Sample records for charged regular black

  1. Regular black holes: Electrically charged solutions, Reissner-Nordstroem outside a de Sitter core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemos, Jose P. S.; Zanchin, Vilson T.; Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia, 166, 09210-170, Santo Andre, Sao Paulo

    2011-06-15

    To have the correct picture of a black hole as a whole, it is of crucial importance to understand its interior. The singularities that lurk inside the horizon of the usual Kerr-Newman family of black hole solutions signal an endpoint to the physical laws and, as such, should be substituted in one way or another. A proposal that has been around for sometime is to replace the singular region of the spacetime by a region containing some form of matter or false vacuum configuration that can also cohabit with the black hole interior. Black holes without singularities are called regularmore » black holes. In the present work, regular black hole solutions are found within general relativity coupled to Maxwell's electromagnetism and charged matter. We show that there are objects which correspond to regular charged black holes, whose interior region is de Sitter, whose exterior region is Reissner-Nordstroem, and the boundary between both regions is made of an electrically charged spherically symmetric coat. There are several types of solutions: regular nonextremal black holes with a null matter boundary, regular nonextremal black holes with a timelike matter boundary, regular extremal black holes with a timelike matter boundary, and regular overcharged stars with a timelike matter boundary. The main physical and geometrical properties of such charged regular solutions are analyzed.« less

  2. Particle motion and Penrose processes around rotating regular black hole

    NASA Astrophysics Data System (ADS)

    Abdujabbarov, Ahmadjon

    2016-07-01

    The neutral particle motion around rotating regular black hole that was derived from the Ayón-Beato-García (ABG) black hole solution by the Newman-Janis algorithm in the preceding paper (Toshmatov et al., Phys. Rev. D, 89:104017, 2014) has been studied. The dependencies of the ISCO (innermost stable circular orbits along geodesics) and unstable orbits on the value of the electric charge of the rotating regular black hole have been shown. Energy extraction from the rotating regular black hole through various processes has been examined. We have found expression of the center of mass energy for the colliding neutral particles coming from infinity, based on the BSW (Baňados-Silk-West) mechanism. The electric charge Q of rotating regular black hole decreases the potential of the gravitational field as compared to the Kerr black hole and the particles demonstrate less bound energy at the circular geodesics. This causes an increase of efficiency of the energy extraction through BSW process in the presence of the electric charge Q from rotating regular black hole. Furthermore, we have studied the particle emission due to the BSW effect assuming that two neutral particles collide near the horizon of the rotating regular extremal black hole and produce another two particles. We have shown that efficiency of the energy extraction is less than the value 146.6 % being valid for the Kerr black hole. It has been also demonstrated that the efficiency of the energy extraction from the rotating regular black hole via the Penrose process decreases with the increase of the electric charge Q and is smaller in comparison to 20.7 % which is the value for the extreme Kerr black hole with the specific angular momentum a= M.

  3. Accretion onto some well-known regular black holes

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Shahzad, M. Umair

    2016-03-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.

  4. Magnetically charged regular black hole in a model of nonlinear electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Meng-Sen, E-mail: mengsenma@gmail.com

    2015-11-15

    We obtain a magnetically charged regular black hole in general relativity. The source to the Einstein field equations is nonlinear electrodynamic field in a physically reasonable model of nonlinear electrodynamics (NED). “Physically” here means the NED model is constructed on the basis of three conditions: the Maxwell asymptotic in the weak electromagnetic field limit; the presence of vacuum birefringence phenomenon; and satisfying the weak energy condition (WEC). In addition, we analyze the thermodynamic properties of the regular black hole in two ways. According to the usual black hole thermodynamics, we calculate the heat capacity at constant charge, from which wemore » know the smaller black hole is more stable. We also employ the horizon thermodynamics to discuss the thermodynamic quantities, especially the heat capacity at constant pressure.« less

  5. Charged black rings at large D

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Li, Peng-Cheng; Wang, Zi-zhi

