-perturbative components of fragmentation. This paper presents a measurement of the average number of charged particles with p T > 500 MeV inside high-momentum jets in dijet events using 20.3 fb -1 of data recorded with the ATLAS detector in pp collisions at √s=8 TeV collisions at the LHC. The jets considered have transverse momenta from 50 GeV up to and beyond 1.5 TeV . The reconstructed charged-particle trackmore » multiplicity distribution is unfolded to remove distortions from detector effects and the resulting charged-particle multiplicity is compared to several models. Lastly, quark and gluon jet fractions are used to extract the average charged-particle multiplicity for quark and gluon jets separately.« less

  15. Dust Particle Dynamics in The Presence of Highly Magnetized Plasmas

    NASA Astrophysics Data System (ADS)

    Lynch, Brian; Konopka, Uwe; Thomas, Edward; Merlino, Robert; Rosenberg, Marlene

    2016-10-01

    Complex plasmas are four component plasmas that contain, in addition to the usual electrons, ions, and neutral atoms, macroscopic electrically charged (nanometer to micrometer) sized ``dust'' particles. These macroscopic particles typically obtain a net negative charge due to the higher mobility of electrons compared to that of ions. Because the electrons, ions, and dust particles are charged, their dynamics may be significantly modified by the presence of electric and magnetic fields. Possible consequences of this modification may be the charging rate and the equilibrium charge. For example, in the presence of a strong horizontal magnetic field (B >1 Tesla), it may be possible to observe dust particle gx B deflection and, from that deflection, determine the dust grain charge. In this poster, we present recent data from performing multiple particle dropping experiments to characterize the g x B deflection in the Magnetized Dusty Plasma Experiment (MDPX). This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.

  16. Diamondlike carbon protective coatings for optical windows

    NASA Technical Reports Server (NTRS)

    Swec, Diane M.; Mirtich, Michael J.

    1989-01-01

    Diamondlike carbon (DLC) films were deposited on infrared transmitting optical windows and were evaluated as protective coatings for these windows exposed to particle and rain erosion. The DLC films were deposited on zinc selenide (ZnSe) and zinc sulfide (ZnS) by three different ion beam methods: (1) sputter deposition from a carbon target using an 8-cm argon ion source; (2) direct deposition by a 30-cm hollow cathode ion source with hydrocarbon gas in argon; and (3) dual beam direct deposition by the 30-cm hollow cathode ion source and an 8-cm argon ion source. In an attempt to improve the adherence of the DLC films on ZnSc and ZnS, ion beam cleaning, ion implantation with helium and neon ions, or sputter deposition of a thin, ion beam intermediate coating was employed prior to deposition of the DLC film. The protection that the DLC films afforded the windows from particle and rain erosion was evaluated, along with the hydrogen content, adherence, intrinsic stress, and infrared transmittance of the films. Because of the elevated stress levels in the ion beam sputtered DLC films and in those ion beam deposited with butane, films thicker than 0.1 micron and with good adherence on ZnS and ZnSe could not be generated. An intermediate coating of germanium successfully allowed the DLC films to remain adherent to the optical windows and caused only negligible reduction in the specular transmittance of the ZnS and ZnSe at 10 microns.

  17. Development of high-polarization Fe/Ge neutron polarizing supermirror: Possibility of fine-tuning of scattering length density in ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Maruyama, R.; Yamazaki, D.; Akutsu, K.; Hanashima, T.; Miyata, N.; Aoki, H.; Takeda, M.; Soyama, K.

    2018-04-01

    The multilayer structure of Fe/Si and Fe/Ge systems fabricated by ion beam sputtering (IBS) was investigated using X-ray and polarized neutron reflectivity measurements and scanning transmission electron microscopy with energy-dispersive X-ray analysis. The obtained result revealed that the incorporation of sputtering gas particles (Ar) in the Ge layer gives rise to a marked reduction in the neutron scattering length density (SLD) and contributes to the SLD contrast between the Fe and Ge layers almost vanishing for spin-down neutrons. Bundesmann et al. (2015) have shown that the implantation of primary Ar ions backscattered at the target is responsible for the incorporation of Ar particles and that the fraction increases with increasing ion incidence angle and increasing polar emission angle. This leads to a possibility of fine-tuning of the SLD for the IBS, which is required to realize a high polarization efficiency of a neutron polarizing supermirror. Fe/Ge polarizing supermirror with m = 5 fabricated under the same condition showed a spin-up reflectivity of 0.70 at the critical momentum transfer. The polarization was higher than 0.985 for the qz range where the correction for the polarization inefficiencies of the beamline works properly. The result of the polarized neutron reflectivity measurement suggests that the "magnetically-dead" layers formed at both sides of the Fe layer, together with the SLD contrast, play a critical role in determining the polarization performance of a polarizing supermirror.

  18. Charged-particle emission tomography

    NASA Astrophysics Data System (ADS)

    Ding, Yijun

    Conventional charged-particle imaging techniques--such as autoradiography-- provide only two-dimensional (2D) images of thin tissue slices. To get volumetric information, images of multiple thin slices are stacked. This process is time consuming and prone to distortions, as registration of 2D images is required. We propose a direct three-dimensional (3D) autoradiography technique, which we call charged-particle emission tomography (CPET). This 3D imaging technique enables imaging of thick sections, thus increasing laboratory throughput and eliminating distortions due to registration. In CPET, molecules or cells of interest are labeled so that they emit charged particles without significant alteration of their biological function. Therefore, by imaging the source of the charged particles, one can gain information about the distribution of the molecules or cells of interest. Two special case of CPET include beta emission tomography (BET) and alpha emission tomography (alphaET), where the charged particles employed are fast electrons and alpha particles, respectively. A crucial component of CPET is the charged-particle detector. Conventional charged-particle detectors are sensitive only to the 2-D positions of the detected particles. We propose a new detector concept, which we call particle-processing detector (PPD). A PPD measures attributes of each detected particle, including location, direction of propagation, and/or the energy deposited in the detector. Reconstruction algorithms for CPET are developed, and reconstruction results from simulated data are presented for both BET and alphaET. The results show that, in addition to position, direction and energy provide valuable information for 3D reconstruction of CPET. Several designs of particle-processing detectors are described. Experimental results for one detector are discussed. With appropriate detector design and careful data analysis, it is possible to measure direction and energy, as well as position of each detected particle. The null functions of CPET with PPDs that measure different combinations of attributes are calculated through singular-value decomposition. In general, the more particle attributes are measured from each detection event, the smaller the null space of CPET is. In other words, the higher dimension the data space is, the more information about an object can be recovered from CPET.

  19. Two-stage electrostatic precipitator using induction charging

    NASA Astrophysics Data System (ADS)

    Takashima, Kazunori; Kohno, Hiromu; Katatani, Atsushi; Kurita, Hirofumi; Mizuno, Akira

    2018-05-01

    An electrostatic precipitator (ESP) without using corona discharge was investigated herein. The ESP employed a two-stage configuration, consisting of an induction charging-based particle charger and a parallel plate type particle collector. By applying a high voltage of several kV, under which no corona discharge was generated in the charger, particles were charged by induction due to contact with charger electrodes. The amount of charge on the charged particles increased with the applied voltage and turbulent air flow in the charger. Performance of the ESP equipped with the induction charger was investigated using ambient air. The removal efficiency for particles ranging 0.3 µm to 5 µm in diameter increased with applied voltage and turbulence intensity of gas flow in the charger when the applied voltage was sufficiently low not to generate corona discharge. This suggests that induction charging can be used for electrostatic precipitation, which can reduce ozone generation and power consumption significantly.

  20. Electrophoresis of a charged soft particle in a charged cavity with arbitrary double-layer thickness.

    PubMed

    Chen, Wei J; Keh, Huan J

    2013-08-22

    An analysis for the quasi-steady electrophoretic motion of a soft particle composed of a charged spherical rigid core and an adsorbed porous layer positioned at the center of a charged spherical cavity filled with an arbitrary electrolyte solution is presented. Within the porous layer, frictional segments with fixed charges are assumed to distribute uniformly. Through the use of the linearized Poisson-Boltzmann equation and the Laplace equation, the equilibrium double-layer potential distribution and its perturbation caused by the applied electric field are separately determined. The modified Stokes and Brinkman equations governing the fluid flow fields outside and inside the porous layer, respectively, are solved subsequently. An explicit formula for the electrokinetic migration velocity of the soft particle in terms of the fixed charge densities on the rigid core surface, in the porous layer, and on the cavity wall is obtained from a balance between its electrostatic and hydrodynamic forces. This formula is valid for arbitrary values of κa, λa, r0/a, and a/b, where κ is the Debye screening parameter, λ is the reciprocal of the length characterizing the extent of flow penetration inside the porous layer, a is the radius of the soft particle, r0 is the radius of the rigid core of the particle, and b is the radius of the cavity. In the limiting cases of r0 = a and r0 = 0, the migration velocity for the charged soft sphere reduces to that for a charged impermeable sphere and that for a charged porous sphere, respectively, in the charged cavity. The effect of the surface charge at the cavity wall on the particle migration can be significant, and the particle may reverse the direction of its migration.

  1. Study of Nonlinear Dynamics of Intense Charged Particle Beams in the Paul Trap Simulator Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hua

    The Paul Trap Simulator Experiment (PTSX) is a compact laboratory device that simulates the nonlinear dynamics of intense charged particle beams propagating over a large distance in an alternating-gradient magnetic transport system. The radial quadrupole electric eld forces on the charged particles in the Paul Trap are analogous to the radial forces on the charged particles in the quadrupole magnetic transport system. The amplitude of oscillating voltage applied to the cylindrical electrodes in PTSX is equivalent to the quadrupole magnetic eld gradient in accelerators. The temporal periodicity in PTSX corresponds to the spatial periodicity in magnetic transport system. This thesismore » focuses on investigations of envelope instabilities and collective mode excitations, properties of high-intensity beams with significant space-charge effects, random noise-induced beam degradation and a laser-induced-fluorescence diagnostic. To better understand the nonlinear dynamics of the charged particle beams, it is critical to understand the collective processes of the charged particles. Charged particle beams support a variety of collective modes, among which the quadrupole mode and the dipole mode are of the greatest interest. We used quadrupole and dipole perturbations to excite the quadrupole and dipole mode respectively and study the effects of those collective modes on the charge bunch. The experimental and particle-in-cell (PIC) simulation results both show that when the frequency and the spatial structure of the external perturbation are matched with the corresponding collective mode, that mode will be excited to a large amplitude and resonates strongly with the external perturbation, usually causing expansion of the charge bunch and loss of particles. Machine imperfections are inevitable for accelerator systems, and we use random noise to simulate the effects of machine imperfection on the charged particle beams. The random noise can be Fourier decomposed into various frequency components and experimental results show that when the random noise has a large frequency component that matches a certain collective mode, the mode will also be excited and cause heating of the charge bunch. It is also noted that by rearranging the order of the random noise, the adverse effects of the random noise may be eliminated. As a non-destructive diagnostic method, a laser-induced- fluorescence (LIF) diagnostic is developed to study the transverse dynamics of the charged particle beams. The accompanying barium ion source and dye laser system are developed and tested.« less

  2. Direct simulation of electroosmosis around a spherical particle with inhomogeneously acquired surface charge.

    PubMed

    Alizadeh, Amer; Wang, Moran

    2017-03-01

    Uncovering electroosmosis around an inhomogeneously acquired charge spherical particle in a confined space could provide detailed insights into its broad applications from biology to geology. In the present study, we developed a direct simulation method with the effects of inhomogeneously acquired charges on the particle surface considered, which has been validated by the available analytical and experimental data. Modeling results reveal that the surface charge and zeta potential, which are acquired through chemical interactions, strongly depend on the local solution properties and the particle size. The surface charge and zeta potential of the particle would significantly vary with the tangential positions on the particle surface by increasing the particle radius. Moreover, regarding the streaming potential for a particle-fluid tube system, our results uncover that the streaming potential has a reverse relation with the particle size in a micro or nanotube. To explain this phenomenon, we present a simple relation that bridges the streaming potential with the particle size and tube radius, zeta potential, bulk and surface conductivity. This relation could predict good results specifically for higher ion concentrations and provide deeper understanding of the particle size effects on the streaming potential measurements of the particle fluid tube system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electronic structure and charge transport in nonstoichiometric tantalum oxide

    NASA Astrophysics Data System (ADS)

    Perevalov, T. V.; Gritsenko, V. A.; Gismatulin, A. A.; Voronkovskii, V. A.; Gerasimova, A. K.; Aliev, V. Sh; Prosvirin, I. A.

    2018-06-01

    The atomic and electronic structure of nonstoichiometric oxygen-deficient tantalum oxide TaO x<2.5 grown by ion beam sputtering deposition was studied. The TaO x film content was analyzed by x-ray photoelectron spectroscopy and by quantum-chemistry simulation. TaO x is composed of Ta2O5, metallic tantalum clusters and tantalum suboxides. A method for evaluating the stoichiometry parameter of TaO x from the comparison of experimental and theoretical photoelectron valence band spectra is proposed. The charge transport properties of TaO x were experimentally studied and the transport mechanism was quantitatively analyzed with four theoretical dielectric conductivity models. It was found that the charge transport in almost stoichiometric and nonstoichiometric tantalum oxide can be consistently described by the phonon-assisted tunneling between traps.

  4. Beams of protons and alpha particles greater than approximately 30 keV/charge from the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Ipavich, F. M.; Gloeckler, G.

    1981-01-01

    Two beamlike particle events (30 keV/charge to 160 keV/charge) upstream of the earth's bow shock have been investigated with the Max-Planck-Institut/University of Maryland ultralow energy and charge analyzer on ISEE 1. These beams consist of protons as well as of alpha particles, and the spectra are generally steep and are decreasing with increasing energy. During one event the spectra of both protons and alpha particles have a maximum at approximately 65 keV/charge. During these events, the interplanetary magnetic field through the satellite position was almost tangent to the bow shock, and application of the theory of acceleration predicts acceleration of a solar wind particle up to 60 keV/nucleon in a single reflection. The observation of reflected protons as well as alpha particles has implications for the physical reflection process usually not discussed in acceleration theories.

  5. Effect of the target power density on high-power impulse magnetron sputtering of copper

    NASA Astrophysics Data System (ADS)

    Kozák, Tomáš

    2012-04-01

    We present a model analysis of high-power impulse magnetron sputtering of copper. We use a non-stationary global model based on the particle and energy conservation equations in two zones (the high density plasma ring above the target racetrack and the bulk plasma region), which makes it possible to calculate time evolutions of the averaged process gas and target material neutral and ion densities, as well as the fluxes of these particles to the target and substrate during a pulse period. We study the effect of the increasing target power density under conditions corresponding to a real experimental system. The calculated target current waveforms show a long steady state and are in good agreement with the experimental results. For an increasing target power density, an analysis of the particle densities shows a gradual transition to a metal dominated discharge plasma with an increasing degree of ionization of the depositing flux. The average fraction of target material ions in the total ion flux onto the substrate is more than 90% for average target power densities higher than 500 W cm-2 in a pulse. The average ionized fraction of target material atoms in the flux onto the substrate reaches 80% for a maximum average target power density of 3 kW cm-2 in a pulse.

  6. The role of nanocrystalline binder metallic coating into WC after additive manufacturing

    NASA Astrophysics Data System (ADS)

    Cavaleiro, A. J.; Fernandes, C. M.; Farinha, A. R.; Gestel, C. V.; Jhabvala, J.; Boillat, E.; Senos, A. M. R.; Vieira, M. T.

    2018-01-01

    Tungsten carbide with microsized particle powders are commonly used embedded in a tough binder metal. The application of these composites is not limited to cutting tools, WC based material has been increasingly used in gaskets and other mechanical parts with complex geometries. Consequently, additive manufacturing processes as Selective Laser Sintering (SLS) might be the solution to overcome some of the manufacturing problems. However, the use of SLS leads to resolve the problems resulting from difference of physical properties between tungsten carbide and the metallic binder, such as laser absorbance and thermal conductivity. In this work, an original approach of powder surface modification was considered to prepare WC-metal composite powders and overcome these constraints, consisting on the sputter-coating of the WC particle surfaces with a nanocrystalline thin film of metallic binder material (stainless steel). The coating improves the thermal behavior and rheology of the WC particles and, at the same time, ensures a binder homogenous distribution. The feasibility of the SLS technology as manufacturing process for WC powder sputter-coated with 13 wt% stainless steel AISI 304L was explored with different laser power and scanning speed parameters. The SLS layers were characterized regarding elemental distribution, phase composition and morphology, and the results are discussed emphasizing the role of the coating on the consolidation process.

  7. Some astrophysical processes around magnetized black hole

    NASA Astrophysics Data System (ADS)

    Kološ, M.; Tursunov, A.; Stuchlík, Z.

    2018-01-01

    We study the dynamics of charged test particles in the vicinity of a black hole immersed into an asymptotically uniform external magnetic field. A real magnetic field around a black hole will be far away from to be completely regular and uniform, a uniform magnetic field is used as linear approximation. Ionized particle acceleration, charged particle oscillations and synchrotron radiation of moving charged particle have been studied.

  8. The effect of changing the magnetic field strength on HiPIMS deposition rates

    NASA Astrophysics Data System (ADS)

    Bradley, J. W.; Mishra, A.; Kelly, P. J.

    2015-06-01

    The marked difference in behaviour between HiPIMS and conventional dc or pulsed-dc magnetron sputtering discharges with changing magnetic field strengths is demonstrated through measurements of deposition rate. To provide a comparison between techniques the same circular magnetron was operated in the three excitation modes at a fixed average power of 680 W and a pressure of 0.54 Pa in the non-reactive sputtering of titanium. The total magnetic field strength B at the cathode surface in the middle of the racetrack was varied from 195 to 380 G. DC and pulsed-dc discharges show the expected behaviour that deposition rates fall with decreasing B (here by ~25-40%), however the opposite trend is observed in HiPIMS with deposition rates rising by a factor of 2 over the same decrease in B. These observations are understood from the stand point of the different composition and transport processes of the depositing metal flux between the techniques. In HiPIMS, this flux is largely ionic and slow post-ionized sputtered particles are subject to strong back attraction to the target by a retarding plasma potential structure ahead of them. The height of this potential barrier is known to increase with increasing B. From a simple phenomenological model of the sputtered particles fluxes, and using the measured deposition rates from the different techniques as inputs, the combined probabilities of ionization, α, and back attraction, β, of the metal species in HiPIMS has been calculated. There is a clear fall in αβ (from ~0.9 to ~0.7) with decreasing B-field strengths, we argue primarily due to a weakening of electrostatic ion back attraction, so leading to higher deposition rates. The results indicate that careful design of magnetron field strengths should be considered to optimise HiPIMS deposition rates.

  9. EXPERIMENTAL INVESTIGATIONS OF FINE PARTICLE CHARGING BY UNIPOLAR IONS: A REVIEW

    EPA Science Inventory

    The paper gives results of a study relating experimental data to many theories that have been offered in attempts to describe accurately the rate of charge accumulation of fine particles in a unipolar field. The data are reviewed and compiled, and additional particle charging exp...

  10. Influence of radioactivity on surface charging and aggregation kinetics of particles in the atmosphere.

    PubMed

    Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas

    2014-01-01

    Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.

