Sample records for charged particles trapped

  1. Measuring the charge density of a tapered optical fiber using trapped microparticles.

    PubMed

    Kamitani, Kazuhiko; Muranaka, Takuya; Takashima, Hideaki; Fujiwara, Masazumi; Tanaka, Utako; Takeuchi, Shigeki; Urabe, Shinji

    2016-03-07

    We report the measurements of charge density of tapered optical fibers using charged particles confined in a linear Paul trap at ambient pressure. A tapered optical fiber is placed across the trap axis at a right angle, and polystyrene microparticles are trapped along the trap axis. The distance between the equilibrium position of a positively charged particle and the tapered fiber is used to estimate the amount of charge per unit length of the fiber without knowing the amount of charge of the trapped particle. The charge per unit length of a tapered fiber with a diameter of 1.6 μm was measured to be 2-1+3×10 -11 C/m.

  2. System and method for trapping and measuring a charged particle in a liquid

    DOEpatents

    Reed, Mark A; Krstic, Predrag S; Guan, Weihua; Zhao, Xiongce

    2013-07-23

    A system and method for trapping a charged particle is disclosed. A time-varying periodic multipole electric potential is generated in a trapping volume. A charged particle under the influence of the multipole electric field is confined to the trapping volume. A three electrode configuration giving rise to a 3D Paul trap and a four planar electrode configuration giving rise to a 2D Paul trap are disclosed.

  3. System and method for trapping and measuring a charged particle in a liquid

    DOEpatents

    Reed, Mark A; Krstic, Predrag S; Guan, Weihua; Zhao, Xiongce

    2012-10-23

    A system and method for trapping a charged particle is disclosed. A time-varying periodic multipole electric potential is generated in a trapping volume. A charged particle under the influence of the multipole electric field is confined to the trapping volume. A three electrode configuration giving rise to a 3D Paul trap and a four planar electrode configuration giving rise to a 2D Paul trap are disclosed.

  4. Electrostatic particle trap for ion beam sputter deposition

    DOEpatents

    Vernon, Stephen P.; Burkhart, Scott C.

    2002-01-01

    A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.

  5. Control of Screening of a Charged Particle in Electrolytic Aqueous Paul Trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jae Hyun nmn; Krstic, Predrag S

    2011-01-01

    Individual charged particles could be trapped and confined in the combined radio-frequency and DC quadrupole electric field of an aqueous Paul trap. Viscosity of water improves confinement and extends the range of the trap parameters which characterize the stability of the trap. Electrolyte, if present in aqueous solution, may screen the charged particle and thus partially or fully suppress electrophoretic interaction with the applied filed, possibly reducing it to a generally much weaker dielectrophoretic interaction with an induced dipole. Applying molecular dynamics simulation we show that the quadrupole field has a different affects at the electrolyte ions and at muchmore » heavier charged particle, effectively eliminating the screening effect and reinstating the electrophoretic confinement.« less

  6. Control Of Screening Of A Charged Particle In Electrolytic Aqueous Paul Trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jae Hyun; Krstic, Predrag S.

    2011-06-01

    Individual charged particles could be trapped and confined by the combined radio-frequency and DC quadrupole electric field of an aqueous Paul trap. Viscosity of water improves confinement and extends the range of the trap parameters which characterize the stability of the trap. Electrolyte, if present in aqueous solution, may screen the charged particle and thus partially or fully suppress electrophoretic interaction with the applied filed, possibly reducing it to a generally much weaker dielectrophoretic interaction with an induced dipole. Applying molecular dynamics simulation we show that the quadrupole field has a different effect at the electrolyte ions and at muchmore » heavier charged particle, effectively eliminating the screening by electrolyte ions and reinstating the electrophoretic confinement.« less

  7. Gated charged-particle trap

    DOEpatents

    Benner, W.H.

    1999-03-09

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector. 5 figs.

  8. Hybrid Quantum Systems with Trapped Charged Particles

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Leibfried, Dietrich; Simmonds, Raymond; Wineland, Dave

    We will review a joint effort by the Ion Storage Group and the Advanced Microwave Photonics Group at NIST (Boulder, CO) to design a hybrid system that interfaces charged particles with macroscopic high-Q resonators. We specifically consider coupling trapped charges to superconducting LC resonators, the mechanical modes of Silicon-Nitride membranes, and piezo-electric materials. We aim to achieve the strong coupling regime, where a single quantum of motion of the trapped charge can be coherently exchanged with harmonic motion of the macroscopic entity (electrical and/or mechanical). These kind of devices could potentially take advantage of both macroscopic control techniques and the long quantum coherence of its trapped charged particles.

  9. Contact Electrification of Individual Dielectric Microparticles Measured by Optical Tweezers in Air.

    PubMed

    Park, Haesung; LeBrun, Thomas W

    2016-12-21

    We measure charging of single dielectric microparticles after interaction with a glass substrate using optical tweezers to control the particle, measure its charge with a sensitivity of a few electrons, and precisely contact the particle with the substrate. Polystyrene (PS) microparticles adhered to the substrate can be selected based on size, shape, or optical properties and repeatedly loaded into the optical trap using a piezoelectric (PZT) transducer. Separation from the substrate leads to charge transfer through contact electrification. The charge on the trapped microparticles is measured from the response of the particle motion to a step excitation of a uniform electric field. The particle is then placed onto a target location of the substrate in a controlled manner. Thus, the triboelectric charging profile of the selected PS microparticle can be measured and controlled through repeated cycles of trap loading followed by charge measurement. Reversible optical trap loading and manipulation of the selected particle leads to new capabilities to study and control successive and small changes in surface interactions.

  10. Induced-charge electroosmotic trapping of particles.

    PubMed

    Ren, Yukun; Liu, Weiyu; Jia, Yankai; Tao, Ye; Shao, Jinyou; Ding, Yucheng; Jiang, Hongyuan

    2015-05-21

    Position-controllable trapping of particles on the surface of a bipolar metal strip by induced-charge electroosmotic (ICEO) flow is presented herein. We demonstrate a nonlinear ICEO slip profile on the electrode surface accounting for stable particle trapping behaviors above the double-layer relaxation frequency, while no trapping occurs in the DC limit as a result of a strong upward fluidic drag induced by a linear ICEO slip profile. By extending an AC-flow field effect transistor from the DC limit to the AC field, we reveal that fixed-potential ICEO exceeding RC charging frequency can adjust the particle trapping position flexibly by generating controllable symmetry breaking in a vortex flow pattern. Our results open up new opportunities to manipulate microscopic objects in modern microfluidic systems by using ICEO.

  11. Charged particle capturing in air flow by linear Paul trap

    NASA Astrophysics Data System (ADS)

    Lapitsky, D. S.; Filinov, V. S.; Vladimirov, V. I.; Syrovatka, R. A.; Vasilyak, L. M.; Pecherkin, V. Ya; Deputatova, L. V.

    2018-01-01

    The paper presents the simulation results of micro- and nanoparticle capturing in an air flows by linear Paul traps in assumption that particles gain their charges in corona discharge, its electric field strength is restricted by Paschen equation and spherical shape of particles.

  12. New apparatus of single particle trap system for aerosol visualization

    NASA Astrophysics Data System (ADS)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  13. Stability of an aqueous quadrupole micro-trap

    DOE PAGES

    Park, Jae Hyun; Krstić, Predrag S.

    2012-03-30

    Recently demonstrated functionality of an aqueous quadrupole micro- or nano-trap opens a new avenue for applications of the Paul traps, like is confinement of a charged biomolecule which requires water environment for its chemical stability. Besides strong viscosity forces, motion of a charged particle in the aqueous trap is subject to dielectrophoretic and electrophoretic forces. In this study, we describe the general conditions for stability of a charged particle in an aqueous quadrupole trap. We find that for the typical micro-trap parameters, effects of both dielectrophoresis and electrophoresis significantly influence the trap stability. In particular, the aqueous quadrupole trap couldmore » play of a role of a synthetic virtual nanopore for the 3rd generation of DNA sequencing technology.« less

  14. Trapping of high-energy electrons into regime of surfatron acceleration by electromagnetic waves in space plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erokhin, A. N.; Erokhin, N. S.; Milant'ev, V. P.

    2012-05-15

    The phenomenon of trapping of weakly relativistic charged particles (with kinetic energies on the order of mc{sup 2}) into a regime of surfatron acceleration by an electromagnetic wave that propagates in plasma across a weak external magnetic field has been studied using nonlinear numerical calculations based on a solution of the relativistic equations of motion. Analysis showed that, for the wave amplitude above a certain threshold value and the initial wave phase outside the interval favorable for the surfing regime, the trajectory of a charged particle initially corresponds to its cyclotron rotation in the external magnetic field. For the initialmore » particle energies studied, the period of this rotation is relatively short. After a certain number (from several dozen to several thousand and above) of periods of rotation, the wave phase takes a value that is favorable for trapping of the charged particle on its trajectory by the electromagnetic wave, provided the Cherenkov resonance conditions are satisfied. As a result, the wave traps the charged particle and imparts it an ultrarelativistic acceleration. In momentum space, the region of trapping into the regime of surfing on an electromagnetic wave turns out to be rather large.« less

  15. Experiments to trap dust particles by a wire simulating an electron beam

    NASA Astrophysics Data System (ADS)

    Saeki, Hiroshi; Momose, Takashi; Ishimaru, Hajime

    1991-11-01

    Motion of trapped dust particles has been previously analyzed using high-energy bremsstrahlung data obtained during dust trapping in the TRISTAN accumulation ring. Because it is difficult to observe the actual motions of dust particles trapped in an electron beam due to the strong synchrotron light background, we carried out experiments to trap sample dust particles with a Cu wire simulating an electron beam. A negative potential was slowly applied to the wire using a high voltage dc power supply. Motions of dust particles trapped by the wire were recorded with a video camera system. In an experiment using a Cu wire (1.5 mm in diameter) with no magnetic field, the charged dust particle made vertical oscillation about the wire. In another experiment using the same wire but with a vertical magnetic field (0.135 T) simulating a bending magnetic field, both vertical and horizontal oscillating motions perpendicular to the wire were observed. Furthermore, it was found that the dust particle moved in the longitudinal direction of the wire in the bending magnetic field. Therefore, it is expected that charged dust particles trapped by the electric field of the electron beam oscillate vertically where there is no magnetic field in the TRISTAN accumulation ring. It is also expected that trapped dust particles where there is a bending magnetic field oscillate horizontally and vertically as the particle drifts in a longitudinal direction along the ring.

  16. Electrostatic Charging and Particle Interactions in Microscopic Insulating Grains

    NASA Astrophysics Data System (ADS)

    Lee, Victor

    In this thesis, we experimentally investigate the electrostatic charging as well as the particle interactions in microscopic insulating grains. First, by tracking individual grains accelerated in an electric field, we quantitatively demonstrate that tribocharging of same-material grains depends on particle size. Large grains tend to charge positively, and small ones tend to charge negatively. Theories based on the transfer of trapped electrons can explain this tendency but have not been validated. Here we show that the number of trapped electrons, measured independently by a thermoluminescence technique, is orders of magnitude too small to be responsible for the amount of charge transferred. This result reveals that trapped electrons are not responsible for same-material tribocharging of dielectric particles. Second, same-material tribocharging in grains can result in important long-range electrostatic interactions. However, how these electrostatic interactions contribute to particle clustering remains elusive, primarily due to the lack of direct, detailed observations. Using a high-speed camera that falls with a stream charged grains, we observe for the first time how charged grains can undergo attractive as well as repulsive Kepler-like orbits. Charged particles can be captured in their mutual electrostatic potential and form clusters via multiple bounces. Dielectric polarization effects are directly observed, which lead to additional attractive forces and stabilize "molecule-like" arrangements of charged particles. Third, we have developed a new method to study the charge transfer of microscopic particles based on acoustic levitation techniques. This method allows us to narrow the complex problem of many-particle charging down to precise charge measurements of a single sub-millimeter particle colliding with a target plate. By simply attaching nonpolar groups onto glass surfaces, we show that the contact charging of a particle is highly dependent on hydrophobicity. Charging between a hydrophilic and a hydrophobic surface is enhanced in a basic atmosphere and suppressed in an acidic one. Moreover, hydrophobicity is also found to play a key role in particle charging driven by an external electric field. These results strongly support the idea that aqueous-ion transfer is responsible for the particle contact charging phenomenon.

  17. Charged Particle Flux Sensor

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Stocks, C. D.

    1983-01-01

    Improved version of Faraday cup increases accuracy of measurements of flux density of charged particles incident along axis through collection aperture. Geometry of cone-and-sensing cup combination assures most particles are trapped.

  18. Tunable aqueous virtual micropore.

    PubMed

    Park, Jae Hyun; Guan, Weihua; Reed, Mark A; Krstić, Predrag S

    2012-03-26

    A charged microparticle can be trapped in an aqueous environment by forming a narrow virtual pore--a cylindrical space region in which the particle motion in the radial direction is limited by forces emerging from dynamical interactions of the particle charge and dipole moment with an external radiofrequency quadrupole electric field. If the particle satisfies the trap stability criteria, its mean motion is reduced exponentially with time due to the viscosity of the aqueous environment; thereafter the long-time motion of particle is subject only to random, Brownian fluctuations, whose magnitude, influenced by the electrophoretic and dielectrophoretic effects and added to the particle size, determines the radius of the virtual pore, which is demonstrated by comparison of computer simulations and experiment. The measured size of the virtual nanopore could be utilized to estimate the charge of a trapped micro-object. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Continuous-flow trapping and localized enrichment of micro- and nano-particles using induced-charge electrokinetics.

    PubMed

    Zhao, Cunlu; Yang, Chun

    2018-02-14

    In this work, we report an effective microfluidic technique for continuous-flow trapping and localized enrichment of micro- and nano-particles by using induced-charge electrokinetic (ICEK) phenomena. The proposed technique utilizes a simple microfluidic device that consists of a straight microchannel and a conducting strip attached to the bottom wall of the microchannel. Upon application of the electric field along the microchannel, the conducting strip becomes polarized to introduce two types of ICEK phenomena, the ICEK flow vortex and particle dielectrophoresis, and they are identified by a theoretical model formulated in this study to be jointly responsible for the trapping of particles over the edge of the conducting strip. Our experiments showed that successful trapping requires an AC/DC combined electric field: the DC component is mainly to induce electroosmotic flow for transporting particles to the trapping location; the AC component induces ICEK phenomena over the edge of the conducting strip for particle trapping. The performance of the technique is examined with respect to the applied electric voltage, AC frequency and the particle size. We observed that the trapped particles form a narrow band (nearly a straight line) defined by the edge of the conducting strip, thereby allowing localized particle enrichment. For instance, we found that under certain conditions a high particle enrichment ratio of 200 was achieved within 30 seconds. We also demonstrated that the proposed technique was able to trap particles from several microns down to several tens of nanometer. We believe that the proposed ICEK trapping would have great flexibility that the trapping location can be readily varied by controlling the location of the patterned conducting strip and multiple-location trapping can be expected with the use of multiple conducting strips.

  20. Thermal noise in aqueous quadrupole micro- and nano-traps

    DOE PAGES

    Park, Jae; Krstić, Predrag S.

    2012-02-27

    Recent simulations and experiments with aqueous quadrupole micro-traps have confirmed a possibility for control and localization of motion of a charged particle in a water environment, also predicting a possibility of further reduction of the trap size to tens of nano-meters for trapping charged bio-molecules and DNA segments. We study the random thermal noise due to Brownian motion in water which significantly influences the trapping of particles in an aqueous environment. We derive the exact, closed-form expressions for the thermal fluctuations of position and velocity of a trapped particle and thoroughly examine the properties of the rms for the fluctuationsmore » as functions of the system parameters and time. The instantaneous signal transferring mechanism between the velocity and position fluctuations could not be achieved in the previous phase-average approaches.« less

  1. Numerical experiments on charging of a spherical body in a plasma with Maxwellian distributions of charged particles

    NASA Astrophysics Data System (ADS)

    Krasovsky, Victor L.; Kiselyov, Alexander A.

    2017-12-01

    New results of numerical simulation of collisionless plasma perturbation caused by a sphere absorbing electrons and ions are presented. Consideration is given to nonstationary phenomena accompanying the process of charging as well as to plasma steady state reached at long times. Corresponding asymptotic values of charges of the sphere and trapped-ion cloud around it have been found along with self-consistent electric field pattern depending on parameters of the unperturbed plasma. It is established that contribution of the trapped ions to screening of the charged sphere can be quite significant, so that the screening becomes essentially nonlinear in nature. A simple interconnection between the sphere radius, electron and ion Debye lengths has been revealed as the condition for maximum trapped-ion effect. Kinetic structure of the space charge induced in the plasma is discussed with relation to the specific form of the unperturbed charged particle distribution functions.

  2. Hybrid quantum systems with trapped charged particles

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Simmonds, Raymond W.; Leibfried, Dietrich; Wineland, David J.

    2017-02-01

    Trapped charged particles have been at the forefront of quantum information processing (QIP) for a few decades now, with deterministic two-qubit logic gates reaching record fidelities of 99.9 % and single-qubit operations of much higher fidelity. In a hybrid system involving trapped charges, quantum degrees of freedom of macroscopic objects such as bulk acoustic resonators, superconducting circuits, or nanomechanical membranes, couple to the trapped charges and ideally inherit the coherent properties of the charges. The hybrid system therefore implements a "quantum transducer," where the quantum reality (i.e., superpositions and entanglement) of small objects is extended to include the larger object. Although a hybrid quantum system with trapped charges could be valuable both for fundamental research and for QIP applications, no such system exists today. Here we study theoretically the possibilities of coupling the quantum-mechanical motion of a trapped charged particle (e.g., an ion or electron) to the quantum degrees of freedom of superconducting devices, nanomechanical resonators, and quartz bulk acoustic wave resonators. For each case, we estimate the coupling rate between the charged particle and its macroscopic counterpart and compare it to the decoherence rate, i.e., the rate at which quantum superposition decays. A hybrid system can only be considered quantum if the coupling rate significantly exceeds all decoherence rates. Our approach is to examine specific examples by using parameters that are experimentally attainable in the foreseeable future. We conclude that hybrid quantum systems involving a single atomic ion are unfavorable compared with the use of a single electron because the coupling rates between the ion and its counterpart are slower than the expected decoherence rates. A system based on trapped electrons, on the other hand, might have coupling rates that significantly exceed decoherence rates. Moreover, it might have appealing properties such as fast entangling gates, long coherence, and flexible topology that is fully electronic in nature. Realizing such a system, however, is technologically challenging because it requires accommodating both a trapping technology and superconducting circuitry in a compatible manner. We review some of the challenges involved, such as the required trap parameters, electron sources, electrical circuitry, and cooling schemes in order to promote further investigations towards the realization of such a hybrid system.

  3. Controlling charge on levitating drops.

    PubMed

    Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M

    2007-08-01

    Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation.

  4. Geomagnetic Field Distortion by a Solar Stream as a Mechanism for the Production of Polar Aurora and Electrojets

    NASA Technical Reports Server (NTRS)

    Kern, J. W.

    1961-01-01

    This paper describes a mechanism for charge separation in the geomagnetically trapped radiation which may account for some observed phenomena associated with the polar aurora and the electrojet current systems. The following development is proposed: given that there exist eastward or westward longitudinal gradients in the geomagnetic field resulting from distortion of the geomagnetic field by solar streams, if the trapped radiation is adiabatic in character, radial drift separation of positive and negative charged particles must occur. It follows that, for bounded or irregular distributions of plasma number density in such an adiabatic - drift region, electric fields will arise. The origin of such electric fields will not arrest the drift separation of the charged particles, but will contribute to exponential growth of irregularities in the trapped plasma density. An adiabatic acceleration mechanism is described, which is based on incorporating the electrostatic energy of the particle in the energy function for the particle. Direct consequences of polarization of the geomagnetically trapped radiation will be the polar electrojet current systems and the polar aurora.

  5. Positively charged particles in dusty plasmas.

    PubMed

    Samarian, A A; Vaulina, O S; Nefedov, A P; Fortov, V E; James, B W; Petrov, O F

    2001-11-01

    The trapping of dust particles has been observed in a dc abnormal glow discharge dominated by electron attachment. A dust cloud of several tens of positively charged particles was found to form in the anode sheath region. An analysis of the experimental conditions revealed that these particles were positively charged due to emission process, in contrast to most other experiments on the levitation of dust particles in gas-discharge plasmas where negatively charged particles are found. An estimate of the particle charge, taking into account the processes of photoelectron and secondary electron emission from the particle surface, is in agreement with the experimental measured values.

  6. Paul trapping of charged particles in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Weihau; Reed, Mark A; Joseph, Sony nmn

    2011-01-01

    We experimentally demonstrate the feasibility of an aqueous Paul trap using a proof-of-principle planar device. Radio frequency voltages are used to generate an alternating focusing/defocusing potential well in two orthogonal directions. Individual charged particles are dynamically confined into nanometer scale in space. Compared with conventional Paul traps working in frictionless vacuum, the aqueous environment associated with damping forces and thermally induced fluctuations (Brownian noise) exerts a fundamental influence on the underlying physics. We investigate the impact of these two effects on the confining dynamics, with the aim to reduce the rms value of the positional fluctuations. We find that themore » rms fluctuations can be modulated by adjusting the voltages and frequencies. This technique provides an alternative for the localization and control of charged particles in an aqueous environment.« less

  7. Force fields of charged particles in micro-nanofluidic preconcentration systems

    NASA Astrophysics Data System (ADS)

    Gong, Lingyan; Ouyang, Wei; Li, Zirui; Han, Jongyoon

    2017-12-01

    Electrokinetic concentration devices based on the ion concentration polarization (ICP) phenomenon have drawn much attention due to their simple setup, high enrichment factor, and easy integration with many subsequent processes, such as separation, reaction, and extraction etc. Despite significant progress in the experimental research, fundamental understanding and detailed modeling of the preconcentration systems is still lacking. The mechanism of the electrokinetic trapping of charged particles is currently limited to the force balance analysis between the electric force and fluid drag force in an over-simplified one-dimensional (1D) model, which misses many signatures of the actual system. This letter studies the particle trapping phenomena that are not explainable in the 1D model through the calculation of the two-dimensional (2D) force fields. The trapping of charged particles is shown to significantly distort the electric field and fluid flow pattern, which in turn leads to the different trapping behaviors of particles of different sizes. The mechanisms behind the protrusions and instability of the focused band, which are important factors determining overall preconcentration efficiency, are revealed through analyzing the rotating fluxes of particles in the vicinity of the ion-selective membrane. The differences in the enrichment factors of differently sized particles are understood through the interplay between the electric force and convective fluid flow. These results provide insights into the electrokinetic concentration effect, which could facilitate the design and optimization of ICP-based preconcentration systems.

  8. The motion of a charged particle on a Riemannian surface under a non-zero magnetic field

    NASA Astrophysics Data System (ADS)

    Castilho, Cesar Augusto Rodrigues

    In this thesis we study the motion of a charged particle on a Riemmanian surface under the influence of a positive magnetic field B. Using Moser's Twist Theorem and ideas from classical pertubation theory we find sufficient conditions to perpetually trap the motion of a particle with a sufficient large charge in a neighborhood of a level set of the magnetic field. The conditions on the level set of the magnetic field that guarantee the trapping are local and hold near all non- degenerate critical local minima or maxima of B. Using sympletic reduction we apply the results of our work to certain S1-invariant magnetic fields on R3.

  9. The Motion of a Charged Particle on a Riemannian Surface under a Non-Zero Magnetic Field

    NASA Astrophysics Data System (ADS)

    Castilho, César

    2001-03-01

    In this paper we study the motion of a charged particle on a Riemmanian surface under the influence of a positive magnetic field B. Using Moser's Twist Theorem and ideas from classical pertubation theory we find sufficient conditions to perpetually trap the motion of a particle with a sufficient large charge in a neighborhood of a level set of the magnetic field. The conditions on the level set of the magnetic field that guarantee the trapping are local and hold near all non-degenerate critical local minima or maxima of B. Using symplectic reduction we apply the results of our work to certain S1-invariant magnetic fields on R3.

  10. Developing Density of Laser-Cooled Neutral Atoms and Molecules in a Linear Magnetic Trap

    NASA Astrophysics Data System (ADS)

    Velasquez, Joe, III; Walstrom, Peter; di Rosa, Michael

    2013-05-01

    In this poster we show that neutral particle injection and accumulation using laser-induced spin flips may be used to form dense ensembles of ultracold magnetic particles, i.e., laser-cooled paramagnetic atoms and molecules. Particles are injected in a field-seeking state, are switched by optical pumping to a field-repelled state, and are stored in the minimum-B trap. The analogous process in high-energy charged-particle accumulator rings is charge-exchange injection using stripper foils. The trap is a linear array of sextupoles capped by solenoids. Particle-tracking calculations and design of our linear accumulator along with related experiments involving 7Li will be presented. We test these concepts first with atoms in preparation for later work with selected molecules. Finally, we present our preliminary results with CaH, our candidate molecule for laser cooling. This project is funded by the LDRD program of Los Alamos National Laboratory.

  11. Apparatus for measuring charged particle beam

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Stocks, C. D. (Inventor)

    1984-01-01

    An apparatus to measure the incident charged particle beam flux while effectively eliminating losses to reflection and/or secondary emission of the charged particle beam being measured is described. It comprises a sense cup through which the charged particle beam enters. A sense cone forms the rear wall of the interior chamber with the cone apex adjacent the entry opening. An outer case surrounds the sense cup and is electrically insulated therefrom. Charged particles entering the interior chamber are trapped and are absorbed by the sense cup and cone and travel through a current measuring device to ground.

  12. LET spectra measurements of charged particles in the P0006 experiment on LDEF

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Csige, I.; Oda, K.; Henke, R. P.; Frank, A. L.; Benton, E. R.; Frigo, L. A.; Parnell, T. A.; Watts, J. W., Jr.; Derrickson, J. H.

    1993-01-01

    Measurements are under way of the charged particle radiation environment of the Long Duration Exposure Facility (LDEF) satellite using stacks of plastic nuclear track detectors (PNTD's) placed in different locations of the satellite. In the initial work the charge, energy, and linear energy transfer (LET) spectra of charged particles were measured with CR-39 double layer PNTD's located on the west side of the satellite (Experiment P0006). Primary and secondary stopping heavy ions were measured separately from the more energetic particles. Both trapped and galactic cosmic ray (GCR) particles are included, with the latter component being dominated by relativistic iron particles. The results from the P0006 experiment will be compared with similar measurements in other locations on LDEF with different orientation and shielding conditions. The remarkably detailed investigation of the charged particle radiation environment of the LDEF satellite will lead to a better understanding of the radiation environment of the Space Station Freedom. It will enable more accurate prediction of single event upsets (SEU's) in microelectronics and, especially, more accurate assessment of the risk - contributed by different components of the radiation field (GCR's, trapped protons, secondaries and heavy recoils, etc.) - to the health and safety of crew members.

  13. Optical trapping and rotation of airborne absorbing particles with a single focused laser beam

    NASA Astrophysics Data System (ADS)

    Lin, Jinda; Li, Yong-qing

    2014-03-01

    We measure the periodic circular motion of single absorbing aerosol particles that are optically trapped with a single focused Gaussian beam and rotate around the laser propagation direction. The scattered light from the trapped particle is observed to be directional and change periodically at 0.4-20 kHz. The instantaneous positions of the moving particle within a rotation period are measured by a high-speed imaging technique using a charge coupled device camera and a repetitively pulsed light-emitting diode illumination. The centripetal acceleration of the trapped particle as high as ˜20 times the gravitational acceleration is observed and is attributed to the photophoretic forces.

  14. Effect of Thermospheric Neutral Density upon Inner Trapped-belt Proton Flux

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.

    2007-01-01

    We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.

  15. Study of Nonlinear Dynamics of Intense Charged Particle Beams in the Paul Trap Simulator Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hua

    The Paul Trap Simulator Experiment (PTSX) is a compact laboratory device that simulates the nonlinear dynamics of intense charged particle beams propagating over a large distance in an alternating-gradient magnetic transport system. The radial quadrupole electric eld forces on the charged particles in the Paul Trap are analogous to the radial forces on the charged particles in the quadrupole magnetic transport system. The amplitude of oscillating voltage applied to the cylindrical electrodes in PTSX is equivalent to the quadrupole magnetic eld gradient in accelerators. The temporal periodicity in PTSX corresponds to the spatial periodicity in magnetic transport system. This thesismore » focuses on investigations of envelope instabilities and collective mode excitations, properties of high-intensity beams with significant space-charge effects, random noise-induced beam degradation and a laser-induced-fluorescence diagnostic. To better understand the nonlinear dynamics of the charged particle beams, it is critical to understand the collective processes of the charged particles. Charged particle beams support a variety of collective modes, among which the quadrupole mode and the dipole mode are of the greatest interest. We used quadrupole and dipole perturbations to excite the quadrupole and dipole mode respectively and study the effects of those collective modes on the charge bunch. The experimental and particle-in-cell (PIC) simulation results both show that when the frequency and the spatial structure of the external perturbation are matched with the corresponding collective mode, that mode will be excited to a large amplitude and resonates strongly with the external perturbation, usually causing expansion of the charge bunch and loss of particles. Machine imperfections are inevitable for accelerator systems, and we use random noise to simulate the effects of machine imperfection on the charged particle beams. The random noise can be Fourier decomposed into various frequency components and experimental results show that when the random noise has a large frequency component that matches a certain collective mode, the mode will also be excited and cause heating of the charge bunch. It is also noted that by rearranging the order of the random noise, the adverse effects of the random noise may be eliminated. As a non-destructive diagnostic method, a laser-induced- fluorescence (LIF) diagnostic is developed to study the transverse dynamics of the charged particle beams. The accompanying barium ion source and dye laser system are developed and tested.« less

  16. Charged Particle Environments in Earth's Magnetosphere and their Effects on Space System

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2009-01-01

    This slide presentation reviews information on space radiation environments important to magnetospheric missions including trapped radiation, solar particle events, cosmic rays, and solar winds. It also includes information about ion penetration of the magnetosphere, galactic cosmic rays, solar particle environments, CRRES internal discharge monitor, surface charging and radiation effects.

  17. The charged particle radiation environment for AXAF

    NASA Technical Reports Server (NTRS)

    Joy, Marshall

    1990-01-01

    The Advanced X Ray Astrophysics Facility (AXAF) will be subjected to several sources of charged particle radiation during its 15-year orbital lifetime: geomagnetically-trapped electrons and protons, galactic cosmic ray particles, and solar flare events. These radiation levels are presented for the AXAF orbit for use in the design of the observatory's science instruments.

  18. Statistical fluctuations as the origin of nontopological solitons

    NASA Technical Reports Server (NTRS)

    Griest, Kim; Kolb, Edward W.; Masarotti, Alessandro

    1989-01-01

    Nontopological solitons can be formed during a phase transition in the early universe as long as some net charge can be trapped in regions of false vacuum. It has been previously suggested that a particle-antiparticle asymmetry would provide a source for such trapped charge. It is pointed out that, for the model and parameters considered, statistical fluctuations provide a much larger concentration of charge, and are therefore, the dominant source of charge fluctuations in solitogenesis.

  19. A TE-mode accelerator

    NASA Astrophysics Data System (ADS)

    Takeuchi, S.; Sakai, K.; Matsumoto, M.; Sugihara, R.

    1987-04-01

    An accelerator is proposed in which a TE-mode wave is used to drive charged particles in contrast to the usual linear accelerators in which longitudinal electric fields or TM-mode waves are supposed to be utilized. The principle of the acceleration is based on the V(p) x B acceleration of a dynamo force acceleration, in which a charged particle trapped in a transverse wave feels a constant electric field (Faraday induction field) and subsequently is accelerated when an appropriate magnetic field is externally applied in the direction perpendicular to the wave propagation. A pair of dielectric plates is used to produce a slow TE mode. The conditions of the particle trapping the stabilization of the particle orbit are discussed.

  20. The earth's trapped radiation belts

    NASA Technical Reports Server (NTRS)

    Noll, R. B.; Mcelroy, M. B.

    1975-01-01

    The near-earth charged particle environment is discussed in terms of spacecraft design criteria. Models are presented of the trapped radiation belts and based on in-situ data obtained from spacecraft.

  1. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalcea, Bogdan M., E-mail: bogdan.mihalcea@inflpr.ro; Vişan, Gina T.; Ganciu, Mihai

    2016-03-21

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under standard ambient temperature and pressure conditions. An 8- and 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method.more » Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.« less

  2. Magnetic trapping of neutrons

    PubMed

    Huffman; Brome; Butterworth; Coakley; Dewey; Dzhosyuk; Golub; Greene; Habicht; Lamoreaux; Mattoni; McKinsey; Wietfeldt; Doyle

    2000-01-06

    Accurate measurement of the lifetime of the neutron (which is unstable to beta decay) is important for understanding the weak nuclear force and the creation of matter during the Big Bang. Previous measurements of the neutron lifetime have mainly been limited by certain systematic errors; however, these could in principle be avoided by performing measurements on neutrons stored in a magnetic trap. Neutral-particle and charged-particle traps are widely used for studying both composite and elementary particles, because they allow long interaction times and isolation of particles from perturbing environments. Here we report the magnetic trapping of neutrons. The trapping region is filled with superfluid 4He, which is used to load neutrons into the trap and as a scintillator to detect their decay. Neutrons in the trap have a lifetime of 750(+330)(-200) seconds, mainly limited by their beta decay rather than trap losses. Our experiment verifies theoretical predictions regarding the loading process and magnetic trapping of neutrons. Further refinement of this method should lead to improved precision in the neutron lifetime measurement.

  3. Development of a Tandem Electrodynamic Trap Apparatus for Merging Charged Droplets and Spectroscopic Characterization of Resultant Dried Particles.

    PubMed

    Kohno, Jun-Ya; Higashiura, Tetsu; Eguchi, Takaaki; Miura, Shumpei; Ogawa, Masato

    2016-08-11

    Materials work in multicomponent forms. A wide range of compositions must be tested to obtain the optimum composition for a specific application. We propose optimization using a series of small levitated single particles. We describe a tandem-trap apparatus for merging liquid droplets and analyzing the merged droplets and/or dried particles that are produced from the merged droplets under levitation conditions. Droplet merging was confirmed by Raman spectroscopic studies of the levitated particles. The tandem-trap apparatus enables the synthesis of a particle and spectroscopic investigation of its properties. This provides a basis for future investigation of the properties of levitated single particles.

  4. A Laboratory Study of the Charging/Discharging Mechanisms of a Dust Particle Exposed to an Electron Beam

    NASA Technical Reports Server (NTRS)

    Venturini, C. C.; Spann, J. F.; Comfort, R. H.

    1999-01-01

    The interaction of micron sized particles or "dust particles" with different space and planetary environments has become an important area of research. One particular area of interest is how dust particles interact with plasmas. Studies have shown that charged dust particles immersed in plasmas can alter plasma characteristics, while ions and electrons in plasmas can affect a particle's potential and thereby, its interaction with other particles. The basis for understanding these phenomena is the charging mechanisms of the dust particle, specifically, how the particle's charge and characteristics are affected when exposed to ions and electrons. At NASA Marshall Space Flight Center, a laboratory experiment has been developed to study the interaction of dust particles with electrons. Using a unique laboratory technique known as electrodynamic suspension, a single charged particle is suspended in a modified quadrupole trap. Once suspended, the particle is then exposed to an electron beam to study the charging/discharging mechanisms due to collisions of energetic electrons. The change in the particle's charge, approximations of the charging/discharging currents, and the charging/discharging yield are calculated.

  5. Developing Antimatter Containment Technology: Modeling Charged Particle Oscillations in a Penning-Malmberg Trap

    NASA Technical Reports Server (NTRS)

    Chakrabarti, S.; Martin, J. J.; Pearson, J. B.; Lewis, R. A.

    2003-01-01

    The NASA MSFC Propulsion Research Center (PRC) is conducting a research activity examining the storage of low energy antiprotons. The High Performance Antiproton Trap (HiPAT) is an electromagnetic system (Penning-Malmberg design) consisting of a 4 Tesla superconductor, a high voltage confinement electrode system, and an ultra high vacuum test section; designed with an ultimate goal of maintaining charged particles with a half-life of 18 days. Currently, this system is being experimentally evaluated using normal matter ions which are cheap to produce and relatively easy to handle and provide a good indication of overall trap behavior, with the exception of assessing annihilation losses. Computational particle-in-cell plasma modeling using the XOOPIC code is supplementing the experiments. Differing electrode voltage configurations are employed to contain charged particles, typically using flat, modified flat and harmonic potential wells. Ion cloud oscillation frequencies are obtained experimentally by amplification of signals induced on the electrodes by the particle motions. XOOPIC simulations show that for given electrode voltage configurations, the calculated charged particle oscillation frequencies are close to experimental measurements. As a two-dimensional axisymmetric code, XOOPIC cannot model azimuthal plasma variations, such as those induced by radio-frequency (RF) modulation of the central quadrupole electrode in experiments designed to enhance ion cloud containment. However, XOOPIC can model analytically varying electric potential boundary conditions and particle velocity initial conditions. Application of these conditions produces ion cloud axial and radial oscillation frequency modes of interest in achieving the goal of optimizing HiPAT for reliable containment of antiprotons.

  6. Optically detected, single nanoparticle mass spectrometer with pre-filtered electrospray nanoparticle source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howder, Collin R.; Bell, David M.; Anderson, Scott L.

    2014-01-15

    An instrument designed for non-destructive mass analysis of single trapped nanoparticles is described. The heart of the instrument is a 3D quadrupole (Paul) trap constructed to give optical access to the trap center along ten directions, allowing passage of lasers for particle heating and detection, particle injection, collection of scattered or fluorescent photons for particle detection and mass analysis, and collection of particles on TEM grids for analysis, as needed. Nanoparticles are injected using an electrospray ionization (ESI) source, and conditions are described for spraying and trapping polymer particles, bare metal particles, and ligand stabilized particles with masses ranging frommore » 200 kDa to >3 GDa. Conditions appropriate to ESI and injection of different types of particles are described. The instrument is equipped with two ion guides separating the ESI source and nanoparticle trap. The first ion guide is mostly to allow desolvation and differential pumping before the particles enter the trap section of the instrument. The second is a linear quadrupole guide, which can be operated in mass selective or mass band-pass modes to limit transmission to species with mass-to-charge ratios in the range of interest. With a little experience, the design allows injection of single particles into the trap upon demand.« less

  7. Coulomb structures of charged macroparticles in static magnetic traps at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Vasiliev, M. M.; Petrov, O. F.; Statsenko, K. B.

    2015-12-01

    Electrically charged (up to 107 e) macroscopic superconducting particles with sizes in the micrometer range confined in a static magnetic trap in liquid nitrogen and in nitrogen vapor at temperatures of 77-91 K are observed experimentally. The macroparticles with sizes up to 60 μm levitate in a nonuniform static magnetic field B ~ 2500 G. The formation of strongly correlated structures comprising as many as ~103 particles is reported. The average particle distance in these structures amounts to 475 μm. The coupling parameter and the Lindemann parameter of these structures are estimated to be ~107 and ~0.03, respectively, which is characteristic of strongly correlated crystalline or glasslike structures.

  8. Final Report - Advanced Ion Trap Mass Spectrometry Program - Oak Ridge National Laboratory - Sandia National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitten, W.B.

    This report covers the three main projects that collectively comprised the Advanced Ion Trap Mass Spectrometry Program. Chapter 1 describes the direct interrogation of individual particles by laser desorption within the ion trap mass spectrometer analyzer. The goals were (1) to develop an ''intelligent trigger'' capable of distinguishing particles of biological origin from those of nonbiological origin in the background and interferent particles and (2) to explore the capability for individual particle identification. Direct interrogation of particles by laser ablation and ion trap mass spectrometry was shown to have good promise for discriminating between particles of biological origin and thosemore » of nonbiological origin, although detailed protocols and operating conditions were not worked out. A library of more than 20,000 spectra of various types of biological particles has been assembled. Methods based on multivariate analysis and on neural networks were used to discriminate between particles of biological origin and those of nonbiological origin. It was possible to discriminate between at least some species of bacteria if mass spectra of several hundred similar particles were obtained. Chapter 2 addresses the development of a new ion trap mass analyzer geometry that offers the potential for a significant increase in ion storage capacity for a given set of analyzer operating conditions. This geometry may lead to the development of smaller, lower-power field-portable ion trap mass spectrometers while retaining laboratory-scale analytical performance. A novel ion trap mass spectrometer based on toroidal ion storage geometry has been developed. The analyzer geometry is based on the edge rotation of a quadrupolar ion trap cross section into the shape of a torus. Initial performance of this device was poor, however, due to the significant contribution of nonlinear fields introduced by the rotation of the symmetric ion-trapping geometry. These nonlinear resonances contributed to poor mass resolution and sensitivity and to erratic ion ejection behavior. To correct for these nonlinear effects, the geometry of the toroid ion trap analyzer has been modified to create an asymmetric torus, as first suggested by computer simulations that predicted significantly improved performance and unit mass resolution for this geometry. A reduced-sized version (one-fifth scale) has been fabricated but was not tested within the scope of this project. Chapter 3 describes groundbreaking progress toward the use of ion-ion chemistry to control the charge state of ions formed by the electrospray ionization process, which in turn enables precision analysis of whole proteins. In addition, this technique may offer the unique possibility of a priori identification of unknown biological material when employed with existing proteomics and genomic databases. Ion-ion chemistry within the ion trap was used to reduce the ions in highly charged states to states of +1 and +2 charges. Reduction in charge greatly simplifies identification of molecular weights of fragments from large biological molecules. This technique enables the analysis of whole proteins as biomarkers for the detection and identification of all three classes of biological weapons (bacteria, toxins, and viruses). In addition to methods development, tests were carried out with samples of tap water, local creek water, and soil (local red clay) spiked with melittin (bee venom), cholera toxin, and virus MS2. All three analytes were identified in tap water and soil; however, all three were problematic for detection in creek water at concentrations of 1 nM. More development of methods is needed.« less

  9. BX-U linear trap for one-way production and confinement of Li+ and e- plasmas

    NASA Astrophysics Data System (ADS)

    Himura, Haruhiko

    2016-03-01

    A modified version of the Penning-Malmberg trap was developed wherein both positive and negative harmonic potential wells were created by using multi-ring electrodes. The sequence of particle injection, particle trapping, and plasma extraction from the potential wells was controlled by a set of switching circuits. All the guns launching charged particles were collected together in one side of the linear trap. Nevertheless, pure electron (e-) and lithium-ion (Li+) plasmas were not only separately produced on the machine axis but also confined simultaneously. Preliminary data show that for B ≈ 0.13 T the e- plasma lasted for 15 s and the Li+ plasma lasted for ~ 4 s.

  10. Optical Trap Loading of Dielectric Microparticles In Air.

    PubMed

    Park, Haesung; LeBrun, Thomas W

    2017-02-05

    We demonstrate a method to trap a selected dielectric microparticle in air using radiation pressure from a single-beam gradient optical trap. Randomly scattered dielectric microparticles adhered to a glass substrate are momentarily detached using ultrasonic vibrations generated by a piezoelectric transducer (PZT). Then, the optical beam focused on a selected particle lifts it up to the optical trap while the vibrationally excited microparticles fall back to the substrate. A particle may be trapped at the nominal focus of the trapping beam or at a position above the focus (referred to here as the levitation position) where gravity provides the restoring force. After the measurement, the trapped particle can be placed at a desired position on the substrate in a controlled manner. In this protocol, an experimental procedure for selective optical trap loading in air is outlined. First, the experimental setup is briefly introduced. Second, the design and fabrication of a PZT holder and a sample enclosure are illustrated in detail. The optical trap loading of a selected microparticle is then demonstrated with step-by-step instructions including sample preparation, launching into the trap, and use of electrostatic force to excite particle motion in the trap and measure charge. Finally, we present recorded particle trajectories of Brownian and ballistic motions of a trapped microparticle in air. These trajectories can be used to measure stiffness or to verify optical alignment through time domain and frequency domain analysis. Selective trap loading enables optical tweezers to track a particle and its changes over repeated trap loadings in a reversible manner, thereby enabling studies of particle-surface interaction.

  11. Single charging events on colloidal particles in a nonpolar liquid with surfactant

    NASA Astrophysics Data System (ADS)

    Schreuer, Caspar; Vandewiele, Stijn; Brans, Toon; Strubbe, Filip; Neyts, Kristiaan; Beunis, Filip

    2018-01-01

    Electrical charging of colloidal particles in nonpolar liquids due to surfactant additives is investigated intensively, motivated by its importance in a variety of applications. Most methods rely on average electrophoretic mobility measurements of many particles, which provide only indirect information on the charging mechanism. In the present work, we present a method that allows us to obtain direct information on the charging mechanism, by measuring the charge fluctuations on individual particles with a precision higher than the elementary charge using optical trapping electrophoresis. We demonstrate the capabilities of the method by studying the influence of added surfactant OLOA 11000 on the charging of single colloidal PMMA particles in dodecane. The particle charge and the frequency of charging events are investigated both below and above the critical micelle concentration (CMC) and with or without applying a DC offset voltage. It is found that at least two separate charging mechanisms are present below the critical micelle concentration. One mechanism is a process where the particle is stripped from negatively charged ionic molecules. An increase in the charging frequency with increased surfactant concentration suggests a second mechanism that involves single surfactant molecules. Above the CMC, neutral inverse micelles can also be involved in the charging process.

  12. Physics with Trapped Antihydrogen

    NASA Astrophysics Data System (ADS)

    Charlton, Michael

    2017-04-01

    For more than a decade antihydrogen atoms have been formed by mixing antiprotons and positrons held in arrangements of charged particle (Penning) traps. More recently, magnetic minimum neutral atom traps have been superimposed upon the anti-atom production region, promoting the trapping of a small quantity of the antihydrogen yield. We will review these advances, and describe some of the first physics experiments performed on anrtihydrogen including the observation of the two-photon 1S-2S transition, invesigation of the charge neutrailty of the anti-atom and studies of the ground state hyperfine splitting. We will discuss the physics motivations for undertaking these experiments and describe some near-future initiatives.

  13. TRAPPED PROTON FLUXES AT LOW EARTH ORBITS MEASURED BY THE PAMELA EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adriani, O.; Bongi, M.; Barbarino, G. C.

    2015-01-20

    We report an accurate measurement of the geomagnetically trapped proton fluxes for kinetic energy above ∼70 MeV performed by the PAMELA mission at low Earth orbits (350 ÷ 610 km). Data were analyzed in the frame of the adiabatic theory of charged particle motion in the geomagnetic field. Flux properties were investigated in detail, providing a full characterization of the particle radiation in the South Atlantic Anomaly region, including locations, energy spectra, and pitch angle distributions. PAMELA results significantly improve the description of the Earth's radiation environment at low altitudes, placing important constraints on the trapping and interaction processes, and can be usedmore » to validate current trapped particle radiation models.« less

  14. Electric field changes on Au nanoparticles on semiconductor supports--the molecular voltmeter and other methods to observe adsorbate-induced charge-transfer effects in Au/TiO2 nanocatalysts.

    PubMed

    McEntee, Monica; Stevanovic, Ana; Tang, Wenjie; Neurock, Matthew; Yates, John T

    2015-02-11

    Infrared (IR) studies of Au/TiO2 catalyst particles indicate that charge transfer from van der Waals-bound donor or acceptor molecules on TiO2 to or from Au occurs via transport of charge carriers in the semiconductor TiO2 support. The ΔνCO on Au is shown to be proportional to the polarizability of the TiO2 support fully covered with donor or acceptor molecules, producing a proportional frequency shift in νCO. Charge transfer through TiO2 is associated with the population of electron trap sites in the bandgap of TiO2 and can be independently followed by changes in photoluminescence intensity and by shifts in the broad IR absorbance region for electron trap sites, which is also proportional to the polarizability of donors by IR excitation. Density functional theory calculations show that electron transfer from the donor molecules to TiO2 and to supported Au particles produces a negative charge on the Au, whereas the transfer from the Au particles to the TiO2 support into acceptor molecules results in a positive charge on the Au. These changes along with the magnitudes of the shifts are consistent with the Stark effect. A number of experiments show that the ∼3 nm Au particles act as "molecular voltmeters" in influencing ΔνCO. Insulator particles, such as SiO2, do not display electron-transfer effects to Au particles on their surface. These studies are preliminary to doping studies of semiconductor-oxide particles by metal ions which modify Lewis acid/base oxide properties and possibly strongly modify the electron-transfer and catalytic activity of supported metal catalyst particles.

  15. Semiconducting lithium indium diselenide: Charge-carrier properties and the impacts of high flux thermal neutron irradiation

    NASA Astrophysics Data System (ADS)

    Hamm, Daniel S.; Rust, Mikah; Herrera, Elan H.; Matei, Liviu; Buliga, Vladimir; Groza, Michael; Burger, Arnold; Stowe, Ashley; Preston, Jeff; Lukosi, Eric D.

    2018-06-01

    This paper reports on the charge carrier properties of several lithium indium diselenide (LISe) semiconductors. It was found that the charge collection efficiency of LISe was improved after high flux thermal neutron irradiation including the presence of a typically unobservable alpha peak from hole-only collection. Charge carrier trap energies of the irradiated sample were measured using photo-induced current transient spectroscopy. Compared to previous studies of this material, no significant differences in trap energies were observed. Through trap-filled limited voltage measurements, neutron irradiation was found to increase the density of trap states within the bulk of the semiconductor, which created a polarization effect under alpha exposure but not neutron exposure. Further, the charge collection efficiency of the irradiated sample was higher (14-15 fC) than that of alpha particles (3-5 fC), indicating that an increase in hole signal contribution resulted from the neutron irradiation. Finally, it was observed that significant charge loss takes place near the point of generation, producing a significant scintillation response and artificially inflating the W-value of all semiconducting LISe crystals.

  16. Lie algebraic approach to the time-dependent quantum general harmonic oscillator and the bi-dimensional charged particle in time-dependent electromagnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibarra-Sierra, V.G.; Sandoval-Santana, J.C.; Cardoso, J.L.

    We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra ismore » later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a rotating quadrupole field ion trap are presented. •Exact solutions for magneto-transport in variable electromagnetic fields are shown.« less

  17. Optical force and torque on a dielectric Rayleigh particle by a circular Airy vortex beam

    NASA Astrophysics Data System (ADS)

    Chen, Musheng; Huang, Sujuan; Shao, Wei; Liu, Xianpeng

    2018-03-01

    Optical force and torque exerted on the Rayleigh particles by tightly focused circularly polarized circular Airy vortex beams (CAVB) in the far field are studied in this paper. The relation between parameters of circularly polarized CAVB and the trapping properties is numerically analyzed based on Rayleigh models and the Debye diffraction theory. The results show that both the high refractive index and low refractive index particles can be fully stably trapped in three dimensions by circularly polarized CAVB. The parameters of circularly polarized CAVB greatly affect the optical force. The longitudinal and transverse gradient force increase with the increase of decay factor and scaling factor, and decrease with the increase of the radius of the first primary ring and topological charges. The positions of the longitudinal stable equilibrium move toward the high numerical aperture lens when the scaling factor and the radius of the primary ring increase. The trapping range is broadened with the decrease of scaling factor. The optical orbital torque (OOT) of circularly polarized CAVB has circular symmetry and remains positive or negative. With the increase of topological charges, the peak value of OOT first increases and then decreases after reaches a maximum. These results are useful for optical trapping, optical levitation and particle acceleration.

  18. Non-destructive single-pass low-noise detection of ions in a beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Stefan; Institut für Kernchemie, Johannes Gutenberg–Universität Mainz, 55099 Mainz; Murböck, Tobias

    2015-11-15

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles’ beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highlymore » charged ions (such as Ar{sup 13+}) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.« less

  19. Charging and discharging of single colloidal particles at oil/water interfaces

    PubMed Central

    Gao, Peng; Xing, XiaoChen; Li, Ye; Ngai, To; Jin, Fan

    2014-01-01

    The physical behavior of solid colloids trapped at a fluid-fluid interface remains in itself an open fundamental issue. Here, we show that the gradients of surface tension can induce particles to jet towards the oil/water interface with velocities as high as ≈ 60 mm/s when particle suspensions come in contact with the interface. We hypothesize that rubbing between the particles and oil lead to the spontaneous accumulation of negative charges on the hemisphere of those interfacial particles that contact the oil phase by means of triboelectrification. The charging process is highly dependent on the sliding distances, and gives rise to long-ranged repulsions that protect interfacial particles from coagulating at the interface by the presence of electrolyte. These triboelectric charges, however, are compensated within several hours, which affect the stability of interfacial particles. Importantly, by charging different kinds of colloidal particles using various spreading solvents and dispersion methods, we have demonstrated that charging and discharging of single colloidal particles at oil/water interfaces impacts a broad range of dynamical behavior. PMID:24786477

  20. Millikelvin cooling of the center-of-mass motion of a levitated nanoparticle

    NASA Astrophysics Data System (ADS)

    Bullier, Nathanaël. P.; Pontin, Antonio; Barker, Peter F.

    2017-08-01

    Cavity optomechanics has been used to cool the center-of-mass motion of levitated nanospheres to millikelvin temperatures. Trapping the particle in the cavity field enables high mechanical frequencies bringing the system close to the resolved-sideband regime. Here we describe a Paul trap constructed from a printed circuit board that is small enough to fit inside the optical cavity and which should enable an accurate positioning of the particle inside the cavity field. This will increase the optical damping and therefore reduce the final temperature by at least one order of magnitude. Simulations of the potential inside the trap enable us to estimate the charge- to-mass ratio of trapped particles by measuring the secular frequencies as a function of the trap parameters. Lastly, we show the importance of reducing laser noise to reach lower temperatures and higher sensitivity in the phase-sensitive readout.

  1. Coulomb scatter of diamagnetic dust particles in a cusp magnetic trap under microgravity conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myasnikov, M. I., E-mail: miasnikovmi@mail.ru; D’yachkov, L. G.; Petrov, O. F.

    2017-02-15

    The effect of a dc electric field on strongly nonideal Coulomb systems consisting of a large number (~10{sup 4}) of charged diamagnetic dust particles in a cusp magnetic trap are carried out aboard the Russian segment of the International Space Station (ISS) within the Coulomb Crystal experiment. Graphite particles of 100–400 μm in size are used in the experiments. Coulomb scatter of a dust cluster and the formation of threadlike chains of dust particles are observed experimentally. The processes observed are simulated by the molecular dynamics (MD) method.

  2. Faradaic AC Electrokinetic Flow and Particle Traps

    NASA Astrophysics Data System (ADS)

    Ben, Yuxing; Chang, Hsueh-Chia

    2004-11-01

    Faradaic reaction at higher voltages can produce co-ion polarization at AC electrodes instead of counter-ion polarization due to capacitive charging from the bulk. The Faradaic co-ion polarization also does not screen the external field and hence can produce large net electro-kinetic flows at frequencies lower than the inverse RC time of the double layer. Due to the opposite polarization of capacitve and Faradaic charging, we can reverse the direction of AC flows on electrodes by changing the voltage and frequency. Particles and bacteria are trapped and then dispersed at stagnation lines, at locations predicted by our theory, by using these two flows sequentially. This technique offers a good way to concentrate and detect bacteria.

  3. Cavity cooling a single charged levitated nanosphere.

    PubMed

    Millen, J; Fonseca, P Z G; Mavrogordatos, T; Monteiro, T S; Barker, P F

    2015-03-27

    Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres.

  4. Cavity Cooling a Single Charged Levitated Nanosphere

    NASA Astrophysics Data System (ADS)

    Millen, J.; Fonseca, P. Z. G.; Mavrogordatos, T.; Monteiro, T. S.; Barker, P. F.

    2015-03-01

    Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres.

  5. The electrostatic interaction between interfacial colloidal particles

    NASA Astrophysics Data System (ADS)

    Hurd, A. J.

    1985-11-01

    The electrostatic interaction between charged, colloidal particles trapped at an air-water interface is considered using linearised Poisson-Boltzmann results for point particles. In addition to the expected screened-Coulomb contribution, which decays exponentially, an algebraic dipole-dipole interaction occurs that may account for long-range interactions in interfacial colloidal systems.

  6. A New Perspective on Trapped Radiation Belts in Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Diaz, A.; Lodhi, M. A. K.; Wilson, T. L.

    2005-01-01

    The charged particle fluxes trapped in the magnetic dipole fields of certain planets in our Solar System are interesting signatures of planetary properties in space physics. They also represent a source of potentially hazardous radiation to spacecraft during planetary and interplanetary exploration. The Earth s trapped radiation belts have been studied for years and the physical mechanisms by which primary radiation from the Sun and Galaxy is captured is well understood. The higher-energy particles collide with molecules in the planetary atmosphere and initiate large cascades of secondary radiation which itself becomes trapped by the magnetic dipole field of the planet. Some of it is even backscattered as albedo neutrons.

  7. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  8. Charge carrier trapping and acoustic phonon modes in single CdTe nanowires.

    PubMed

    Lo, Shun Shang; Major, Todd A; Petchsang, Nattasamon; Huang, Libai; Kuno, Masaru K; Hartland, Gregory V

    2012-06-26

    Semiconductor nanostructures produced by wet chemical synthesis are extremely heterogeneous, which makes single particle techniques a useful way to interrogate their properties. In this paper the ultrafast dynamics of single CdTe nanowires are studied by transient absorption microscopy. The wires have lengths of several micrometers and lateral dimensions on the order of 30 nm. The transient absorption traces show very fast decays, which are assigned to charge carrier trapping into surface defects. The time constants vary for different wires due to differences in the energetics and/or density of surface trap sites. Measurements performed at the band edge compared to the near-IR give slightly different time constants, implying that the dynamics for electron and hole trapping are different. The rate of charge carrier trapping was observed to slow down at high carrier densities, which was attributed to trap-state filling. Modulations due to the fundamental and first overtone of the acoustic breathing mode were also observed in the transient absorption traces. The quality factors for these modes were similar to those measured for metal nanostructures, and indicate a complex interaction with the environment.

  9. Search for Trapped Electrons and a Magnetic Moment at Mars by Mariner IV.

    PubMed

    O'gallagher, J J; Simpson, J A

    1965-09-10

    The Mariner IV spacecraft on 14-15 July 1965 passed within 9850 kilometers of Mars, carrying a solid-state charged-particle telescope which could detect electrons greater than 40 kiloelectron volts and protons greater than 1 million electron volts. The trajectory could have passed through a bow shock, a transition region, and a magnetospheric boundary where particles could be stably trapped for a wide range of Martian magnetic moments. No evidence of charged-particle radiation was found in any of these regions. In view of these results, an upper limit is established for the Martian magnetic moment provided it is assumed that the same physical processes leading to acceleration and trapping of electrons in Earth's magnetic field would be found in a Martian magnetic field. On this basis, the upper limit for the Martian magnetic moment is 0.1 percent that of Earth for a wide range of postulated orientations with respect to the rotational axis of Mars. The implications of these results for the physical and biological environment of Mars are briefly discussed.

  10. A simple derivation for amplitude and time period of charged particles in an electrostatic bathtub potential

    NASA Astrophysics Data System (ADS)

    Prathap Reddy, K.

    2016-11-01

    An ‘electrostatic bathtub potential’ is defined and analytical expressions for the time period and amplitude of charged particles in this potential are obtained and compared with simulations. These kinds of potentials are encountered in linear electrostatic ion traps, where the potential along the axis appears like a bathtub. Ion traps are used in basic physics research and mass spectrometry to store ions; these stored ions make oscillatory motion within the confined volume of the trap. Usually these traps are designed and studied using ion optical software, but in this work the bathtub potential is reproduced by making two simple modifications to the harmonic oscillator potential. The addition of a linear ‘k 1|x|’ potential makes the simple harmonic potential curve steeper with a sharper turn at the origin, while the introduction of a finite-length zero potential region at the centre reproduces the flat region of the bathtub curve. This whole exercise of modelling a practical experimental situation in terms of a well-known simple physics problem may generate interest among readers.

  11. Shear-modulated electroosmotic flow on a patterned charged surface.

    PubMed

    Wei, Hsien-Hung

    2005-04-15

    The effect of imposing shear flow on a charge-modulated electroosmotic flow is theoretically investigated. The flow structures exhibit either saddle points or closed streamlines, depending on the relative strength of an imposed shear to the applied electric field. The formation of closed streamlines could be advantageous for trapping nondiffusive particles at desired locations. Different time periodic alternating flows and their corresponding particle trajectories are also examined to assess strategies for creating efficient mixing.

  12. METHOD AND APPARATUS FOR TRAPPING IONS IN A MAGNETIC FIELD

    DOEpatents

    Luce, J.S.

    1962-04-17

    A method and apparatus are described for trapping ions within an evacuated container and within a magnetic field utilizing dissociation and/or ionization of molecular ions to form atomic ions and energetic neutral particles. The atomic ions are magnetically trapped as a result of a change of charge-to- mass ratio. The molecular ions are injected into the container and into the path of an energetic carbon arc discharge which dissociates and/or ionizes a portion of the molecular ions into atomic ions and energetic neutrals. The resulting atomic ions are trapped by the magnetic field to form a circulating beam of atomic ions, and the energetic neutrals pass out of the system and may be utilized in a particle accelerator. (AEC)

  13. Dynamics of charged particles in a Paul radio-frequency quadrupole trap

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Williams, A.; Maleki, L.; Djomehri, M. J.; Harabetian, E.

    1991-01-01

    A molecular-dynamics simulation of hundreds of ions confined in a Paul trap has been performed. The simulation includes the trapped particles' micromotion and interparticle Coulomb interactions. A random walk in velocity was implemented to bring the secular motion to a given temperature which was numerically measured. When the coupling Gamma is large the ions from concentric shells which undergo a quadrupole oscillation at the RF frequency, while the ions within a shell form a 2D hexagonal lattice. Ion clouds at 5 mK show no RF heating for q(z) less than about 0.6, whereas rapid heating is seen for qz = 0.8.

  14. The average motion of a charged particle in a dipole field

    NASA Technical Reports Server (NTRS)

    Chen, A. J.; Stern, D. P.

    1974-01-01

    The numerical representation of the average motion of a charged particle trapped in a geomagnetic field is developed. An assumption is made of the conservation of the first two adiabatic invariants where integration is along a field line between mirror points. The averaged motion also involved the parameters defining the magnetic field line to which the particle is attached. Methods involved in obtaining the motion in the equatorial plane of model magnetospheres are based on Hamiltonian functions. The restrictions imposed by the special nature of the dipole field are defined.