    2017-04-01

    We study the charged slowly rotating black holes in the Einstein-Maxwell theory in the large dimensions ( D). By using the 1 /D expansion in the near regions of the black holes we obtain the effective equations for the charged slowly rotating black holes. The effective equations capture the dynamics of various stationary solutions, including the charged black ring, the charged slowly rotating Myers-Perry black hole and the charged slowly boosted black string. Via different embeddings we construct these stationary solutions explicitly. For the charged black ring at large D, we find that the charge lowers the angular momentum due to the regularity condition on the solution. By performing the perturbation analysis of the effective equations, we obtain the quasinormal modes of the charge perturbation and the gravitational perturbation analytically. Like the neutral case the charged thin black ring suffers from the Gregory-Laflamme-like instability under the non-axisymmetric perturbations, but the charge weakens the instability. Besides, we find that the large D analysis always respects the cosmic censorship.

  6. Some astrophysical processes around magnetized black hole

    NASA Astrophysics Data System (ADS)

    Kološ, M.; Tursunov, A.; Stuchlík, Z.

    2018-01-01

    We study the dynamics of charged test particles in the vicinity of a black hole immersed into an asymptotically uniform external magnetic field. A real magnetic field around a black hole will be far away from to be completely regular and uniform, a uniform magnetic field is used as linear approximation. Ionized particle acceleration, charged particle oscillations and synchrotron radiation of moving charged particle have been studied.

  7. Interior of a charged distorted black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdolrahimi, Shohreh; Frolov, Valeri P.; Shoom, Andrey A.

    We study the interior of a charged, nonrotating distorted black hole. We consider static and axisymmetric black holes, and focus on a special case when an electrically charged distorted solution is obtained by the Harrison-Ernst transformation from an uncharged one. We demonstrate that the Cauchy horizon of such a black hole remains regular, provided the distortion is regular at the event horizon. The shape and the inner geometry of both the outer and inner (Cauchy) horizons are studied. We demonstrate that there exists a duality between the properties of the horizons. Proper time of a free fall of a testmore » particle moving in the interior of the distorted black hole along the symmetry axis is calculated. We also study the property of the curvature in the inner domain between the horizons. Simple relations between the 4D curvature invariants and the Gaussian curvature of the outer and inner horizon surfaces are found.« less

  8. Massless charged particles: Cosmic censorship, and the third law of black hole mechanics

    NASA Astrophysics Data System (ADS)

    Fairoos, C.; Ghosh, Avirup; Sarkar, Sudipta

    2017-10-01

    The formulation of the laws of Black hole mechanics assumes the stability of black holes under perturbations in accordance with the "cosmic censorship hypothesis" (CCH). CCH prohibits the formation of a naked singularity by a physical process from a regular black hole solution with an event horizon. Earlier studies show that naked singularities can indeed be formed leading to the violation of CCH if a near-extremal black hole is injected with massive charged particles and the backreaction effects are neglected. We investigate the validity of CCH by considering the infall of charged massless particles as well as a charged null shell. We also discuss the issue of the third law of Black hole mechanics in the presence of null charged particles by considering various possibilities.

  9. Black hole solution in the framework of arctan-electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    An arctan-electrodynamics coupled with the gravitational field is investigated. We obtain the regular black hole solution that at r →∞ gives corrections to the Reissner-Nordström solution. The corrections to Coulomb’s law at r →∞ are found. We evaluate the mass of the black hole that is a function of the dimensional parameter β introduced in the model. The magnetically charged black hole was investigated and we have obtained the magnetic mass of the black hole and the metric function at r →∞. The regular black hole solution is obtained at r → 0 with the de Sitter core. We show that there is no singularity of the Ricci scalar for electrically and magnetically charged black holes. Restrictions on the electric and magnetic fields are found that follow from the requirement of the absence of superluminal sound speed and the requirement of a classical stability.

  10. Rotating hairy black holes.

    PubMed

    Kleihaus, B; Kunz, J

    2001-04-23

    We construct stationary black-hole solutions in SU(2) Einstein-Yang-Mills theory which carry angular momentum and electric charge. Possessing nontrivial non-Abelian magnetic fields outside their regular event horizon, they represent nonperturbative rotating hairy black holes.