  11. Charge-fluctuation-induced heating of dust particles in a plasma.

    PubMed

    Vaulina, O S; Khrapak, S A; Nefedov, A P; Petrov, O F

    1999-11-01

    Random charge fluctuations are always present in dusty plasmas due to the discrete nature of currents charging the dust particle. These fluctuations can be a reason for the heating of the dust particle system. Such unexpected heating leading to the melting of the dust crystals was observed recently in several experiments. In this paper we show by analytical evaluations and numerical simulation that charge fluctuations provide an effective source of energy and can heat the dust particles up to several eV, in conditions close to experimental ones.

  12. Fog dispersion. [charged particle technique

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Frost, W.

    1980-01-01

    The concept of using the charged particle technique to disperse warm fog at airports is investigated and compared with other techniques. The charged particle technique shows potential for warm fog dispersal, but experimental verification of several significant parameters, such as particle mobility and charge density, is needed. Seeding and helicopter downwash techniques are also effective for warm fog disperals, but presently are not believed to be viable techniques for routine airport operations. Thermal systems are currently used at a few overseas airports; however, they are expensive and pose potential environmental problems.

  13. Construction of the radiation oncology teaching files system for charged particle radiotherapy.

    PubMed

    Masami, Mukai; Yutaka, Ando; Yasuo, Okuda; Naoto, Takahashi; Yoshihisa, Yoda; Hiroshi, Tsuji; Tadashi, Kamada

    2013-01-01

    Our hospital started the charged particle therapy since 1996. New institutions for charged particle therapy are planned in the world. Our hospital are accepting many visitors from those newly planned medical institutions and having many opportunities to provide with the training to them. Based upon our experiences, we have developed the radiation oncology teaching files system for charged particle therapy. We adopted the PowerPoint of Microsoft as a basic framework of our teaching files system. By using our export function of the viewer any physician can create teaching files easily and effectively. Now our teaching file system has 33 cases for clinical and physics contents. We expect that we can improve the safety and accuracy of charged particle therapy by using our teaching files system substantially.

  14. Method for producing through extrusion an anisotropic magnet with high energy product

    DOEpatents

    Chandhok, Vijay K.

    2004-09-07

    A method for producing an anisotropic magnet with high energy product through extrusion and, more specifically, by placing a particle charge of a composition from the which magnet is to be produced in a noncircular container, heating the container and particle charge and extruding the container and particle charge through a noncircular extrusion die in such a manner that one of the cross-sectional axes or dimension of the container and particle charge is held substantially constant during the extrusion to compact the particle charge to substantially full density by mechanical deformation produced during the extrusion to achieve a magnet with anisotropic magnetic properties along the axes or dimension thereof and, more specifically, a high energy product along the transverse of the smallest cross-sectional dimension of the extruded magnet.

  15. Probes for dark matter physics

    NASA Astrophysics Data System (ADS)

    Khlopov, Maxim Yu.

    The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and consists of new stable particles. Weakly Interacting Massive Particle (WIMP) miracle appeals to search for neutral stable weakly interacting particles in underground experiments by their nuclear recoil and at colliders by missing energy and momentum, which they carry out. However, the lack of WIMP effects in their direct underground searches and at colliders can appeal to other forms of dark matter candidates. These candidates may be weakly interacting slim particles, superweakly interacting particles, or composite dark matter, in which new particles are bound. Their existence should lead to cosmological effects that can find probes in the astrophysical data. However, if composite dark matter contains stable electrically charged leptons and quarks bound by ordinary Coulomb interaction in elusive dark atoms, these charged constituents of dark atoms can be the subject of direct experimental test at the colliders. The models, predicting stable particles with charge ‑ 2 without stable particles with charges + 1 and ‑ 1 can avoid severe constraints on anomalous isotopes of light elements and provide solution for the puzzles of dark matter searches. In such models, the excessive ‑ 2 charged particles are bound with primordial helium in O-helium atoms, maintaining specific nuclear-interacting form of the dark matter. The successful development of composite dark matter scenarios appeals for experimental search for doubly charged constituents of dark atoms, making experimental search for exotic stable double charged particles experimentum crucis for dark atoms of composite dark matter.

  16. Partially filled intermediate band of Cr-doped GaN films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonoda, S.

    2012-05-14

    We investigated the band structure of sputtered Cr-doped GaN (GaCrN) films using optical absorption, photoelectron yield spectroscopy, and charge transport measurements. It was found that an additional energy band is formed in the intrinsic band gap of GaN upon Cr doping, and that charge carriers in the material move in the inserted band. Prototype solar cells showed enhanced short circuit current and open circuit voltage in the n-GaN/GaCrN/p-GaN structure compared to the GaCrN/p-GaN structure, which validates the proposed concept of an intermediate-band solar cell.

  17. Charged Particle Diffusion in Isotropic Random Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Subedi, P.; Sonsrettee, W.; Matthaeus, W. H.; Ruffolo, D. J.; Wan, M.; Montgomery, D.

    2013-12-01

    Study of the transport and diffusion of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider Diffusion of charged particles in fully three dimensional statistically isotropic magnetic field turbulence with no mean field which is pertinent to many astrophysical situations. We classify different regions of particle energy depending upon the ratio of Larmor radius of the charged particle to the characteristic outer length scale of turbulence. We propose three different theoretical models to calculate the diffusion coefficient each applicable to a distinct range of particle energies. The theoretical results are compared with those from computer simulations, showing very good agreement.

  18. Gravity influence on the clustering of charged particles in turbulence

    NASA Astrophysics Data System (ADS)

    Lu, Jiang; Nordsiek, Hansen; Shaw, Raymond

    2010-11-01

    We report results aimed at studying the interactions of bidisperse charged inertial particles in homogeneous, isotropic turbulence, under the influence of gravitational settling. We theoretically and experimentally investigate the impact of gravititational settling on particle clustering, which is quantified by the radial distribution function (RDF). The theory is based on a drift-diffusion (Fokker-Planck) model with gravitational settling appearing as a diffusive term depending on a dimensionless settling parameter. The experiments are carried out in a laboratory chamber with nearly homogeneous, isotropic turbulence in which the flow is seeded with charged particles and digital holography used to obtain 3D particle positions and velocities. The derived radial distribution function for bidisperse settling charged particles is compared to the experimental RDFs.

  19. Self assembly of oppositely charged latex particles at oil-water interface.

    PubMed

    Nallamilli, Trivikram; Ragothaman, Srikanth; Basavaraj, Madivala G

    2017-01-15

    In this study we explore the self assembly of oppositely charged latex particles at decane water interfaces. Two spreading protocols have been proposed in this context. In the first method oppositely charged particles are mixed prior to spreading at the interface, this is called "premixed-mixtures". In the second protocol negatively charged particles are first spread at the interface at known coverage followed by spreading positively charged particles at known coverage and this is called "sequential-mixtures". In premixed mixtures depending on particle mixing ratio (composition) and total surface coverage a number of 2d structures ranging from 2d crystals, aggregate-crystal coexistence and 2d-gels are observed. A detailed phase diagram of this system has been explored. In sequential-mixtures for the first time we observed a new phase in colloidal monolayers called 2d-bi crystalline domains. These structures consisted regions of two crystal phases of oppositely charged particles separated by a one dimensional chain of alternating positive and negative particles. Phase diagram of this system has also been explored at various combinations of first spread and second spread particles. A possible mechanism leading to formation of these 2d bi crystalline structures has been discussed. A direct visualization of breakage and reformation of particle barriers separating the crystal phases has been demonstrated through videos. Effect of salt in the water sub phase and particle hydrophobicity on domain formation is also investigated. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Device and method for separating minerals, carbon and cement additives from fly ash

    DOEpatents

    Link, Thomas A.; Schoffstall, Micael R.; Soong, Yee

    2004-01-27

    A process for separating organic and inorganic particles from a dry mixture by sizing the particles into isolated fractions, contacting the sized particles to a charged substrate and subjecting the charged particles to an electric field to separate the particles.

  1. Particle-Charge Spectrometer

    NASA Technical Reports Server (NTRS)

    Fuerstenau, Stephen; Wilson, Gregory R.

    2008-01-01

    An instrument for rapidly measuring the electric charges and sizes (from approximately 1 to approximately 100 micrometers) of airborne particles is undergoing development. Conceived for monitoring atmospheric dust particles on Mars, instruments like this one could also be used on Earth to monitor natural and artificial aerosols in diverse indoor and outdoor settings for example, volcanic regions, clean rooms, powder-processing machinery, and spray-coating facilities. The instrument incorporates a commercially available, low-noise, ultrasensitive charge-sensing preamplifier circuit. The input terminal of this circuit--the gate of a field-effect transistor--is connected to a Faraday-cage cylindrical electrode. The charged particles of interest are suspended in air or other suitable gas that is made to flow along the axis of the cylindrical electrode without touching the electrode. The flow can be channeled and generated by any of several alternative means; in the prototype of this instrument, the gas is drawn along a glass capillary tube (see upper part of figure) coaxial with the electrode. The size of a particle affects its rate of acceleration in the flow and thus affects the timing and shape of the corresponding signal peak generated by the charge-sensing amplifier. The charge affects the magnitude (and thus also the shape) of the signal peak. Thus, the signal peak (see figure) conveys information on both the size and electric charge of a sensed particle. In experiments thus far, the instrument has been found to be capable of measuring individual aerosol particle charges of magnitude greater than 350 e (where e is the fundamental unit of electric charge) with a precision of +/- 150 e. The instrument can sample particles at a rate as high as several thousand per second.

  2. Measuring particle charge in an rf dusty plasma

    NASA Astrophysics Data System (ADS)

    Fung, Jerome; Liu, Bin; Goree, John; Nosenko, Vladimir

    2004-11-01

    A dusty plasma is an ionized gas containing micron-size particles of solid matter. A particle gains a large negative charge by collecting electrons and ions from the plasma. In a gas discharge, particles can be levitated by the sheath electric field above a horizontal planar electrode. Most dusty plasma experiments require a knowledge of the particle charge, which is a key parameter for all interactions with other particles and the plasma electric field. Several methods have been developed in the literature to measure the charge. The vertical resonance method uses Langmuir probe measurements of the ion density and video camera measurements of the amplitude of vertical particle oscillations, which are excited by modulating the rf voltage. Here, we report a new method that is a variation of the vertical resonance method. It uses the plasma potential and particle height, which can be measured more accurately than the ion density. We tested this method and compared the resulting charge to values obtained using the original resonance method as well as sound speed methods. Work supported by an NSF REU grant, NASA and DOE.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murzin, I.H.; Tompa, G.S.; Wei, J.

    The authors report the results of using sputtering and negative carbon ion sources to prepare thin films of carbon nitride. In this work, they compare the structural, tribological, and optical properties of the carbon nitride films that were prepared by two different ion assisted techniques. In the first approach they used a magnetron gun to sputter deposit carbon in a nitrogen atmosphere. The second method utilized a beam of negatively charged carbon ions of 1 to 5 {micro}A/cm{sup 2} current density impinging the substrate simultaneously with a positive nitrogen ion beam produced by a Kaufman source. They were able tomore » synthesize microscopically smooth coatings with the carbon to nitrogen ratio of 1:0.47. These films possess wear rates lower than 5 {times} 10{sup {minus}7} mm{sup 3}/Nm and friction coefficients in the range of 0.16 to 0.6. Raman spectroscopy revealed that the magnetron sputtered films are more structurally disordered than those formed with the negative carbon ion gun. FTIR showed the presence of the C{triple_bond}N stretching mode in both types of films. Finally, spectroscopic ellipsometry produced films with dielectric constants as low as 2.3 in the photon energy range from 1.2 to 5 eV.« less

  4. Planetary Ring Simulation Experiment in Fine Particle Plasmas

    NASA Astrophysics Data System (ADS)

    Yokota, Toshiaki

    We are experimenting on the planetary ring formation by using two component fine particle plasmas generated by a boat method. Two component plasmas which were composed of positively charged particles and negatively charged particles were generated by UV irradiation of fine aluminum particles. A small insulator sphere in which a small permanent magnet was inserted was put into the fine particle plasmas, and was connected using insulator rods and rotated by a small motor. We were able to create a ring form of fine particle plasmas just like the Saturn ring by unipolar induction. The ring formation process was recorded on VTR and its motion was analyzed by using a computer. The experimental parameters for ring formation coincides almost with the estimated values. The particles had charges of ±25 electrons from analysis of the particle beam splitting after passage through a static electric and a static magnetic field. It is estimated that the fine particle plasmas were in strongly coupled state (Γ>1) in these experimental conditions. The charges of particles increased and Γ also increased when the power of the halogen lamp was increased. The relations between the rotating frequency and the motion of ring and charge dependency were investigated mainly by using an optical method

  5. Transverse Motion of a Particle with an Oscillating Charge and Variable Mass in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Alisultanov, Z. Z.; Ragimkhanov, G. B.

    2018-03-01

    The problem of motion of a particle with an oscillating electric charge and variable mass in an uniform magnetic field has been solved. Three laws of mass variation have been considered: linear growth, oscillations, and stepwise growth. Analytical expressions for the particle velocity at different time dependences of the particle mass are obtained. It is established that simultaneous consideration of changes in the mass and charge leads to a significant change in the particle trajectory.

  6. Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in √{sNN} = 5.02 TeVp + Pb collisions measured by the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duffield, E. M.; Duflot, L.; Duguid, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kentaro, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; St. Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zwalinski, L.; Atlas Collaboration

    2016-12-01

    Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using p + Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of √{sNN} = 5.02TeV. Charged particles are reconstructed over pseudorapidity | η | < 2.3 and transverse momentum between 0.1 GeV and 22 GeV in a dataset corresponding to an integrated luminosity of 1 μb-1. The results are presented in the form of charged-particle nuclear modification factors, where the p + Pb charged-particle multiplicities are compared between central and peripheral p + Pb collisions as well as to charged-particle cross sections measured in pp collisions. The p + Pb collision centrality is characterized by the total transverse energy measured in - 4.9 < η < - 3.1, which is in the direction of the outgoing lead beam. Three different estimations of the number of nucleons participating in the p + Pb collision are carried out using the Glauber model and two Glauber-Gribov colour-fluctuation extensions to the Glauber model. The values of the nuclear modification factors are found to vary significantly as a function of rapidity and transverse momentum. A broad peak is observed for all centralities and rapidities in the nuclear modification factors for charged-particle transverse momentum values around 3 GeV. The magnitude of the peak increases for more central collisions as well as rapidity ranges closer to the direction of the outgoing lead nucleus.

  7. Self-sustaining charging of identical colliding particles

    NASA Astrophysics Data System (ADS)

    Siu, Theo; Cotton, Jake; Mattson, Gregory; Shinbrot, Troy

    2014-05-01

    Recent experiments have demonstrated that identical material samples can charge one another after being brought into symmetric contact. The mechanism for this charging is not known. In this article, we use a simplified one-dimensional lattice model to analyze charging in the context of agitated particles. We find that the electric field from a single weakly polarized grain can feed back on itself by polarizing its neighbors, leading to an exponential growth in polarization. We show that, by incorporating partial neutralization between neighboring polarized particles, either uniform alignment of dipoles or complex charge and polarization waves can be produced. We reproduce a polarized state experimentally using identical colliding particles and raise several issues for future study.

  8. Gravitational instantons as models for charged particle systems

    NASA Astrophysics Data System (ADS)

    Franchetti, Guido; Manton, Nicholas S.

    2013-03-01

    In this paper we propose ALF gravitational instantons of types A k and D k as models for charged particle systems. We calculate the charges of the two families. These are -( k + 1) for A k , which is proposed as a model for k + 1 electrons, and 2 - k for D k , which is proposed as a model for either a particle of charge +2 and k electrons or a proton and k - 1 electrons. Making use of preferred topological and metrical structures of the manifolds, namely metrically preferred representatives of middle dimension homology classes, we construct two different energy functionals which reproduce the Coulomb interaction energy for a system of charged particles.

  9. Ion-enhanced oxidation of aluminum as a fundamental surface process during target poisoning in reactive magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuschel, Thomas; Keudell, Achim von

    2010-05-15

    Plasma deposition of aluminum oxide by reactive magnetron sputtering (RMS) using an aluminum target and argon and oxygen as working gases is an important technological process. The undesired oxidation of the target itself, however, causes the so-called target poisoning, which leads to strong hysteresis effects during RMS operation. The oxidation occurs by chemisorption of oxygen atoms and molecules with a simultaneous ion bombardment being present. This heterogenous surface reaction is studied in a quantified particle beam experiment employing beams of oxygen molecules and argon ions impinging onto an aluminum-coated quartz microbalance. The oxidation and/or sputtering rates are measured with thismore » microbalance and the resulting oxide layers are analyzed by x-ray photoelectron spectroscopy. The sticking coefficient of oxygen molecules is determined to 0.015 in the zero coverage limit. The sputtering yields of pure aluminum by argon ions are determined to 0.4, 0.62, and 0.8 at 200, 300, and 400 eV. The variation in the effective sticking coefficient and sputtering yield during the combined impact of argon ions and oxygen molecules is modeled with a set of rate equations. A good agreement is achieved if one postulates an ion-induced surface activation process, which facilitates oxygen chemisorption. This process may be identified with knock-on implantation of surface-bonded oxygen, with an electric-field-driven in-diffusion of oxygen or with an ion-enhanced surface activation process. Based on these fundamental processes, a robust set of balance equations is proposed to describe target poisoning effects in RMS.« less

  10. Gold sputtered Blu-Ray disks as novel and cost effective sensors for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nieuwoudt, Michél. K.; Martin, Jacob W.; Oosterbeek, Reece N.; Novikova, Nina I.; Wang, Xindi; Malmström, Jenny; Williams, David E.; Simpson, M. C.

    2015-03-01

    Surface Enhanced Raman spectroscopy (SERS) offers sensitive and non-invasive detection of a variety of compounds as well as unparalleled information for establishing the molecular identity of both inorganic and organic compounds, not only in biological fluids but in all other aqueous and non-aqueous media. The localized hotspots produced through SERS at the solution/nanostructure interface of clustered gold or silver nano-particles enables detection levels of parts per trillion. Recent developments in advanced fabrication methods have enabled the manufacture of SERS substrates with repeatable surface nanostructures which provide reproducible quantitative analysis, historically a weakness of the SERS technique. In this paper we describe the novel use of gold sputtered Blu-Ray surfaces as SERS substrates. Blu-Ray disks provide ideal surfaces of SERS substrates with their repeatable and regular nano-gratings. We show that the unique surface features and composition of the recording surface enables the formation of gold nano-islands with nanogaps, simply through gold sputtering, and relate this to a 600 fold signal increase of the melamine Raman signal in aqueous solutions and detection to 68 ppb. Melamine is a triazine compound and appears not only as environmental contaminant in environmental groundwater but also as an adulterant in foods due to its high nitrogen content. We have shown significant SERS signal enhancements for spectra of melamine using gold-sputtered Blu-Ray disk surfaces, with reproducibility of 12%. Blu-Ray disks have a unique combination of design, surface features and composition of the recording surface which makes them ideal for preparation of SERS substrates by gold sputter-coating.

  11. Charged Particle Distribution near the Shock Front in a Glow Discharge

    NASA Astrophysics Data System (ADS)

    Baryshnikov, A. S.; Basargin, I. V.; Bezverkhnii, N. O.; Bobashev, S. V.; Monakhov, N. A.; Popov, P. A.; Sakharov, V. A.; Chistyakova, M. V.