  15. Radiation investigations with Liulin-5 charged particle telescope on the International Space Station: review of results for years 2007-2015

    NASA Astrophysics Data System (ADS)

    Koleva, Rositza; Semkova, Jordanka; Krastev, Krasimir; Bankov, Nikolay; Malchev, Stefan; Benghin, Victor; Shurshakov, Vyacheslav

    2017-04-01

    The radiation field around the Earth is complex, composed of galactic cosmic rays, trapped particles of the Earth's radiation belts, solar energetic particles, albedo particles from the Earth's atmosphere and secondary radiation produced in the space vehicle shielding materials around the biological objects. Dose characteristics in near Earth and space radiation environment also depend on many other parameters such as the orbit parameters, solar cycle phase and current helio-and geophysical conditions. Since June 2007 till 2015 the Liulin-5 charged particle telescope has been observing the radiation characteristics in two different modules of the International Space Station (ISS). In the period from 2007 to 2009 measurements were conducted in the spherical tissue-equivalent phantom of MATROSHKA-R project located in the PIRS module of ISS. In the period from 2012 to 2015 measurements were conducted in and outside the phantom located in the Small Research Module of ISS. In this presentation attention is drawn to the obtained results for the dose rates, particle fluxes and dose equivalent rates in and outside the phantom from the galactic cosmic rays, trapped protons and solar energetic particle events which occurred in that period.

  16. Shear-Modulated Electroosmotic Flow on a Patterned Charged Surface

    NASA Astrophysics Data System (ADS)

    Wei, Hsien-Hung

    2004-11-01

    The effect of imposing shear flow on a charge-modulated electroosmotic flow is theoretically investigated. The flow pattern can contain saddle points or closed streamlines, depending on the relative strength of an imposed shear to the applied electrical field. The formation of closed streamlines could be advantageous for trapping non-diffusive particles in desired locations. Different time periodic alternating flows and their corresponding particle trajectories are also examined for assessing strategies for creating efficient mixing.

  17. Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Acharya, B.; Alexandre, J.; Baines, S.; Benes, P.; Bergmann, B.; Bernabéu, J.; Branzas, H.; Campbell, M.; Caramete, L.; Cecchini, S.; de Montigny, M.; De Roeck, A.; Ellis, J. R.; Fairbairn, M.; Felea, D.; Flores, J.; Frank, M.; Frekers, D.; Garcia, C.; Hirt, A. M.; Janecek, J.; Kalliokoski, M.; Katre, A.; Kim, D.-W.; Kinoshita, K.; Korzenev, A.; Lacarrère, D. H.; Lee, S. C.; Leroy, C.; Lionti, A.; Mamuzic, J.; Margiotta, A.; Mauri, N.; Mavromatos, N. E.; Mermod, P.; Mitsou, V. A.; Orava, R.; Parker, B.; Pasqualini, L.; Patrizii, L.; Pǎvǎlaş, G. E.; Pinfold, J. L.; Popa, V.; Pozzato, M.; Pospisil, S.; Rajantie, A.; Ruiz de Austri, R.; Sahnoun, Z.; Sakellariadou, M.; Sarkar, S.; Semenoff, G.; Shaa, A.; Sirri, G.; Sliwa, K.; Soluk, R.; Spurio, M.; Srivastava, Y. N.; Suk, M.; Swain, J.; Tenti, M.; Togo, V.; Tuszyński, J. A.; Vento, V.; Vives, O.; Vykydal, Z.; Whyntie, T.; Widom, A.; Willems, G.; Yoon, J. H.; Zgura, I. S.; MoEDAL Collaboration

    2017-02-01

    MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV p p collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.

  18. Antimatter plasmas in a multipole trap for antihydrogen.

    PubMed

    Andresen, G; Bertsche, W; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Chartier, M; Deutsch, A; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Gomberoff, K; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Telle, H H; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2007-01-12

    We have demonstrated storage of plasmas of the charged constituents of the antihydrogen atom, antiprotons and positrons, in a Penning trap surrounded by a minimum-B magnetic trap designed for holding neutral antiatoms. The neutral trap comprises a superconducting octupole and two superconducting, solenoidal mirror coils. We have measured the storage lifetimes of antiproton and positron plasmas in the combined Penning-neutral trap, and compared these to lifetimes without the neutral trap fields. The magnetic well depth was 0.6 T, deep enough to trap ground state antihydrogen atoms of up to about 0.4 K in temperature. We have demonstrated that both particle species can be stored for times long enough to permit antihydrogen production and trapping studies.

  19. Electronic Combat in Space: Examining the Legality of Fielding a Space-Based Disruptive Electromagnetic Jamming System

    DTIC Science & Technology

    2007-06-15

    particles ( asteroids and meteoroids), energetic charged particles (ions, protons, electrons, etc.), and electromagnetic and ionizing radiation (x-rays...These protocols include a ban on Non-Detectable Fragments; restrictions on the use of Mines , Booby Traps, and Other Devices; prohibitions on certain...

  20. Preface to Special Topic: Collective Effects in Particle Beams and Nonneutral Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilson, Erik P.; Qin, Hong

    Nonneutral plasmas are plasma systems in which there is no overall charge neutrality, including the limit of systems that are fully unneutralized in which there are particles of only a single sign of charge. Here, examples of nonneutral plasmas include charged-particle beams, pure electron plasmas, pure positron plasmas, and pure-ion plasmas consisting of a variety of ion charge states in a single trap. A key feature of nonneutral plasmas which distinguishes them from quasineutral plasmas is that their self-electric and self-magnetic fields can play a dominant role in the behavior of the system. Moreover, single-component plasmas can be confined inmore » states of global thermal equilibrium, enabling detailed theoretical and experimental studies of fundamental plasma phenomena and precise testing of models.« less

  1. Preface to Special Topic: Collective Effects in Particle Beams and Nonneutral Plasmas

    DOE PAGES

    Gilson, Erik P.; Qin, Hong

    2018-01-30

    Nonneutral plasmas are plasma systems in which there is no overall charge neutrality, including the limit of systems that are fully unneutralized in which there are particles of only a single sign of charge. Here, examples of nonneutral plasmas include charged-particle beams, pure electron plasmas, pure positron plasmas, and pure-ion plasmas consisting of a variety of ion charge states in a single trap. A key feature of nonneutral plasmas which distinguishes them from quasineutral plasmas is that their self-electric and self-magnetic fields can play a dominant role in the behavior of the system. Moreover, single-component plasmas can be confined inmore » states of global thermal equilibrium, enabling detailed theoretical and experimental studies of fundamental plasma phenomena and precise testing of models.« less

  2. Effect of stray electric fields on cooling of center of mass motion of levitated graphite flakes

    NASA Astrophysics Data System (ADS)

    Nagornykh, Pavel; Coppock, Joyce; Kane, Bruce

    2015-03-01

    Levitation of charged multilayer graphene flakes in a quadrupole ion trap provides a unique way to study graphene in isolated conditions. Cooling of a flake in such a setup is necessary for high vacuum measurements of the flake and is achieved by using a parametric feedback scheme. We present data showing the strong dependence of the cooling of the flake's center of mass motion on the stray electric fields. We achieve this by using auxiliary electrodes to shift the position of the trap center in space. Once the point of minimum interaction between the stray fields and the particle is found (leading to cooling of the flake motion to temperatures below 20K at pressure of 10-7 Torr), we can estimate charge and mass of the flake by observing quantized discharge of the particle and measure transient dynamics of the center of mass motion by turning the cooling off and on. As an additional benefit, the behavior of the flake away from the optimum trap position can be used to quantify stray fields' effect on the particle motion by measuring its spinning orientation and frequency dependence on offset from the optimum position.

  3. Staged Z-pinch for the production of high-flux neutrons and net energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wessel, Frank J.; Rahman, Hafiz Ur; Rostoker, Norman

    A fusible target is embedded in a high Z liner, ohmically heated and then shock wave heated by implosion of an enveloping high Z liner. The target is adiabatically heated by compression, fusibly ignited and charged-particle heated as it is being ignited. A shock front forms as the liner implodes which shock front detaches from the more slowly moving liner, collides with the outer surface of the target, accelerates inward, rapidly heating the target, adiabatically compressing the target and liner and amplifying the current to converge the liner mass toward a central axis thereby compressing the target to a fusionmore » condition when it begins to ignite and produce charged particles. The charged particles are trapped in a large magnetic field surrounding the target. The energy of the charged particles is deposited into the target to further heat the target to produce an energy gain.« less

  4. Particle orbits in model current sheet with a nonzero B(y) component

    NASA Technical Reports Server (NTRS)

    Zhu, Zhongwei; Parks, George

    1993-01-01

    The problem of charged particle motions in magnetotaillike model current sheets is revisited with the inclusion of a nonzero dawn-dusk magnetic field component. Three cases are examined considering both trapped and escaped orbits. The results show that a nonzero B(y) component disturbs the particle orbits by destroying orbit symmetry in the phase space about the z = 0 plane. It also changes the bounce frequency of particle orbits. The presence of B(y) thus modifies the Speiser orbits, particularly near the ejection phase. The process of ejected particle such as ejection direction, ejection velocity, and pitch angles are shown to depend on the sign of the charge.

  5. Particle Acceleration via Reconnection Processes in the Supersonic Solar Wind

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; le Roux, J. A.; Webb, G. M.; Dosch, A.; Khabarova, O.

    2014-12-01

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = -(3 + MA )/2, where MA is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index -3(1 + τ c /(8τdiff)), where τ c /τdiff is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τdiff/τ c . Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c -5 (c particle speed) spectra observed by Fisk & Gloeckler and Mewaldt et al.

  6. Particle acceleration via reconnection processes in the supersonic solar wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zank, G. P.; Le Roux, J. A.; Webb, G. M.

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced bymore » quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = –(3 + M{sub A} )/2, where M{sub A} is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index –3(1 + τ {sub c}/(8τ{sub diff})), where τ {sub c}/τ{sub diff} is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τ{sub diff}/τ {sub c}. Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c {sup –5} (c particle speed) spectra observed by Fisk and Gloeckler and Mewaldt et al.« less

  7. Time variations of magnetospheric intensities of outer zone protons, alpha particles and ions (Z greater than or equal to 2). Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Randall, B. A.

    1973-01-01

    A comprehensive study of the temporal behavior of trapped protons, alpha particles and ions (Z 2) in outer zone of the earth's magnetosphere has been made. These observations were made by the Injun V satellite during the first 21 months of operation, August 1968 to May 1970. Rapid increases in the observed number of particles followed by slower exponential decay characterize the data. Comparisons are made with the temporal behavior of interplanetary particles of the same energy observed by Explorer 35. Increases in the trapped fluxes generally correspond to enhanced interplanetary activity. The energy spectra of protons and alpha particles at L = 3 have similar shapes when compared on an energy per charge basis while the respective polar cap spectra have similar shape on an energy per nucleon basis. Apparent inward trans-L motion of energetic protons is observed. These particles are diffused inward by a process involving fluctuating electric fields. The loss of trapped low altitude protons, alpha particles and ions (Z 2) is controlled by coulombic energy loss in the atmosphere.

  8. Investigating Trapped Particle Asymmetry Modes and Temperature Effects in the Lawrence Non-neutral Torus II

    NASA Astrophysics Data System (ADS)

    Nirwan, R.; Swanson, P.; Stoneking, M. R.

    2017-10-01

    Electron plasma is confined in the Lawrence Non-Neutral Torus II using a purely toroidal magnetic field (R0 = 18 cm, B < 1 kG) for confinement times exceeding 1 second. The LNT II can be configured for fully toroidal traps or variable-length partial toroidal traps. The behavior of the plasma is observed by monitoring the image charge on isolated wall sectors. The plasma is excited by application of a sinusoidal tone burst to selected wall sectors. Phase-space separatrices are introduced by applying squeeze potentials to toroidally localized, but poloidally continuous sectors and the resulting interaction between trapped and passing particles populations results in asymmetry modes and transport. These experiments provide a comparison with similar experiments in cylindrical traps. We also report on the development of temperature measurement techniques and assess temperature affects on diocotron and asymmetry modes. This work is supported by National Science Foundation Grant No. PHY-1202540.

  9. Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Acharya, B.; Alexandre, J.; Bendtz, K.; Benes, P.; Bernabéu, J.; Campbell, M.; Cecchini, S.; Chwastowski, J.; Chatterjee, A.; de Montigny, M.; Derendarz, D.; De Roeck, A.; Ellis, J. R.; Fairbairn, M.; Felea, D.; Frank, M.; Frekers, D.; Garcia, C.; Giacomelli, G.; Hasegan, D.; Kalliokoski, M.; Katre, A.; Kim, D.-W.; King, M. G. L.; Kinoshita, K.; Lacarrère, D. H.; Lee, S. C.; Leroy, C.; Lionti, A.; Margiotta, A.; Mauri, N.; Mavromatos, N. E.; Mermod, P.; Milstead, D.; Mitsou, V. A.; Orava, R.; Parker, B.; Pasqualini, L.; Patrizii, L.; Păvălas, G. E.; Pinfold, J. L.; Platkevič, M.; Popa, V.; Pozzato, M.; Pospisil, S.; Rajantie, A.; Sahnoun, Z.; Sakellariadou, M.; Sarkar, S.; Semenoff, G.; Sirri, G.; Sliwa, K.; Soluk, R.; Spurio, M.; Srivastava, Y. N.; Staszewski, R.; Suk, M.; Swain, J.; Tenti, M.; Togo, V.; Trzebinski, M.; Tuszynski, J. A.; Vento, V.; Vives, O.; Vykydal, Z.; Whyntie, T.; Widom, A.; Willems, G.; Yoon, J. H.

    2016-08-01

    The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nucleartrack detectors with surface area ~18m2, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb-1. No magnetic charge exceeding 0:5 g D (where g D is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV≤ m ≤ 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for 1 g D ≤ | g| ≤ 6 g D, and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for 1 g D ≤ | g| ≤ 4 g D. Under the assumption of Drell-Yan cross sections, mass limits are derived for | g| = 2 g D and | g| = 3 g D for the first time at the LHC, surpassing the results from previous collider experiments.

  10. Stable confinement of electron plasma and initial results on positron injection in RT-1

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Yoshida, Z.; Morikawa, J.; Yano, Y.; Kasaoka, N.; Sakamoto, W.; Nogami, T.

    2013-03-01

    The Ring Trap 1 (RT-1) device is a dipole field configuration generated by a levitated superconducting magnet. It offers very interesting opportunities for research on the fundamental properties on non-neutral plasmas, such as self-organization of charged particles in the strongly positive and negative charged particles on magnetic surfaces. When strong positron sources will be available in the future, the dipole field configuration will be potentially applicable to the formation of an electron-positron plasma. We have realized stable, long trap of toroidal pure electron plasma in RT-1; Magnetic levitation of the superconducting magnet resulted in more than 300s of confinement for electron plasma of ˜ 1011 m-3. Aiming for the confinement of positrons as a next step, we started a positron injection experiment. For the formation of positron plasma in the closed magnetic surfaces, one of the key issues to be solved is the efficient injection method of positron across closed magnetic surfaces. In contrast to linear configurations, toroidal configurations have the advantage that they are capable of trapping high energy positrons in the dipole field configuration and consider the possibility of direct trapping of positrons emitted from a 22Na source.

  11. Layer Splitting in a Complex Plasma

    NASA Astrophysics Data System (ADS)

    Smith, Bernard; Hyde, Truell; Matthews, Lorin; Johnson, Megan; Cook, Mike; Schmoke, Jimmy

    2009-11-01

    Dust particle clouds are found in most plasma processing environments and many astrophysical environments. Dust particles suspended within such plasmas often acquire an electric charge from collisions with free electrons in the plasma. Depending upon the ratio of interparticle potential energy to average kinetic energy, charged dust particles can form a gaseous, liquid or crystalline structure with short to longer range ordering. An interesting facet of complex plasma behavior is that particle layers appear to split as the DC bias is increased. This splitting of layers points to a phase transition differing from the normal phase transitions found in two-dimensional solids. In 1993, Dubin noted that as the charged particle density of an initially two-dimensional Coulomb crystal increases the system's layers split at specific charge densities. This work modeled ions in a Paul or Penning trap, but may be applicable to dusty plasma systems as well. This work will discuss this possibility along with splitting observed in the CASPER GEC rf Reference Cell at specific pressures and powers.

  12. Controlling the net charge on a nanoparticle optically levitated in vacuum

    NASA Astrophysics Data System (ADS)

    Frimmer, Martin; Luszcz, Karol; Ferreiro, Sandra; Jain, Vijay; Hebestreit, Erik; Novotny, Lukas

    2017-06-01

    Optically levitated nanoparticles in vacuum are a promising model system to test physics beyond our current understanding of quantum mechanics. Such experimental tests require extreme control over the dephasing of the levitated particle's motion. If the nanoparticle carries a finite net charge, it experiences a random Coulomb force due to fluctuating electric fields. This dephasing mechanism can be fully excluded by discharging the levitated particle. Here, we present a simple and reliable technique to control the charge on an optically levitated nanoparticle in vacuum. Our method is based on the generation of charges in an electric discharge and does not require additional optics or mechanics close to the optical trap.

  13. Passing particle toroidal precession induced by electric field in a tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, V. V.; Ilgisonis, V. I.; Sorokina, E. A.

    2013-12-15

    Characteristics of a rotation of passing particles in a tokamak with radial electric field are calculated. The expression for time-averaged toroidal velocity of the passing particle induced by the electric field is derived. The electric-field-induced additive to the toroidal velocity of the passing particle appears to be much smaller than the velocity of the electric drift calculated for the poloidal magnetic field typical for the trapped particle. This quantity can even have the different sign depending on the azimuthal position of the particle starting point. The unified approach for the calculation of the bounce period and of the time-averaged toroidalmore » velocity of both trapped and passing particles in the whole volume of plasma column is presented. The results are obtained analytically and are confirmed by 3D numerical calculations of the trajectories of charged particles.« less

  14. Modeling carbonaceous particle formation in an argon graphite cathode dc discharge

    NASA Astrophysics Data System (ADS)

    Michau, A.; Lombardi, G.; Colina Delacqua, L.; Redolfi, M.; Arnas, C.; Bonnin, X.; Hassouni, K.

    2010-12-01

    We develop a model for the nucleation, growth and transport of carbonaceous dust particles in a non-reactive gas dc discharge where the carbon source is provided by cathode sputtering. We consider only the initial phase of the discharge when the dust charge density remains small with respect to the electron density. We find that an electric field reversal at the entrance of the negative glow region promotes trapping of negatively charged clusters and dust particles, confining them for long times in the plasma and favoring molecular growth. An essential ingredient for this process is electron attachment, which negatively charges the initially neutral clusters. We perform sensitivity studies on several number parameters: size of the largest molecular edifice, sticking coefficient, etc.

  15. Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave

    PubMed Central

    Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.; Boardsen, Scott A.; Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; Saito, Yoshifumi; Paterson, William R.; Fuselier, Stephen A.; Ergun, Robert E.; Strangeway, Robert J.; Russell, Christopher T.; Giles, Barbara L.; Pollock, Craig J.; Torbert, Roy B.; Burch, James L.

    2017-01-01

    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations. PMID:28361881

  16. Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave.

    PubMed

    Gershman, Daniel J; F-Viñas, Adolfo; Dorelli, John C; Boardsen, Scott A; Avanov, Levon A; Bellan, Paul M; Schwartz, Steven J; Lavraud, Benoit; Coffey, Victoria N; Chandler, Michael O; Saito, Yoshifumi; Paterson, William R; Fuselier, Stephen A; Ergun, Robert E; Strangeway, Robert J; Russell, Christopher T; Giles, Barbara L; Pollock, Craig J; Torbert, Roy B; Burch, James L

    2017-03-31

    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  17. Wave-Particle Energy Exchange Directly Observed in a Kinetic Alfven-Branch Wave

    NASA Technical Reports Server (NTRS)

    Gershman, Daniel J.; F-Vinas, Adolfo; Dorelli, John C.; Boardsen, Scott A. (Inventor); Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; hide

    2017-01-01

    Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  18. High-Performance Flexible Organic Nano-Floating Gate Memory Devices Functionalized with Cobalt Ferrite Nanoparticles.

    PubMed

    Jung, Ji Hyung; Kim, Sunghwan; Kim, Hyeonjung; Park, Jongnam; Oh, Joon Hak

    2015-10-07

    Nano-floating gate memory (NFGM) devices are transistor-type memory devices that use nanostructured materials as charge trap sites. They have recently attracted a great deal of attention due to their excellent performance, capability for multilevel programming, and suitability as platforms for integrated circuits. Herein, novel NFGM devices have been fabricated using semiconducting cobalt ferrite (CoFe2O4) nanoparticles (NPs) as charge trap sites and pentacene as a p-type semiconductor. Monodisperse CoFe2O4 NPs with different diameters have been synthesized by thermal decomposition and embedded in NFGM devices. The particle size effects on the memory performance have been investigated in terms of energy levels and particle-particle interactions. CoFe2O4 NP-based memory devices exhibit a large memory window (≈73.84 V), a high read current on/off ratio (read I(on)/I(off)) of ≈2.98 × 10(3), and excellent data retention. Fast switching behaviors are observed due to the exceptional charge trapping/release capability of CoFe2O4 NPs surrounded by the oleate layer, which acts as an alternative tunneling dielectric layer and simplifies the device fabrication process. Furthermore, the NFGM devices show excellent thermal stability, and flexible memory devices fabricated on plastic substrates exhibit remarkable mechanical and electrical stability. This study demonstrates a viable means of fabricating highly flexible, high-performance organic memory devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A stochastic model for photon noise induced by charged particles in multiplier phototubes of the space telescope fine guidance sensors

    NASA Technical Reports Server (NTRS)

    Howell, L. W.; Kennel, H. F.

    1984-01-01

    The Space Telescope (ST) is subjected to charged particle strikes in its space environment. ST's onboard fine guidance sensors utilize multiplier phototubes (PMT) for attitude determination. These tubes, when subjected to charged particle strikes, generate spurious photons in the form of Cerenkov radiation and fluorescence which give rise to unwanted disturbances in the pointing of the telescope. A stochastic model for the number of these spurious photons which strike the photocathode of the multiplier phototube which in turn produce the unwanted photon noise are presented. The model is applicable to both galactic cosmic rays and charged particles trapped in the Earth's radiation belts. The model which was programmed allows for easy adaption to a wide range of particles and different parameters for the phototube of the multiplier. The probability density functions for photons noise caused by protons, alpha particles, and carbon nuclei were using thousands of simulated strikes. These distributions are used as part of an overall ST dynamics simulation. The sensitivity of the density function to changes in the window parameters was also investigated.

  20. Stochastic model for photon noise induced by charged particles in multiplier phototubes of the Hubble Space Telescope fine guidance sensors

    NASA Technical Reports Server (NTRS)

    Howell, L. W.; Kennel, H. F.

    1986-01-01

    The Space Telescope (ST) is subjected to charged particle strikes in its space environment. ST's onboard fine guidance sensors utilize multiplier phototubes (PMT) for attitude determination. These tubes, when subjected to charged particle strikes, generate spurious photons in the form of Cerenkov radiation and fluorescence which give rise to unwanted disturbances in the pointing of the telescope. A stochastic model for the number of these spurious photons which strike the photocathodes of the multiplier phototube which in turn produce the unwanted photon noise are presented. The model is applicable to both galactic cosmic rays and charged particles trapped in the earth's radiation belts. The model which was programmed allows for easy adaption to a wide range of particles and different parameters for the phototube of the multiplier. The probability density functions for photons noise caused by protons, alpha particles, and carbon nuclei were using thousands of simulated strikes. These distributions are used as part of an overall ST dynamics simulation. The sensitivity of the density function to changes in the window parameters was also investigated.

  1. High negative charge of a dust particle in a hot cathode discharge.

    PubMed

    Arnas, C; Mikikian, M; Doveil, F

    1999-12-01

    Dust particle levitation experiments in a plasma produced by a hot filament discharge, operating at low argon pressure, are presented. The basic characteristics of a dust grain trapped in a plate sheath edge in these experimental conditions are reported. Taking into account the sheath potential profiles measured with a differential emissive probe diagnostic, the forces applied to an isolated dust grain can be determined. Two different experimental methods yield approximately the same value for the dust charge. The observed high negative charge is mainly due to the contribution of the primary electrons emitted by the filaments as predicted by a simple model.

  2. Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC.

    PubMed

    Acharya, B; Alexandre, J; Baines, S; Benes, P; Bergmann, B; Bernabéu, J; Branzas, H; Campbell, M; Caramete, L; Cecchini, S; de Montigny, M; De Roeck, A; Ellis, J R; Fairbairn, M; Felea, D; Flores, J; Frank, M; Frekers, D; Garcia, C; Hirt, A M; Janecek, J; Kalliokoski, M; Katre, A; Kim, D-W; Kinoshita, K; Korzenev, A; Lacarrère, D H; Lee, S C; Leroy, C; Lionti, A; Mamuzic, J; Margiotta, A; Mauri, N; Mavromatos, N E; Mermod, P; Mitsou, V A; Orava, R; Parker, B; Pasqualini, L; Patrizii, L; Păvălaş, G E; Pinfold, J L; Popa, V; Pozzato, M; Pospisil, S; Rajantie, A; Ruiz de Austri, R; Sahnoun, Z; Sakellariadou, M; Sarkar, S; Semenoff, G; Shaa, A; Sirri, G; Sliwa, K; Soluk, R; Spurio, M; Srivastava, Y N; Suk, M; Swain, J; Tenti, M; Togo, V; Tuszyński, J A; Vento, V; Vives, O; Vykydal, Z; Whyntie, T; Widom, A; Willems, G; Yoon, J H; Zgura, I S

    2017-02-10

    MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV pp collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.

  3. A versatile system for optical manipulation experiments

    NASA Astrophysics Data System (ADS)

    Hanstorp, Dag; Ivanov, Maksym; Alemán Hernández, Ademir F.; Enger, Jonas; Gallego, Ana M.; Isaksson, Oscar; Karlsson, Carl-Joar; Monroy Villa, Ricardo; Varghese, Alvin; Chang, Kelken

    2017-08-01

    In this paper a versatile experimental system for optical levitation is presented. Microscopic liquid droplets are produced on demand from piezo-electrically driven dispensers. The charge of the droplets is controlled by applying an electric field on the piezo-dispenser head. The dispenser releases droplets into a vertically focused laser beam. The size and position in 3 dimensions of trapped droplets are measured using two orthogonally placed high speed cameras. Alternatively, the vertical position is determined by imaging scattered light onto a position sensitive detector. The charge of a trapped droplets is determined by recording its motion when an electric field is applied, and the charge can be altered by exposing the droplet to a radioactive source or UV light. Further, spectroscopic information of the trapped droplet is obtained by imaging the droplet on the entrance slit of a spectrometer. Finally, the trapping cell can be evacuated, allowing investigations of droplet dynamics in vacuum. The system is utilized to study a variety of physical phenomena, and three pilot experiments are given in this paper. First, a system used to control and measure the charge of the droplet is presented. Second, it is demonstrated how particles can be made to rotate and spin by trapping them using optical vortices. Finally, the Raman spectra of trapped glycerol droplets are obtained and analyzed. The long term goal of this work is to create a system where interactions of droplets with the surrounding medium or with other droplets can be studied with full control of all physical variables.

  4. One-dimensional numerical study of charged particle trajectories in turbulent electrostatic wave fields

    NASA Technical Reports Server (NTRS)

    Graham, K. N.; Fejer, J. A.

    1976-01-01

    The paper describes a numerical simulation of electron trajectories in weak random electric fields under conditions that are approximately true for Langmuir waves whose wavelength is much longer than the Debye length. Two types of trajectory calculations were made: (1) the initial particle velocity was made equal to the mean phase velocity of the waves, or (2) it was equal to 0.7419 times the mean velocity of the waves, so that the initial velocity differed substantially from all phase velocities of the wave spectrum. When the autocorrelation time is much greater than the trapping time, the particle motion can change virtually instantaneously from one of three states - high-velocity, low-velocity, or trapped state - to another. The probability of instantaneous transition from a high- or low-velocity state becomes small when the difference between the particle velocity and the mean phase velocity of the waves becomes high in comparison to the trapping velocity. Diffusive motion becomes negligible under these conditions also.

  5. Ion Storage with the High Performance Antiproton Trap (HiPAT)

    NASA Technical Reports Server (NTRS)

    Martin, James; Lewis, Raymond; Chakrabarti, Suman; Pearson, Boise

    2002-01-01

    The matter antimatter reaction represents the densest form of energy storage/release known to modern physics: as such it offers one of the most compact sources of power for future deep space exploration. To take the first steps along this path, NASA-Marshall Space Flight Center is developing a storage system referred to as the High Performance Antiproton Trap (HiPAT) with a goal of maintaining 10(exp 12) particles for up to 18 days. Experiments have been performed with this hardware using normal matter (positive hydrogen ions) to assess the device's ability to hold charged particles. These ions are currently created using an electron gun method to ionize background gas; however, this technique is limited by the quantity that can be captured. To circumvent this issue, an ion source is currently being commissioned which will greatly increase the number of ions captured and more closely simulate actual operations expected at an antiproton production facility. Ions have been produced, stored for various time intervals, and then extracted against detectors to measure species, quantity and energy. Radio frequency stabilization has been tested as a method to prolong ion lifetime: results show an increase in the baseline 1/e lifetime of trapped particles from hours to days. Impurities in the residual background gas (typically carbon-containing species CH4, CO, CO2, etc.) present a continuing problem by reducing the trapped hydrogen population through the mechanism of ion charge exchange.

  6. Recoil ions from the β decay of 134Sb confined in a Paul trap

    NASA Astrophysics Data System (ADS)

    Siegl, K.; Scielzo, N. D.; Czeszumska, A.; Clark, J. A.; Savard, G.; Aprahamian, A.; Caldwell, S. A.; Alan, B. S.; Burkey, M. T.; Chiara, C. J.; Greene, J. P.; Harker, J.; Marley, S. T.; Morgan, G. E.; Munson, J. M.; Norman, E. B.; Orford, R.; Padgett, S.; Galván, A. Perez; Sharma, K. S.; Strauss, S. Y.

    2018-03-01

    The low-energy recoiling ions from the β decay of 134Sb were studied by using the Beta-decay Paul Trap. Using this apparatus, singly charged ions were suspended in vacuum at the center of a detector array used to detect emitted β particles, γ rays, and recoil ions in coincidence. The recoil ions emerge from the trap with negligible scattering, allowing β -decay properties and the charge-state distribution of the daughter ions to be determined from the β -ion coincidences. First-forbidden β -decay theory predicts a β -ν correlation coefficient of nearly unity for the 0- to 0+ transition from the ground state of 134Sb to the ground state of 134Te. Although this transition was expected to have a nearly 100% branching ratio, an additional 17.2(52)% of the β -decay strength must populate high-lying excited states to obtain an angular correlation consistent with unity. The extracted charge-state distribution of the recoiling ions was compared with existing β -decay results and the average charge state was found to be consistent with the results from lighter nuclei.

  7. The Near-Earth Space Radiation for Electronics Environment

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; LaBel, K. A.

    2004-01-01

    The earth's space radiation environment is described in terms of: a) charged particles as relevant to effects on spacecraft electronics, b) the nature and distribution of trapped and transiting radiation, and c) their effect on electronic components.

  8. Studies of emittance growth and halo particle production in intense charged particle beams using the Paul Trap Simulator Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilson, Erik P.; Davidson, Ronald C.; Dorf, Mikhail

    2010-05-15

    The Paul Trap Simulator Experiment (PTSX) is a compact laboratory experiment that places the physicist in the frame-of-reference of a long, charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG) transport system. The transverse dynamics of particles in both systems are described by the same set of equations, including nonlinear space-charge effects. The time-dependent voltages applied to the PTSX quadrupole electrodes in the laboratory frame are equivalent to the spatially periodic magnetic fields applied in the AG system. The transverse emittance of the charge bunch, which is a measure of the area in the transverse phase space that the beammore » distribution occupies, is an important metric of beam quality. Maintaining low emittance is an important goal when defining AG system tolerances and when designing AG systems to perform beam manipulations such as transverse beam compression. Results are reviewed from experiments in which white noise and colored noise of various amplitudes and durations have been applied to the PTSX electrodes. This noise is observed to drive continuous emittance growth and increase in root-mean-square beam radius over hundreds of lattice periods. Additional results are reviewed from experiments that determine the conditions necessary to adiabatically reduce the charge bunch's transverse size and simultaneously maintain high beam quality. During adiabatic transitions, there is no change in the transverse emittance. The transverse compression can be achieved either by a gradual change in the PTSX voltage waveform amplitude or frequency. Results are presented from experiments in which low emittance is achieved by using focusing-off-defocusing-off waveforms.« less

  9. On the physics of dispersive electron transport characteristics in SnO2 nanoparticle-based dye sensitized solar cells.

    PubMed

    Ashok, Aditya; Vijayaraghavan, S N; Unni, Gautam E; Nair, Shantikumar V; Shanmugam, Mariyappan

    2018-04-27

    The present study elucidates dispersive electron transport mediated by surface states in tin oxide (SnO 2 ) nanoparticle-based dye sensitized solar cells (DSSCs). Transmission electron microscopic studies on SnO 2 show a distribution of ∼10 nm particles exhibiting (111) crystal planes with inter-planar spacing of 0.28 nm. The dispersive transport, experienced by photo-generated charge carriers in the bulk of SnO 2 , is observed to be imposed by trapping and de-trapping processes via SnO 2 surface states present close to the band edge. The DSSC exhibits 50% difference in performance observed between the forward (4%) and reverse (6%) scans due to the dispersive transport characteristics of the charge carriers in the bulk of the SnO 2 . The photo-generated charge carriers are captured and released by the SnO 2 surface states that are close to the conduction band-edge resulting in a very significant variation; this is confirmed by the hysteresis observed in the forward and reverse scan current-voltage measurements under AM1.5 illumination. The hysteresis behavior assures that the charge carriers are accumulated in the bulk of electron acceptor due to the trapping, and released by de-trapping mediated by surface states observed during the forward and reverse scan measurements.

  10. On the physics of dispersive electron transport characteristics in SnO2 nanoparticle-based dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ashok, Aditya; Vijayaraghavan, S. N.; Unni, Gautam E.; Nair, Shantikumar V.; Shanmugam, Mariyappan

    2018-04-01

    The present study elucidates dispersive electron transport mediated by surface states in tin oxide (SnO2) nanoparticle-based dye sensitized solar cells (DSSCs). Transmission electron microscopic studies on SnO2 show a distribution of ˜10 nm particles exhibiting (111) crystal planes with inter-planar spacing of 0.28 nm. The dispersive transport, experienced by photo-generated charge carriers in the bulk of SnO2, is observed to be imposed by trapping and de-trapping processes via SnO2 surface states present close to the band edge. The DSSC exhibits 50% difference in performance observed between the forward (4%) and reverse (6%) scans due to the dispersive transport characteristics of the charge carriers in the bulk of the SnO2. The photo-generated charge carriers are captured and released by the SnO2 surface states that are close to the conduction band-edge resulting in a very significant variation; this is confirmed by the hysteresis observed in the forward and reverse scan current-voltage measurements under AM1.5 illumination. The hysteresis behavior assures that the charge carriers are accumulated in the bulk of electron acceptor due to the trapping, and released by de-trapping mediated by surface states observed during the forward and reverse scan measurements.

  11. The preparation of <100 particles per trial having the same mole fraction of 12 inorganic compounds at diameters of 6.8, 3.8, or 2.6 [mu]m followed by their deposition onto human lung cells (A549) with measurement of the relative downstream differential expression of ICAM-1

    NASA Astrophysics Data System (ADS)

    Eleghasim, Ndukauba M.; Haddrell, Allen E.; van Eeden, Stephen; Agnes, George R.

    2006-12-01

    The characterization of particulate matter suspended in the troposphere (PM10) based on size is an important basis for assessing the extent of their adverse effects on human health. The relevance of such assessments is anticipated to be significantly improved through the continued development of tools that can identify the chemical components within individual ambient particles, and the injury that they cause. We use recently reported methodology to create mimics of ambient particle types of known size and chemical composition that are levitated within an ac trap. The ac trap uses electric fields to levitate the particles that have a given mass and net elementary charge, and as such the ac trap is a mass-to-charge filter. The ac trap was used to levitate populations of particles where the size of particles in any given population could be altered. The levitated particles are delivered direct from the ac trap to human lung cells (A549), in vitro, with downstream measurement of differential expression of intercellular adhesion molecule (ICAM)-1 and counting of the number of particles actually delivered to the culture using an optical microscope. In this study, the chemical composition of the ambient particle mimics was restricted to inorganic compounds whose relative abundance was purposely designed to mimic the average abundance in Environmental Health Center-93 (EHC-93) particles. The sizes of the multilelement particle types prepared were 6.8 +/- 0.5, 3.8 +/- 0.3, 2.6 +/- 0.2 (mean +/- S.D.). Particles of either elemental carbon, or elemental carbon containing glycerol were used as control particle types. In any given experiment, a known number of particles, but always <100, of a given size, were deposited onto a small region of an A549 cell culture. Following an 18-h incubation period and anti-body labeling of ICAM-1, the fluorescence emission from a 1.07 mm2 area of the cell culture centered at the site of particle deposition was acquired. The relative differential expression of ICAM-1 was greatest for multielement particle types having diameters of 2.6 +/- 0.2 [mu]m for which as few as ~15 particles deposited onto the culture resulted in maximal ICAM-1 expression, whereas with multielement particle types having diameters of 6.8 +/- 0.5 [mu]m, it was necessary to deposit >50 particles in order to effect comparable ICAM-1 expression. This data set indicates that for multi-element particle types comprised of the same mole fraction of inorganic compounds and of sizes within the course fraction of PM10, the 2.6 [mu]m particle type was the most potent with respect to effecting differential expression of ICAM-1.

  12. Geometrical effects on the electron residence time in semiconductor nano-particles.

    PubMed

    Koochi, Hakimeh; Ebrahimi, Fatemeh

    2014-09-07

    We have used random walk (RW) numerical simulations to investigate the influence of the geometry on the statistics of the electron residence time τ(r) in a trap-limited diffusion process through semiconductor nano-particles. This is an important parameter in coarse-grained modeling of charge carrier transport in nano-structured semiconductor films. The traps have been distributed randomly on the surface (r(2) model) or through the whole particle (r(3) model) with a specified density. The trap energies have been taken from an exponential distribution and the traps release time is assumed to be a stochastic variable. We have carried out (RW) simulations to study the effect of coordination number, the spatial arrangement of the neighbors and the size of nano-particles on the statistics of τ(r). It has been observed that by increasing the coordination number n, the average value of electron residence time, τ̅(r) rapidly decreases to an asymptotic value. For a fixed coordination number n, the electron's mean residence time does not depend on the neighbors' spatial arrangement. In other words, τ̅(r) is a porosity-dependence, local parameter which generally varies remarkably from site to site, unless we are dealing with highly ordered structures. We have also examined the effect of nano-particle size d on the statistical behavior of τ̅(r). Our simulations indicate that for volume distribution of traps, τ̅(r) scales as d(2). For a surface distribution of traps τ(r) increases almost linearly with d. This leads to the prediction of a linear dependence of the diffusion coefficient D on the particle size d in ordered structures or random structures above the critical concentration which is in accordance with experimental observations.

  13. Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave

    DOE PAGES

    Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.; ...

    2017-03-31

    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA’s Magnetospheric Multiscale (MMS) mission, we utilize Earth’s magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electronsmore » confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. As a result, the investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.« less

  14. Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.

    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA’s Magnetospheric Multiscale (MMS) mission, we utilize Earth’s magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electronsmore » confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. As a result, the investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.« less

  15. Nanolaminate microfluidic device for mobility selection of particles

    DOEpatents

    Surh, Michael P [Livermore, CA; Wilson, William D [Pleasanton, CA; Barbee, Jr., Troy W.; Lane, Stephen M [Oakland, CA

    2006-10-10

    A microfluidic device made from nanolaminate materials that are capable of electrophoretic selection of particles on the basis of their mobility. Nanolaminate materials are generally alternating layers of two materials (one conducting, one insulating) that are made by sputter coating a flat substrate with a large number of layers. Specific subsets of the conducting layers are coupled together to form a single, extended electrode, interleaved with other similar electrodes. Thereby, the subsets of conducting layers may be dynamically charged to create time-dependent potential fields that can trap or transport charge colloidal particles. The addition of time-dependence is applicable to all geometries of nanolaminate electrophoretic and electrochemical designs from sinusoidal to nearly step-like.

  16. Axial flow plasma shutter

    DOEpatents

    Krausse, George J.

    1988-01-01

    A shutter (36) is provided for controlling a beam, or current, of charged particles in a device such as a thyratron (10). The substrate (38) defines an aperture (60) with a gap (32) which is placeable within the current. Coils (48) are formed on the substrate (38) adjacent the aperture (60) to produce a magnetic field for trapping the charged particles in or about aperture (60). The proximity of the coils (48) to the aperture (60) enables an effective magnetic field to be generated by coils (48) having a low inductance suitable for high frequency control. The substantially monolithic structure including the substrate (38) and coils (48) enables the entire shutter assembly (36) to be effectively located with respect to the particle beam.

  17. Hydrodynamic Boundary Effects on Thermophoresis of Confined Colloids.

    PubMed

    Würger, Alois

    2016-04-01

    We study hydrodynamic slowing down of a particle moving in a temperature gradient perpendicular to a wall. At distances much smaller than the particle radius, h≪a, the lubrication approximation leads to the reduced velocity u/u_{0}=3(h/a)[ln(a/h)-9/4], where u_{0} is the velocity in the bulk. With Brenner's result for confined diffusion, we find that the trapping efficiency, or effective Soret coefficient, increases logarithmically as the particle gets very close to the wall. Our results provide a quantitative explanation for the recently observed enhancement of thermophoretic trapping at short distances. Our discussion of parallel and perpendicular thermophoresis in a capillary reveals a good agreement with experiments on charged polystyrene particles, and sheds some light on a controversy concerning the size dependence and the nonequilibrium nature of the Soret effect.

  18. Near-field multiple traps of paraxial acoustic vortices with strengthened gradient force generated by sector transducer array

    NASA Astrophysics Data System (ADS)

    Wang, Qingdong; Li, Yuzhi; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong

    2018-01-01

    In order to improve the capability of particle trapping close to the source plane, theoretical and experimental studies on near-field multiple traps of paraxial acoustic vortices (AVs) with a strengthened acoustic gradient force (AGF) generated by a sector transducer array were conducted. By applying the integration of point source radiation, numerical simulations for the acoustic fields generated by the sector transducer array were conducted and compared with those produced by the circular transducer array. It was proved that strengthened AGFs of near-field multiple AVs with higher peak pressures and smaller vortex radii could be produced by the sector transducer array with a small topological charge. The axial distributions of the equivalent potential gradient indicated that the AGFs of paraxial AVs in the near field were much higher than those in the far field, and the distances at the near-field vortex antinodes were also proved to be the ideal trapping positions with relatively higher AGFs. With the established 8-channel AV generation system, theoretical studies were also verified by the experimental measurements of pressure and phase for AVs with various topological charges. The formation of near-field multiple paraxial AVs was verified by the cross-sectional circular pressure distributions with perfect phase spirals around central pressure nulls, and was also proved by the vortex nodes and antinodes along the center axis. The favorable results demonstrated the feasibility of generating near-field multiple traps of paraxial AVs with strengthened AGF using the sector transducer array, and suggested the potential applications of close-range particle trapping in biomedical engineering.

  19. Sub-diffusion and trapped dynamics of neutral and charged probes in DNA-protein coacervates

    NASA Astrophysics Data System (ADS)

    Arfin, Najmul; Yadav, Avinash Chand; Bohidar, H. B.

    2013-11-01

    The physical mechanism leading to the formation of large intermolecular DNA-protein complexes has been studied. Our study aims to explain the occurrence of fast coacervation dynamics at the charge neutralization point, followed by the appearance of smaller complexes and slower coacervation dynamics as the complex experiences overcharging. Furthermore, the electrostatic potential and probe mobility was investigated to mimic the transport of DNA / DNA-protein complex in a DNA-protein complex coacervate medium [N. Arfin and H. B. Bohidar, J. Phys. Chem. B 116, 13192 (2012)] by assigning neutral, negative, or positive charge to the probe particle. The mobility of the neutral probe was maximal at low matrix concentrations and showed random walk behavior, while its mobility ceased at the jamming concentration of c = 0.6, showing sub-diffusion and trapped dynamics. The positively charged probe showed sub-diffusive random walk followed by trapped dynamics, while the negatively charged probe showed trapping with occasional hopping dynamics at much lower concentrations. Sub-diffusion of the probe was observed in all cases under consideration, where the electrostatic interaction was used exclusively as the dominant force involved in the dynamics. For neutral and positive probes, the mean square displacement ⟨R2⟩ exhibits a scaling with time as ⟨R2⟩ ˜ tα, distinguishing random walk and trapped dynamics at α = 0.64 ± 0.04 at c = 0.12 and c = 0.6, respectively. In addition, the same scaling factors with the exponent β = 0.64 ± 0.04 can be used to distinguish random walk and trapped dynamics for the neutral and positive probes using the relation between the number of distinct sites visited by the probe, S(t), which follows the scaling, S(t) ˜ tβ/ln (t). Our results established the occurrence of a hierarchy of diffusion dynamics experienced by a probe in a dense medium that is either charged or neutral.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  1. Modeling and simulation of charged particle beam transport in the UTA 2 meter Time of Flight Positron Annihilation Induced Auger Spectrometer

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Lim, Lawrence; Kalaskar, Sushant; Shastry, Karthik; Satyal, Suman; Weiss, Alexander

    2010-10-01

    Time of Flight Positron Annihilation Induced Auger Electron Spectroscopy (TOF PAES) is a surface analytical technique with high surface selectivity. Almost 95% of the PAES signal originates from the sample's topmost layer due to the trapping of positrons just above the surface in an image-potential well before annihilation. This talk presents a description of the TOF technique as the results of modeling of the charged particle transport used in the design of the 2 meter TOF-PAES system currently under construction at UTA.

  2. Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex.

    PubMed

    Liang, Yansheng; Lei, Ming; Yan, Shaohui; Li, Manman; Cai, Yanan; Wang, Zhaojun; Yu, Xianghua; Yao, Baoli

    2018-01-01

    Low-refractive-index microparticles, such as hollow microspheres, have shown great significance in some applications, such as biomedical sensing and targeted drug delivery. However, optical trapping and manipulation of low-refractive-index microparticles are challenging, owing to the repelling force exerted by typical optical traps. In this paper, we demonstrated optical trapping and rotating of large-sized low-refractive-index microparticles by using quasi-perfect optical vortex (quasi-POV) beams, which were generated by Fourier transform of high-order quasi-Bessel beams. Numerical simulation was carried out to characterize the focusing property of the quasi-POV beams. The dynamics of low-refractive-index microparticles in the quasi-POV with various topological charges was investigated in detail. To improve the trapping and rotating performances of the vortex, a point trap was introduced at the center of the ring. Experimental results showed that the quasi-POV was preferable for manipulation of large-sized low-refractive-index microparticles, with its control of the particles' rotating velocity dependent only on the topological charge due to the unchanged orbital radius.

  3. Internal Energy Distribution in Sympathetically Cooled Molecular Ions

    NASA Astrophysics Data System (ADS)

    Thompson, Robert I.; Fisher, Amy; Harmon, Thomas; Winslade, Clayton; Ahmadi, Nasser

    2002-05-01

    Over the past year a research program at the University of Calgary has begun looking at the distribution of energy in the internal degrees of freedom (vibrational and rotational) of trapped and sympathetically cooled molecular ions. Ion traps are capable of holding mixed samples of charged atoms and molecules simultaneously. Atomic ions in the trapped cloud can be laser cooled by traditional techniques. The molecular ions are not directly laser cooled, but all of the trapped particles are charged so they interact strongly through Coulomb forces. It has been experimentally demonstrated that the external or translational degrees of freedom of the non-laser-cooled species are significantly lowered through this interaction (e.g. [1]). However, there is little known about the energy distribution in the in the internal degrees of freedom. This poster will outline the results of our theoretical work, as well as the technical design, construction, and initial work in the laboratory. [1] T. Baba and I. Waki, Jpn. J. Appl. Phys. 35, L1134 (1996).

  4. ALTITUDE DISTRIBUTION OF CHARGED PARTICLES IN THE IONOSPHERE AND THE TRANSITION ZONE BETWEEN THE OXYGEN AND THE HELIUM ION LAYERS DETERMINED BY THE ION-TRAP EXPERIMENTS OF THE "COSMOS-2" SATELLITE (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gringauz, K.I.; Gorozhankin, B.N.; Shyutte, N.M.

    1963-07-21

    The previous studies carried out during the IGY on the distribution of charged particles in the upper ionosphere as a function of the altitude were continued with the satellite Cosmos-2, launched on April 6, 1962. This latier study indicated that the previous findings prevail only during periods close to the maximum of solar activity and thus change with time. The satellite, which had a perigee and an apogee of about 212 and 1546 km, respectively, carried experimental devices, such as 8 three-electrode ion traps placed on the external surface and special spherical ion traps. The data yielded by these instrumentsmore » indicated that the transition zone between the O/sup +/ and the He/sup +/ ion layers was located at a much lower altitude than found during the of magnitude occurred at the time of flight of the third Sputnik and during the tests with Cosmos-2, therefore the differences in the structure of the ionosphere cannot be attributed to magnetic effects. The data agree with the calculations of J. Harris and W. Priester (J. Geophys. Res., 67: 4585 (1962)) who correlated the changes in the altitude distribution of the molecular weight of neutral particles with the solar activity. (TTT)« less

  5. Paul trap simulator experiment to model intense-beam propagation in alternating-gradient transport systems.

    PubMed

    Gilson, Erik P; Davidson, Ronald C; Efthimion, Philip C; Majeski, Richard

    2004-04-16

    The results presented here demonstrate that the Paul trap simulator experiment (PTSX) simulates the propagation of intense charged particle beams over distances of many kilometers through magnetic alternating-gradient (AG) transport systems by making use of the similarity between the transverse dynamics of particles in the two systems. Plasmas have been trapped that correspond to normalized intensity parameters s=omega(2)(p)(0)/2omega(2)(q)

  6. Characterization of Defects in Scaled Mis Dielectrics with Variable Frequency Charge Pumping

    NASA Astrophysics Data System (ADS)

    Paulsen, Ronald Eugene

    1995-01-01

    Historically, the interface trap has been extensively investigated to determine the effects on device performance. Recently, much attention has been paid to trapping in near-interface oxide traps. Performance of high precision analog circuitry is affected by charge trapping in near-interface oxide traps which produces hysteresis, charge redistribution errors, and dielectric relaxation effects. In addition, the performance of low power digital circuitry, with reduced noise margins, may be drastically affected by the threshold voltage shifts associated with charge trapping in near -interface oxide traps. Since near-interface oxide traps may substantially alter the performance of devices, complete characterization of these defects is necessary. In this dissertation a new characterization technique, variable frequency charge pumping, is introduced which allows charge trapped at the interface to be distinguished from the charge trapped within the oxide. The new experimental technique is an extension of the charge pumping technique to low frequencies such that tunneling may occur from interface traps to near-interface oxide traps. A generalized charge pumping model, based on Shockley-Read-Hall statistics and trap-to-trap tunneling theory, has been developed which allows a more complete characterization of near-interface oxide traps. A pair of coupled differential equations governing the rate of change of occupied interface and near-interface oxide traps have been developed. Due to the experimental conditions in the charge pumping technique the equations may be decoupled, leading to an equation governing the rate of change of occupied interface traps and an equation governing the rate of change of occcupied near-interface oxide traps. Solving the interface trap equation and applying non-steady state charge dynamics leads to an interface trap component of the charge pumping current. In addition, solution to the near-interface oxide trap equation leads to an additional oxide trap component to the charge pumping current. Numerical simulations have been performed to support the analytical development of the generalized charge pumping model. By varying the frequency of the applied charge pumping waveform and monitoring the charge recombined per cycle, the contributions from interface traps may be separated from the contributions of the near-interface oxide traps. The generalized charge pumping model allows characterization of the density and spatial distribution of near-interface oxide traps from this variable frequency charge pumping technique. Characterization of interface and near-interface oxide trap generation has been performed on devices exposed to ionizing radiation, hot electron injection, and high -field/Fowler-Nordheim stressing. Finally, using SONOS nonvolatile memory devices, a framework has been established for experimentally determining not only the spatial distribution of near-interface oxide traps, but also the energetic distribution. An experimental approach, based on tri-level charge pumping, is discussed which allows the energetic distribution of near-interface oxide traps to be determined.

  7. Manipulating particles for micro- and nano-fluidics via floating electrodes and diffusiophoresis

    NASA Astrophysics Data System (ADS)

    Yalcin, Sinan Eren

    The ability to accurately control micro- and nano-particles in a liquid is fundamentally useful for many applications in biology, medicine, pharmacology, tissue engineering, and microelectronics. Therefore, first particle manipulations are experimentally studied using electrodes attached to the bottom of a straight microchannel under an imposed DC or AC electric field. In contrast to a dielectric microchannel possessing a nearly-uniform surface charge, a floating electrode is polarized under the imposed electric field. The purpose is to create a non-uniform distribution of the induced surface charge, with a zero-net-surface charge along the floating electrode's surface. Such a field, in turn, generates an induced-charge electro-osmotic (ICED) flow near the metal strip. The demonstrations by using single and multiple floating electrodes at the bottom of a straight microchannel, with induced DC electric field, include particle enrichment, movement, trapping, reversal of motion, separation, and particle focusing. A flexible strategy for the on-demand control of the particle enrichment and positioning is also proposed and demonstrated by using a locally-controlled floating metal electrode. Then, under an externally imposed AC electric field, the particle deposition onto a floating electrode, which is placed in a closed circular cavity, has been experimentally investigated. In the second part of the study, another particle manipulation method was computationally investigated. The diffusiophoretic and electrodiffusiophoretic motion of a charged spherical particle in a nanopore is subjected to an axial electrolyte concentration gradient. The charged particle experiences electrophoresis because of the imposed electric field and the diffusiophoresis is caused solely by the imposed concentration gradient. Depending on the magnitude and direction of the imposed concentration gradient, the particle's electrophoretic motion can be accelerated, decelerated, and even reversed in a nanopore by the superimposed diffusiophoresis. Based on the results demonstrated in the present study, it is entirely conceivable to extend the development to design devices for the following objectives: (1) to enrich the concentration of, say, DNA or RNA, and to increase their concentrations at a desired location. (2) to act as a filtration device, wherin the filtration can be achieved without blocking the microfluidic channel and without any porous material. (3) to act as a microfluidic valve, where the particles can be locally trapped in any desired location and the direction can be switched as desired. (4) to create nanocomposite material formation or even a thin nanocomposite film formation on the floating electrode. (5) to create a continuous concentration-gradient-generator nanofluidic device that may be obtained for nanoparticle translocation process. This may achieve nanometer-scale spatial accuracy sample sequencing by simultaneously controlling the electric field and concentration gradient.

  8. Particle-in-cell/accelerator code for space-charge dominated beam simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-05-08

    Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas. At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model.more » The code is guilt atop the Python interpreter language.« less

  9. A Theory for Self-consistent Acceleration of Energetic Charged Particles by Dynamic Small-scale Flux Ropes

    NASA Astrophysics Data System (ADS)

    le Roux, J. A.; Zank, G. P.; Khabarova, O.; Webb, G. M.

    2016-12-01

    Simulations of charged particle acceleration in turbulent plasma regions with numerous small-scale contracting and merging (reconnecting) magnetic islands/flux ropes emphasize the key role of temporary particle trapping in these structures for efficient acceleration that can result in power-law spectra. In response, a comprehensive kinetic transport theory framework was developed by Zank et al. and le Roux et al. to capture the essential physics of energetic particle acceleration in solar wind regions containing numerous dynamic small-scale flux ropes. Examples of test particle solutions exhibiting hard power-law spectra for energetic particles were presented in recent publications by both Zank et al. and le Roux et al.. However, the considerable pressure in the accelerated particles suggests the need for expanding the kinetic transport theory to enable a self-consistent description of energy exchange between energetic particles and small-scale flux ropes. We plan to present the equations of an expanded kinetic transport theory framework that will enable such a self-consistent description.

  10. Quantitative Measures of Chaotic Charged Particle Dynamics in the Magnetotail

    NASA Astrophysics Data System (ADS)

    Holland, D. L.; Martin, R. F., Jr.; Burris, C.

    2017-12-01

    It has long been noted that the motion of charged particles in magnetotail-like magnetic fields is chaotic, however, efforts to quantify the degree of chaos have had conflicting conclusions. In this paper we re-examine the question by focusing on quantitative measures of chaos. We first examine the percentage of orbits that enter the chaotic region of phase space and the average trapping time of those particles. We then examine the average exponential divergence rate (AEDR) of the chaotic particles between their first and last crossing of the mid-plane. We show that at resonant energies where the underlying phase space has a high degree of symmetry, only a small number of particle enter the chaotic region, but they are trapped for long periods of time and the time asymptotic value of the AEDR is very close to the average value of the AEDR. At the off-resonant energies where the phase space is highly asymmetric, the majority of the particle enter the chaotic region for fairly short periods of time and the time asymptotic value of the AEDR is much smaller than the average value. The root cause is that in the resonant case, the longest-lived orbits tend interact with the current many times and sample the entire chaotic region, whereas in the non-resonant case the longest-lived orbits only interact with the current sheet a small number of times but have very long mirrorings where the motion is nearly regular. Additionally we use an ad-hoc model where we model the current sheet as a Lorentz scattering system with each interaction with the current sheet being considered as a "collision". We find that the average kick per collision is greatest at off-resonant energies. Finally, we propose a chaos parameter as the product of the AEDR times the average chaotic particle trapping time times the percentage of orbits that are chaotic. We find that this takes on peak values at the resonant energies.

  11. Time-resolved electric force microscopy of charge traps in polycrystalline pentacene films

    NASA Astrophysics Data System (ADS)

    Jaquith, Michael; Muller, Erik; Marohn, John

    2006-03-01

    The microscopic mechanisms by which charges trap in organic electronic materials are poorly understood. Muller and Marohn recently showed that electric force microscopy (EFM) can be used to image trapped charge in working pentacene thin-film transistors [E. M. Muller et al, Adv. Mater. 17 1410 (2005)]. We have extended their work by imaging trapped charge in pentacene films with much larger grains. In contrast to the previous study in which charge was found to trap inhomogeneously throughout the transistor gap, we find microscopic evidence for a new trapping mechanism in which charges trap predominantly at the pentacene/metal interface in large-grained devices. We have also made localized measurements of the trap growth over time by performing pulsed-gate EFM experiments. Integrated-rate kinetics data supports a charge trap mechanism which is second order in holes, e.g., holes trap in pairs, although the charge-trapping rate appears to depend on gate voltage.

  12. Simulation and Modeling of charge particles transport using SIMION for our Time of Flight Positron Annihilation Induce Auger Electron Spectroscopy systems

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Shastry, K.; Satyal, Suman; Weiss, Alexander

    2012-02-01

    Time of flight Positron Annihilation Induced Auger Electron Spectroscopy system, a highly surface selective analytical technique using time of flight of auger electron resulting from the annihilation of core electrons by trapped incident positron in image potential well. We simulated and modeled the trajectories of the charge particles in TOF-PAES using SIMION for the development of new high resolution system at U T Arlington and current TOFPAES system. This poster presents the SIMION simulations results, Time of flight calculations and larmor radius calculations for current system as well as new system.

  13. An optical levitation system for a physics teaching laboratory

    NASA Astrophysics Data System (ADS)

    Isaksson, Oscar; Karlsteen, Magnus; Rostedt, Mats; Hanstorp, Dag

    2018-02-01

    We describe an experimental system based on optical levitation of an oil droplet. When combined with an applied electric field and a source of ionizing radiation, the setup permits the investigation of physical phenomena such as radiation pressure, light diffraction, the motion of a charged particle in an oscillating electric field, and the interaction of ionizing radiation with matter. The trapping occurs by creating an equilibrium between a radiation pressure force and the force of gravity. We have found that an oil droplet can be trapped for at least nine hours. The system can be used to measure the size and total electric charge on the trapped droplet. The intensity of the light from the trapping laser that is scattered by the droplet is sufficient to allow the droplet to be easily seen with the naked eye, covered by laser alignment goggles. When oscillating under the influence of an ac electric field, the motion of the droplet can be described as that of a driven, damped harmonic oscillator. The magnitude and polarity of the charge can be altered by exposing the droplet to ionizing radiation from a low-activity radioactive source. Our goal was to design a hands-on setup that allows undergraduate and graduate students to observe and better understand fundamental physical processes.

  14. Virtual cathode formations in nested-well configurations

    NASA Astrophysics Data System (ADS)

    Stephens, K. F.; Ordonez, C. A.; Peterkin, R. E.

    1999-12-01

    Complete transmission of an electron beam through a cavity is not possible if the current exceeds the space-charge limited current. The formation of a virtual cathode reflects some of the beam electrons and reduces the current transmitted through the cavity. Transients in the injected current have been shown to lower the transmitted current below the value predicted by the electrostatic Child-Langmuir law. The present work considers the propagation of an electron beam through a nested-well configuration. Electrostatic particle-in-cell simulations are used to demonstrate that ions can be trapped in the electric potential depression of an electron beam. Furthermore, the trapped ions can prevent the formation of a virtual cathode for beam currents exceeding the space-charge limit.

  15. Challenging the standard model by high-precision comparisons of the fundamental properties of protons and antiprotons

    NASA Astrophysics Data System (ADS)

    Ulmer, S.; Mooser, A.; Nagahama, H.; Sellner, S.; Smorra, C.

    2018-03-01

    The BASE collaboration investigates the fundamental properties of protons and antiprotons, such as charge-to-mass ratios and magnetic moments, using advanced cryogenic Penning trap systems. In recent years, we performed the most precise measurement of the magnetic moments of both the proton and the antiproton, and conducted the most precise comparison of the proton-to-antiproton charge-to-mass ratio. In addition, we have set the most stringent constraint on directly measured antiproton lifetime, based on a unique reservoir trap technique. Our matter/antimatter comparison experiments provide stringent tests of the fundamental charge-parity-time invariance, which is one of the fundamental symmetries of the standard model of particle physics. This article reviews the recent achievements of BASE and gives an outlook to our physics programme in the ELENA era. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  16. Challenging the standard model by high-precision comparisons of the fundamental properties of protons and antiprotons.

    PubMed

    Ulmer, S; Mooser, A; Nagahama, H; Sellner, S; Smorra, C

    2018-03-28

    The BASE collaboration investigates the fundamental properties of protons and antiprotons, such as charge-to-mass ratios and magnetic moments, using advanced cryogenic Penning trap systems. In recent years, we performed the most precise measurement of the magnetic moments of both the proton and the antiproton, and conducted the most precise comparison of the proton-to-antiproton charge-to-mass ratio. In addition, we have set the most stringent constraint on directly measured antiproton lifetime, based on a unique reservoir trap technique. Our matter/antimatter comparison experiments provide stringent tests of the fundamental charge-parity-time invariance, which is one of the fundamental symmetries of the standard model of particle physics. This article reviews the recent achievements of BASE and gives an outlook to our physics programme in the ELENA era.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'. © 2018 The Authors.