  11. Quantum electron levels in the field of a charged black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokuchaev, V. I.; Eroshenko, Yu. N., E-mail: eroshenko@ms2.inr.ac.ru

    2015-12-15

    Stationary solutions of the Dirac equation in the metric of the charged Reissner–Nordstrom black hole are found. In the case of an extremal black hole, the normalization integral of the wave functions is finite, and the regular stationary solution is physically self-consistent. The presence of quantum electron levels under the Cauchy horizon can have an impact on the final stage of the Hawking evaporation of the black hole, as well as on the particle scattering in the field of the black hole.

  12. Deflection of light by rotating regular black holes using the Gauss-Bonnet theorem

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet; Övgün, Ali; Saavedra, Joel; Vásquez, Yerko; González, P. A.

    2018-06-01

    In this paper, we study the weak gravitational lensing in the spacetime of rotating regular black hole geometries such as Ayon-Beato-García (ABG), Bardeen, and Hayward black holes. We calculate the deflection angle of light using the Gauss-Bonnet theorem (GBT) and show that the deflection of light can be viewed as a partially topological effect in which the deflection angle can be calculated by considering a domain outside of the light ray applied to the black hole optical geometries. Then, we demonstrate also the deflection angle via the geodesics formalism for these black holes to verify our results and explore the differences with the Kerr solution. These black holes have, in addition to the total mass and rotation parameter, different parameters of electric charge, magnetic charge, and deviation parameter. We find that the deflection of light has correction terms coming from these parameters, which generalizes the Kerr deflection angle.

  13. Strong lensing of a regular black hole with an electrodynamics source

    NASA Astrophysics Data System (ADS)

    Manna, Tuhina; Rahaman, Farook; Molla, Sabiruddin; Bhadra, Jhumpa; Shah, Hasrat Hussain

    2018-05-01

    In this paper we have investigated the gravitational lensing phenomenon in the strong field regime for a regular, charged, static black holes with non-linear electrodynamics source. We have obtained the angle of deflection and compared it to a Schwarzschild black hole and Reissner Nordström black hole with similar properties. We have also done a graphical study of the relativistic image positions and magnifications. We hope that this method may be useful in the detection of non-luminous bodies like this current black hole.

  14. Regular black holes in Einstein-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Ghosh, Sushant G.; Singh, Dharm Veer; Maharaj, Sunil D.

    2018-05-01

    Einstein-Gauss-Bonnet theory, a natural generalization of general relativity to a higher dimension, admits a static spherically symmetric black hole which was obtained by Boulware and Deser. This black hole is similar to its general relativity counterpart with a curvature singularity at r =0 . We present an exact 5D regular black hole metric, with parameter (k >0 ), that interpolates between the Boulware-Deser black hole (k =0 ) and the Wiltshire charged black hole (r ≫k ). Owing to the appearance of the exponential correction factor (e-k /r2), responsible for regularizing the metric, the thermodynamical quantities are modified, and it is demonstrated that the Hawking-Page phase transition is achievable. The heat capacity diverges at a critical radius r =rC, where incidentally the temperature is maximum. Thus, we have a regular black hole with Cauchy and event horizons, and evaporation leads to a thermodynamically stable double-horizon black hole remnant with vanishing temperature. The entropy does not satisfy the usual exact horizon area result of general relativity.

  15. Bose-Einstein condensates in charged black-hole spacetimes

    NASA Astrophysics Data System (ADS)

    Castellanos, Elías; Degollado, Juan Carlos; Lämmerzahl, Claus; Macías, Alfredo; Perlick, Volker

    2018-01-01

    We analyze Bose-Einstein condensates on three types of spherically symmetric and static charged black-hole spacetimes: the Reissner-Nordström spacetime, Hoffmann's Born-Infeld black-hole spacetime, and the regular Ayón-Beato-García spacetime. The Bose-Einstein condensate is modeled in terms of a massive scalar field that satisfies a Klein-Gordon equation with a self-interaction term. The scalar field is assumed to be uncharged and not self-gravitating. If the mass parameter of the scalar field is chosen sufficiently small, there are quasi-bound states of the scalar field that may be interpreted as dark matter clouds. We estimate the size and the total energy of such clouds around charged supermassive black holes and we investigate if their observable features can be used for discriminating between the different types of charged black holes.