    2018-02-01

    The charged particle distribution near the front of a shock wave propagating in the glow discharge plasma has been investigated. It has been found that the ion concentration before the front varies nonmonotonically. Behind the shock front, the charged particle concentration varies smoothly in contrast to the neutral component density.

  12. Experimental determination of the steady-state charging probabilities and particle size conservation in non-radioactive and radioactive bipolar aerosol chargers in the size range of 5-40 nm

    NASA Astrophysics Data System (ADS)

    Kallinger, Peter; Szymanski, Wladyslaw W.

    2015-04-01

    Three bipolar aerosol chargers, an AC-corona (Electrical Ionizer 1090, MSP Corp.), a soft X-ray (Advanced Aerosol Neutralizer 3087, TSI Inc.), and an α-radiation-based 241Am charger (tapcon & analysesysteme), were investigated on their charging performance of airborne nanoparticles. The charging probabilities for negatively and positively charged particles and the particle size conservation were measured in the diameter range of 5-40 nm using sucrose nanoparticles. Chargers were operated under various flow conditions in the range of 0.6-5.0 liters per minute. For particular experimental conditions, some deviations from the chosen theoretical model were found for all chargers. For very small particle sizes, the AC-corona charger showed particle losses at low flow rates and did not reach steady-state charge equilibrium at high flow rates. However, for all chargers, operating conditions were identified where the bipolar charge equilibrium was achieved. Practically, excellent particle size conservation was found for all three chargers.

  13. Charged-particle distributions in √s=13 TeV pp interactions measured with the ATLAS detector at the LHC

    DOE PAGES

    Aad, G.

    2016-04-27

    Charged-particle distributions are measured in proton–proton collisions at a centre-of-mass energy of 13 TeV, using a data sample of nearly 9 million events, corresponding to an integrated luminosity of 170 μb -1 , recorded by the ATLAS detector during a special Large Hadron Collider fill. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on the charged-particle multiplicity are presented. In this study, the measurements are performed with charged particles with transverse momentum greater than 500 MeV and absolute pseudorapidity less than 2.5, in events with at least one charged particlemore » satisfying these kinematic requirements. Additional measurements in a reduced phase space with absolute pseudorapidity less than 0.8 are also presented, in order to compare with other experiments. Finally, the results are corrected for detector effects, presented as particle-level distributions and are compared to the predictions of various Monte Carlo event generators.« less

  14. Vacuum Potentials for the Two Only Permanent Free Particles, Proton and Electron. Pair Productions

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J. X.

    2012-02-01

    The two only species of isolatable, smallest, or unit charges +e and -e present in nature interact with the universal vacuum in a polarisable dielectric representation through two uniquely defined vacuum potential functions. All of the non-composite subatomic particles containing one-unit charges, +e or -e, are therefore formed in terms of the IED model of the respective charges, of zero rest masses, oscillating in either of the two unique vacuum potential fields, together with the radiation waves of their own charges. In this paper we give a first principles treatment of the dynamics of charge in a dielectric vacuum, based on which, combined with solutions for the radiation waves obtained previously, we subsequently derive the vacuum potential function for a given charge q, which we show to be quadratic and consist each of quantised potential levels, giving therefore rise to quantised characteristic oscillation frequencies of the charge and accordingly quantised, sharply-defined masses of the IED particles. By further combining with relevant experimental properties as input information, we determine the IED particles built from the charges +e, -e at their first excited states in the respective vacuum potential wells to be the proton and the electron, the observationally two only stable (permanently lived) and "free" particles containing one-unit charges. Their antiparticles as produced in pair productions can be accordingly determined. The characteristics of all of the other more energetic single-charged non-composite subatomic particles can also be recognised. We finally discuss the energy condition for pair production, which requires two successive energy supplies to (1) first disintegrate the bound pair of vaculeon charges +e, -e composing a vacuuon of the vacuum and (2) impart masses to the disintegrated charges.

  15. Structural and optical properties of ZnO thin films prepared by RF sputtering at different thicknesses

    NASA Astrophysics Data System (ADS)

    Hammad, Ahmed H.; Abdel-wahab, M. Sh.; Vattamkandathil, Sajith; Ansari, Akhalakur Rahman

    2018-07-01

    Hexagonal nanocrystallites of ZnO in the form of thin films were prepared by radio frequency sputtering technique. X-ray diffraction analysis reveals two prominent diffraction planes (002) and (103) at diffraction angles around 34.3 and 62.8°, respectively. The crystallite size increases through (103) plane from 56.1 to 64.8 Å as film thickness changed from 31 nm up to 280 nm while crystallites growth through (002) increased from 124 to 136 Å as film thickness varies from 31 to 107 nm and dropped to 115.8 Å at thickness 280 nm. The particle shape changes from spherical to longitudinal form. The particle size is 25 nm for films of thickness below 107 nm and increases at higher thicknesses (134 and 280 nm) from 30 to 40 nm, respectively. Optical band gap is deduced to be direct with values varied from 3.22 to 3.28 eV and the refractive index are evaluated based on the optical band values according to Moss, Ravindra-Srivastava, and Dimitrov-Sakka models. All refractive index models gave values around 2.3.

  16. UV and IR laser radiation's interaction with metal film and teflon surfaces

    NASA Astrophysics Data System (ADS)

    Fedenev, A. V.; Alekseev, S. B.; Goncharenko, I. M.; Koval', N. N.; Lipatov, E. I.; Orlovskii, V. M.; Shulepov, M. A.; Tarasenko, V. F.

    2003-04-01

    The interaction of Xe ([lambda] [similar] 1.73 [mu]m) and XeCl (0.308 [mu]m) laser radiation with surfaces of metal and TiN-ceramic coatings on glass and steel substrates has been studied. Correlation between parameters of surface erosion versus laser-specific energy was investigated. Monitoring of laser-induced erosion on smooth polished surfaces was performed using optical microscopy. The correlation has been revealed between characteristic zones of thin coatings damaged by irradiation and energy distribution over the laser beam cross section allowing evaluation of defects and adhesion of coatings. The interaction of pulsed periodical CO2 ([lambda] [similar] 10.6 [mu]m), and Xe ([lambda] [similar] 1.73 [mu]m) laser radiation with surfaces of teflon (polytetrafluoroethylene—PTFE) has been studied. Monitoring of erosion track on surfaces was performed through optical microscopy. It has been shown that at pulsed periodical CO2-radiation interaction with teflon the sputtering of polymer with formation of submicron-size particles occurs. Dependencies of particle sizes, form, and sputtering velocity on laser pulse duration and target temperature have been obtained.

  17. Production of leading charged particles and leading charged-particle jets at small transverse momenta in pp collisions at $$\\sqrt{s}$$ = 8 TeV

    DOE PAGES

    Khachatryan, Vardan

    2015-12-01

    The per-event yield of the highest transverse momentum charged particle and charged-particle jet, integrated above a given p min T threshold starting at p min T=0.8 and 1 GeV, respectively, is studied in pp collisions at s√=8 TeV. Furthermore, the particles and the jets are measured in the pseudorapidity ranges |η|<2.4 and 1.9, respectively. Our data are sensitive to the momentum scale at which parton densities saturate in the proton, to multiple partonic interactions, and to other key aspects of the transition between the soft and hard QCD regimes in hadronic collisions.

  18. Charged particle periodicity in the Saturnian magnetosphere

    NASA Technical Reports Server (NTRS)

    Carbary, J. F.; Krimigis, S. M.

    1982-01-01

    The present investigation is concerned with the first definitive evidence for charged particle modulations near the magnetic rotation period at Saturn. This periodicity is apparent in the ratios (and spectra) of low energy charged particles in the Saturnian magnetosphere. Most of the data presented were taken during the Voyager 2 outbound portion of the Saturn encounter. During this time the spacecraft was at high latitudes (approximately 30 deg) in the southern hemisphere of the Saturnian magnetosphere. The probe's trajectory was approximately along the dawn meridian at an essentially constant local time. The observation that the charged particle modulation is consistent with the Saturn Kilometric Radiation (SKR) period provides a basic input for the resolution of a puzzle which has existed ever since the discovery of the SKR modulation. The charged particle periodicity identified suggests that a basic asymmetry must exist in the Saturnian magnetosphere.

  19. Measuring the charge density of a tapered optical fiber using trapped microparticles.

    PubMed

    Kamitani, Kazuhiko; Muranaka, Takuya; Takashima, Hideaki; Fujiwara, Masazumi; Tanaka, Utako; Takeuchi, Shigeki; Urabe, Shinji

    2016-03-07

    We report the measurements of charge density of tapered optical fibers using charged particles confined in a linear Paul trap at ambient pressure. A tapered optical fiber is placed across the trap axis at a right angle, and polystyrene microparticles are trapped along the trap axis. The distance between the equilibrium position of a positively charged particle and the tapered fiber is used to estimate the amount of charge per unit length of the fiber without knowing the amount of charge of the trapped particle. The charge per unit length of a tapered fiber with a diameter of 1.6 μm was measured to be 2-1+3×10 -11 C/m.

  20. Investigation of plasma dynamics during the growth of amorphous titanium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Jee, Hyeok; Yu, Young-Hun; Seo, Hye-Won

    2018-06-01

    We have grown amorphous titanium dioxide thin films by reactive DC sputtering method using a different argon/oxygen partial pressure at a room temperature. The plasma dynamics of the process, reactive and sputtered gas particles was investigated via optical emission spectroscopy. We then studied the correlations between the plasma states and the structural/optical properties of the films. The growth rate and morphology of the titanium dioxide thin films turned out to be contingent with the population and the energy profile of Ar, O, and TiO plasma. In particular, the films grown under energetic TiO plasma have shown a direct band-to-band transition with an optical energy band gap up to ∼4.2 eV.

  1. Specific Effects of Oxygen Molecule and Plasma on Thin-Film Growth of Y-Ba-Cu-O and Bi-Sr-(Ca)-Cu-O Systems

    NASA Astrophysics Data System (ADS)

    Endo, Tamio; Horie, Munehiro; Hirate, Naoki; Itoh, Katsutoshi; Yamada, Satoshi; Tada, Masaki; Itoh, Ken-ichi; Sugiyama, Morihiro; Sano, Shinji; Watabe, Kinji

    1998-07-01

    Thin films of a-oriented YBa2Cu3Ox (YBCO), Ca-doped c-oriented Bi2(Sr,Ca)2CuOx and nondoped c-oriented Bi2Sr2CuOx (Bi2201) were prepared at low temperatures by ion beam sputtering with supply of oxygen molecules or plasma. The plasma enhances crystal growth of the a-YBCO and Ca-doped Bi2201 phases. This can be interpreted in terms of their higher surface energies. The growth and quality of nondoped Bi2201 are improved with the supply of oxygen molecules. This particular result could be interpreted by the collision process between the oxygen molecules and the sputtered particles.

  2. Particle visualization in high-power impulse magnetron sputtering. II. Absolute density dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britun, Nikolay, E-mail: nikolay.britun@umons.ac.be; Palmucci, Maria; Konstantinidis, Stephanos

    2015-04-28

    Time-resolved characterization of an Ar-Ti high-power impulse magnetron sputtering discharge has been performed. The present, second, paper of the study is related to the discharge characterization in terms of the absolute density of species using resonant absorption spectroscopy. The results on the time-resolved density evolution of the neutral and singly-ionized Ti ground state atoms as well as the metastable Ti and Ar atoms during the discharge on- and off-time are presented. Among the others, the questions related to the inversion of population of the Ti energy sublevels, as well as to re-normalization of the two-dimensional density maps in terms ofmore » the absolute density of species, are stressed.« less

  3. Repetitive heterocoagulation of oppositely charged particles for enhancement of magnetic nanoparticle loading into monodisperse silica particles.

    PubMed

    Matsumoto, Hideki; Nagao, Daisuke; Konno, Mikio

    2010-03-16

    Oppositely charged particles were repetitively heterocoagulated to fabricate highly monodisperse magnetic silica particles with high loading of magnetic nanoparticles. Positively charged magnetic nanoparticles prepared by surface modification with N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TSA) were used to heterocoagulate with silica particles under basic conditions to give rise to negative silica surface charge and prevent the oxidation of the magnetic nanoparticles. The resultant particles of silica core homogeneously coated with the magnetic nanoparticles were further coated with thin silica layer with sodium silicate in order to enhance colloidal stability and avoid desorption of the magnetic nanoparticles from the silica cores. Five repetitions of the heterocoagulation and the silica coating could increase saturation magnetization of the magnetic silica particles to 27.7 emu/g, keeping the coefficient of variation of particle sizes (C(V)) less than 6.5%. Highly homogeneous loading of the magnetic component was confirmed by measuring Fe-to-Si atomic ratios of individual particles with energy dispersive X-ray spectroscopy.

  4. [Effect of niobium nitride on the bonding strength of titanium porcelain by magnetron sputtering].

    PubMed

    Wang, Shu-shu; Zhang, La-bao; Guang, Han-bing; Zhou, Shu; Zhang, Fei-min

    2010-05-01

    To investigate the effect of magnetron sputtered niobium nitride (NbN) on the bonding strength of commercially pure cast titanium (Ti) and low-fusing porcelain (Ti/Vita titankeramik system). Sixty Ti specimens were randomly divided into four groups, group T1, T2, T3 and T4. All specimens of group T1 and T2 were first treated with 120 microm blasted Al2O3 particles, and then only specimens of group T2 were treated with magnetron sputtered NbN film. All specimens of group T3 and T4 were first treated with magnetron sputtered NbN film and then only specimens of group T4 were treated with 120 microm blasted Al2O3 particles. The composition of the deposits were analyzed by X-ray diffraction (XRD). A universal testing machine was used to perform the three-point bending test to evaluate the bonding strength of Ti and porcelain. The microstructure of NbN, the interface of Ti-porcelain and the fractured Ti surface were observed with scanning electron microscopy (SEM) and energy depressive spectrum (EDS), and the results were compared. The XRD results showed that the NbN deposits were cubic crystalline phases. The bonding strength of Ti and porcelain in T1 to T4 group were (27.2+/-0.8), (43.1+/-0.6), (31.4+/-1.0) and (44.9+/-0.6) MPa. These results were analyzed by one-way analysis of variance and differences between groups were compared using least significant difference test. Significant inter-group differences were found among all groups (P<0.05). The results of SEM showed that with treatment of Al2O3 or NbN, alone, pre-cracks were found in the interface of Ti-porcelain, while samples treated with both Al2O3 and NbN had better bond. EDS of Ti-porcelain interface showed oxidation occurred in T1, T2 and T3, but was well controlled in T4. Magnetron sputtered NbN can prevent Ti from being oxidized, and can improve the bonding strength of Ti/Vita titankeramik system. Al2O3 blast can also improve the bonding strength of Ti/Vita titankeramik system.

  5. Interactions between similar and dissimilar charged interfaces in the presence of multivalent anions.

    PubMed

    Moazzami-Gudarzi, Mohsen; Adam, Pavel; Smith, Alexander M; Trefalt, Gregor; Szilágyi, István; Maroni, Plinio; Borkovec, Michal

    2018-04-04

    Direct force measurements involving amidine latex (AL) and sulfate latex (SL) particles in aqueous solutions containing multivalent ferrocyanide anions are presented. These measurements feature three different pairs of particles, namely SL-SL, AL-SL, and AL-AL. The force profiles are quantitatively interpreted in terms of the theory by Derjaguin, Landau, Verwey, and Overbeek (DLVO) that is combined with a short-ranged exponential attraction. In monovalent salt solutions, the AL particles are positively charged, while the SL particles are negatively charged. In solutions containing ferrocyanide, the charge of the AL particles is reversed as the concentration is increased. The longer-ranged component of all force profiles is fully compatible with DLVO theory, provided effects of charge regulation are included. At shorter distances, an additional exponential attraction must be introduced, whereby the respective decay length is about 2 nm for the AL-AL pair, and below 1 nm for the SL-SL pair. This non-DLVO force is intermediate for the asymmetric AL-SL pair. These additional forces are probably related to charge fluctuations, patch-charged interactions, or hydrophobic forces.

  6. Interplanetary Radiation and Internal Charging Environment Models for Solar Sails

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; NeegaardParker, Linda

    2005-01-01

    A Solar Sail Radiation Environment (SSRE) model has been developed for defining charged particle environments over an energy range from 0.01 keV to 1 MeV for hydrogen ions, helium ions, and electrons. The SSRE model provides the free field charged particle environment required for characterizing energy deposition per unit mass, charge deposition, and dose rate dependent conductivity processes required to evaluate radiation dose and internal (bulk) charging processes in the solar sail membrane in interplanetary space. Solar wind and energetic particle measurements from instruments aboard the Ulysses spacecraft in a solar, near-polar orbit provide the particle data over a range of heliospheric latitudes used to derive the environment that can be used for radiation and charging environments for both high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar missions. This paper describes the techniques used to model comprehensive electron, proton, and helium spectra over the range of particle energies of significance to energy and charge deposition in thin (less than 25 micrometers) solar sail materials.

  7. Review of heavy charged particle transport in MCNP6.2

    NASA Astrophysics Data System (ADS)

    Zieb, K.; Hughes, H. G.; James, M. R.; Xu, X. G.

    2018-04-01

    The release of version 6.2 of the MCNP6 radiation transport code is imminent. To complement the newest release, a summary of the heavy charged particle physics models used in the 1 MeV to 1 GeV energy regime is presented. Several changes have been introduced into the charged particle physics models since the merger of the MCNP5 and MCNPX codes into MCNP6. This paper discusses the default models used in MCNP6 for continuous energy loss, energy straggling, and angular scattering of heavy charged particles. Explanations of the physics models' theories are included as well.

  8. CHARGED PARTICLE MULTIPLICITIES IN ULTRA-RELATIVISTIC AU+AU AND CU+CU COLLISIONS

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; Garcia, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; Vannieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wyngaardt, S.; Wyslouch, B.

    The PHOBOS collaboration has carried out a systematic study of charged particle multiplicities in Cu+Cu and Au+Au collisions at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory. A unique feature of the PHOBOS detector is its ability to measure charged particles over a very wide angular range from 0.5° to 179.5° corresponding to |η| <5.4. The general features of the charged particle multiplicity distributions as a function of pseudo-rapidity, collision energy and centrality, as well as system size, are discussed.

  9. Review of Heavy Charged Particle Transport in MCNP6.2

    DOE PAGES

    Zieb, Kristofer James Ekhart; Hughes, Henry Grady III; Xu, X. George; ...

    2018-01-05

    The release of version 6.2 of the MCNP6 radiation transport code is imminent. To complement the newest release, a summary of the heavy charged particle physics models used in the 1 MeV to 1 GeV energy regime is presented. Several changes have been introduced into the charged particle physics models since the merger of the MCNP5 and MCNPX codes into MCNP6. Here, this article discusses the default models used in MCNP6 for continuous energy loss, energy straggling, and angular scattering of heavy charged particles. Explanations of the physics models’ theories are included as well.