  17. A novel transparent charged particle detector for the CPET upgrade at TITAN

    NASA Astrophysics Data System (ADS)

    Lascar, D.; Kootte, B.; Barquest, B. R.; Chowdhury, U.; Gallant, A. T.; Good, M.; Klawitter, R.; Leistenschneider, E.; Andreoiu, C.; Dilling, J.; Even, J.; Gwinner, G.; Kwiatkowski, A. A.; Leach, K. G.

    2017-10-01

    The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid's entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the "mesh detector." The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user's discretion.

  18. Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves

    NASA Astrophysics Data System (ADS)

    Tobita, Miwa; Omura, Yoshiharu

    2018-03-01

    We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.

  19. Dynamics of optically levitated microparticles in vacuum placed in 2D and 3D optical potentials possessing orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Arita, Yoshihiko; Mazilu, Michael; Chen, Mingzhou; Vettenburg, Tom; Auñón, Juan M.; Wright, Ewan M.; Dholakia, Kishan

    2017-04-01

    We demonstrate the transfer of orbital angular momentum to optically levitated microparticles in vacuum [1]. We prepare two-dimensional and three-dimensional optical potentials. In the former case the microparticle is placed within a Laguerre-Gaussian beam and orbits the annular beam profile with increasing angular velocity as the air drag coefficient is reduced. We explore the particle dynamics as a function of the topological charge of the levitating beam. Our results reveal that there is a fundamental limit to the orbital angular momentum that may be transferred to a trapped particle, dependent upon the beam parameters and inertial forces present. This effect was predicted theoretically [2] and can be understood considering the underlying dynamics arising from the link between the magnitude of the azimuthal index and the beam radius [3]. Whilst a Laguerre-Gaussian beam scales in size with azimuthal index `, recently we have created a "perfect" vortex beam whose radial intensity profile and radius are both independent of topological charge [4, 5]. As the Fourier transform of a perfect vortex yields a Bessel beam. Imaging a perfect vortex, with its subsequent propagation thus realises a complex three dimensional optical field. In this scenario we load individual silica microparticles into this field and observe their trajectories. The optical gradient and scattering forces interplay with the inertial and gravitational forces acting on the trapped particle, including the rotational degrees of freedom. As a result the trapped microparticle exhibits a complex three dimensional motion that includes a periodic orbital motion between the Bessel and the perfect vortex beam. We are able to determine the three dimensional optical potential in situ by tracking the particle. This first demonstration of trapping microparticles within a complex three dimensional optical potential in vacuum opens up new possibilities for fundamental studies of many-body dynamics, mesoscopic entanglement [6, 7], and optical binding [8, 9].

  20. Geometrical effects on the electron residence time in semiconductor nano-particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koochi, Hakimeh; Ebrahimi, Fatemeh, E-mail: f-ebrahimi@birjand.ac.ir; Solar Energy Research Group, University of Birjand, Birjand

    2014-09-07

    We have used random walk (RW) numerical simulations to investigate the influence of the geometry on the statistics of the electron residence time τ{sub r} in a trap-limited diffusion process through semiconductor nano-particles. This is an important parameter in coarse-grained modeling of charge carrier transport in nano-structured semiconductor films. The traps have been distributed randomly on the surface (r{sup 2} model) or through the whole particle (r{sup 3} model) with a specified density. The trap energies have been taken from an exponential distribution and the traps release time is assumed to be a stochastic variable. We have carried out (RW)more » simulations to study the effect of coordination number, the spatial arrangement of the neighbors and the size of nano-particles on the statistics of τ{sub r}. It has been observed that by increasing the coordination number n, the average value of electron residence time, τ{sup ¯}{sub r} rapidly decreases to an asymptotic value. For a fixed coordination number n, the electron's mean residence time does not depend on the neighbors' spatial arrangement. In other words, τ{sup ¯}{sub r} is a porosity-dependence, local parameter which generally varies remarkably from site to site, unless we are dealing with highly ordered structures. We have also examined the effect of nano-particle size d on the statistical behavior of τ{sup ¯}{sub r}. Our simulations indicate that for volume distribution of traps, τ{sup ¯}{sub r} scales as d{sup 2}. For a surface distribution of traps τ{sup ¯}{sub r} increases almost linearly with d. This leads to the prediction of a linear dependence of the diffusion coefficient D on the particle size d in ordered structures or random structures above the critical concentration which is in accordance with experimental observations.« less

  1. Formation of high-β plasma and stable confinement of toroidal electron plasma in Ring Trap 1a)

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Yoshida, Z.; Morikawa, J.; Furukawa, M.; Yano, Y.; Kawai, Y.; Kobayashi, M.; Vogel, G.; Mikami, H.

    2011-05-01

    Formation of high-β electron cyclotron resonance heating plasma and stable confinement of pure electron plasma have been realized in the Ring Trap 1 device, a magnetospheric configuration generated by a levitated dipole field magnet. The effects of coil levitation resulted in drastic improvements of the confinement properties, and the maximum local β value has exceeded 70%. Hot electrons are major component of electron populations, and its particle confinement time is 0.5 s. Plasma has a peaked density profile in strong field region [H. Saitoh et al., 23rd IAEA Fusion Energy Conference EXC/9-4Rb (2010)]. In pure electron plasma experiment, inward particle diffusion is realized, and electrons are stably trapped for more than 300 s. When the plasma is in turbulent state during beam injection, plasma flow has a shear, which activates the diocotron (Kelvin-Helmholtz) instability. The canonical angular momentum of the particle is not conserved in this phase, realizing the radial diffusion of charged particles across closed magnetic surfaces. [Z. Yoshida et al., Phys Rev. Lett. 104, 235004 (2010); H. Saitoh et al., Phys. Plasmas 17, 112111 (2010).].

  2. Cylindrical Vector Beams for Rapid Polarization-Dependent Measurements in Atomic Systems

    DTIC Science & Technology

    2011-12-05

    www.opticsinfobase.org/abstract.cfm?URI=oe-18-24-25035. 16. S. Tripathi and K. C. Toussaint, Jr., “Rapid Mueller matrix polarimetry based on parallelized...optical trapping [11], atom guiding [12], laser machining [13], charged particle acceleration [14,15], and polarimetry [16]. Yet despite numerous

  3. Development of a Charged-Particle Accumulator Using an RF Confinement Method

    DTIC Science & Technology

    2007-03-12

    antiparticles (antiprotons and positrons), and to produce a large quantity of antimatter . Antihydrogen atoms have recently been produced using Penning...ultimate goal is to trap a large number of antiparticles and to produce a large quantity of antimatter . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF

  4. Time Resolved Microscopy of Charge Trapping in Polycrystalline Pentacene

    NASA Astrophysics Data System (ADS)

    Jaquith, Michael; Muller, Erik; Marohn, John

    2007-03-01

    The microscopic mechanisms by which charges trap in organic electronic materials are poorly understood. Muller and Marohn recently showed that electric force microscopy (EFM) can be used to image trapped charge in working pentacene thin-film transistors [E. M. Muller et al., Adv. Mater. 17 1410 (2005)]. We have made a new discovery by imaging trapped charge in pentacene films with much larger grains. In contrast to the previous study in which charge was found to trap inhomogeneously throughout the transistor gap, we find microscopic evidence for a new trapping mechanism in which charges trap predominantly at the pentacene/metal interface in large-grained devices. We conclude that at least two charge trapping mechanisms are at play in polycrystalline pentacene. We have made localized measurements of the trap growth over time by performing pulsed-gate EFM experiments. Trap formation is not instantaneous, taking up to a second to complete. Furthermore, the charge-trapping rate depends strongly on gate voltage (or hole concentration). This kinetics data is consistent with the hypothesis that traps form by chemical reaction.

  5. "CORKSCREW"-A DEVICE FOR CHANGING THE MAGNETIC MOMENT OF CHARGED PARTICLES IN A MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wingerson, R.C.

    1961-05-01

    A helical, current-carrying magnetic field source (the "corkscrew") is described; it perturbs an axial uniform magnetic field B/sub 0/ such that the transverse energy components (ET) of selected particles moving along the sxis are increased or decreased monotonically. It is noted that, since the corkscrew has no over-all effect on B/sub 0/, the change in ET must result from a change in the particle's magnetic moment. The use of pairs of these devices in magnetic mirror machines to trap particles is suggested. (T.F.H.)

  6. Self-diffusion of charged colloidal tracer spheres in transparent porous glass media: Effect of ionic strength and pore size

    NASA Astrophysics Data System (ADS)

    Kluijtmans, Sebastiaan G. J. M.; de Hoog, Els H. A.; Philipse, Albert P.

    1998-05-01

    The influence of charge on diffusion in porous media was studied for fluorescent colloidal silica spheres diffusing in a porous glass medium. The bicontinuous porous silica glasses were optically matched with an organic solvent mixture in which both glass and tracers are negatively charged. Using fluorescence recovery after photobleaching, the long-time self-diffusion coefficient DSL of the confined silica particles was monitored in situ as a function of the ionic strength and particle to pore size ratio. At high salt concentration DSL reaches a relatively high plateau value, which depends on the particle to pore size ratio. This plateau value is unexpectedly higher than the value found for uncharged silica spheres in these porous glasses, but still significantly smaller than the free particle bulk diffusion coefficient of the silica spheres. At low salt concentration DSL reduces markedly, up to the point where colloids are nearly immobilized. This peculiar retardation probably originates from potential traps and barriers at pore intersections due to deviations from cylinder symmetry in the double layer interactions between tracers and pore walls. This indicates that diffusion of charged particles in tortuous porous media may be very different from transport in long capillaries without such intersections.

  7. Magnetic pumping of particles in the outer Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.

    1980-01-01

    The mechanism of magnetic pumping consists of two processes, the adiabatic motion of charged particles in a time varying magnetic field and their pitch-angle diffusion. The result is a systematic increase in the energy of charged particles trapped in mirror (and particularly, magnetospheric) magnetic fields. A numerical model of the mechanism is constructed, compared with analytic theory where possible, and, through elementary exercises, is used to predict the consequences of the process for cases that are not tractable by analytical means. For energy dependent pitch angle diffusion rates, characteristic 'two temperature' distributions are produced. Application of the model to the outer Jovian magnetosphere shows that beyond 20 Jupiter radii in the outer magnetosphere, particles may be magnetically pumped to energies of the order of 1 - 2 MeV. Two temperature distribution functions with "break points" at 1 - 4 KeV for electrons and 8 - 35 KeV for ions are predicted.

  8. Resonant ion acceleration by plasma jets: Effects of jet breaking and the magnetic-field curvature.

    PubMed

    Artemyev, A V; Vasiliev, A A

    2015-05-01

    In this paper we consider resonant ion acceleration by a plasma jet originating from the magnetic reconnection region. Such jets propagate in the background magnetic field with significantly curved magnetic-field lines. Decoupling of ion and electron motions at the leading edge of the jet results in generation of strong electrostatic fields. Ions can be trapped by this field and get accelerated along the jet front. This mechanism of resonant acceleration resembles surfing acceleration of charged particles at a shock wave. To describe resonant acceleration of ions, we use adiabatic theory of resonant phenomena. We show that particle motion along the curved field lines significantly influences the acceleration rate. The maximum gain of energy is determined by the particle's escape from the system due to this motion. Applications of the proposed mechanism to charged-particle acceleration in the planetary magnetospheres and the solar corona are discussed.

  9. Super-Resolution Optical Fluctuation Bio-Imaging with Dual-Color Carbon Nanodots.

    PubMed

    Chizhik, Anna M; Stein, Simon; Dekaliuk, Mariia O; Battle, Christopher; Li, Weixing; Huss, Anja; Platen, Mitja; Schaap, Iwan A T; Gregor, Ingo; Demchenko, Alexander P; Schmidt, Christoph F; Enderlein, Jörg; Chizhik, Alexey I

    2016-01-13

    Success in super-resolution imaging relies on a proper choice of fluorescent probes. Here, we suggest novel easily produced and biocompatible nanoparticles-carbon nanodots-for super-resolution optical fluctuation bioimaging (SOFI). The particles revealed an intrinsic dual-color fluorescence, which corresponds to two subpopulations of particles of different electric charges. The neutral nanoparticles localize to cellular nuclei suggesting their potential use as an inexpensive, easily produced nucleus-specific label. The single particle study revealed that the carbon nanodots possess a unique hybrid combination of fluorescence properties exhibiting characteristics of both dye molecules and semiconductor nanocrystals. The results suggest that charge trapping and redistribution on the surface of the particles triggers their transitions between emissive and dark states. These findings open up new possibilities for the utilization of carbon nanodots in the various super-resolution microscopy methods based on stochastic optical switching.

  10. Memory effects for a stochastic fractional oscillator in a magnetic field

    NASA Astrophysics Data System (ADS)

    Mankin, Romi; Laas, Katrin; Laas, Tõnu; Paekivi, Sander

    2018-01-01

    The problem of random motion of harmonically trapped charged particles in a constant external magnetic field is studied. A generalized three-dimensional Langevin equation with a power-law memory kernel is used to model the interaction of Brownian particles with the complex structure of viscoelastic media (e.g., dusty plasmas). The influence of a fluctuating environment is modeled by an additive fractional Gaussian noise. In the long-time limit the exact expressions of the first-order and second-order moments of the fluctuating position for the Brownian particle subjected to an external periodic force in the plane perpendicular to the magnetic field have been calculated. Also, the particle's angular momentum is found. It is shown that an interplay of external periodic forcing, memory, and colored noise can generate a variety of cooperation effects, such as memory-induced sign reversals of the angular momentum, multiresonance versus Larmor frequency, and memory-induced particle confinement in the absence of an external trapping field. Particularly in the case without external trapping, if the memory exponent is lower than a critical value, we find a resonancelike behavior of the anisotropy in the particle position distribution versus the driving frequency, implying that it can be efficiently excited by an oscillating electric field. Similarities and differences between the behaviors of the models with internal and external noises are also discussed.

  11. Interaction force in a vertical dust chain inside a glass box.

    PubMed

    Kong, Jie; Qiao, Ke; Matthews, Lorin S; Hyde, Truell W

    2014-07-01

    Small number dust particle clusters can be used as probes for plasma diagnostics. The number of dust particles as well as cluster size and shape can be easily controlled employing a glass box placed within a Gaseous Electronics Conference (GEC) rf reference chamber to provide confinement of the dust. The plasma parameters inside this box and within the larger plasma chamber have not yet been adequately defined. Adjusting the rf power alters the plasma conditions causing structural changes of the cluster. This effect can be used to probe the relationship between the rf power and other plasma parameters. This experiment employs the sloshing and breathing modes of small cluster oscillations to examine the relationship between system rf power and the particle charge and plasma screening length inside the glass box. The experimental results provided indicate that both the screening length and dust charge decrease as rf power inside the box increases. The decrease in dust charge as power increases may indicate that ion trapping plays a significant role in the sheath.

  12. Simulation of bipolar charge transport in nanocomposite polymer films

    NASA Astrophysics Data System (ADS)

    Lean, Meng H.; Chu, Wei-Ping L.

    2015-03-01

    This paper describes 3D particle-in-cell simulation of bipolar charge injection and transport through nanocomposite film comprised of ferroelectric ceramic nanofillers in an amorphous polymer matrix. The classical electrical double layer (EDL) model for a monopolar core is extended (eEDL) to represent the nanofiller by replacing it with a dipolar core. Charge injection at the electrodes assumes metal-polymer Schottky emission at low to moderate fields and Fowler-Nordheim tunneling at high fields. Injected particles migrate via field-dependent Poole-Frenkel mobility and recombine with Monte Carlo selection. The simulation algorithm uses a boundary integral equation method for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit assuring robust and rapid convergence. The model is capable of simulating a wide dynamic range spanning leakage current to pre-breakdown. Simulation results for BaTiO3 nanofiller in amorphous polymer matrix indicate that charge transport behavior depend on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and therefore lowest level of charge trapping in the interaction zone. Charge recombination is also highest, at the cost of reduced leakage conduction charge. The eEDL model predicts the meandering pathways of charge particle trajectories.

  13. Study of trapped radiation on the Kosmos 426 earth satellite. I. Scientific apparatus of Kosmos 426

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorob'ev, V.A.; Kuznetsov, S.N.; Lysenko, I.N.

    1975-01-01

    The spectral characteristics of the penetrating radiation and their space--time variations were studied on the artificial earth satellite. Data are presented from measurements of charged particle fluxes. These measurements were conducted over a period of seven months. The instrumentation is discussed at length. (JFP)

  14. Shock waves raised by explosions in space as sources of ultra-high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Kichigin, Gennadiy

    2015-03-01

    The paper discusses the possibility of particle acceleration up to ultrahigh energies in the relativistic waves generated by various explosive processes in the interstellar medium. We propose to use the surfatron mechanism of acceleration (surfing) of charged particles trapped in the front of relativistic waves as a generator of high-energy cosmic rays (CRs). Conditions under which surfing in these waves can be made are studied thoroughly. Ultra-high-energy CRs (up to 10^20 eV) are shown to be obtained due to the surfing in the relativistic plane and spherical waves. Surfing is supposed to take place in nonlinear Langmuir waves excited by powerful electromagnetic radiation or relativistic beams of charged particles, as well as in strong shock waves generated by relativistic jets or spherical formations that expand fast (fireballs).

  15. A general theory for ball lightning structure and light output

    NASA Astrophysics Data System (ADS)

    Morrow, R.

    2018-03-01

    A general theory for free-floating ball lightning is presented which unifies the phantom plasma ball theory involving the production of very little light, with theories for ball lightning involving light output produced by burning particles from the soil. The mechanism for the formation of plasma balls is shown to be quite general, producing very similar plasma balls independent of initial ion densities over four orders of magnitude. All that is required is an excess of positive ions in the initial ball of ions. The central plasma density after 1 s is shown to be the reciprocal of the ion neutralization coefficient for all cases, both analytically and computationally. Further, the plasma region has zero electric field in all cases. Surrounding the plasma ball is a sphere of positive ions moving away from the centre via their own space-charge field; this space-charge field, which is the same in all cases near the plasma ball, drives negative ions and negative particles towards the plasma centre. The connection with burning particle theories is the proposition that the burning particles are highly-charged which is very likely after a lightning strike. Burning negatively charged particles would be driven into the plasma ball region and trapped while any positively charged particles would be driven away. The plasma ball structure is shown to last more than 10 s and the ‘burnout time’ for a typical coal particle (as an example) has been measured at 5-10 s this is comparable with the lifetimes observed for ball lightning. The light output from a few hundred particles is estimated to be ~1 W, a typical output for ball lightning. Finally, suggestions are made for the generation of ball lightning in the laboratory.

  16. Charge collection in Si detectors irradiated in situ at superfluid helium temperature

    NASA Astrophysics Data System (ADS)

    Verbitskaya, Elena; Eremin, Vladimir; Zabrodskii, Andrei; Dehning, Bernd; Kurfürst, Christoph; Sapinski, Mariusz; Bartosik, Marcin R.; Egorov, Nicolai; Härkönen, Jaakko

    2015-10-01

    Silicon and diamond detectors operated in a superfluid helium bath are currently being considered for the upgrade of the LHC beam loss monitoring system. The detectors would be installed in immediate proximity of the superconducting coils of the triplet magnets. We present here the results of the in situ irradiation test for silicon detectors using 23 GeV protons while keeping the detectors at a temperature of 1.9 K. Red laser (630 nm) Transient Current Technique and DC current measurements were used to study the pulse response and collected charge for silicon detectors irradiated to a maximum radiation fluence of 1×1016 p/cm2. The dependence between collected charge and irradiation fluence was parameterized using the Hecht equation and assumption of a uniform electric field distribution. The collected charge was found to degrade with particle fluence for both bias polarities. We observed that the main factor responsible for this degradation was related to trapping of holes on the donor-type radiation-induced defects. In contrast to expectations, along with formation of donors, acceptor-type defects (electron traps) are introduced into the silicon bulk. This suggests that the current models describing charge collection in irradiated silicon detectors require an extension for taking into account trapping at low temperatures with a contribution of shallow levels. New in situ irradiation tests are needed and planned now to extend statistics of the results and gain a deeper insight into the physics of low temperature detector operation in harsh radiation environment.

  17. Self focusing in a spatially modulated electrostatic field particle accelerator

    NASA Astrophysics Data System (ADS)

    Russman, F.; Marini, S.; Peter, E.; de Oliveira, G. I.; Rizzato, F. B.

    2018-02-01

    In the present analysis, we study the action of a three-dimensional (3D) modulated electrostatic wave over a charged particle. Meanwhile, the particle's velocity is smaller than the phase-velocity of the carrier, and the particle could be reflected by the potential or could pass through the potential with no significant change in the longitudinal velocity—and its dynamics could be described by a ponderomotive approximation. Otherwise, the particle is trapped by the potential and it is accelerated towards the speed of light, independently of the initial particle's phase—in this case, the ponderomotive approximation is no longer valid. During the acceleration process, numerical simulations show the particle is focused, simultaneously. These results suggest the accelerator proposed here is promising.

  18. On the retention of high-energy protons and nuclei with charges Z or equal to 2 in large solar flares after the process of their acceleration

    NASA Technical Reports Server (NTRS)

    Volodichev, N. N.; Kuzhevsky, B. M.; Nechaev, O. Y.; Savenko, I. A.

    1985-01-01

    Data which suggest that the protons with energies of up to several GeV should be retained on the Sun after the process of their acceleration are presented. The protons are on the average retained for 15 min, irrespectively of the solar flare heliolatitude and of the accelerated particle energy ranging from 100 MeV to several GeV. It is suggested that the particles are retained in a magnetic trap formed in a solar active region. No Z or = 2 nuclei of solar origin during large solar flares. The absence of the 500 MeV/nucleon nuclei with Z or = 2 may be due to their retention in the magnetic trap which also retains the high-energy protons. During the trapping time the approx. 500 MeV/nucleon nuclei with Z or = 2 may escape due to nuclear interactions and ionization loss.

  19. Modified Korteweg–de Vries equation in a negative ion rich hot adiabatic dusty plasma with non-thermal ion and trapped electron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikary, N. C., E-mail: nirab-iasst@yahoo.co.in; Deka, M. K.; Dev, A. N.

    2014-08-15

    In this report, the investigation of the properties of dust acoustic (DA) solitary wave propagation in an adiabatic dusty plasma including the effect of the non-thermal ions and trapped electrons is presented. The reductive perturbation method has been employed to derive the modified Korteweg–de Vries (mK-dV) equation for dust acoustic solitary waves in a homogeneous, unmagnetized, and collisionless plasma whose constituents are electrons, singly charged positive ions, singly charged negative ions, and massive charged dust particles. The stationary analytical solution of the mK-dV equation is numerically analyzed and where the effect of various dusty plasma constituents DA solitary wave propagationmore » is taken into account. It is observed that both the ions in dusty plasma play as a key role for the formation of both rarefactive as well as the compressive DA solitary waves and also the ion concentration controls the transformation of negative to positive potentials of the waves.« less

  20. A Dust Grain Photoemission Experiment

    NASA Technical Reports Server (NTRS)

    Venturini, C. C.; Spann, J. F., Jr.; Abbas, M. M.; Comfort, R. H.

    2000-01-01

    A laboratory experiment has been developed at Marshall Space Flight Center to study the interaction of micron-sized particles with plasmas and FUV radiation. The intent is to investigate the conditions under which particles of various compositions and sizes become charged, or discharged, while exposed to an electron beam and/or UV radiation. This experiment uses a unique laboratory where a single charged micron size particle is suspended in a quadrupole trap and then subjected to a controlled environment. Tests are performed using different materials and sizes, ranging from 10 microns to 1 micron, to determine the particle's charge while being subjected to an electron beam and /or UV radiation. The focus of this presentation will be on preliminary results from UV photoemission tests, but past results from electron beam, secondary electron emission tests will also be highlighted. A monochromator is used to spectrally resolve UV in the 120 nm to 300 nm range. This enables photoemission measurements as a function of wavelength. Electron beam tests are conducted using I to 3 micron sized aluminum oxide particles subjected to energies between 100 eV to 3 KeV. It was found that for both positive and negative particles the potential tended toward neutrality over time with possible equilibrium potentials between -0.8 Volts and 0.8 Volts.

  1. Mixtures of latex particles and the surfactant of opposite charge used as interface stabilizers--influence of particle contact angle, zeta potential, flocculation and shear energy.

    PubMed

    Deleurence, Rémi; Parneix, Caroline; Monteux, Cécile

    2014-09-28

    We investigate the stabilization of air-water interfaces by mixtures of negatively charged latex particles (sulfate polystyrene) and cationic surfactants (alkyl trimethylammonium bromides). First we report results concerning the binding of surfactant molecules to the latex particles. As the surfactant concentration increases, the charge of the particles reverses, from negative to positive, because CnTAB first binds electrostatically to the latex particles and then through hydrophobic interaction with the monolayer already adsorbed on the particles as well as directly with the hydrophobic surface of the latex. Over a large range of surfactant concentrations around the charge inversion, a strong flocculation is observed and 100 μm large aggregates form in the suspension. Unlike previous studies published on mixtures of inorganic particles with oppositely charged surfactants, we show that we can vary the sign of the zeta potential of the particles without changing the contact angle of the particles over a large range of surfactant concentrations. Indeed, the latex particles that we study are more hydrophobic than inorganic particles, hence adding moderate concentrations of the surfactant results in a weak variation of the contact angle while the charge of the particles can be reversed. This enables decoupling of the effect of zeta potential and contact angle on the interfacial properties of the mixtures. Our study shows that the contact angle and the charge of the particles are not sufficient parameters to control the foam properties, and the key-parameters are the flocculation state and the shear energy applied to produce the foam. Indeed, flocculated samples, whatever the sign of the zeta potential, enable production of a stable armour at the interface. The large aggregates do not adsorb spontaneously at the interface because of their large size, however when a large shear energy is used to produce the foam very stable foam is obtained, where particles are trapped at interfaces. We suggest that the large aggregates may be broken during shear and may reform at the interface to form a solid armour. A simple calculation taking into account the adsorption dynamics of the aggregates as a function of their size is consistent with this hypothesis.

  2. Backgrounds, radiation damage, and spacecraft orbits

    NASA Astrophysics Data System (ADS)

    Grant, Catherine E.; Miller, Eric D.; Bautz, Mark W.

    2017-08-01

    The scientific utility of any space-based observatory can be limited by the on-orbit charged particle background and the radiation-induced damage. All existing and proposed missions have had to make choices about orbit selection, trading off the radiation environment against other factors. We present simulations from ESA’s SPace ENVironment Information System (SPENVIS) of the radiation environment for spacecraft in a variety of orbits, from Low Earth Orbit (LEO) at multiple inclinations to High Earth Orbit (HEO) to Earth-Sun L2 orbit. We summarize how different orbits change the charged particle background and the radiation damage to the instrument. We also discuss the limitations of SPENVIS simulations, particularly outside the Earth’s trapped radiation and point to new resources attempting to address those limitations.

  3. Comparative Theoretical Analysis Between Parallel and Perpendicular Geomotries for 2D Particle Patterning in Photovoltaic Ferroelectric Substrates

    NASA Astrophysics Data System (ADS)

    Arregui, C.; Ramiro, J. B.; Alcázar, A.; Méndez, A.; Muñoz-Martínez, J. F.; Carrascosa, M.

    2015-05-01

    This paper describes the dielectrophoretic potential created by the evanescent electric field acting on a particle near a photovoltaic crystalsurface depending on the crystal cut. This electric field is obtained from the steady state solution of the Kukhtarev equations for thephotovoltaic effect, where the diffusion term has been disregarded. First, the space charge field generated by a small, square, light spotwhere d << l (being d a side of the square and l the crystal thickness) is studied. The surface charge density generated in both geometriesis calculated and compared as their relation determines the different properties of the dielectrophoretic potential for both cuts. The shapeof the dielectrophoretic potential is obtained and compared for several distances to the sample. Afterwards other light patterns are studiedby the superposition of square spots, and the resulting trapping profiles are analysed. Finally the surface charge densities and trappingprofiles for different d/l relations are studied.

  4. Revised prediction of LDEF exposure to trapped protons

    NASA Technical Reports Server (NTRS)

    Watts, John W.; Armstrong, T. W.; Colborn, B. L.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) spacecraft flew in a 28.5 deg inclination circular orbit with an altitude in the range from 319.4 to 478.7 km. For this orbital altitude and inclination, two components contribute most of the penetrating charge particle radiation encountered - the galactic cosmic rays and the geomagnetically trapped Van Allen protons. Where shielding is less than 1.0 g/sq cm geomagnetically trapped electrons make a significant contribution. The 'Vette' models together with the associated magnetic field models and the solar conditions were used to obtain the trapped electron and proton omnidirectional fluences reported previously. Results for directional proton spectra using the MSFC anisotropy model for solar minimum and 463 km altitude (representative for the LDEF mission) were also reported. The directional trapped proton flux as a function of mission time is presented considering altitude and solar activity variation during the mission. These additional results represent an extension of previous calculations to provide a more definitive description of the LDEF trapped proton exposure.

  5. Off-resonance energy absorption in a linear Paul trap due to mass selective resonant quenching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivarajah, I.; Goodman, D. S.; Wells, J. E.

    Linear Paul traps (LPT) are used in many experimental studies such as mass spectrometry, atom-ion collisions, and ion-molecule reactions. Mass selective resonant quenching (MSRQ) is implemented in LPT either to identify a charged particle's mass or to remove unwanted ions from a controlled experimental environment. In the latter case, MSRQ can introduce undesired heating to co-trapped ions of different mass, whose secular motion is off resonance with the quenching ac field, which we call off-resonance energy absorption (OREA). We present simulations and experimental evidence that show that the OREA increases exponentially with the number of ions loaded into the trapmore » and with the amplitude of the off-resonance external ac field.« less

  6. Review of the High Performance Antiproton Trap (HiPAT) Experiment at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Pearson, J. B.; Sims, Herb; Martin, James; Chakrabarti, Suman; Lewis, Raymond; Fant, Wallace

    2003-01-01

    The significant energy density of matter-antimatter annihilation is attractive to the designers of future space propulsion systems, with the potential to offer a highly compact source of power. Many propulsion concepts exist that could take advantage of matter-antimatter reactions, and current antiproton production rates are sufficient to support basic proof-of-principle evaluation of technology associated with antimatter- derived propulsion. One enabling technology for such experiments is portable storage of low energy antiprotons, allowing antiprotons to be trapped, stored, and transported for use at an experimental facility. To address this need, the Marshall Space Flight Center's Propulsion Research Center is developing a storage system referred to as the High Performance Antiproton Trap (HiPAT) with a design goal of containing 10(exp 12) particles for up to 18 days. The HiPAT makes use of an electromagnetic system (Penning- Malmberg design) consisting of a 4 Telsa superconductor, high voltage electrode structure, radio frequency (RF) network, and ultra high vacuum system. To evaluate the system normal matter sources (both electron guns and ion sources) are used to generate charged particles. The electron beams ionize gas within the trapping region producing ions in situ, whereas the ion sources produce the particles external to the trapping region and required dynamic capture. A wide range of experiments has been performed examining factors such as ion storage lifetimes, effect of RF energy on storage lifetime, and ability to routinely perform dynamic ion capture. Current efforts have been focused on improving the FW rotating wall system to permit longer storage times and non-destructive diagnostics of stored ions. Typical particle detection is performed by extracting trapped ions from HiPAT and destructively colliding them with a micro-channel plate detector (providing number and energy information). This improved RF system has been used to detect various plasma modes for both electron and ion plasmas in the two traps at MSFC, including axial, cyclotron, and diocotron modes. New diagnostics are also being added to HiPAT to measure the axial density distribution of the trapped cloud to match measured RF plasma modes to plasma conditions.

  7. Abnormal Multiple Charge Memory States in Exfoliated Few-Layer WSe2 Transistors.

    PubMed

    Chen, Mikai; Wang, Yifan; Shepherd, Nathan; Huard, Chad; Zhou, Jiantao; Guo, L J; Lu, Wei; Liang, Xiaogan

    2017-01-24

    To construct reliable nanoelectronic devices based on emerging 2D layered semiconductors, we need to understand the charge-trapping processes in such devices. Additionally, the identified charge-trapping schemes in such layered materials could be further exploited to make multibit (or highly desirable analog-tunable) memory devices. Here, we present a study on the abnormal charge-trapping or memory characteristics of few-layer WSe 2 transistors. This work shows that multiple charge-trapping states with large extrema spacing, long retention time, and analog tunability can be excited in the transistors made from mechanically exfoliated few-layer WSe 2 flakes, whereas they cannot be generated in widely studied few-layer MoS 2 transistors. Such charge-trapping characteristics of WSe 2 transistors are attributed to the exfoliation-induced interlayer deformation on the cleaved surfaces of few-layer WSe 2 flakes, which can spontaneously form ambipolar charge-trapping sites. Our additional results from surface characterization, charge-retention characterization at different temperatures, and density functional theory computation strongly support this explanation. Furthermore, our research also demonstrates that the charge-trapping states excited in multiple transistors can be calibrated into consistent multibit data storage levels. This work advances the understanding of the charge memory mechanisms in layered semiconductors, and the observed charge-trapping states could be further studied for enabling ultralow-cost multibit analog memory devices.

  8. Trapping-charging ability and electrical properties study of amorphous insulator by dielectric spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mekni, Omar, E-mail: omarmekni-lmop@yahoo.fr; Arifa, Hakim; Askri, Besma

    2014-09-14

    Usually, the trapping phenomenon in insulating materials is studied by injecting charges using a Scanning Electron Microscope. In this work, we use the dielectric spectroscopy technique for showing a correlation between the dielectric properties and the trapping-charging ability of insulating materials. The evolution of the complex permittivity (real and imaginary parts) as a function of frequency and temperature reveals different types of relaxation according to the trapping ability of the material. We found that the space charge relaxation at low frequencies affects the real part of the complex permittivity ε{sup ´} and the dissipation factor Tan(δ). We prove that themore » evolution of the imaginary part of the complex permittivity against temperature ε{sup ′′}=f(T) reflects the phenomenon of charge trapping and detrapping as well as trapped charge evolution Q{sub p}(T). We also use the electric modulus formalism to better identify the space charge relaxation. The investigation of trapping or conductive nature of insulating materials was mainly made by studying the activation energy and conductivity. The conduction and trapping parameters are determined using the Correlated Barrier Hopping (CBH) model in order to confirm the relation between electrical properties and charge trapping ability.« less

  9. Study of thermal aging effects on the conduction and trapping of charges in XLPE cable insulations under electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Boukezzi, L.; Rondot, S.; Jbara, O.; Boubakeur, A.

    2018-08-01

    The effect of thermal aging on the charging phenomena in cross-linked polyethylene (XLPE) has been studied under electron beam irradiation in scanning electron microscope (SEM). The dynamic variation of trapped charge represents the trapping process of XLPE under electron beam irradiation. We have found that the trapped charge variation can be approximated by a first order exponential function. The amount of trapped charge presents enhanced values at the beginning of aging at lower temperatures (80 °C and 100 °C). This suggests the diffusion of cross-linking by-products to the surface of sample that acts as traps for injected electrons. The oxidation which is a very important form of XLPE degradation has an effect at the advanced stage of the aging process. For higher temperatures (120 °C and 140 °C), the taken part process in the evolution of the trapped charge is the crystallinity increase at the beginning of aging leading to the trapped charge decreasing, and the polar groups generated by thermo-oxidation process at the end of aging leading to the trapped charge increase. Variations of leakage current according to the aging time have quite similar trends with the dielectric losses factor and consequently some correlations must be made between charging mechanisms and the electrical behaviour of XLPE under thermal aging.

  10. Review of the High Performance Antiproton Trap (HiPAT) Experiment

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Lewis, Raymond A.; Pearson, J. Boise; Sims, W. Herb; Chakrabarti, Suman; Fant, Wallace E.; McDonald, Stan

    2003-01-01

    Many space propulsion concepts exist that use matter-antimatter reactions. Current antiproton production rates are enough to conduct proof-of-principle evaluation of these concepts. One enabling technology for such experiments is portable storage of low energy antiprotons, to transport antiprotons to experimental facilities. To address this need, HiPAT is being developed, with a design goal of containing 10(exp 12) particles for up to 18 days. HiPAT is a Penning-Malmberg trap with a 4 Tesla superconductor, 20kV electrodes, radio frequency (RF) network, and 10(exp -13) Torr vacuum. 'Normal' matter is being used to evaluate the system. An electron beam ionizes background gas in situ, and particle beams are captured dynamically. The experiment examines ion storage lifetimes, RF plasma diagnostics, charge exchange with background gases, and dynamic ion beam capture.

  11. An improved limit on the charge of antihydrogen from stochastic acceleration.

    PubMed

    Ahmadi, M; Baquero-Ruiz, M; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Charman, A E; Eriksson, S; Evans, L T; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; So, C; Tharp, T D; Thompson, R I; van der Werf, D P; Wurtele, J S; Zhmoginov, A I

    2016-01-21

    Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q| < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than about 10(-21)e for a diverse range of species including H2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge, then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement.

  12. Floating potential of emitting surfaces in plasmas with respect to the space potential

    DOE PAGES

    Kraus, B. F.; Raitses, Y.

    2018-03-19

    The potential difference between a floating emitting surface and the plasma surrounding it has been described by several sheath models, including the space-charge-limited sheath, the electron sheath with high emission current, and the inverse sheath produced by charge-exchange ion trapping. Our measurements reveal that each of these models has its own regime of validity. We determine the potential of an emissive filament relative to the plasma potential, emphasizing variations in emitted current density and neutral particle density. The potential of a filament in a diffuse plasma is first shown to vanish, consistent with the electron sheath model and increasing electronmore » emission. In a denser plasma with ample neutral pressure, the floating filament potential is positive, as predicted by a derived ion trapping condition. In conclusion, the filament floated negatively in a third plasma, where flowing ions and electrons and nonnegligible electric fields may have disrupted ion trapping. Depending on the regime chosen, emitting surfaces can float positively or negatively with respect to the plasma potential.« less

  13. Floating potential of emitting surfaces in plasmas with respect to the space potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, B. F.; Raitses, Y.

    The potential difference between a floating emitting surface and the plasma surrounding it has been described by several sheath models, including the space-charge-limited sheath, the electron sheath with high emission current, and the inverse sheath produced by charge-exchange ion trapping. Our measurements reveal that each of these models has its own regime of validity. We determine the potential of an emissive filament relative to the plasma potential, emphasizing variations in emitted current density and neutral particle density. The potential of a filament in a diffuse plasma is first shown to vanish, consistent with the electron sheath model and increasing electronmore » emission. In a denser plasma with ample neutral pressure, the floating filament potential is positive, as predicted by a derived ion trapping condition. In conclusion, the filament floated negatively in a third plasma, where flowing ions and electrons and nonnegligible electric fields may have disrupted ion trapping. Depending on the regime chosen, emitting surfaces can float positively or negatively with respect to the plasma potential.« less

  14. Measuring kinetic energy changes in the mesoscale with low acquisition rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roldán, É.; GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid; Martínez, I. A.

    2014-06-09

    We report on the measurement of the average kinetic energy changes in isothermal and non-isothermal quasistatic processes in the mesoscale, realized with a Brownian particle trapped with optical tweezers. Our estimation of the kinetic energy change allows to access to the full energetic description of the Brownian particle. Kinetic energy estimates are obtained from measurements of the mean square velocity of the trapped bead sampled at frequencies several orders of magnitude smaller than the momentum relaxation frequency. The velocity is tuned applying a noisy electric field that modulates the amplitude of the fluctuations of the position and velocity of themore » Brownian particle, whose motion is equivalent to that of a particle in a higher temperature reservoir. Additionally, we show that the dependence of the variance of the time-averaged velocity on the sampling frequency can be used to quantify properties of the electrophoretic mobility of a charged colloid. Our method could be applied to detect temperature gradients in inhomogeneous media and to characterize the complete thermodynamics of biological motors and of artificial micro and nanoscopic heat engines.« less

  15. Space Earthquake Perturbation Simulation (SEPS) an application based on Geant4 tools to model and simulate the interaction between the Earthquake and the particle trapped on the Van Allen belt

    NASA Astrophysics Data System (ADS)

    Ambroglini, Filippo; Jerome Burger, William; Battiston, Roberto; Vitale, Vincenzo; Zhang, Yu

    2014-05-01

    During last decades, few space experiments revealed anomalous bursts of charged particles, mainly electrons with energy larger than few MeV. A possible source of these bursts are the low-frequency seismo-electromagnetic emissions, which can cause the precipitation of the electrons from the lower boundary of their inner belt. Studies of these bursts reported also a short-term pre-seismic excess. Starting from simulation tools traditionally used on high energy physics we developed a dedicated application SEPS (Space Perturbation Earthquake Simulation), based on the Geant4 tool and PLANETOCOSMICS program, able to model and simulate the electromagnetic interaction between the earthquake and the particles trapped in the inner Van Allen belt. With SEPS one can study the transport of particles trapped in the Van Allen belts through the Earth's magnetic field also taking into account possible interactions with the Earth's atmosphere. SEPS provides the possibility of: testing different models of interaction between electromagnetic waves and trapped particles, defining the mechanism of interaction as also shaping the area in which this takes place,assessing the effects of perturbations in the magnetic field on the particles path, performing back-tracking analysis and also modelling the interaction with electric fields. SEPS is in advanced development stage, so that it could be already exploited to test in details the results of correlation analysis between particle bursts and earthquakes based on NOAA and SAMPEX data. The test was performed both with a full simulation analysis, (tracing from the position of the earthquake and going to see if there were paths compatible with the burst revealed) and with a back-tracking analysis (tracing from the burst detection point and checking the compatibility with the position of associated earthquake).

  16. Methodology and Data Sources for Assessing Extreme Charging Events within the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Parker, L. N.; Minow, J. I.; Talaat, E. R.

    2016-12-01

    Spacecraft surface and internal charging is a potential threat to space technologies because electrostatic discharges on, or within, charged spacecraft materials can result in a number of adverse impacts to spacecraft systems. The Space Weather Action Plan (SWAP) ionizing radiation benchmark team recognized that spacecraft charging will need to be considered to complete the ionizing radiation benchmarks in order to evaluate the threat of charging to critical space infrastructure operating within the near-Earth ionizing radiation environments. However, the team chose to defer work on the lower energy charging environments and focus the initial benchmark efforts on the higher energy galactic cosmic ray, solar energetic particle, and trapped radiation belt particle environments of concern for radiation dose and single event effects in humans and hardware. Therefore, an initial set of 1 in 100 year spacecraft charging environment benchmarks remains to be defined to meet the SWAP goals. This presentation will discuss the available data sources and a methodology to assess the 1 in 100 year extreme space weather events that drive surface and internal charging threats to spacecraft. Environments to be considered are the hot plasmas in the outer magnetosphere during geomagnetic storms, relativistic electrons in the outer radiation belt, and energetic auroral electrons in low Earth orbit at high latitudes.

  17. Challenging the standard model by high-precision comparisons of the fundamental properties of protons and antiprotons

    PubMed Central

    Mooser, A.; Nagahama, H.; Sellner, S.; Smorra, C.

    2018-01-01

    The BASE collaboration investigates the fundamental properties of protons and antiprotons, such as charge-to-mass ratios and magnetic moments, using advanced cryogenic Penning trap systems. In recent years, we performed the most precise measurement of the magnetic moments of both the proton and the antiproton, and conducted the most precise comparison of the proton-to-antiproton charge-to-mass ratio. In addition, we have set the most stringent constraint on directly measured antiproton lifetime, based on a unique reservoir trap technique. Our matter/antimatter comparison experiments provide stringent tests of the fundamental charge–parity–time invariance, which is one of the fundamental symmetries of the standard model of particle physics. This article reviews the recent achievements of BASE and gives an outlook to our physics programme in the ELENA era. This article is part of the Theo Murphy meeting issue ‘Antiproton physics in the ELENA era’. PMID:29459414

  18. Motions of charged particles in the magnetosphere under the influence of a time-varying large scale convection electric field

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Hoffman, R. A.; Bewtra, N. K.

    1979-01-01

    The motions of charged particles under the influence of the geomagnetic and electric fields are quite complex in the region of the inner magnetosphere. The Volland-Stern type large-scale convection electric field with gamma = 2 has been used successfully to predict both the plasmapause location and particle enhancements determined from Explorer 45 (S3-A) measurements. Recently introduced into the trajectory calculations of Ejiri et al. (1978) is a time dependence in this electric field based on the variation in Kp for actual magnetic storm conditions. The particle trajectories are computed as they change in this time-varying electric field. Several storm fronts of particles of different magnetic moments are allowed to be injected into the inner magnetosphere from L = 10 in the equatorial plane. The motions of these fronts are presented in a movie format. The local time of injection, the particle magnetic moments and the subsequent temporal history of the magnetospheric electric field play important roles in determining whether the injected particles are trapped within the ring current region or whether they are convected to regions outside the inner magnetosphere.

  19. Particle acceleration at shocks in the presence of a braided magnetic field

    NASA Astrophysics Data System (ADS)

    Kirk, J. G.; Duffy, P.; Gallant, Y. A.

    1997-05-01

    The theory of first order Fermi acceleration at shock fronts assumes charged particles undergo spatial diffusion in a uniform magnetic field. If, however, the magnetic field is not uniform, but has a stochastic or braided structure, the transport of charged particles across the average direction of the field is more complicated. Assuming quasi-linear behaviour of the field lines, the particles undergo sub-diffusion ( ~ t^1/2) on short time scales. We investigate this process analytically, using a propagator approach, and numerically, with a Monte-Carlo simulation. It is found that, in contrast to the diffusive case, the density of particles at the shock front is lower than it is far downstream which is a consequence of the partial trapping of particles by structures in the magnetic field. As a result, the spectrum of accelerated particles is a power-law in momentum which is steeper than in the diffusive case. For a phase-space density f ~ p^-s, we find s =s_diff [1 + 1/(2rho_c)], where rho_c is the compression ratio of the shock front and s_diff is the standard result of diffusive acceleration:s_diff = 3rho_c/(rho_c - 1).

  20. Particle Tracking Simulation of Collective Modes. Parametric Landau Damping Off Coupling Resonance.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macridin, Alexandru; Burov, Alexey; Stern, Eric

    Employing Synergia simulations with the DMD method we investigate the Landau damping of space charge modes in bunched beams. The simulations reveal two instances of the parametric damping mechanism in bunched beams. The first example occurs in the proximity of coupling resonance and is due to the oscillation of particles’ amplitudes in the transverse plane. This oscillation modulates the modeparticle coupling with particle dependent trapping frequency. The second example is due to the modulation of the modeparticle coupling in one transverse plane by the oscillatory motion in the other plane.

  1. Orbital-angular-momentum transfer to optically levitated microparticles in vacuum

    NASA Astrophysics Data System (ADS)

    Mazilu, Michael; Arita, Yoshihiko; Vettenburg, Tom; Auñón, Juan M.; Wright, Ewan M.; Dholakia, Kishan

    2016-11-01

    We demonstrate the transfer of orbital angular momentum to an optically levitated microparticle in vacuum. The microparticle is placed within a Laguerre-Gaussian beam and orbits the annular beam profile with increasing angular velocity as the air drag coefficient is reduced. We explore the particle dynamics as a function of the topological charge of the levitating beam. Our results reveal that there is a fundamental limit to the orbital angular momentum that may be transferred to a trapped particle, dependent upon the beam parameters and inertial forces present.

  2. ION EFFECTS IN THE APS PARTICLE ACCUMULATOR RING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvey, J.; Harkay, K.; Yao, CY.

    2017-06-25

    Trapped ions in the APS Particle Accumulator Ring (PAR) lead to a positive coherent tune shift in both planes, which increases along the PAR cycle as more ions accumulate. This effect has been studied using an ion simulation code developed at SLAC. After modifying the code to include a realistic vacuum profile, multiple ionization, and the effect of shaking the beam to measure the tune, the simulation agrees well with our measurements. This code has also been used to evaluate the possibility of ion instabilities at the high bunch charge needed for the APS-Upgrade.

  3. Principle of the electrically induced Transient Current Technique

    NASA Astrophysics Data System (ADS)

    Bronuzzi, J.; Moll, M.; Bouvet, D.; Mapelli, A.; Sallese, J. M.

    2018-05-01

    In the field of detector development for High Energy Physics, the so-called Transient Current Technique (TCT) is used to characterize the electric field profile and the charge trapping inside silicon radiation detectors where particles or photons create electron-hole pairs in the bulk of a semiconductor device, as PiN diodes. In the standard approach, the TCT signal originates from the free carriers generated close to the surface of a silicon detector, by short pulses of light or by alpha particles. This work proposes a new principle of charge injection by means of lateral PN junctions implemented in one of the detector electrodes, called the electrical TCT (el-TCT). This technique is fully compatible with CMOS technology and therefore opens new perspectives for assessment of radiation detectors performances.

  4. Field calculations, single-particle tracking, and beam dynamics with space charge in the electron lens for the Fermilab Integrable Optics Test Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noll, Daniel; Stancari, Giulio

    2015-11-17

    An electron lens is planned for the Fermilab Integrable Optics Test Accelerator as a nonlinear element for integrable dynamics, as an electron cooler, and as an electron trap to study space-charge compensation in rings. We present the main design principles and constraints for nonlinear integrable optics. A magnetic configuration of the solenoids and of the toroidal section is laid out. Singleparticle tracking is used to optimize the electron path. Electron beam dynamics at high intensity is calculated with a particle-in-cell code to estimate current limits, profile distortions, and the effects on the circulating beam. In the conclusions, we summarize themore » main findings and list directions for further work.« less

  5. Effect of the Edge Radial Electric Field on Neutral Particle Measurements

    NASA Astrophysics Data System (ADS)

    Guldi, C.; Heidbrink, W. W.; Beitzel, T. A.; Burrell, K. H.

    2000-10-01

    Neutral particle measurements in ASDEX were originally interpreted as evidence that the edge radial electric field Er changes gradually at the L-H transition.(W. Herrmann et al.), Phys. Rev. Lett. 75 (1995) 4401. We have relocated an analyzer to an orientation similar to the ASDEX analyzer: at the outer midplane viewing perpendicular ions midway between toroidal field coils. The electric field is measured by charge-exchange recombination and motional stark effect diagnostics. The passive charge exchange signal from the relocated analyzer is usually undetectable but, in discharges with large E_r, the flux of 5 keV neutrals can resemble ASDEX signals. The combined effects of ripple trapping and E_r× B_φ drifts(J.A. Heikkinen et al.), Plasma Phys. Contr. Fusion 40 (1998) 679. may explain the results.

  6. Flexible particle flow-focusing in microchannel driven by droplet-directed induced-charge electroosmosis.

    PubMed

    Ren, Yukun; Liu, Xianyu; Liu, Weiyu; Tao, Ye; Jia, Yankai; Hou, Likai; Li, Wenying; Jiang, Hongyuan

    2018-02-01

    We report herein a novel microfluidic particle concentrator that utilizes constriction microchannels to enhance the flow-focusing performance of induced-charge electroosmosis (ICEO), where viscous hemi-spherical oil droplets are embedded within the mainchannel to form deformable converging-diverging constriction structures. The constriction region between symmetric oil droplets partially coated on the electrode strips can improve the focusing performance by inducing a granular wake flow area at the diverging channel, which makes almost all of the scattered sample particles trapped within a narrow stream on the floating electrode. Another asymmetric droplet pair arranged near the outlets can further direct the trajectory of focused particle stream to one specified outlet port depending on the symmetry breaking in the shape of opposing phase interfaces. By fully exploiting rectification properties of induced-charge electrokinetic phenomena at immiscible water/oil interfaces of tunable geometry, the expected function of continuous and switchable flow-focusing is demonstrated by preconcentrating both inorganic silica particles and biological yeast cells. Physical mechanisms responsible for particle focusing and locus deflection in the droplet-assisted concentrentor are analyzed in detail, and simulation results are in good accordance with experimental observations. Our work provides new routes to construct flexible electrokinetic framework for preprocessing on-chip biological samples before performing subsequent analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The trapping and distribution of charge in polarized polymethylmethacrylate under electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Song, Z. G.; Gong, H.; Ong, C. K.

    1997-06-01

    A scanning electron microscope (SEM) mirror-image method (MIM) is employed to investigate the charging behaviour of polarized polymethylmethacrylate (PMMA) under electron-beam irradiation. An ellipsoid is used to model the trapped charge distribution and a fitting method is employed to calculate the total amount of the trapped charge and its distribution parameters. The experimental results reveal that the charging ability decreases with increasing applied electric field, which polarizes the PMMA sample, whereas the trapped charge distribution is elongated along the direction of the applied electric field and increases with increasing applied electric field. The charges are believed to be trapped in some localization states, of activation energy and radius estimated to be about 19.6 meV and 0022-3727/30/11/004/img6, respectively.

  8. Diagnostics of Particles emitted from a Laser generated Plasma: Experimental Data and Simulations

    NASA Astrophysics Data System (ADS)

    Costa, Giuseppe; Torrisi, Lorenzo

    2018-01-01

    The charge particle emission form laser-generated plasma was studied experimentally and theoretically using the COMSOL simulation code. The particle acceleration was investigated using two lasers at two different regimes. A Nd:YAG laser, with 3 ns pulse duration and 1010 W/cm2 intensity, when focused on solid target produces a non-equilibrium plasma with average temperature of about 30-50 eV. An Iodine laser with 300 ps pulse duration and 1016 W/cm2 intensity produces plasmas with average temperatures of the order of tens keV. In both cases charge separation occurs and ions and electrons are accelerated at energies of the order of 200 eV and 1 MeV per charge state in the two cases, respectively. The simulation program permits to plot the charge particle trajectories from plasma source in vacuum indicating how they can be deflected by magnetic and electrical fields. The simulation code can be employed to realize suitable permanent magnets and solenoids to deflect ions toward a secondary target or detectors, to focalize ions and electrons, to realize electron traps able to provide significant ion acceleration and to realize efficient spectrometers. In particular it was applied to the study two Thomson parabola spectrometers able to detect ions at low and at high laser intensities. The comparisons between measurements and simulation is presented and discussed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch; Departamento de Investigación en Física, Universidad de Sonora, Hermosillo; Lallement, Jean-Baptiste

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directlymore » into the beam transport region has been used to modify the space charge compensation degree.« less

  10. Thermodynamic Theory of Spherically Trapped Coulomb Clusters

    NASA Astrophysics Data System (ADS)

    Wrighton, Jeffrey; Dufty, James; Bonitz, Michael; K"{A}Hlert, Hanno

    2009-11-01

    The radial density profile of a finite number of identical charged particles confined in a harmonic trap is computed over a wide ranges of temperatures (Coulomb coupling) and particle numbers. At low temperatures these systems form a Coulomb crystal with spherical shell structure which has been observed in ultracold trapped ions and in dusty plasmas. The shell structure is readily reproduced in simulations. However, analytical theories which used a mean field approachfootnotetext[1]C. Henning et al., Phys. Rev. E 74, 056403 (2006) or a local density approximationfootnotetext[2]C. Henning et al., Phys. Rev. E 76, 036404 (2007) have, so far, only been able to reproduce the average density profile. Here we present an approach to Coulomb correlations based on the hypernetted chain approximation with additional bridge diagrams. It is demonstrated that this model reproduces the correct shell structure within a few percent and provides the basis for a thermodynamic theory of Coulomb clusters in the strongly coupled fluid state.footnotetext[3]J. Wrighton, J.W. Dufty, H. K"ahlert and M. Bonitz, J. Phys. A 42, 214052 (2009) and Phys. Rev. E (2009) (to be submitted)

  11. The effect of a radial electric field on ripple-trapped ions observed by neutral particle fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heikkinen, J.A.; Herrmann, W.; Kurki-Suonio, T.

    1997-10-01

    The effect of a radial electric field on nonthermal ripple-trapped ions is investigated using toroidal Monte Carlo simulations for edge tokamak plasmas. The increase in the neutral particle flux from the ions trapped in local magnetic wells observed by the charge exchange (CX) detector at a low confinement to high confinement transition at ASDEX (Axially Symmetric Divertor Experiment). Upgrade tokamak [{ital Proceedings of the 20th European Conference on Controlled Fusion and Plasma Physics}, Lisbon (European Physical Society, Petit-Lancy, Switzerland, 1993), Vol. 17C, Part I, p. 267] is reproduced in the simulations by turning on a radial electric field near themore » plasma periphery. The poloidal and toroidal angles at which the CX detector signal is most sensitive to the radial electric field are determined. A fast response time of the signal in the range of 50{endash}100 {mu}s to the appearance of the electric field can be found in the simulations with a relatively large half-width of the negative electric field region. {copyright} {ital 1997 American Institute of Physics.}« less

  12. Evidence for a Trapped Radical (OH) on Ariel, Oberon, and Titania from Hubble Space Telescope Ultraviolet Spectra

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Noll, Keith S.; Pendleton, Yvonne J.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    The moons Ariel, Titania, and Oberon have orbits lying within the magnetosphere of Uranus, exposing them to particle irradiation from trapped Ions. This Is similar to the situation experienced by the jovian moons Europa, Ganymede, and Callisto, as well as the saturnian satellites Enceladus, Tethys, Dione, and Rhea. Identification of SO2 on Europa, Ganymede and Callisto, and O3 on Ganymede, Rhea, and Dione has supported suggestions that chemical modifications occur on icy bodies due to ion bombardment associated with the particles entrained within the magnetospheric fields of Jupiter and Saturn. Similar to the Jovian and saturnian satellites mentioned above, water ice is a major component on the larger uranian satellites", thus one might anticipate chemical modification to he an important process in the uranian system. Laboratory studies or the interaction of ultraviolet (uv) and charged-particle radiation with water ice show that in addition to molecular species, a variety of radicals are also produced. We report here evidence for an uv absorption feature in the spectra of Ariel, Titania, and Oberon that we identify as due, in part, to OH; providing the first evidence of a radical produced and trapped on an icy moon within our solar system.

  13. Quantitative analysis of charge trapping and classification of sub-gap states in MoS2 TFT by pulse I-V method

    NASA Astrophysics Data System (ADS)

    Park, Junghak; Hur, Ji-Hyun; Jeon, Sanghun

    2018-04-01

    The threshold voltage instabilities and huge hysteresis of MoS2 thin film transistors (TFTs) have raised concerns about their practical applicability in next-generation switching devices. These behaviors are associated with charge trapping, which stems from tunneling to the adjacent trap site, interfacial redox reaction and interface and/or bulk trap states. In this report, we present quantitative analysis on the electron charge trapping mechanism of MoS2 TFT by fast pulse I-V method and the space charge limited current (SCLC) measurement. By adopting the fast pulse I-V method, we were able to obtain effective mobility. In addition, the origin of the trap states was identified by disassembling the sub-gap states into interface trap and bulk trap states by simple extraction analysis. These measurement methods and analyses enable not only quantitative extraction of various traps but also an understanding of the charge transport mechanism in MoS2 TFTs. The fast I-V data and SCLC data obtained under various measurement temperatures and ambient show that electron transport to neighboring trap sites by tunneling is the main charge trapping mechanism in thin-MoS2 TFTs. This implies that interfacial traps account for most of the total sub-gap states while the bulk trap contribution is negligible, at approximately 0.40% and 0.26% in air and vacuum ambient, respectively. Thus, control of the interface trap states is crucial to further improve the performance of devices with thin channels.

  14. Quantitative analysis of charge trapping and classification of sub-gap states in MoS2 TFT by pulse I-V method.

    PubMed

    Park, Junghak; Hur, Ji-Hyun; Jeon, Sanghun

    2018-04-27

    The threshold voltage instabilities and huge hysteresis of MoS 2 thin film transistors (TFTs) have raised concerns about their practical applicability in next-generation switching devices. These behaviors are associated with charge trapping, which stems from tunneling to the adjacent trap site, interfacial redox reaction and interface and/or bulk trap states. In this report, we present quantitative analysis on the electron charge trapping mechanism of MoS 2 TFT by fast pulse I-V method and the space charge limited current (SCLC) measurement. By adopting the fast pulse I-V method, we were able to obtain effective mobility. In addition, the origin of the trap states was identified by disassembling the sub-gap states into interface trap and bulk trap states by simple extraction analysis. These measurement methods and analyses enable not only quantitative extraction of various traps but also an understanding of the charge transport mechanism in MoS 2 TFTs. The fast I-V data and SCLC data obtained under various measurement temperatures and ambient show that electron transport to neighboring trap sites by tunneling is the main charge trapping mechanism in thin-MoS 2 TFTs. This implies that interfacial traps account for most of the total sub-gap states while the bulk trap contribution is negligible, at approximately 0.40% and 0.26% in air and vacuum ambient, respectively. Thus, control of the interface trap states is crucial to further improve the performance of devices with thin channels.

  15. Spontaneous Mass and Charge Losses from Single Multi-Megadalton Ions Studied by Charge Detection Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Keifer, David Z.; Alexander, Andrew W.; Jarrold, Martin F.

    2017-03-01

    Spontaneous mass and charge losses from individual multi-megadalton ions have been observed with charge detection mass spectrometry (CDMS) by trapping single hepatitis B virus (HBV) capsids for 3 s. Gradual increases in the oscillation frequency of single ions in the ion trap are attributed mainly to mass loss (probably solvent, water, and/or salt). The total mass lost during the 3 s trapping period peaks at around 20 kDa for 4 MDa HBV T = 4 capsids. Discrete frequency drops punctuate the gradual increases in the oscillation frequencies. The drops are attributed to a sudden loss of charge. In most cases a single positive charge is lost along with some mass (on average around 1000 Da). Charge loss occurs for over 40% of the trapped ions. It usually occurs near the beginning of the trapping event, and it occurs preferentially in regions of the trap with strong electric fields, indicating that external electric fields promote charge loss. This process may contribute to the decrease in m/ z resolution that often occurs with megadalton ions.