  16. Black hole entropy and Lorentz-diffeomorphism Noether charge

    NASA Astrophysics Data System (ADS)

    Jacobson, Ted; Mohd, Arif

    2015-12-01

    We show that, in the first or second order orthonormal frame formalism, black hole entropy is the horizon Noether charge for a combination of diffeomorphism and local Lorentz symmetry involving the Lie derivative of the frame. The Noether charge for diffeomorphisms alone is unsuitable, since a regular frame cannot be invariant under the flow of the Killing field at the bifurcation surface. We apply this formalism to Lagrangians polynomial in wedge products of the frame field 1-form and curvature 2-form, including general relativity, Lovelock gravity, and "topological" terms in four dimensions.

  17. Circular geodesic of Bardeen and Ayon-Beato-Garcia regular black-hole and no-horizon spacetimes

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Schee, Jan

    2015-12-01

    In this paper, we study circular geodesic motion of test particles and photons in the Bardeen and Ayon-Beato-Garcia (ABG) geometry describing spherically symmetric regular black-hole or no-horizon spacetimes. While the Bardeen geometry is not exact solution of Einstein's equations, the ABG spacetime is related to self-gravitating charged sources governed by Einstein's gravity and nonlinear electrodynamics. They both are characterized by the mass parameter m and the charge parameter g. We demonstrate that in similarity to the Reissner-Nordstrom (RN) naked singularity spacetimes an antigravity static sphere should exist in all the no-horizon Bardeen and ABG solutions that can be surrounded by a Keplerian accretion disc. However, contrary to the RN naked singularity spacetimes, the ABG no-horizon spacetimes with parameter g/m > 2 can contain also an additional inner Keplerian disc hidden under the static antigravity sphere. Properties of the geodesic structure are reflected by simple observationally relevant optical phenomena. We give silhouette of the regular black-hole and no-horizon spacetimes, and profiled spectral lines generated by Keplerian rings radiating at a fixed frequency and located in strong gravity region at or nearby the marginally stable circular geodesics. We demonstrate that the profiled spectral lines related to the regular black-holes are qualitatively similar to those of the Schwarzschild black-holes, giving only small quantitative differences. On the other hand, the regular no-horizon spacetimes give clear qualitative signatures of their presence while compared to the Schwarschild spacetimes. Moreover, it is possible to distinguish the Bardeen and ABG no-horizon spacetimes, if the inclination angle to the observer is known.

  18. Thermodynamics and Phase Transition from Regular Bardeen Black Hole Surrounded by Quintessence

    NASA Astrophysics Data System (ADS)

    Saleh, Mahamat; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin

    2018-05-01

    In this paper, thermodynamics and phase transition are investigated for the regular Bardeen black hole surrounded by quintessence. Considering the metric of the Bardeen spacetime surrounded by quintessence, we derived the Unruh-Verlinde temperature. Using the first law of thermodynamics, we derived the expressions of the Hawking temperature as well as the specific heat for the black hole. Explicitly, their behaviors were plotted. It results that the magnetic monopole charge β as well as the presence of quintessence decrease the temperature and induce a thermodynamics phase transition in the spacetime. Moreover, when increasing the density of quintessence, the transition point moves to lower entropies.

  19. Magnetized black holes and nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2017-08-01

    A new model of nonlinear electrodynamics with two parameters is proposed. We study the phenomenon of vacuum birefringence, the causality and unitarity in this model. There is no singularity of the electric field in the center of pointlike charges and the total electrostatic energy is finite. We obtain corrections to the Coulomb law at r →∞. The weak, dominant and strong energy conditions are investigated. Magnetized charged black hole is considered and we evaluate the mass, metric function and their asymptotic at r →∞ and r → 0. The magnetic mass of the black hole is calculated. The thermodynamic properties and thermal stability of regular black holes are discussed. We calculate the Hawking temperature of black holes and show that there are first-order and second-order phase transitions. The parameters of the model when the black hole is stable are found.