  10. Contact Electrification of Individual Dielectric Microparticles Measured by Optical Tweezers in Air.

    PubMed

    Park, Haesung; LeBrun, Thomas W

    2016-12-21

    We measure charging of single dielectric microparticles after interaction with a glass substrate using optical tweezers to control the particle, measure its charge with a sensitivity of a few electrons, and precisely contact the particle with the substrate. Polystyrene (PS) microparticles adhered to the substrate can be selected based on size, shape, or optical properties and repeatedly loaded into the optical trap using a piezoelectric (PZT) transducer. Separation from the substrate leads to charge transfer through contact electrification. The charge on the trapped microparticles is measured from the response of the particle motion to a step excitation of a uniform electric field. The particle is then placed onto a target location of the substrate in a controlled manner. Thus, the triboelectric charging profile of the selected PS microparticle can be measured and controlled through repeated cycles of trap loading followed by charge measurement. Reversible optical trap loading and manipulation of the selected particle leads to new capabilities to study and control successive and small changes in surface interactions.

  11. Charged Particle Flux Sensor

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Stocks, C. D.

    1983-01-01

    Improved version of Faraday cup increases accuracy of measurements of flux density of charged particles incident along axis through collection aperture. Geometry of cone-and-sensing cup combination assures most particles are trapped.

  12. Method to protect charge recombination in the back-contact dye-sensitized solar cell.

    PubMed

    Yoo, Beomjin; Kim, Kang-Jin; Lee, Doh-Kwon; Kim, Kyungkon; Ko, Min Jae; Kim, Yong Hyun; Kim, Won Mok; Park, Nam-Gyu

    2010-09-13

    We prepared a back-contact dye-sensitized solar cell and investigated effect of the sputter deposited thin TiO₂ film on the back-contact ITO electrode on photovoltaic property. The nanocrystalline TiO₂ layer with thickness of about 11 μm formed on a plain glass substrate in the back-contact structure showed higher optical transmittance than that formed on an ITO-coated glass substrate, which led to an improved photocurrent density by about 6.3%. However, photovoltage was found to decrease from 817 mV to 773 mV. The photovoltage recovered after deposition of a 35 nm-thick thin TiO₂ film on the surface of the back-contact ITO electrode. Little difference in time constant for electron transport was found for the back-contact ITO electrodes with and without the sputter deposited thin TiO₂ film. Whereas, time constant for charge recombination increased after introduction of the thin TiO₂ film, indicating that such a thin TiO₂ film protected back electron transfer, associated with the recovery of photovoltage. As the result of the improved photocurrent density without deterioration of photovoltage, the back-contact dye-sensitized solar cell exhibited 13.6% higher efficiency than the ITO-coated glass substrate-based dye-sensitized solar cell.

  13. Transparent, Conductive Coatings Developed for Arc-Proof Solar Arrays

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Transparent, conductive thin-film coatings have many potential applications where a surface must be able to dissipate electrical charges without sacrificing its optical properties. Such applications include automotive and aircraft windows, heat mirrors, optoelectronic devices, gas sensors, and solar cell array surfaces for space applications. Many spacecraft missions require that solar cell array surfaces dissipate charges in order to avoid damage such as electronic upsets, formation of pinholes in the protective coatings on solar array blankets, and contamination due to deposition of sputtered products. In tests at the NASA Lewis Research Center, mixed thin-films of sputter-deposited indium tin oxide (ITO) and magnesium fluoride (MgF2) that could be tailored to the desired sheet resistivity, showed transmittance values of greater than 90 percent. The samples evaluated were composed of mixed, thin-film ITO/MgF2 coatings, with a nominal thickness of 650 angstroms, deposited onto glass substrates. Preliminary results indicated that these coatings were durable to vacuum ultraviolet radiation and atomic oxygen. These coatings show promise for use on solar array surfaces in polar low-Earth-orbit environments, where a sheet resistivity of less than 10(exp 8)/square is required, and in geosynchronous orbit environments, where a resistivity of less than 10(exp 9)/square is required.

  14. Checkerboard deposition of lithium manganese oxide spinel (LiMn2O4) by RF magnetron sputtering on a stainless steel in all-solid-state thin film battery

    NASA Astrophysics Data System (ADS)

    Hsueh, T. H.; Yu, Y. Q.; Jan, D. J.; Su, C. H.; Chang, S. M.

    2018-03-01

    All-solid-state thin film lithium batteries (TFLBs) are the most competitive low-power sources to be applied in various kinds of micro-electro-mechanical systems and have been draw a lot of attention in academic research. In this paper, the checkerboard deposition of all-solid-state TFLB was composed of thin film lithium metal anode, lithium phosphorus oxynitride (LiPON) solid electrolyte, and checkerboard deposition of lithium manganese oxide spinel (LiMn2O4) cathode. The LiPON and LiMn2O4 were deposited by a radio frequency magnetron sputtering system, and the lithium metal was deposited by a thermal evaporation coater. The electrochemical characterization of this lithium battery showed the first discharge capacity of 107.8 μAh and the capacity retention was achieved 95.5% after 150 charge-discharge cycles between 4.3V and 3V at a current density of 11 μA/cm2 (0.5C). Obviously, the checkerboard of thin film increased the charge exchange rate; also this lithium battery exhibited high C-rate performance, with better capacity retention of 82% at 220 μA/cm2 (10C).

  15. Sub 2 nm Particle Characterization in Systems with Aerosol Formation and Growth

    NASA Astrophysics Data System (ADS)

    Wang, Yang

    Aerosol science and technology enable continual advances in material synthesis and atmospheric pollutant control. Among these advances, one important frontier is characterizing the initial stages of particle formation by real time measurement of particles below 2 nm in size. Sub 2 nm particles play important roles by acting as seeds for particle growth, ultimately determining the final properties of the generated particles. Tailoring nanoparticle properties requires a thorough understanding and precise control of the particle formation processes, which in turn requires characterizing nanoparticle formation from the initial stages. The knowledge on particle formation in early stages can also be applied in quantum dot synthesis and material doping. This dissertation pursued two approaches in investigating incipient particle characterization in systems with aerosol formation and growth: (1) using a high-resolution differential mobility analyzer (DMA) to measure the size distributions of sub 2 nm particles generated from high-temperature aerosol reactors, and (2) analyzing the physical and chemical pathways of aerosol formation during combustion. Part. 1. Particle size distributions reveal important information about particle formation dynamics. DMAs are widely utilized to measure particle size distributions. However, our knowledge of the initial stages of particle formation is incomplete, due to the Brownian broadening effects in conventional DMAs. The first part of this dissertation studied the applicability of high-resolution DMAs in characterizing sub 2 nm particles generated from high-temperature aerosol reactors, including a flame aerosol reactor (FLAR) and a furnace aerosol reactor (FUAR). Comparison against a conventional DMA (Nano DMA, Model 3085, TSI Inc.) demonstrated that the increased sheath flow rates and shortened residence time indeed greatly suppressed the diffusion broadening effect in a high-resolution DMA (half mini type). The incipient particle size distributions were discrete, suggesting the formation of stable clusters that may be intermediate phases between initial chemical reactions and downstream particle growth. The evolution of incipient cluster size distributions further provided information on the gaseous precursor reaction kinetics, which matched well with the data obtained through other techniques. Part 2. The size distributions and their evolution measured by the DMAs help explain the physical pathways of aerosol formation. The chemical analysis of the incipient particles is an important counterpart to the existing characterization method. The chemical compositions of charged species were measured online with an atmospheric pressure interface time-of-flight mass spectrometer (APi-TOF). The tandem arrangement of the high-resolution DMA and the APi-TOF realized the simultaneous measurement of the mobility and the mass of combustion-generated natively charged particles, which enabled their chemical and physical formation pathways to be derived. The results showed that the initial stages of particle formation were strongly influenced by chemically ionized species during combustion, and that incipient particles composed of pure oxides did not exist. The effective densities of the incipient particles were much lower than those of bulk materials, due to their amorphous structures and different chemical compositions. Measuring incipient particles with high-resolution DMAs is limited because a DMA classifies charged particles only, while the charging characteristics of sub 2 nm particles are not well understood. The charge fraction of combustion-generated incipient particles was measured by coupling a charged particle remover and a condensation particle counter. A high charge fraction was observed, confirming the strong interaction among chemically ionized species and formed particles. The combustion system was modeled by using a unimodal aerosol dynamics model combined with Fuchs' charging theory, and showed that the charging process indeed affected particle formation dynamics during combustion.

  16. Pulse-Shape Discrimination of Alpha Particles of Different Specific Energy-Loss With Parallel-Plate Avalanche Counters

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.; Baba, M.

    2014-06-01

    Parallel-plate avalanche counters have long been recognized as timing detectors for heavily ionizing particles. However, these detectors suffer from a poor pulse-height resolution which limits their capability to discriminate between different ionizing particles. In this paper, a new approach for discriminating between charged particles of different specific energy-loss with avalanche counters is demonstrated. We show that the effect of the self-induced space-charge in parallel-plate avalanche counters leads to a strong correlation between the shape of output current pulses and the amount of primary ionization created by the incident charged particles. The correlation is then exploited for the discrimination of charged particles with different energy-losses in the detector. The experimental results obtained with α-particles from an 241Am α-source demonstrate a discrimination capability far beyond that achievable with the standard pulse-height discrimination method.

  17. The Investigation Of Carbon Contamination And Sputtering Effects Of Xenon Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Prak, Moline K.

    2004-01-01

    The Electro-Physics Branch of the NASA Glenn Research Center investigates the effect of atomic oxygen, environmental durability of high performance power materials and surfaces, and low earth orbit. One of its current projects involves the analysis of ion thrusters. Ion thrusters are devices that initiate a beam of ions to a target area. The type of ion thruster that I have been working with this Summer of 2004 emits positively charged Xenon (Xe(+)) atoms through two grids, the screen grid and the accelerator grid, after it enters an ionization chamber. Insulators are used to mechanically hold and separate these two grids. A propellant isolator, an instrument that closely resembles insulators, is placed in front of the ionization chamber. Both the insulator and isolator are made with a ceramic compound and filled with insulating beads. The main difference between the two devices is that the propellant isolator allows gas to flow through, in this case, the gas is Xe(+) and the insulators do not. In order to avoid carbon deposits and other contaminating chemicals to settle on the insulators and propellant isolator, a metal shadow shield is placed around them. These shadow shields function as a protectant and can be shaped in numerous configurations. Part of my job responsibility this summer is to investigate the effectiveness of different shadow shields that are utilized on three different ion engines: the NSTAR (NASA Solar Electric Propulsion Technology Application Readiness), JIMO (Jupiter Icy Moons Orbiter), and NEXIS (Nuclear Electric Xenon Ion System). Using calculus and other mathematical tactics, I was asked to find the total flux of carbon contamination that was able to pass the protectant shadow shield. I familiarized myself with the software program, MathCad2004, to help perform some mathematical computations such as complex integration. Another method of studying the probability of contamination is by experimental simulation. After attaining the precise parameters of the actual shadow shields, I created replicas of three types of shadow shielding to be used to undergo testing. It will be placed in a machine that produces carbon atoms at a high temperature of 200 C. or beam is aimed at a targeted material. As a result of this collision, atoms and other particles are ejected out of the target surface. Another part of my internship consisted of research on sputter ejection, or the angle distribution of sputtered material. This research entailed finding the past results of sputter ejection investigation as well as creating another type of mock simulation. Other minor projects include calculating the path of Xe(+) gas through the insulating beads of the isolators and assisting my mentor in collecting data for his paper for the Joint Propulsion Conference & Exhibit to be held July 11-14,2004 in Fort Lauderdale, Florida.

  18. Visualizing a Solar Storm's Effect on Mars Atmosphere (Illustration)

    NASA Image and Video Library

    2017-12-13

    This illustration depicts charged particles from a solar storm stripping away charged particles of Mars' atmosphere, one of the processes of Martian atmosphere loss studied by NASA's MAVEN mission, beginning in 2014. Unlike Earth, Mars lacks a global magnetic field that could deflect charged particles emanating from the Sun. https://photojournal.jpl.nasa.gov/catalog/PIA22076

  19. An analytical particle mover for the charge- and energy-conserving, nonlinearly implicit, electrostatic particle-in-cell algorithm

    NASA Astrophysics Data System (ADS)

    Chen, G.; Chacón, L.

    2013-08-01

    We propose a 1D analytical particle mover for the recent charge- and energy-conserving electrostatic particle-in-cell (PIC) algorithm in Ref. [G. Chen, L. Chacón, D.C. Barnes, An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm, Journal of Computational Physics 230 (2011) 7018-7036]. The approach computes particle orbits exactly for a given piece-wise linear electric field. The resulting PIC algorithm maintains the exact charge and energy conservation properties of the original algorithm, but with improved performance (both in efficiency and robustness against the number of particles and timestep). We demonstrate the advantageous properties of the scheme with a challenging multiscale numerical test case, the ion acoustic wave. Using the analytical mover as a reference, we demonstrate that the choice of error estimator in the Crank-Nicolson mover has significant impact on the overall performance of the implicit PIC algorithm. The generalization of the approach to the multi-dimensional case is outlined, based on a novel and simple charge conserving interpolation scheme.

  20. Neutron yield when fast deuterium ions collide with strongly charged tritium-saturated dust particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akishev, Yu. S., E-mail: akishev@triniti.ru; Karal’nik, V. B.; Petryakov, A. V.

    2017-02-15

    The ultrahigh charging of dust particles in a plasma under exposure to an electron beam with an energy up to 25 keV and the formation of a flux of fast ions coming from the plasma and accelerating in the strong field of negatively charged particles are considered. Particles containing tritium or deuterium atoms are considered as targets. The calculated rates of thermonuclear fusion reactions in strongly charged particles under exposure to accelerated plasma ions are presented. The neutron generation rate in reactions with accelerated deuterium and tritium ions has been calculated for these targets. The neutron yield has been calculatedmore » when varying the plasma-forming gas pressure, the plasma density, the target diameter, and the beam electron current density. Deuterium and tritium-containing particles are shown to be the most promising plasmaforming gas–target material pair for the creation of a compact gas-discharge neutron source based on the ultrahigh charging of dust particles by beam electrons with an energy up to 25 keV.« less

  1. Charge Identification of Highly Ionizing Particles in Desensitized Nuclear Emulsion Using High Speed Read-Out System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toshito, T.; Kodama, K.; Yusa, K.

    2006-05-10

    We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290 MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsionmore » film to highly ionizing particles.« less

  2. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  3. Influence of hysteresis effect on properties of reactively sputtered TiAlSiN films

    NASA Astrophysics Data System (ADS)

    Gao, Fangyuan; Li, Guang; Xia, Yuan

    2018-02-01

    This article reports on the hysteresis effect in TiAlSiN films prepared by an intermediate frequency magnetron. The discharge voltages for different metallic alloy targets varying with nitrogen flow rate were systematically investigated, under a constant pressure provided by sputtering gas. The hysteresis transition was introduced by the sudden changes in sputtering rate, fraction of compound formation, phase composition and mechanical properties. The result was shown that: the initial growth rate aD in metallic mode was 4 times faster than that in supersaturated state. The optimized stoichiometric TiAl(Si)Nx=1 films containing 50 at.% N were founded in the transition region. The discussion on the plasma characteristics caused by hysteresis process showed that the TiN(111) texture could be increased by applying higher particle bombarding energy. The hardness of TiAlSiN film was strongly influenced by the orientation, which depended on the loading history of nitrogen. The superior TiAlSiN film with hardness 33 GPa could be prepared during the nitrogen unloading for same nitrogen flow rates.

  4. Formation of manganese nanoclusters in a sputtering/aggregation source and the roles of individual operating parameters

    NASA Astrophysics Data System (ADS)

    Khojasteh, Malak; Kresin, Vitaly V.

    2016-12-01

    We describe the production of size selected manganese nanoclusters using a dc magnetron sputtering/aggregation source. Since nanoparticle production is sensitive to a range of overlapping operating parameters (in particular, the sputtering discharge power, the inert gas flow rates, and the aggregation length) we focus on a detailed map of the influence of each parameter on the average nanocluster size. In this way it is possible to identify the main contribution of each parameter to the physical processes taking place within the source. The discharge power and argon flow supply the atomic vapor, and argon also plays the crucial role in the formation of condensation nuclei via three-body collisions. However, neither the argon flow nor the discharge power have a strong effect on the average nanocluster size in the exiting beam. Here the defining role is played by the source residence time, which is governed by the helium supply and the aggregation path length. The size of mass selected nanoclusters was verified by atomic force microscopy of deposited particles.

  5. Solid state cloaking for electrical charge carrier mobility control

    DOEpatents

    Zebarjadi, Mona; Liao, Bolin; Esfarjani, Keivan; Chen, Gang

    2015-07-07

    An electrical mobility-controlled material includes a solid state host material having a controllable Fermi energy level and electrical charge carriers with a charge carrier mobility. At least one Fermi level energy at which a peak in charge carrier mobility is to occur is prespecified for the host material. A plurality of particles are distributed in the host material, with at least one particle disposed with an effective mass and a radius that minimize scattering of the electrical charge carriers for the at least one prespecified Fermi level energy of peak charge carrier mobility. The minimized scattering of electrical charge carriers produces the peak charge carrier mobility only at the at least one prespecified Fermi level energy, set by the particle effective mass and radius, the charge carrier mobility being less than the peak charge carrier mobility at Fermi level energies other than the at least one prespecified Fermi level energy.

  6. Strong Deformation of the Thick Electric Double Layer around a Charged Particle during Sedimentation or Electrophoresis.

    PubMed

    Khair, Aditya S

    2018-01-23

    The deformation of the electric double layer around a charged colloidal particle during sedimentation or electrophoresis in a binary, symmetric electrolyte is studied. The surface potential of the particle is assumed to be small compared to the thermal voltage scale. Additionally, the Debye length is assumed to be large compared to the particle size. These assumptions enable a linearization of the electrokinetic equations. The particle appears as a point charge in this thick-double-layer limit; the distribution of charge in the diffuse cloud surrounding it is determined by a balance of advection due to the particle motion, Brownian diffusion of ions, and electrostatic screening of the particle by the cloud. The ability of advection to deform the charge cloud from its equilibrium state is parametrized by a Péclet number, Pe. For weak advection (Pe ≪ 1), the cloud is only slightly deformed. In contrast, the cloud can be completely stripped from the particle at Pe ≫ 1; consequently, electrokinetic effects on the particle motion vanish in this regime. Therefore, in sedimentation the drag limits to Stokes' law for an uncharged particle as Pe → ∞. Likewise, the particle velocity for electrophoresis approaches Huckel's result. The strongly deformed cloud at large Pe is predicted to generate a concomitant increase in the sedimentation field in a dilute settling suspension.

  7. Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in s NN = 5.02   TeV p+Pb collisions measured by the ATLAS experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.; Abbott, B.; Abdallah, J.

    Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using p+Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of √s NN =5.02TeV. Charged particles are reconstructed over pseudorapidity |η| < 2.3 and transverse momentum between 0.1 GeV and 22 GeV in a dataset corresponding to an integrated luminosity of 1 μb -1 . The results are presented in the form of charged-particle nuclear modification factors, where the p+Pb charged-particle multiplicities are compared between central and peripheral p+Pb collisions as well as to charged-particle crossmore » sections measured in pp collisions. The p+Pb collision centrality is characterized by the total transverse energy measured in -4.9 < η < -3.1, which is in the direction of the outgoing lead beam. Three different estimations of the number of nucleons participating in the p+Pb collision are carried out using the Glauber model and two Glauber–Gribov colour-fluctuation extensions to the Glauber model. The values of the nuclear modification factors are found to vary significantly as a function of rapidity and transverse momentum. A broad peak is observed for all centralities and rapidities in the nuclear modification factors for charged-particle transverse momentum values around 3 GeV. The magnitude of the peak increases for more central collisions as well as rapidity ranges closer to the direction of the outgoing lead nucleus.« less

  8. Hawking radiation from a Reisner-Nordström domain wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, Eric, E-mail: esg3@buffalo.edu

    2010-01-01

    We investigate the effect on the Hawking radiation given off during the time of collapse of a Reisner-Nordström domain wall. Using the functional Schrödinger formalism we are able to probe the time-dependent regime, which is out of the reach of the standard approximations like the Bogolyubov method. We calculate the occupation number of particles for a scalar field and complex scalar field. We demonstrate that the particles from the scalar field are unaffected by the charge of the Reisner-Nordström domain wall, as is expected since the scalar field doesn't carry any charge, which would couple to the charge of themore » Reisner-Nordström domain wall. Here the situation effectively reduces to the uncharged case, a spherically symmetric domain wall. To take the charge into account, we consider the complex scalar field which represents charged particles and anti-particles. Here investigate two different cases, first the non-extremal case and second the extremal case. In the non-extremal case we demonstrate that when the particle (anti-particle) carries charge opposite to that of the domain wall, the occupation number becomes suppressed during late times of the collapse. Therefore the dominate occupation number is when the particle (anti-particle) carries the same charge as the domain wall, as expected due to the Coulomb potential carried by the domain walls. In the extremal case we demonstrate that as time increases the temperature of the radiation decreases until when the domain wall reaches the horizon and the temperature then goes to zero. This is in agreement with the Hawking temperature for charged black holes.« less

  9. Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in s NN = 5.02   TeV p+Pb collisions measured by the ATLAS experiment

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2016-10-29

    Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using p+Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of √s NN =5.02TeV. Charged particles are reconstructed over pseudorapidity |η| < 2.3 and transverse momentum between 0.1 GeV and 22 GeV in a dataset corresponding to an integrated luminosity of 1 μb -1 . The results are presented in the form of charged-particle nuclear modification factors, where the p+Pb charged-particle multiplicities are compared between central and peripheral p+Pb collisions as well as to charged-particle crossmore » sections measured in pp collisions. The p+Pb collision centrality is characterized by the total transverse energy measured in -4.9 < η < -3.1, which is in the direction of the outgoing lead beam. Three different estimations of the number of nucleons participating in the p+Pb collision are carried out using the Glauber model and two Glauber–Gribov colour-fluctuation extensions to the Glauber model. The values of the nuclear modification factors are found to vary significantly as a function of rapidity and transverse momentum. A broad peak is observed for all centralities and rapidities in the nuclear modification factors for charged-particle transverse momentum values around 3 GeV. The magnitude of the peak increases for more central collisions as well as rapidity ranges closer to the direction of the outgoing lead nucleus.« less

  10. The Impact of Back-Sputtered Carbon on the Accelerator Grid Wear Rates of the NEXT and NSTAR Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2013-01-01

    A study was conducted to quantify the impact of back-sputtered carbon on the downstream accelerator grid erosion rates of the NASA's Evolutionary Xenon Thruster (NEXT) Long Duration Test (LDT1). A similar analysis that was conducted for the NASA's Solar Electric Propulsion Technology Applications Readiness Program (NSTAR) Life Demonstration Test (LDT2) was used as a foundation for the analysis developed herein. A new carbon surface coverage model was developed that accounted for multiple carbon adlayers before complete surface coverage is achieved. The resulting model requires knowledge of more model inputs, so they were conservatively estimated using the results of past thin film sputtering studies and particle reflection predictions. In addition, accelerator current densities across the grid were rigorously determined using an ion optics code to determine accelerator current distributions and an algorithm to determine beam current densities along a grid using downstream measurements. The improved analysis was applied to the NSTAR test results for evaluation. The improved analysis demonstrated that the impact of back-sputtered carbon on pit and groove wear rate for the NSTAR LDT2 was negligible throughout most of eroded grid radius. The improved analysis also predicted the accelerator current density for transition from net erosion to net deposition considerably more accurately than the original analysis. The improved analysis was used to estimate the impact of back-sputtered carbon on the accelerator grid pit and groove wear rate of the NEXT Long Duration Test (LDT1). Unlike the NSTAR analysis, the NEXT analysis was more challenging because the thruster was operated for extended durations at various operating conditions and was unavailable for measurements because the test is ongoing. As a result, the NEXT LDT1 estimates presented herein are considered preliminary until the results of future post-test analyses are incorporated. The worst-case impact of carbon back-sputtering was determined to be the full power operating condition, but the maximum impact of back-sputtered carbon was only a 4 percent reduction in wear rate. As a result, back-sputtered carbon is estimated to have an insignificant impact on the first failure mode of the NEXT LDT1 at all operating conditions.

  11. High-energy e- /e+ spectrometer via coherent interaction in a bent crystal

    NASA Astrophysics Data System (ADS)

    Bagli, Enrico; Guidi, Vincenzo; Howard, Alexander

    2018-01-01

    We propose a novel spectrometer based on the crystal channeling effect capable of discriminating between positive and negative particles well beyond the TeV energy scale. The atomic order of a crystalline structure generates an electrostatic field built up by all the atoms in the crystals, which confines charged particle trajectories between neighbouring atomic planes. Through such an interaction in a tiny curved crystal, the same dynamical action on the highest energy particles as that of a huge superconducting magnet is achieved. Depending on the charge sign, points of equilibrium of the oscillatory motion under channeling lie between or on atomic planes for positive and negative particles, respectively, forcing positive particles to stably oscillate far from the planes, while negative ones repeatedly cross them. The different interaction rate with atomic planes causes a tremendous discrepancy between the deflection efficiency of positive and negative particles under channeling. We suggest the use of interactions between charged particles and oriented bent crystals as a novel non-cryogenic passive charge spectrometer to aid the search for dark matter in the Universe in satellite-borne experiment. The limited angular acceptance makes this technique particularly suited for directional local sources of energetic charged particles.

  12. Explosively Driven Particle Fields Imaged Using a High-Speed Framing Camera and Particle Image Velocimetry

    DTIC Science & Technology

    2011-08-01

    inert steel particles and by Frost et al. (2005, 2007) with reactive aluminum and magnesium particles. All used sensitized nitromethane and were...particles in a spherical or cylindrical charge case was used with sensitized nitromethane . Frost et al. (2002), determined that for a given charge

  13. The Use of OXYGEN-18 in the Development of Methods for Controlled Sputter Deposition of High Critical Transition Temperature Material Thin Films of Predicted Composition and Good Uniformity

    NASA Astrophysics Data System (ADS)

    Tidrow, Steven Clay

    Two primary concerns, in the sputter deposition of high T_{c} material films, are the prevention of oxygen deficiency in the films and the elimination of the negative ion effect. "Oxygen deficiency" occurs when the amount of oxygen incorporated into the film is less than the amount of oxygen required to form the superconducting material lattice. Oxygen deficiency is due to the volatile nature of oxygen. The negative ion effect occurs when an atom or molecule (typically oxygen) gains an extra electron, is accelerated away from the target and impinges upon a film being grown directly in front of the sputtering target. The impinging particle has enough energy to cause resputtering of the deposited film. The presence of Sr and to a greater extent Ba, may enhance the negative ion effect in these materials. However, it is oxygen which readily forms negative ions that is primarily responsible for the negative ion effect. Thus, oxygen must be given special attention in the sputter deposition of high T_{c} material films. A specially designed sputtering system is used to demonstrate that the negative ion effect can be reduced such that large uniform high T_{c} material films possessing predicted and repeated composition can be grown in an on-axis arrangement. Utilizing this same sputtering system and the volatile nature of oxygen, it is demonstrated that oxygen processes occurring in the chamber during growth of high T_ {c} material films can be investigated using the tracer ^{18}O. In particular, it is shown that ^{18}O can be utilized as a tool for (1) investigating the negative ion effect, (2) investigating oxygen incorporation into high T_{c} material films, (3) investigating oxygen incorporation into the target, (4) tailoring films for oxygen migration and interface investigations and (5) tailoring films for the other specific oxygen investigations. Such sputtering systems that utilize the tracer ^{18}O are necessary for systematic growth of high T_ {c} material films for systematic investigations into the nature of these materials.

  14. Observation of Charge-Dependent Azimuthal Correlations in p-Pb Collisions and Its Implication for the Search for the Chiral Magnetic Effect.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; König, A; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Strauss, J; Waltenberger, W; Wulz, C-E; Dvornikov, O; Makarenko, V; Zykunov, V; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; De Wolf, E A; Janssen, X; Lauwers, J; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Lowette, S; Moortgat, S; Moreels, L; Olbrechts, A; Python, Q; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Brun, H; Clerbaux, B; De Lentdecker, G; Delannoy, H; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Luetic, J; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Vannerom, D; Yonamine, R; Zenoni, F; Zhang, F; Cimmino, A; Cornelis, T; Dobur, D; Fagot, A; Garcia, G; Gul, M; Khvastunov, I; Poyraz, D; Salva, S; Schöfbeck, R; Sharma, A; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Bakhshiansohi, H; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; De Visscher, S; Delaere, C; Delcourt, M; Francois, B; Giammanco, A; Jafari, A; Jez, P; Komm, M; Krintiras, G; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Nuttens, C; Piotrzkowski, K; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Wertz, S; Beliy, N; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Cheng, T; Jiang, C H; Leggat, D; Liu, Z; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Zhao, J; Ban, Y; Chen, G; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; González Hernández, C F; Ruiz Alvarez, J D; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Sculac, T; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Mesic, B; Micanovic, S; Sudic, L; Susa, T; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Tsiakkouri, D; Finger, M; Finger, M; Carrera Jarrin, E; Abdelalim, A A; Mohammed, Y; Salama, E; Kadastik, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Järvinen, T; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Kucher, I; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Abdulsalam, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Granier de Cassagnac, R; Jo, M; Lisniak, S; Miné, P; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Le Bihan, A-C; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sabes, D; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Tsamalaidze, Z; Autermann, C; Beranek, S; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schomakers, C; Schulz, J; Verlage, T; Weber, H; Zhukov, V; Albert, A; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hamer, M; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Flügge, G; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Müller, T; Nehrkorn, A; Nowack, A; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Arndt, T; Asawatangtrakuldee, C; Beernaert, K; Behnke, O; Behrens, U; Bin Anuar, A A; Borras, K; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Grados Luyando, J M; Gunnellini, P; Harb, A; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Keaveney, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Lelek, A; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Ntomari, E; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Seitz, C; Spannagel, S; Stefaniuk, N; Van Onsem, G P; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Dreyer, T; Garutti, E; Gonzalez, D; Haller, J; Hoffmann, M; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Pantaleo, F; Peiffer, T; Perieanu, A; Poehlsen, J; Sander, C; Scharf, C; Schleper, P; Schmidt, A; Schumann, S; Schwandt, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Akbiyik, M; Barth, C; Baur, S; Baus, C; Berger, J; Butz, E; Caspart, R; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Fink, S; Freund, B; Friese, R; Giffels, M; Gilbert, A; Goldenzweig, P; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kudella, S; Lobelle Pardo, P; Mildner, H; Mozer, M U; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Shvetsov, I; Sieber, G; Simonis, H J; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Filipovic, N; Bencze, G; Hajdu, C; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Makovec, A; Molnar, J; Szillasi, Z; Bartók, M; Raics, P; Trocsanyi, Z L; Ujvari, B; Bahinipati, S; Choudhury, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Kumari, P; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Keshri, S; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, R; Bhattacharya, S; Chatterjee, K; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Dugad, S; Kole, G; Mahakud, B; Mitra, S; Mohanty, G B; Parida, B; Sur, N; Sutar, B; Banerjee, S; Bhowmik, S; Dewanjee, R K; Ganguly, S; Guchait, M; Jain, Sa; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Sarkar, T; Wickramage, N; Chauhan, S; Dube, S; Hegde, V; Kapoor, A; Kothekar, K; Pandey, S; Rane, A; Sharma, S; Behnamian, H; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Fahim, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Manzoni, R A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Pigazzini, S; Ragazzi, S; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; De Nardo, G; Di Guida, S; Esposito, M; Fabozzi, F; Fienga, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Carvalho Antunes De Oliveira, A; Checchia, P; Dall'Osso, M; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Zanetti, M; Zotto, P; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; Del Re, D; Diemoz, M; Gelli, S; Longo, E; Margaroli, F; Marzocchi, B; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Cenna, F; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Monteno, M; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Shchelina, K; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Casarsa, M; Cossutti, F; Della Ricca, G; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, S; Lee, S W; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Lee, A; Kim, H; Brochero Cifuentes, J A; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Lee, H; Oh, S B; Radburn-Smith, B C; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Hwang, C; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Magaña Villalba, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Oropeza Barrera, C; Vazquez Valencia, F; Carpinteyro, S; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Saddique, A; Shah, M A; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Calpas, B; Di Francesco, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Chtchipounov, L; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Murzin, V; Oreshkin, V; Sulimov, V; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Toms, M; Vlasov, E; Zhokin, A; Bylinkin, A; Markin, O; Tarkovskii, E; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Ershov, A; Gribushin, A; Kaminskiy, A; Kodolova, O; Korotkikh, V; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Vardanyan, I; Blinov, V; Skovpen, Y; Shtol, D; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Dordevic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Barrio Luna, M; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; González Fernández, J R; Palencia Cortezon, E; Sanchez Cruz, S; Suárez Andrés, I; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Castiñeiras De Saa, J R; Curras, E; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Bloch, P; Bocci, A; Bonato, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Roeck, A; Di Marco, E; Dobson, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Fartoukh, S; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Girone, M; Glege, F; Gulhan, D; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kieseler, J; Kirschenmann, H; Knünz, V; Kornmayer, A; Kortelainen, M J; Kousouris, K; Krammer, M; Lange, C; Lecoq, P; Lourenço, C; Lucchini, M T; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Merlin, J A; Mersi, S; Meschi, E; Milenovic, P; Moortgat, F; Morovic, S; Mulders, M; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Sauvan, J B; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Sphicas, P; Steggemann, J; Stoye, M; Takahashi, Y; Tosi, M; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Veres, G I; Verweij, M; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lecomte, P; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Yang, Y; Zucchetta, A; Candelise, V; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Paganis, E; Psallidas, A; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Hos, I; Kangal, E E; Kara, O; Kayis Topaksu, A; Kiminsu, U; Oglakci, M; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Turkcapar, S; Zorbakir, I S; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Smith, D; Smith, V J; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Di Maria, R; Dunne, P; Elwood, A; Futyan, D; Haddad, Y; Hall, G; Iles, G; James, T; Lane, R; Laner, C; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Nash, J; Nikitenko, A; Pela, J; Penning, B; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Seez, C; Summers, S; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Wright, J; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Cooper, S I; Henderson, C; Rumerio, P; West, C; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Berry, E; Cutts, D; Garabedian, A; Hakala, J; Heintz, U; Hogan, J M; Jesus, O; Kwok, K H M; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Spencer, E; Syarif, R; Breedon, R; Breto, G; Burns, D; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Bravo, C; Cousins, R; Dasgupta, A; Everaerts, P; Florent, A; Hauser, J; Ignatenko, M; Mccoll, N; Saltzberg, D; Schnaible, C; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Ghiasi Shirazi, S M A; Hanson, G; Heilman, J; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Olmedo Negrete, M; Paneva, M I; Shrinivas, A; Si, W; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; Derdzinski, M; Holzner, A; Klein, D; Krutelyov, V; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Amin, N; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Franco Sevilla, M; George, C; Golf, F; Gouskos, L; Gran, J; Heller, R; Incandela, J; Mullin, S D; Ovcharova, A; Qu, H; Richman, J; Stuart, D; Suarez, I; Yoo, J; Anderson, D; Apresyan, A; Bendavid, J; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Lawhorn, J M; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Weinberg, M; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chaves, J; Chu, J; Dittmer, S; Mcdermott, K; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Tan, S M; Tao, Z; Thom, J; Tucker, J; Wittich, P; Zientek, M; Winn, D; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Cremonesi, M; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Magini, N; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Wu, Y; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Low, J F; Ma, P; Matchev, K; Mei, H; Mitselmakher, G; Rank, D; Shchutska, L; Sperka, D; Thomas, L; Wang, J; Wang, S; Yelton, J; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, J R; Adams, T; Askew, A; Bein, S; Diamond, B; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Santra, A; Yohay, R; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Jung, K; Kurt, P; O'Brien, C; Sandoval Gonzalez, I D; Turner, P; Varelas, N; Wang, H; Wu, Z; Zakaria, M; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Martin, C; Osherson, M; Roskes, J; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Boren, S; Bowen, J; Bruner, C; Castle, J; Forthomme, L; Kenny, R P; Khalil, S; Kropivnitskaya, A; Majumder, D; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Tapia Takaki, J D; Wang, Q; Ivanov, A; Kaadze, K; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Ricci-Tam, F; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Abercrombie, D; Allen, B; Apyan, A; Barbieri, R; Baty, A; Bi, R; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Hsu, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Krajczar, K; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Maier, B; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Tatar, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Benvenuti, A C; Chatterjee, R M; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bartek, R; Bloom, K; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Kravchenko, I; Malta Rodrigues, A; Meier, F; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Bhattacharya, S; Charaf, O; Hahn, K A; Kubik, A; Kumar, A; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Wayne, M; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Hughes, R; Ji, W; Liu, B; Luo, W; Puigh, D; Winer, B L; Wulsin, H W; Cooperstein, S; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Lange, D; Luo, J; Marlow, D; Mc Donald, J; Medvedeva, T; Mei, K; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Svyatkovskiy, A; Tully, C; Zuranski, A; Malik, S; Barker, A; Barnes, V E; Folgueras, S; Gutay, L; Jha, M K; Jones, M; Jung, A W; Miller, D H; Neumeister, N; Schulte, J F; Shi, X; Sun, J; Wang, F; Xie, W; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Agapitos, A; Chou, J P; Contreras-Campana, E; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Nash, K; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Delannoy, A G; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Juska, E; Kamon, T; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; De Guio, F; Dragoiu, C; Dudero, P R; Faulkner, J; Gurpinar, E; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Peltola, T; Undleeb, S; Volobouev, I; Wang, Z; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Xia, F; Clarke, C; Harr, R; Karchin, P E; Sturdy, J; Belknap, D A; Buchanan, J; Caillol, C; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Savin, A; Smith, N; Smith, W H; Taylor, D; Woods, N

    2017-03-24

    Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p-Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range |η|<2.4, and a third particle measured in the hadron forward calorimeters (4.4<|η|<5). The observed differences between the same and opposite sign correlations, as functions of multiplicity and η gap between the two charged particles, are of similar magnitude in p-Pb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.