  16. Transport of colloidal silica in unsaturated sand: Effect of charging properties of sand and silica particles.

    PubMed

    Fujita, Yosuke; Kobayashi, Motoyoshi

    2016-07-01

    We have studied the transport of colloidal silica in various degrees of a water-saturated Toyoura sand column, because silica particles are widely used as catalyst carriers and abrasive agents, and their toxicity is reported recently. Since water-silica, water-sand, and air-water interfaces have pH-dependent negative charges, the magnitude of surface charge was controlled by changing the solution pH. The results show that, at high pH conditions (pH 7.4), the deposition of colloidal silica to the sand surface is interrupted and the silica concentration at the column outlet immediately reaches the input concentration in saturated conditions. In addition, the relative concentration of silica at the column outlet only slightly decreases to 0.9 with decreasing degrees of water saturation to 38%, because silica particles are trapped in straining regions in the soil pore and air-water interface. On the other hand, at pH 5 conditions (low pH), where sand and colloid have less charge, reduced repulsive forces result in colloidal silica attaching onto the sand in saturated conditions. The deposition amount of silica particles remarkably increases with decreasing degrees of water saturation to 37%, which is explained by more particles being retained in the sand column associated with the air-water interface. In conclusion, at higher pH, the mobility of silica particles is high, and the air-water interface is inactive for the deposition of silica. On the other hand, at low pH, the deposition amount increases with decreasing water saturation, and the particle transport is inhibited. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Aharonov-Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap.

    PubMed

    Noguchi, Atsushi; Shikano, Yutaka; Toyoda, Kenji; Urabe, Shinji

    2014-05-13

    Quantum tunnelling is a common fundamental quantum mechanical phenomenon that originates from the wave-like characteristics of quantum particles. Although the quantum tunnelling effect was first observed 85 years ago, some questions regarding the dynamics of quantum tunnelling remain unresolved. Here we realize a quantum tunnelling system using two-dimensional ionic structures in a linear Paul trap. We demonstrate that the charged particles in this quantum tunnelling system are coupled to the vector potential of a magnetic field throughout the entire process, even during quantum tunnelling, as indicated by the manifestation of the Aharonov-Bohm effect in this system. The tunnelling rate of the structures periodically depends on the strength of the magnetic field, whose period is the same as the magnetic flux quantum φ0 through the rotor [(0.99 ± 0.07) × φ0].

  18. Time-resolved electric force microscopy of charge trapping in polycrystalline pentacene.

    PubMed

    Jaquith, Michael; Muller, Erik M; Marohn, John A

    2007-07-12

    Here we introduce time-resolved electric force microscopy measurements to directly and locally probe the kinetics of charge trap formation in a polycrystalline pentacene thin-film transistor. We find that the trapping rate depends strongly on the initial concentration of free holes and that trapped charge is highly localized. The observed dependence of trapping rate on the hole chemical potential suggests that the trapping process should not be viewed as a filling of midgap energy levels, but instead as a process in which the very creation of trapped states requires the presence of free holes.

  19. Dependence of average inter-particle distance upon the temperature of neutrals in dusty plasma crystals

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. S.; Timofeev, A. V.

    2018-01-01

    It is often suggested that inter-particle distance in stable dusty plasma structures decreases with cooling as a square root of neutral gas temperature. Deviations from this dependence (up to the increase at cryogenic temperatures) found in the experimental results for the pressures range 0.1-8.0 mbar and for the currents range 0.1-1.0 mA are given. Inter-particle distance dependences on the charge of particles, parameter of the trap and the screening length in surrounding plasma are obtained for different conditions from molecular dynamics simulations. They are well approximated by power functions in the mentioned range of parameters. It is found that under certain assumptions thermophoretical force is responsible for inter-particle distance increase at cryogenic temperatures.

  20. Microscopic studies of the fate of charges in organic semiconductors: Scanning Kelvin probe measurements of charge trapping, transport, and electric fields in p- and n-type devices

    NASA Astrophysics Data System (ADS)

    Smieska, Louisa Marion

    Organic semiconductors could have wide-ranging applications in lightweight, efficient electronic circuits. However, several fundamental questions regarding organic electronic device behavior have not yet been fully addressed, including the nature of chemical charge traps, and robust models for injection and transport. Many studies focus on engineering devices through bulk transport measurements, but it is not always possible to infer the microscopic behavior leading to the observed measurements. In this thesis, we present scanning-probe microscope studies of organic semiconductor devices in an effort to connect local properties with local device behavior. First, we study the chemistry of charge trapping in pentacene transistors. Working devices are doped with known pentacene impurities and the extent of charge trap formation is mapped across the transistor channel. Trap-clearing spectroscopy is employed to measure an excitation of the pentacene charge trap species, enabling identification of the degradationrelated chemical trap in pentacene. Second, we examine transport and trapping in peryelene diimide (PDI) transistors. Local mobilities are extracted from surface potential profiles across a transistor channel, and charge injection kinetics are found to be highly sensitive to electrode cleanliness. Trap-clearing spectra generally resemble PDI absorption spectra, but one derivative yields evidence indicating variation in trap-clearing mechanisms for different surface chemistries. Trap formation rates are measured and found to be independent of surface chemistry, contradicting a proposed silanol trapping mechanism. Finally, we develop a variation of scanning Kelvin probe microscopy that enables measurement of electric fields through a position modulation. This method avoids taking a numeric derivative of potential, which can introduce high-frequency noise into the electric field signal. Preliminary data is presented, and the theoretical basis for electric field noise in both methods is examined.

  1. Antihydrogen Trapped in the ALPHA Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowe, Paul David

    2011-02-25

    In 2010 the ALPHA collaboration succeeded in trapping antihydrogen atoms for the first time.[i] Stored antihydrogen promises to be a unique tool for making high precision measurements of the structure of this first anti-atom. Achieving this milestone presented several substantial experimental challenges and this talk will describe how they were overcome. The unique design features of the ALPHA apparatus will be explained. These allow a high intensity positron source and an antiproton imaging detector similar to the one used in the ATHENA[iii] experiment to be combined with an innovative magnet design of the anti-atom trap. This seeks to minimise themore » perturbations to trapped charged particles which may cause particle loss and heating[iv]. The diagnostic techniques used to measure the diameter, number, density, and temperatures of both plasmas will be presented as will the methods developed to actively compress and cool of both plasma species to sizes and temperatures [v],[vi], [vii] where trapping attempts with a reasonable chance of success can be tried. The results of the successful trapping experiments will be outlined as well as some subsequent experiments to improve the trapping rate and storage time. [i] 'Trapped antihydrogen' G.B. Andresen et al., Nature 468, 673 (2010) [ii]'A Magnetic Trap for Antihydrogen Confinement' W. Bertsche et al., Nucl. Instr. Meth. Phys. Res. A566, 746 (2006) [iii] Production and detection of cold antihydrogen atoms M.Amoretti et al., Nature 419, 456 (2002). [iv]' Antihydrogen formation dynamics in a multipolar neutral anti-atom trap' G.B. Andresen et al., Phys. Lett. B 685, 141 (2010) [v]' Evaporative Cooling of Antiprotons to Cryogenic Temperatures', G.B. Andresen et al. Phys. Rev. Lett 105, 013003 (2010) [vi]'Compression of Antiproton Clouds for Antihydrogen Trapping' G. B. Andresen et al. Phys. Rev. Lett 100, 203401 (2008) [vii] 'Autoresonant Excitation of Antiproton Plasmas' G.B. Andresen et al., Phys. Rev. Lett. 106, 025002 (2011)« less

  2. Antihydrogen Trapped in the ALPHA Experiment

    ScienceCinema

    Bowe, Paul David

    2017-12-18

    In 2010 the ALPHA collaboration succeeded in trapping antihydrogen atoms for the first time.[i] Stored antihydrogen promises to be a unique tool for making high precision measurements of the structure of this first anti-atom. Achieving this milestone presented several substantial experimental challenges and this talk will describe how they were overcome. The unique design features of the ALPHA apparatus will be explained. These allow a high intensity positron source and an antiproton imaging detector similar to the one used in the ATHENA[iii] experiment to be combined with an innovative magnet design of the anti-atom trap. This seeks to minimise the perturbations to trapped charged particles which may cause particle loss and heating[iv]. The diagnostic techniques used to measure the diameter, number, density, and temperatures of both plasmas will be presented as will the methods developed to actively compress and cool of both plasma species to sizes and temperatures [v],[vi], [vii] where trapping attempts with a reasonable chance of success can be tried. The results of the successful trapping experiments will be outlined as well as some subsequent experiments to improve the trapping rate and storage time. [i] 'Trapped antihydrogen' G.B. Andresen et al., Nature 468, 673 (2010) [ii]'A Magnetic Trap for Antihydrogen Confinement' W. Bertsche et al., Nucl. Instr. Meth. Phys. Res. A566, 746 (2006) [iii] Production and detection of cold antihydrogen atoms M.Amoretti et al., Nature 419, 456 (2002). [iv]' Antihydrogen formation dynamics in a multipolar neutral anti-atom trap' G.B. Andresen et al., Phys. Lett. B 685, 141 (2010) [v]' Evaporative Cooling of Antiprotons to Cryogenic Temperatures', G.B. Andresen et al. Phys. Rev. Lett 105, 013003 (2010) [vi]'Compression of Antiproton Clouds for Antihydrogen Trapping' G. B. Andresen et al. Phys. Rev. Lett 100, 203401 (2008) [vii] 'Autoresonant Excitation of Antiproton Plasmas' G.B. Andresen et al., Phys. Rev. Lett. 106, 025002 (2011)

  3. Effect of Single-Electron Interface Trapping in Decanano MOSFETs: A 3D Atomistic Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Balasubramaniam, R.; Brown, A. R.; Davies, J. H.

    2000-01-01

    We study the effect of trapping/detrapping of a single-electron in interface states in the channel of n-type MOSFETs with decanano dimensions using 3D atomistic simulation techniques. In order to highlight the basic dependencies, the simulations are carried out initially assuming continuous doping charge, and discrete localized charge only for the trapped electron. The dependence of the random telegraph signal (RTS) amplitudes on the device dimensions and on the position of the trapped charge in the channel are studied in detail. Later, in full-scale, atomistic simulations assuming discrete charge for both randomly placed dopants and the trapped electron, we highlight the importance of current percolation and of traps with strategic position where the trapped electron blocks a dominant current path.

  4. Alpha Background Discrimination in the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Gruszko, Julieta; Majorana Collaboration

    2017-09-01

    The Majorana Demonstrator (MJD) searches for neutrinoless double-beta decay of 76Ge using arrays of high-purity germanium detectors. If observed, this process would have implications for grand-unification and the predominance of matter over antimatter in the universe. A problematic background in such large granular detector arrays is posed by alpha particles. In MJD, potential background events that are consistent with energy-degraded alphas originating on the passivated detector surface have been observed. We have studied these events by scanning the passivated surface of a P-type point contact detector like those used in MJD with a collimated alpha source. We observe that surface alpha events exhibit high charge-trapping, with a significant fraction of the trapped charge being re-released slowly. This leads to both a reduced prompt signal and a measurable change in slope of the tail of a recorded pulse. In this contribution we discuss the characteristics of these events and the filter developed to identify the occurrence of this delayed charge recovery, allowing for the efficient rejection of passivated surface alpha events while retaining 99.8% of bulk events. We also discuss the impact of this filter on the sensitivity of MJD. This material is based upon work supported by the U.S. DOE, Office of Science, Office of Nuclear Phys., the Particle Astrophys. and Nuclear Phys. Programs of the NSF, and SURF. Additional support from the NSFGRFP under Grant No. 1256082.

  5. Double path integral method for obtaining the mobility of the one-dimensional charge transport in molecular chain.

    PubMed

    Yoo-Kong, Sikarin; Liewrian, Watchara

    2015-12-01

    We report on a theoretical investigation concerning the polaronic effect on the transport properties of a charge carrier in a one-dimensional molecular chain. Our technique is based on the Feynman's path integral approach. Analytical expressions for the frequency-dependent mobility and effective mass of the carrier are obtained as functions of electron-phonon coupling. The result exhibits the crossover from a nearly free particle to a heavily trapped particle. We find that the mobility depends on temperature and decreases exponentially with increasing temperature at low temperature. It exhibits large polaronic-like behaviour in the case of weak electron-phonon coupling. These results agree with the phase transition (A.S. Mishchenko et al., Phys. Rev. Lett. 114, 146401 (2015)) of transport phenomena related to polaron motion in the molecular chain.

  6. Radiation Monitoring Equipment Dosimeter Experiment

    NASA Technical Reports Server (NTRS)

    Hardy, Kenneth A.; Golightly, Michael J.; Quam, William

    1992-01-01

    Spacecraft crews risk exposure to relatively high levels of ionizing radiation. This radiation may come from charged particles trapped in the Earth's magnetic fields, charged particles released by solar flare activity, galactic cosmic radiation, energetic photons and neutrons generated by interaction of these primary radiations with spacecraft and crew, and man-made sources (e.g., nuclear power generators). As missions are directed to higher radiation level orbits, viz., higher altitudes and inclinations, longer durations, and increased flight frequency, radiation exposure could well become a major factor for crew stay time and career lengths. To more accurately define the radiological exposure and risk to the crew, real-time radiation monitoring instrumentation, which is capable of identifying and measuring the various radiation components, must be flown. This presentation describes a radiation dosimeter instrument which was successfully flown on the Space Shuttle, the RME-3.

  7. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    NASA Astrophysics Data System (ADS)

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin; Chi, Li-Feng; Wang, Sui-Dong

    2015-03-01

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.

  8. Radiation and Plasma Environments for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Edwards, David L.; Altstatt, Richard L.; Diekmann, Anne M.; Blackwell, William C., Jr.; Harine, Katherine J.

    2006-01-01

    Space system design for lunar orbit and extended operations on the lunar surface requires analysis of potential system vulnerabilities to plasma and radiation environments to minimize anomalies and assure that environmental failures do not occur during the mission. Individual environments include the trapped particles in Earth s radiation belts, solar energetic particles and galactic cosmic rays, plasma environments encountered in transit to the moon and on the lunar surface (solar wind, terrestrial magnetosheath and magnetotail, and lunar photoelectrons), and solar ultraviolet and extreme ultraviolet photons. These are the plasma and radiation environments which contribute to a variety of effects on space systems including total ionizing dose and dose rate effects in electronics, degradation of materials in the space environment, and charging of spacecraft and lunar dust. This paper provides a survey of the relevant charged particle and photon environments of importance to lunar mission design ranging from the lowest (approx.few 10 s eV) photoelectron energies to the highest (approx.GeV) cosmic ray energies.

  9. Pioneer 11 observations of trapped particle absorption by the Jovian ring and the satellites 1979, J1, J2, and J3

    NASA Technical Reports Server (NTRS)

    Pyle, K. R.; Mckibben, R. B.; Simpson, J. A.

    1983-01-01

    Pioneer 11 low energy telescope observation of charged particles around the Jovian satellites Amalthea, 1979 J1, J2, and J3, and the Jupiter ring are examined in the light of Voyager optical data from the same region. Good agreement was found in the absorption features of 0.5-8.7 MeV protons, electrons with energies of 3.4 MeV or more, and medium-Z nuclei. The heavier nuclei are suggested to be oxygen and sulfur particles with energies exceeding 70 MeV/nucleon. The observed intensity features in the regularly spaced radiation bands are interpreted as ring and satellite absorption.

  10. Charge Storage, Conductivity and Charge Profiles of Insulators as Related to Spacecraft Charging

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Swaminathan, Prasanna; Frederickson, A. R.

    2004-01-01

    Dissipation of charges built up near the surface of insulators due to space environment interaction is central to understanding spacecraft charging. Conductivity of insulating materials is key to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. To understand these processes requires knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and charge transport within the insulator, and how the profile of trapped charge affects the transport and emission of charges from insulators. One must consider generation of mobile electrons and holes, their trapping, thermal de-trapping, mobility and recombination. Conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator, rather than by flow of current across two electrodes around the sample. We have found that conductivity determined from charge storage decay methods is 102 to 104 smaller than values obtained from classical ASTM and IEC methods for a variety of thin film insulating samples. For typical spacecraft charging conditions, classical conductivity predicts decay times on the order of minutes to hours (less than typical orbit periods); however, the higher charge storage conductivities predict decay times on the order of weeks to months leading to accumulation of charge with subsequent orbits. We found experimental evidence that penetration profiles of radiation and light are exceedingly important, and that internal electric fields due to charge profiles and high-field conduction by trapped electrons must be considered for space applications. We have also studied whether the decay constants depend on incident voltage and flux or on internal charge distributions and electric fields; light-activated discharge of surface charge to distinguish among differing charge trapping centers; and radiation-induced conductivity. Our experiments also show that "Malter" electron emission occurs for hours after turning off the electron beam. This Malter emission similar to emission due to negative electron affinity in semiconductors is a result of the prior radiation or optical excitations of valence electrons and their slow drift among traps towards the surface where they are subsequently emitted. This work is supported through funding from the NASA Space Environments and Effects Program.

  11. Oppositely charged colloids out of equilibrium

    NASA Astrophysics Data System (ADS)

    Vissers, T.

    2010-11-01

    Colloids are particles with a size in the range of a few nanometers up to several micrometers. Similar to atomic and molecular systems, they can form gases, liquids, solids, gels and glasses. Colloids can be used as model systems because, unlike molecules, they are sufficiently large to be studied directly with light microscopy and move sufficiently slow to study their dynamics. In this thesis, we study binary systems of polymethylmethacrylate (PMMA) colloidal particles suspended in low-polar solvent mixtures. Since the ions can still partially dissociate, a surface charge builds up which causes electrostatic interactions between the colloids. By carefully tuning the conditions inside the suspension, we make two kinds of particles oppositely charged. To study our samples, we use Confocal Laser Scanning Microscopy (CLSM). The positively and negatively charged particles can be distinguished by a different fluorescent dye. Colloids constantly experience a random motion resulting from random kicks of surrounding solvent molecules. When the attractions between the oppositely charged particles are weak, the particles can attach and detach many times and explore a lot of possible configurations and the system can reach thermodynamic equilibrium. For example, colloidal ‘ionic’ crystals consisting of thousands to millions of particles can form under the right conditions. When the attractions are strong, the system can become kinetically trapped inside a gel-like state. We observe that when the interactions change again, crystals can even emerge again from this gel-like phase. By using local order parameters, we quantitatively study the crystallization of colloidal particles and identify growth defects inside the crystals. We also study the effect of gravity on the growth of ionic crystals by using a rotating stage. We find that sedimentation can completely inhibit crystal growth and plays an important role in crystallization from the gel-like state. The surface potential and charge are studied by electrophoresis. Here, the velocity of the particles is measured while they are moving in an electric field. Using our real-space CLSM setup, we find that for a single-component system, the charge on the particles decreases with increasing volume fraction. Apart from structures that oppositely charged particles form close to thermodynamic equilibrium, we also study pattern formation when the system is driven out of equilibrium by an electric field. When oppositely charged particles are driven in opposite directions, the collisions between them cause particle of the same kind to form lanes. By combining our CLSM experiments with Brownian dynamics computer simulations, we study the structure and the dynamics of the suspension on the single-particle level. We find that the number of particles in a lane increases continuously with the field strength. By studying the dynamics and fluctuations parallel and perpendicular to the electric field direction, we identify the key mechanism of lane-formation. We show that pattern formation can easily become more complicated when we introduce alternating current (AC) fields. In addition to the formation of lanes parallel to the field-axis, bands of like-charged particles can form perpendicular to it. When the particles are sufficiently mobile, the system can be remixed again by changing the frequency. When AC-fields with higher field strengths are used, we show that complex patterns, including rotating instabilities, can emerge. The results in this thesis yield fundamental insight in electrophoresis, crystallization and pattern formation when systems are driven out of equilibrium. The results on lane- and band-formation can be relevant for the design of electronic ink (e-ink), where electrically driven oppositely charged particles are used to change the image on a piece of electronic paper.

  12. Stochastic particle acceleration at shocks in the presence of braided magnetic fields.

    NASA Astrophysics Data System (ADS)

    Kirk, J. G.; Duffy, P.; Gallant, Y. A.

    1996-10-01

    The theory of diffusive acceleration of energetic particles at shock fronts assumes charged particles undergo spatial diffusion in a uniform magnetic field. If, however, the magnetic field is not uniform, but has a stochastic or braided structure, the transport of charged particles across the average direction of the field is more complicated. Assuming quasi-linear behaviour of the field lines, the particles undergo sub-diffusion on short time scales. We derive the propagator for such motion, which differs from the Gaussian form relevant for diffusion, and apply it to a configuration with a plane shock front whose normal is perpendicular to the average field direction. Expressions are given for the acceleration time as a function of the diffusion coefficient of the wandering magnetic field lines and the spatial diffusion coefficient of the charged particles parallel to the local field. In addition we calculate the spatial dependence of the particle density in both the upstream and downstream plasmas. In contrast to the diffusive case, the density of particles at the shock front is lower than it is far downstream. This is a consequence of the partial trapping of particles by structures in the magnetic field. As a result, the spectrum of accelerated particles is a power-law in momentum which is steeper than in the diffusive case. For a phase-space density f{prop.to}p^-s^, we find s=s_diff_[1+1/(2ρ_c_)], where ρ_c_ is the compression ratio of the shock front and s_diff_ is the standard result of diffusive acceleration: s_diff_=3ρ_c_/(ρ_c_-1). A strong shock in a monatomic ideal gas yields a spectrum of s=4.5. In the case of electrons, this corresponds to a radio synchrotron spectral index of α=0.75.

  13. Nonlinear longitudinal resonance interaction of energetic charged particles and VLF waves in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Tkalcevic, S.

    1982-01-01

    The longitudinal resonance of waves and energetic electrons in the Earth's magnetosphere, and the possible role this resonance may play in generating various magnetospheric phenomena are studied. The derivation of time-averaged nonlinear equations of motion for energetic particles longitudinally resonant with a whistler mode wave propagating with nonzero wave normal is considered. It is shown that the wave magnetic forces can be neglected at lower particle pitch angles, while they become equal to or larger than the wave electric forces for alpha 20 deg. The time-averaged equations of motion were used in test particle simulation which were done for a wide range of wave amplitudes, wave normals, particle pitch angles, particle parallel velocities, and in an inhomogeneous medium such as the magnetosphere. It was found that there are two classes of particles, trapped and untrapped, and that the scattering and energy exchange for those two groups exhibit significantly different behavior.

  14. Spontaneous deswelling of pNIPAM microgels at high concentrations

    NASA Astrophysics Data System (ADS)

    Gasser, Urs; Scotti, Andrea; Herman, Emily S.; Pelaez-Fernandez, Miguel; Han, Jun; Menzel, Andreas; Lyon, L. Andrew; Fernandez-Nieves, Alberto

    Polydisperse suspensions of pNIPAM microgel particles show a unique, spontaneous particle deswelling behavior. Beyond a critical concentration, the largest microgels deswell and thereby reduce the polydispersity of the suspension. We have recently unraveled the mechanism of this spontaneous, selective deswelling. pNIPAM microgels carry charged sulfate groups originating from the ammonium persulfate starter used in particle synthesis. Most of the ammonium counterions are trapped close to the microgel surface, but a fraction of them escapes the electrostatic attraction and contributes to the osmotic pressure of the suspension. The counterion clouds of neighboring particles progressively overlap with increasing volume fraction, leading to an increase of free counterions and the osmotic pressure outside but not inside the microgel particles. We find particles to deswell when the resulting osmotic pressure difference between the inside and the outside becomes larger their bulk modulus. For pNIPAM microgels synthesized with the same protocol, the largest particles are the softest and deswell first.

  15. Numerical simulation of ion charge breeding in electron beam ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, L., E-mail: zhao@far-tech.com; Kim, Jin-Soo

    2014-02-15

    The Electron Beam Ion Source particle-in-cell code (EBIS-PIC) tracks ions in an EBIS electron beam while updating electric potential self-consistently and atomic processes by the Monte Carlo method. Recent improvements to the code are reported in this paper. The ionization module has been improved by using experimental ionization energies and shell effects. The acceptance of injected ions and the emittance of extracted ion beam are calculated by extending EBIS-PIC to the beam line transport region. An EBIS-PIC simulation is performed for a Cs charge-breeding experiment at BNL. The charge state distribution agrees well with experiments, and additional simulation results ofmore » radial profiles and velocity space distributions of the trapped ions are presented.« less

  16. Monte Carlo simulation of neutral-beam injection for mirror fusion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Ronald Lee

    1979-01-01

    Computer simulation techniques using the Monte Carlo method have been developed for application to the modeling of neutral-beam intection into mirror-confined plasmas of interest to controlled thermonuclear research. The energetic (10 to 300 keV) neutral-beam particles interact with the target plasma (T i ~ 10 to 100 keV) through electron-atom and ion-atom collisional ionization as well as ion-atom charge-transfer (charge-exchange) collisions to give a fractional trapping of the neutral beam and a loss of charge-transfer-produced neutrals which escape to bombard the reactor first wall. Appropriate interaction cross sections for these processes are calculated for the assumed anisotropic, non-Maxwellian plasma ionmore » phase-space distributions.« less

  17. A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement

    PubMed Central

    Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2016-01-01

    Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates. PMID:26763827

  18. A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement.

    PubMed

    Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2016-01-01

    Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates.

  19. Spectroscopic characterization of charged defects in polycrystalline pentacene by time- and wavelength-resolved electric force microscopy.

    PubMed

    Luria, Justin L; Schwarz, Kathleen A; Jaquith, Michael J; Hennig, Richard G; Marohn, John A

    2011-02-01

    Spatial maps of topography and trapped charge are acquired for polycrystalline pentacene thin-film transistors using electric and atomic force microscopy. In regions of trapped charge, the rate of trap clearing is studied as a function of the wavelength of incident radiation.

  20. An Analytical Model for the Prediction of a Micro-Dosimeter Response Function

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; Xapsos, Mike

    2008-01-01

    A rapid analytical procedure for the prediction of a micro-dosimeter response function in low Earth orbit (LEO), correlated with the Space Transportation System (STS, shuttle) Tissue Equivalent Proportional Counter (TEPC) measurements is presented. The analytical model takes into consideration the energy loss straggling and chord length distribution of the detector, and is capable of predicting energy deposition fluctuations in a cylindrical micro-volume of arbitrary aspect ratio (height/diameter) by incoming ions through both direct and indirect (ray) events. At any designated (ray traced) target point within the vehicle, the model accepts the differential flux spectrum of Galactic Cosmic Rays (GCR) and/or trapped protons at LEO as input. On a desktop PC, the response function of TEPC for each ion in the GCR/trapped field is computed at the average rate of 30 seconds/ion. The ionizing radiation environment at LEO is represented by O'Neill fs GCR model (2004), covering charged particles in the 1 less than or equal to Z less than or equal to 28. O'Neill's free space GCR model is coupled with the Langley Research Center (LaRC) angular dependent geomagnetic cutoff model to compute the transmission coefficient in LEO. The trapped proton environment is represented by a LaRC developed time dependent procedure which couples the AP8MIN/AP8MAX, Deep River Neutron Monitor (DRNM) and F10.7 solar radio frequency measurements. The albedo neutron environment is represented by the extrapolation of the Atmospheric Ionizing Radiation (AIR) measurements. The charged particle transport calculations correlated with STS 51 and 114 flights are accomplished by using the most recent version (2005) of the LaRC deterministic High charge (Z) and Energy TRaNsport (HZETRN) code. We present the correlations between the TEPC model predictions (response function) and TEPC measured differential/integral spectra in the lineal energy (y) domain for both GCR and trapped protons, with the conclusion that the model correctly accounts for the increase in flux at low y values where energetic ions are the primary contributor. We further discuss that, even with the incorporation of angular dependency in the cutoffs, comparison of the GCR differential/integral flux between STS 51 and 114 TEPC measured data and current calculations indicates that there still exists an underestimation by the simulations at low to mid range y values. This underestimation is partly related the exclusion of the secondary pion particle production from the current version of HZETRN.

  1. Trap-induced photoconductivity in singlet fission pentacene diodes

    NASA Astrophysics Data System (ADS)

    Qiao, Xianfeng; Zhao, Chen; Chen, Bingbing; Luan, Lin

    2014-07-01

    This paper reports a trap-induced photoconductivity in ITO/pentacene/Al diodes by using current-voltage and magneto-conductance measurements. The comparison of photoconductivity between pentacene diodes with and without trap clearly shows that the traps play a critical role in generating photoconductivity. It shows that no observable photoconductivity is detected for trap-free pentacene diodes, while significant photoconductivity is observed in diodes with trap. This is because the initial photogenerated singlet excitons in pentacene can rapidly split into triplet excitons with higher binding energy prior to dissociating into free charge carriers. The generated triplet excitons react with trapped charges to release charge-carriers from traps, leading to a trap-induced photoconductivity in the single-layer pentacene diodes. Our studies elucidated the formation mechanisms of photoconductivity in pentacene diodes with extremely fast singlet fission rate.

  2. A comprehensive study of charge trapping in organic field-effect devices with promising semiconductors and different contact metals by displacement current measurements

    NASA Astrophysics Data System (ADS)

    Bisoyi, Sibani; Rödel, Reinhold; Zschieschang, Ute; Kang, Myeong Jin; Takimiya, Kazuo; Klauk, Hagen; Tiwari, Shree Prakash

    2016-02-01

    A systematic and comprehensive study on the charge-carrier injection and trapping behavior was performed using displacement current measurements in long-channel capacitors based on four promising small-molecule organic semiconductors (pentacene, DNTT, C10-DNTT and DPh-DNTT). In thin-film transistors, these semiconductors showed charge-carrier mobilities ranging from 1.0 to 7.8 cm2 V-1 s-1. The number of charges injected into and extracted from the semiconductor and the density of charges trapped in the device during each measurement were calculated from the displacement current characteristics and it was found that the density of trapped charges is very similar in all devices and of the order 1012 cm-2, despite the fact that the four semiconductors show significantly different charge-carrier mobilities. The choice of the contact metal (Au, Ag, Cu, Pd) was also found to have no significant effect on the trapping behavior.

  3. Pulse I-V characterization of a nano-crystalline oxide device with sub-gap density of states

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun

    2016-05-01

    Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I-V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I-V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I-V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes.

  4. Pulse I-V characterization of a nano-crystalline oxide device with sub-gap density of states.

    PubMed

    Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun

    2016-05-27

    Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I-V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I-V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I-V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes.

  5. A temperature dependent study on charge dynamics in organic molecular device: Effect of shallow traps on space charge limited behavior

    NASA Astrophysics Data System (ADS)

    Mukherjee, A. K.; Kavala, A. K.

    2014-04-01

    Shallow traps play a significant role in influencing charge dynamics through organic molecular thin films, such as pentacene. Sandwich cells of pentacene capped by gold electrodes are an excellent specimen to study the nature of underlying charge dynamics. In this paper, self-consistent numerical simulation of I-V characteristics is performed at various temperatures. The results have revealed negative value of Poole Frenkel coefficient. The location of trap energy level is found to be located at 0.24 eV above the highest occupied molecular orbit (HOMO) level of pentacene. Other physical parameters related to trap levels, such as density of states due to traps and effective carrier density due to traps, have also been estimated in this study.

  6. Characterization of single particle aerosols by elastic light scattering at multiple wavelengths

    NASA Astrophysics Data System (ADS)

    Lane, P. A.; Hart, M. B.; Jain, V.; Tucker, J. E.; Eversole, J. D.

    2018-03-01

    We describe a system to characterize individual aerosol particles using stable and repeatable measurement of elastic light scattering. The method employs a linear electrodynamic quadrupole (LEQ) particle trap. Charged particles, continuously injected by electrospray into this system, are confined to move vertically along the stability line in the center of the LEQ past a point where they are optically interrogated. Light scattered in the near forward direction was measured at three different wavelengths using time-division multiplexed collinear laser beams. We validated our method by comparing measured silica microsphere data for four selected diameters (0.7, 1.0, 1.5 and 2.0 μm) to a model of collected scattered light intensities based upon Lorenz-Mie scattering theory. Scattered light measurements at the different wavelengths are correlated, allowing us to distinguish and classify inhomogeneous particles.

  7. Characterization of trapped charges distribution in terms of mirror plot curve.

    PubMed

    Al-Obaidi, Hassan N; Mahdi, Ali S; Khaleel, Imad H

    2018-01-01

    Accumulation of charges (electrons) at the specimen surface in scanning electron microscope (SEM) lead to generate an electrostatic potential. By using the method of image charges, this potential is defined in the chamber's space of such apparatus. The deduced formula is expressed in terms a general volumetric distribution which proposed to be an infinitesimal spherical extension. With aid of a binomial theorem the defined potential is expanded to a multipolar form. Then resultant formula is adopted to modify a novel mirror plot equation so as to detect the real distribution of trapped charges. Simulation results reveal that trapped charges may take a various sort of arrangement such as monopole, quadruple and octuple. But existence of any of these arrangements alone may never be take place, rather are some a formations of a mix of them. Influence of each type of these profiles depends on the distance between the incident electron and surface of a sample. Result also shows that trapped charge's amount of trapped charges can refer to a threshold for failing of point charge approximation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A cooler Penning trap for the TITAN mass measurement facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, U.; Kootte, B.; Good, M.

    The TITAN facility at TRIUMF makes use of highly charged ions, charge-bred in an electron beam ion trap, to carry out accurate mass measurements on radioactive isotopes. We report on our progress to develop a cooler Penning trap, CPET, which aims at reducing the energy spread of the ions to ≈ 1 eV/charge prior to injection into the mass measurement trap. In off-line mode, we can now trap electron plasmas for minutes, and we observe the damping of the m = 1 diocotron plasma mode within ≈ 2 s.

  9. Active charge trapping control in dielectrics under ionizing radiation

    NASA Astrophysics Data System (ADS)

    Dominguez-Pumar, M.; Bheesayagari, C.; Gorreta, S.; Pons-Nin, J.

    2017-12-01

    Charge trapping is is a design and reliability factor in plasma sensors. Examples can be found in microchannel plate detectors in plasma analyzers, where multiple layers have been devised to ensure filled trapped electrons for enhanced secondary emission [1]. Charge trap mapping is used to recover distortion in telescope CCDs [2]. Specific technologies are designed to mitigate the effect of ionizing radiation in monolithic Active Pixel Sensors [3]. We report in this paper a control loop designed to control charge in Metal-Oxide-Semiconductor capacitors. We find that the net trapped charge in the device can be set within some limits to arbitrary values that can be changed with time. The control loop periodically senses the net trapped charge by detecting shifts in the capacitance vs voltage characteristic, and generates adequate waveform sequences to keep the trapped charge at the desired level [4]. The waveforms continuously applied have been chosen to provide different levels of charge injection into the dielectric. The control generates the adequate average charge injection to reach and maintain the desired level of trapped charge, compensating external disturbances. We also report that this control can compensate charge generated by ionizing radiation. Experiments will be shown in which this compensation is obtained with X-rays and gamma radiation. The presented results open the possibility of applying active compensation techniques for the first time in a wide number of devices such as radiation sensors, MOS transistors and other devices. The continuous drive towards integration may allow the implementation of this type of controls in devices needing to reject external disturbances, or needing to optimize their response to radiation or ion fluxes. References: [1] patent US 2009/0212680 A1. [2] A&A 534, A20 (2011). [3] Hemperek, Nucl. Instr. and Meth. in Phys. Res. Sect. A.796, pp 8-12, 2015. [4] Dominguez, IEEE Trans. Ind. Electr, 64 (4), 3023-3029, 2017.

  10. Trapping of Individual Airborne Absorbing Particles Using a Counterflow Nozzle and Photophoretic Trap for Continuous Sampling and Analysis

    DTIC Science & Technology

    2014-03-19

    particles from air. The key parts of the system are a conical photophoretic optical trap and a counter-flow coaxial-double- nozzle that concentrates and then...distribution is unlimited. Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous...airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis Report Title We describe an

  11. A Long DNA Segment in a Linear Nanoscale Paul Trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Sony nmn; Guan, Weihau; Reed, Mark A

    2009-01-01

    We study the dynamics of a linearly distributed line charge such as single stranded DNA (ssDNA) in a nanoscale, linear 2D Paul trap in vacuum. Using molecular dynamics simulations we show that a line charge can be trapped effectively in the trap for a well defined range of stability parameters. We investigated (i) a flexible bonded string of charged beads and (ii) a ssDNA polymer of variable length, for various trap parameters. A line charge undergoes oscillations or rotations as it moves, depending on its initial angle, the position of the center of mass and the velocity. The stability regionmore » for a strongly bonded line of charged beads is similar to that of a single ion with the same charge to mass ratio. Single stranded DNA as long as 40 nm does not fold or curl in the Paul trap, but could undergo rotations about the center of mass. However, we show that a stretching field in the axial direction can effectively prevent the rotations and increase the confinement stability.« less

  12. Particulate and plasma variations in NLC and PMSE during DROPPS 1 and 2 flights

    NASA Astrophysics Data System (ADS)

    Voss, H. D.; Webb, P. A.; Pesnell, W. D.; Gumbel, J.; Assiss, M. P.; Goldberg, R. A.

    High-time resolution rocket measurements have been made of charged particulates under polar summer mesospheric conditions on 5 and 14 July 1999 during the DROPPS campaign at And o ya Rocket Range Norway Each rocket carried a Particle Impact Detector PID composed of two telescopes with three biased grids and which were pointed into the rocket ram during both up- and downleg On the first night the rocket DROPPS 1 was flown into a strong PMSE polar mesospheric summer echo condition with a weak NLC noctilucent cloud located at the base of the PMSE The second flight DROPPS 2 was launched into a bright NLC with no PMSE present For DROPPS 1 large amounts of negatively charged particulates were observed in the PMSE region with relatively small size distributions 1 nm radius Net positive charge particulates were measured in the NLC regions for both flights Ions and charged particulates have been simulated using a finite difference code SIMION 3D to trace particle paths and resulting grid currents For the simulations the thermal effects through the shock and within the sensor cause the ice rocky particulates to sublimate and lose mass In addition the particulates are observed to decelerate due to the ram pressure and electric fields for subsequent charge collection on the grids The background current on grid 2 -4 volt is consistent with the altitude variation and flux expected for UV photoionization Consistent effects were observed on another instrument PAT particle trap during the same flights

  13. Scanning-tunneling microscope imaging of single-electron solitons in a material with incommensurate charge-density waves.

    PubMed

    Brazovskii, Serguei; Brun, Christophe; Wang, Zhao-Zhong; Monceau, Pierre

    2012-03-02

    We report on scanning-tunneling microscopy experiments in a charge-density wave (CDW) system allowing visually capturing and studying in detail the individual solitons corresponding to the self-trapping of just one electron. This "Amplitude Soliton" is marked by vanishing of the CDW amplitude and by the π shift of its phase. It might be the realization of the spinon--the long-sought particle (along with the holon) in the study of science of strongly correlated electronic systems. As a distinct feature we also observe one-dimensional Friedel oscillations superimposed on the CDW which develop independently of solitons.

  14. Charge transport model in nanodielectric composites based on quantum tunneling mechanism and dual-level traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guochang; Chen, George, E-mail: gc@ecs.soton.ac.uk, E-mail: sli@mail.xjtu.edu.cn; School of Electronic and Computer Science, University of Southampton, Southampton SO17 1BJ

    Charge transport properties in nanodielectrics present different tendencies for different loading concentrations. The exact mechanisms that are responsible for charge transport in nanodielectrics are not detailed, especially for high loading concentration. A charge transport model in nanodielectrics has been proposed based on quantum tunneling mechanism and dual-level traps. In the model, the thermally assisted hopping (TAH) process for the shallow traps and the tunnelling process for the deep traps are considered. For different loading concentrations, the dominant charge transport mechanisms are different. The quantum tunneling mechanism plays a major role in determining the charge conduction in nanodielectrics with high loadingmore » concentrations. While for low loading concentrations, the thermal hopping mechanism will dominate the charge conduction process. The model can explain the observed conductivity property in nanodielectrics with different loading concentrations.« less

  15. Mechanical trapping of particles in granular media

    NASA Astrophysics Data System (ADS)

    Kerimov, Abdulla; Mavko, Gary; Mukerji, Tapan; Al Ibrahim, Mustafa A.

    2018-02-01

    Mechanical trapping of fine particles in the pores of granular materials is an essential mechanism in a wide variety of natural and industrial filtration processes. The progress of invading particles is primarily limited by the network of pore throats and connected pathways encountered by the particles during their motion through the porous medium. Trapping of invading particles is limited to a depth defined by the size, shape, and distribution of the invading particles with respect to the size, shape, and distribution of the host porous matrix. Therefore, the trapping process, in principle, can be used to obtain information about geometrical properties, such as pore throat and particle size, of the underlying host matrix. A numerical framework is developed to simulate the mechanical trapping of fine particles in porous granular media with prescribed host particle size, shape, and distribution. The trapping of invading particles is systematically modeled in host packings with different host particle distributions: monodisperse, bidisperse, and polydisperse distributions of host particle sizes. Our simulation results show quantitatively and qualitatively to what extent trapping behavior is different in the generated monodisperse, bidisperse, and polydisperse packings of spherical particles. Depending on host particle size and distribution, the information about extreme estimates of minimal pore throat sizes of the connected pathways in the underlying host matrix can be inferred from trapping features, such as the fraction of trapped particles as a function of invading particle size. The presence of connected pathways with minimum and maximum of minimal pore throat diameters can be directly obtained from trapping features. This limited information about the extreme estimates of pore throat sizes of the connected pathways in the host granular media inferred from our numerical simulations is consistent with simple geometrical estimates of extreme value of pore and throat sizes of the densest structural arrangements of spherical particles and geometrical Delaunay tessellation analysis of the pore space of host granular media. Our results suggest simple relations between the host particle size and trapping features. These relationships can be potentially used to describe both the dynamics of the mechanical trapping process and the geometrical properties of the host granular media.

  16. Mechanical trapping of particles in granular media.

    PubMed

    Kerimov, Abdulla; Mavko, Gary; Mukerji, Tapan; Al Ibrahim, Mustafa A

    2018-02-01

    Mechanical trapping of fine particles in the pores of granular materials is an essential mechanism in a wide variety of natural and industrial filtration processes. The progress of invading particles is primarily limited by the network of pore throats and connected pathways encountered by the particles during their motion through the porous medium. Trapping of invading particles is limited to a depth defined by the size, shape, and distribution of the invading particles with respect to the size, shape, and distribution of the host porous matrix. Therefore, the trapping process, in principle, can be used to obtain information about geometrical properties, such as pore throat and particle size, of the underlying host matrix. A numerical framework is developed to simulate the mechanical trapping of fine particles in porous granular media with prescribed host particle size, shape, and distribution. The trapping of invading particles is systematically modeled in host packings with different host particle distributions: monodisperse, bidisperse, and polydisperse distributions of host particle sizes. Our simulation results show quantitatively and qualitatively to what extent trapping behavior is different in the generated monodisperse, bidisperse, and polydisperse packings of spherical particles. Depending on host particle size and distribution, the information about extreme estimates of minimal pore throat sizes of the connected pathways in the underlying host matrix can be inferred from trapping features, such as the fraction of trapped particles as a function of invading particle size. The presence of connected pathways with minimum and maximum of minimal pore throat diameters can be directly obtained from trapping features. This limited information about the extreme estimates of pore throat sizes of the connected pathways in the host granular media inferred from our numerical simulations is consistent with simple geometrical estimates of extreme value of pore and throat sizes of the densest structural arrangements of spherical particles and geometrical Delaunay tessellation analysis of the pore space of host granular media. Our results suggest simple relations between the host particle size and trapping features. These relationships can be potentially used to describe both the dynamics of the mechanical trapping process and the geometrical properties of the host granular media.

  17. Beam trapping in high-current cyclic accelerators with strong-focusing fields. Memorandum report, January-December 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprangle, P.; Kapetanakos, C.A.

    1985-03-06

    In cyclic induction accelerators, the energy of the particles increases slowly in synchronism with the vertical (betatron) magnetic field. As a consequence of the slow acceleration, the charged particles must be confined by the weak-focusing magnetic field over long periods of time, and thus field errors, instabilities, and radiation losses can impose limitations on the acceleration process. These limitations can be substantially relaxed if the acceleration were to occur rapidly, say over a few microseconds. An appropriate name for such an accelerator is REBA-TRON (Rapid Electron Beam Accelerator). This paper considers a possible mechanism which could trap a high currentmore » electron beam in the strong focusing magnetic fields of the rebatron. We investigate a possible mechanism for trapping an intense relativistic electron beam confined by strong focusing fields. In our model the electron beam is assumed to be injected into torsatron fields off axis, near the chamber walls. The finite resistivity of the walls results in a drag force on the beam centroid which may cause the beam to spiral inward towards the axis of the chamber. We have analyzed this mechanism and obtained decay rates for the inward spiraling beam motion.« less

  18. Charge retention in scaled SONOS nonvolatile semiconductor memory devices—Modeling and characterization

    NASA Astrophysics Data System (ADS)

    Hu, Yin; White, Marvin H.

    1993-10-01

    A new analytical model is developed to investigate the influence of the charge loss processes in the retention mode of the SONOS NVSM device. The model considers charge loss by the following processes: (1) electron back-tunneling from the nitride traps to the Si conduction band, (2) electron back-tunneling from the nitride traps to the Si/SiO 2 interface traps and (3) hole injection from the Si valence band to the nitride traps. An amphoteric trap charge distribution is used in this model. The new charge retention model predicts that process (1) determines the short term retention, while processes (2) and (3) determine the long term retention. Good agreement has been reached between the results of analytical calculations and the experimental retention data on both surface channel and buried channel SONOS devices.

  19. TiO2 nanoparticle induced space charge decay in thermal aged transformer oil

    NASA Astrophysics Data System (ADS)

    Lv, Yuzhen; Du, Yuefan; Li, Chengrong; Qi, Bo; Zhong, Yuxiang; Chen, Mutian

    2013-04-01

    TiO2 nanoparticle with good dispersibility and stability in transformer oil was prepared and used to modify insulating property of aged oil. It was found that space charge decay rate in the modified aged oil can be significantly enhanced to 1.57 times of that in the aged oil at first 8 s after polarization voltage was removed. The results of trap characteristics reveal that the modification of nanoparticle can not only greatly lower the shallow trap energy level in the aged oil but also increase the trap density, resulting in improved charge transportation via trapping and de-trapping process in shallower traps.

  20. Dependence of enhanced asymmetry-induced transport on collision frequency

    NASA Astrophysics Data System (ADS)

    Eggleston, D. L.

    2014-07-01

    A single-particle code with collisional effects is used to study how asymmetry-induced radial transport in a non-neutral plasma depends on collision frequency. For asymmetries of the form ϕ1(r) cos(kz) cos(ωt-lθ), two sources for the transport have been identified: resonant particles and axially trapped particles. The simulation shows that this latter type, which occurs near the radius where ω matches the azimuthal rotation frequency ωR, is usually dominant at low collision frequency ν but becomes negligible at higher ν. This behavior can be understood by noting that axially trapped particles have a lower trapping frequency than resonant particles. In the low ν (banana) regime, the radial oscillations have amplitude Δr ≈ vr/ωT, so axially trapped particles dominate, and the transport may even exceed the resonant particle plateau regime level. As ν increases, collisions start to interrupt the slower axially trapped particle oscillations, while the resonant particles are still in the banana regime, so the axially trapped particle contribution to the transport decreases. At the largest ν values, axially trapped particle transport is negligible and the observed diffusion coefficient matches that given by plateau regime resonant particle theory. Heuristic models based on these considerations give reasonable agreement with the observed scaling laws for the value of the collision frequency where axially trapped particle transport starts to decrease and for the enhancement of the diffusion coefficient produced by axially trapped particles.

  1. Optical Forces on Non-Spherical Nanoparticles Trapped by Optical Waveguides

    NASA Astrophysics Data System (ADS)

    Hasan Ahmed, Dewan; Sung, Hyung Jin

    2011-07-01

    Numerical simulations of a solid-core polymer waveguide structure were performed to calculate the trapping efficiencies of particles with nanoscale dimensions smaller than the wavelength of the trapping beam. A three-dimensional (3-D) finite element method was employed to calculate the electromagnetic field. The inlet and outlet boundary conditions were obtained using an eigenvalue solver to determine the guided and evanescent mode profiles. The Maxwell stress tensor was considered for the calculation of the transverse and downward trapping efficiencies. A particle at the center of the waveguide showed minimal transverse trapping efficiency and maximal downward trapping efficiency. This trend gradually reversed as the particle moved away from the center of the waveguide. Particles with larger surface areas exhibited higher trapping efficiencies and tended to be trapped near the waveguide. Particles displaced from the wave input tended to be trapped at the waveguide surface. Simulation of an ellipsoidal particle showed that the orientation of the major axis along the waveguide's lateral z-coordinate significantly influenced the trapping efficiency. The particle dimensions along the z-coordinate were more critical than the gap distance (vertical displacement from the floor of the waveguide) between the ellipsoid particle and the waveguide. The present model was validated using the available results reported in the literature for different trapping efficiencies.

  2. Effective properties of undoped and Indium3+-doped tin manganese telluride (Sn1 - xMnxTe) nanoparticles via using a chemical bath deposition route

    NASA Astrophysics Data System (ADS)

    Boon-on, Patsorn; Tubtimtae, Auttasit; Vailikhit, Veeramol; Teesetsopon, Pichanan; Choopun, Supab

    2017-06-01

    Tin manganese telluride nanoparticles (Sn1-xMnxTe NPs) were first synthesized on a niobium pentoxide (Nb2O5) film using a chemical bath deposition (CBD) route. An individual particle size before and after indium (In3+) doping of ∼70-150 nm was investigated with stoichiometric formation of the SnMnTe phase. Furthermore, a cubic or rocksalt structure of the Sn0.938Mn0.062Te phase was also kept incorporated in the structure. The plotted energy band gaps for undoped and In3+-doped samples were 2.17 and 1.83 eV, respectively. The reduction of photoluminescence (PL) spectra after In3+ doping, while the indium dopant acted as a trap state incorporated in Sn1-xMnxTe NPs, showed enhanced charge separation and reduced charge recombination, which resulted in a higher charge density trapped in the conduction band of Nb2O5 and was also confirmed by the result of anodic peaks in the cyclic voltammetry. These results suggest new possibilities in optoelectronic and electrochemical devices.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Xianfeng, E-mail: qiaoxianfeng@hotmail.com; Zhao, Chen; Chen, Bingbing

    This paper reports a trap-induced photoconductivity in ITO/pentacene/Al diodes by using current-voltage and magneto-conductance measurements. The comparison of photoconductivity between pentacene diodes with and without trap clearly shows that the traps play a critical role in generating photoconductivity. It shows that no observable photoconductivity is detected for trap-free pentacene diodes, while significant photoconductivity is observed in diodes with trap. This is because the initial photogenerated singlet excitons in pentacene can rapidly split into triplet excitons with higher binding energy prior to dissociating into free charge carriers. The generated triplet excitons react with trapped charges to release charge-carriers from traps, leadingmore » to a trap-induced photoconductivity in the single-layer pentacene diodes. Our studies elucidated the formation mechanisms of photoconductivity in pentacene diodes with extremely fast singlet fission rate.« less

  4. Spectrally reconfigurable integrated multi-spot particle trap.

    PubMed

    Leake, Kaelyn D; Olson, Michael A B; Ozcelik, Damla; Hawkins, Aaron R; Schmidt, Holger

    2015-12-01

    Optical manipulation of small particles in the form of trapping, pushing, or sorting has developed into a vast field with applications in the life sciences, biophysics, and atomic physics. Recently, there has been increasing effort toward integration of particle manipulation techniques with integrated photonic structures on self-contained optofluidic chips. Here, we use the wavelength dependence of multi-spot pattern formation in multimode interference (MMI) waveguides to create a new type of reconfigurable, integrated optical particle trap. Interfering lateral MMI modes create multiple trapping spots in an intersecting fluidic channel. The number of trapping spots can be dynamically controlled by altering the trapping wavelength. This novel, spectral reconfigurability is utilized to deterministically move single and multiple particles between different trapping locations along the channel. This fully integrated multi-particle trap can form the basis of high throughput biophotonic assays on a chip.

  5. Flash Memory Featuring Low-Voltage Operation by Crystalline ZrTiO4 Charge-Trapping Layer

    NASA Astrophysics Data System (ADS)

    Shen, Yung-Shao; Chen, Kuen-Yi; Chen, Po-Chun; Chen, Teng-Chuan; Wu, Yung-Hsien

    2017-03-01

    Crystalline ZrTiO4 (ZTO) in orthorhombic phase with different plasma treatments was explored as the charge-trapping layer for low-voltage operation flash memory. For ZTO without any plasma treatment, even with a high k value of 45.2, it almost cannot store charges due the oxygen vacancies-induced shallow-level traps that make charges easy to tunnel back to Si substrate. With CF4 plasma treatment, charge storage is still not improved even though incorporated F atoms could introduce additional traps since the F atoms disappear during the subsequent thermal annealing. On the contrary, nevertheless the k value degrades to 40.8, N2O plasma-treated ZTO shows promising performance in terms of 5-V hysteresis memory window by ±7-V sweeping voltage, 2.8-V flatband voltage shift by programming at +7 V for 100 μs, negligible memory window degradation with 105 program/erase cycles and 81.8% charge retention after 104 sec at 125 °C. These desirable characteristics are ascribed not only to passivation of oxygen vacancies-related shallow-level traps but to introduction of a large amount of deep-level bulk charge traps which have been proven by confirming thermally excited process as the charge loss mechanism and identifying traps located at energy level beneath ZTO conduction band by 0.84 eV~1.03 eV.

  6. Flash Memory Featuring Low-Voltage Operation by Crystalline ZrTiO4 Charge-Trapping Layer.

    PubMed

    Shen, Yung-Shao; Chen, Kuen-Yi; Chen, Po-Chun; Chen, Teng-Chuan; Wu, Yung-Hsien

    2017-03-08

    Crystalline ZrTiO 4 (ZTO) in orthorhombic phase with different plasma treatments was explored as the charge-trapping layer for low-voltage operation flash memory. For ZTO without any plasma treatment, even with a high k value of 45.2, it almost cannot store charges due the oxygen vacancies-induced shallow-level traps that make charges easy to tunnel back to Si substrate. With CF 4 plasma treatment, charge storage is still not improved even though incorporated F atoms could introduce additional traps since the F atoms disappear during the subsequent thermal annealing. On the contrary, nevertheless the k value degrades to 40.8, N 2 O plasma-treated ZTO shows promising performance in terms of 5-V hysteresis memory window by ±7-V sweeping voltage, 2.8-V flatband voltage shift by programming at +7 V for 100 μs, negligible memory window degradation with 10 5 program/erase cycles and 81.8% charge retention after 10 4  sec at 125 °C. These desirable characteristics are ascribed not only to passivation of oxygen vacancies-related shallow-level traps but to introduction of a large amount of deep-level bulk charge traps which have been proven by confirming thermally excited process as the charge loss mechanism and identifying traps located at energy level beneath ZTO conduction band by 0.84 eV~1.03 eV.

  7. Improving radiation hardness in space-based Charge-Coupled Devices through the narrowing of the charge transfer channel

    NASA Astrophysics Data System (ADS)

    Hall, D. J.; Skottfelt, J.; Soman, M. R.; Bush, N.; Holland, A.

    2017-12-01

    Charge-Coupled Devices (CCDs) have been the detector of choice for imaging and spectroscopy in space missions for several decades, such as those being used for the Euclid VIS instrument and baselined for the SMILE SXI. Despite the many positive properties of CCDs, such as the high quantum efficiency and low noise, when used in a space environment the detectors suffer damage from the often-harsh radiation environment. High energy particles can create defects in the silicon lattice which act to trap the signal electrons being transferred through the device, reducing the signal measured and effectively increasing the noise. We can reduce the impact of radiation on the devices through four key methods: increased radiation shielding, device design considerations, optimisation of operating conditions, and image correction. Here, we concentrate on device design operations, investigating the impact of narrowing the charge-transfer channel in the device with the aim of minimising the impact of traps during readout. Previous studies for the Euclid VIS instrument considered two devices, the e2v CCD204 and CCD273, the serial register of the former having a 50 μm channel and the latter having a 20 μm channel. The reduction in channel width was previously modelled to give an approximate 1.6× reduction in charge storage volume, verified experimentally to have a reduction in charge transfer inefficiency of 1.7×. The methods used to simulate the reduction approximated the charge cloud to a sharp-edged volume within which the probability of capture by traps was 100%. For high signals and slow readout speeds, this is a reasonable approximation. However, for low signals and higher readout speeds, the approximation falls short. Here we discuss a new method of simulating and calculating charge storage variations with device design changes, considering the absolute probability of capture across the pixel, bringing validity to all signal sizes and readout speeds. Using this method, we can optimise the device design to suffer minimum impact from radiation damage effects, here using detector development for the SMILE mission to demonstrate the process.

  8. Computer simulation on the collision-sticking dynamics of two colloidal particles in an optical trap.

    PubMed

    Xu, Shenghua; Sun, Zhiwei

    2007-04-14

    Collisions of a particle pair induced by optical tweezers have been employed to study colloidal stability. In order to deepen insights regarding the collision-sticking dynamics of a particle pair in the optical trap that were observed in experimental approaches at the particle level, the authors carry out a Brownian dynamics simulation. In the simulation, various contributing factors, including the Derjaguin-Landau-Verwey-Overbeek interaction of particles, hydrodynamic interactions, optical trapping forces on the two particles, and the Brownian motion, were all taken into account. The simulation reproduces the tendencies of the accumulated sticking probability during the trapping duration for the trapped particle pair described in our previous study and provides an explanation for why the two entangled particles in the trap experience two different statuses.

  9. Quantum simulation of ultrafast dynamics using trapped ultracold atoms.

    PubMed

    Senaratne, Ruwan; Rajagopal, Shankari V; Shimasaki, Toshihiko; Dotti, Peter E; Fujiwara, Kurt M; Singh, Kevin; Geiger, Zachary A; Weld, David M

    2018-05-25

    Ultrafast electronic dynamics are typically studied using pulsed lasers. Here we demonstrate a complementary experimental approach: quantum simulation of ultrafast dynamics using trapped ultracold atoms. Counter-intuitively, this technique emulates some of the fastest processes in atomic physics with some of the slowest, leading to a temporal magnification factor of up to 12 orders of magnitude. In these experiments, time-varying forces on neutral atoms in the ground state of a tunable optical trap emulate the electric fields of a pulsed laser acting on bound charged particles. We demonstrate the correspondence with ultrafast science by a sequence of experiments: nonlinear spectroscopy of a many-body bound state, control of the excitation spectrum by potential shaping, observation of sub-cycle unbinding dynamics during strong few-cycle pulses, and direct measurement of carrier-envelope phase dependence of the response to an ultrafast-equivalent pulse. These results establish cold-atom quantum simulation as a complementary tool for studying ultrafast dynamics.

  10. Ferroelectric Diodes with Charge Injection and Trapping

    NASA Astrophysics Data System (ADS)

    Fan, Zhen; Fan, Hua; Lu, Zengxing; Li, Peilian; Huang, Zhifeng; Tian, Guo; Yang, Lin; Yao, Junxiang; Chen, Chao; Chen, Deyang; Yan, Zhibo; Lu, Xubing; Gao, Xingsen; Liu, Jun-Ming

    2017-01-01

    Ferroelectric diodes with polarization-modulated Schottky barriers are promising for applications in resistive switching (RS) memories. However, they have not achieved satisfactory performance reliability as originally hoped. The physical origins underlying this issue have not been well studied, although they deserve much attention. Here, by means of scanning Kelvin probe microscopy we show that the electrical poling of ferroelectric diodes can cause significant charge injection and trapping besides polarization switching. We further show that the reproducibility and stability of switchable diode-type RS behavior are significantly affected by the interfacial traps. A theoretical model is then proposed to quantitatively describe the modifications of Schottky barriers by charge injection and trapping. This model is able to reproduce various types of hysteretic current-voltage characteristics as experimentally observed. It is further revealed that the charge injection and trapping can significantly modify the electroresistance ratio, RS polarity, and high- or low-resistance states initially defined by the polarization direction. Several approaches are suggested to suppress the effect of charge injection and trapping so as to realize high-performance polarization-reversal-induced RS. This study, therefore, reveals the microscopic mechanisms for the RS behavior comodulated by polarization reversal and charge trapping in ferroelectric diodes, and also provides useful suggestions for developing reliable ferroelectric RS memories.

  11. Dependence of enhanced asymmetry-induced transport on collision frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggleston, D. L.

    A single-particle code with collisional effects is used to study how asymmetry-induced radial transport in a non-neutral plasma depends on collision frequency. For asymmetries of the form ϕ{sub 1}(r) cos(kz) cos(ωt−lθ), two sources for the transport have been identified: resonant particles and axially trapped particles. The simulation shows that this latter type, which occurs near the radius where ω matches the azimuthal rotation frequency ω{sub R}, is usually dominant at low collision frequency ν but becomes negligible at higher ν. This behavior can be understood by noting that axially trapped particles have a lower trapping frequency than resonant particles. In the lowmore » ν (banana) regime, the radial oscillations have amplitude Δr ≈ v{sub r}/ω{sub T}, so axially trapped particles dominate, and the transport may even exceed the resonant particle plateau regime level. As ν increases, collisions start to interrupt the slower axially trapped particle oscillations, while the resonant particles are still in the banana regime, so the axially trapped particle contribution to the transport decreases. At the largest ν values, axially trapped particle transport is negligible and the observed diffusion coefficient matches that given by plateau regime resonant particle theory. Heuristic models based on these considerations give reasonable agreement with the observed scaling laws for the value of the collision frequency where axially trapped particle transport starts to decrease and for the enhancement of the diffusion coefficient produced by axially trapped particles.« less

  12. Factors affecting the transverse force measurements of an optical trap: I

    NASA Astrophysics Data System (ADS)

    Wood, Tiffany A.; Wright, Amanda; Gleeson, Helen F.; Dickenson, Mark; Mullin, Tom; Murray, Andrew

    2002-03-01

    The transverse force of an optical trap is usually measured by equating the trapping force to the viscous drag force applied to the trapped particle according to Stokes' Law. Under normal conditions, the viscous drag force on a trapped particle is proportional to the fluid velocity of the medium. In this paper we show that an increase of particle concentration within the medium affects force measurements. In order to trap the particle, 1064 nm light from a Nd:YVO4 laser was brought to a focus in a sample slide, of thickness around 380 microns, by using an inverted Zeiss microscope objective, with NA equals 1.3. The slide was filled with distilled water containing 6 micron diameter polystyrene spheres. Measurements were taken at a fluid velocity of 0.75 microns/sec, achieved by moving the sample stage with a piezo-electric transducer whilst a particle was held stationary in the trap. The laser power required to hold a sphere at different trap depths for various concentrations was measured. Significant weakening of the trap was found for concentrations >0.03% solids by weight, becoming weaker for higher trap depths. These results are explained in terms of aberrations, particle-particle interactions and distortion of the beam due to particle-light interactions.