  20. Charged Galileon black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar, E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: hassaine@inst-mat.utalca.cl

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrommore » black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.« less

  1. Supersymmetric black holes with lens-space topology.

    PubMed

    Kunduri, Hari K; Lucietti, James

    2014-11-21

    We present a new supersymmetric, asymptotically flat, black hole solution to five-dimensional supergravity. It is regular on and outside an event horizon of lens-space topology L(2,1). It is the first example of an asymptotically flat black hole with lens-space topology. The solution is characterized by a charge, two angular momenta, and a magnetic flux through a noncontractible disk region ending on the horizon, with one constraint relating these.

  2. Comment on "Construction of regular black holes in general relativity"

    NASA Astrophysics Data System (ADS)

    Bronnikov, Kirill A.

    2017-12-01

    We claim that the paper by Zhong-Ying Fan and Xiaobao Wang on nonlinear electrodynamics coupled to general relativity [Phys. Rev. D 94,124027 (2016)], although correct in general, in some respects repeats previously obtained results without giving proper references. There is also an important point missing in this paper, which is necessary for understanding the physics of the system: in solutions with an electric charge, a regular center requires a non-Maxwell behavior of Lagrangian function L (f ) , (f =Fμ νFμ ν) at small f . Therefore, in all electric regular black hole solutions with a Reissner-Nordström asymptotic, the Lagrangian L (f ) is different in different parts of space, and the electromagnetic field behaves in a singular way at surfaces where L (f ) suffers branching.

  3. Higher spin black holes with soft hair

    NASA Astrophysics Data System (ADS)

    Grumiller, Daniel; Pérez, Alfredo; Prohazka, Stefan; Tempo, David; Troncoso, Ricardo

    2016-10-01

    We construct a new set of boundary conditions for higher spin gravity, inspired by a recent "soft Heisenberg hair"-proposal for General Relativity on three-dimensional Anti-de Sitter space. The asymptotic symmetry algebra consists of a set of affine û(1) current algebras. Its associated canonical charges generate higher spin soft hair. We focus first on the spin-3 case and then extend some of our main results to spin- N , many of which resemble the spin-2 results: the generators of the asymptotic W 3 algebra naturally emerge from composite operators of the û(1) charges through a twisted Sugawara construction; our boundary conditions ensure regularity of the Euclidean solutions space independently of the values of the charges; solutions, which we call "higher spin black flowers", are stationary but not necessarily spherically symmetric. Finally, we derive the entropy of higher spin black flowers, and find that for the branch that is continuously connected to the BTZ black hole, it depends only on the affine purely gravitational zero modes. Using our map to W -algebra currents we recover well-known expressions for higher spin entropy. We also address higher spin black flowers in the metric formalism and achieve full consistency with previous results.

  4. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    NASA Astrophysics Data System (ADS)

    Mišković, Olivera; Olea, Rodrigo

    2011-01-01

    Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.

  5. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskovic, Olivera; Olea, Rodrigo; Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso

    2011-01-15

    Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, itmore » extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.« less

  6. Inner cauchy horizon of axisymmetric and stationary black holes with surrounding matter in einstein-maxwell theory.

    PubMed

    Ansorg, Marcus; Hennig, Jörg

    2009-06-05

    We study the interior electrovacuum region of axisymmetric and stationary black holes with surrounding matter and find that there exists always a regular inner Cauchy horizon inside the black hole, provided the angular momentum J and charge Q of the black hole do not vanish simultaneously. In particular, we derive an explicit relation for the metric on the Cauchy horizon in terms of that on the event horizon. Moreover, our analysis reveals the remarkable universal relation (8piJ);{2}+(4piQ;{2});{2}=A;{+}A;{-}, where A+ and A- denote the areas of event and Cauchy horizon, respectively.

  7. Thermodynamics and glassy phase transition of regular black holes

    NASA Astrophysics Data System (ADS)

    Javed, Wajiha; Yousaf, Z.; Akhtar, Zunaira

    2018-05-01

    This paper is aimed to study thermodynamical properties of phase transition for regular charged black holes (BHs). In this context, we have considered two different forms of BH metrics supplemented with exponential and logistic distribution functions and investigated the recent expansion of phase transition through grand canonical ensemble. After exploring the corresponding Ehrenfest’s equation, we found the second-order background of phase transition at critical points. In order to check the critical behavior of regular BHs, we have evaluated some corresponding explicit relations for the critical temperature, pressure and volume and draw certain graphs with constant values of Smarr’s mass. We found that for the BH metric with exponential configuration function, the phase transition curves are divergent near the critical points, while glassy phase transition has been observed for the Ayón-Beato-García-Bronnikov (ABGB) BH in n = 5 dimensions.