  15. Charged particle beam scanning using deformed high gradient insulator

    DOEpatents

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  16. Steady-State Ion Beam Modeling with MICHELLE

    NASA Astrophysics Data System (ADS)

    Petillo, John

    2003-10-01

    There is a need to efficiently model ion beam physics for ion implantation, chemical vapor deposition, and ion thrusters. Common to all is the need for three-dimensional (3D) simulation of volumetric ion sources, ion acceleration, and optics, with the ability to model charge exchange of the ion beam with a background neutral gas. The two pieces of physics stand out as significant are the modeling of the volumetric source and charge exchange. In the MICHELLE code, the method for modeling the plasma sheath in ion sources assumes that the electron distribution function is a Maxwellian function of electrostatic potential over electron temperature. Charge exchange is the process by which a neutral background gas with a "fast" charged particle streaming through exchanges its electron with the charged particle. An efficient method for capturing this is essential, and the model presented is based on semi-empirical collision cross section functions. This appears to be the first steady-state 3D algorithm of its type to contain multiple generations of charge exchange, work with multiple species and multiple charge state beam/source particles simultaneously, take into account the self-consistent space charge effects, and track the subsequent fast neutral particles. The solution used by MICHELLE is to combine finite element analysis with particle-in-cell (PIC) methods. The basic physics model is based on the equilibrium steady-state application of the electrostatic particle-in-cell (PIC) approximation employing a conformal computational mesh. The foundation stems from the same basic model introduced in codes such as EGUN. Here, Poisson's equation is used to self-consistently include the effects of space charge on the fields, and the relativistic Lorentz equation is used to integrate the particle trajectories through those fields. The presentation will consider the complexity of modeling ion thrusters.

  17. Simulations to Predict the Phase Behavior and Structure of Multipolar Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Rutkowski, David Matthew

    Colloidal particles with anisotropic charge distributions can assemble into a number of interesting structures including chains, lattices and micelles that could be useful in biotechnology, optics and electronics. The goal of this work is to understand how the properties of the colloidal particles, such as their charge distribution or shape, affect the selfassembly and phase behavior of collections of such particles. The specific aim of this work is to understand how the separation between a pair of oppositely signed charges affects the phase behavior and structure of assemblies of colloidal particles. To examine these particles, we have used both discontinuous molecular dynamics (DMD) and Monte Carlo (MC) simulation techniques. In our first study of colloidal particles with finite charge separation, we simulate systems of 2-D colloidal rods with four possible charge separations. Our simulations show that the charge separation does indeed have a large effect on the phase behavior as can be seen in the phase diagrams we construct for these four systems in the area fraction-reduced temperature plane. The phase diagrams delineate the boundaries between isotropic fluid, string-fluid and percolated fluid for all systems considered. In particular, we find that coarse gel-like structures tend to form at large charge separations while denser aggregates form at small charge separations, suggesting a route to forming low volume gels by focusing on systems with large charge separations. Next we examine systems of circular particles with four embedded charges of alternating sign fixed to a triangular lattice. This system is found to form a limit periodic structure, a theoretical structure with an infinite number of phase transitions, under specific conditions. The limit-periodic structure only forms when the rotation of the particles in the system is restricted to increments of pi/3. When the rotation is restricted to increments of th/6 or the rotation is continuous, related structures form including a striped phase and a phase with nematic order. Neither the distance from the point charges to the center of the particle nor the angle between the charges influences whether the system forms a limit-periodic structure, suggesting that point quadrupoles may also be able to form limit-periodic structures. Results from these simulations will likely aid in the quest to find an experimental realization of a limit-periodic structure. Next we examine the effect of charge separation on the self-assembly of systems of 2-D colloidal particles with off-center extended dipoles. We simulate systems with both small and large charge separations for a set of displacements of the dipole from the particle center. Upon cooling, these particles self-assemble into closed, cyclic structures at large displacements including dimers, triangular shapes and square shapes, and chain-like structures at small displacements. At extremely low temperatures, the cyclic structures form interesting lattices with particles of similar chirality grouped together. Results from this work could aid in the experimental construction of open lattice-like structures that could find use in photonic applications. Finally, we present work in collaboration with Drs. Bhuvnesh Bharti and Orlin Velev in which we investigate how the surface coverage affects the self-assembly of systems of Janus particles coated with both an iron oxide and fatty acid chain layer. We model these particles by decorating a sphere with evenly dispersed points that interact with points on other spheres through square-well interactions. The interactions are designed to mimic specific coverage values for the iron oxide/fatty acid chain layer. Structures similar to those found in experiment form readily in the simulations. The number of clusters formed as a function of surface coverage agrees well with experiment. The aggregation behavior of these novel particles can therefore, be described by a relatively simple model.

  18. Correlation of structural properties with energy transfer of Eu-doped ZnO thin films prepared by sol-gel process and magnetron reactive sputtering

    PubMed Central

    Petersen, Julien; Brimont, Christelle; Gallart, Mathieu; Schmerber, Guy; Gilliot, Pierre; Ulhaq-Bouillet, Corinne; Rehspringer, Jean-Luc; Colis, Silviu; Becker, Claude; Slaoui, Abdelillah; Dinia, Aziz

    2010-01-01

    We investigated the structural and optical properties of Eu-doped ZnO thin films made by sol-gel technique and magnetron reactive sputtering on Si (100) substrate. The films elaborated by sol-gel process are polycrystalline while the films made by sputtering show a strongly textured growth along the c-axis. X-ray diffraction patterns and transmission electron microscopy analysis show that all samples are free of spurious phases. The presence of Eu2+ and Eu3+ into the ZnO matrix has been confirmed by x-ray photoemission spectroscopy. This means that a small fraction of Europium substitutes Zn2+ as Eu2+ into the ZnO matrix; the rest of Eu being in the trivalent state. This is probably due to the formation of Eu2O3 oxide at the surface of ZnO particles. This is at the origin of the strong photoluminescence band observed at 2 eV, which is characteristic of the 5D0→7F2 Eu3+ transition. In addition the photoluminescence excitonic spectra showed efficient energy transfer from the ZnO matrix to the Eu3+ ion, which is qualitatively similar for both films although the sputtered films have a better structural quality compared to the sol-gel process grown films. PMID:20644657

  19. Measurement of charged-particle distributions sensitive to the underlying event in $$ \\sqrt{s}=13 $$ TeV proton-proton collisions with the ATLAS detector at the LHC

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-03-29

    We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV, in low-luminosity Large Hadron Collider fills corresponding to an integrated luminosity of 1.6 nb –1. The distributions were constructed using charged particles with absolute pseudorapidity less than 2.5 and with transverse momentum greater than 500 MeV, in events with at least one such charged particle with transverse momentum above 1 GeV. These distributions characterise the angular distribution of energy and particle flows with respect to the charged particle with highest transverse momentum, as a function ofmore » both that momentum and of charged-particle multiplicity. The results have been corrected for detector effects and are compared to the predictions of various Monte Carlo event generators, experimentally establishing the level of underlying-event activity at LHC Run 2 energies and providing inputs for the development of event generator modelling. The current models in use for UE modelling typically describe this data to 5% accuracy, compared with data uncertainties of less than 1%.« less

  20. Measurement of charged-particle distributions sensitive to the underlying event in $$ \\sqrt{s}=13 $$ TeV proton-proton collisions with the ATLAS detector at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV, in low-luminosity Large Hadron Collider fills corresponding to an integrated luminosity of 1.6 nb –1. The distributions were constructed using charged particles with absolute pseudorapidity less than 2.5 and with transverse momentum greater than 500 MeV, in events with at least one such charged particle with transverse momentum above 1 GeV. These distributions characterise the angular distribution of energy and particle flows with respect to the charged particle with highest transverse momentum, as a function ofmore » both that momentum and of charged-particle multiplicity. The results have been corrected for detector effects and are compared to the predictions of various Monte Carlo event generators, experimentally establishing the level of underlying-event activity at LHC Run 2 energies and providing inputs for the development of event generator modelling. The current models in use for UE modelling typically describe this data to 5% accuracy, compared with data uncertainties of less than 1%.« less

  1. Measurement of the centrality dependence of the charged particle pseudorapidity distribution in lead-lead collisions at √{sNN} = 2.76 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Chen, Y.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lotto, B.; de Mora, L.; de Nooij, L.; de Oliveira Branco, M.; de Pedis, D.; de Saintignon, P.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dean, S.; Debbe, R.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Jovin, T.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Keung, J.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McLaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero Y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Øye, O. K.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, Hs.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; van der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; Zur Nedden, M.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration

    2012-04-01

    The ATLAS experiment at the LHC has measured the centrality dependence of charged particle pseudorapidity distributions over | η | < 2 in lead-lead collisions at a nucleon-nucleon centre-of-mass energy of √{sNN} = 2.76 TeV. In order to include particles with transverse momentum as low as 30 MeV, the data were recorded with the central solenoid magnet off. Charged particles were reconstructed with two algorithms (2-point "tracklets" and full tracks) using information from the pixel detector only. The lead-lead collision centrality was characterized by the total transverse energy in the forward calorimeter in the range 3.2 < | η | < 4.9. Measurements are presented of the per-event charged particle pseudorapidity distribution, dNch / dη, and the average charged particle multiplicity in the pseudorapidity interval | η | < 0.5 in several intervals of collision centrality. The results are compared to previous mid-rapidity measurements at the LHC and RHIC. The variation of the mid-rapidity charged particle yield per colliding nucleon pair with the number of participants is consistent with lower √{sNN} results. The shape of the dNch / dη distribution is found to be independent of centrality within the systematic uncertainties of the measurement.

  2. Evaluation of the filtration performance of NIOSH-approved N95 filtering facepiece respirators by photometric and number-based test methods.

    PubMed

    Rengasamy, Samy; Miller, Adam; Eimer, Benjamin C

    2011-01-01

    N95 particulate filtering facepiece respirators are certified by measuring penetration levels photometrically with a presumed severe case test method using charge neutralized NaCl aerosols at 85 L/min. However, penetration values obtained by photometric methods have not been compared with count-based methods using contemporary respirators composed of electrostatic filter media and challenged with both generated and ambient aerosols. To better understand the effects of key test parameters (e.g., particle charge, detection method), initial penetration levels for five N95 model filtering facepiece respirators were measured using NaCl aerosols with the aerosol challenge and test equipment employed in the NIOSH respirator certification method (photometric) and compared with an ultrafine condensation particle counter method (count based) for the same NaCl aerosols as well as for ambient room air particles. Penetrations using the NIOSH test method were several-fold less than the penetrations obtained by the ultrafine condensation particle counter for NaCl aerosols as well as for room particles indicating that penetration measurement based on particle counting offers a more difficult challenge than the photometric method, which lacks sensitivity for particles < 100 nm. All five N95 models showed the most penetrating particle size around 50 nm for room air particles with or without charge neutralization, and at 200 nm for singly charged NaCl monodisperse particles. Room air with fewer charged particles and an overwhelming number of neutral particles contributed to the most penetrating particle size in the 50 nm range, indicating that the charge state for the majority of test particles determines the MPPS. Data suggest that the NIOSH respirator certification protocol employing the photometric method may not be a more challenging aerosol test method. Filter penetrations can vary among workplaces with different particle size distributions, which suggests the need for the development of new or revised "more challenging" aerosol test methods for NIOSH certification of respirators.

  3. Transistor-based particle detection systems and methods

    DOEpatents

    Jain, Ankit; Nair, Pradeep R.; Alam, Muhammad Ashraful

    2015-06-09

    Transistor-based particle detection systems and methods may be configured to detect charged and non-charged particles. Such systems may include a supporting structure contacting a gate of a transistor and separating the gate from a dielectric of the transistor, and the transistor may have a near pull-in bias and a sub-threshold region bias to facilitate particle detection. The transistor may be configured to change current flow through the transistor in response to a change in stiffness of the gate caused by securing of a particle to the gate, and the transistor-based particle detection system may configured to detect the non-charged particle at least from the change in current flow.

  4. An electrostatic charge measurement of blowing snow particles focusing on collision frequency to the snow surface

    NASA Astrophysics Data System (ADS)

    Omiya, S.; Sato, A.

    2010-12-01

    Blowing snow particles are known to have an electrostatic charge. This charge may be a contributing factor in the formation of snow drifts and snow cornices and changing of the trajectory of blowing snow particles. These formations and phenomena can cause natural disaster such as an avalanche and a visibility deterioration, and obstruct transportation during winter season. Therefore, charging phenomenon of the blowing snow particles is an important issue in terms of not only precise understanding of the particle motion but disaster prevention. The primary factor of charge accumulation to the blowing snow particles is thought to be due to “saltation” of them. The “saltation” is one of movement forms of blowing snow: when the snow particles are transported by the wind, they repeat frictional collisions with the snow surface. In previous studies, charge-to-mass ratios measured in the field were approximately -50 to -10 μC/kg, and in the wind tunnel were approximately -0.8 to -0.1 μC/kg. While there were qualitatively consistent in sign, negative, there were huge gaps quantitatively between them. One reason of those gaps is speculated to be due to differences in fetch. In other words, the difference of the collision frequency of snow particles to the snow surface has caused the gaps. But it is merely a suggestion and that has not been confirmed. The purpose of this experiment is to measure the charge of blowing snow particles focusing on the collision frequency and clarify the relationship between them. Experiments were carried out in the cryogenic wind tunnel of Snow and Ice Research Center (NIED, JAPAN). A Faraday cage and an electrometer were used to measure the charge of snow particles. These experiments were conducted over the hard snow surface condition to prevent the erosion of the snow surface and the generation of new snow particles from the surface. The collision frequency of particle was controlled by changing the wind velocity (4.5 to 7 m/s) under the fixed fetch (12m). The number of collisions of particle was converted from the wind velocity using an equation obtained by Kosugi et al. (2004). Blowing snow particles tend to accumulate negative charges gradually with increase of the number of collisions to the snow surface. As a result, it is demonstrated that the gaps between the field values and the wind tunnel ones were due to difference of the collision frequency of snow particles. Assuming a logarithmic relationship as first approximation between the measured charges and the number of collisions, the charge-to-mass ratios will reach roughly the same value which was obtained in the field with several hundreds collisions. For instance, fetch is needed roughly 200m for blowing snow particles to gain -30 μC/kg under the following conditions: air temperature -20 degrees Celsius, wind velocity 7m/s and hard snow surface. REFERENCE: Kosugi et al., (2004): Dependence of drifting snow saltation length on snow surface hardness. Cold Reg. Sci. Technol., 39, 133-139.

  5. ISS And Space Environment Interactions Without Operating Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Ferguson, Dale; Suggs,Rob; McCollum, Matt

    2001-01-01

    The International Space Station (ISS) will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur. The details of interaction effects on spacecraft have not been addressed until driven by design. This was true for ISS. If the structure is allowed to float highly negative impinging ions can sputter exposed conductors which can degrade the primary surface and also generate contamination due to the sputtered material. Arcing has been known to occur on solar arrays that float negative of the ambient plasma. This can also generate electromagnetic interference and voltage transients. Much of the ISS structure and pressure module surfaces exposed to space is anodized aluminum. The anodization thickness is very thin to provide the required solar absorptance and emittance. For conditions where ISS structure can charge negative a large percentage of the array voltage, the dielectric strength of this layer is low, and dielectric breakdown (arcing) can occur. The energy stored capacitively in the structure can be delivered to the arc. The mechanisms by which this energy is delivered and how much of the energy is available hasn't been fully quantified. Questions have been raised regarding the possibility of whether a sustained arc might result due to current collected by the solar arrays from local plasma. It was postulated that even if dielectric breakdown didn't occur, impacts due to micrometeoroids and space debris could penetrate thin layers of dielectric on ISS and initiate an arc due to the coupling provided by the dense local plasma produced by the impact. This was proven in experiments conducted jointly by MSFC and Auburn University. A target chamber with a simulated ionospheric plasma and a biased, anodized aluminum plate and a 1-microfarad capacitor was used. The plate was then impacted by 75-micron particles accelerated to orbital velocity. Arc discharges were sustained for higher voltages but a threshold appears below which no discharge was initiated. Most items without an exposed power system will float electrically near the local plasma potential. This is true of the Space Shuttle, an Astronaut on EVA, and similar items. The structure of ISS might be at a large negative voltage. Therefore, capacitively stored energy can be transferred during docking, installing external boxes and equipment and Astronaut contact with ISS structure. The circumstances of when this can happen and the resulting effects are evaluated in this study. Also, a crewmember on EVA might be in the vicinity of an arc. All safety aspects of such an encounter including charging, molten particles from the arc site and EMI have been evaluated. This paper will report on the total results of this study focussed on the 4A configuration, scheduled to be complete in November, 2000. Interactions such as arcing, debris induced arcs, sustained arcs, sputtering, contamination from sputtering and arcing, docking interactions and Astronaut safety issues will all be addressed.

  6. Ion Beam Sputtered Coatings of Bioglass

    NASA Technical Reports Server (NTRS)

    Hench, Larry L.; Wilson, J.; Ruzakowski, Patricia Henrietta Anne

    1982-01-01

    The ion beam sputtering technique available at the NASA-Lewis was used to apply coatings of bioglass to ceramic, metallic, and polymeric substrates. Experiments in vivo and in vitro described investigate these coatings. Some degree of substrate masking was obtained in all samples although stability and reactivity equivalent to bulk bioglass was not observed in all coated samples. Some degree of stability was seen in all coated samples that were reacted in vitro. Both metallic and ceramic substrates coated in this manner failed to show significantly improved coatings over those obtained with existing techniques. Implantation of the coated ceramic substrate samples in bone gave no definite bonding as seen with bulk glass; however, partial and patchy bonding was seen. Polymeric substrates in these studies showed promise of success. The coatings applied were sufficient to mask the underlying reactive test surface and tissue adhesion of collagen to bioglass was seen. Hydrophilic, hydrophobic, charged, and uncharged polymeric surfaces were successfully coated.

  7. Effect of hafnium doping on density of states in dual-target magnetron co-sputtering HfZnSnO thin film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chuan-Xin; Li, Jun, E-mail: SHUniverjunli@163.com; Fu, Yi-Zhou

    2015-11-23

    This study investigates the effect of hafnium doping on the density of states (DOSs) in HfZnSnO thin film transistors fabricated by dual-target magnetron co-sputtering system. The DOSs is extracted by temperature-dependent field-effect measurements, and they decrease from 1.1 × 10{sup 17} to 4.6 × 10{sup 16 }eV/cm{sup 3} with increasing the hafnium concentrations. The behavior of DOSs for the increasing hafnium concentration HfZnSnO thin film transistors can be confirmed by both the reduction of ΔV{sub T} under bias stress and the trapping charges calculated by capacitance voltage measurements. It suggests that the reduction in DOSs due to the hafnium doping is closely related with themore » bias stability and thermal stability.« less

  8. Means and method for the focusing and acceleration of parallel beams of charged particles

    DOEpatents

    Maschke, Alfred W.

    1983-07-05

    A novel apparatus and method for focussing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The quadrupole arrays may comprise electrodes which are shared by two or more quadrupoles. Such quadrupole arrays are particularly adapted to providing strong focussing forces for high current, high brightness, beams of charged particles, said beams further comprising a plurality of parallel beams, or beamlets, each such beamlet being focussed by one quadrupole of the array. Such arrays may be incorporated in various devices wherein beams of charged particles are accelerated or transported, such as linear accelerators, klystron tubes, beam transport lines, etc.