  13. Two-dimensional simulation of argon dielectric barrier discharge excited by a Gaussian voltage at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Wang, Jing; Li, Jing; Lei, Bingying; Tang, Jie; Wang, Yishan; Li, Yongfang; Zhao, Wei; Duan, Yixiang

    2017-04-01

    A two-dimensional self-consistent fluid model was employed to investigate the spatiotemporal characteristics of discharges in atmospheric pressure argon (Ar) dielectric barrier discharge driven by a Gaussian voltage. The simulation results show that a discharge with multiple current pulses occurs each half-cycle in the gas gap. A transition from the Townsend mode to the glow mode is observed with the increasing applied voltage each half-cycle at a lower driving frequency (7.5 kHz). It is also found that the glow mode survives all the discharge phases at a higher driving frequency (12.5 kHz and 40 kHz). The change in the discharge mode with the driving frequency mainly lies in the fact that a lot of charged particles created in the discharge gap have no enough time to drift and diffuse around, and then these particles are assembled in the discharge space at higher frequency. Additionally, the spatial distributions of the electron density indicate that a center-advantage discharge is ignited at the driving frequencies of interest, resulting in the radial non-uniformity of discharge because of the edge effects. However, this overall non-uniformity is weakened with the driving frequency increased to 40 kHz, at which concentric ring patterns are observed. These distinct behaviors are mainly attributed to the fact that many charged particles generated are trapped in the gas gap and then accumulated to make the extension along the radial direction due to the charged particles transport and diffusion, and that the effective overlapping of a large number of avalanches induced by the increased "seed" electron density with the driving frequency. Meanwhile, the surface charged particles accumulated on the dielectric barriers are also shown to play a role in the formation of the discharge structure.

  14. Origin of traps and charge transport mechanism in hafnia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islamov, D. R., E-mail: damir@isp.nsc.ru; Gritsenko, V. A., E-mail: grits@isp.nsc.ru; Novosibirsk State University, Novosibirsk 630090

    2014-12-01

    In this study, we demonstrated experimentally and theoretically that oxygen vacancies are responsible for the charge transport in HfO{sub 2}. Basing on the model of phonon-assisted tunneling between traps, and assuming that the electron traps are oxygen vacancies, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics was achieved. The thermal trap energy of 1.25 eV in HfO{sub 2} was determined based on the charge transport experiments.

  15. Instability analysis of charges trapped in the oxide of metal-ultra thin oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Aziz, A.; Kassmi, K.; Maimouni, R.; Olivié, F.; Sarrabayrouse, G.; Martinez, A.

    2005-09-01

    In this paper, we present the theoretical and experimental results of the influence of a charge trapped in ultra-thin oxide of metal/ultra-thin oxide/semiconductor structures (MOS) on the I(Vg) current-voltage characteristics when the conduction is of the Fowler-Nordheim (FN) tunneling type. The charge, which is negative, is trapped near the cathode (metal/oxide interface) after constant current injection by the metal (Vg<0). Of particular interest is the influence on the Δ Vg(Vg) shift over the whole I(Vg) characteristic at high field (greater than the injection field (>12.5 MV/cm)). It is shown that the charge centroid varies linearly with respect to the voltage Vg. The behavior at low field (<12.5 MV/cm) is analyzed in référence A. Aziz, K. Kassmi, Ka. Kassmi, F. Olivié, Semicond. Sci. Technol. 19, 877 (2004) and considers that the trapped charge centroid is fixed. The results obtained make it possible to analyze the influence of the injected charge and the applied field on the centroid position of the trapped charge, and to highlight the charge instability in the ultra-thin oxide of MOS structures.

  16. Trap Modulated Charge Carrier Transport in Polyethylene/Graphene Nanocomposites.

    PubMed

    Li, Zhonglei; Du, Boxue; Han, Chenlei; Xu, Hang

    2017-06-21

    The role of trap characteristics in modulating charge transport properties is attracting much attentions in electrical and electronic engineering, which has an important effect on the electrical properties of dielectrics. This paper focuses on the electrical properties of Low-density Polyethylene (LDPE)/graphene nanocomposites (NCs), as well as the corresponding trap level characteristics. The dc conductivity, breakdown strength and space charge behaviors of NCs with the filler content of 0 wt%, 0.005 wt%, 0.01 wt%, 0.1 wt% and 0.5 wt% are studied, and their trap level distributions are characterized by isothermal discharge current (IDC) tests. The experimental results show that the 0.005 wt% LDPE/graphene NCs have a lower dc conductivity, a higher breakdown strength and a much smaller amount of space charge accumulation than the neat LDPE. It is indicated that the graphene addition with a filler content of 0.005 wt% introduces large quantities of deep carrier traps that reduce charge carrier mobility and result in the homocharge accumulation near the electrodes. The deep trap modulated charge carrier transport attributes to reduce the dc conductivity, suppress the injection of space charges into polymer bulks and enhance the breakdown strength, which is of great significance in improving electrical properties of polymer dielectrics.

  17. Measuring masses of large biomolecules and bioparticles using mass spectrometric techniques.

    PubMed

    Peng, Wen-Ping; Chou, Szu-Wei; Patil, Avinash A

    2014-07-21

    Large biomolecules and bioparticles play a vital role in biology, chemistry, biomedical science and physics. Mass is a critical parameter for the characterization of large biomolecules and bioparticles. To achieve mass analysis, choosing a suitable ion source is the first step and the instruments for detecting ions, mass analyzers and detectors should also be considered. Abundant mass spectrometric techniques have been proposed to determine the masses of large biomolecules and bioparticles and these techniques can be divided into two categories. The first category measures the mass (or size) of intact particles, including single particle quadrupole ion trap mass spectrometry, cell mass spectrometry, charge detection mass spectrometry and differential mobility mass analysis; the second category aims to measure the mass and tandem mass of biomolecular ions, including quadrupole ion trap mass spectrometry, time-of-flight mass spectrometry, quadrupole orthogonal time-of-flight mass spectrometry and orbitrap mass spectrometry. Moreover, algorithms for the mass and stoichiometry assignment of electrospray mass spectra are developed to obtain accurate structure information and subunit combinations.

  18. Optical trapping performance of dielectric-metallic patchy particles

    PubMed Central

    Lawson, Joseph L.; Jenness, Nathan J.; Clark, Robert L.

    2015-01-01

    We demonstrate a series of simulation experiments examining the optical trapping behavior of composite micro-particles consisting of a small metallic patch on a spherical dielectric bead. A full parameter space of patch shapes, based on current state of the art manufacturing techniques, and optical properties of the metallic film stack is examined. Stable trapping locations and optical trap stiffness of these particles are determined based on the particle design and potential particle design optimizations are discussed. A final test is performed examining the ability to incorporate these composite particles with standard optical trap metrology technologies. PMID:26832054

  19. Movement of particles using sequentially activated dielectrophoretic particle trapping

    DOEpatents

    Miles, Robin R.

    2004-02-03

    Manipulation of DNA and cells/spores using dielectrophoretic (DEP) forces to perform sample preparation protocols for polymerized chain reaction (PCR) based assays for various applications. This is accomplished by movement of particles using sequentially activated dielectrophoretic particle trapping. DEP forces induce a dipole in particles, and these particles can be trapped in non-uniform fields. The particles can be trapped in the high field strength region of one set of electrodes. By switching off this field and switching on an adjacent electrodes, particles can be moved down a channel with little or no flow.

  20. Reduced electron back-injection in Al2O3/AlOx/Al2O3/graphene charge-trap memory devices

    NASA Astrophysics Data System (ADS)

    Lee, Sejoon; Song, Emil B.; Min Kim, Sung; Lee, Youngmin; Seo, David H.; Seo, Sunae; Wang, Kang L.

    2012-12-01

    A graphene charge-trap memory is devised using a single-layer graphene channel with an Al2O3/AlOx/Al2O3 oxide stack, where the ion-bombarded AlOx layer is intentionally added to create an abundance of charge-trap sites. The low dielectric constant of AlOx compared to Al2O3 reduces the potential drop in the control oxide Al2O3 and suppresses the electron back-injection from the gate to the charge-storage layer, allowing the memory window of the device to be further extended. This shows that the usage of a lower dielectric constant in the charge-storage layer compared to that of the control oxide layer improves the memory performance for graphene charge-trap memories.

  1. Energetic Particles Dynamics in Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.

    2013-01-01

    We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface

  2. Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements

    NASA Astrophysics Data System (ADS)

    Röhr, Jason A.; Shi, Xingyuan; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny

    2018-04-01

    Extracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction measurements is complicated in practice by nonideal factors such as trapping in defects and injection barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit can be obtained to the entire current density-voltage curve from experimental space-charge-limited current measurements on both symmetric and asymmetric 2 ,2',7 ,7' -tetrakis(N ,N -di-4-methoxyphenylamine)-9 ,9' -spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that is more than an order of magnitude higher than the effective mobility obtained using analytical approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that where these analytical approximations require a temperature-dependent effective mobility to achieve fits, the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent mobility. Finally, we present an analytical model describing trap-limited current flow through a semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility and trap characteristics from this analytical model to the results from the numerical model, showing excellent agreement. This work shows the importance of accounting for traps and injection barriers explicitly when analyzing current density-voltage curves from space-charge-limited current measurements.

  3. Eliminating Overerase Behavior by Designing Energy Band in High-Speed Charge-Trap Memory Based on WSe2.

    PubMed

    Liu, Chunsen; Yan, Xiao; Wang, Jianlu; Ding, Shijin; Zhou, Peng; Zhang, David Wei

    2017-05-01

    Atomic crystal charge trap memory, as a new concept of nonvolatile memory, possesses an atomic level flatness interface, which makes them promising candidates for replacing conventional FLASH memory in the future. Here, a 2D material WSe 2 and a 3D Al 2 O 3 /HfO 2 /Al 2 O 3 charge-trap stack are combined to form a charge-trap memory device with a separation of control gate and memory stack. In this device, the charges are erased/written by built-in electric field, which significantly enhances the write speed to 1 µs. More importantly, owing to the elaborate design of the energy band structure, the memory only captures electrons with a large electron memory window over 20 V and trap selectivity about 13, both of them are the state-of-the-art values ever reported in FLASH memory based on 2D materials. Therefore, it is demonstrated that high-performance charge trap memory based on WSe 2 without the fatal overerase issue in conventional FLASH memory can be realized to practical application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Improved speed and data retention characteristics in flash memory using a stacked HfO2/Ta2O5 charge-trapping layer

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiwei; Huo, Zongliang; Zhang, Manhong; Zhu, Chenxin; Liu, Jing; Liu, Ming

    2011-10-01

    This paper reports the simultaneous improvements in erase speed and data retention characteristics in flash memory using a stacked HfO2/Ta2O5 charge-trapping layer. In comparison to a memory capacitor with a single HfO2 trapping layer, the erase speed of a memory capacitor with a stacked HfO2/Ta2O5 charge-trapping layer is 100 times faster and its memory window is enlarged from 2.7 to 4.8 V for the same ±16 V sweeping voltage range. With the same initial window of ΔVFB = 4 V, the device with a stacked HfO2/Ta2O5 charge-trapping layer has a 3.5 V extrapolated 10-year retention window, while the control device with a single HfO2 trapping layer has only 2.5 V for the extrapolated 10-year window. The present results demonstrate that the device with the stacked HfO2/Ta2O5 charge-trapping layer has a strong potential for future high-performance nonvolatile memory application.

  5. Electrothermal enrichment of submicron particles in an insulator-based dielectrophoretic microdevice.

    PubMed

    Kale, Akshay; Song, Le; Lu, Xinyu; Yu, Liandong; Hu, Guoqing; Xuan, Xiangchun

    2018-03-01

    Insulator-based dielectrophoresis (iDEP) exploits in-channel hurdles and posts etc. to create electric field gradients for various particle manipulations. However, the presence of such insulating structures also amplifies the Joule heating in the fluid around themselves, leading to both temperature gradients and electrothermal flow. These Joule heating effects have been previously demonstrated to weaken the dielectrophoretic focusing and trapping of microscale and nanoscale particles. We find that the electrothermal flow vortices are able to entrain submicron particles for a localized enrichment near the insulating tips of a ratchet microchannel. This increase in particle concentration is reasonably predicted by a full-scale numerical simulation of the mass transport along with the coupled charge, heat and fluid transport. Our model also predicts the electric current and flow pattern in the fluid with a good agreement with the experimental observations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. One-Way Particle Transport Using Oscillatory Flow in Asymmetric Traps.

    PubMed

    Lee, Jaesung; Burns, Mark A

    2018-03-01

    One challenge of integrating of passive, microparticles manipulation techniques into multifunctional microfluidic devices is coupling the continuous-flow format of most systems with the often batch-type operation of particle separation systems. Here, a passive fluidic technique-one-way particle transport-that can conduct microparticle operations in a closed fluidic circuit is presented. Exploiting pass/capture interactions between microparticles and asymmetric traps, this technique accomplishes a net displacement of particles in an oscillatory flow field. One-way particle transport is achieved through four kinds of trap-particle interactions: mechanical capture of the particle, asymmetric interactions between the trap and the particle, physical collision of the particle with an obstacle, and lateral shift of the particle into a particle-trapping stream. The critical dimensions for those four conditions are found by numerically solving analytical mass balance equations formulated using the characteristics of the flow field in periodic obstacle arrays. Visual observation of experimental trap-particle dynamics in low Reynolds number flow (<0.01) confirms the validity of the theoretical predictions. This technique can transport hundreds of microparticles across trap rows in only a few fluid oscillations (<500 ms per oscillation) and separate particles by their size differences. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Cosmic Ray Flux in the Presence of a Neutral Background

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Lodhi, Arfin; Diaz, Abel

    2007-01-01

    The study of cosmic rays (CRs) is a very mature subject developed around the concept of radiative particle flux phi as a mono-variant function of energy E, that is phi = phi(E). This is based on the notion of the cosmos as being filled with cosmic radiation in the form of a collisionless exosphere of plasma. Neutrals, however, are likewise ubiquitous in space and planetary trapped-radiation belts. It will be shown that in the presence of a neutral background of density rho, flux phi is actually bivariant in energy E and rho, creating a surface phi(E,rho). This is an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present. The effect is produced by multiple scattering of charged particles off neutral and ionized atoms along with ionization loss where charged and neutral populations interact. For the harder portion of CR spectra, flux is mono-variant but at nonrelativistic energies (below approx, 350 MeV) it becomes sensitive to the presence of neutral backgrounds. The dependence of phi(E,rho) upon background neutrals is helpful in discussing the anomalous CR (ACR) flux made up of ionized components of the heliospheric neutral atmosphere.

  8. Particle Capture Devices and Methods of Use Thereof

    NASA Technical Reports Server (NTRS)

    Voldman, Joel (Inventor); Skelley, Alison M. (Inventor); Kirak, Oktay (Inventor); Jaenisch, Rudolf (Inventor)

    2015-01-01

    The present invention provides a device and methods of use thereof in microscale particle capturing and particle pairing. This invention provides particle patterning device, which mechanically traps individual particles within first chambers of capture units, transfer the particles to second chambers of opposing capture units, and traps a second type of particle in the same second chamber. The device and methods allow for high yield assaying of trapped cells, high yield fusion of trapped, paired cells, for controlled binding of particles to cells and for specific chemical reactions between particle interfaces and particle contents. The device and method provide means of identification of the particle population and a facile route to particle collection.

  9. Electron shakeoff following the β+ decay of +19Ne and +35Ar trapped ions

    NASA Astrophysics Data System (ADS)

    Fabian, X.; Fléchard, X.; Pons, B.; Liénard, E.; Ban, G.; Breitenfeldt, M.; Couratin, C.; Delahaye, P.; Durand, D.; Finlay, P.; Guillon, B.; Lemière, Y.; Mauger, F.; Méry, A.; Naviliat-Cuncic, O.; Porobic, T.; Quéméner, G.; Severijns, N.; Thomas, J.-C.

    2018-02-01

    The electron shakeoff of 19F and 35Cl atoms resulting from the β+ decay of +19Ne and +35Ar ions has been investigated using a Paul trap coupled to a time of flight recoil-ion spectrometer. The charge-state distributions of the recoiling daughter nuclei were compared to theoretical calculations based on the sudden approximation and accounting for subsequent Auger processes. The excellent agreement obtained for 35Cl is not reproduced in 19F. The shortcoming is attributed to the inaccuracy of the independent particle model employed to calculate the primary shakeoff probabilities in systems with rather low atomic numbers. This calls for more elaborate calculations, including explicitly the electron-electron correlations.

  10. Nanocarpets for Trapping Microscopic Particles

    NASA Technical Reports Server (NTRS)

    Noca, Flavio; Chen, Fei; Hunt, Brian; Bronikowski, Michael; Hoenk, Michael; Kowalczyk, Robert; Choi, Daniel

    2004-01-01

    Nanocarpets that is, carpets of carbon nanotubes are undergoing development as means of trapping microscopic particles for scientific analysis. Examples of such particles include inorganic particles, pollen, bacteria, and spores. Nanocarpets can be characterized as scaled-down versions of ordinary macroscopic floor carpets, which trap dust and other particulate matter, albeit not purposefully. Nanocarpets can also be characterized as mimicking both the structure and the particle-trapping behavior of ciliated lung epithelia, the carbon nanotubes being analogous to cilia. Carbon nanotubes can easily be chemically functionalized for selective trapping of specific particles of interest. One could, alternatively, use such other three-dimensionally-structured materials as aerogels and activated carbon for the purposeful trapping of microscopic particles. However, nanocarpets offer important advantages over these alternative materials: (1) Nanocarpets are amenable to nonintrusive probing by optical means; and (2) Nanocarpets offer greater surface-to-volume ratios.

  11. Rotatingwall Technique and Centrifugal Separation

    NASA Astrophysics Data System (ADS)

    Anderegg, François

    This chapter describes the "rotating wall" technique which enables essentially unlimited confinement time of 109-1010 charged particles in a Penning trap. The applied rotating wall electric field provides a positive torque that counteracts background drags, resulting in radial compression or steady-state confinement in near-thermal equilibrium states. The last part of the chapter discusses centrifugal separation in a rotating multi-species non-neutral plasma. Separation occurs when the centrifugal energy is larger than the mixing due to thermal energy.

  12. Compact and multi-view solid state neutral particle analyzer arrays on National Spherical Torus Experiment-Upgrade

    DOE PAGES

    Liu, D.; Heidbrink, W. W.; Tritz, K.; ...

    2016-07-29

    A compact and multi-view solid state neutral particle analyzer (SSNPA) diagnostic based on silicon photodiode arrays has been successfully tested on the National Spherical Torus Experiment-Upgrade. The SSNPA diagnostic provides spatially, temporally, and pitch-angle resolved measurements of fast-ion distribution by detecting fast neutral flux resulting from the charge exchange (CX) reactions. The system consists of three 16-channel subsystems: t-SSNPA viewing the plasma mid-radius and neutral beam (NB) line #2 tangentially, r-SSNPA viewing the plasma core and NB line #1 radially, and p-SSNPA with no intersection with any NB lines. Due to the setup geometry, the active CX signals of t-SSNPAmore » and r-SSNPA are mainly sensitive to passing and trapped particles, respectively. Additionally, both t-SSNPA and r-SSNPA utilize three vertically stacked arrays with different filter thicknesses to obtain coarse energy information. The experimental data show that all channels are operational. The signal to noise ratio is typically larger than 10, and the main noise is x-ray induced signal. The active and passive CX signals are clearly observed on t-SSNPA and r-SSNPA during NB modulation. The SSNPA data also indicate significant losses of passing particles during sawteeth, while trapped particles are weakly affected. Fluctuations up to 120 kHz have been observed on SSNPA, and they are strongly correlated with magnetohydrodynamics instabilities.« less

  13. Polymeric and Molecular Materials for Advanced Organic Electronics

    DTIC Science & Technology

    2011-07-25

    printable variants. All have excellent dielectric and insulating properties, a remarkable ability to minimize trapped charge between thin film transistor... trapped charge density, and hence the corresponding OTFT device performance. Under this program we first discovered that OTFT performance is...deep, high- density charge traps must be overcome for efficient FET operation, it has been postulated that in most OFETs, shallow lower-density (~10

  14. A Single-Ion Reservoir as a High-Sensitive Sensor of Electric Signals.

    PubMed

    Domínguez, Francisco; Arrazola, Iñigo; Doménech, Jaime; Pedernales, Julen S; Lamata, Lucas; Solano, Enrique; Rodríguez, Daniel

    2017-08-21

    A single-ion reservoir has been tested, and characterized in order to be used as a highly sensitive optical detector of electric signals arriving at the trapping electrodes. Our system consists of a single laser-cooled 40 Ca + ion stored in a Paul trap with rotational symmetry. The performance is observed through the axial motion of the ion, which is equivalent to an underdamped and forced oscillator. Thus, the results can be projected also to Penning traps. We have found that, for an ion oscillator temperature T axial  ≲ 10 mK in the forced-frequency range ω z  = 2π × (80,200 kHz), the reservoir is sensitive to a time-varying electric field equivalent to an electric force of 5.3(2) neV/μm, for a measured quality factor Q = 3875(45), and a decay time constant γ z  = 88(2) s -1 . This method can be applied to measure optically the strength of an oscillating field or induced (driven) charge in this frequency range within times of tens of milliseconds. Furthermore the ion reservoir has been proven to be sensitive to electrostatic forces by measuring the ion displacement. Since the heating rate is below 0.3 μeV/s, this reservoir might be used as optical detector for any ion or bunch of charged particles stored in an adjacent trap.

  15. Enhanced size-dependent trapping of particles using microvortices

    PubMed Central

    Zhou, Jian; Kasper, Susan; Papautsky, Ian

    2013-01-01

    Inertial microfluidics has been attracting considerable interest for size-based separation of particles and cells. The inertial forces can be manipulated by expanding the microchannel geometry, leading to formation of microvortices which selectively isolate and trap particles or cells from a mixture. In this work, we aim to enhance our understanding of particle trapping in such microvortices by developing a model of selective particle trapping. Design and operational parameters including flow conditions, size of the trapping region, and target particle concentration are explored to elucidate their influence on trapping behavior. Our results show that the size dependence of trapping is characterized by a threshold Reynolds number, which governs the selective entry of particles into microvortices from the main flow. We show that concentration enhancement on the order of 100,000× and isolation of targets at concentrations in the 1/mL is possible. Ultimately, the insights gained from our systematic investigation suggest optimization solutions that enhance device performance (efficiency, size selectivity, and yield) and are applicable to selective isolation and trapping of large rare cells as well as other applications. PMID:24187531

  16. Combined acoustic and optical trapping

    PubMed Central

    Thalhammer, G.; Steiger, R.; Meinschad, M.; Hill, M.; Bernet, S.; Ritsch-Marte, M.

    2011-01-01

    Combining several methods for contact free micro-manipulation of small particles such as cells or micro-organisms provides the advantages of each method in a single setup. Optical tweezers, which employ focused laser beams, offer very precise and selective handling of single particles. On the other hand, acoustic trapping with wavelengths of about 1 mm allows the simultaneous trapping of many, comparatively large particles. With conventional approaches it is difficult to fully employ the strengths of each method due to the different experimental requirements. Here we present the combined optical and acoustic trapping of motile micro-organisms in a microfluidic environment, utilizing optical macro-tweezers, which offer a large field of view and working distance of several millimeters and therefore match the typical range of acoustic trapping. We characterize the acoustic trapping forces with the help of optically trapped particles and present several applications of the combined optical and acoustic trapping, such as manipulation of large (75 μm) particles and active particle sorting. PMID:22025990

  17. The impact of nano-coating on surface charge accumulation of epoxy resin insulator: characteristic and mechanism

    NASA Astrophysics Data System (ADS)

    Qi, Bo; Gao, Chunjia; Lv, Yuzhen; Li, Chengrong; Tu, Youping; Xiong, Jun

    2018-06-01

    The flashover phenomenon of the insulator is the main cause for insulating failure of GIS/GIL, and one of the most critical impacting factors is the accumulation of surface charge. The common methods to restrain the surface charge accumulation are reviewed in this paper. Through the reasonable comparison and analysis of these methods, nano-coatings for the insulator were selected as a way to restrain the surface charge accumulation. Based on this, six nano-coated epoxy resin samples with different concentrations of P25-TiO2 nanoparticles were produced. A high precision 3D surface charge measurement system was developed in this paper with a spatial resolution of 4.0 mm2 and a charge resolution of 0.01 µC (m2 · mV)‑1. The experimental results for the epoxy resin sample showed that with the concentration of nanoparticles of the coating material increasing, the surface charge density tended to first decrease and then increase. In the sample coated with 0.5% concentration of nanoparticles, the suppression effect is the optimum, leading to a 63.8% reduction of charge density under DC voltage. The application test for actual nano-coated GIS/GIL basin insulator indicated that the maximum suppression degree for the charge density under DC voltage could reach 48.3%, while it could reach 22.2% for switching impulse voltage and 12.5% for AC context. The control mechanism of nano-coatings on charge accumulation was proposed based on the analysis for surface morphology features and traps characteristics; the shallow traps dominate in the migration of charges while the deep traps operate on the charge accumulation. With the concentration of nanoparticles in nano-coating material mounting up, the density of shallow traps continuously increases, while for deep traps, it first decreases and then increases. For the sample with 0.5% concentration of nanoparticles coated, the competition between shallow traps and deep traps comes to the most balanced state, producing the most significant suppression impact on surface charge accumulation.

  18. Model for thickness dependence of radiation charging in MOS structures

    NASA Technical Reports Server (NTRS)

    Viswanathan, C. R.; Maserjian, J.

    1976-01-01

    The model considers charge buildup in MOS structures due to hole trapping in the oxide and the creation of sheet charge at the silicon interface. The contribution of hole trapping causes the flatband voltage to increase with thickness in a manner in which square and cube dependences are limiting cases. Experimental measurements on samples covering a 200 - 1000 A range of oxide thickness are consistent with the model, using independently obtained values of hole-trapping parameters. An important finding of our experimental results is that a negative interface charge contribution due to surface states created during irradiation compensates most of the positive charge in the oxide at flatband. The tendency of the surface states to 'track' the positive charge buildup in the oxide, for all thicknesses, applies both in creation during irradiation and in annihilation during annealing. An explanation is proposed based on the common defect origin of hole traps and potential surface states.

  19. Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra.

    PubMed

    Pan, Yong-Le; Hill, Steven C; Coleman, Mark

    2012-02-27

    A new method is demonstrated for optically trapping micron-sized absorbing particles in air and obtaining their single-particle Raman spectra. A 488-nm Gaussian beam from an Argon ion laser is transformed by conical lenses (axicons) and other optics into two counter-propagating hollow beams, which are then focused tightly to form hollow conical beams near the trapping region. The combination of the two coaxial conical beams, with focal points shifted relative to each other along the axis of the beams, generates a low-light-intensity biconical region totally enclosed by the high-intensity light at the surface of the bicone, which is a type of bottle beam. Particles within this region are trapped by the photophoretic forces that push particles toward the low-intensity center of this region. Raman spectra from individual trapped particles made from carbon nanotubes are measured. This trapping technique could lead to the development of an on-line real-time single-particle Raman spectrometer for characterization of absorbing aerosol particles.

  20. A Monte Carlo modeling on charging effect for structures with arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Li, C.; Mao, S. F.; Zou, Y. B.; Li, Yong Gang; Zhang, P.; Li, H. M.; Ding, Z. J.

    2018-04-01

    Insulating materials usually suffer charging effects when irradiated by charged particles. In this paper, we present a Monte Carlo study on the charging effect caused by electron beam irradiation for sample structures with any complex geometry. When transporting in an insulating solid, electrons encounter elastic and inelastic scattering events; the Mott cross section and a Lorentz-type dielectric function are respectively employed to describe such scatterings. In addition, the band gap and the electron–long optical phonon interaction are taken into account. The electronic excitation in inelastic scattering causes generation of electron–hole pairs; these negative and positive charges establish an inner electric field, which in turn induces the drift of charges to be trapped by impurities, defects, vacancies etc in the solid, where the distributions of trapping sites are assumed to have uniform density. Under charging conditions, the inner electric field distorts electron trajectories, and the surface electric potential dynamically alters secondary electron emission. We present, in this work, an iterative modeling method for a self-consistent calculation of electric potential; the method has advantages in treating any structure with arbitrary complex geometry, in comparison with the image charge method—which is limited to a quite simple boundary geometry. Our modeling is based on: the combination of the finite triangle mesh method for an arbitrary geometry construction; a self-consistent method for the spatial potential calculation; and a full dynamic description for the motion of deposited charges. Example calculations have been done to simulate secondary electron yield of SiO2 for a semi-infinite solid, the charging for a heterostructure of SiO2 film grown on an Au substrate, and SEM imaging of a SiO2 line structure with rough surfaces and SiO2 nanoparticles with irregular shapes. The simulations have explored interesting interlaced charge layer distribution underneath the nanoparticle surface and the mechanism by which it is produced.

  1. Stability and instability for low refractive-index-contrast particle trapping in a dual-beam optical trap.

    PubMed

    Huff, Alison; Melton, Charles N; Hirst, Linda S; Sharping, Jay E

    2015-10-01

    A dual-beam optical trap is used to trap and manipulate dielectric particles. When the refractive index of these particles is comparable to that of the surrounding medium, equilibrium trapping locations within the system shift from stable to unstable depending on fiber separation and particle size. This is due to to the relationship between gradient and scattering forces. We experimentally and computationally study the transitions between stable and unstable trapping of poly(methyl methacrylate) beads for a range of parameters relevant to experimental setups involving giant unilamellar vesicles. We present stability maps for various fiber separations and particle sizes, and find that careful attention to particle size and configuration is necessary to obtain reproducible quantitative results for soft matter stretching experiments.

  2. Stability and instability for low refractive-index-contrast particle trapping in a dual-beam optical trap

    PubMed Central

    Huff, Alison; Melton, Charles N.; Hirst, Linda S.; Sharping, Jay E.

    2015-01-01

    A dual-beam optical trap is used to trap and manipulate dielectric particles. When the refractive index of these particles is comparable to that of the surrounding medium, equilibrium trapping locations within the system shift from stable to unstable depending on fiber separation and particle size. This is due to to the relationship between gradient and scattering forces. We experimentally and computationally study the transitions between stable and unstable trapping of poly(methyl methacrylate) beads for a range of parameters relevant to experimental setups involving giant unilamellar vesicles. We present stability maps for various fiber separations and particle sizes, and find that careful attention to particle size and configuration is necessary to obtain reproducible quantitative results for soft matter stretching experiments. PMID:26504632

  3. Laser cooling of molecular anions.

    PubMed

    Yzombard, Pauline; Hamamda, Mehdi; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-05-29

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarize the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C_{2}^{-}, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photodetachment process is present, as well as Doppler laser cooling of trapped C_{2}^{-}, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources, and antimatter physics.

  4. Modeling the entry and trapping of solar energetic particles in the magnetosphere during the November 24-25, 2001 storm

    NASA Astrophysics Data System (ADS)

    Richard, R. L.; El-Alaoui, M.; Ashour-Abdalla, M.; Walker, R. J.

    2009-04-01

    We have modeled the entry of solar energetic particles (SEPs) into the magnetosphere during the November 24-25, 2001 magnetic storm and the trapping of particles in the inner magnetosphere. The study used the technique of following many test particles, protons with energies greater than about 100 keV, in the electric and magnetic fields from a global magnetohydrodynamic (MHD) simulation of the magnetosphere during this storm. SEP protons formed a quasi-trapped and trapped population near and within geosynchronous orbit. Preliminary data comparisons show that the simulation does a reasonably good job of predicting the differential flux measured by geosynchronous spacecraft. Particle trapping took place mainly as a result of particles becoming non-adiabatic and crossing onto closed field lines. Particle flux in the inner magnetosphere increased dramatically as an interplanetary shock impacted and compressed the magnetosphere near 0600 UT, but long term trapping (hours) did not become widespread until about an hour later, during a further compression of the magnetosphere. Trapped and quasi-trapped particles were lost during the simulation by motion through the magnetopause and by precipitation, primarily the former. This caused the particle population near and within geosynchronous orbit to gradually decrease later on during the latter part of the interval.

  5. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clementson, Joel

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied inmore » high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W 55+ through Ne-like W 64+, and intershell transitions in Zn-like W 44+ through Co-like W 47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W 64+ through Li-like W 71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W 6+ could be useful for plasma diagnostics.« less

  6. A Scintillation Counter System Design To Detect Antiproton Annihilation using the High Performance Antiproton Trap(HiPAT)

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Lewis, Raymond A.; Stanojev, Boris

    2003-01-01

    The High Performance Antiproton Trap (HiPAT), a system designed to hold up to l0(exp 12) charge particles with a storage half-life of approximately 18 days, is a tool to support basic antimatter research. NASA's interest stems from the energy density represented by the annihilation of matter with antimatter, 10(exp 2)MJ/g. The HiPAT is configured with a Penning-Malmberg style electromagnetic confinement region with field strengths up to 4 Tesla, and 20kV. To date a series of normal matter experiments, using positive and negative ions, have been performed evaluating the designs performance prior to operations with antiprotons. The primary methods of detecting and monitoring stored normal matter ions and antiprotons within the trap includes a destructive extraction technique that makes use of a micro channel plate (MCP) device and a non-destractive radio frequency scheme tuned to key particle frequencies. However, an independent means of detecting stored antiprotons is possible by making use of the actual annihilation products as a unique indicator. The immediate yield of the annihilation event includes photons and pie mesons, emanating spherically from the point of annihilation. To "count" these events, a hardware system of scintillators, discriminators, coincident meters and multi channel scalars (MCS) have been configured to surround much of the HiPAT. Signal coincidence with voting logic is an essential part of this system, necessary to weed out the single cosmic ray events from the multi-particle annihilation shower. This system can be operated in a variety of modes accommodating various conditions. The first is a low-speed sampling interval that monitors the background loss or "evaporation" rate of antiprotons held in the trap during long storage periods; provides an independent method of validating particle lifetimes. The second is a high-speed sample rate accumulating information on a microseconds time-scale; useful when trapped antiparticles are extracted against a target, providing an indication of quantity. This paper details the layout of this system, setup of the hardware components around HiPAT, and applicable checkouts using normal matter radioactive sources.

  7. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. I. DYNAMICS OF MAGNETIC ISLANDS NEAR THE HELIOSPHERIC CURRENT SHEET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khabarova, O.; Zank, G. P.; Li, G.

    2015-08-01

    Increases of ion fluxes in the keV–MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle events, but the events are weaker and apparently local. Conventional explanations based on either shock acceleration of charged particles or particle acceleration due to magnetic reconnection at interplanetary current sheets (CSs) are not persuasive. We suggest instead that recurrent magnetic reconnection occurs at the HCS and smaller CSs in the solar wind, a consequence of which is particle energization by the dynamically evolving secondary CSs and magnetic islands. The effectiveness of themore » trapping and acceleration process associated with magnetic islands depends in part on the topology of the HCS. We show that the HCS possesses ripples superimposed on the large-scale flat or wavy structure. We conjecture that the ripples can efficiently confine plasma and provide tokamak-like conditions that are favorable for the appearance of small-scale magnetic islands that merge and/or contract. Particles trapped in the vicinity of merging islands and experiencing multiple small-scale reconnection events are accelerated by the induced electric field and experience first-order Fermi acceleration in contracting magnetic islands according to the transport theory of Zank et al. We present multi-spacecraft observations of magnetic island merging and particle energization in the absence of other sources, providing support for theory and simulations that show particle energization by reconnection related processes of magnetic island merging and contraction.« less

  8. Effect of traps on the charge transport in semiconducting polymer PCDTBT

    NASA Astrophysics Data System (ADS)

    Khan, Mohd Taukeer; Agrawal, Vikash; Almohammedi, Abdullah; Gupta, Vinay

    2018-07-01

    Organic semiconductors (OSCs) are nowadays called upon as promising candidates for next generation electronics devices. Due to disorder structure of these materials, a high density of traps are present in their energy band gap which affect the performance of these devices. In the present manuscript, we have investigated the role of traps on charge transport in PCDTBT thin film by measuring the temperature dependent J(V) characteristics in hole only device configuration. The obtained results were analyzed by space charge limited (SCL) conduction model. It has been found that the room temperature J(V) characteristics follow Mott-Gurney square law for trap-free SCL conduction. But below 278 K, the current increases according to trap-filling SCL law with traps distributed exponentially in the band gap of semiconductor. Furthermore, after reaching a crossover voltage of VC ∽ 12 V, all the traps filled by injected carriers and the trap-filling SCL current switch to trap-free SCL current. The hole mobility of trap-free SCL current is about one order higher as compared trap-filling SCL current and remains constant with temperature.

  9. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djara, V.; Cherkaoui, K.; Negara, M. A.

    2015-11-28

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g}more » measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.« less

  10. Chemical characterization of single micro- and nano-particles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Fortes, Francisco J.; Fernández-Bravo, Angel; Javier Laserna, J.

    2014-10-01

    Spectral identification of individual micro- and nano-sized particles by the sequential intervention of optical catapulting, optical trapping and laser-induced breakdown spectroscopy is presented. The three techniques are used for different purposes. Optical catapulting (OC) serves to put the particulate material under inspection in aerosol form. Optical trapping (OT) permits the isolation and manipulation of individual particles from the aerosol, which are subsequently analyzed by laser-induced breakdown spectroscopy (LIBS). Once catapulted, the dynamics of particle trapping depends both on the laser beam characteristics (power and intensity gradient) and on the particle properties (size, mass and shape). Particles are stably trapped in air at atmospheric pressure and can be conveniently manipulated for a precise positioning for LIBS analysis. The spectra acquired from the individually trapped particles permit a straightforward identification of the material inspected. Variability of LIBS signal for the inspection of Ni microspheres was 30% relative standard deviation. OC-OT-LIBS permits the separation of particles in a heterogeneous mixture and the subsequent analysis of the isolated particle of interest. In order to evaluate the sensitivity of the approach, the number of absolute photons emitted by a single trapped particle was calculated. The limit of detection (LOD) for Al2O3 particles was calculated to be 200 attograms aluminium.

  11. HITRAP: A Facility for Experiments with Trapped Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Quint, W.; Dilling, J.; Djekic, S.; Häffner, H.; Hermanspahn, N.; Kluge, H.-J.; Marx, G.; Moore, R.; Rodriguez, D.; Schönfelder, J.; Sikler, G.; Valenzuela, T.; Verdú, J.; Weber, C.; Werth, G.

    2001-01-01

    HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogen-like ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at well-defined low energies (eV/u), high-accuracy measurements to determine the g-factor of the electron bound in a hydrogen-like heavy ion and the atomic binding energies of few-electron systems, laser spectroscopy of HFS transitions and X-ray spectroscopy.

  12. 25th anniversary article: charge transport and recombination in polymer light-emitting diodes.

    PubMed

    Kuik, Martijn; Wetzelaer, Gert-Jan A H; Nicolai, Herman T; Craciun, N Irina; De Leeuw, Dago M; Blom, Paul W M

    2014-01-01

    This article reviews the basic physical processes of charge transport and recombination in organic semiconductors. As a workhorse, LEDs based on a single layer of poly(p-phenylene vinylene) (PPV) derivatives are used. The hole transport in these PPV derivatives is governed by trap-free space-charge-limited conduction, with the mobility depending on the electric field and charge-carrier density. These dependencies are generally described in the framework of hopping transport in a Gaussian density of states distribution. The electron transport on the other hand is orders of magnitude lower than the hole transport. The reason is that electron transport is hindered by the presence of a universal electron trap, located at 3.6 eV below vacuum with a typical density of ca. 3 × 10¹⁷ cm⁻³. The trapped electrons recombine with free holes via a non-radiative trap-assisted recombination process, which is a competing loss process with respect to the emissive bimolecular Langevin recombination. The trap-assisted recombination in disordered organic semiconductors is governed by the diffusion of the free carrier (hole) towards the trapped carrier (electron), similar to the Langevin recombination of free carriers where both carriers are mobile. As a result, with the charge-carrier mobilities and amount of trapping centers known from charge-transport measurements, the radiative recombination as well as loss processes in disordered organic semiconductors can be fully predicted. Evidently, future work should focus on the identification and removing of electron traps. This will not only eliminate the non-radiative trap-assisted recombination, but, in addition, will shift the recombination zone towards the center of the device, leading to an efficiency improvement of more than a factor of two in single-layer polymer LEDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High-k shallow traps observed by charge pumping with varying discharging times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen

    2013-11-07

    In this paper, we investigate the influence of falling time and base level time on high-k bulk shallow traps measured by charge pumping technique in n-channel metal-oxide-semiconductor field-effect transistors with HfO{sub 2}/metal gate stacks. N{sub T}-V{sub high} {sub level} characteristic curves with different duty ratios indicate that the electron detrapping time dominates the value of N{sub T} for extra contribution of I{sub cp} traps. N{sub T} is the number of traps, and I{sub cp} is charge pumping current. By fitting discharge formula at different temperatures, the results show that extra contribution of I{sub cp} traps at high voltage are inmore » fact high-k bulk shallow traps. This is also verified through a comparison of different interlayer thicknesses and different Ti{sub x}N{sub 1−x} metal gate concentrations. Next, N{sub T}-V{sub high} {sub level} characteristic curves with different falling times (t{sub falling} {sub time}) and base level times (t{sub base} {sub level}) show that extra contribution of I{sub cp} traps decrease with an increase in t{sub falling} {sub time}. By fitting discharge formula for different t{sub falling} {sub time}, the results show that electrons trapped in high-k bulk shallow traps first discharge to the channel and then to source and drain during t{sub falling} {sub time}. This current cannot be measured by the charge pumping technique. Subsequent measurements of N{sub T} by charge pumping technique at t{sub base} {sub level} reveal a remainder of electrons trapped in high-k bulk shallow traps.« less

  14. Linear particle accelerator with seal structure between electrodes and insulators

    DOEpatents

    Broadhurst, John H.

    1989-01-01

    An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

  15. Avidin as a Model for Charge Driven Transport into Cartilage and Drug Delivery for treating Early Stage Post-traumatic Osteoarthritis

    PubMed Central

    Bajpayee, Ambika G.; Wong, Cliff R.; Bawendi, Moungi G.; Frank, Eliot H.; Grodzinsky, Alan J.

    2013-01-01

    Local drug delivery into cartilage remains a challenge due to its dense extracellular matrix of negatively charged proteoglycans enmeshed within a collagen fibril network. The high negative fixed charge density of cartilage offers the unique opportunity to utilize electrostatic interactions to augment transport, binding and retention of drug carriers. With the goal of developing particle-based drug delivery mechanisms for treating post-traumatic osteoarthritis, our objectives were, first, to determine the size range of a variety of solutes that could penetrate and diffuse through normal cartilage and enzymatically treated cartilage to mimic early stages of OA, and second, to investigate the effects of electrostatic interactions on particle partitioning, uptake and binding within cartilage using the highly positively charged protein, Avidin, as a model. Results showed that solutes having a hydrodynamic diameter ≤ 10 nm can penetrate into the full thickness of cartilage explants while larger sized solutes were trapped in the tissue’s superficial zone. Avidin had a 400-fold higher uptake than its neutral same-sized counterpart, NeutrAvidin, and >90% of the absorbed Avidin remained within cartilage explants for at least 15 days. We report reversible, weak binding (KD ~150 μM) of Avidin to intratissue sites in cartilage. The large effective binding site density (NT ~ 2920 μM) within cartilage matrix facilitates Avidin’s retention, making its structure suitable for particle based drug delivery into cartilage. PMID:24120044

  16. Trap characterization by photo-transferred thermoluminescence in MgO nanoparticles

    NASA Astrophysics Data System (ADS)

    Isik, M.; Gasanly, N. M.

    2018-05-01

    Shallow trapping centers in MgO nanoparticles were characterized using photo-transferred thermoluminescence (TL) measurements. Experiments were carried out in low temperature range of 10-280 K with constant heating rate. Shallow traps were filled with charge carriers firstly by irradiating the sample at room temperature using S90/Y90 source and then illuminating at 10 K using blue LED. TL glow curve exhibited one peak around 150 K. Curve fitting analyses showed that this peak is composed of two individual peaks with maximum temperatures of 149.0 and 155.3 K. The activation energies of corresponding trapping centers were revealed as 0.70 and 0.91 eV. The dominant mechanism for TL process was found as second order kinetics which represent that fast retrapping is effective transitions taking place within the band gap. Structural characterization of MgO nanoparticles were investigated using x-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements. Analyses of experimental observations indicated that MgO nanoparticles show good crystallinity with particle size in nanometer scale.

  17. Prediction of LDEF ionizing radiation environment

    NASA Astrophysics Data System (ADS)

    Watts, John W.; Parnell, T. A.; Derrickson, James H.; Armstrong, T. W.; Benton, E. V.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) spacecraft flew in a 28.5 deg inclination circular orbit with an altitude in the range from 172 to 258.5 nautical miles. For this orbital altitude and inclination two components contribute most of the penetrating charge particle radiation encountered - the galactic cosmic rays and the geomagnetically trapped Van Allen protons. Where shielding is less than 1.0 g/sq cm geomagnetically trapped electrons make a significant contribution. The 'Vette' models together with the associated magnetic filed models were used to obtain the trapped electron and proton fluences. The mission proton doses were obtained from the fluence using the Burrell proton dose program. For the electron and bremsstrahlung dose we used the Marshall Space Flight Center (MSFC) electron dose program. The predicted doses were in general agreement with those measured with on-board thermoluminescent detector (TLD) dosimeters. The NRL package of programs, Cosmic Ray Effects on MicroElectronics (CREME), was used to calculate the linear energy transfer (LET) spectrum due to galactic cosmic rays (GCR) and trapped protons for comparison with LDEF measurements.

  18. Fast ion motion in the plasma part of a stellarator-mirror fission-fusion hybrid

    NASA Astrophysics Data System (ADS)

    Moiseenko, V. E.; Nemov, V. V.; Ågren, O.; Kasilov, S. V.; Garkusha, I. E.

    2016-06-01

    Recent developments of a stellarator-mirror (SM) fission-fusion hybrid concept are reviewed. The hybrid consists of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, a stellarator-type system with an embedded magnetic mirror is used. The stellarator confines deuterium plasma with moderate temperature, 1-2 keV. In the magnetic mirror, a hot component of sloshing tritium ions is trapped. There, the fusion neutrons are generated. A candidate for a combined SM system is a DRACON magnetic trap. A basic idea behind an SM device is to maintain local neutron production in a mirror part, but at the same time eliminate the end losses by using a toroidal device. A possible drawback is that the stellarator part can introduce collision-free radial drift losses, which is the main topic for this study. For high energy ions of tritium with an energy of 70 keV, comparative computations of collisionless losses in the rectilinear part of a specific design of the DRACON type trap are carried out. Two versions of the trap are considered with different lengths of the rectilinear sections. Also the total number of current-carrying rings in the magnetic system is varied. The results predict that high energy ions from neutral beam injection can be satisfactorily confined in the mirror part during 0.1-1 s. The Uragan-2M experimental device is used to check key points of the SM concept. The magnetic configuration of a stellarator with an embedded magnetic mirror is arranged in this device by switching off one toroidal coil. The motion of particles magnetically trapped in the embedded mirror is analyzed numerically with use of motional invariants. It is found that without radial electric field particles quickly drift out of the SM, even if the particles initially are located on a nested magnetic surface. We will show that a weak radial electric field, which would be spontaneously created by the ambipolar radial particle losses, can make drift trajectories closed, which substantially improves particle confinement. It is remarkable that the improvement acts both for positive and negative charges.

  19. Charge trapping and de-trapping in isolated CdSe/ZnS nanocrystals under an external electric field: indirect evidence for a permanent dipole moment.

    PubMed

    Zang, Huidong; Cristea, Mihail; Shen, Xuan; Liu, Mingzhao; Camino, Fernando; Cotlet, Mircea

    2015-09-28

    Single nanoparticle studies of charge trapping and de-trapping in core/shell CdSe/ZnS nanocrystals incorporated into an insulating matrix and subjected to an external electric field demonstrate the ability to reversibly modulate the exciton dynamics and photoluminescence blinking while providing indirect evidence for the existence of a permanent ground state dipole moment in such nanocrystals. A model assuming the presence of energetically deep charge traps physically aligned along the direction of the permanent dipole is proposed in order to explain the dynamics of nanocrystal blinking in the presence of a permanent dipole moment.

  20. Charge trapping and de-trapping in isolated CdSe/ZnS nanocrystals under an external electric field: Indirect evidence for a permanent dipole moment

    DOE PAGES

    Zang, Huidong; Cristea, Mihail; Shen, Xuan; ...

    2015-08-05

    Single nanoparticle studies of charge trapping and de-trapping in core/shell CdSe/ZnS nanocrystals incorporated into an insulating matrix and subjected to an external electric field demonstrate the ability to reversibly modulate the exciton dynamics and photoluminescence blinking while providing indirect evidence for the existence of a permanent ground state dipole moment in such nanocrystals. A model assuming the presence of energetically deep charge traps physically aligned along the direction of the permanent dipole is proposed in order to explain the dynamics of nanocrystal blinking in the presence of a permanent dipole moment.

  1. Hydration of excess electrons trapped in charge pockets on molecular surfaces

    NASA Astrophysics Data System (ADS)

    Jalbout, Abraham F.; Del Castillo, R.; Adamowicz, Ludwik

    2007-01-01

    In this work we strive to design a novel electron trap located on a molecular surface. The process of electron trapping involves hydration of the trapped electron. Previous calculations on surface electron trapping revealed that clusters of OH groups can form stable hydrogen-bonded networks on one side of a hydrocarbon surface (i.e. cyclohexane sheets), while the hydrogen atoms on the opposite side of the surface form pockets of positive charge that can attract extra negative charge. The excess electron density on such surfaces can be further stabilized by interactions with water molecules. Our calculations show that these anionic systems are stable with respect to vertical electron detachment (VDE).

  2. Trapping effect of metal nanoparticle mono- and multilayer in the organic field-effect transistor

    NASA Astrophysics Data System (ADS)

    Lee, Keanchuan; Weis, Martin; Lin, Jack; Taguchi, Dai; Majková, Eva; Manaka, Takaaki; Iwamoto, Mitsumasa

    2011-03-01

    The effect of silver nanoparticles self-assembled monolayer (Ag NPs SAM) on charge transport in pentacene organic field-effect transistors (OFET) was investigated by both steady-state and transient-state methods, which are current-voltage measurements in steady-state and time-resolved microscopic (TRM) second harmonic generation (SHG) in transient-state, respectively. The analysis of electronic properties revealed that OFET with SAM exhibited significant charge trapping effect due to the space-charge field formed by immobile charges. Lower transient-state mobility was verified by the direct probing of carrier motion by TRM-SHG technique. It was shown that the trapping effect rises together with increase of SAM layers suggesting the presence of traps in the bulk of NP films. The model based on the electrostatic charge barrier is suggested to explain the phenomenon.

  3. Hysteresis in Carbon Nanotube Transistors: Measurement and Analysis of Trap Density, Energy Level, and Spatial Distribution.

    PubMed

    Park, Rebecca Sejung; Shulaker, Max Marcel; Hills, Gage; Suriyasena Liyanage, Luckshitha; Lee, Seunghyun; Tang, Alvin; Mitra, Subhasish; Wong, H-S Philip

    2016-04-26

    We present a measurement technique, which we call the Pulsed Time-Domain Measurement, for characterizing hysteresis in carbon nanotube field-effect transistors, and demonstrate its applicability for a broad range of 1D and 2D nanomaterials beyond carbon nanotubes. The Pulsed Time-Domain Measurement enables the quantification (density, energy level, and spatial distribution) of charged traps responsible for hysteresis. A physics-based model of the charge trapping process for a carbon nanotube field-effect transistor is presented and experimentally validated using the Pulsed Time-Domain Measurement. Leveraging this model, we discover a source of traps (surface traps) unique to devices with low-dimensional channels such as carbon nanotubes and nanowires (beyond interface traps which exist in today's silicon field-effect transistors). The different charge trapping mechanisms for interface traps and surface traps are studied based on their temperature dependencies. Through these advances, we are able to quantify the interface trap density for carbon nanotube field-effect transistors (∼3 × 10(13) cm(-2) eV(-1) near midgap), and compare this against a range of previously studied dielectric/semiconductor interfaces.

  4. Characterization of nitride hole lateral transport in a charge trap flash memory by using a random telegraph signal method

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Heng; Jiang, Cheng-Min; Lin, Hsiao-Yi; Wang, Tahui; Tsai, Wen-Jer; Lu, Tao-Cheng; Chen, Kuang-Chao; Lu, Chih-Yuan

    2017-07-01

    We use a random telegraph signal method to investigate nitride trapped hole lateral transport in a charge trap flash memory. The concept of this method is to utilize an interface oxide trap and its associated random telegraph signal as an internal probe to detect a local channel potential change resulting from nitride charge lateral movement. We apply different voltages to the drain of a memory cell and vary a bake temperature in retention to study the electric field and temperature dependence of hole lateral movement in a nitride. Thermal energy absorption by trapped holes in lateral transport is characterized. Mechanisms of hole lateral transport in retention are investigated. From the measured and modeled results, we find that thermally assisted trap-to-band tunneling is a major trapped hole emission mechanism in nitride hole lateral transport.

  5. Model for the Operation of a Monolayer MoS2 Thin-Film Transistor with Charges Trapped near the Channel Interface

    NASA Astrophysics Data System (ADS)

    Hur, Ji-Hyun; Park, Junghak; Kim, Deok-kee; Jeon, Sanghun

    2017-04-01

    We propose a model that describes the operation characteristics of a two-dimensional electron gas (2DEG) in a monolayer transition-metal dichalcogenide thin-film transistor (TFT) having trapped charges near the channel interface. We calculate the drift mobility of the carriers scattered by charged defects located in the channel or near the channel interfaces. The calculated drift mobility is a function of the 2DEG areal density of interface traps. Finally, we calculate the model transfer (ID-VG S ) and output (ID-VS D ) characteristics and verify them by comparing with the experimental results performed with monolayer MoS2 TFTs. We find the modeled results to be excellently consistent with the experiments. This proposed model can be utilized for measuring the interface-trapped charge and trap site densities from the measured transfer curves directly, avoiding more complicated and expensive measurement methods.

  6. Thickness dependent charge transport in ferroelectric BaTiO3 heterojunctions

    NASA Astrophysics Data System (ADS)

    Singh, Pooja; Rout, P. K.; Singh, Manju; Rakshit, R. K.; Dogra, Anjana

    2015-09-01

    We have investigated the effect of ferroelectric barium titanate (BaTiO3) film thickness on the charge transport mechanism in pulsed laser deposited epitaxial metal-ferroelectric semiconductor junctions. The current (I)-voltage (V) measurements across the junctions comprising of 20-500 nm thick BaTiO3 and conducting bottom electrode (Nb: SrTiO3 substrate or La2/3Ca1/3MnO3 buffer layer) demonstrate the space charge limited conduction. Further analysis indicates a reduction in the ratio of free to trapped carriers with increasing thickness in spite of decreasing trap density. Such behaviour arises the deepening of the shallow trap levels (<0.65 eV) below conduction band with increasing thickness. Moreover, the observed hysteresis in I-V curves implies a bipolar resistive switching behaviour, which can be explained in terms of charge trapping and de-trapping process.

  7. Magnetic monopole search with the MoEDAL test trapping detector

    NASA Astrophysics Data System (ADS)

    Katre, Akshay

    2016-11-01

    IMoEDAL is designed to search for monopoles produced in high-energy Large Hadron Collider (LHC) collisions, based on two complementary techniques: nucleartrack detectors for high-ionisation signatures and other highly ionising avatars of new physics, and trapping volumes for direct magnetic charge measurements with a superconducting magnetometer. The MoEDAL test trapping detector array deployed in 2012, consisting of over 600 aluminium samples, was analysed and found to be consistent with zero trapped magnetic charge. Stopping acceptances are obtained from a simulation of monopole propagation in matter for a range of charges and masses, allowing to set modelindependent and model-dependent limits on monopole production cross sections. Multiples of the fundamental Dirac magnetic charge are probed for the first time at the LHC.

  8. Ion funnel ion trap and process

    DOEpatents

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  9. Investigation of non-uniformity and inclusions in 6LiInSe2 utilizing laser induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Wiggins, Brenden; Tupitsyn, Eugene; Bhattacharya, Pijush; Rowe, Emmanuel; Lukosi, Eric; Chvala, Ondrej; Burger, Arnold; Stowe, Ashley

    2013-09-01

    Impurity analysis and compositional distribution studies have been conducted on a crystal of LiInSe2, a compound semiconductor which recently has been shown to respond to ionizing radiation. IR microscopy and laser induced breakdown spectroscopy (LIBS) revealed the presence of inclusions within the crystal lattice. These precipitates were revealed to be alkali and alkaline earth elemental impurities with non-uniform spatial distribution in the crystal. LIBS compositional maps correlate the presence of these impurities with visual color differences in the crystal as well as a significant shift of the band gap. Further, LIBS revealed variation in the ratio of I-III-VI2 elemental constituents throughout the crystal. Analysis of compositional variation and impurities will aid in discerning optimal synthesis and crystal growth parameters to maximize the mobility-lifetime product and charge collection efficiency in the LiInSe2 crystal. Preliminary charge trapping calculations have also been conducted with the Monte Carlo N-particle eXtended (MCNPx) package indicating preferential trapping of holes during irradiation with thermal neutrons.

  10. Space-charge effects in Penning ion traps

    NASA Astrophysics Data System (ADS)

    Porobić, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Fléchard, X.; Liénard, E.; Ban, G.; Zákoucký, D.; Soti, G.; Van Gorp, S.; Weinheimer, Ch.; Wursten, E.; Severijns, N.

    2015-06-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with K39+ using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  11. Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell.

    PubMed

    Zhdanova, Ekaterina; Kostyukevich, Yury; Nikolaev, Eugene

    2017-08-01

    Static harmonization in the Fourier transform ion cyclotron resonance cell improves the resolving power of the cell and prevents dephasing of the ion cloud in the case of any trajectory of the charged particle, not necessarily axisymmetric cyclotron (as opposed to dynamic harmonization). We reveal that the Fourier transform ion cyclotron resonance cell with dynamic harmonization (paracell) is proved to be statically harmonized. The volume of the statically harmonized potential distribution increases with an increase in the number of trap segments.

  12. Charge transport in electrically doped amorphous organic semiconductors.

    PubMed

    Yoo, Seung-Jun; Kim, Jang-Joo

    2015-06-01

    This article reviews recent progress on charge generation by doping and its influence on the carrier mobility in organic semiconductors (OSs). The doping induced charge generation efficiency is generally low in OSs which was explained by the integer charge transfer model and the hybrid charge transfer model. The ionized dopants formed by charge transfer between hosts and dopants can act as Coulomb traps for mobile charges, and the presence of Coulomb traps in OSs broadens the density of states (DOS) in doped organic films. The Coulomb traps strongly reduce the carrier hopping rate and thereby change the carrier mobility, which was confirmed by experiments in recent years. In order to fully understand the doping mechanism in OSs, further quantitative and systematic analyses of charge transport characteristics must be accomplished. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. APPARATUS FOR TRAPPING ENERGETIC CHARGED PARTICLES AND CONFINING THE RESULTING PLASMA

    DOEpatents

    Gibson, G.; Jordan, W.C.; Lauer, E.J.

    1963-04-01

    The present invention relates to a plasma-confining device and a particle injector therefor, the device utilizing a generally toroidal configuration with magnetic fields specifically tailored to the associated injector. The device minimizes the effects of particle end losses and particle drift to the walls with a relatively simple configuration. More particularly, the magnetic field configuration is created by a continuous array of circular, mirror field coils, disposed side-by- side, in particularly spaced relation, to form an endless, toroidal loop. The resulting magnetic field created therein has the appearance of a bumpy'' torus, from which is derived the name Bumpy Torus.'' One of the aforementioned coils is split transverse to its axis, and injection of particles is accomplished along a plane between the halves of such modified coil. The guiding center of the particles follows a constant magnetic field in the plane for a particular distance within the torus, to move therefrom onto a precessional surface which does not intersect the point of injection. (AEC)

  14. Single particle and collective behavior of electrons in a diamagnetic Kepler trap

    NASA Astrophysics Data System (ADS)

    Godino, Joseph L.

    2001-10-01

    The Diamagnetic Kepler Trap (DKT) is a potential energy well that arises from a static Coulomb potential in a superimposed uniform magnetic field. Our goal is to study the single particle and collective behavior of electrons in a DKT. We have three principal reasons for doing so. First, trajectories of a single electron in a DKT can exhibit chaotic motion. The transition from regular to chaotic motion is theoretically interesting and we want to understand how this occurs. Second, we want to understand the behavior of a system of electrons in a laboratory realization of a DKT. In this situation, we have a many particle system of electrons and ions that move under the influence of external potentials in a neutral background gas. Under these conditions, trapped electrons exhibit collective modes of oscillation. Finally, by understanding the behavior of the trapped electrons we believe that we may be able to develop the DKT into an ion beam source. Due to the complexity of the DKT, we break our investigation into three parts. First, we conduct a theoretical and computational study of the motion of a single electron in a DKT. To enhance our understanding, we develop a simple model of the DKT that retains the significant properties of the exact system while permitting us to go further with our theoretical analysis. We develop a solution to the model equations of motion, which provide us with additional insight into the behavior of trajectories near the chaotic transition. Second, we characterize the behavior of trapped electrons in our experimental DKT. We present a set of measurements showing the collective oscillations. In addition, when we operate the DKT at magnetic fields greater than 100 gauss, we observe a columnar plasma beam emerging from the trap that we also characterize. Finally, we simulate the dynamics of the electrons and ions in a DKT. Here we include their interactions with the neutral background gas, boundary effects and space charge. We use the information obtained from our simulations to enhance our knowledge of the electrons in the experimental system.

  15. Explicit continuous charge-based compact model for long channel heavily doped surrounding-gate MOSFETs incorporating interface traps and quantum effects

    NASA Astrophysics Data System (ADS)

    Hamzah, Afiq; Hamid, Fatimah A.; Ismail, Razali

    2016-12-01

    An explicit solution for long-channel surrounding-gate (SRG) MOSFETs is presented from intrinsic to heavily doped body including the effects of interface traps and fixed oxide charges. The solution is based on the core SRGMOSFETs model of the Unified Charge Control Model (UCCM) for heavily doped conditions. The UCCM model of highly doped SRGMOSFETs is derived to obtain the exact equivalent expression as in the undoped case. Taking advantage of the undoped explicit charge-based expression, the asymptotic limits for below threshold and above threshold have been redefined to include the effect of trap states for heavily doped cases. After solving the asymptotic limits, an explicit mobile charge expression is obtained which includes the trap state effects. The explicit mobile charge model shows very good agreement with respect to numerical simulation over practical terminal voltages, doping concentration, geometry effects, and trap state effects due to the fixed oxide charges and interface traps. Then, the drain current is obtained using the Pao-Sah's dual integral, which is expressed as a function of inversion charge densities at the source/drain ends. The drain current agreed well with the implicit solution and numerical simulation for all regions of operation without employing any empirical parameters. A comparison with previous explicit models has been conducted to verify the competency of the proposed model with the doping concentration of 1× {10}19 {{cm}}-3, as the proposed model has better advantages in terms of its simplicity and accuracy at a higher doping concentration.