  8. Particle dynamics around time conformal regular black holes via Noether symmetries

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Umair Shahzad, M.

    The time conformal regular black hole (RBH) solutions which are admitting the time conformal factor e𝜖g(t), where g(t) is an arbitrary function of time and 𝜖 is the perturbation parameter are being considered. The approximate Noether symmetries technique is being used for finding the function g(t) which leads to t α. The dynamics of particles around RBHs are also being discussed through symmetry generators which provide approximate energy as well as angular momentum of the particles. In addition, we analyze the motion of neutral and charged particles around two well known RBHs such as charged RBH using Fermi-Dirac distribution and Kehagias-Sftesos asymptotically flat RBH. We obtain the innermost stable circular orbit and corresponding approximate energy and angular momentum. The behavior of effective potential, effective force and escape velocity of the particles in the presence/absence of magnetic field for different values of angular momentum near horizons are also being analyzed. The stable and unstable regions of particle near horizons due to the effect of angular momentum and magnetic field are also explained.

  9. Black-hole solutions with scalar hair in Einstein-scalar-Gauss-Bonnet theories

    NASA Astrophysics Data System (ADS)

    Antoniou, G.; Bakopoulos, A.; Kanti, P.

    2018-04-01

    In the context of the Einstein-scalar-Gauss-Bonnet theory, with a general coupling function between the scalar field and the quadratic Gauss-Bonnet term, we investigate the existence of regular black-hole solutions with scalar hair. Based on a previous theoretical analysis, which studied the evasion of the old and novel no-hair theorems, we consider a variety of forms for the coupling function (exponential, even and odd polynomial, inverse polynomial, and logarithmic) that, in conjunction with the profile of the scalar field, satisfy a basic constraint. Our numerical analysis then always leads to families of regular, asymptotically flat black-hole solutions with nontrivial scalar hair. The solution for the scalar field and the profile of the corresponding energy-momentum tensor, depending on the value of the coupling constant, may exhibit a nonmonotonic behavior, an unusual feature that highlights the limitations of the existing no-hair theorems. We also determine and study in detail the scalar charge, horizon area, and entropy of our solutions.

  10. Functional determinants, index theorems, and exact quantum black hole entropy

    NASA Astrophysics Data System (ADS)

    Murthy, Sameer; Reys, Valentin

    2015-12-01

    The exact quantum entropy of BPS black holes can be evaluated using localization in supergravity. An important ingredient in this program, that has been lacking so far, is the one-loop effect arising from the quadratic fluctuations of the exact deformation (the QV operator). We compute the fluctuation determinant for vector multiplets and hyper multiplets around Q-invariant off-shell configurations in four-dimensional N=2 supergravity with AdS 2 × S 2 boundary conditions, using the Atiyah-Bott fixed-point index theorem and a subsequent zeta function regularization. Our results extend the large-charge on-shell entropy computations in the literature to a regime of finite charges. Based on our results, we present an exact formula for the quantum entropy of BPS black holes in N=2 supergravity. We explain cancellations concerning 1/8 -BPS black holes in N=8 supergravity that were observed in arXiv:1111.1161. We also make comments about the interpretation of a logarithmic term in the topological string partition function in the low energy supergravity theory.