  9. Azimuthal anisotropy of photon and charged particle emissionin 208Pb + 208Pb collisions at 158 $$\\cdot A$$ GeV/c

    DOE PAGES

    Aggarwal, M. M.; Ahammed, Z.; Angelis, A. L.S.; ...

    2005-05-04

    The azimuthal distributions of photons and charged particles with respect to the event plane are investigated as a function of centrality in 208Pb + 208Pb collisions at 158 · A GeV/c in the WA98 experiment at the CERN SPS. The anisotropy of the azimuthal distributions is characterized using a Fourier analysis. For both the photon and charged particle distributions the first two Fourier coefficients are observed to decrease with increasing centrality. The observed anisotropies of the photon distributions compare well with the expectations from the charged particle measurements for all centralities.

  10. Interaction of free charged particles with a chirped electromagnetic pulse.

    PubMed

    Khachatryan, A G; van Goor, F A; Boller, K-J

    2004-12-01

    We study the effect of chirp on electromagnetic (EM) pulse interaction with a charged particle. Both the one-dimensional (1D) and 3D cases are considered. It is found that, in contrast to the case of a nonchirped pulse, the charged particle energy can be changed after the interaction with a 1D EM chirped pulse. Different types of chirp and pulse envelopes are considered. In the case of small chirp, an analytical expression is found for arbitrary temporal profiles of the chirp and the pulse envelope. In the 3D case, the interaction with a chirped pulse results in a polarization-dependent scattering of charged particles.

  11. Corona And Ultraviolet Equipment For Testing Materials

    NASA Technical Reports Server (NTRS)

    Laue, Eric G.

    1993-01-01

    Two assemblies of laboratory equipment developed for use in testing abilities of polymers, paints, and other materials to withstand ultraviolet radiation and charged particles. One is vacuum ultraviolet source built around commercial deuterium lamp. Other exposes specimen in partial vacuum to both ultraviolet radiation and brush corona discharge. Either or both assemblies used separately or together to simulate approximately combination of solar radiation and charged particles encountered by materials aboard spacecraft in orbit around Earth. Also used to provide rigorous environmental tests of materials exposed to artificial ultraviolet radiation and charged particles in industrial and scientific settings or to natural ultraviolet radiation and charged particles aboard aircraft at high altitudes.

  12. Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at √{sNN} = 5.02 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovská, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.; Alice Collaboration

    2017-09-01

    We present the charged-particle pseudorapidity density in Pb-Pb collisions at √{sNN} = 5.02 TeV in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from -3.5 to 5, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0-5%) collisions we find 21 400 ± 1 300, while for the most peripheral (80-90%) we find 230 ± 38. This corresponds to an increase of (27 ± 4)% over the results at √{sNN} = 2.76 TeV previously reported by ALICE. The energy dependence of the total number of charged particles produced in heavy-ion collisions is found to obey a modified power-law like behaviour. The charged-particle pseudorapidity density of the most central collisions is compared to model calculations - none of which fully describes the measured distribution. We also present an estimate of the rapidity density of charged particles. The width of that distribution is found to exhibit a remarkable proportionality to the beam rapidity, independent of the collision energy from the top SPS to LHC energies.

  13. Cherenkov radiation of superluminal particles

    NASA Astrophysics Data System (ADS)

    Rohrlich, Daniel; Aharonov, Yakir

    2002-10-01

    Any charged particle moving faster than light through a medium emits Cherenkov radiation. We show that charged particles moving faster than light through the vacuum emit Cherenkov radiation. How can a particle move faster than light? The weak speed of a charged particle can exceed the speed of light. By definition, the weak velocity w is <Ψfin|v|Ψin>/<Ψfin|Ψin>, where v is the velocity operator and |Ψin> and |Ψfin> are, respectively, the states of a particle before and after a velocity measurement. We discuss the consistency of weak values and show that superluminal weak speed is consistent with relativistic causality.

  14. Investigations of charged particle motion on the surfaces of dusty, airless solar system bodies (Invited)

    NASA Astrophysics Data System (ADS)

    Dove, A.; Colwell, J. E.

    2013-12-01

    Dynamic charging conditions exist on the dusty surfaces of planetary bodies such as the Moon, asteroids, and the moons of Mars. On these so-called 'airless bodies', the motions of dust particles above the surface become complex due to grain-grain and grain-plasma interactions. For example, tribocharging and other charge transfer processes can occur due to relative dust grain movements, and charged dust grains immersed in plasma interact with local electromagnetic forces. This is thought to lead to effects such as the lunar 'horizon glow,' (Rennilson and Criswell, 1974, The Moon, 10) and potential dusty 'fountains' above the lunar surface (Stubbs et al., 2006, Adv. Sp. Res., 37). Regolith grains can be mobilized by impacts or other mechanical disturbances, or simply by the Coulomb force acting on grains. Previous work has increased our theoretical understanding of the behavior of charged particles in these low-gravity environments (i.e. Poppe and Horanyi, 2010, JGR, A115; Colwell et al., 2007, Rev. Geophys., 45 (and references therein)). Experimental work has also analyzed grain surface charging due to plasma or tribocharging (Sickafoose et al., 2001, JGR, 106) and the motion of grains on surfaces in the presence of an electric field (Wang et al., 2009, JGR, 114). Occasionally, there is disagreement between theoretical predictions and observations. We present the results of new laboratory experiments aimed at understanding particle charging and the dynamics of charged particles on the surfaces of airless bodies. In the initial experiments, we analyze the motion of particles in the presence of an electric field in vacuum, either in a bell-jar or in a 0.75-second microgravity drop tower experiment box. Prior to motion, particles may be charged due to triboelectric effects, plasma interactions, or a combination of the two. Motion is induced by shaking or by low-velocity impacts in order to simulate the natural motion of slow-moving objects on regolith surfaces, or induced motion such as that due to a spacecraft. The resulting particle dynamics are tracked using high-speed, high-resolution video. Future exploration on or near the surfaces of airless bodies will certainly experience complications arising from these dusty environments, where particles may contaminate or interfere with the operation of almost any mechanical equipment. By exploring the dynamic behavior of charged particles in these environments, we can work towards solutions that will enable exploration.

  15. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  16. Oppositely charged colloids out of equilibrium

    NASA Astrophysics Data System (ADS)

    Vissers, T.

    2010-11-01

    Colloids are particles with a size in the range of a few nanometers up to several micrometers. Similar to atomic and molecular systems, they can form gases, liquids, solids, gels and glasses. Colloids can be used as model systems because, unlike molecules, they are sufficiently large to be studied directly with light microscopy and move sufficiently slow to study their dynamics. In this thesis, we study binary systems of polymethylmethacrylate (PMMA) colloidal particles suspended in low-polar solvent mixtures. Since the ions can still partially dissociate, a surface charge builds up which causes electrostatic interactions between the colloids. By carefully tuning the conditions inside the suspension, we make two kinds of particles oppositely charged. To study our samples, we use Confocal Laser Scanning Microscopy (CLSM). The positively and negatively charged particles can be distinguished by a different fluorescent dye. Colloids constantly experience a random motion resulting from random kicks of surrounding solvent molecules. When the attractions between the oppositely charged particles are weak, the particles can attach and detach many times and explore a lot of possible configurations and the system can reach thermodynamic equilibrium. For example, colloidal ‘ionic’ crystals consisting of thousands to millions of particles can form under the right conditions. When the attractions are strong, the system can become kinetically trapped inside a gel-like state. We observe that when the interactions change again, crystals can even emerge again from this gel-like phase. By using local order parameters, we quantitatively study the crystallization of colloidal particles and identify growth defects inside the crystals. We also study the effect of gravity on the growth of ionic crystals by using a rotating stage. We find that sedimentation can completely inhibit crystal growth and plays an important role in crystallization from the gel-like state. The surface potential and charge are studied by electrophoresis. Here, the velocity of the particles is measured while they are moving in an electric field. Using our real-space CLSM setup, we find that for a single-component system, the charge on the particles decreases with increasing volume fraction. Apart from structures that oppositely charged particles form close to thermodynamic equilibrium, we also study pattern formation when the system is driven out of equilibrium by an electric field. When oppositely charged particles are driven in opposite directions, the collisions between them cause particle of the same kind to form lanes. By combining our CLSM experiments with Brownian dynamics computer simulations, we study the structure and the dynamics of the suspension on the single-particle level. We find that the number of particles in a lane increases continuously with the field strength. By studying the dynamics and fluctuations parallel and perpendicular to the electric field direction, we identify the key mechanism of lane-formation. We show that pattern formation can easily become more complicated when we introduce alternating current (AC) fields. In addition to the formation of lanes parallel to the field-axis, bands of like-charged particles can form perpendicular to it. When the particles are sufficiently mobile, the system can be remixed again by changing the frequency. When AC-fields with higher field strengths are used, we show that complex patterns, including rotating instabilities, can emerge. The results in this thesis yield fundamental insight in electrophoresis, crystallization and pattern formation when systems are driven out of equilibrium. The results on lane- and band-formation can be relevant for the design of electronic ink (e-ink), where electrically driven oppositely charged particles are used to change the image on a piece of electronic paper.

  17. Forecasting Space Weather Events for a Neighboring World

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Mason, Tom; Wood, Erin L.

    2015-01-01

    Shortly after NASA's Mars Atmosphere and Volatile EvolutioN mission (MAVEN) spacecraft entered Mars' orbit on 21 September 2014, scientists glimpsed the Martian atmosphere's response to a front of solar energetic particles (SEPs) and an associated coronal mass ejection (CME). In response to some solar flares and CMEs, streams of SEPs burst from the solar atmosphere and are further accelerated in the interplanetary medium between the Sun and the planets. These particles deposit their energy and momentum into anything in their path, including the Martian atmosphere and MAVEN particle detectors. MAVEN scientists had been alerted to the likely CME-Mars encounter by a space weather prediction system that had its origins in space weather forecasting for Earth but now forecasts space weather for Earth's neighboring planets. The two Solar Terrestrial Relations Observatory spacecraft and Solar Heliospheric Observatory observed a CME on 26 September, with a trajectory that suggested a Mars intercept. A computer model developed for solar wind prediction, the Wang-Sheeley-Arge-Enlil cone model [e.g., Zheng et al., 2013; Parsons et al., 2011], running in real time at the Community Coordinated Modeling Center (CCMC) located at NASA Goddard since 2006, showed the CME propagating in the direction of Mars (Figure 1). According to MAVEN particle detectors, the disturbance and accompanying SEP enhancement at the leading edge of the CME reached Mars at approximately 17 hours Universal Time on 29 September 2014. Such SEPs may have a profound effect on atmospheric escape - they are believed to be a possible means for driving atmospheric loss. SEPs can cause loss of Mars' upper atmosphere through several loss mechanisms including sputtering of the atmosphere. Sputtering occurs when atoms are ejected from the atmosphere due to impacts with energetic particles.

  18. Pseudocapacitive and hierarchically ordered porous electrode materials supercapacitors

    NASA Astrophysics Data System (ADS)

    Saruhan, B.; Gönüllü, Y.; Arndt, B.

    2013-05-01

    Commercially available double layer capacitors store energy in an electrostatic field. This forms in the form of a double layer by charged particles arranged on two electrodes consisting mostly of active carbon. Such double layer capacitors exhibit a low energy density, so that components with large capacity according to large electrode areas are required. Our research focuses on the development of new electrode materials to realize the production of electrical energy storage systems with high energy density and high power density. Metal oxide based electrodes increase the energy density and the capacitance by addition of pseudo capacitance to the static capacitance present by the double layer super-capacitor electrodes. The so-called hybrid asymmetric cell capacitors combine both types of energy storage in a single component. In this work, the production routes followed in our laboratories for synthesis of nano-porous and aligned metal oxide electrodes using the electrochemical and sputter deposition as well as anodization methods will be described. Our characterisation studies concentrate on electrodes having redox metal-oxides (e.g. MnOx and WOx) and hierarchically aligned nano-porous Li-doped TiO2-NTs. The material specific and electrochemical properties achieved with these electrodes will be presented.

  19. A mechanism for large divertor plasma energy loss via lithium radiation in tokamaks

    NASA Astrophysics Data System (ADS)

    Rognlien, T. D.; Meier, E. T.; Soukhanovskii, V. A.

    2012-10-01

    Lithium has been used as a wall-conditioning element in a number of tokamaks over the years, including TFTR, FTU, and NSTX, where core plasma energy confinement and particle control are often found to improve following such conditioning. Here the possible role of Li in providing substantial energy loss for divertor plasmas via line radiation is reported. A multi-charge-state 2D UEDGE fluid model is used where the hydrogenic and Li ions and neutrals are each evolved as separate species and separate equations are solved for the electron and ion temperatures. It is shown that a sufficient level of Li neutrals evolving from the divertor surface via sputtering or evaporation can induce energy detachment of the divertor plasma, yielding a strongly radiating zone near the divertor where ionization and recombination from/to neutral Li can radiate most of the power flowing into the scrape-off layer while maintaining low core contamination. A local peaking of Li emissivity for electron temperatures near 1 eV appears to play an important role in the detachment of the mixed deuterium/Li plasma. Evidence of such behavior from NSTX discharges will be discussed.

  20. The Phobos neutral and ionized torus

    NASA Astrophysics Data System (ADS)

    Poppe, A. R.; Curry, S. M.; Fatemi, S.

    2016-05-01

    Charged particle sputtering, micrometeoroid impact vaporization, and photon-stimulated desorption are fundamental processes operating at airless surfaces throughout the solar system. At larger bodies, such as Earth's Moon and several of the outer planet moons, these processes generate tenuous surface-bound exospheres that have been observed by a variety of methods. Phobos and Deimos, in contrast, are too gravitationally weak to keep ejected neutrals bound and, thus, are suspected to generate neutral tori in orbit around Mars. While these tori have not yet been detected, the distribution and density of both the neutral and ionized components are of fundamental interest. We combine a neutral Monte Carlo model and a hybrid plasma model to investigate both the neutral and ionized components of the Phobos torus. We show that the spatial distribution of the neutral torus is highly dependent on each individual species (due to ionization rates that span nearly 4 orders of magnitude) and on the location of Phobos with respect to Mars. Additionally, we present the flux distribution of torus pickup ions throughout the Martian system and estimate typical pickup ion fluxes. We find that the predicted pickup ion fluxes are too low to perturb the ambient plasma, consistent with previous null detections by spacecraft around Mars.

  1. Towards higher stability of resonant absorption measurements in pulsed plasmas.

    PubMed

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-12-01

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called "dynamic source triggering," between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.

  2. Separating large microscale particles by exploiting charge differences with dielectrophoresis.

    PubMed

    Polniak, Danielle V; Goodrich, Eric; Hill, Nicole; Lapizco-Encinas, Blanca H

    2018-04-13

    Dielectrophoresis (DEP), the migration of particles due to polarization effects under the influence of a nonuniform electric field, was employed for characterizing the behavior and achieving the separation of larger (diameter >5 μm) microparticles by exploiting differences in electrical charge. Usually, electrophoresis (EP) is the method of choice for separating particles based on differences in electrical charge; however, larger particles, which have low electrophoretic mobilities, cannot be easily separated with EP-based techniques. This study presents an alternative for the characterization, assessment, and separation of larger microparticles, where charge differences are exploited with DEP instead of EP. Polystyrene microparticles with sizes varying from 5 to 10 μm were characterized employing microdevices for insulator-based dielectrophoresis (iDEP). Particles within an iDEP microchannel were exposed simultaneously to DEP, EP, and electroosmotic (EO) forces. The electrokinetic behavior of four distinct types of microparticles was carefully characterized by means of velocimetry and dielectrophoretic capture assessments. As a final step, a dielectropherogram separation of two distinct types of 10 μm particles was devised by first characterizing the particles and then performing the separation. The two types of 10 μm particles were eluted from the iDEP device as two separate peaks of enriched particles in less than 80 s. It was demonstrated that particles with the same size, shape, surface functionalization, and made from the same bulk material can be separated with iDEP by exploiting slight differences in the magnitude of particle charge. The results from this study open the possibility for iDEP to be used as a technique for the assessment and separation of biological cells that have very similar characteristics (shape, size, similar make-up), but slight variance in surface electrical charge. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Atomistic Molecular Dynamics Simulations of Charged Latex Particle Surfaces in Aqueous Solution.

    PubMed

    Li, Zifeng; Van Dyk, Antony K; Fitzwater, Susan J; Fichthorn, Kristen A; Milner, Scott T

    2016-01-19

    Charged particles in aqueous suspension form an electrical double layer at their surfaces, which plays a key role in suspension properties. For example, binder particles in latex paint remain suspended in the can because of repulsive forces between overlapping double layers. Existing models of the double layer assume sharp interfaces bearing fixed uniform charge, and so cannot describe aqueous binder particle surfaces, which are soft and diffuse, and bear mobile charge from ionic surfactants as well as grafted multivalent oligomers. To treat this industrially important system, we use atomistic molecular dynamics simulations to investigate a structurally realistic model of commercial binder particle surfaces, informed by extensive characterization of particle synthesis and surface properties. We determine the interfacial profiles of polymer, water, bound and free ions, from which the charge density and electrostatic potential can be calculated. We extend the traditional definitions of the inner and outer Helmholtz planes to our diffuse interfaces. Beyond the Stern layer, the simulated electrostatic potential is well described by the Poisson-Boltzmann equation. The potential at the outer Helmholtz plane compares well to the experimental zeta potential. We compare particle surfaces bearing two types of charge groups, ionic surfactant and multivalent oligomers, with and without added salt. Although the bare charge density of a surface bearing multivalent oligomers is much higher than that of a surfactant-bearing surface at realistic coverage, greater counterion condensation leads to similar zeta potentials for the two systems.

  4. Polyelectrolyte assisted charge titration spectrometry: Applications to latex and oxide nanoparticles.

    PubMed

    Mousseau, F; Vitorazi, L; Herrmann, L; Mornet, S; Berret, J-F

    2016-08-01

    The electrostatic charge density of particles is of paramount importance for the control of the dispersion stability. Conventional methods use potentiometric, conductometric or turbidity titration but require large amount of samples. Here we report a simple and cost-effective method called polyelectrolyte assisted charge titration spectrometry or PACTS. The technique takes advantage of the propensity of oppositely charged polymers and particles to assemble upon mixing, leading to aggregation or phase separation. The mixed dispersions exhibit a maximum in light scattering as a function of the volumetric ratio X, and the peak position XMax is linked to the particle charge density according to σ∼D0XMax where D0 is the particle diameter. The PACTS is successfully applied to organic latex, aluminum and silicon oxide particles of positive or negative charge using poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). The protocol is also optimized with respect to important parameters such as pH and concentration, and to the polyelectrolyte molecular weight. The advantages of the PACTS technique are that it requires minute amounts of sample and that it is suitable to a broad variety of charged nano-objects. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Modeling of electrochemical flow capacitors using Stokesian dynamics

    NASA Astrophysics Data System (ADS)

    Karzar Jeddi, Mehdi; Luo, Haoxiang; Cummings, Peter; Hatzell, Kelsey

    2017-11-01

    Electrochemical flow capacitors (EFCs) are supercapacitors designed to store electrical energy in the form of electrical double layer (EDL) near the surface of porous carbon particles. During its operation, a slurry of activated carbon beads and smaller carbon black particles is pumped between two flat and parallel electrodes. In the charging phase, ions in the electrolyte diffuse to the EDL, and electrical charges percolate through the dynamic network of particles from the flat electrodes; during the discharging phase, the process is reversed with the ions released to the bulk fluid and electrical charges percolating back through the network. In these processes, the relative motion and contact of particle of different sizes affect not only the rheology of the slurry but also charge transfer of the percolation network. In this study, we use Stoekesian dynamics simulation to investigate the role of hydrodynamic interactions of packed carbon particles in the charging/discharging behaviors of EFCs. We derived mobility functions for polydisperse spheres near a no-slip wall. A code is implemented and validated, and a simple charging model has been incorporated to represent charge transfer. Theoretical formulation and results demonstration will be presented in this talk.