  16. Loading an Optical Trap with Diamond Nanocrystals Containing Nitrogen-Vacancy Centers from a Surface

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Feng; Ji, Peng; Dutt, M. V. Gurudev; D'Urso, Brian R.

    2015-03-01

    We present a simple and effective method of loading particles into an optical trap. Our primary application of this method is loading photoluminescent material, such as diamond nanocrystals containing nitrogen-vacancy (NV) centers, for coupling the mechanical motion of the trapped crystal with the spin of the NV centers. Highly absorptive material at the trapping laser frequency, such as tartrazine dye, is used as media to attach nanodiamonds and burn into a cloud of air-borne particles as the material is swept near the trapping laser focus on a glass slide. Particles are then trapped with the laser used for burning or transferred to a second laser trap at a different wavelength. Evidence of successful loading diamond nanocrystals into the trap presented includes high sensitivity of the photoluminecscence (PL) to the excitation laser and the PL spectra of the optically trapped particles

  17. Charge transfer fluorescence and 34 nm exciton diffusion length in polymers with electron acceptor end traps

    DOE PAGES

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; ...

    2014-12-22

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are asmore » large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl 3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length L D =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.« less

  18. Charge trapping and current-conduction mechanisms of metal-oxide-semiconductor capacitors with La xTa y dual-doped HfON dielectrics

    NASA Astrophysics Data System (ADS)

    Cheng, Chin-Lung; Horng, Jeng-Haur; Chang-Liao, Kuei-Shu; Jeng, Jin-Tsong; Tsai, Hung-Yang

    2010-10-01

    Charge trapping and related current-conduction mechanisms in metal-oxide-semiconductor (MOS) capacitors with La xTa y dual-doped HfON dielectrics have been investigated under various post-deposition annealing (PDA). The results indicate that by La xTa y incorporation into HfON dielectric enhances electrical and reliability characteristics, including equivalent-oxide-thickness (EOT), stress-induced leakage current (SILC), and trap energy level. The mechanisms related to larger positive charge generation in the gate dielectric bulk can be attributed to La xTa y dual-doped HfON dielectric. The results of C- V measurement indicate that more negative charges are induced with increasing PDA temperature for the La xTa y dual-doped HfON dielectric. The charge current transport mechanisms through various dielectrics have been analyzed with current-voltage ( I- V) measurements under various temperatures. The current-conduction mechanisms of HfLaTaON dielectric at the low-, medium-, and high-electrical fields were dominated by Schottky emission (SE), Frenkel-Poole emission (F-P), and Fowler-Nordheim (F-N), respectively. A low trap energy level ( Φ trap) involved in Frenkel-Pool conduction in an HfLaTaON dielectric was estimated to be around 0.142 eV. Although a larger amount of positive charges generated in the HfLaTaON dielectric was obtained, the Φ trap of these positive charges in the HfLaTaON dielectric are shallow compared with HfON dielectric.

  19. Demonstration of charge breeding in a compact room temperature electron beam ion trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorobjev, G.; Sokolov, A.; Herfurth, F.

    2012-05-15

    For the first time, a small room-temperature electron beam ion trap (EBIT), operated with permanent magnets, was successfully used for charge breeding experiments. The relatively low magnetic field of this EBIT does not contribute to the capture of the ions; single-charged ions are only caught by the space charge potential of the electron beam. An over-barrier injection method was used to fill the EBIT's electrostatic trap with externally produced, single-charged potassium ions. Charge states as high as K{sup 19+} were reached after about a 3 s breeding time. The capture and breeding efficiencies up to 0.016(4)% for K{sup 17+} havemore » been measured.« less

  20. Optical levitation particle delivery system for a dual beam fiber optic trap.

    PubMed

    Gauthier, R C; Frangioudakis, A

    2000-01-01

    We combine a radiation-pressure-based levitation system with a dual fiber, laser trapping system to demonstrate the potential of delivering single particles into the fiber trap. The forces versus position and the trajectory of the particle subjected to the laser beams are examined with an enhanced ray optics model. A sequence of video images taken from the experimental apparatus demonstrates the principle of particle delivery, trapping, and further manipulation.

  1. ULF Waves and Diffusive Radial Transport of Charged Particles

    NASA Astrophysics Data System (ADS)

    Ali, Ashar Fawad

    The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and magnetohydrodynamic (MHD) waves. Waves in the ultra low-frequency (ULF) range play an important role in the loss and acceleration of energetic particles. Considering the geometry of the geomagnetic field, charged particles trapped in the inner magnetosphere undergo three distinct types of periodic motions; an adiabatic invariant is associated with each type of motion. The evolution of the phase space density of charged particles in the magnetosphere in the coordinate space of the three adiabatic invariants is modeled by the Fokker-Planck equation. If we assume that the first two adiabatic invariants are conserved while the third invariant is violated, then the general Fokker-Planck equation reduces to a radial diffusion equation with the radial diffusion coefficient quantifying the rate of the radial diffusion of charged particles, including contributions from perturbations in both the magnetic and the electric fields. This thesis investigates two unanswered questions about ULF wave-driven radial transport of charged particles. First, how important are the ULF fluctuations in the magnetic field compared with the ULF fluctuations in the electric field in driving the radial diffusion of charged particles in the Earth's inner magnetosphere? It has generally been accepted that magnetic field perturbations dominate over electric field perturbations, but several recently published studies suggest otherwise. Second, what is the distribution of ULF wave power in azimuth, and how does ULF wave power depend upon radial distance and the level of geomagnetic activity? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth, but in situ measurements suggest that this may not be the case. We used the magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) and the electric and the magnetic field data from the Radiation Belt Storm Probes (RBSP) to compute the electric and the magnetic component of the radial diffusion coefficient using the Fei et al. [2006] formulation. We conclude that contrary to prior notions, the electric component is dominant in driving radial diffusion of charged particles in the Earth's inner magnetosphere instead of the magnetic component. The electric component can be up to two orders of magnitude larger than the magnetic component. In addition, we see that ULF wave power in both the electric and the magnetic fields has a clear dependence on Kp with wave power decreasing as radial distance decreases. For both fields, the noon sectors generally contain more ULF wave power than the dawn, dusk, and the midnight magnetic local time (MLT) sectors. There is no significant difference between ULF wave power in the dawn, dusk, and the midnight sectors.

  2. Ion-induced nucleation in solution: promotion of solute nucleation in charged levitated droplets.

    PubMed

    Draper, Neil D; Bakhoum, Samuel F; Haddrell, Allen E; Agnes, George R

    2007-09-19

    We have investigated the nucleation and growth of sodium chloride in both single quiescent charged droplets and charged droplet populations that were levitated in an electrodynamic levitation trap (EDLT). In both cases, the magnitude of a droplet's net excess charge (ions(DNEC)) influenced NaCl nucleation and growth, albeit in different capacities. We have termed the phenomenon ion-induced nucleation in solution. For single quiescent levitated droplets, an increase in ions(DNEC) resulted in a significant promotion of NaCl nucleation, as determined by the number of crystals observed. For levitated droplet populations, a change in NaCl crystal habit, from regular cubic shapes to dome-shaped dendrites, was observed once a surface charge density threshold of -9 x 10(-4) e.nm(-2) was surpassed. Although promotion of NaCl nucleation was observed for droplet population experiments, this can be attributed in part to the increased rate of solvent evaporation observed for levitated droplet populations having a high net charge. Promotion of nucleation was also observed for two organic acids, 2,4,6-trihydroxyacetophenone monohydrate (THAP) and alpha-cyano-4-hydroxycinnamic acid (CHCA). These results are of direct relevance to processes that occur in both soft-ionization techniques for mass spectrometry and to a variety of industrial processes. To this end, we have demonstrated the use of ion-induced nucleation in solution to form ammonium nitrate particles from levitated droplets to be used in in vitro toxicology studies of ambient particle types.

  3. Electron-beam-ion-source (EBIS) modeling progress at FAR-TECH, Inc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J. S., E-mail: kim@far-tech.com; Zhao, L., E-mail: kim@far-tech.com; Spencer, J. A., E-mail: kim@far-tech.com

    FAR-TECH, Inc. has been developing a numerical modeling tool for Electron-Beam-Ion-Sources (EBISs). The tool consists of two codes. One is the Particle-Beam-Gun-Simulation (PBGUNS) code to simulate a steady state electron beam and the other is the EBIS-Particle-In-Cell (EBIS-PIC) code to simulate ion charge breeding with the electron beam. PBGUNS, a 2D (r,z) electron gun and ion source simulation code, has been extended for efficient modeling of EBISs and the work was presented previously. EBIS-PIC is a space charge self-consistent PIC code and is written to simulate charge breeding in an axisymmetric 2D (r,z) device allowing for full three-dimensional ion dynamics.more » This 2D code has been successfully benchmarked with Test-EBIS measurements at Brookhaven National Laboratory. For long timescale (< tens of ms) ion charge breeding, the 2D EBIS-PIC simulations take a long computational time making the simulation less practical. Most of the EBIS charge breeding, however, may be modeled in 1D (r) as the axial dependence of the ion dynamics may be ignored in the trap. Where 1D approximations are valid, simulations of charge breeding in an EBIS over long time scales become possible, using EBIS-PIC together with PBGUNS. Initial 1D results are presented. The significance of the magnetic field to ion dynamics, ion cooling effects due to collisions with neutral gas, and the role of Coulomb collisions are presented.« less

  4. A Study of the Nature and Origins of Pyroelectricity and Piezoelectricity in Polyvinylidenefluoride and Its Co-Polymers.

    DTIC Science & Technology

    1980-01-01

    OF THIS PAOE(3tn Dea afm 20. Contd. It is possible that space charges are also present in the’film. However, the distribution of space charges in the...the discontinuities so that space charge effects may cause field perturbations. On the other hand, the corona charging procedure may drive ions into...trapped space charge effects; (iv) tunnelling of charge from the electrodes to empty traps; (v) hopping of charge carriers through localized states. The

  5. Raman spectra and optical trapping of highly refractive and nontransparent particles

    NASA Astrophysics Data System (ADS)

    Xie, Changan; Li, Yong-qing

    2002-08-01

    We measured the Raman spectra of single optically trapped highly refractive and nontransparent microscopic particles suspended in a liquid using an inverted confocal laser-tweezers-Raman-spectroscopy system. A low-power diode-laser beam of TEM00 mode was used both for optical trapping and Raman excitation of refractive, absorptive, and reflective metal particles. To form a stable trap for a nontransparent particle, the beam focus was located near the top of the particle and the particle was pushed against a glass plate by the axial repulsive force. Raman spectra from single micron-sized crystals with high index of refraction including silicon, germanium, and KNbO3, and from absorptive particles of black and color paints were recorded. Surface-enhanced Raman scattering of R6G and phenylalanine molecules absorbed on the surface of a trapped cluster of silver particles was also demonstrated.

  6. Effect of Temperature on Formation and Stability of Shallow Trap at a Dielectric Interface of the Multilayer

    NASA Astrophysics Data System (ADS)

    Rogti, F.

    2015-12-01

    Space-charge behavior at dielectric interfaces in multilayer low-density polyethylene (LDPE) and fluorinated ethylene propylene (FEP) subjected to a direct-current (DC) field has been investigated as a function of temperature using the pulsed electroacoustic technique. A sandwich structure constituted by two nonidentical LDPE/FEP dielectric films was used to study the charging propensity of electrode/dielectric and dielectric/dielectric interfaces. The time dependence of the space-charge distribution was subsequently recorded at four temperatures, 20°C, 25°C, 40°C, and 60°C, under field (polarization) and short-circuit (depolarization) conditions. The experimental results demonstrate that temperature plays a significant role in the space-charge dynamics at the dielectric interface. It affects the charge injection, increases the charge mobility and electrical conductivity, and increases the density of shallow traps and trap filling. It is found that traps formed during polarization at high temperature do not remain stable after complete discharge of the multidielectric structure and when poled at low temperatures.

  7. Space charge measurement in a dielectric material after irradiation with a 30 kV electron beam: Application to single-crystals oxide trapping properties

    NASA Astrophysics Data System (ADS)

    Vallayer, B.; Blaise, G.; Treheux, D.

    1999-07-01

    When an insulating material is subjected to electron irradiation, it produces a secondary emission the yield of which varies from a few percent to very high values (up to 24 per incoming electron) depending on the material and the experimental conditions. If the secondary electron emission yield is less than one, a net negative charge remains trapped in the sample. In this case, the study of the electric charges trapping properties of the material becomes possible. This article describes how it is possible to use a secondary electron microscope (SEM) as a device to perform such a study. In Sec. II, the effect of a net negative trapped charge resulting (from the injection of typically 50 pC) on the imaging process of the SEM has been described. It has been shown that when the trapped charge is high enough, it acts as a mirror reflecting the incoming electron beam which is deflected somewhere in the vacuum chamber of the microscope. A global qualitative description of the image displayed on the screen is first presented. Then electron trajectories are quantitatively studied by using the Rutherford scattering cross section in the case of a point charge. When the charge is extended, a numeric simulation has been done in order to predict the validity range of the previous model. Once the trajectories have been calculated, the connection between the remarkable elements of the image and the quantity of trapped charges has been established. Moreover, this technique allows one to study the lateral dimension of the trapped charge zone and to measure the surface potential. In Sec. III, the discussion is first focused on some precautions to be taken concerning the sample preparation before the experiment is performed. It has been shown that surface defects due either to contamination layers or machining change the trapping properties of single-crystals ceramics such as MgO and Al2O3. A cleaning procedure is proposed that consists of annealing the sample at 1500 °C for 4 h in order to heal the crystalline defects and a heating at 400 °C in the vacuum chamber of the SEM to remove the contamination layers. Finally, the effect of the temperature on the trapping properties of pure and chromium doped sapphire has been studied in relation with the chromium concentration. It is shown that temperature behavior of trapping is in relation with the chromium concentration. In the pure sapphire trapping is activated below -16 °C, in 500 ppm rubis it is below -9.5 °C due to isolated chromium atoms, and in the 8000 ppm rubis the critical trapping temperature rises to 3.7 °C due to Cr3+ pairs. The interpretation of the role played by chromium on trapping is based on the experimental study of the fluorescence of chromium atoms and pairs as a function of concentration.

  8. Trapped charge densities in Al{sub 2}O{sub 3}-based silicon surface passivation layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Paul M., E-mail: Paul.Jordan@namlab.com; Simon, Daniel K.; Dirnstorfer, Ingo

    2016-06-07

    In Al{sub 2}O{sub 3}-based passivation layers, the formation of fixed charges and trap sites can be strongly influenced by small modifications in the stack layout. Fixed and trapped charge densities are characterized with capacitance voltage profiling and trap spectroscopy by charge injection and sensing, respectively. Al{sub 2}O{sub 3} layers are grown by atomic layer deposition with very thin (∼1 nm) SiO{sub 2} or HfO{sub 2} interlayers or interface layers. In SiO{sub 2}/Al{sub 2}O{sub 3} and HfO{sub 2}/Al{sub 2}O{sub 3} stacks, both fixed charges and trap sites are reduced by at least a factor of 5 compared with the value measured inmore » pure Al{sub 2}O{sub 3}. In Al{sub 2}O{sub 3}/SiO{sub 2}/Al{sub 2}O{sub 3} or Al{sub 2}O{sub 3}/HfO{sub 2}/Al{sub 2}O{sub 3} stacks, very high total charge densities of up to 9 × 10{sup 12} cm{sup −2} are achieved. These charge densities are described as functions of electrical stress voltage, time, and the Al{sub 2}O{sub 3} layer thickness between silicon and the HfO{sub 2} or the SiO{sub 2} interlayer. Despite the strong variation of trap sites, all stacks reach very good effective carrier lifetimes of up to 8 and 20 ms on p- and n-type silicon substrates, respectively. Controlling the trap sites in Al{sub 2}O{sub 3} layers opens the possibility to engineer the field-effect passivation in the solar cells.« less

  9. Radiation induced leakage due to stochastic charge trapping in isolation layers of nanoscale MOSFETs

    NASA Astrophysics Data System (ADS)

    Zebrev, G. I.; Gorbunov, M. S.; Pershenkov, V. S.

    2008-03-01

    The sensitivity of sub-100 nm devices to microdose effects, which can be considered as intermediate case between cumulative total dose and single event errors, is investigated. A detailed study of radiation-induced leakage due to stochastic charge trapping in irradiated planar and nonplanar devices is developed. The influence of High-K insulators on nanoscale ICs reliability is discussed. Low critical values of trapped charge demonstrate a high sensitivity to single event effect.

  10. Formation of Ultrarelativistic Electron Rings from a Laser-Wakefield Accelerator.

    PubMed

    Pollock, B B; Tsung, F S; Albert, F; Shaw, J L; Clayton, C E; Davidson, A; Lemos, N; Marsh, K A; Pak, A; Ralph, J E; Mori, W B; Joshi, C

    2015-07-31

    Ultrarelativistic-energy electron ring structures have been observed from laser-wakefield acceleration experiments in the blowout regime. These electron rings had 170-280 MeV energies with 5%-25% energy spread and ∼10  pC of charge and were observed over a range of plasma densities and compositions. Three-dimensional particle-in-cell simulations show that laser intensity enhancement in the wake leads to sheath splitting and the formation of a hollow toroidal pocket in the electron density around the wake behind the first wake period. If the laser propagates over a distance greater than the ideal dephasing length, some of the dephasing electrons in the second period can become trapped within the pocket and form an ultrarelativistic electron ring that propagates in free space over a meter-scale distance upon exiting the plasma. Such a structure acts as a relativistic potential well, which has applications for accelerating positively charged particles such as positrons.

  11. The effects of plasma inhomogeneity on the nanoparticle coating in a low pressure plasma reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourali, N.; Foroutan, G.

    2015-10-15

    A self-consistent model is used to study the surface coating of a collection of charged nanoparticles trapped in the sheath region of a low pressure plasma reactor. The model consists of multi-fluid plasma sheath module, including nanoparticle dynamics, as well as the surface deposition and particle heating modules. The simulation results show that the mean particle radius increases with time and the nanoparticle size distribution is broadened. The mean radius is a linear function of time, while the variance exhibits a quadratic dependence. The broadening in size distribution is attributed to the spatial inhomogeneity of the deposition rate which inmore » turn depends on the plasma inhomogeneity. The spatial inhomogeneity of the ions has strong impact on the broadening of the size distribution, as the ions contribute both in the nanoparticle charging and in direct film deposition. The distribution width also increases with increasing of the pressure, gas temperature, and the ambient temperature gradient.« less

  12. Modeling of charged particles trajectories in order to optimize the design of a new, higher resolution, Time of flight- Positron Annihilation Induced Auger Electron Spectroscopy (TOF PAES) System

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Lim, L.; Satyal, Suman; Kalaskar, Sushant; Shastry, K.; Weiss, Alex

    2011-03-01

    Time of Flight Positron Annihilation Induced~Auger Electron Spectroscopy~(TOF PAES) is a surface analytical technique with high surface selectivity. TOF PAES is used to study elemental composition, surface defects, and various energy loss mechanisms. Positrons incident on the sample surface at low energies can be trapped in an image-potential well just above the surface Prior to annihilation. Consequently it is possible to use positron annihilation related signals to selectively probe the top-most atomic layer. This poster presents the results of modeling of the charge particle beam transport system performed in connection with the optimization of the the design of the new TOF-PAES system currently under construction at U T Arlington. The system will incorporate a 2 m long drift tube in order to achieve better energy resolution than our previous TOF-PAES system design which used a 1 m long drift tube NSF DMR 0907679, Welch Foundation Y 1100.

  13. Digital pulse processing for planar TlBr detectors, optimized for ballistic deficit and charge-trapping effect

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.; Hitomi, K.

    2012-05-01

    The energy resolution of thallium bromide (TlBr) detectors is significantly limited by charge-trapping effect and pulse ballistic deficit, caused by the slow charge collection time. A digital pulse processing algorithm has been developed aiming to compensate for charge-trapping effect, while minimizing pulse ballistic deficit. The algorithm is examined using a 1 mm thick TlBr detector and an excellent energy resolution of 3.37% at 662 keV is achieved at room temperature. The pulse processing algorithms are presented in recursive form, suitable for real-time implementations.

  14. Hydrodynamic enhanced dielectrophoretic particle trapping

    DOEpatents

    Miles, Robin R.

    2003-12-09

    Hydrodynamic enhanced dielectrophoretic particle trapping carried out by introducing a side stream into the main stream to squeeze the fluid containing particles close to the electrodes producing the dielelectrophoretic forces. The region of most effective or the strongest forces in the manipulating fields of the electrodes producing the dielectrophoretic forces is close to the electrodes, within 100 .mu.m from the electrodes. The particle trapping arrangement uses a series of electrodes with an AC field placed between pairs of electrodes, which causes trapping of particles along the edges of the electrodes. By forcing an incoming flow stream containing cells and DNA, for example, close to the electrodes using another flow stream improves the efficiency of the DNA trapping.

  15. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet

    PubMed Central

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-01-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles. PMID:26221197

  16. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet.

    PubMed

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-07-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles.

  17. Gas insulated transmission line having tapered particle trapping ring

    DOEpatents

    Cookson, Alan H.

    1982-01-01

    A gas-insulated transmission line includes an outer sheath, an inner conductor, insulating supports and an insulating gas. A particle-trapping ring is secured to each insulating support, and it is comprised of a central portion and two tapered end portions. The ends of the particle trapping ring have a smaller diameter than the central portion of the ring, so as to enable the use of the particle trapping ring in a curved transmission line.

  18. Particle trap to sheath non-binding contact for a gas-insulated transmission line having a corrugated outer conductor

    DOEpatents

    Fischer, William H.

    1984-04-24

    A non-binding particle trap to outer sheath contact for use in gas insulated transmission lines having a corrugated outer conductor. The non-binding feature of the contact according to the teachings of the invention is accomplished by having a lever arm rotatably attached to a particle trap by a pivot support axis disposed parallel to the direction of travel of the inner conductor/insulator/particle trap assembly.

  19. Trapped Ion Oscillation Frequencies as Sensors for Spectroscopy

    PubMed Central

    Vogel, Manuel; Quint, Wolfgang; Nörtershäuser, Wilfried

    2010-01-01

    The oscillation frequencies of charged particles in a Penning trap can serve as sensors for spectroscopy when additional field components are introduced to the magnetic and electric fields used for confinement. The presence of so-called “magnetic bottles” and specific electric anharmonicities creates calculable energy-dependences of the oscillation frequencies in the radiofrequency domain which may be used to detect the absorption or emission of photons both in the microwave and optical frequency domains. The precise electronic measurement of these oscillation frequencies therefore represents an optical sensor for spectroscopy. We discuss possible applications for precision laser and microwave spectroscopy and their role in the determination of magnetic moments and excited state life-times. Also, the trap-assisted measurement of radiative nuclear de-excitations in the X-ray domain is discussed. This way, the different applications range over more than 12 orders of magnitude in the detectable photon energies, from below μeV in the microwave domain to beyond MeV in the X-ray domain. PMID:22294921

  20. Characterizing conical refraction optical tweezers.

    PubMed

    McDonald, C; McDougall, C; Rafailov, E; McGloin, D

    2014-12-01

    Conical refraction occurs when a beam of light travels through an appropriately cut biaxial crystal. By focusing the conically refracted beam through a high numerical aperture microscope objective, conical refraction optical tweezers can be created, allowing for particle manipulation in both Raman spots, and in the Lloyd/Poggendorff rings. We present a thorough quantification of the trapping properties of such a beam, focusing on the trap stiffness, and how this varies with trap power and trapped particle location. We show that the lower Raman spot can be thought of as a single-beam optical gradient force trap, while radiation pressure dominates in the upper Raman spot, leading to optical levitation rather than trapping. Particles in the Lloyd/Poggendorff rings experience a lower trap stiffness than particles in the lower Raman spot, but benefit from rotational control.

  1. Characterizing conical refraction optical tweezers

    NASA Astrophysics Data System (ADS)

    McDonald, C.; McDougall, C.; Rafailov, E.; McGloin, D.

    2014-12-01

    Conical refraction occurs when a beam of light travels through an appropriately cut biaxial crystal. By focussing the conically refracted beam through a high numerical aperture microscope objective, conical refraction optical tweezers can be created, allowing for particle manipulation in both Raman spots and in the Lloyd/Poggendorff rings. We present a thorough quantification of the trapping properties of such a beam, focussing on the trap stiffness and how this varies with trap power and trapped particle location. We show that the lower Raman spot can be thought of as a single-beam optical gradient force trap, while radiation pressure dominates in the upper Raman spot, leading to optical levitation rather than trapping. Particles in the Lloyd/Poggendorff rings experience a lower trap stiffness than particles in the lower Raman spot but benefit from rotational control.

  2. Direct exchange between silicon nanocrystals and tunnel oxide traps under illumination on single electron photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatbouri, S., E-mail: Samir.chatbouri@yahoo.com; Troudi, M.; Sghaier, N.

    2016-09-15

    In this paper we present the trapping of photogenerated charge carriers for 300 s resulted by their direct exchange under illumination between a few silicon nanocrystals (ncs-Si) embedded in an oxide tunnel layer (SiO{sub x} = 1.5) and the tunnel oxide traps levels for a single electron photodetector (photo-SET or nanopixel). At first place, the presence of a photocurrent limited in the inversion zone under illumination in the I–V curves confirms the creation of a pair electron/hole (e–h) at high energy. This photogenerated charge carriers can be trapped in the oxide. Using the capacitance-voltage under illumination (the photo-CV measurements) wemore » show a hysteresis chargement limited in the inversion area, indicating that the photo-generated charge carriers are stored at traps levels at the interface and within ncs-Si. The direct exchange of the photogenerated charge carriers between the interface traps levels and the ncs-Si contributed on the photomemory effect for 300 s for our nanopixel at room temperature.« less

  3. Study of the Phototransference in GR-200 Dosimetric Material and its Convenience for Dose Re-estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baly, L.; Otazo, M. R.; Molina, D.

    2006-09-08

    A study of the phototransference of charges from deep to dosimetric traps in GR-200 material is presented and its convenience for dose re-estimation in the dose range between 2 and 100mSv is also analyzed. The recovering coefficient (RC) defined as the ratio between the phototransferred thermoluminescence (PTTL) and the original thermoluminescence (TL) of the dosimetric trap was used to evaluate the ratio of phototransferred charges from deep traps and the original charges in the dosimetric traps. The results show the convenience of this method for dose re-estimation for this material in the selected range of doses.

  4. Persistent photoconductivity due to trapping of induced charges in Sn/ZnO thin film based UV photodetector

    NASA Astrophysics Data System (ADS)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay

    2010-05-01

    Photoconductivity relaxation in rf magnetron sputtered ZnO thin films integrated with ultrathin tin metal overlayer is investigated. Charge carriers induced at the ZnO-metal interface by the tin metal overlayer compensates the surface lying trap centers and leads to the enhanced photoresponse. On termination of ultraviolet radiation, recombination of the photoexcited electrons with the valence band holes leaves the excess carriers deeply trapped at the recombination center and holds the dark conductivity level at a higher value. Equilibrium between the recombination centers and valence band, due to trapped charges, eventually stimulates the persistent photoconductivity in the Sn/ZnO photodetectors.

  5. Anti-Brownian ELectrokinetic (ABEL) Trapping of Single High Density Lipoprotein (HDL) Particles

    NASA Astrophysics Data System (ADS)

    Bockenhauer, Samuel; Furstenberg, Alexandre; Wang, Quan; Devree, Brian; Jie Yao, Xiao; Bokoch, Michael; Kobilka, Brian; Sunahara, Roger; Moerner, W. E.

    2010-03-01

    The ABEL trap is a novel device for trapping single biomolecules in solution for extended observation. The trap estimates the position of a fluorescently-labeled object as small as ˜10 nm in solution and then applies a feedback electrokinetic drift every 20 us to trap the object by canceling its Brownian motion. We use the ABEL trap to study HDL particles at the single-copy level. HDL particles, essential in regulation of ``good'' cholesterol in humans, comprise a small (˜10 nm) lipid bilayer disc bounded by a belt of apolipoproteins. By engineering HDL particles with single fluorescent donor/acceptor probes and varying lipid compositions, we are working to study lipid diffusion on small length scales. We also use HDL particles as hosts for single transmembrane receptors, which should enable study of receptor conformational dynamics on long timescales.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, D., E-mail: deyongl@uci.edu; Heidbrink, W. W.; Hao, G. Z.

    A compact and multi-view solid state neutral particle analyzer (SSNPA) diagnostic based on silicon photodiode arrays has been successfully tested on the National Spherical Torus Experiment-Upgrade. The SSNPA diagnostic provides spatially, temporally, and pitch-angle resolved measurements of fast-ion distribution by detecting fast neutral flux resulting from the charge exchange (CX) reactions. The system consists of three 16-channel subsystems: t-SSNPA viewing the plasma mid-radius and neutral beam (NB) line #2 tangentially, r-SSNPA viewing the plasma core and NB line #1 radially, and p-SSNPA with no intersection with any NB lines. Due to the setup geometry, the active CX signals of t-SSNPAmore » and r-SSNPA are mainly sensitive to passing and trapped particles, respectively. In addition, both t-SSNPA and r-SSNPA utilize three vertically stacked arrays with different filter thicknesses to obtain coarse energy information. The experimental data show that all channels are operational. The signal to noise ratio is typically larger than 10, and the main noise is x-ray induced signal. The active and passive CX signals are clearly observed on t-SSNPA and r-SSNPA during NB modulation. The SSNPA data also indicate significant losses of passing particles during sawteeth, while trapped particles are weakly affected. Fluctuations up to 120 kHz have been observed on SSNPA, and they are strongly correlated with magnetohydrodynamics instabilities.« less

  7. Focusing properties of cylindrical vector vortex beams

    NASA Astrophysics Data System (ADS)

    Xiaoqiang, Zhang; Ruishan, Chen; Anting, Wang

    2018-05-01

    In this paper, following Richards and Wolf vectorial diffraction theory, the focusing properties of cylindrical vector vortex beams (CVVB) are investigated, and a diffractive optical element (DOE) is designed to spatially modulate the amplitude of the CVVB. Simulated results show that the CVVB focused by an objective also carry orbital angular momentum (OAM), and the optical fields near the focal region can be modulated by changing the topological charge of the CVVB. We numerically simulate the focus properties of radially and azimuthally polarized beams with topological charge equal to 0, 1, 2 and 10 respectively. As a result, a dark channel with a length about 20 λ can be obtained. These new properties have the potential applications such as particle acceleration, optical trapping and material processing.

  8. Positive Ion Induced Solidification of He4

    NASA Astrophysics Data System (ADS)

    Moroshkin, P.; Lebedev, V.; Weis, A.

    2009-03-01

    We have observed bulk solidification of He4 induced by nucleation on positive alkali ions in pressurized superfluid helium. The ions are extracted into the liquid from alkali-doped solid He by a static electric field. The experiments prove the existence of charged particles in a solid structure composed of doped He that was recently shown to coexist with superfluid helium below the He solidification pressure. This supports our earlier suggestion that the Coulomb interaction of positive ions surrounded by a solid He shell (snowballs) and electrons trapped in spherical cavities (electron bubbles), together with surface tension, is responsible for the stability of that structure against melting. We have determined the density of charges in the sample by two independent methods.

  9. Improved understanding of the hot cathode current modes and mode transitions

    NASA Astrophysics Data System (ADS)

    Campanell, M. D.; Umansky, M. V.

    2017-12-01

    Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry, this ‘new plasma’ containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.

  10. Bio Organic-Semiconductor Field-Effect Transistor (BioFET) Based on Deoxyribonucleic Acid (DNA) Gate Dielectric

    DTIC Science & Technology

    2010-03-31

    in OFETs have been investigated extensively in the past couple of years. They are mainly attributed to the (i) charge trapping and release in the...This sharp rise in capacitance can be attributed due to trap charges or impurities such as ions which is most likely in the bulk of DNA-CTMA as well...5 Transient response of BiOFETs As mentioned before, charge trapping and release time can be strong function of applied voltage as well as device

  11. An Einzel lens apparatus for deposition of levitated graphene on a substrate in UHV

    NASA Astrophysics Data System (ADS)

    Coppock, Joyce; Nagornykh, Pavel; McAdams, Ian; Kane, Bruce

    The goal of our research is to levitate a charged micron-scale graphene flake in an electrical AC quadrupole trap in ultra-high vacuum (UHV) in order to study its properties and dynamics while decoupled from any substrate. As a complement to the optical measurements that can be performed on the levitated flake, we are developing a method of depositing the same flake on a substrate, which can be removed from the system for further study using such probes as atomic force microscopy (AFM) and scanning tunneling microscopy (STM). As the flake is released from the trap and propelled toward the substrate, its trajectory will be controlled by an Einzel (electrostatic) lens to achieve accurate positioning on the substrate. This talk will discuss the design of the lens as well as particle tracing simulations to determine the proper lens voltage to focus the particle's trajectory. In the future, deposited graphene may be used to passivate H-terminated silicon. The method is expected to be generalizable to achieve deposition of 2D materials on surfaces in a clean UHV environment.

  12. Direct observation of trapped charges under field-plate in p-GaN gate AlGaN/GaN high electron mobility transistors by electric field-induced optical second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Katsuno, Takashi; Manaka, Takaaki; Soejima, Narumasa; Iwamoto, Mitsumasa

    2017-02-01

    Trapped charges underneath the field-plate (FP) in a p-gallium nitride (GaN) gate AlGaN/ GaN high electron mobility transistor device were visualized by using electric field-induced optical second-harmonic generation imaging. Second-harmonic (SH) signals in the off-state of the device with FP indicated that the electric field decreased at the p-GaN gate edge and concentrated at the FP edge. Nevertheless, SH signals originating from trapped charges were slightly observed at the p-GaN gate edge and were not observed at the FP edge in the on-state. Compared with the device without FP, reduction of trapped charges at the p-GaN gate edge of the device with FP is attributed to attenuation of the electric field with the aid of the FP. Negligible trapped charges at the FP edge is owing to lower trap density of the SiO2/AlGaN interface at the FP edge compared with that of the SiO2/p-GaN sidewall interface at the p-GaN gate edge and attenuated electric field by the thickness of the SiO2 passivation layer on the AlGaN surface.

  13. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    PubMed Central

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  14. Accumulator for Low-Energy Laser-Cooled Particles

    NASA Astrophysics Data System (ADS)

    Mertes, Kevin; Walstrom, Peter; di Rosa, Michael; LANL Collaboration

    2017-04-01

    An accumulator builds phase-space density by use of a non-Hamiltonian process, thereby circumventing Liouville's theorem, which states that phase-space density is preserved in processes governed by Hamilton's equations. We have built an accumulator by a simple magneto-static cusp trap formed from two ring shaped permanent magnets. In traps with a central minimum of | B | , the stored particles are in a field-repelled (FR) Zeeman state, pushed away by | B | and oscillating about its minimum. After laser-cooling our particles and before entering the trap, we employ the non-hamiltonian process of optical pumping: A FR particle approaches the trap and climbs to the top of the confining potential with a finite velocity. There, it is switched to a field seeking (FS) state. As the switch does not change the velocity, the particle proceeds into the trap but continues to lose momentum because, now in the FS state, the particles sees the decreasing field as a potential hill to climb. Before it comes to a halt, the particle is switched back to a FR state for storage. The process repeats, building the trapped number and density. A simple consideration of potential and kinetic energies would show the trapped particles to have less kinetic energy than those injected. Los Alamos National Laboratory's Office of Laboratory Directed Research and Development.

  15. Confocal Raman microscopy for monitoring chemical reactions on single optically trapped, solid-phase support particles.

    PubMed

    Houlne, Michael P; Sjostrom, Christopher M; Uibel, Rory H; Kleimeyer, James A; Harris, Joel M

    2002-09-01

    Optical trapping of small structures is a powerful tool for the manipulation and investigation of colloidal and particulate materials. The tight focus excitation requirements of optical trapping are well suited to confocal Raman microscopy. In this work, an inverted confocal Raman microscope is developed for studies of chemical reactions on single, optically trapped particles and applied to reactions used in solid-phase peptide synthesis. Optical trapping and levitation allow a particle to be moved away from the coverslip and into solution, avoiding fluorescence interference from the coverslip. More importantly, diffusion of reagents into the particle is not inhibited by a surface, so that reaction conditions mimic those of particles dispersed in solution. Optical trapping and levitation also maintain optical alignment, since the particle is centered laterally along the optical axis and within the focal plane of the objective, where both optical forces and light collection are maximized. Hour-long observations of chemical reactions on individual, trapped silica particles are reported. Using two-dimensional least-squares analysis methods, the Raman spectra collected during the course of a reaction can be resolved into component contributions. The resolved spectra of the time-varying species can be observed, as they bind to or cleave from the particle surface.

  16. Native hole trap in bulk GaAs and its association with the double-charge state of the arsenic antisite defect

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Lin, D. G.; Chen, T.-P.; Skowronski, M.; Gatos, H. C.

    1985-01-01

    A dominant hole trap has been identified in p-type bulk GaAs employing deep level transient and photocapacitance spectroscopies. The trap is present at a concentration up to about 4 x 10 to the 16th per cu cm, and it has two charge states with energies 0.54 + or - 0.02 and 0.77 + or - 0.02 eV above the top of the valence band (at 77 K). From the upper level the trap can be photoexcited to a persistent metastable state just as the dominant midgap level, EL2. Impurity analysis and the photoionization characteristics rule out association of the trap with impurities Fe, Cu, or Mn. Taking into consideration theoretical results, it appears most likely that the two charge states of the trap are the single and double donor levels of the arsenic antisite As(Ga) defect.

  17. Trap-assisted and Langevin-type recombination in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wetzelaer, G. A. H.; Kuik, M.; Nicolai, H. T.; Blom, P. W. M.

    2011-04-01

    Trapping of charges is known to play an important role in the charge transport of organic semiconductors, but the role of traps in the recombination process has not been addressed. Here we show that the ideality factor of the current of organic light-emitting diodes (OLEDs) in the diffusion-dominated regime has a temperature-independent value of 2, which reveals that nonradiative trap-assisted recombination dominates the current. In contrast, the ideality factor of the light output approaches unity, demonstrating that luminance is governed by recombination of the bimolecular Langevin type. This apparent contradiction can be resolved by measuring the current and luminance ideality factor for a white-emitting polymer, where both free and trapped charge carriers recombine radiatively. With increasing bias voltage, Langevin recombination becomes dominant over trap-assisted recombination due to its stronger dependence on carrier density, leading to an enhancement in OLED efficiency.

  18. Characterizing physical properties and heterogeneous chemistry of single particles in air using optical trapping-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.

    2017-12-01

    Heterogeneous reactions of solid particles in a gaseous environment are of increasing interest; however, most of the heterogeneous chemistry studies of airborne solids were conducted on particle ensembles. A close examination on the heterogeneous chemistry between single particles and gaseous-environment species is the key to elucidate the fundamental mechanisms of hydroscopic growth, cloud nuclei condensation, secondary aerosol formation, etc., and reduce the uncertainty of models in radiative forcing, climate change, and atmospheric chemistry. We demonstrate an optical trapping-Raman spectroscopy (OT-RS) system to study the heterogeneous chemistry of the solid particles in air at single-particle level. Compared to other single-particle techniques, optical trapping offers a non-invasive, flexible, and stable method to isolate single solid particle from substrates. Benefited from two counter-propagating hollow beams, the optical trapping configuration is adaptive to trap a variety of particles with different materials from inorganic substitution (carbon nanotubes, silica, etc.) to organic, dye-doped polymers and bioaerosols (spores, pollen, etc.), with different optical properties from transparent to strongly absorbing, with different sizes from sub-micrometers to tens of microns, or with distinct morphologies from loosely packed nanotubes to microspheres and irregular pollen grains. The particles in the optical trap may stay unchanged, surface degraded, or optically fragmented according to different laser intensity, and their physical and chemical properties are characterized by the Raman spectra and imaging system simultaneously. The Raman spectra is able to distinguish the chemical compositions of different particles, while the synchronized imaging system can resolve their physical properties (sizes, shapes, morphologies, etc.). The temporal behavior of the trapped particles also can be monitored by the OT-RS system at an indefinite time with a resolution from 10 ms to 5 min, which can be further applied to monitor the dynamics of heterogeneous reactions. The OT-RS system provides a flexible method to characterize and monitor the physical properties and heterogeneous chemistry of optically trapped solid particles in gaseous environment at single-particle level.

  19. REVIEWS OF TOPICAL PROBLEMS: Coronal magnetic loops

    NASA Astrophysics Data System (ADS)

    Zaitsev, Valerii V.; Stepanov, Alexander V.

    2008-11-01

    The goal of this review is to outline some new ideas in the physics of coronal magnetic loops, the fundamental structural elements of the atmospheres of the Sun and flaring stars, which are involved in phenomena such as stellar coronal heating, flare energy release, charged particle acceleration, and the modulation of optical, radio, and X-ray emissions. The Alfvén-Carlqvist view of a coronal loop as an equivalent electric circuit allows a good physical understanding of loop processes. Describing coronal loops as MHD-resonators explains various ways in which flaring emissions from the Sun and stars are modulated, whereas modeling them by magnetic mirror traps allows one to describe the dynamics and emission of high-energy particles. Based on these approaches, loop plasma and fast particle parameters are obtained and models for flare energy release and stellar corona heating are developed.

  20. Electrofluidics in Micro/Nanofluidic Systems

    NASA Astrophysics Data System (ADS)

    Guan, Weihua

    This work presents the efforts to study the electrofluidics, with a focus on the electric field - matter interactions in microfluidic and nanofluidic systems for lab-on-a-chip applications. The field of electrofluidics integrates the multidisciplinary knowledge in silicon technology, solid and soft condensed matter physics, fluidics, electrochemistry, and electronics. The fundamental understanding of electrofluidics in engineered micro and nano structures opens up wide opportunities for biomedical sensing and actuation devices integrated on a single chip. Using spatial and temporal properties of electric fields in top-down engineered micro/nana structures, we successfully demonstrated the precise control over a single macro-ion and a collective group of ions in aqueous solutions. In the manipulation of a single macro-ion, we revisited the long-time overlooked AC electrophoretic (ACEP) phenomena. We proved that the widely held notion of vanishing electrophoretic (EP) effects in AC fields does not apply to spatially non-uniform electric fields. In contrast to dielectrophoretic (DEP) traps, ACEP traps favor the downscaling of the particle size if it is sufficiently charged. We experimentally demonstrated the predicted ACEP trap by recognizing that the ACEP dynamics is equivalent to that of Paul traps working in an aqueous solution. Since all Paul traps realized so far have only been operated in vacuum or gaseous phase, our experimental effort represents the world's first aqueous Paul trap device. In the manipulation of a collective group of ions, we demonstrated that the ion transport in nanochannels can be directly gated by DC electric fields, an impossible property in microscale geometries. Successful fabrication techniques were developed to create the nanochannel structures with gating ability. Using the gated nanochannel structures, we demonstrated a field effect reconfigurable nanofluidic diode, whose forward/reverse direction as well as the rectification degree can be significantly modulated. We also demonstrated a solid-state protocell, whose ion selectivity and membrane potential can be modulated by external electric field. Moreover, by recognizing the key role played by the surface charge density in electrofluidic gating of nanochannels, a low-cost, off-chip extended gate field effect transistor (FET) structure to measure the surface charges at the dielectric-electrolyte interface is demonstrated. This technique simplifies and accelerates the process of dielectric selection for effective electrofluidic gating.

  1. Two-dimensional analytical model of double-gate tunnel FETs with interface trapped charges including effects of channel mobile charge carriers

    NASA Astrophysics Data System (ADS)

    Xu, Huifang; Dai, Yuehua

    2017-02-01

    A two-dimensional analytical model of double-gate (DG) tunneling field-effect transistors (TFETs) with interface trapped charges is proposed in this paper. The influence of the channel mobile charges on the potential profile is also taken into account in order to improve the accuracy of the models. On the basis of potential profile, the electric field is derived and the expression for the drain current is obtained by integrating the BTBT generation rate. The model can be used to study the impact of interface trapped charges on the surface potential, the shortest tunneling length, the drain current and the threshold voltage for varying interface trapped charge densities, length of damaged region as well as the structural parameters of the DG TFET and can also be utilized to design the charge trapped memory devices based on TFET. The biggest advantage of this model is that it is more accurate, and in its expression there are no fitting parameters with small calculating amount. Very good agreements for both the potential, drain current and threshold voltage are observed between the model calculations and the simulated results. Project supported by the National Natural Science Foundation of China (No. 61376106), the University Natural Science Research Key Project of Anhui Province (No. KJ2016A169), and the Introduced Talents Project of Anhui Science and Technology University.

  2. Optical trapping of core-shell magnetic microparticles by cylindrical vector beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Min-Cheng; Gong, Lei; Li, Di

    2014-11-03

    Optical trapping of core-shell magnetic microparticles is experimentally demonstrated by using cylindrical vector beams. Second, we investigate the optical trapping efficiencies. The results show that radially and azimuthally polarized beams exhibit higher axial trapping efficiencies than the Gaussian beam. Finally, a trapped particle is manipulated to kill a cancer cell. The results make possible utilizing magnetic particles for optical manipulation, which is an important advantage for magnetic particles as labeling agent in targeted medicine and biological analysis.

  3. High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers.

    PubMed

    Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Yi, Mingdong; Wang, Laiyuan; Wu, Dequn; Xie, Linghai; Huang, Wei

    2017-08-01

    Nonvolatile organic field-effect transistor (OFET) memory devices based on pentacene/ N , N '-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n-type P13 embedded in p-type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well-like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge-trapping property of the poly(4-vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high-performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory.

  4. Non-contact, non-destructive, quantitative probing of interfacial trap sites for charge carrier transport at semiconductor-insulator boundary

    NASA Astrophysics Data System (ADS)

    Choi, Wookjin; Miyakai, Tomoyo; Sakurai, Tsuneaki; Saeki, Akinori; Yokoyama, Masaaki; Seki, Shu

    2014-07-01

    The density of traps at semiconductor-insulator interfaces was successfully estimated using microwave dielectric loss spectroscopy with model thin-film organic field-effect transistors. The non-contact, non-destructive analysis technique is referred to as field-induced time-resolved microwave conductivity (FI-TRMC) at interfaces. Kinetic traces of FI-TRMC transients clearly distinguished the mobile charge carriers at the interfaces from the immobile charges trapped at defects, allowing both the mobility of charge carriers and the number density of trap sites to be determined at the semiconductor-insulator interfaces. The number density of defects at the interface between evaporated pentacene on a poly(methylmethacrylate) insulating layer was determined to be 1012 cm-2, and the hole mobility was up to 6.5 cm2 V-1 s-1 after filling the defects with trapped carriers. The FI-TRMC at interfaces technique has the potential to provide rapid screening for the assessment of interfacial electronic states in a variety of semiconductor devices.

  5. Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip.

    PubMed

    Kühn, S; Phillips, B S; Lunt, E J; Hawkins, A R; Schmidt, H

    2010-01-21

    The development of on-chip methods to manipulate particles is receiving rapidly increasing attention. All-optical traps offer numerous advantages, but are plagued by large required power levels on the order of hundreds of milliwatts and the inability to act exclusively on individual particles. Here, we demonstrate a fully integrated electro-optical trap for single particles with optical excitation power levels that are five orders of magnitude lower than in conventional optical force traps. The trap is based on spatio-temporal light modulation that is implemented using networks of antiresonant reflecting optical waveguides. We demonstrate the combination of on-chip trapping and fluorescence detection of single microorganisms by studying the photobleaching dynamics of stained DNA in E. coli bacteria. The favorable size scaling facilitates the trapping of single nanoparticles on integrated optofluidic chips.

  6. Intracavity optical trapping with Ytterbium doped fiber ring laser

    NASA Astrophysics Data System (ADS)

    Sayed, Rania; Kalantarifard, Fatemeh; Elahi, Parviz; Ilday, F. Omer; Volpe, Giovanni; Maragò, Onofrio M.

    2013-09-01

    We propose a novel approach for trapping micron-sized particles and living cells based on optical feedback. This approach can be implemented at low numerical aperture (NA=0.5, 20X) and long working distance. In this configuration, an optical tweezers is constructed inside a ring cavity fiber laser and the optical feedback in the ring cavity is controlled by the light scattered from a trapped particle. In particular, once the particle is trapped, the laser operation, optical feedback and intracavity power are affected by the particle motion. We demonstrate that using this configuration is possible to stably hold micron-sized particles and single living cells in the focal spot of the laser beam. The calibration of the optical forces is achieved by tracking the Brownian motion of a trapped particle or cell and analysing its position distribution.

  7. Novel Flexible Plastic-Based Solar Cells

    DTIC Science & Technology

    2009-11-30

    the high mobility of charge carriers in pentacene probably due to conducting domains provided by it. 2. Multi-Exciton Generation (MEG) in Devices...with simulating the model including recombination rate, trap density and trapped charge induced electric field. £ < £ O 0.2 0.3 0.4...to charge extraction and transport in hybrid nanoparticle:polymer photovoltaic devices. In particular, we demonstrated (i) enhancement of charge

  8. The temporal evolution process from fluorescence bleaching to clean Raman spectra of single solid particles optically trapped in air

    NASA Astrophysics Data System (ADS)

    Gong, Zhiyong; Pan, Yong-Le; Videen, Gorden; Wang, Chuji

    2017-12-01

    We observe the entire temporal evolution process of fluorescence and Raman spectra of single solid particles optically trapped in air. The spectra initially contain strong fluorescence with weak Raman peaks, then the fluorescence was bleached within seconds, and finally only the clean Raman peaks remain. We construct an optical trap using two counter-propagating hollow beams, which is able to stably trap both absorbing and non-absorbing particles in air, for observing such temporal processes. This technique offers a new method to study dynamic changes in the fluorescence and Raman spectra from a single optically trapped particle in air.

  9. Polycrystalline CVD diamond device level modeling for particle detection applications

    NASA Astrophysics Data System (ADS)

    Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.

    2016-12-01

    Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.

  10. Wide memory window in graphene oxide charge storage nodes

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Pu, Jing; Chan, Daniel S. H.; Cho, Byung Jin; Loh, Kian Ping

    2010-04-01

    Solution-processable, isolated graphene oxide (GO) monolayers have been used as a charge trapping dielectric in TaN gate/Al2O3/isolated GO sheets/SiO2/p-Si memory device (TANOS). The TANOS type structure serves as memory device with the threshold voltage controlled by the amount of charge trapped in the GO sheet. Capacitance-Voltage hysteresis curves reveal a 7.5 V memory window using the sweep voltage of -5-14 V. Thermal reduction in the GO to graphene reduces the memory window to 1.4 V. The unique charge trapping properties of GO points to the potential applications in flexible organic memory devices.

  11. Dispersive charge transport due to strong charge dipole interactions of cyano-group in the cyano-carbazole based molecular glass

    NASA Astrophysics Data System (ADS)

    Oh, Dong Keun; Hong, Sung Mok; Lee, Cheol Eui; Kim, B.-S.; Jin, J.-I.

    2005-12-01

    Using the time of flight (ToF) method, we investigated the bipolar charge transport for two glass-forming molecules containing carbazole and cyano-carbazole moiety. The enhanced electron mobility was observed in the cyano-carbazole compound. From the numerical method based the Laplace formalism, the distribution of hole trapping energy was obtained for the carbazole compound. This result was compared with the exponential distribution extracted from dispersion parameter for the cyano-carbazole material. Considering charge-dipole interactions as a reason for the disordered trapping mechanism, we discussed dispersive charge transport induced by a strong dipolar (i.e. cyano) group by comparing the distributions of hole trapping sites for two compounds.

  12. I-V-T analysis of radiation damage in high efficiency Si solar cells

    NASA Technical Reports Server (NTRS)

    Banerjee, S.; Anderson, W. A.; Rao, B. B.

    1985-01-01

    A detailed analysis of current-voltage characteristics of N(+)-P/P solar cells indicate that there is a combination of different mechanisms which results in an enhancement in the dark current and in turn deteriorates the photovoltaic performance of the solar cells after 1 MeV e(-) irradiation. The increase in the dark current is due to three effects, i.e., bulk recombination, space charge recombination by deep traps and space charge recombination through shallow traps. It is shown that the increase in bulk recombination current is about 2 to 3 orders of magnitude whereas space charge recombination current due to shallow traps increases only by an order or so and no space charge recombination through deep traps was observed after irradiation. Thus, in order to improve the radiation hardness of these devices, bulk properties should be preserved.

  13. Rotational dynamics and heating of trapped nanovaterite particles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Arita, Yoshihiko; Richards, Joseph M.; Mazilu, Michael; Spalding, Gabriel C.; Skelton Spesyvtseva, Susan E.; Craig, Derek; Dholakia, Kishan

    2016-09-01

    Rotational control over optically trapped particles has gained significant prominence in recent years. The marriage between light fields possessing optical angular momentum and the material properties of microparticles has been useful to controllably spin particles in liquid, air and vacuum. The rotational degree of freedom adds new functionality to optical traps: in addition to allowing fundamental tests of optical angular momentum, the transfer of spin angular momentum in particular can allow measurements of local viscosity and exert local stresses on cellular systems. We demonstrate optical trapping and controlled rotation of nanovaterite crystals. These particles represent the smallest birefringent crystals ever trapped and set into rotation. Rotation rates of up to 5kHz in water are recorded, representing the fastest rotation to date for dielectric particles in liquid. Laser-induced heating results in the superlinear behaviour of the rotation rate as a function of trap power. We study both the rotational and translational modes of trapped nanovaterite crystals. The particle temperatures derived from those two optomechanical modes are in good agreement, which is supported by a numerical model revealing that the observed heating is dominated by absorption of light by the particles rather than by the surrounding liquid. A comparison is performed with trapped silica particles of similar size. The use of nanovaterite particles open up new studies for levitated optomechanics in vacuum as well as microrheological properties of cells or biological media. Their size and low heating offers prospects of viscosity measurements in ultra-small volumes and potentially simpler uptake by cellular media.

  14. Position-sensitive ``movie'' in situ neutron detector for the UCN τ experiment

    NASA Astrophysics Data System (ADS)

    Weaver, Hannah; UCNTau Collaboration

    2016-09-01

    Precision measurements of neutron β-decay parameters provide tests of fundamental theories in elementary particle physics and cosmology such as the Standard Model and Big Bang nucleosynthesis. In particular, the UCN τ experiment aims to measure the mean lifetime of ultracold neutrons confined in an asymmetric magneto-gravitational trap using an in situ neutron detector. This detector consists of a 20 nm film of 10B on top of a ZnS:Ag scintillating screen. The screen is readout using two photomultipliers which view an array of wavelength shifting fibers optically coupled to the scintillator. When the detector is lowered into the loaded trap, light is emitted due to the charged particles recoiling into the ZnS:Ag when neutrons absorb on the 10B. Phase space evolution in the stored neutron population can lead to apparent shifts in the measured neutron lifetime with the detector height. In order to quantify this systematic uncertainty, we are implementing a supplemental 64-channel position-sensitive PMT module with high quantum efficiency and fast time response to image the entire detector in situ during measurements. We have characterized a prototype using a ZnS screen and an α-particle source along with a prototype lens system and will report the results and future plans.

  15. Effect of particles attachment to multi-sized dust grains present in electrostatic sheaths of discharge plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaham, B.; Faculté des Sciences et des Sciences Appliquées, Université de Bouira Rue Drissi Yahia 10000 Bouira; Tahraoui, A., E-mail: alatif-tahraoui@yahoo.fr

    The loss of electrons and ions due to their attachment to a Gauss-distributed sizes of dust grains present in electrostatic sheaths of discharge plasmas is investigated. A uni-dimensional, unmagnetized, and stationary multi-fluid model is proposed. Forces acting on the dust grain along with its charge are self-consistently calculated, within the limits of the orbit motion limited model. The dynamic analysis of dust grains shows that the contribution of the neutral drag force in the net force acting on the dust grain is negligible, whereas the contribution of the gravity force is found considerable only for micrometer particles. The dust grainsmore » trapping is only possible when the electrostatic force is balanced by the ion drag and the gravity forces. This trapping occurs for a limited radius interval of micrometer dust grains, which is around the most probable dust grain radius. The effect of electron temperature and ion density at the sheath edge is also discussed. It is shown that the attachment of particles reduces considerably the sheath thickness and induces dust grain deceleration. The increase of the lower limit as well as the upper limit of the dust radius reduces also the sheath thickness.« less

  16. The High Energy Particle Detector (HEPD) for the CSES satellite

    NASA Astrophysics Data System (ADS)

    Sparvoli, Roberta

    2016-04-01

    We present the advanced High Energy Particle Detector (HEPD) developed to be installed on the China Seismo-Electromagnetic Satellite (CSES), launch scheduled by the end of 2016. The HEPD instrument aims at studying the temporal stability of the inner Van Allen radiation belts and at investigating precipitation of trapped particles induced by magnetospheric, ionosferic and tropospheric EM emissions, as well as by the seismo-electromagnetic and anthropogenic disturbances. In occasion of many earthquakes and volcanic eruptions, several measurements, on ground and by experiments on LEO satellites revealed: electromagnetic and plasma perturbations, and anomalous increases of high-energy Van Allen charged particle flux. The precipitation of trapped electrons and protons (from a few MeV to several tens of MeV) could be induced by diffusion of particles pitch-angle possibly caused by the seismo-electromagnetic emissions generated before (a few hours) earthquakes. Due to the longitudinal drift along a same L-shell, anomalous particle bursts of precipitating particles could be detected by satellites not only on the epicentral area of the incoming earthquake, but along the drift path. Moreover, the opposite drift directions of positive and negative particles could allow reconstructing the longitude of the earthquake focal area. Although, the earthquake prediction is not within the reach of current knowledge, however the study of the precursors aims at collecting all relevant information that can infer the spatial and temporal coordinates of the seismic events from measurements. At this purposes, it is essential to detect particles in a wide range of energies (because particles of different energies are sensitive to different frequencies of seismo-electromagnetic emissions), with a good angular resolution (in order to separate fluxes of trapped and precipitating particles), and excellent ability to recognize the charge (that determines the direction of the longitudinal drift of precipitating particles). The East-West or West-East drift direction is an essential information to retrieve the longitude of the starting point of the burst precipitation and then to reconstruct the geographical area where the interaction between particles and seismo-electromagnetic emissions occurred. HEPD has been designed to provide good energy resolution and high angular resolution for electrons (3 - 100 MeV) and proton (30 - 200 MeV). The detector consists of two layers of segmented plastic scintillators and a calorimeter, constituted by a tower of scintillator counters. The direction of the incident particle is provided by two planes of double-side silicon micro-strip detectors placed in front of the trigger scintillator planes to limit the effect of Coulomb multiple scattering on the direction measurement. The electron angular resolution varies between 13° at 2.5 MeV and ≤ 1° for energies above 35 MeV. The detector has a wide angular acceptance (>60°) over the full energy range 2.5-100 MeV. The angle-integrated, total acceptance is larger than 100 cm2sr between 2.5 and 35 MeV, decreasing at higher energies (about 40 cm2sr at 100 MeV). The proton angular resolution is ≤1° over the full detection range. The proton integrated-angle, total acceptance is larger than 100 cm2sr between 30 MeV and 150 MeV, decreasing to 60 cm2sr at 200 MeV. The good energy-loss measurement of the silicon track, combined with the energy resolution of the scintillators and calorimeter, allows identifying electrons with acceptable proton background levels (10-5-10-3).

  17. Revealing hole trapping in zinc oxide nanoparticles by time-resolved X-ray spectroscopy

    DOE PAGES

    Penfold, Thomas J.; Szlachetko, Jakub; Santomauro, Fabio G.; ...

    2018-02-02

    Nanostructures of transition metal oxides (TMO), such as ZnO, have attracted considerable interest for solar-energy conversion and photocatalysis. For the latter, trapping of charge carriers has an essential role. The probing of electron trapping in the conduction band of room temperature photoexcited TMOs has recently become possible owing to the emergence of time-resolved element-sensitive methods, such as X-ray spectroscopy. However, because the valence band of TMOs is dominated by the oxygen 2p orbitals,holes have so far escaped observation. Herein we use a novel dispersive X-ray emission spectrometer combined with X-ray absorption spectroscopy to directly probe the charge carrier relaxation andmore » trapping pro-cesses in ZnO nanoparticles after above band-gap photoexcitation. Here, our results, supported by simulations, demonstrate that within our temporal resolution of 80 ps, photo-excited holes are trapped at singly charged oxygen vacancies, turning them into doubly charged vacancies, which causes an outward displacement by approximately 15% of the four surrounding Zn atoms away from the central vacancy. These traps recombine radiatively with the delocalised electrons of the conduction band yielding the commonly observed green luminescence. This identification of the hole traps and their evolution provides new insight for future developments of TMO-based nanodevices.« less

  18. Revealing hole trapping in zinc oxide nanoparticles by time-resolved X-ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penfold, Thomas J.; Szlachetko, Jakub; Santomauro, Fabio G.