  11. Scalar self-force on eccentric geodesics in Schwarzschild spacetime: A time-domain computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haas, Roland

    2007-06-15

    We calculate the self-force acting on a particle with scalar charge moving on a generic geodesic around a Schwarzschild black hole. This calculation requires an accurate computation of the retarded scalar field produced by the moving charge; this is done numerically with the help of a fourth-order convergent finite-difference scheme formulated in the time domain. The calculation also requires a regularization procedure, because the retarded field is singular on the particle's world line; this is handled mode-by-mode via the mode-sum regularization scheme first introduced by Barack and Ori. This paper presents the numerical method, various numerical tests, and a samplemore » of results for mildly eccentric orbits as well as ''zoom-whirl'' orbits.« less

  12. New charged black holes with conformal scalar hair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anabalon, Andres; Centro de Estudios Cientificos; Maeda, Hideki

    A new class of four-dimensional, hairy, stationary solutions of the Einstein-Maxwell-{Lambda} system with a conformally coupled scalar field is obtained. The metric belongs to the Plebanski-Demianski family and hence its static limit has the form of the charged (A)dS C metric. It is shown that, in the static case, a new family of hairy black holes arises. They turn out to be cohomogeneity-two, with horizons that are neither Einstein nor homogenous manifolds. The conical singularities in the C metric can be removed due to the backreaction of the scalar field providing a new kind of regular, radiative spacetime. The scalarmore » field carries a continuous parameter proportional to the usual acceleration present in the C metric. In the zero-acceleration limit, the static solution reduces to the dyonic Bocharova-Bronnikov-Melnikov-Bekenstein solution or the dyonic extension of the Martinez-Troncoso-Zanelli black holes, depending on the value of the cosmological constant.« less

  13. Hairy AdS black holes with a toroidal horizon in 4D Einstein-nonlinear σ-model system

    NASA Astrophysics Data System (ADS)

    Astorino, Marco; Canfora, Fabrizio; Giacomini, Alex; Ortaggio, Marcello

    2018-01-01

    An exact hairy asymptotically locally AdS black hole solution with a flat horizon in the Einstein-nonlinear sigma model system in (3+1) dimensions is constructed. The ansatz for the nonlinear SU (2) field is regular everywhere and depends explicitly on Killing coordinates, but in such a way that its energy-momentum tensor is compatible with a metric with Killing fields. The solution is characterized by a discrete parameter which has neither topological nor Noether charge associated with it and therefore represents a hair. A U (1) gauge field interacting with Einstein gravity can also be included. The thermodynamics is analyzed. Interestingly, the hairy black hole is always thermodynamically favoured with respect to the corresponding black hole with vanishing Pionic field.

  14. Black holes in an expanding universe.

    PubMed

    Gibbons, Gary W; Maeda, Kei-ichi

    2010-04-02

    An exact solution representing black holes in an expanding universe is found. The black holes are maximally charged and the universe is expanding with arbitrary equation of state (P = w rho with -1 < or = for all w < or = 1). It is an exact solution of the Einstein-scalar-Maxwell system, in which we have two Maxwell-type U(1) fields coupled to the scalar field. The potential of the scalar field is an exponential. We find a regular horizon, which depends on one parameter [the ratio of the energy density of U(1) fields to that of the scalar field]. The horizon is static because of the balance on the horizon between gravitational attractive force and U(1) repulsive force acting on the scalar field. We also calculate the black hole temperature.

  15. Black hole thermodynamics, conformal couplings, and R 2 terms

    NASA Astrophysics Data System (ADS)

    Chernicoff, Mariano; Galante, Mario; Giribet, Gaston; Goya, Andres; Leoni, Matias; Oliva, Julio; Perez-Nadal, Guillem

    2016-06-01

    Lovelock theory provides a tractable model of higher-curvature gravity in which several questions can be studied analytically. This is the reason why, in the last years, this theory has become the favorite arena to study the effects of higher-curvature terms in the context of AdS/CFT correspondence. Lovelock theory also admits extensions that permit to accommodate matter coupled to gravity in a non-minimal way. In this setup, problems such as the backreaction of matter on the black hole geometry can also be solved exactly. In this paper, we study the thermodynamics of black holes in theories of gravity of this type, which include both higher-curvature terms, U(1) gauge fields, and conformal couplings with matter fields in D dimensions. These charged black hole solutions exhibit a backreacting scalar field configuration that is regular everywhere outside and on the horizon, and may exist both in asymptotically flat and asymptotically Anti-de Sitter (AdS) spaces. We work out explicitly the boundary action for this theory, which renders the variational problem well-posed and suffices to regularize the Euclidean action in AdS. We also discuss several interrelated properties of the theory, such as its duality symmetry under field redefinition and how it acts on black holes and gravitational wave solutions.