  6. Tunneling of Charged and Magnetized Fermions from a Rotating Dyonic Taub-NUT Black Hole

    NASA Astrophysics Data System (ADS)

    Sultana, Kausari

    2017-12-01

    We investigate tunneling of charged and magnetized Dirac particles from a rotating dyonic Taub-NUT (TN) black hole (BH) called the Kerr-Newman-KasuyaTub-NUT (KNKTN) BH endowed with electric as well as magnetic charges. We derive the tunneling probability of outgoing charged particles by using the semiclassical WKB approximation to the covariant Dirac equation and obtain the corresponding Hawking temperature. The emission spectrum deviates from the purely thermal spectrum with the leading term exactly the Boltzman factor, if energy conservation and the backreaction of particles to the spacetime are considered. The results provides a quantumcorrected radiation temperature depending on the BH background and the radiation particles energy, angular momentum, and charges. The results are consistent with those already available in literature.

  7. Massless charged particles: Cosmic censorship, and the third law of black hole mechanics

    NASA Astrophysics Data System (ADS)

    Fairoos, C.; Ghosh, Avirup; Sarkar, Sudipta

    2017-10-01

    The formulation of the laws of Black hole mechanics assumes the stability of black holes under perturbations in accordance with the "cosmic censorship hypothesis" (CCH). CCH prohibits the formation of a naked singularity by a physical process from a regular black hole solution with an event horizon. Earlier studies show that naked singularities can indeed be formed leading to the violation of CCH if a near-extremal black hole is injected with massive charged particles and the backreaction effects are neglected. We investigate the validity of CCH by considering the infall of charged massless particles as well as a charged null shell. We also discuss the issue of the third law of Black hole mechanics in the presence of null charged particles by considering various possibilities.

  8. Debris- and radiation-induced damage effects on EUV nanolithography source collector mirror optics performance

    NASA Astrophysics Data System (ADS)

    Allain, J. P.; Nieto, M.; Hendricks, M.; Harilal, S. S.; Hassanein, A.

    2007-05-01

    Exposure of collector mirrors facing the hot, dense pinch plasma in plasma-based EUV light sources to debris (fast ions, neutrals, off-band radiation, droplets) remains one of the highest critical issues of source component lifetime and commercial feasibility of nanolithography at 13.5-nm. Typical radiators used at 13.5-nm include Xe and Sn. Fast particles emerging from the pinch region of the lamp are known to induce serious damage to nearby collector mirrors. Candidate collector configurations include either multi-layer mirrors (MLM) or single-layer mirrors (SLM) used at grazing incidence. Studies at Argonne have focused on understanding the underlying mechanisms that hinder collector mirror performance at 13.5-nm under fast Sn or Xe exposure. This is possible by a new state-of-the-art in-situ EUV reflectometry system that measures real time relative EUV reflectivity (15-degree incidence and 13.5-nm) variation during fast particle exposure. Intense EUV light and off-band radiation is also known to contribute to mirror damage. For example offband radiation can couple to the mirror and induce heating affecting the mirror's surface properties. In addition, intense EUV light can partially photo-ionize background gas (e.g., Ar or He) used for mitigation in the source device. This can lead to local weakly ionized plasma creating a sheath and accelerating charged gas particles to the mirror surface and inducing sputtering. In this paper we study several aspects of debris and radiation-induced damage to candidate EUVL source collector optics materials. The first study concerns the use of IMD simulations to study the effect of surface roughness on EUV reflectivity. The second studies the effect of fast particles on MLM reflectivity at 13.5-nm. And lastly the third studies the effect of multiple energetic sources with thermal Sn on 13.5-nm reflectivity. These studies focus on conditions that simulate the EUVL source environment in a controlled way.

  9. Convergence of the Light-Front Coupled-Cluster Method in Scalar Yukawa Theory

    NASA Astrophysics Data System (ADS)

    Usselman, Austin

    We use Fock-state expansions and the Light-Front Coupled-Cluster (LFCC) method to study mass eigenvalue problems in quantum field theory. Specifically, we study convergence of the method in scalar Yukawa theory. In this theory, a single charged particle is surrounded by a cloud of neutral particles. The charged particle can create or annihilate neutral particles, causing the n-particle state to depend on the n + 1 and n - 1-particle state. Fock state expansion leads to an infinite set of coupled equations where truncation is required. The wave functions for the particle states are expanded in a basis of symmetric polynomials and a generalized eigenvalue problem is solved for the mass eigenvalue. The mass eigenvalue problem is solved for multiple values for the coupling strength while the number of particle states and polynomial basis order are increased. Convergence of the mass eigenvalue solutions is then obtained. Three mass ratios between the charged particle and neutral particles were studied. This includes a massive charged particle, equal masses and massive neutral particles. Relative probability between states can also be explored for more detailed understanding of the process of convergence with respect to the number of Fock sectors. The reliance on higher order particle states depended on how large the mass of the charge particle was. The higher the mass of the charged particle, the more the system depended on higher order particle states. The LFCC method solves this same mass eigenvalue problem using an exponential operator. This exponential operator can then be truncated instead to form a finite system of equations that can be solved using a built in system solver provided in most computational environments, such as MatLab and Mathematica. First approximation in the LFCC method allows for only one particle to be created by the new operator and proved to be not powerful enough to match the Fock state expansion. The second order approximation allowed one and two particles to be created by the new operator and converged to the Fock state expansion results. This showed the LFCC method to be a reliable replacement method for solving quantum field theory problems.

  10. On charging of snow particles in blizzard

    NASA Technical Reports Server (NTRS)

    Shio, Hisashi

    1991-01-01

    The causes of the charge polarity on the blizzard, which consisted of fractured snow crystals and ice particles, were investigated. As a result, the charging phenomena showed that the characteristics of the blizzard are as follows: (1) In the case of the blizzard with snowfall, the fractured snow particles drifting near the surface of snow field (lower area: height 0.3 m) had positive charge, while those drifting at higher area (height 2 m) from the surface of snow field had negative charge. However, during the series of blizzards two kinds of particles positively and negatively charged were collected in equal amounts in a Faraday Cage. It may be considered that snow crystals with electrically neutral properties were separated into two kinds of snow flakes (charged positively and negatively) by destruction of the snow crystals. (2) In the case of the blizzard which consisted of irregularly formed ice drops (generated by peeling off the hardened snow field), the charge polarity of these ice drops salting over the snow field was particularly controlled by the crystallographic characteristics of the surface of the snow field hardened by the powerful wind pressure.

  11. Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals.

    PubMed

    Reese, Chad E; Asher, Sanford A

    2002-04-01

    We have developed emulsifier-free, emulsion polymerization recipes for the synthesis of highly charged, monodisperse latex particles of diameters between 500 and 1100 nm. These latexes consist of poly[styrene-(co-2-hydroxyethyl methacrylate)] spherical particles whose surfaces are functionalized with sulfate and carboxylic acid groups. These highly charged, monodisperse particles readily self-assemble into robust, three-dimensionally ordered crystalline colloidal array photonic crystals that Bragg diffract light in the near infrared spectral region. By altering the particle number density, the diffraction wavelength can be tuned from approximately 1000 to approximately 4000 nm.

  12. Defects, stoichiometry, and electronic transport in SrTiO{sub 3-δ} epilayers: A high pressure oxygen sputter deposition study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambwani, P.; Xu, P.; Jeong, J. S.

    SrTiO{sub 3} is not only of enduring interest due to its unique dielectric, structural, and lattice dynamical properties, but is also the archetypal perovskite oxide semiconductor and a foundational material in oxide heterostructures and electronics. This has naturally focused attention on growth, stoichiometry, and defects in SrTiO{sub 3}, one exciting recent development being such precisely stoichiometric defect-managed thin films that electron mobilities have finally exceeded bulk crystals. This has been achieved only by molecular beam epitaxy, however (and to a somewhat lesser extent pulsed laser deposition (PLD)), and numerous open questions remain. Here, we present a study of the stoichiometry,more » defects, and structure in SrTiO{sub 3} synthesized by a different method, high pressure oxygen sputtering, relating the results to electronic transport. We find that this form of sputter deposition is also capable of homoepitaxy of precisely stoichiometric SrTiO{sub 3}, but only provided that substrate and target preparation, temperature, pressure, and deposition rate are carefully controlled. Even under these conditions, oxygen-vacancy-doped heteroepitaxial SrTiO{sub 3} films are found to have carrier density, mobility, and conductivity significantly lower than bulk. While surface depletion plays a role, it is argued from particle-induced X-ray emission (PIXE) measurements of trace impurities in commercial sputtering targets that this is also due to deep acceptors such as Fe at 100's of parts-per-million levels. Comparisons of PIXE from SrTiO{sub 3} crystals and polycrystalline targets are shown to be of general interest, with clear implications for sputter and PLD deposition of this important material.« less

  13. Universal Binding and Recoil Corrections to Bound State g Factors in Hydrogenlike Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eides, Michael I.; Martin, Timothy J. S.

    2010-09-03

    The leading relativistic and recoil corrections to bound state g factors of particles with arbitrary spin are calculated. It is shown that these corrections are universal for any spin and depend only on the free particle gyromagnetic ratios. To prove this universality we develop nonrelativistic quantum electrodynamics (NRQED) for charged particles with an arbitrary spin. The coefficients in the NRQED Hamiltonian for higher spin particles are determined only by the requirements of Lorentz invariance and local charge conservation in the respective relativistic theory. For spin one charged particles, the NRQED Hamiltonian follows from the renormalizable QED of the charged vectormore » bosons. We show that universality of the leading relativistic and recoil corrections can be explained with the help of the Bargmann-Michael-Telegdi equation.« less

  14. The PHOBOS detector at RHIC

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Basilev, S.; Baum, R.; Betts, R. R.; Białas, A.; Bindel, R.; Bogucki, W.; Budzanowski, A.; Busza, W.; Carroll, A.; Ceglia, M.; Chang, Y.-H.; Chen, A. E.; Coghen, T.; Connor, C.; Czyż, W.; Dabrowski, B.; Decowski, M. P.; Despet, M.; Fita, P.; Fitch, J.; Friedl, M.; Gałuszka, K.; Ganz, R.; Garcia, E.; George, N.; Godlewski, J.; Gomes, C.; Griesmayer, E.; Gulbrandsen, K.; Gushue, S.; Halik, J.; Halliwell, C.; Haridas, P.; Hayes, A.; Heintzelman, G. A.; Henderson, C.; Hollis, R.; Hołyński, R.; Hofman, D.; Holzman, B.; Johnson, E.; Kane, J.; Katzy, J.; Kita, W.; Kotuła, J.; Kraner, H.; Kucewicz, W.; Kulinich, P.; Law, C.; Lemler, M.; Ligocki, J.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Neal, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Patel, M.; Pernegger, H.; Plesko, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Ross, D.; Rosenberg, L.; Ryan, J.; Sanzgiri, A.; Sarin, P.; Sawicki, P.; Scaduto, J.; Shea, J.; Sinacore, J.; Skulski, W.; Steadman, S. G.; Stephans, G. S. F.; Steinberg, P.; Straczek, A.; Stodulski, M.; Strek, M.; Stopa, Z.; Sukhanov, A.; Surowiecka, K.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zalewski, K.; Żychowski, P.; Phobos Collaboration

    2003-03-01

    This manuscript contains a detailed description of the PHOBOS experiment as it is configured for the Year 2001 running period. It is capable of detecting charged particles over the full solid angle using a multiplicity detector and measuring identified charged particles near mid-rapidity in two spectrometer arms with opposite magnetic fields. Both of these components utilize silicon pad detectors for charged particle detection. The minimization of material between the collision vertex and the first layers of silicon detectors allows for the detection of charged particles with very low transverse momenta, which is a unique feature of the PHOBOS experiment. Additional detectors include a time-of-flight wall which extends the particle identification range for one spectrometer arm, as well as sets of scintillator paddle and Cherenkov detector arrays for event triggering and centrality selection.

  15. Particle beam injector system and method

    DOEpatents

    Guethlein, Gary

    2013-06-18

    Methods and devices enable coupling of a charged particle beam to a radio frequency quadrupole accelerator. Coupling of the charged particle beam is accomplished, at least in-part, by relying on of sensitivity of the input phase space acceptance of the radio frequency quadrupole to the angle of the input charged particle beam. A first electric field across a beam deflector deflects the particle beam at an angle that is beyond the acceptance angle of the radio frequency quadrupole. By momentarily reversing or reducing the established electric field, a narrow portion of the charged particle beam is deflected at an angle within the acceptance angle of the radio frequency quadrupole. In another configuration, beam is directed at an angle within the acceptance angle of the radio frequency quadrupole by the first electric field and is deflected beyond the acceptance angle of the radio frequency quadrupole due to the second electric field.

  16. Stochastic heating of a single Brownian particle by charge fluctuations in a radio-frequency produced plasma sheath

    NASA Astrophysics Data System (ADS)

    Schmidt, Christian; Piel, Alexander

    2015-10-01

    The Brownian motion of a single particle in the plasma sheath is studied to separate the effect of stochastic heating by charge fluctuations from heating by collective effects. By measuring the particle velocities in the ballistic regime and by carefully determining the particle mass from the Epstein drag it is shown that for a pressure of 10 Pa, which is typical of many experiments, the proper kinetic temperature of the Brownian particle remains close to the gas temperature and rises only slightly with particle size. This weak effect is confirmed by a detailed model for charging and charge fluctuations in the sheath. A substantial temperature rise is found for decreasing pressure, which approximately shows the expected scaling with p-2. The system under study is an example for non-equilibrium Brownian motion under the influence of white noise without corresponding dissipation.

  17. Application of Dusty Plasmas for Space

    NASA Astrophysics Data System (ADS)

    Bhavasar, Hemang; Ahuja, Smariti

    In space, dust particles alone are affected by gravity and radiation pressure when near stars and planets. When the dust particles are immersed in plasma, the dust is usually charged either by photo ionization, due to incident UV radiation, secondary electron emission, due to collisions with energetic ions and electrons, or absorption of charged particles, due to collisions with thermal ions and electrons. A 1 micron radius dust particle in a plasma with an electron temperature of a few eV, will have a charge corresponding to a few thousand electron volts, with a resulting charge to mass ratio, Q/m ¡1. They will also be affected by electric and magnetic fields. Since the electrons are magnetized in these regions, electron E B or diamagnetic cross-field drifts may drive instabilities. Dust grains (micron to sub-micron sized solid particles) in plasma and/or radiative environments can be electrically charged by processes such as plasma current collection or photoemission. The effect of charged dust on known electrojet instabil-ities and low frequency dust acoustic and dust drift instabilities. As the plasma affects the dust particles, the dust particles can affect the plasma environment. In Dust Plasma, Plasma is Combination of ions and electrons. Dusty plasmas (also known as complex plasmas) are ordinary plasmas with embedded solid particles consisting of electrons, ions, and neutrals. The particles can be made of either dielectric or conducting materials, and can have any shape. The typical size range is anywhere from 100 nm up to say 100 m. Most often, these small objects or dust particles are electrically charged. Dusty plasmas are ubiquitous in the universe as proto-planetary and solar nebulae, molecular clouds, supernova explosions, interplanetary medium, circumsolar rings, and steroids. Closer to earth, there are the noctilucent clouds, clouds of tiny (charged) ice particles that form in the summer polar mesosphere at an altitude of about 85 km. In processing plasmas, dust particles are actually grown in the discharge from the reactive gases used to form the plasmas. Perhaps the most intriguing aspect of dusty plasmas is that the particles can be directly imaged and their dynamic behavior recorded as digital images. This is accomplished by laser light scattering from the particles. Since the particle mass is relatively high, their dynamical timescales are much longer than that of the ions or electrons. Dusty plasmas has a broad range of applications including interplanetary space dust, comets, planetary rings, dusty surfaces in space, and aerosols in the atmosphere.

  18. Method and system for treating an interior surface of a workpiece using a charged particle beam

    DOEpatents

    Swenson, David Richard

    2007-05-23

    A method and system of treating an interior surface on an internal cavity of a workpiece using a charged particle beam. A beam deflector surface of a beam deflector is placed within the internal cavity of the workpiece and is used to redirect the charged particle beam toward the interior surface to treat the interior surface.

  19. Importance of core electrostatic properties on the electrophoresis of a soft particle

    NASA Astrophysics Data System (ADS)

    De, Simanta; Bhattacharyya, Somnath; Gopmandal, Partha P.

    2016-08-01

    The impact of the volumetric charged density of the dielectric rigid core on the electrophoresis of a soft particle is analyzed numerically. The volume charge density of the inner core of a soft particle can arise for a dendrimer structure or bacteriophage MS2. We consider the electrokinetic model based on the conservation principles, thus no conditions for Debye length or applied electric field is imposed. The fluid flow equations are coupled with the ion transport equations and the equation for the electric field. The occurrence of the induced nonuniform surface charge density on the outer surface of the inner core leads to a situation different from the existing analysis of a soft particle electrophoresis. The impact of this induced surface charge density together with the double-layer polarization and relaxation due to ion convection and electromigration is analyzed. The dielectric permittivity and the charge density of the core have a significant impact on the particle electrophoresis when the Debye length is in the order of the particle size. We find that by varying the ionic concentration of the electrolyte, the particle can exhibit reversal in its electrophoretic velocity. The role of the polymer layer softness parameter is addressed in the present analysis.

  20. LET spectra measurements of charged particles in the P0006 experiment on LDEF

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Csige, I.; Oda, K.; Henke, R. P.; Frank, A. L.; Benton, E. R.; Frigo, L. A.; Parnell, T. A.; Watts, J. W., Jr.; Derrickson, J. H.

    1993-01-01

    Measurements are under way of the charged particle radiation environment of the Long Duration Exposure Facility (LDEF) satellite using stacks of plastic nuclear track detectors (PNTD's) placed in different locations of the satellite. In the initial work the charge, energy, and linear energy transfer (LET) spectra of charged particles were measured with CR-39 double layer PNTD's located on the west side of the satellite (Experiment P0006). Primary and secondary stopping heavy ions were measured separately from the more energetic particles. Both trapped and galactic cosmic ray (GCR) particles are included, with the latter component being dominated by relativistic iron particles. The results from the P0006 experiment will be compared with similar measurements in other locations on LDEF with different orientation and shielding conditions. The remarkably detailed investigation of the charged particle radiation environment of the LDEF satellite will lead to a better understanding of the radiation environment of the Space Station Freedom. It will enable more accurate prediction of single event upsets (SEU's) in microelectronics and, especially, more accurate assessment of the risk - contributed by different components of the radiation field (GCR's, trapped protons, secondaries and heavy recoils, etc.) - to the health and safety of crew members.

Top