    Nanostructures of transition metal oxides (TMO), such as ZnO, have attracted considerable interest for solar-energy conversion and photocatalysis. For the latter, trapping of charge carriers has an essential role. The probing of electron trapping in the conduction band of room temperature photoexcited TMOs has recently become possible owing to the emergence of time-resolved element-sensitive methods, such as X-ray spectroscopy. However, because the valence band of TMOs is dominated by the oxygen 2p orbitals,holes have so far escaped observation. Herein we use a novel dispersive X-ray emission spectrometer combined with X-ray absorption spectroscopy to directly probe the charge carrier relaxation andmore » trapping pro-cesses in ZnO nanoparticles after above band-gap photoexcitation. Here, our results, supported by simulations, demonstrate that within our temporal resolution of 80 ps, photo-excited holes are trapped at singly charged oxygen vacancies, turning them into doubly charged vacancies, which causes an outward displacement by approximately 15% of the four surrounding Zn atoms away from the central vacancy. These traps recombine radiatively with the delocalised electrons of the conduction band yielding the commonly observed green luminescence. This identification of the hole traps and their evolution provides new insight for future developments of TMO-based nanodevices.« less

  19. Currents Induced by Injected Charge in Junction Detectors

    PubMed Central

    Gaubas, Eugenijus; Ceponis, Tomas; Kalesinskas, Vidas

    2013-01-01

    The problem of drifting charge-induced currents is considered in order to predict the pulsed operational characteristics in photo- and particle-detectors with a junction controlled active area. The direct analysis of the field changes induced by drifting charge in the abrupt junction devices with a plane-parallel geometry of finite area electrodes is presented. The problem is solved using the one-dimensional approach. The models of the formation of the induced pulsed currents have been analyzed for the regimes of partial and full depletion. The obtained solutions for the current density contain expressions of a velocity field dependence on the applied voltage, location of the injected surface charge domain and carrier capture parameters. The drift component of this current coincides with Ramo's expression. It has been illustrated, that the synchronous action of carrier drift, trapping, generation and diffusion can lead to a vast variety of possible current pulse waveforms. Experimental illustrations of the current pulse variations determined by either the rather small or large carrier density within the photo-injected charge domain are presented, based on a study of Si detectors. PMID:24036586

  20. Determining the Critical Dose Threshold of Electron-Induced Electron Yield for Minimally Charged Highly Insulating Materials

    NASA Astrophysics Data System (ADS)

    Hoffmann, Ryan; Dennison, J. R.; Abbott, Jonathan

    2006-03-01

    When incident energetic electrons interact with a material, they excite electrons within the material to escape energies. The electron emission is quantified as the ratio of emitted electrons to incident particle flux, termed electron yield. Measuring the electron yield of insulators is difficult due to dynamic surface charge accumulation which directly affects landing energies and the potential barrier that emitted electrons must overcome. Our recent measurements of highly insulating materials have demonstrated significant changes in total yield curves and yield decay curves for very small electron doses equivalent to a trapped charge density of <10^10 electrons /cm^3. The Chung-Everhart theory provides a basic model for the behavior of the electron emission spectra which we relate to yield decay curves as charge is allowed to accumulate. Yield measurements as a function of dose for polyimide (Kapton^TM) and microcrystalline SiO2 will be presented. We use our data and model to address the question of whether there is a minimal dose threshold at which the accumulated charge no longer affects the yield.

  1. High-refractive index particles in counter-propagating optical tweezers - manipulation and forces

    NASA Astrophysics Data System (ADS)

    van der Horst, Astrid

    2006-09-01

    With a tightly focused single laser beam, also called optical tweezers, particles of a few nanometers up to several micrometers in size can be trapped and manipulated in 3D. The size, shape and refractive index of such colloidal particles are of influence on the optical forces exerted on them in the trap. A higher refractive-index difference between a particle and the surrounding medium will increase the forces. The destabilizing scattering force, however, pushing the particle in the direction of the beam, increases more than the gradient force, directed towards the focus. As a consequence, particles with a certain refractive index cannot be trapped in a single-beam gradient trap, and a limit is set to the force that can be exerted. We developed an experimental setup with two opposing high-numerical objectives. By splitting the laser beam, we created counter-propagating tweezers in which the scattering forces were canceled in the axial direction and high-refractive index and metallic particles could also be trapped. With the use of a separate laser beam combined with a quadrant photodiode, accurate position detection on a trapped particle in the counter-propagating tweezers is possible. We used this to determine trap stiffnesses, and show, with measurements and calculations, an enhancement in trap stiffness of at least 3 times for high-index 1.1-micrometer-diameter titania particles as compared to 1.4-micrometer-diameter silica particles under the same conditions. The ability to exert higher forces with lower laser power finds application in biophysical experiments, where laser damage and heating play a role. The manipulation of high-index and metallic particles also has applications in materials and colloid science, for example to incorporate high-index defects in colloidal photonic crystals. We demonstrate the patterning of high-index particles onto a glass substrate. The sample cell was mounted on a high-accuracy piezo stage combined with a long-range stage with motorized actuators. Because we used image analysis of the patterned structure to accurately find back the starting position and compensate for drift of the sample, we could move far away from the patterning region. This enabled us to select particles from a separate reservoir of a mixture of particles, and, one-by-one, position them at chosen locations. By time-sharing the laser beam using acousto-optic deflectors, we created multiple counter-propagating tweezers. We trapped an array of high-refractive index particles, and were able to move those particles individually. We used such a dynamic array of counter-propagating tweezers to create line-optical tweezers in which we trapped semi-conducting high-refractive index nanorods in three dimensions. We demonstrate full 3D translational and in-plane rotational control over the rods, which could not be held in single-beam line-tweezers. The configuration of two opposing objectives was also used for simultaneous trapping with one objective and confocal imaging of the fluorescently labeled particles using the other objective. By trapping particles with a refractive index contrast in a dispersion of index-matched particles, crystallization could be induced, which was imaged in three dimensions using confocal microscopy.

  2. Effect of 30 MeV Li3+ ion and 8 MeV electron irradiation on N-channel MOSFETs

    NASA Astrophysics Data System (ADS)

    Prakash, A. P. G.; Ganesh, K. C. P.; Nagesha, Y. N.; Umakanth, D.; Arora, S. K.; Siddappa, K.

    The effect of 30 MeV Li3+ ion and 8 MeV electron irradiation on the threshold voltage (V-TH), the voltage shift due to interface trapped charge (DeltaV(Nit)), the voltage shift due to oxide trapped charge (DeltaV(Not)), the density of interface trapped charge (DeltaN(it)), the density of oxide trapped charge (DeltaN(ot) ) and the drain saturation current (I-D Sat) were studied as a function of fluence. Considerable increase in DeltaN(it) and DeltaN(ot) , and decrease in V-TH and I-D Sat were observed in both types of irradiation. The observed difference in the properties of Li3+ ion and electron irradiated MOSFETs are interpreted on the basis of energy loss process associated with the type of radiation. The study showed that the 30 MeV Li3+ ion irradiation produce more damage when compared to the 8 MeV electron irradiation because of the higher electronic energy loss value. High temperature annealing studies showed that trapped charge generated during ion and electron irradiation was annealed out at 500 degreesC.

  3. Particle trap to sheath contact for a gas-insulated transmission line having a corrugated outer conductor

    DOEpatents

    Fischer, William H.; Cookson, Alan H.; Yoon, Kue H.

    1984-04-10

    A particle trap to outer elongated conductor or sheath contact for gas-insulated transmission lines. The particle trap to outer sheath contact of the invention is applicable to gas-insulated transmission lines having either corrugated or non-corrugated outer sheaths. The contact of the invention includes an electrical contact disposed on a lever arm which in turn is rotatably disposed on the particle trap and biased in a direction to maintain contact between the electrical contact and the outer sheath.

  4. Charge carrier dynamics in organic semiconductors and their donor-acceptor composites: Numerical modeling of time-resolved photocurrent

    NASA Astrophysics Data System (ADS)

    Johnson, Brian; Kendrick, Mark J.; Ostroverkhova, Oksana

    2013-09-01

    We present a model that describes nanosecond (ns) time-scale photocurrent dynamics in functionalized anthradithiophene (ADT) films and ADT-based donor-acceptor (D/A) composites. By fitting numerically simulated photocurrents to experimental data, we quantify contributions of multiple pathways of charge carrier photogeneration to the photocurrent, as well as extract parameters that characterize charge transport (CT) in organic films including charge carrier mobilities, trap densities, hole trap depth, and trapping and recombination rates. In pristine ADT films, simulations revealed two competing charge photogeneration pathways: fast, occurring on picosecond (ps) or sub-ps time scales with efficiencies below 10%, and slow, which proceeds at the time scale of tens of nanoseconds, with efficiencies of about 11%-12%, at the applied electric fields of 40-80 kV/cm. The relative contribution of these pathways to the photocurrent was electric field dependent, with the contribution of the fast process increasing with applied electric field. However, the total charge photogeneration efficiency was weakly electric field dependent exhibiting values of 14%-20% of the absorbed photons. The remaining 80%-86% of the photoexcitation did not contribute to charge carrier generation at these time scales. In ADT-based D/A composites with 2 wt.% acceptor concentration, an additional pathway of charge photogeneration that proceeds via CT exciton dissociation contributed to the total charge photogeneration. In the composite with the functionalized pentacene (Pn) acceptor, which exhibits strong exciplex emission from a tightly bound D/A CT exciton, the contribution of the CT state to charge generation was small, ˜8%-12% of the total number of photogenerated charge carriers, dependent on the electric field. In contrast, in the composite with PCBM acceptor, the CT state contributed about a half of all photogenerated charge carriers. In both D/A composites, the charge carrier mobilities were reduced and trap densities and average trap depths were increased, as compared to a pristine ADT donor film. A considerably slower recombination of free holes with trapped electrons was found in the composite with the PCBM acceptor, which led to slower decays of the transient photocurrent and considerably higher charge retention, as compared to a pristine ADT donor film and the composite with the functionalized Pn acceptor.

  5. Convection currents enhancement of the spring constant in optical tweezers

    NASA Astrophysics Data System (ADS)

    Zenteno-Hernández, J. A.; Gómez-Vieyra, A.; Torres-Hurtado, S. A.; Ramirez-San-Juan, J. C.; Ramos-García, R.

    2016-09-01

    In this work we demonstrate the increasing of the trap stiffness (spring constant) constant of an optical trap of particles suspended in water by laser-induced convection currents. These currents are the result of thermal gradients created by a light absorption in a thin layer of hydrogenated amorphous silicon (a:Si-H) deposited at the bottom of cell. Since convection currents (and therefore drag forces) are symmetric around the beam focus particles trapped by the beam are further contained. Around the focus the drag force is directed upwards and partially compensated by radiation pressure depending on the laser power increasing the stiffness of the optical trapping increases significatively so a particle trapped could dragged (by moving the translation stage leaving the beam fixed) at velocities as high as 90μm/s without escaping the trap, whereas with no a:Si-H film, the particle escapes from the trap at lower velocities (30μm/s).

  6. A time-resolved current method and TSC under vacuum conditions of SEM: Trapping and detrapping processes in thermal aged XLPE insulation cables

    NASA Astrophysics Data System (ADS)

    Boukezzi, L.; Rondot, S.; Jbara, O.; Boubakeur, A.

    2017-03-01

    Thermal aging of cross-linked polyethylene (XLPE) can cause serious concerns in the safety operation in high voltage system. To get a more detailed picture on the effect of thermal aging on the trapping and detrapping process of XLPE in the melting temperature range, Thermal Stimulated Current (TSC) have been implemented in a Scanning Electron Microscope (SEM) with a specific arrangement. The XLPE specimens are molded and aged at two temperatures (120 °C and 140 °C) situated close to the melting temperature of the material. The use of SEM allows us to measure both leakage and displacement currents induced in samples under electron irradiation. The first represents the conduction process of XLPE and the second gives information on the trapping of charges in the bulk of the material. TSC associated to the SEM leads to show spectra of XLPE discharge under thermal stimulation using both currents measured after electron irradiation. It was found that leakage current in the charging process may be related to the physical defects resulting in crystallinity variation under thermal aging. However the trapped charge can be affected by the carbonyl groups resulting from the thermo-oxidation degradation and the disorder in the material. It is evidenced from the TSC spectra of unaged XLPE that there is no detrapping charge under heat stimulation. Whereas the presence of peaks in the TSC spectra of thermally aged samples indicates that there is some amount of trapped charge released by heating. The detrapping behavior of aged XLPE is supported by the supposition of the existence of two trap levels: shallow traps and deep traps. Overall, physico-chemical reactions under thermal aging at high temperatures leads to the enhancement of shallow traps density and changes in range of traps depth. These changes induce degradation of electrical properties of XLPE.

  7. Electrothermal flow effects in insulating (electrodeless) dielectrophoresis systems.

    PubMed

    Hawkins, Benjamin G; Kirby, Brian J

    2010-11-01

    We simulate electrothermally induced flow in polymeric, insulator-based dielectrophoresis (iDEP) systems with DC-offset, AC electric fields at finite thermal Péclet number, and we identify key regimes where electrothermal (ET) effects enhance particle deflection and trapping. We study a single, two-dimensional constriction in channel depth with parametric variations in electric field, channel geometry, fluid conductivity, particle electrophoretic (EP) mobility, and channel electroosmotic (EO) mobility. We report the effects of increasing particle EP mobility, channel EO mobility, and AC and DC field magnitudes on the mean constriction temperature and particle behavior. Specifically, we quantify particle deflection and trapping, referring to the deviation of particles from their pathlines due to dielectrophoresis as they pass a constriction and the stagnation of particles due to negative dielectrophoresis near a constriction, respectively. This work includes the coupling between fluid, heat, and electromagnetic phenomena via temperature-dependent physical parameters. Results indicate that the temperature distribution depends strongly on the fluid conductivity and electric field magnitude, and particle deflection and trapping depend strongly on the channel geometry. Electrothermal (ET) effects perturb the EO flow field, creating vorticity near the channel constriction and enhancing the deflection and trapping effects. ET effects alter particle deflection and trapping responses in insulator-based dielectrophoresis devices, especially at intermediate device aspect ratios (2 ≤ r ≤ 7) in solutions of higher conductivity (σ m ≥ 1 × 10(-3)S/m). The impact of ET effects on particle deflection and trapping are diminished when particle EP mobility or channel EO mobility is high. In almost all cases, ET effects enhance negative dielectrophoretic particle deflection and trapping phenomena. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Aqueous suspensions of natural swelling clay minerals. 2. Rheological characterization.

    PubMed

    Paineau, Erwan; Michot, Laurent J; Bihannic, Isabelle; Baravian, Christophe

    2011-06-21

    We report in this article a comprehensive investigation of the viscoelastic behavior of different natural colloidal clay minerals in aqueous solution. Rheological experiments were carried out under both dynamic and steady-state conditions, allowing us to derive the elasticity and yield stress. Both parameters can be renormalized for all sizes, ionic strength, and type of clay using in a first approach only the volume of the particles. However, applying such a treatment to various clays of similar shapes and sizes yields differences that can be linked to the repulsion strength and charge location in the swelling clays. The stronger the repulsive interactions, the better the orientation of clay particles in flows. In addition, a master linear relationship between the elasticity and yield stress whose value corresponds to a critical deformation of 0.1 was evidenced. Such a relationship may be general for any colloidal suspension of anisometric particles as revealed by the analysis of various experimental data obtained on either disk-shaped or lath- and rod-shaped particles. The particle size dependence of the sol-gel transition was also investigated in detail. To understand why suspensions of larger particles gel at a higher volume fraction, we propose a very simplified view based on the statistical hydrodynamic trapping of a particle by an another one in its neighborhood upon translation and during a short period of time. We show that the key parameter describing this hydrodynamic trapping varies as the cube of the average diameter and captures most features of the sol-gel transition. Finally, we pointed out that in the high shear limit the suspension viscosity is still closely related to electrostatic interactions and follows the same trends as the viscoelastic properties. © 2011 American Chemical Society

  9. An improved model to estimate trapping parameters in polymeric materials and its application on normal and aged low-density polyethylenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning, E-mail: nl4g12@soton.ac.uk; He, Miao; Alghamdi, Hisham

    2015-08-14

    Trapping parameters can be considered as one of the important attributes to describe polymeric materials. In the present paper, a more accurate charge dynamics model has been developed, which takes account of charge dynamics in both volts-on and off stage into simulation. By fitting with measured charge data with the highest R-square value, trapping parameters together with injection barrier of both normal and aged low-density polyethylene samples were estimated using the improved model. The results show that, after long-term ageing process, the injection barriers of both electrons and holes is lowered, overall trap depth is shallower, and trap density becomesmore » much greater. Additionally, the changes in parameters for electrons are more sensitive than those of holes after ageing.« less

  10. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    PubMed

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  11. The Role of Trap-assisted Recombination in Luminescent Properties of Organometal Halide CH3NH3PbBr3 Perovskite Films and Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Yu; Wang, Hai-Yu; Zhang, Yan-Xia; Hao, Ya-Wei; Sun, Chun; Zhang, Yu; Gao, Bing-Rong; Chen, Qi-Dai; Sun, Hong-Bo

    2016-06-01

    Hybrid metal halide perovskites have been paid enormous attentions in photophysics research, whose excellent performances were attributed to their intriguing charge carriers proprieties. However, it still remains far from satisfaction in the comprehensive understanding of perovskite charge-transport properities, especially about trap-assisted recombination process. In this Letter, through time-resolved transient absorption (TA) and photoluminescence (PL) measurements, we provided a relative comprehensive investigation on the charge carriers recombination dynamics of CH3NH3PbBr3 (MAPbBr3) perovskite films and quantum dots (QDs), especially about trap-assisted recombination. It was found that the integral recombination mode of MAPbBr3 films was highly sensitive to the density distribution of generated charge carriers and trap states. Additional, Trap effects would be gradually weakened with elevated carrier densities. Furthermore, the trap-assisted recombination can be removed from MAPbBr3 QDs through its own surface passivation mechanism and this specialty may render the QDs as a new material in illuminating research. This work provides deeper physical insights into the dynamics processes of MAPbBr3 materials and paves a way toward more light-harvesting applications in future.

  12. MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR

    NASA Astrophysics Data System (ADS)

    Rodríguez, D.; Blaum, K.; Nörtershäuser, W.; Ahammed, M.; Algora, A.; Audi, G.; Äystö, J.; Beck, D.; Bender, M.; Billowes, J.; Block, M.; Böhm, C.; Bollen, G.; Brodeur, M.; Brunner, T.; Bushaw, B. A.; Cakirli, R. B.; Campbell, P.; Cano-Ott, D.; Cortés, G.; Crespo López-Urrutia, J. R.; Das, P.; Dax, A.; de, A.; Delheij, P.; Dickel, T.; Dilling, J.; Eberhardt, K.; Eliseev, S.; Ettenauer, S.; Flanagan, K. T.; Ferrer, R.; García-Ramos, J.-E.; Gartzke, E.; Geissel, H.; George, S.; Geppert, C.; Gómez-Hornillos, M. B.; Gusev, Y.; Habs, D.; Heenen, P.-H.; Heinz, S.; Herfurth, F.; Herlert, A.; Hobein, M.; Huber, G.; Huyse, M.; Jesch, C.; Jokinen, A.; Kester, O.; Ketelaer, J.; Kolhinen, V.; Koudriavtsev, I.; Kowalska, M.; Krämer, J.; Kreim, S.; Krieger, A.; Kühl, T.; Lallena, A. M.; Lapierre, A.; Le Blanc, F.; Litvinov, Y. A.; Lunney, D.; Martínez, T.; Marx, G.; Matos, M.; Minaya-Ramirez, E.; Moore, I.; Nagy, S.; Naimi, S.; Neidherr, D.; Nesterenko, D.; Neyens, G.; Novikov, Y. N.; Petrick, M.; Plaß, W. R.; Popov, A.; Quint, W.; Ray, A.; Reinhard, P.-G.; Repp, J.; Roux, C.; Rubio, B.; Sánchez, R.; Schabinger, B.; Scheidenberger, C.; Schneider, D.; Schuch, R.; Schwarz, S.; Schweikhard, L.; Seliverstov, M.; Solders, A.; Suhonen, M.; Szerypo, J.; Taín, J. L.; Thirolf, P. G.; Ullrich, J.; van Duppen, P.; Vasiliev, A.; Vorobjev, G.; Weber, C.; Wendt, K.; Winkler, M.; Yordanov, D.; Ziegler, F.

    2010-05-01

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique “fingerprint”. Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10-5 to below 10-8 for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an A_dvanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10-9 can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. This accuracy limit is important for fundamental interaction tests, but also allows for the study of the fine structure of the nuclear mass surface with unprecedented accuracy, whenever required. The use of the FT-ICR technique provides true single ion sensitivity. This is essential to access isotopes that are produced with minimum rates which are very often the most interesting ones. Instead of pushing for highest accuracy, the high charge state of the ions can also be used to reduce the storage time of the ions, hence making measurements on even shorter-lived isotopes possible. Decay studies in ion traps will become possible with MATS. Novel spectroscopic tools for in-trap high-resolution conversion-electron and charged-particle spectroscopy from carrier-free sources will be developed, aiming e.g. at the measurements of quadrupole moments and E0 strengths. With the possibility of both high-accuracy mass measurements of the shortest-lived isotopes and decay studies, the high sensitivity and accuracy potential of MATS is ideally suited for the study of very exotic nuclides that will only be produced at the FAIR facility.Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The dependencies of the hyperfine splitting and isotope shift on the nuclear moments and mean square nuclear charge radii are well known and the theoretical framework for the extraction of nuclear parameters is well established. These extracted parameters provide fundamental information on the structure of nuclei at the limits of stability. Vital information on both bulk and valence nuclear properties are derived and an exceptional sensitivity to changes in nuclear deformation is achieved. Laser spectroscopy provides the only mechanism for such studies in exotic systems and uniquely facilitates these studies in a model-independent manner.The accuracy of laser-spectroscopic-determined nuclear properties is very high. Requirements concerning production rates are moderate; collinear spectroscopy has been performed with production rates as few as 100 ions per second and laser-desorption resonance ionization mass spectroscopy (combined with β-delayed neutron detection) has been achieved with rates of only a few atoms per second.This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy, which will provide a complete system with respect to the physics and isotopes that can be studied. Since MATS and LaSpec require high-quality low-energy beams, the two collaborations have a common beamline to stop the radioactive beam of in-flight produced isotopes and prepare them in a suitable way for transfer to the MATS and LaSpec setups, respectively.

  13. A coupled model of transport-reaction-mechanics with trapping. Part I - Small strain analysis

    NASA Astrophysics Data System (ADS)

    Salvadori, A.; McMeeking, R.; Grazioli, D.; Magri, M.

    2018-05-01

    A fully coupled model for mass and heat transport, mechanics, and chemical reactions with trapping is proposed. It is rooted in non-equilibrium rational thermodynamics and assumes that displacements and strains are small. Balance laws for mass, linear and angular momentum, energy, and entropy are stated. Thermodynamic restrictions are identified, based on an additive strain decomposition and on the definition of the Helmholtz free energy. Constitutive theory and chemical kinetics are studied in order to finally write the governing equations for the multi-physics problem. The field equations are solved numerically with the finite element method, stemming from a three-fields variational formulation. Three case-studies on vacancies redistribution in metals, hydrogen embrittlement, and the charge-discharge of active particles in Li-ion batteries demonstrate the features and the potential of the proposed model.

  14. Optical patterning of trapped charge in nitrogen-doped diamond

    NASA Astrophysics Data System (ADS)

    Jayakumar, Harishankar; Henshaw, Jacob; Dhomkar, Siddharth; Pagliero, Daniela; Laraoui, Abdelghani; Manson, Neil B.; Albu, Remus; Doherty, Marcus W.; Meriles, Carlos A.

    2016-08-01

    The nitrogen-vacancy (NV) centre in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge, which can be attained by optical excitation. Here, we use two-colour optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs, and to subsequently probe the corresponding redistribution of charge. We uncover the formation of spatial patterns of trapped charge, which we qualitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects. Further, by using the NV as a probe, we map the relative fraction of positively charged nitrogen on localized optical excitation. These observations may prove important to transporting quantum information between NVs or to developing three-dimensional, charge-based memories.

  15. Optical patterning of trapped charge in nitrogen-doped diamond.

    PubMed

    Jayakumar, Harishankar; Henshaw, Jacob; Dhomkar, Siddharth; Pagliero, Daniela; Laraoui, Abdelghani; Manson, Neil B; Albu, Remus; Doherty, Marcus W; Meriles, Carlos A

    2016-08-30

    The nitrogen-vacancy (NV) centre in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge, which can be attained by optical excitation. Here, we use two-colour optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs, and to subsequently probe the corresponding redistribution of charge. We uncover the formation of spatial patterns of trapped charge, which we qualitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects. Further, by using the NV as a probe, we map the relative fraction of positively charged nitrogen on localized optical excitation. These observations may prove important to transporting quantum information between NVs or to developing three-dimensional, charge-based memories.

  16. Optical patterning of trapped charge in nitrogen-doped diamond

    PubMed Central

    Jayakumar, Harishankar; Henshaw, Jacob; Dhomkar, Siddharth; Pagliero, Daniela; Laraoui, Abdelghani; Manson, Neil B.; Albu, Remus; Doherty, Marcus W.; Meriles, Carlos A.

    2016-01-01

    The nitrogen-vacancy (NV) centre in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge, which can be attained by optical excitation. Here, we use two-colour optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs, and to subsequently probe the corresponding redistribution of charge. We uncover the formation of spatial patterns of trapped charge, which we qualitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects. Further, by using the NV as a probe, we map the relative fraction of positively charged nitrogen on localized optical excitation. These observations may prove important to transporting quantum information between NVs or to developing three-dimensional, charge-based memories. PMID:27573190

  17. Dynamics and control of fast ion crystal splitting in segmented Paul traps (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2014-07-09

    operations, in addition to laser - or microwave-driven logic gates. Essential shuttling operations are splitting and merging of linear ion crystals. It is...from stray charges, laser induced charging of the trap [19], trap geometry imperfections or residual ponderomotive forces along the trap axis. The...transfer expressed as the mean phonon number Δ ω¯ = n E / f . We distinguish several regimes of laser –ion interaction: (i) if the vibrational

  18. Charge-Trapping-Induced Non-Ideal Behaviors in Organic Field-Effect Transistors.

    PubMed

    Un, Hio-Ieng; Cheng, Peng; Lei, Ting; Yang, Chi-Yuan; Wang, Jie-Yu; Pei, Jian

    2018-05-01

    Organic field-effect transistors (OFETs) with impressively high hole mobilities over 10 cm 2 V -1 s -1 and electron mobilities over 1 cm 2 V -1 s -1 have been reported in the past few years. However, significant non-ideal electrical characteristics, e.g., voltage-dependent mobilities, have been widely observed in both small-molecule and polymer systems. This issue makes the accurate evaluation of the electrical performance impossible and also limits the practical applications of OFETs. Here, a semiconductor-unrelated, charge-trapping-induced non-ideality in OFETs is reported, and a revised model for the non-ideal transfer characteristics is provided. The trapping process can be directly observed using scanning Kelvin probe microscopy. It is found that such trapping-induced non-ideality exists in OFETs with different types of charge carriers (p-type or n-type), different types of dielectric materials (inorganic and organic) that contain different functional groups (OH, NH 2 , COOH, etc.). As fas as it is known, this is the first report for the non-ideal transport behaviors in OFETs caused by semiconductor-independent charge trapping. This work reveals the significant role of dielectric charge trapping in the non-ideal transistor characteristics and also provides guidelines for device engineering toward ideal OFETs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effects of non-Gaussian Brownian motion on direct force optical tweezers measurements of the electrostatic forces between pairs of colloidal particles.

    PubMed

    Raudsepp, Allan; A K Williams, Martin; B Hall, Simon

    2016-07-01

    Measurements of the electrostatic force with separation between a fixed and an optically trapped colloidal particle are examined with experiment, simulation and analytical calculation. Non-Gaussian Brownian motion is observed in the position of the optically trapped particle when particles are close and traps weak. As a consequence of this motion, a simple least squares parameterization of direct force measurements, in which force is inferred from the displacement of an optically trapped particle as separation is gradually decreased, contains forces generated by the rectification of thermal fluctuations in addition to those originating directly from the electrostatic interaction between the particles. Thus, when particles are close and traps weak, simply fitting the measured direct force measurement to DLVO theory extracts parameters with modified meanings when compared to the original formulation. In such cases, however, physically meaningful DLVO parameters can be recovered by comparing the measured non-Gaussian statistics to those predicted by solutions to Smoluchowski's equation for diffusion in a potential.

  20. Intense Ly-alpha emission from Uranus

    NASA Technical Reports Server (NTRS)

    Durrance, S. T.; Moos, H. W.

    1982-01-01

    The existence of intense atomic hydrogen Ly-alpha emission from Uranus is demonstrated here by utilizing the monochromatic imaging capabilities of the International Ultraviolet Explorer (IUE) spectrograph. Observations show increased emission in the vicinity of Uranus superimposed on the geocoronal/interplanetary background. If resonant scattering of solar Ly-alpha is the source of the 1.6 + or - 0.4 kR disk averaged brightness, then very high column densities of atomic H above the absorbing methane are required. Precipitation of trapped charged particles, i.e., aurora, could explain the emissions. This would imply a planetary magnetic field.

  1. Resilience of quasi-isodynamic stellarators against trapped-particle instabilities.

    PubMed

    Proll, J H E; Helander, P; Connor, J W; Plunk, G G

    2012-06-15

    It is shown that in perfectly quasi-isodynamic stellarators, trapped particles with a bounce frequency much higher than the frequency of the instability are stabilizing in the electrostatic and collisionless limit. The collisionless trapped-particle instability is therefore stable as well as the ordinary electron-density-gradient-driven trapped-electron mode. This result follows from the energy balance of electrostatic instabilities and is thus independent of all other details of the magnetic geometry.

  2. Nitrided SrTiO3 as charge-trapping layer for nonvolatile memory applications

    NASA Astrophysics Data System (ADS)

    Huang, X. D.; Lai, P. T.; Liu, L.; Xu, J. P.

    2011-06-01

    Charge-trapping characteristics of SrTiO3 with and without nitrogen incorporation were investigated based on Al/Al2O3/SrTiO3/SiO2/Si (MONOS) capacitors. A Ti-silicate interlayer at the SrTiO3/SiO2 interface was confirmed by x-ray photoelectron spectroscopy and transmission electron microscopy. Compared with the MONOS capacitor with SrTiO3 as charge-trapping layer (CTL), the one with nitrided SrTiO3 showed a larger memory window (8.4 V at ±10 V sweeping voltage), higher P/E speeds (1.8 V at 1 ms +8 V) and better retention properties (charge loss of 38% after 104 s), due to the nitrided SrTiO3 film exhibiting higher dielectric constant, higher deep-level traps induced by nitrogen incorporation, and suppressed formation of Ti silicate between the CTL and SiO2 by nitrogen passivation.

  3. High voltage gas insulated transmission line with continuous particle trapping

    DOEpatents

    Cookson, Alan H.; Dale, Steinar J.

    1983-01-01

    This invention provides a novel high voltage gas insulated transmission line utilizing insulating supports spaced at intervals with snap-in means for supporting a continuous trapping apparatus and said trapping apparatus having perforations and cutouts to facilitate trapping of contaminating particles and system flexibility.

  4. A simple optical tweezers for trapping polystyrene particles

    NASA Astrophysics Data System (ADS)

    Shiddiq, Minarni; Nasir, Zulfa; Yogasari, Dwiyana

    2013-09-01

    Optical tweezers is an optical trap. For decades, it has become an optical tool that can trap and manipulate any particle from the very small size like DNA to the big one like bacteria. The trapping force comes from the radiation pressure of laser light which is focused to a group of particles. Optical tweezers has been used in many research areas such as atomic physics, medical physics, biophysics, and chemistry. Here, a simple optical tweezers has been constructed using a modified Leybold laboratory optical microscope. The ocular lens of the microscope has been removed for laser light and digital camera accesses. A laser light from a Coherent diode laser with wavelength λ = 830 nm and power 50 mW is sent through an immersion oil objective lens with magnification 100 × and NA 1.25 to a cell made from microscope slides containing polystyrene particles. Polystyrene particles with size 3 μm and 10 μm are used. A CMOS Thorlabs camera type DCC1545M with USB Interface and Thorlabs camera lens 35 mm are connected to a desktop and used to monitor the trapping and measure the stiffness of the trap. The camera is accompanied by camera software which makes able for the user to capture and save images. The images are analyzed using ImageJ and Scion macro. The polystyrene particles have been trapped successfully. The stiffness of the trap depends on the size of the particles and the power of the laser. The stiffness increases linearly with power and decreases as the particle size larger.

  5. Low-temperature post-deposition annealing investigation for 3D charge trap flash memory by Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Huo, Zongliang; Jin, Lei; Han, Yulong; Li, Xinkai; Ye, Tianchun; Liu, Ming

    2015-01-01

    The influence of post-deposition annealing (PDA) temperature condition on charge distribution behavior of HfO2 thin films was systematically investigated by various-temperature Kelvin probe force microscopy technology. Contact potential difference profiles demonstrated that charge storage capability shrinks with decreasing annealing temperature from 1,000 to 500 °C and lower. Compared to 1,000 °C PDA, it was found that 500 °C PDA causes deeper effective trap energy level, suppresses lateral charge spreading, and improves the retention characteristics. It is concluded that low-temperature PDA can be adopted in 3D HfO2-based charge trap flash memory to improve the thermal treatment compatibility of the bottom peripheral logic and upper memory arrays.

  6. Selectively transporting small chiral particles with circularly polarized Airy beams.

    PubMed

    Lu, Wanli; Chen, Huajin; Guo, Sandong; Liu, Shiyang; Lin, Zhifang

    2018-05-01

    Based on the full wave simulation, we demonstrate that a circularly polarized vector Airy beam can selectively transport small chiral particles along a curved trajectory via the chirality-tailored optical forces. The transverse optical forces can draw the chiral particles with different particle chirality towards or away from the intensity maxima of the beam, leading to the selective trapping in the transverse plane. The transversely trapped chiral particles are then accelerated along a curved trajectory of the Airy beam by the chirality-tailored longitudinal scattering force, rendering an alternative way to sort and/or transport chiral particles with specified helicity. Finally, the underlying physics of the chirality induced transverse trap and de-trap phenomena are examined by the analytical theory within the dipole approximation.

  7. Interfacial dynamic surface traps of lead sulfide (PbS) nanocrystals: test-platform for interfacial charge carrier traps at the organic/inorganic functional interface

    NASA Astrophysics Data System (ADS)

    Kim, Youngjun; Ko, Hyungduk; Park, Byoungnam

    2018-04-01

    Nanocrystal (NC) size and ligand dependent dynamic trap formation of lead sulfide (PbS) NCs in contact with an organic semiconductor were investigated using a pentacene/PbS field effect transistor (FET). We used a bilayer pentacene/PbS FET to extract information of the surface traps of PbS NCs at the pentacene/PbS interface through the field effect-induced charge carrier density measurement in the threshold and subthreshold regions. PbS size and ligand dependent trap properties were elucidated by the time domain and threshold voltage measurements in which threshold voltage shift occurs by carrier charging and discharging in the trap states of PbS NCs. The observed threshold voltage shift is interpreted in context of electron trapping through dynamic trap formation associated with PbS NCs. To the best of our knowledge, this is the first demonstration of the presence of interfacial dynamic trap density of PbS NC in contact with an organic semiconductor (pentacene). We found that the dynamic trap density of the PbS NC is size dependent and the carrier residence time in the specific trap sites is more sensitive to NC size variation than to NC ligand exchange. The probing method presented in the study offers a means to investigate the interfacial surface traps at the organic-inorganic hetero-junction, otherwise understanding of the buried surface traps at the functional interface would be elusive.

  8. Cycle of charge carrier states with formation and extinction of a floating gate in an ambipolar tetracyanoquaterthienoquinoid-based field-effect transistor

    NASA Astrophysics Data System (ADS)

    Itoh, Takuro; Toyota, Taro; Higuchi, Hiroyuki; Matsushita, Michio M.; Suzuki, Kentaro; Sugawara, Tadashi

    2017-03-01

    A tetracyanoquaterthienoquinoid (TCT4Q)-based field effect transistor is characterized by the ambipolar transfer characteristics and the facile shift of the threshold voltage induced by the bias stress. The trapping and detrapping kinetics of charge carriers was investigated in detail by the temperature dependence of the decay of source-drain current (ISD). We found a repeatable formation of a molecular floating gate is derived from a 'charge carrier-and-gate' cycle comprising four stages, trapping of mobile carriers, formation of a floating gate, induction of oppositely charged mobile carriers, and recombination between mobile and trapped carriers to restore the initial state.

  9. Effect of drift on the temporal asymptotic form of the particle survival probability in media with absorbing traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arkhincheev, V. E., E-mail: varkhin@mail.ru

    A new asymptotic form of the particle survival probability in media with absorbing traps has been established. It is shown that this drift mechanism determines a new temporal behavior of the probability of particle survival in media with absorbing traps over long time intervals.

  10. Refractive multiple optical tweezers for parallel biochemical analysis in micro-fluidics

    NASA Astrophysics Data System (ADS)

    Merenda, Fabrice; Rohner, Johann; Pascoal, Pedro; Fournier, Jean-Marc; Vogel, Horst; Salathé, René-Paul

    2007-02-01

    We present a multiple laser tweezers system based on refractive optics. The system produces an array of 100 optical traps thanks to a refractive microlens array, whose focal plane is imaged into the focal plane of a high-NA microscope objective. This refractive multi-tweezers system is combined to micro-fluidics, aiming at performing simultaneous biochemical reactions on ensembles of free floating objects. Micro-fluidics allows both transporting the particles to the trapping area, and conveying biochemical reagents to the trapped particles. Parallel trapping in micro-fluidics is achieved with polystyrene beads as well as with native vesicles produced from mammalian cells. The traps can hold objects against fluid flows exceeding 100 micrometers per second. Parallel fluorescence excitation and detection on the ensemble of trapped particles is also demonstrated. Additionally, the system is capable of selectively and individually releasing particles from the tweezers array using a complementary steerable laser beam. Strategies for high-yield particle capture and individual particle release in a micro-fluidic environment are discussed. A comparison with diffractive optical tweezers enhances the pros and cons of refractive systems.

  11. Optical manipulation of microparticles and biological structures

    NASA Astrophysics Data System (ADS)

    Gahagan, Kevin Thomas

    1998-06-01

    We report experimental and theoretical investigations of the trapping of microparticles and biological objects using radiation pressure. Part I of this thesis presents a technique for trapping both low and high index microparticles using a single, stationary focused laser beam containing an optical vortex. Advantages of this vortex trap include the ease of implementation, a lower exposure level for high-index particles compared to a standard Gaussian beam trap, and the ability to isolate individual low-index particles in concentrated dispersions. The vortex trap is modeled using ray-tracing methods and a more precise electromagnetic model, which is accurate for particles less than 10 μm in diameter. We have measured the stable equilibrium position for two low-index particle systems (e.g., hollow glass spheres (HGS) in water, and water droplets in acetophenone (W/A)). The strength of the trap was measured for the HGS system along the longitudinal and transverse directions. We also demonstrate simultaneous trapping of a low and high index particle with a vortex beam. The stability of this dual-particle trap is found to depend on the relative particle size, the divergence angle of the beam, and the depth of the particles within the trapping chamber. Part II presents results from an interdisciplinary and collaborative investigation of an all-optical genetic engineering technique whereby Agrobacterium rhizogenes were inserted through a laser-ablated hole in the cell wall of the plant, Gingko biloba. We describe a protocol which includes the control of osmotic conditions, culturing procedures, viability assays and laser microsurgery. We succeeded in placing up to twelve viable bacteria into a single plant cell using this technique. The bacteria are believed to be slightly heated by the Gaussian beam trap. A numerical model is presented predicting a temperature rise of just a few degrees. Whereas G. biloba and A. rhitogenes were chosen for this study because of Ginkgo's pharmaceutical importance, only slight modification of the protocol is needed for other plant species.

  12. Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers.

    PubMed

    Shane, Janelle C; Mazilu, Michael; Lee, Woei Ming; Dholakia, Kishan

    2010-03-29

    We investigate the effects of pulse duration on optical trapping with high repetition rate ultrashort pulsed lasers, through Lorentz-Mie theory, numerical simulation, and experiment. Optical trapping experiments use a 12 femtosecond duration infrared pulsed laser, with the trapping microscope's temporal dispersive effects measured and corrected using the Multiphoton Intrapulse Interference Phase Scan method. We apply pulse shaping to reproducibly stretch pulse duration by 1.5 orders of magnitude and find no material-independent effects of pulse temporal profile on optical trapping of 780nm silica particles, in agreement with our theory and simulation. Using pulse shaping, we control two-photon fluorescence in trapped fluorescent particles, opening the door to other coherent control applications with trapped particles.

  13. Optical trapping of metal-dielectric nanoparticle clusters near photonic crystal microcavities.

    PubMed

    Mejia, Camilo A; Huang, Ningfeng; Povinelli, Michelle L

    2012-09-01

    We predict the formation of optically trapped, metal-dielectric nanoparticle clusters above photonic crystal microcavities. We determine the conditions on particle size and position for a gold particle to be trapped above the microcavity. We then show that strong field redistribution and enhancement near the trapped gold nanoparticle results in secondary trapping sites for a pair of dielectric nanoparticles.

  14. Pentacene Schottky diodes studied by impedance spectroscopy: Doping properties and trap response

    NASA Astrophysics Data System (ADS)

    Pahner, Paul; Kleemann, Hans; Burtone, Lorenzo; Tietze, Max L.; Fischer, Janine; Leo, Karl; Lüssem, Björn

    2013-11-01

    We study doping properties and charge carrier trap distributions in pentacene Schottky diodes doped by the fluorinated fullerene derivate C60F36 and 2,2'-(perdiylidene)dimalononitrile (F6-TCNNQ) upon small signal excitation. We show that the charge carrier depletion zones present in these Schottky diodes are tunable by the applied bias and temperature. Mott-Schottky evaluations yield reduced doping efficiencies and dopant activation energies between 19 and 54 meV. In the low-frequency regime, we resolve additional capacitive contributions from inherent charge carrier traps. A Gaussian distributed trap center 0.6 eV above the hole transport level with a density in the range of 1016 cm-3 depending on the material purity is found to be an intrinsic feature of the pentacene matrix. Upon doping, the deep Gaussian trap center saturates in density and broad exponentially tailing trap distributions arise. Subsequent ultraviolet photoelectron spectroscopy measurements are conducted to inspect for energetic broadening due to doping.

  15. On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S.

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by amore » Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.« less

  16. Nonlinear fishbone dynamics in spherical tokamaks

    DOE Data Explorer

    Wang, Feng [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Dalian Univ Technol, Sch Phys & Optoelect Technol, Minist Educ, Key Lab Mat Modificat Laser Ion & Electron Beams, Dalian 116024, Peoples R China.; Fu, G.Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Institute for Fusion Theory and Simulation and Department of Physics Hangzhou, Zhejiang University, Hangzhou, 310027, People's Republic of China; Shen, Wei [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031, People's Republic of China

    2017-01-01

    Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. The results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher q min (>1.5) values, q min being the minimum of safety factor profile. In the nonlinear regime, the mode saturates due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. A substantial fraction of initially non-resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.

  17. Nonlinear fishbone dynamics in spherical tokamaks

    DOE PAGES

    Wang, Feng; Fu, G. Y.; Shen, Wei

    2016-11-22

    Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. Our results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher q min (>1.5) values, q min being the minimum of safety factor profile. In the nonlinear regime, the mode saturatesmore » due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. Furthermore, a substantial fraction of initially non-resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Finally, our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.« less

  18. Origin of the F685 and F695 fluorescence in photosystem II.

    PubMed

    Andrizhiyevskaya, Elena G; Chojnicka, Agnieszka; Bautista, James A; Diner, Bruce A; van Grondelle, Rienk; Dekker, Jan P

    2005-06-01

    The emission spectra of CP47-RC and core complexes of Photosystem II (PS II) were measured at different temperatures and excitation wavelengths in order to establish the origin of the emission and the role of the core antenna in the energy transfer and charge separation processes in PS II. Both types of particles reveal strong dependences of spectral shape and yield on temperature. The results indicate that the well-known F-695 emission at 77 K arises from excitations that are trapped on a red-absorbing CP47 chlorophyll, whereas the F-685 nm emission at 77 K arises from excitations that are transferred slowly from 683 nm states in CP47 and CP43 to the RC, where they are trapped by charge separation. We conclude that F-695 at 77 K originates from the low-energy part of the inhomogeneous distribution of the 690 nm absorbing chlorophyll of CP47, while at 4 K the fluorescence originates from the complete distribution of the 690 nm chlorophyll of CP47 and from the low-energy part of the inhomogeneous distribution of one or more CP43 chlorophylls.

  19. Electro-chemical sensors, sensor arrays and circuits

    DOEpatents

    Katz, Howard E.; Kong, Hoyoul

    2014-07-08

    An electro-chemical sensor includes a first electrode, a second electrode spaced apart from the first electrode, and a semiconductor channel in electrical contact with the first and second electrodes. The semiconductor channel includes a trapping material. The trapping material reduces an ability of the semiconductor channel to conduct a current of charge carriers by trapping at least some of the charge carriers to localized regions within the semiconductor channel. The semiconductor channel includes at least a portion configured to be exposed to an analyte to be detected, and the trapping material, when exposed to the analyte, interacts with the analyte so as to at least partially restore the ability of the semiconductor channel to conduct the current of charge carriers.

  20. The influence of interfacial defects on fast charge trapping in nanocrystalline oxide-semiconductor thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Hur, Jihyun; Jeon, Sanghun

    2016-05-01

    Defects in oxide semiconductors not only influence the initial device performance but also affect device reliability. The front channel is the major carrier transport region during the transistor turn-on stage, therefore an understanding of defects located in the vicinity of the interface is very important. In this study, we investigated the dynamics of charge transport in a nanocrystalline hafnium-indium-zinc-oxide thin-film transistor (TFT) by short pulse I-V, transient current and 1/f noise measurement methods. We found that the fast charging behavior of the tested device stems from defects located in both the front channel and the interface, following a multi-trapping mechanism. We found that a silicon-nitride stacked hafnium-indium-zinc-oxide TFT is vulnerable to interfacial charge trapping compared with silicon-oxide counterpart, causing significant mobility degradation and threshold voltage instability. The 1/f noise measurement data indicate that the carrier transport in a silicon-nitride stacked TFT device is governed by trapping/de-trapping processes via defects in the interface, while the silicon-oxide device follows the mobility fluctuation model.

  1. Organic transistor memory with a charge storage molecular double-floating-gate monolayer.

    PubMed

    Tseng, Chiao-Wei; Huang, Ding-Chi; Tao, Yu-Tai

    2015-05-13

    A flexible, low-voltage, and nonvolatile memory device was fabricated by implanting a functional monolayer on an aluminum oxide dielectric surface in a pentacene-based organic transistor. The monolayer-forming molecule contains a phosphonic acid group as the anchoring moiety and a charge-trapping core group flanked between two alkyl chain spacers as the charge trapping site. The memory characteristics strongly depend on the monolayer used due to the localized charge-trapping capability for different core groups, including the diacetylenic (DA) unit as the hole carrier trap, the naphthalenetetracarboxyldiimide (ND) unit as the electron carrier trap, and the one with both DA and ND units present, respectively. The device with the monolayer carrying both DA and ND groups has a larger memory window than that for the one containing DA only and a longer retention time than that for the one containing DA or ND only, giving a memory window of 1.4 V and a retention time around 10(9) s. This device with hybrid organic monolayer/inorganic dielectrics also exhibited rather stable device characteristics upon bending of the polymeric substrate.

  2. Non-contact, non-destructive, quantitative probing of interfacial trap sites for charge carrier transport at semiconductor-insulator boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Wookjin; Miyakai, Tomoyo; Sakurai, Tsuneaki

    The density of traps at semiconductor–insulator interfaces was successfully estimated using microwave dielectric loss spectroscopy with model thin-film organic field-effect transistors. The non-contact, non-destructive analysis technique is referred to as field-induced time-resolved microwave conductivity (FI-TRMC) at interfaces. Kinetic traces of FI-TRMC transients clearly distinguished the mobile charge carriers at the interfaces from the immobile charges trapped at defects, allowing both the mobility of charge carriers and the number density of trap sites to be determined at the semiconductor-insulator interfaces. The number density of defects at the interface between evaporated pentacene on a poly(methylmethacrylate) insulating layer was determined to be 10{supmore » 12 }cm{sup −2}, and the hole mobility was up to 6.5 cm{sup 2} V{sup −1} s{sup −1} after filling the defects with trapped carriers. The FI-TRMC at interfaces technique has the potential to provide rapid screening for the assessment of interfacial electronic states in a variety of semiconductor devices.« less

  3. Long term performance stability of silicon sensors

    NASA Astrophysics Data System (ADS)

    Mori, R.; Betancourt, C.; Kühn, S.; Hauser, M.; Messmer, I.; Hasenfratz, A.; Thomas, M.; Lohwasser, K.; Parzefall, U.; Jakobs, K.

    2015-10-01

    The HL-LHC investigations on silicon particle sensor performance are carried out with the intention to reproduce the harsh environments foreseen, but usually in individual short measurements. Recently, several groups have observed a decrease in the charge collection of silicon strip sensors after several days, in particular on sensors showing charge multiplication. This phenomenon has been explained with a surface effect, the increase of charge sharing due to the increment of positive charge in the silicon oxide coming from the source used for charge collection measurements. Observing a similar behaviour in other sensors for which we can exclude this surface effect, we propose and investigate alternative explanations, namely trapping related effects (change of polarization) and annealing related effects. Several n-on-p strip sensors, as-processed and irradiated with protons and neutrons up to 5 ×1015neq /cm2, have been subjected to charge collection efficiency measurements for several days, while parameters like the impedance have been monitored. The probable stressing conditions have been changed in an attempt to recover the collected charge in case of a decrease. The results show that for the investigated sensors the effect of charge sharing induced by a radioactive source is not important, and a main detrimental factor is due to very high voltage, while at lower voltages the performance is stable.

  4. Rarefaction shock waves and Hugoniot curve in the presence of free and trapped particles

    NASA Astrophysics Data System (ADS)

    Niknam, A. R.; Hashemzadeh, M.; Shokri, B.; Rouhani, M. R.

    2009-12-01

    The effects of the relativistic ponderomotive force and trapped particles in the presence of ponderomotive force on the rarefaction shock waves are investigated. The ponderomotive force alters the electron density distribution. This force and relativistic mass affect the plasma frequency. These physical parameters modify the total pressure and the existence condition of the rarefaction shock wave. Furthermore, the trapping of particles by the high frequency electromagnetic field considerably changes the existence condition of the rarefaction shock wave. The total pressure and Hugoniot curve are obtained by considering the relativistic ponderomotive force and trapped particles.

  5. Ice particles trapped by temperature gradients at mbar pressure

    NASA Astrophysics Data System (ADS)

    Kelling, Thorben; Wurm, Gerhard; Dürmann, Christoph

    2011-11-01

    In laboratory experiments we observe that ice particles (⩽100 μm) entrained in a low pressure atmosphere (˜1 mbar) get trapped by temperature gradients between three reservoirs at different temperature. Confining elements are a peltier element at 250 K (bottom), a liquid nitrogen reservoir at 77 K (top), and the surrounding vacuum chamber at 293 K. Particle levitation and trapping is modeled by an interplay of thermophoresis, photophoresis, and gravity. A number of ice particles are trapped simultaneously in close spatial distance to each other at least up to minutes and are accessible for further experiments.

  6. Trapping and rotating of a metallic particle trimer with optical vortex

    NASA Astrophysics Data System (ADS)

    Shen, Z.; Su, L.; Yuan, X.-C.; Shen, Y.-C.

    2016-12-01

    We have experimentally observed the steady rotation of a mesoscopic size metallic particle trimer that is optically trapped by tightly focused circularly polarized optical vortex. Our theoretical analysis suggests that a large proportion of the radial scattering force pushes the metallic particles together, whilst the remaining portion provides the centripetal force necessary for the rotation. Furthermore, we have achieved the optical trapping and rotation of four dielectric particles with optical vortex. We found that, different from the metallic particles, instead of being pushed together by the radial scattering force, the dielectric particles are trapped just outside the maximum intensity ring of the focused field. The radial gradient force attracting the dielectric particles towards the maximum intensity ring provides the centripetal force for the rotation. The achieved steady rotation of the metallic particle trimer reported here may open up applications such as the micro-rotor.

  7. Speckle field as a multiple particle trap

    NASA Astrophysics Data System (ADS)

    Shvedov, V. G.; Rode, A. V.; Izdebskaya, Ya. V.; Desyatnikov, A. S.; Krolikowski, W.; Kivshar, Yu. S.

    2010-04-01

    We demonstrate that a speckle pattern in the spatially coherent laser field transmitted by a diffuser forms a multitude of three-dimensional bottle-shaped micro-traps. These multiple traps serve as a means for an effective trapping of large number of air-born absorbing particles. Confinement of up to a few thousand particles in air with a single beam has been achieved. The ability to capture light-absorbing particles suspended in gases by optical means opens up rich and diverse practical opportunities, including development of photonic shielding/fencing for environmental protection in nanotechnology industry and new methods of touch-free air transport of particles and small containers, which may hold dangerous substances, or viruses and living cells.

  8. Trapped particle and solar proton radiation prediction for ISEE (IME): Mother-daughter mission

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1974-01-01

    The charged particle fluxes incident on spacecrafts in very eccentric orbits were investigated in support of the International Sun-Earth Explorer (International Magnetospheric Explorer) For this purpose, two flightpaths were considered having identical inclinations but different perigee altitudes (240 and 1364 kilometers, respectively). Apogee altitude was approximately the same for both cases (about 22 earth radii). For each of the two perigee altitudes investigated, two nominal trajectories were generated, having identical orbital configurations but with their major axes rotated by 180 deg in the plane of orbit, which resulted in placing the initial apogee into into opposite hemispheres. This was done in order to determine the corresponding variation in the vehicle-encountered particle intensities. Estimates of average energetic solar proton fluxes are given for a one year mission duration at selected integranlenergies ranging from E 10 to E 100 MeV. Results are summarized and discussed.

  9. Trapping two types of particles with a focused generalized Multi-Gaussian Schell model beam

    NASA Astrophysics Data System (ADS)

    Liu, Xiayin; Zhao, Daomu

    2015-11-01

    We numerically investigate the trapping effect of the focused generalized Multi-Gaussian Schell model (GMGSM) beam of the first kind which produces dark hollow beam profile at the focal plane. By calculating the radiation forces on the Rayleigh dielectric sphere in the focused GMGSM beam, we show that such beam can trap low-refractive-index particles at the focus, and simultaneously capture high-index particles at different positions of the focal plane. The trapping range and stability depend on the values of the beam index N and the coherence width. Under the same conditions, the low limits of the radius of low-index and high-index particles for stable trapping are indicated to be different.

  10. Vertically aligned gas-insulated transmission line having particle traps at the inner conductor

    DOEpatents

    Dale, Steinar J.

    1984-01-01

    Gas insulated electrical apparatus having first and second conductors separated by an insulating support within an insulating gas environment, and particle traps disposed along the surface of the high potential conductor for trapping and inactivating foreign particles which may be present within the insulating gas medium. Several embodiments of the invention were developed which are particularly suited for vertically aligned gas insulated transmission lines. The particle traps are grooves or cavities formed into the walls of the tubular inner conductor, without extending into the hollow portion of the conductor. In other embodiments, the traps are appendages or insert flanges extending from the inner conductor, with the insulator supports contacting the appendages instead of the inner conductor.

  11. Surface electroluminescence phenomena correlated with trapping parameters of insulating polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Guan-Jun; Yang, Kai; Dong, Ming; Zhao, Wen-Bin; Yan, Zhang

    2007-12-01

    Electroluminescence (EL) phenomena are closely linked to the space charge and degradation in insulating polymers, and dominated by the luminescence and trap centers. EL emission has been promising in defining the onset of electrical aging and in the investigation of dissipation mechanisms. Generally, polymeric degradation reveals the increment of the density of luminescence and trap centers, so a fundamental study is proposed to correlate the EL emission of insulating polymers and their trapping parameters. A sensitive photon counting system is constructed to detect the weak EL. The time- and phase-resolved EL characteristics from different polymers (LDPE, PP and PTFE) are investigated with a planar electrode configuration under stepped ac voltage in vacuum. In succession, each sample is charged with exposing to multi-needle corona discharge, and then its surface potential decay is continuously recorded at a constant temperature. Based on the isothermal relaxation current theory, the energy level and density of both electron and hole trap distribution in the surface layer of each polymer is obtained. It is preliminarily concluded that EL phenomena are strongly affected by the trap properties, and for different polymers, its EL intensity is in direct contrast to its surface trap density, and this can be qualitatively explained by the trapping and detrapping sequence of charge carriers in trap centers with different energy level.

  12. Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating.

    PubMed

    Seol, Yeonee; Carpenter, Amanda E; Perkins, Thomas T

    2006-08-15

    Gold nanoparticles appear to be superior handles in optical trapping assays. We demonstrate that relatively large gold particles (R(b)=50 nm) indeed yield a sixfold enhancement in trapping efficiency and detection sensitivity as compared to similar-sized polystyrene particles. However, optical absorption by gold at the most common trapping wavelength (1064 nm) induces dramatic heating (266 degrees C/W). We determined this heating by comparing trap stiffness from three different methods in conjunction with detailed modeling. Due to this heating, gold nanoparticles are not useful for temperature-sensitive optical-trapping experiments, but may serve as local molecular heaters. Also, such particles, with their increased detection sensitivity, make excellent probes for certain zero-force biophysical assays.

  13. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.

    Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similaritiesmore » with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. In conclusion, these data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as the rapid responses of indigenous microbial species in the degradation of marine particulate organic matter (POM) in situ in the ocean's interior.« less

  14. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre

    DOE PAGES

    Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.; ...

    2015-05-19

    Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similaritiesmore » with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. In conclusion, these data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as the rapid responses of indigenous microbial species in the degradation of marine particulate organic matter (POM) in situ in the ocean's interior.« less

  15. MoEDAL - a new light on the high-energy frontier

    NASA Astrophysics Data System (ADS)

    Fairbairn, Malcolm; Pinfold, James L.

    2017-01-01

    In 2010, the MoEDAL (MOnopole and Exotics Detector at the LHC) experiment at the Large Hadron Collider (LHC) was unanimously approved by European Centre for Nuclear Research's Research Board to start data taking in 2015. MoEDAL is a pioneering experiment designed to search for highly ionising manifestations of new physics such as magnetic monopoles or massive (pseudo-)stable charged particles. Its groundbreaking physics programme defines a number of scenarios that yield potentially revolutionary insights into such foundational questions as: are there extra dimensions or new symmetries; does magnetic charge exist; what is the nature of dark matter; and, how did the Big Bang develop. MoEDAL's purpose is to meet such far-reaching challenges at the frontier of the field. The innovative MoEDAL detector employs unconventional methodologies tuned to the prospect of discovery physics. The largely passive MoEDAL detector, deployed at Point 8 on the LHC ring, has a dual nature. First, it acts like a giant camera, comprised of nuclear track detectors - analysed offline by ultra fast scanning microscopes - sensitive only to new physics. Second, it is uniquely able to trap the particle messengers of physics beyond the Standard Model for further study. MoEDAL's radiation environment is monitored by a state-of-the-art real-time TimePix pixel detector array. A new MoEDAL sub-detector designed to extend MoEDAL reach to mini-charged, minimally ionising particles is under study.

  16. Optical levitation measurements with intensity-modulated light beams.

    PubMed

    Cai, W; Li, F; Sun, S; Wang, Y

    1997-10-20

    Illumination of an optically levitated particle with an intensity-modulated transverse beam induces a transverse vibration of a particle in an optical trap. Based on this, the trapping force of a trap can be measured. Using an intensity-modulated longitudinal levitating beam causes a particle to move vertically, allowing for the determination of some aerodynamic parameters of a particle in air. The principles and the experimental phenomena are described and the initial results are given.

  17. Interaction of an ion bunch with a plasma slab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.

    2016-11-15

    Charge neutralization of a short ion bunch passing through a plasma slab is studied by means of numerical simulation. It is shown that a fraction of plasma electrons are trapped by the bunch under the action of the collective charge separation field. The accelerated electrons generated in this process excite beam−plasma instability, thereby violating the trapping conditions. The process of electron trapping is also strongly affected by the high-frequency electric field caused by plasma oscillations at the slab boundaries. It is examined how the degree of charge neutralization depends on the parameters of the bunch and plasma slab.

  18. Gate bias stress in pentacene field-effect-transistors: Charge trapping in the dielectric or semiconductor

    NASA Astrophysics Data System (ADS)

    Häusermann, R.; Batlogg, B.

    2011-08-01

    Gate bias stress instability in organic field-effect transistors (OFETs) is a major conceptual and device issue. This effect manifests itself by an undesirable shift of the transfer characteristics and is associated with long term charge trapping. We study the role of the dielectric and the semiconductor separately by producing OFETs with the same semiconductor (pentacene) combined with different dielectrics (SiO2 and Cytop). We show that it is possible to fabricate devices which are immune to gate bias stress. For other material combinations, charge trapping occurs in the semiconductor alone or in the dielectric.

  19. Work statistics of charged noninteracting fermions in slowly changing magnetic fields.

    PubMed

    Yi, Juyeon; Talkner, Peter

    2011-04-01

    We consider N fermionic particles in a harmonic trap initially prepared in a thermal equilibrium state at temperature β^{-1} and examine the probability density function (pdf) of the work done by a magnetic field slowly varying in time. The behavior of the pdf crucially depends on the number of particles N but also on the temperature. At high temperatures (β≪1) the pdf is given by an asymmetric Laplace distribution for a single particle, and for many particles it approaches a Gaussian distribution with variance proportional to N/β(2). At low temperatures the pdf becomes strongly peaked at the center with a variance that still linearly increases with N but exponentially decreases with the temperature. We point out the consequences of these findings for the experimental confirmation of the Jarzynski equality such as the low probability issue at high temperatures and its solution at low temperatures, together with a discussion of the crossover behavior between the two temperature regimes. ©2011 American Physical Society

  20. Work statistics of charged noninteracting fermions in slowly changing magnetic fields

    NASA Astrophysics Data System (ADS)

    Yi, Juyeon; Talkner, Peter

    2011-04-01

    We consider N fermionic particles in a harmonic trap initially prepared in a thermal equilibrium state at temperature β-1 and examine the probability density function (pdf) of the work done by a magnetic field slowly varying in time. The behavior of the pdf crucially depends on the number of particles N but also on the temperature. At high temperatures (β≪1) the pdf is given by an asymmetric Laplace distribution for a single particle, and for many particles it approaches a Gaussian distribution with variance proportional to N/β2. At low temperatures the pdf becomes strongly peaked at the center with a variance that still linearly increases with N but exponentially decreases with the temperature. We point out the consequences of these findings for the experimental confirmation of the Jarzynski equality such as the low probability issue at high temperatures and its solution at low temperatures, together with a discussion of the crossover behavior between the two temperature regimes.

  1. Molecular control of pentacene/ZnO photoinduced charge transfer

    NASA Astrophysics Data System (ADS)

    Spalenka, Josef W.; Paoprasert, Peerasak; Franking, Ryan; Hamers, Robert J.; Gopalan, Padma; Evans, Paul G.

    2011-03-01

    Photoinduced charge transfer modifies the device properties of illuminated pentacene field effect transistors (FETs) incorporating ZnO quantum dots at the gate insulator/pentacene interface. The transferred charge is trapped on electronic states associated with the ZnO quantum dots, with a steady state population approximately proportional to the rate of organic-inorganic charge transfer. Trapped charge shifts the threshold voltage of the FETs, providing the means to evaluate the rate of organic/inorganic charge transfer and the effects of interface modification. Monolayers of the wide-gap alkane stearic acid and the conjugated oligomer terthiophene attached to the ZnO suppress or permit charge transfer, respectively.

  2. Improved understanding of the hot cathode current modes and mode transitions [Mechanism of the hot cathode current mode transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campanell, Michael D.; Umansky, M. V.

    Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry,more » this 'new plasma' containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Lastly, our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.« less

  3. Improved understanding of the hot cathode current modes and mode transitions [Mechanism of the hot cathode current mode transitions

    DOE PAGES

    Campanell, Michael D.; Umansky, M. V.

    2017-11-22

    Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry,more » this 'new plasma' containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Lastly, our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.« less

  4. Enhanced and selective optical trapping in a slot-graphite photonic crystal.

    PubMed

    Krishnan, Aravind; Huang, Ningfeng; Wu, Shao-Hua; Martínez, Luis Javier; Povinelli, Michelle L

    2016-10-03

    Applicability of optical trapping tools for nanomanipulation is limited by the available laser power and trap efficiency. We utilized the strong confinement of light in a slot-graphite photonic crystal to develop high-efficiency parallel trapping over a large area. The stiffness is 35 times higher than our previously demonstrated on-chip, near field traps. We demonstrate the ability to trap both dielectric and metallic particles of sub-micron size. We find that the growth kinetics of nanoparticle arrays on the slot-graphite template depends on particle size. This difference is exploited to selectively trap one type of particle out of a binary colloidal mixture, creating an efficient optical sieve. This technique has rich potential for analysis, diagnostics, and enrichment and sorting of microscopic entities.

  5. Operation mode switchable charge-trap memory based on few-layer MoS2

    NASA Astrophysics Data System (ADS)

    Hou, Xiang; Yan, Xiao; Liu, Chunsen; Ding, Shijin; Zhang, David Wei; Zhou, Peng

    2018-03-01

    Ultrathin layered two-dimensional (2D) semiconductors like MoS2 and WSe2 have received a lot of attention because of their excellent electrical properties and potential applications in electronic devices. We demonstrate a charge-trap memory with two different tunable operation modes based on a few-layer MoS2 channel and an Al2O3/HfO2/Al2O3 charge storage stack. Our device shows excellent memory properties under the traditional three-terminal operation mode. More importantly, unlike conventional charge-trap devices, this device can also realize the memory performance with just two terminals (drain and source) because of the unique atomic crystal electrical characteristics. Under the two-terminal operation mode, the erase/program current ratio can reach up to 104 with a stable retention property. Our study indicates that the conventional charge-trap memory cell can also realize the memory performance without the gate terminal based on novel two dimensional materials, which is meaningful for low power consumption and high integration density applications.

  6. Radio Frequency Trap for Containment of Plasmas in Antimatter Propulsion Systems Using Rotating Wall Electric Fields

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III (Inventor); Martin, James Joseph (Inventor); Lewis, Raymond A. (Inventor)

    2003-01-01

    A containment apparatus for containing a cloud of charged particles comprises a cylindrical vacuum chamber having a longitudinal axis. Within the vacuum chamber is a containment region. A magnetic field is aligned with the longitudinal axis of the vacuum chamber. The magnetic field is time invariant and uniform in strength over the containment region. An electric field is also aligned with the longitudinal axis of the vacuum chamber and the magnetic field. The electric field is time invariant, and forms a potential well over the containment region. One or more means are disposed around the cloud of particles for inducing a rotating electric field internal to the vacuum chamber. The rotating electric field imparts energy to the charged particles within the containment region and compress the cloud of particles. The means disposed around the outer surface of the vacuum chamber for inducing a rotating electric field are four or more segments forming a segmented ring, the segments conforming to the outer surface of the vacuum chamber. Each of the segments is energized by a separate alternating voltage. The sum of the voltages imposed on each segment establishes the rotating field. When four segments form a ring, the rotating field is obtained by a signal generator applying a sinusoidal signal phase delayed by 90,180 and 270 degrees in sequence to the four segments.

  7. The Use of NanoTrap Particles as a Sample Enrichment Method to Enhance the Detection of Rift Valley Fever Virus

    PubMed Central

    Shafagati, Nazly; Narayanan, Aarthi; Baer, Alan; Fite, Katherine; Pinkham, Chelsea; Bailey, Charles; Kashanchi, Fatah; Lepene, Benjamin; Kehn-Hall, Kylene

    2013-01-01

    Background Rift Valley Fever Virus (RVFV) is a zoonotic virus that is not only an emerging pathogen but is also considered a biodefense pathogen due to the threat it may cause to public health and national security. The current state of diagnosis has led to misdiagnosis early on in infection. Here we describe the use of a novel sample preparation technology, NanoTrap particles, to enhance the detection of RVFV. Previous studies demonstrated that NanoTrap particles lead to both 100 percent capture of protein analytes as well as an improvement of more than 100-fold in sensitivity compared to existing methods. Here we extend these findings by demonstrating the capture and enrichment of viruses. Results Screening of NanoTrap particles indicated that one particle, NT53, was the most efficient at RVFV capture as demonstrated by both qRT-PCR and plaque assays. Importantly, NT53 capture of RVFV resulted in greater than 100-fold enrichment from low viral titers when other diagnostics assays may produce false negatives. NT53 was also capable of capturing and enhancing RVFV detection from serum samples. RVFV that was inactivated through either detergent or heat treatment was still found bound to NT53, indicating the ability to use NanoTrap particles for viral capture prior to transport to a BSL-2 environment. Furthermore, both NP-40-lysed virus and purified RVFV RNA were bound by NT53. Importantly, NT53 protected viral RNA from RNase A degradation, which was not observed with other commercially available beads. Incubation of RVFV samples with NT53 also resulted in increased viral stability as demonstrated through preservation of infectivity at elevated temperatures. Finally, NanoTrap particles were capable of capturing VEEV and HIV, demonstrating the broad applicability of NanoTrap particles for viral diagnostics. Conclusion This study demonstrates NanoTrap particles are capable of capturing, enriching, and protecting RVFV virions. Furthermore, the use of NanoTrap particles can be extended to a variety of viruses, including VEEV and HIV. PMID:23861988

  8. Post-launch data analysis for the cosmic ray isotope experiment ONR-604 in the Combined Release and Radiation Effects Satellite (CRRES)

    NASA Technical Reports Server (NTRS)

    Simpson, John A.; Garcia-Munoz, Moises

    1995-01-01

    Research was continued on the origins, acceleration mechanisms, and the propagation modes of the hierarchy of energetic charged particles found in a wide range of astrophysical settings, extending from the cosmic rays arriving from the depth of the galaxy to the energetic particles in the heliosphere and in the near earth environment. In particular this grant has been a vital support in the investigation of the particle radiations in the earth's magnetosphere. The ONR-604 instrument was launched in July 1990 aboard the CRRES spacecraft. The CRRES mission has been a joint program of NASA and the U.S. Air Force Space Test Program which has provided launch support and telemetry coverage. The spacecraft was placed into a low-inclination eccentric orbit with a period of approximately 10 hours, and thus measured charged particle fluxes in both interplanetary space and in the earth's trapped radiation. ONR-604 performed extremely well, both in interplanetary space and in the intense radiation belt environment. We were able to make detailed measurements of interplanetary fluxes and composition into L=4, or for more than 50% of the orbital period. Thus the experiment produced two valuable datasets, one set outside of L=4 for interplanetary studies, and one set inside of L=4 for radiation belt studies. The data returned by the University of Chicago ONR-604 instrument has been the base for 10 papers on magnetospheric and galactic energetic-particle research.

  9. Factors affecting particle collection by electro-osmosis in microfluidic systems.

    PubMed

    Mohtar, Mohd Nazim; Hoettges, Kai F; Hughes, Michael P

    2014-02-01

    Alternating-current electro-osmosis, a phenomenon of fluid transport due to the interaction between an electrical double layer and a tangential electric field, has been used both for inducing fluid movement and for the concentration of particles suspended in the fluid. This offers many advantages over other phenomena used to trap particles, such as placing particles at an electrode centre rather than an edge; benefits of scale, where electrodes hundreds of micrometers across can trap particles from the molecules to cells at the same rate; and a trapping volume limited by the vortex height, a phenomenon thus far unstudied. In this paper, the collection of particles due to alternating-current electro-osmosis driven collection is examined for a range of particle concentrations, inter-electrode gap widths, chamber heights and media viscosity and density. A model of collection behaviour is described where particle collection over time is governed by two processes, one driven by the vortices and the other by sedimentation, allowing the determination of the maximum height of vortex-driven collection, but also indicates how trapping is limited by high particle concentrations and fluid velocities. The results also indicate that viscosity, rather than density, is a significant governing factor in determining the trapping behaviour of particles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electrostatic trapping as a key to the dynamics of plasmas, fluids and other collective systems [review article

    NASA Astrophysics Data System (ADS)

    Luque, A.; Schamel, H.

    2005-08-01

    This review article focusses on the phenomenon of collective particle trapping in dilute plasmas and related fluid-like systems. A coherent electrostatic wave or fluctuation, being excited by some mechanism in a plasma, is able to trap collectively charged particles in its potential trough(s) with the ultimate feedback of stabilizing and manipulating the original cause of growth. This phenomenon is well-known from particle simulations of a current-driven two-stream instability and its subsequent quenching by particle trapping. But also the nonlinear Landau damping process resulting in a BGK-like (Bernstein, Green, Kruskal) trapped particle mode sets an example. However, as shown in this report, already a slightly driven plasma has many possibilities of generating trapped particle modes-the mentioned cases representing only two examples-through which it generally becomes nonlinearly unstable. A direct consequence of this feedback of particle trapping is that the macroscopic (dielectric) properties of such a structured plasma may have changed fundamentally such that the relationship to what is known from linear wave theory is lost. We, hence, have to deal with a nonlinear kinetic description which, in case of a collisionless, electrostatic plasma, is the Vlasov-Poisson description. The present report is devoted to a large extent to a 1D Vlasov-Poisson system but also consequences for other physical systems will be derived and mentioned. These and other findings will be developed in some detail culminating in a new paradigm for plasma stability which says: a current-carrying plasma is nonlinearly unstable in a much wider region of parameter space than predicted by linear wave theory with the consequence that the associated turbulence and anomalous transport are triggered much easier than suggested by standard linear wave analysis. Responsible for this new scenario are localized trapped particle modes-more specifically electron and ion holes of zero or negative energy-which are found to be excited well below the threshold of linear instability. In other words, a current-driven plasma shows a much larger sensibility to fluctuations than thought before and described in textbooks. The analysis presented reveals that a plasma, becoming structured by the generation of such modes, resides in a lower free energy state than the one without structures, being therefore in a preferred state that acts as an attractor in the system. Holes having this property will be briefly called negative energy holes (NEHs). For example, zero or negative energy ion holes are found to exist for any drift velocity between electrons and ions and for any temperature ratio. Two independent codes, a Vlasov-code and a PIC-(particle in cell)code, are used to approve this new scenario of instability. Moreover, by adding a Fokker-Planck collision term to the Vlasov-code, holes are shown to resist weak collisions, turn out to be robust and not only found in purely collisionless plasmas and cause an increase of resistivity. A natural outcome of this scenario, therefore, is that whenever free (kinetic) energy is available, holes (and double layers) are necessarily excited, penetrating intermittently the plasma. Satellite measurements, yielding holes and double layers as the most omnipresent structures found in space, provide a typical example. Having investigated classical plasmas this way, we show that many of these innovations can be transferred to other systems, as well. First, we perform a quantum-correction to electron holes by using the Wigner-Moyal description of quantum mechanics in phase-space. As a result we get a weakening of the hole for which tunneling of particles across the separatrix of the unperturbed, deterministic classical hole equilibrium is responsible. The formalism is then used to find a link between hole structures in classical plasmas and envelope solitons in nonlinear optical media. This gives rise to a new approximation method for wave envelope solutions of the nonlinear Schrödinger equation, which utilizes quasi-particle trapping and may be valuable in cases of nonlinearties for which a direct solution is missing. Another important application are particle beams in circular accelerators and storage rings. We prove analytically the existence of localized and periodic structures in coasting beams, as have been found experimentally for instance at Fermilab and at CERN, which are quite analogous to holes in classical plasmas. We also present an improved criterion for focusing. For bunched beams we describe and apply an iterative numerical procedure to find solitary hump and hole structures superimposed on the particle bunch, the former of which having been found recently in the Relativistic Hadron-Ion Collider (RHIC) at Brookhaven. Finally, we stress the mathematical equivalence between the 1D Vlasov-Poisson system and the equations describing a 2D incompressible, ideal fluid or the perpendicular dynamics of a strongly magnetized plasma in fluid or MHD approximation and other more complex fluids, such as rotating fluids, inhomogeneous plasmas, etc. This implies that tiny fluid elements trapped in coherent patches of shear flow motion, such as in secondary (tertiary) states that govern the transition to turbulence in ordinary hydrodynamics, do play a similar role than trapped particles in electrostatic waves, violating any linear wave ansatz. Or, said in different words, whenever a continues spectrum arises in a linearized fluid-like system associated with singular perturbations and a resonance between (quasi-)particles and the field, one has to consider this as a hint that the neglect of nonlinearity is not justified and that nonlinear wave solutions have to be taken into account in describing the evolution of the system correctly. This statement holds true already at an infinitesimal energy level of the coherent perturbations. Nonlinearity, and with it trapping structures, turns out to be a necessary requisite in all stages of the dynamical evolution not only at finite wave amplitudes, as commonly believed. In conclusion, in this report we emphasize the importance of collective trapping in (nearly) ideal plasmas and related systems bringing in at any level of wave activity a fundamental nonlinearity which is missed in standard linear wave theories as described in textbooks. The associated trapped particle modes challenge standard flow theories playing a key role in the interpretation of turbulence and anomalous transport.

  11. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaoyang; Frisbie, Daniel

    2017-03-31

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.

  12. Optical trapping of nanoshells

    NASA Astrophysics Data System (ADS)

    Hester, Brooke C.; Crawford, Alice; Kishore, Rani B.; Helmerson, Kristian; Halas, Naomi J.; Levin, Carly

    2007-09-01

    We investigate near-resonant trapping of Rayleigh particles in optical tweezers. Although optical forces due to a near-resonant laser beam have been extensively studied for atoms, the situation for larger particles is that the laser wavelength is far from any absorption resonance. Theory predicts, however, that the trapping force exerted on a Rayleigh particle is enhanced, and may be three to fifty times larger for frequencies near resonance than for frequencies far off resonance. The ability to selectively trap only particles with a given absorption peak may have many practical applications. In order to investigate near-resonant trapping we are using nanoshells, particles with a dielectric core and metallic coating that can exhibit plasmon resonances. The resonances of the nanoshells can be tuned by adjusting the ratio of the radius of the dielectric core, r I, to the overall radius, r II, which includes the thickness of the metallic coating. Our nanoshells, fabricated at Rice University, consist of a silica core with a gold coating. Using back focal plane detection, we measure the trap stiffness of a single focus optical trap (optical tweezers), from a diode laser at 853 nm for nanoshells with several different r I/r II ratios.

  13. Magnetic moment measurements of gyroscopically stabilized graphene nanoplatelets levitated in an ion trap

    NASA Astrophysics Data System (ADS)

    Coppock, Joyce; Nagornykh, Pavel; Murphy, Jacob; Kane, Bruce

    Measurement of small magnetic effects in 2D materials can be facilitated by decoupling the material from its substrate using particle trapping techniques. We investigate the mechanical and magnetic properties of a rotating micron-scale graphene nanoplatelet levitated in a quadrupole electric field trap in high vacuum. Its motion is observed optically, via the scattering of a low-power laser beam. Illumination by a circularly polarized laser causes the nanoplatelet to rotate at frequencies of 10-40 MHz. Frequency locking to an applied RF electric field stabilizes the nanoplatelet so that its axis of rotation is normal to its surface. We find that residual slow dynamics of the axis orientation are determined by an applied magnetic field. From frequency- and field-dependent measurements, we observe one magnetic moment arising from the rapid rotation of the charged nanoplatelet and one originating from diamagnetism, and we estimate their magnitudes. We determine a gyromagnetic ratio corresponding to the rotational moment and discuss our measurements of diamagnetism in the context of theories of the properties of graphene. Our measurements imply a torque sensitivity of better than 10-23 N-m.

  14. Influence of particulate trap oxidizers on emission of mutagenic compounds by diesel automobiles.

    PubMed

    Rasmussen, R E; Devillez, G; Smith, L R

    1989-06-01

    Diesel exhaust particles are known to contain mutagenic and carcinogenic chemicals. The aim of this study was to determine whether, and to what extent, catalytic particulate trap oxidizers on light-duty diesel engines may reduce the emission of particle-associated mutagenic chemicals into the environment. Exhaust particles were collected from Mercedes Benz and Volkswagen diesel automobiles, equipped with or without the manufacturer's exhaust traps, while running on a chassis dynamometer under specified load conditions. Exhaust particles were collected from a dilution tunnel onto 20" X 20" Teflon-coated fiberglass filters. Mutagenesis tests of dichloromethane (DCM) extracts of the particles were conducted using the Ames Salmonella bacterial test system. The mutation rate was calculated in terms of histidine revertants per mile of travel during a set of standard test cycles. With both vehicles the traps produced an 87-92% reduction in the total amount of particulate material collected by the filters. There was no significant change in the specific mutagenic activity (revertants per microgram of DCM particle extract) with or without the traps. These studies support the notion that installation of exhaust traps which reduce particulate emission on diesel-powered vehicles will also reduce the emission of particle-associated mutagenic and carcinogenic materials into the environment.

  15. Fundamental space radiobiology

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.

    2003-01-01

    The unique feature of the space radiation environment is the dominance of high-energy charged particles (HZE or high LET radiation) emitted by the Sun and galactic sources, or trapped in the Van Allen radiation belts. These charged particles present a significant hazard to space flight crews, and accelerator-based experiments are underway to quantify the health risks due to unavoidable radiation exposure. There are three principal properties of charged particles that distinguish them from conventional radiation, i.e. gamma rays and x-rays. First, they have a defined range in matter rather than an exponential absorption profile. Second, they undergo nuclear reactions to produce secondary particles. Third, and most important, they deposit their energy along well-defined linear paths or tracks rather than diffuse fields. The structured energy deposition pattern interacts on multiple scales with the biological structures of DNA, cells and tissues to produce correlated patterns of damage that evade repair systems. Traditional concepts of dose and its associated normalization parameter, RBE (relative biological effectiveness), break down under experimental scrutiny, and probabilistic models of risk based on the number of particle traversals per cell may be more appropriate. Unique patterns of DNA damage, gene expression, mobilization of repair proteins, activation of cytokines and remodeling of cellular microenvironment are observed following exposure to high LET radiation. At low levels of exposure the communication of bioactive substances from irradiated to unirradiated "bystander" cells can amplify the damage and cause a significant deviation from linearity in dose vs. response relations. Under some circumstances, there is even a multigenerational delay in the expression of radiation-induced genetic damage (genomic instability) which is not strictly dose dependent. These issues and the experimental evidence derived from ground based experiments at particle accelerators are presented along with speculation about how modified inertial conditions might perturb homeostatic responses to radiation to further complicate risk assessment for space flight.

  16. Optical patterning of trapped charge in nitrogen-doped diamond

    NASA Astrophysics Data System (ADS)

    Dhomkar, Siddharth; Jayakumar, Harishankar; Pagliero, Daniela; Laraoui, Abdelghani; Albu, Remus; Manson, Neil; Doherty, Marcus; Henshaw, Jacob; Meriles, Carlos

    The nitrogen-vacancy (NV) center in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge state, which can be attained by optical illumination. Here we use two-color optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion, and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs and to subsequently probe the corresponding redistribution of charge. We uncover the formation of various spatial patterns of trapped charge, which we semi-quantitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects in the diamond lattice. Further, by using the NV as a local probe, we map the relative fraction of positively charged nitrogen upon localized optical excitation. These observations may prove important to various technologies, including the transport of quantum information between remote NVs and the development of three-dimensional, charge-based memories. We acknowledge support from the National Science Foundation through Grant NSF-1314205.

  17. The effect of external forces on discrete motion within holographic optical tweezers.

    PubMed

    Eriksson, E; Keen, S; Leach, J; Goksör, M; Padgett, M J

    2007-12-24

    Holographic optical tweezers is a widely used technique to manipulate the individual positions of optically trapped micron-sized particles in a sample. The trap positions are changed by updating the holographic image displayed on a spatial light modulator. The updating process takes a finite time, resulting in a temporary decrease of the intensity, and thus the stiffness, of the optical trap. We have investigated this change in trap stiffness during the updating process by studying the motion of an optically trapped particle in a fluid flow. We found a highly nonlinear behavior of the change in trap stiffness vs. changes in step size. For step sizes up to approximately 300 nm the trap stiffness is decreasing. Above 300 nm the change in trap stiffness remains constant for all step sizes up to one particle radius. This information is crucial for optical force measurements using holographic optical tweezers.

  18. The trapped-particle instability in the Boeing 1kW FEL oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos, L.; Blau, J.; Colson, W.B.

    1995-12-31

    The new design for the Boeing High Average Power Free Electron Laser will operate at 1KW average power (0.63 {mu}m) with a peak current of 132A. Simulations are used to investigate the trapped-particle instability and diffraction effects. Incorporating large desynchronism may prove to be a useful method of controlling the trapped-particle instability.

  19. Ice particles trapped by temperature gradients at mbar pressure.

    PubMed

    Kelling, Thorben; Wurm, Gerhard; Dürmann, Christoph

    2011-11-01

    In laboratory experiments we observe that ice particles (≤100 μm) entrained in a low pressure atmosphere (~1 mbar) get trapped by temperature gradients between three reservoirs at different temperature. Confining elements are a peltier element at 250 K (bottom), a liquid nitrogen reservoir at 77 K (top), and the surrounding vacuum chamber at 293 K. Particle levitation and trapping is modeled by an interplay of thermophoresis, photophoresis, and gravity. A number of ice particles are trapped simultaneously in close spatial distance to each other at least up to minutes and are accessible for further experiments. © 2011 American Institute of Physics

  20. The South Atlantic Anomaly throughout the solar cycle

    NASA Astrophysics Data System (ADS)

    Domingos, João; Jault, Dominique; Pais, Maria Alexandra; Mandea, Mioara

    2017-09-01

    The Sun-Earth's interaction is characterized by a highly dynamic electromagnetic environment, in which the magnetic field produced in the Earth's core plays an important role. One of the striking characteristics of the present geomagnetic field is denoted the South Atlantic Anomaly (SAA) where the total field intensity is unusually low and the flux of charged particles, trapped in the inner Van Allen radiation belts, is maximum. Here, we use, on one hand, a recent geomagnetic field model, CHAOS-6, and on the other hand, data provided by different platforms (satellites orbiting the Earth - POES NOAA for 1998-2014 and CALIPSO for 2006-2014). Evolution of the SAA particle flux can be seen as the result of two main effects, the secular variation of the Earth's core magnetic field and the modulation of the density of the inner radiation belts during the solar cycle, as a function of the L value that characterises the drift shell, where charged particles are trapped. To study the evolution of the particle flux anomaly, we rely on a Principal Component Analysis (PCA) of either POES particle flux or CALIOP dark noise. Analysed data are distributed on a geographical grid at satellite altitude, based on a L-shell reference frame constructed from the moving eccentric dipole. Changes in the main magnetic field are responsible for the observed westward drift. Three PCA modes account for the time evolution related to solar effects. Both the first and second modes have a good correlation with the thermospheric density, which varies in response to the solar cycle. The first mode represents the total intensity variation of the particle flux in the SAA, and the second the movement of the anomaly between different L-shells. The proposed analysis allows us to well recover the westward drift rate, as well as the latitudinal and longitudinal solar cycle oscillations, although the analysed data do not cover a complete (Hale) magnetic solar cycle (around 22 yr). Moreover, the developments made here would enable us to forecast the impact of the South Atlantic Anomaly on space weather. A model of the evolution of the eccentric dipole field (magnitude, offset and tilt) would suffice, together with a model for the solar cycle evolution.

  1. Charging and heat collection by a positively charged dust grain in a plasma.

    PubMed

    Delzanno, Gian Luca; Tang, Xian-Zhu

    2014-07-18

    Dust particulates immersed in a quasineutral plasma can emit electrons in several important applications. Once electron emission becomes strong enough, the dust enters the positively charged regime where the conventional orbital-motion-limited (OML) theory can break down due to potential-well effects on trapped electrons. A minimal modification of the trapped-passing boundary approximation in the so-called OML(+) approach is shown to accurately predict the dust charge and heat collection flux for a wide range of dust size and temperature.

  2. Lower Hybrid Wave Induced Rotation on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Parker, Ron; Podpaly, Yuri; Rice, John; Schmidt, Andrea

    2009-11-01

    Injection of RF power in the vicinity of the lower hybrid frequency has been observed to cause strong counter current rotation in Alcator C-Mod plasmas [1,2]. The spin-up rate is consistent with the rate at which momentum is injected by the LH waves, and also the rate at which fast electron momentum is transferred to the ions. A momentum diffusivity of ˜ 0.1 m^2/s is sufficient to account for the observed steady-state rotation. This value is also comparable with that derived from an analysis of rotation induced by RF mode conversion [3]. Radial force balance requires a radial electric field, suggesting a buildup of negative charge in the plasma core. This may be the result of an inward pinch of the LH produced fast electrons, as would be expected for resonant trapped particles. Analysis of the fast-electron-produced bremsstrahlung during LH power modulation experiments yields an inward pinch velocity of ˜ 1 m/s, consistent with the estimated trapped particle pinch velocity. [4pt] [1] A. Ince-Cushman, et.al., Phys. Rev. Lett., 102, 035002 (2009)[0pt] [2] J. E. Rice, et. al., Nucl. Fusion 49, 025004 (2009)[0pt] [3] Y. Lin, et.al., this meeting

  3. Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Joseph B.; Dandu, Naveen; Velizhanin, Kirill A.

    2015-10-27

    Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent stability of silicon nanocrystal aggregates. The time-dependent photoluminescence emitted by structures ranging in size from a single quantum dot to agglomerates of more than a thousand is compared with Monte Carlo simulations of noninteracting ensembles using measured single-particle blinking data as input. In contrast to the behavior typically exhibited by the metal chalcogenides, the measured photoluminescent stability shows an enhancement with respectmore » to the noninteracting scenario with increasing aggregate size. We model this behavior using time-dependent density functional theory calculations of energy transfer between neighboring nanocrystals as a function of nanocrystal size, separation, and the presence of charge and/or surface-passivation defects. Our results suggest that rapid exciton transfer from “bright” nanocrystals to surface trap states in nearest-neighbors can efficiently fill such traps and enhance the stability of emission by promoting the radiative recombination of slowly diffusing excited electrons.« less

  4. Ultra High Mass Range Mass Spectrometer System

    DOEpatents

    Reilly, Peter T. A. [Knoxville, TN

    2005-12-06

    Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

  5. Ion Dynamic Capture Experiments With The High Performance Antiproton Trap (HiPAT)

    NASA Technical Reports Server (NTRS)

    Martin, James; Lewis, Raymond; Chakrabarti, Suman; Sims, William H.; Pearson, J. Boise; Fant, Wallace E.

    2002-01-01

    To take the first step towards using the energy produced from the matter-antimatter annihilation for propulsion applications, the NASA Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) has initiated a research activity examining the storage of low energy antiprotons. The High Performance Antiproton Trap (HiPAT) is an electromagnetic system (Penning-Malmberg design) consisting of a 4 Tesla superconductor, a high voltage electrode confinement system, and an ultra high vacuum test section. It has been designed with an ultimate goal of maintaining 10(exp 12) charged particles with a half-life of 18 days. Currently, this system is being evaluated experimentally using normal matter ions that are cheap to produce, relatively easy to handle, and provide a good indication of overall trap behavior (with the exception of assessing annihilation losses). The ions are produced via a positive hydrogen ion source and transported to HiPAT in a beam line equipped with electrostatic optics. The optics serve to both focus and gate the incoming ions, providing microsecond-timed beam pulses that are dynamically captured by cycling the HiPAT forward containment field like a "trap door". Initial dynamic capture experiments have been successfully performed with beam energy and currents set to 1.9 kV and 23 micro-amps, respectively. At these settings up to 2x10(exp 9) ions have been trapped during a single dynamic cycle.

  6. Optical waveguide loop for planar trapping of blood cells and microspheres

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Balpreet S.; Hellesø, Olav G.

    2013-09-01

    The evanescent field from a waveguide can be used to trap and propel a particle. An optical waveguide loop with an intentional gap at the center is used for planar transport and stable trapping of particles. The waveguide acts as a conveyor belt to trap and deliver spheres towards the gap. At the gap, the counter-diverging light fields hold the sphere at a fixed position. Numerical simulation based on the finite element method was performed in three dimensions using a computer cluster. The field distribution and optical forces for rib and strip waveguide designs are compared and discussed. The optical force on a single particle was computed for various positions of the particle in the gap. Simulation predicted stable trapping of particles in the gap. Depending on the gap separation (2-50 μm) a single or multiple spheres and red blood cells were trapped at the gap. Waveguides were made of tantalum pentaoxide material. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip.

  7. Three-dimensional ultrasonic trapping of micro-particles in water with a simple and compact two-element transducer

    NASA Astrophysics Data System (ADS)

    Franklin, A.; Marzo, A.; Malkin, R.; Drinkwater, B. W.

    2017-08-01

    We report a simple and compact piezoelectric transducer capable of stably trapping single and multiple micro-particles in water. A 3D-printed Fresnel lens is bonded to a two-element kerfless piezoceramic disk and actuated in a split-piston mode to produce an acoustic radiation force trap that is stable in three-dimensions. Polystyrene micro-particles in the Rayleigh regime (radius λ/14 to λ/7) are trapped at the focus of the lens (F# = 0.4) and manipulated in two-dimensions on an acoustically transparent membrane with a peak trap stiffness of 0.43 mN/m. Clusters of Rayleigh particles are also trapped and manipulated in three-dimensions, suspended in water against gravity. This transducer represents a significant simplification over previous acoustic devices used for micro-particle manipulation in liquids as it operates at relatively low frequency (688 kHz) and only requires a single electrical drive signal. This simplified device has potential for widespread use in applications such as micro-scale manufacturing and handling of cells or drug capsules in biomedical assays.

  8. High performance SONOS flash memory with in-situ silicon nanocrystals embedded in silicon nitride charge trapping layer

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Gab; Yang, Seung-Dong; Yun, Ho-Jin; Jung, Jun-Kyo; Park, Jung-Hyun; Lim, Chan; Cho, Gyu-seok; Park, Seong-gye; Huh, Chul; Lee, Hi-Deok; Lee, Ga-Won

    2018-02-01

    In this paper, SONOS-type flash memory device with highly improved charge-trapping efficiency is suggested by using silicon nanocrystals (Si-NCs) embedded in silicon nitride (SiNX) charge trapping layer. The Si-NCs were in-situ grown by PECVD without additional post annealing process. The fabricated device shows high program/erase speed and retention property which is suitable for multi-level cell (MLC) application. Excellent performance and reliability for MLC are demonstrated with large memory window of ∼8.5 V and superior retention characteristics of 7% charge loss for 10 years. High resolution transmission electron microscopy image confirms the Si-NC formation and the size is around 1-2 nm which can be verified again in X-ray photoelectron spectroscopy (XPS) where pure Si bonds increase. Besides, XPS analysis implies that more nitrogen atoms make stable bonds at the regular lattice point. Photoluminescence spectra results also illustrate that Si-NCs formation in SiNx is an effective method to form deep trap states.

  9. Shaping of nested potentials for electron cooling of highly-charged ions in a cooler Penning trap

    NASA Astrophysics Data System (ADS)

    Paul, Stefan; Kootte, Brian; Lascar, Daniel; Gwinner, Gerald; Dilling, Jens; Titan Collaboration

    2016-09-01

    TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) is dedicated to mass spectrometry and decay spectroscopy of short-lived radioactive nuclides in a series of ion traps including a precision Penning trap. In order to boost the achievable precision of mass measurements TITAN deploys an Electron Beam Ion Trap (EBIT) providing Highly-Charged Ions (HCI). However, the charge breeding process in the EBIT leads to an increase in the ion bunch's energy spread which is detrimental to the overall precision gain. To reduce this effect a new cylindrical Cooler PEnning Trap (CPET) is being commissioned to sympathetically cool the HCI via a simultaneously trapped electron plasma. Simultaneous trapping of ions and electrons requires a high level of control over the nested potential landscape and sophisticated switching schemes for the voltages on CPET's multiple ring electrodes. For this purpose, we are currently setting up a new experimental control system for multi-channel voltage switching. The control system employs a Raspberry Pi communicating with a digital-to-analog board via a serial peripheral interface. We report on the implementation of the voltage control system and its performance with respect to electron and ion manipulation in CPET. University of British Columbia, Vancouver, BC, Canada.

  10. A Study of the Charge Trap Transistor (CTT) for Post-Fab Modification of Wafers

    DTIC Science & Technology

    2018-04-01

    conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies of endorsements, either...applicability of the charge trap transistor (CTT) for embedded memory applications. Two case uses are considered (1) as a digital multi-time...28 Figure 38: (a) Weight-Dependent Plasticity when Five Trapping/Detrapping Pulses are applied in the LTD/LTP Regimes, respectively and (b

  11. Surface transport and stable trapping of particles and cells by an optical waveguide loop.

    PubMed

    Hellesø, Olav Gaute; Løvhaugen, Pål; Subramanian, Ananth Z; Wilkinson, James S; Ahluwalia, Balpreet Singh

    2012-09-21

    Waveguide trapping has emerged as a useful technique for parallel and planar transport of particles and biological cells and can be integrated with lab-on-a-chip applications. However, particles trapped on waveguides are continuously propelled forward along the surface of the waveguide. This limits the practical usability of the waveguide trapping technique with other functions (e.g. analysis, imaging) that require particles to be stationary during diagnosis. In this paper, an optical waveguide loop with an intentional gap at the centre is proposed to hold propelled particles and cells. The waveguide acts as a conveyor belt to transport and deliver the particles/cells towards the gap. At the gap, the diverging light fields hold the particles at a fixed position. The proposed waveguide design is numerically studied and experimentally implemented. The optical forces on the particle at the gap are calculated using the finite element method. Experimentally, the method is used to transport and trap micro-particles and red blood cells at the gap with varying separations. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip, e.g. microfluidics or optical detection, to make an on-chip system for single cell analysis and to study the interaction between cells.

  12. One-dimensional kinetic description of nonlinear traveling-pulse and traveling-wave disturbances in long coasting charged particle beams

    DOE PAGES

    Davidson, Ronald C.; Qin, Hong

    2015-09-21

    This study makes use of a one-dimensional kinetic model to investigate the nonlinear longitudinal dynamics of a long coasting beam propagating through a perfectly conducting circular pipe with radius r w. The average axial electric field is expressed as < E z >=-(∂/∂z)=-e bg 0∂λ b/∂z-e bg 2r 2 w∂ 3λ b/∂z 3, where g 0 and g 2 are constant geometric factors, λ b(z,t)=∫dp zF b(z,p z,t) is the line density of beam particles, and F b(z,p z,t) satisfies the 1D Vlasov equation. Detailed nonlinear properties of traveling-wave and traveling-pulse (soliton) solutions with time-stationary waveform are examined for amore » wide range of system parameters extending from moderate-amplitudes to large-amplitude modulations of the beam charge density. Two classes of solutions for the beam distribution function are considered, corresponding to: (i) the nonlinear waterbag distribution, where F b=const in a bounded region of p z-space; and (ii) nonlinear Bernstein-Green-Kruskal (BGK)-like solutions, allowing for both trapped and untrapped particle distributions to interact with the self-generated electric field < E z >.« less

  13. The MoEDAL Experiment at the LHC - a New Light on the Terascale Frontier

    NASA Astrophysics Data System (ADS)

    Pinfold, J. L.

    2015-07-01

    MoEDAL is a pioneering experiment designed to search for highly ionizing avatars of new physics such as magnetic monopoles or massive (pseudo-)stable charged particles. Its groundbreaking physics program defines a number of scenarios that yield potentially revolutionary insights into such foundational questions as: are there extra dimensions or new symmetries; what is the mechanism for the generation of mass; does magnetic charge exist; what is the nature of dark matter; and, how did the big-bang develop. MoEDAL's purpose is to meet such far-reaching challenges at the frontier of the field. The innovative MoEDAL detector employs unconventional methodologies tuned to the prospect of discovery physics. The largely passive MoEDAL detector, deployed at Point 8 on the LHC ring, has a dual nature. First, it acts like a giant camera, comprised of nuclear track detectors - analyzed offline by ultra fast scanning microscopes - sensitive only to new physics. Second, it is uniquely able to trap the particle messengers of physics beyond the Standard Model for further study. MoEDAL's radiation environment is monitored by a state-of-the-art real-time TimePix pixel detector array. A new MoEDAL sub-detector to extend MoEDAL's reach to millicharged, minimally ionizing, particles (MMIPs) is under study.

  14. One-dimensional kinetic description of nonlinear traveling-pulse and traveling-wave disturbances in long coasting charged particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Ronald C.; Qin, Hong

    This study makes use of a one-dimensional kinetic model to investigate the nonlinear longitudinal dynamics of a long coasting beam propagating through a perfectly conducting circular pipe with radius r w. The average axial electric field is expressed as < E z >=-(∂/∂z)=-e bg 0∂λ b/∂z-e bg 2r 2 w∂ 3λ b/∂z 3, where g 0 and g 2 are constant geometric factors, λ b(z,t)=∫dp zF b(z,p z,t) is the line density of beam particles, and F b(z,p z,t) satisfies the 1D Vlasov equation. Detailed nonlinear properties of traveling-wave and traveling-pulse (soliton) solutions with time-stationary waveform are examined for amore » wide range of system parameters extending from moderate-amplitudes to large-amplitude modulations of the beam charge density. Two classes of solutions for the beam distribution function are considered, corresponding to: (i) the nonlinear waterbag distribution, where F b=const in a bounded region of p z-space; and (ii) nonlinear Bernstein-Green-Kruskal (BGK)-like solutions, allowing for both trapped and untrapped particle distributions to interact with the self-generated electric field < E z >.« less

  15. Uncertainty in particle number modal analysis during transient operation of compressed natural gas, diesel, and trap-equipped diesel transit buses.

    PubMed

    Holmén, Britt A; Qu, Yingge

    2004-04-15

    The relationships between transient vehicle operation and ultrafine particle emissions are not well-known, especially for low-emission alternative bus technologies such as compressed natural gas (CNG) and diesel buses equipped with particulate filters/traps (TRAP). In this study, real-time particle number concentrations measured on a nominal 5 s average basis using an electrical low pressure impactor (ELPI) for these two bus technologies are compared to that of a baseline catalyst-equipped diesel bus operated on ultralow sulfur fuel (BASE) using dynamometer testing. Particle emissions were consistently 2 orders of magnitude lower for the CNG and TRAP compared to BASE on all driving cycles. Time-resolved total particle numbers were examined in terms of sampling factors identified as affecting the ability of ELPI to quantify the particulate matter number emissions for low-emitting vehicles such as CNG and TRAP as a function of vehicle driving mode. Key factors were instrument sensitivity and dilution ratio, alignment of particle and vehicle operating data, sampling train background particles, and cycle-to-cycle variability due to vehicle, engine, after-treatment, or driver behavior. In-cycle variability on the central business district (CBD) cycle was highest for the TRAP configuration, but this could not be attributed to the ELPI sensitivity issues observed for TRAP-IDLE measurements. Elevated TRAP emissions coincided with low exhaust temperature, suggesting on-road real-world particulate filter performance can be evaluated by monitoring exhaust temperature. Nonunique particle emission maps indicate that measures other than vehicle speed and acceleration are necessary to model disaggregated real-time particle emissions. Further testing on a wide variety of test cycles is needed to evaluate the relative importance of the time history of vehicle operation and the hysteresis of the sampling train/dilution tunnel on ultrafine particle emissions. Future studies should monitor particle emissions with high-resolution real-time instruments and account for the operating regime of the vehicle using time-series analysis to develop predictive number emissions models.

  16. Trapping of Embolic Particles in a Vessel Phantom by Cavitation-Enhanced Acoustic Streaming

    PubMed Central

    Maxwell, Adam D.; Park, Simone; Vaughan, Benjamin L.; Cain, Charles A.; Grotberg, James B.; Xu, Zhen

    2014-01-01

    Cavitation clouds generated by short, high-amplitude, focused ultrasound pulses were previously observed to attract, trap, and erode thrombus fragments in a vessel phantom. This phenomenon may offer a noninvasive method to capture and eliminate embolic fragments flowing through the bloodstream during a cardiovascular intervention. In this article, the mechanism of embolus trapping was explored by particle image velocimetry (PIV). PIV was used to examine the fluid streaming patterns generated by ultrasound in a vessel phantom with and without crossflow of blood-mimicking fluid. Cavitation enhanced streaming, which generated fluid vortices adjacent to the focus. The focal streaming velocity, uf, was as high as 120 cm/s, while mean crossflow velocities, uc, were imposed up to 14 cm/s. When a solid particle 3-4 mm diameter was introduced into crossflow, it was trapped near the focus. Increasing uf promoted particle trapping while increasing uc promoted particle escape. The maximum crossflow Reynolds number at which particles could be trapped, Rec, was approximately linear with focal streaming number, Ref, i.e. Rec = 0.25Ref + 67.44 (R2=0.76) corresponding to dimensional velocities uc=0.084uf + 3.122 for 20 < uf < 120 cm/s. The fluidic pressure map was estimated from PIV and indicated a negative pressure gradient towards the focus, trapping the embolus near this location. PMID:25109407

  17. Reliability of gamma-irradiated n-channel ZnO thin-film transistors: electronic and interface properties

    NASA Astrophysics Data System (ADS)

    Lee, Kin Kiong; Wang, Danna; Shinobu, Onoda; Ohshima, Takeshi

    2018-04-01

    Radiation-induced charge trapping and interface traps in n-channel ZnO thin film transistors are characterised as a function of total dose and irradiation bias following exposure to gamma-rays. Devices were irradiated up to ∼60 kGy(SiO?) and the electrical characteristic exhibits two distinct regimes. In the first regime, up to a total dose of 40 kGy(SiO?), the threshold voltage increases positively. However, in the second regime with irradiation greater than 40 kGy(SiO?), the threshold voltage moves in the opposite direction. This reversal of threshold voltage is attributed to the influence of the radiation-induced interface and oxide- charge, in which both have opposite polarity, on the electrical performance of the transistors. In the first regime, the generation of the oxide- charge is initially greater than the density of interface traps and caused a positive shift. In the second regime, when the total doses were greater than 40 kGy(SiO?), the radiation-induced interface traps are greater than the density of oxide- charge and caused the threshold voltage to switch direction. Further, the generated interface traps contributed to the degradation of the effective channel mobility, whereas the density of traps at the grain-boundaries did not increase significantly upon irradiation. Isothermal annealing of the devices at 363 K results in a reduction in the trap density and an improvement of the effective channel mobility to ∼90% of its pre-irradiation value.

  18. A transportable Paul-trap for levitation and accurate positioning of micron-scale particles in vacuum for laser-plasma experiments

    NASA Astrophysics Data System (ADS)

    Ostermayr, T. M.; Gebhard, J.; Haffa, D.; Kiefer, D.; Kreuzer, C.; Allinger, K.; Bömer, C.; Braenzel, J.; Schnürer, M.; Cermak, I.; Schreiber, J.; Hilz, P.

    2018-01-01

    We report on a Paul-trap system with large access angles that allows positioning of fully isolated micrometer-scale particles with micrometer precision as targets in high-intensity laser-plasma interactions. This paper summarizes theoretical and experimental concepts of the apparatus as well as supporting measurements that were performed for the trapping process of single particles.

  19. The effects of nanoparticles and organic additives with controlled dispersion on dielectric properties of polymers: Charge trapping and impact excitation

    NASA Astrophysics Data System (ADS)

    Huang, Yanhui; Wu, Ke; Bell, Michael; Oakes, Andrew; Ratcliff, Tyree; Lanzillo, Nicholas A.; Breneman, Curt; Benicewicz, Brian C.; Schadler, Linda S.

    2016-08-01

    This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO2 and ZrO2 nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (˜1017 cm-3). The charge trapping is found to have the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO2 filled composites and is likely caused by impact excitation due to the low excitation energy of TiO2 compared to ZrO2. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO2 may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO2 composites.

  20. The effects of nanoparticles and organic additives with controlled dispersion on dielectric properties of polymers: Charge trapping and impact excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S.; Wu, Ke

    This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO{sub 2} and ZrO{sub 2} nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (∼10{sup 17} cm{sup −3}). The charge trapping is found to havemore » the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO{sub 2} filled composites and is likely caused by impact excitation due to the low excitation energy of TiO{sub 2} compared to ZrO{sub 2}. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO{sub 2} may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO{sub 2} composites.« less

  1. Probing surface states in PbS nanocrystal films using pentacene field effect transistors: controlling carrier concentration and charge transport in pentacene.

    PubMed

    Park, Byoungnam; Whitham, Kevin; Bian, Kaifu; Lim, Yee-Fun; Hanrath, Tobias

    2014-12-21

    We used a bilayer field effect transistor (FET) consisting of a thin PbS nanocrystals (NCs) film interfaced with vacuum-deposited pentacene to probe trap states in NCs. We interpret the observed threshold voltage shift in context of charge carrier trapping by PbS NCs and relate the magnitude of the threshold voltage shift to the number of trapped carriers. We explored a series of NC surface ligands to modify the interface between PbS NCs and pentacene and demonstrate the impact of interface chemistry on charge carrier density and the FET mobility in a pentacene FET.

  2. Optical trapping and manipulation of neutral particles using lasers

    PubMed Central

    Ashkin, Arthur

    1997-01-01

    The techniques of optical trapping and manipulation of neutral particles by lasers provide unique means to control the dynamics of small particles. These new experimental methods have played a revolutionary role in areas of the physical and biological sciences. This paper reviews the early developments in the field leading to the demonstration of cooling and trapping of neutral atoms in atomic physics and to the first use of optical tweezers traps in biology. Some further major achievements of these rapidly developing methods also are considered. PMID:9144154

  3. Circuit model for single-energy-level trap centers in FETs

    NASA Astrophysics Data System (ADS)

    Albahrani, Sayed Ali; Parker, Anthony; Heimlich, Michael

    2016-12-01

    A circuit implementation of a single-energy-level trap center in an FET is presented. When included in transistor models it explains the temperature-potential-dependent time constants seen in the circuit manifestations of charge trapping, being gate lag and drain overshoot. The implementation is suitable for both time-domain and harmonic-balance simulations. The proposed model is based on the Shockley-Read-Hall (SRH) statistics of the trapping process. The results of isothermal pulse measurements performed on a GaN HEMT are presented. These measurement allow characterizing charge trapping in isolation from the effect of self-heating. These results are used to obtain the parameters of the proposed model.

  4. ac aging and space-charge characteristics in low-density polyethylene polymeric insulation

    NASA Astrophysics Data System (ADS)

    Chen, G.; Fu, M.; Liu, X. Z.; Zhong, L. S.

    2005-04-01

    In the present work efforts have been made to investigate the influence of ac aging on space-charge dynamics in low-density polyethylene (LDPE). LDPE films with 200 μm were aged under various electric stress levels at 50 Hz for various times at ambient temperature. Space-charge dynamics in the samples after aging were monitored using the pulsed electroacoustic technique. It has been revealed that the space charge under ac aging conditions is related to the level of the applied field, duration of the voltage application, as well as the electrode materials. By comparing with the results of unaged sample the results from aged sample provide a direct evidence of changing trapping characteristics after ac aging. Negative space charge is present in the bulk of the material and the total amount of charge increases with the aging time. The amount of charge increases with the applied field. Charge decay test indicates that the charges are captured in deep traps. These deep traps are believed to form during the aging and related to change caused by injected charge. By using different electrode materials such as gold, brass alloy, and polyethylene loaded with carbon black, it was found that the electrode has an important role in the formation of charge, hence subsequent changes caused by charge. The charge dynamics of the aged samples under dc bias differ from the sample without ac aging, indicating changes brought in by ac aging. Chemical analysis by Fourier transform infrared spectroscope and Raman microscope reveals no detectable chemical changes taken place in the bulk of the material after ac aging. Finally, the consequence of the accumulation of space charge under ac conditions on the lifetime of the material has been discussed. The presence of deeply trapped space charge leads to an electric stress enhancement which may shorten the lifetime of the insulation system.

  5. Measuring momentum for charged particle tomography

    DOEpatents

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  6. Direct detection of a transport-blocking trap in a nanoscaled silicon single-electron transistor by radio-frequency reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villis, B. J.; Sanquer, M.; Jehl, X.

    2014-06-09

    The continuous downscaling of transistors results in nanoscale devices which require fewer and fewer charged carriers for their operation. The ultimate charge controlled device, the single-electron transistor (SET), controls the transfer of individual electrons. It is also the most sensitive electrometer, and as a result the electron transport through it can be dramatically affected by nearby charges. Standard direct-current characterization techniques, however, are often unable to unambiguously detect and resolve the origin of the observed changes in SET behavior arising from changes in the charge state of a capacitively coupled trap. Using a radio-frequency (RF) reflectometry technique, we are ablemore » to unequivocally detect this process, in very close agreement with modeling of the trap's occupation probability.« less

  7. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons

    PubMed Central

    Tongay, Sefaattin; Suh, Joonki; Ataca, Can; Fan, Wen; Luce, Alexander; Kang, Jeong Seuk; Liu, Jonathan; Ko, Changhyun; Raghunathanan, Rajamani; Zhou, Jian; Ogletree, Frank; Li, Jingbo; Grossman, Jeffrey C.; Wu, Junqiao

    2013-01-01

    Point defects in semiconductors can trap free charge carriers and localize excitons. The interaction between these defects and charge carriers becomes stronger at reduced dimensionalities, and is expected to greatly influence physical properties of the hosting material. We investigated effects of anion vacancies in monolayer transition metal dichalcogenides as two-dimensional (2D) semiconductors where the vacancies density is controlled by α-particle irradiation or thermal-annealing. We found a new, sub-bandgap emission peak as well as increase in overall photoluminescence intensity as a result of the vacancy generation. Interestingly, these effects are absent when measured in vacuum. We conclude that in opposite to conventional wisdom, optical quality at room temperature cannot be used as criteria to assess crystal quality of the 2D semiconductors. Our results not only shed light on defect and exciton physics of 2D semiconductors, but also offer a new route toward tailoring optical properties of 2D semiconductors by defect engineering. PMID:24029823

  8. Nonlinear Dynamics of Multi-Component Bose-Einstein Condensates ---Anti-Gravity Transport and Vortex Chaos---

    NASA Astrophysics Data System (ADS)

    Nakamura, K.

    Bose-Einstein condensate(BEC) provides a nice stage when the nonlinearSchrödinger equation plays a vital role. We study the dynamics of multi-component repulsive BEC in 2 dimensions with harmonic traps by using the nonlinear Schrödinger (or Gross-Pitaevskii) equation. Firstly we consider a driven two-component BEC with each component trapped in different vertical positions. The appropriate tuning of the oscillation frequency of the magnetic field leads to a striking anti-gravity transport of BEC. This phenomenon is a manifestation of macroscopic non-adiabatic tunneling in a system with two internal(electronic) degrees of freedom. The dynamics splits into a fast complex spatio-temporal oscillation of each condensate wavefunctions together with a slow levitation of the total center of mass. Secondly, we examine the three-component repulsive BEC in 2 dimensions in a harmonic trap in the absence of magnetic field, and construct a model of conservative chaos based on a picture of vortex molecules. We obtain an effective nonlinear dynamics for three vortex cores, which represents three charged particles under the uniform magnetic field with the repulsive inter-particle potential quadratic in the inter-vortex distance r_{ij} on short scale and logarithmic in r_{ij} on large scale. The vortices here acquire the inertia in marked contrast to the standard theory of point vortices since Onsager. We then explore ``the chaos in the three-body problem" in the context of vortices with inertia.

  9. PMMA interlayer-modulated memory effects by space charge polarization in resistive switching based on CuSCN-nanopyramids/ZnO-nanorods p-n heterojunction

    PubMed Central

    Cheng, Baochang; Zhao, Jie; Xiao, Li; Cai, Qiangsheng; Guo, Rui; Xiao, Yanhe; Lei, Shuijin

    2015-01-01

    Resistive switching (RS) devices are commonly believed as a promising candidate for next generation nonvolatile resistance random access memory. Here, polymethylmethacrylate (PMMA) interlayer was introduced at the heterointerface of p-CuSCN hollow nanopyramid arrays and n-ZnO nanorod arrays, resulting in a typical bipolar RS behavior. We propose the mechanism of nanostructure trap-induced space charge polarization modulated by PMMA interlayer. At low reverse bias, PMMA insulator can block charges through the heterointerface, and and trapped states are respectively created on both sides of PMMA, resulting in a high resistance state (HRS) due to wider depletion region. At high reverse bias, however, electrons and holes can cross PMMA interlayer by Fowler-Nordeim tunneling due to a massive tilt of energy band, and then inject into the traps of ZnO and CuSCN, respectively. and trapped states are created, resulting in the formation of degenerate semiconductors on both sides of PMMA. Therefore, quantum tunneling and space charge polarization lead to a low resistance state (LRS). At relatively high forward bias, subsequently, the trapped states of and are recreated due to the opposite injection of charges, resulting in a recovery of HRS. The introduction of insulating interlayer at heterointerface, point a way to develop next-generation nonvolatile memories. PMID:26648249

  10. Improved charge trapping properties by embedded graphene oxide quantum-dots for flash memory application

    NASA Astrophysics Data System (ADS)

    Jia, Xinlei; Yan, Xiaobing; Wang, Hong; Yang, Tao; Zhou, Zhenyu; Zhao, Jianhui

    2018-06-01

    In this work, we have investigated two kinds of charge trapping memory devices with Pd/Al2O3/ZnO/SiO2/p-Si and Pd/Al2O3/ZnO/graphene oxide quantum-dots (GOQDs)/ZnO/SiO2/p-Si structure. Compared with the single ZnO sample, the memory window of the ZnO-GOQDs-ZnO sample reaches a larger value (more than doubled) of 2.7 V under the sweeping gate voltage ± 7 V, indicating a better charge storage capability and the significant charge trapping effects by embedding the GOQDs trapping layer. The ZnO-GOQDs-ZnO devices have better date retention properties with the high and low capacitances loss of ˜ 1.1 and ˜ 6.9%, respectively, as well as planar density of the trapped charges of 1.48 × 1012 cm- 2. It is proposed that the GOQDs play an important role in the outstanding memory characteristics due to the deep quantum potential wells and the discrete distribution of the GOQDs. The long date retention time might have resulted from the high potential barrier which suppressed both the back tunneling and the leakage current. Intercalating GOQDs in the memory device is a promising method to realize large memory window, low-power consumption and excellent retention properties.

  11. The tug-of-war behavior of a Brownian particle in an asymmetric double optical trap with stochastic fluctuations

    NASA Astrophysics Data System (ADS)

    Long, Fei; Zhu, Jia-Pei

    2018-07-01

    A Brownian particle optically trapped in an asymmetric double potential surrounded by a thermal bath was simulated. Under the cooperative action of the resultant deterministic optical force and the stochastic fluctuations of the thermal bath, the confined particle undergoes Kramers transition, and oscillates between the two traps with a probability of trap occupancy that is asymmetrically distributed about the midpoint. The simulation results obtained at different temperatures indicate that the oscillation behavior of the particle can be treated as the result of a tug-of-war game played between the resultant deterministic force and the random force. We also employ a bistable model to explain the observed phenomena.

  12. Rotation of an optically trapped vaterite microsphere measured using rotational Doppler effect

    NASA Astrophysics Data System (ADS)

    Chen, Xinlin; Xiao, Guangzong; Xiong, Wei; Yang, Kaiyong; Luo, Hui; Yao, Baoli

    2018-03-01

    The angular velocity of a vaterite microsphere spinning in the optical trap is measured using rotational Doppler effect. The perfectly spherical vaterite microspheres are synthesized via coprecipitation in the presence of silk fibroin nanospheres. When trapped by a circularly polarized beam, the vaterite microsphere is uniformly rotated in the trap center. The probe beams containing two Laguerre-Gaussian beams of opposite topological charge l = ± 7, l = ± 8, and l = ± 9 are illuminated on the spinning vaterite. By analyzing the backscattered light, a frequency shift is observed scaling with the rotation rate of the vaterite microsphere. The multiplicative enhancement of the frequency shift proportion to the topological charge has greatly improved the measurement precision. The reliability and practicability of this approach are verified through varying the topological charge of the probe beam and the trapping laser power. In consideration of the excellent measurement precision of the rotation frequency, this technique might be generally applicable in studying the torsional properties of micro-objects.

  13. High‐Performance Nonvolatile Organic Field‐Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers

    PubMed Central

    Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Wang, Laiyuan; Wu, Dequn

    2017-01-01

    Nonvolatile organic field‐effect transistor (OFET) memory devices based on pentacene/N,N′‐ditridecylperylene‐3,4,9,10‐tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n‐type P13 embedded in p‐type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well‐like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge‐trapping property of the poly(4‐vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high‐performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory. PMID:28852619

  14. Infrared laser dissociation of single megadalton polymer ions in a gated electrostatic ion trap: the added value of statistical analysis of individual events.

    PubMed

    Halim, Mohammad A; Clavier, Christian; Dagany, Xavier; Kerleroux, Michel; Dugourd, Philippe; Dunbar, Robert C; Antoine, Rodolphe

    2018-05-07

    In this study, we report the unimolecular dissociation mechanism of megadalton SO 3 -containing poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) polymer cations and anions with the aid of infrared multiphoton dissociation coupled to charge detection ion trap mass spectrometry. A gated electrostatic ion trap ("Benner trap") is used to store and detect single gaseous polymer ions generated by positive and negative polarity in an electrospray ionization source. The trapped ions are then fragmented due to the sequential absorption of multiple infrared photons produced from a continuous-wave CO 2 laser. Several fragmentation pathways having distinct signatures are observed. Highly charged parent ions characteristically adopt a distinctive "stair-case" pattern (assigned to the "fission" process) whereas low charge species take on a "funnel like" shape (assigned to the "evaporation" process). Also, the log-log plot of the dissociation rate constants as a function of laser intensity between PAMPS positive and negative ions is significantly different.

  15. System for particle concentration and detection

    DOEpatents

    Morales, Alfredo M.; Whaley, Josh A.; Zimmerman, Mark D.; Renzi, Ronald F.; Tran, Huu M.; Maurer, Scott M.; Munslow, William D.

    2013-03-19

    A new microfluidic system comprising an automated prototype insulator-based dielectrophoresis (iDEP) triggering microfluidic device for pathogen monitoring that can eventually be run outside the laboratory in a real world environment has been used to demonstrate the feasibility of automated trapping and detection of particles. The system broadly comprised an aerosol collector for collecting air-borne particles, an iDEP chip within which to temporarily trap the collected particles and a laser and fluorescence detector with which to induce a fluorescence signal and detect a change in that signal as particles are trapped within the iDEP chip.

  16. Neoclassical transport caused by collisionless scattering across an asymmetric separatrix.

    PubMed

    Dubin, Daniel H E; Driscoll, C F; Tsidulko, Yu A

    2010-10-29

    Plasma loss due to apparatus asymmetries is a ubiquitous phenomenon in magnetic plasma confinement. When the plasma equilibrium has locally trapped particle populations partitioned by a separatrix from one another and from passing particles, the asymmetry transport is enhanced. The trapped and passing particle populations react differently to the asymmetries, leading to the standard 1/ν and sqrt[ν] transport regimes of superbanana orbit theory as particles collisionally scatter from one orbit type to another. However, when the separatrix is itself asymmetric, particles can collisionlessly transit from trapped to passing and back, leading to enhanced transport.

  17. Study of solids by use of nonthermalized positrons

    NASA Astrophysics Data System (ADS)

    Nielsen, Bent; Lynn, K. G.; Chen, Yen-C.

    1986-10-01

    We have measured the energy distribution of positrons reemitted from the surfaces of solids after being implanted at low energy. It is shown that this provides a unique possibility to study energy losses of a charged particle down to near-thermal energy. Such measurements are used to estimate the positron thermalization time in Al. A dramatic change in this energy distribution was observed after oxidation of the Al surface. We attribute this to the band gap of the oxide. Trapping of epithermal positrons with a remarkably high cross section was observed for both Al and Cu.

  18. Study of fast charged particles with a Cerenkov detector on the KOSMOS-900 orbiter

    NASA Astrophysics Data System (ADS)

    Gorchakov, E. V.; Afanas'ev, V. G.; Afanas'ev, K. G.; Ignat'ev, P. P.; Iozenas, V. A.; Ternovskaya, M. V.

    1987-10-01

    Experimental data, for the period from April 30, 1977 to October 10, 1979, on the spatial distribution of secondary electrons with energy greater than 15 MeV and protons with energy greater than 400 MeV at an altitude of ˜500 km as well as data on the fluxes of relativistic electrons with energy exceeding 15 MeV, arising in the decay phase of magnetic storms and trapped in the outer radiation belt, are presented. The results of measurements of solar cosmic rays (SCR) in the vent on November 22, 1977 are discussed.

  19. Study of fast charged particles with a Cerenkov detector on the Kosmos-900 orbiter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorchakov, E.V.; Afanas'ev, V.G.; Afanas'ev, K.G.

    1988-04-01

    Experimental data, for the period form April 30, 1977 to October 10, 1979, on the spatial distribution of secondary electrons with energy greater than 15 MeV and protons with energy greater than 400 MeV at an altitude of /approximately/500 km as well as data on the fluxes of relativistic electrons with energy exceeding 15 MeV, arising in the decay phase of magnetic storms and trapped in the outer radiation belt, are presented. The results of measurements of solar cosmic rays in the vent on November 22, 1977 are discussed.

  20. Orbital science's 'Bermuda Triangle'

    NASA Astrophysics Data System (ADS)

    Sherrill, Thomas J.

    1991-02-01

    The effects of a part of the inner Van Allen belt lying closest to the earth, known as the South Atlantic Anomaly (SAA) upon spacecraft including the Hubble Space Telescope (HST), are discussed. The area consists of positively charged ions and electrons from the Van Allen Belt which become trapped in the earth's dipole field. Contor maps representing the number of protons per square centimeter per second having energies greater than 10 million electron volts are presented. It is noted that the HST orbit causes it to spend about 15 percent of its time in the SAA, but that, unlike the experience with earlier spacecraft, the satellite's skin, internal structure, and normal electronic's packaging provides sufficient protection against eletrons, although some higher energy protons still get through. Various charged particle effects which can arise within scientific instruments including fluorescence, Cerenkov radiation, and induced radioactivity are described.

Top