  16. Immirzi parameter and Noether charges in first order gravity

    NASA Astrophysics Data System (ADS)

    Durka, Remigiusz

    2012-02-01

    The framework of SO(3,2) constrained BF theory applied to gravity makes it possible to generalize formulas for gravitational diffeomorphic Noether charges (mass, angular momentum, and entropy). It extends Wald's approach to the case of first order gravity with a negative cosmological constant, the Holst modification and the topological terms (Nieh-Yan, Euler, and Pontryagin). Topological invariants play essential role contributing to the boundary terms in the regularization scheme for the asymptotically AdS spacetimes, so that the differentiability of the action is automatically secured. Intriguingly, it turns out that the black hole thermodynamics does not depend on the Immirzi parameter for the AdS-Schwarzschild, AdS-Kerr, and topological black holes, whereas a nontrivial modification appears for the AdS-Taub-NUT spacetime, where it impacts not only the entropy, but also the total mass.

  17. Thermodynamics of Einstein-Born-Infeld black holes with negative cosmological constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskovic, Olivera; Olea, Rodrigo; INFN, Sezione di Milano, Via Celoria 16, I-20133, Milano

    2008-06-15

    We study the thermodynamics associated to topological black hole solutions of AdS gravity coupled to nonlinear electrodynamics (Born-Infeld) in any dimension, using a background-independent regularization prescription for the Euclidean action given by boundary terms, which explicitly depend on the extrinsic curvature (Kounterterms series). A finite action principle leads to the correct definition of thermodynamic variables as Noether charges, which satisfy a Smarr-like relation. In particular, for the odd-dimensional case, a consistent thermodynamic description is achieved if the internal energy of the system includes the vacuum energy for AdS spacetime.

  18. Black hole solutions in d = 5 Chern-Simons gravity

    NASA Astrophysics Data System (ADS)

    Brihaye, Yves; Radu, Eugen

    2013-11-01

    The five dimensional Einstein-Gauss-Bonnet gravity with a negative cosmological constant becomes, for a special value of the Gauss-Bonnet coupling constant, a Chern-Simons (CS) theory of gravity. In this work we discuss the properties of several different types of black object solutions of this model. Special attention is paid to the case of spinning black holes with equal-magnitude angular momenta which posses a regular horizon of spherical topology. Closed form solutions are obtained in the small angular momentum limit. Nonperturbative solutions are constructed by solving numerically the equations of the model. Apart from that, new exact solutions describing static squashed black holes and black strings are also discussed. The action and global charges of all configurations studied in this work are obtained by using the quasilocal formalism with boundary counterterms generalized for the case of a d = 5 CS theory.

  19. Thermodynamics of a class of regular black holes with a generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Maluf, R. V.; Neves, Juliano C. S.

    2018-05-01

    In this article, we present a study on thermodynamics of a class of regular black holes. Such a class includes Bardeen and Hayward regular black holes. We obtained thermodynamic quantities like the Hawking temperature, entropy, and heat capacity for the entire class. As part of an effort to indicate some physical observable to distinguish regular black holes from singular black holes, we suggest that regular black holes are colder than singular black holes. Besides, contrary to the Schwarzschild black hole, that class of regular black holes may be thermodynamically stable. From a generalized uncertainty principle, we also obtained the quantum-corrected thermodynamics for the studied class. Such quantum corrections provide a logarithmic term for the quantum-corrected entropy.

  20. Deforming regular black holes

    NASA Astrophysics Data System (ADS)

    Neves, J. C. S.

    2017-06-01

    In this work, we have deformed regular black holes which possess a general mass term described by a function which generalizes the Bardeen and Hayward mass functions. By using linear constraints in the energy-momentum tensor to generate metrics, the solutions presented in this work are either regular or singular. That is, within this approach, it is possible to generate regular or singular black holes from regular or singular black holes. Moreover, contrary to the Bardeen and Hayward regular solutions, the deformed regular black holes may violate the weak energy condition despite the presence of the spherical symmetry. Some comments on accretion of deformed black holes in cosmological scenarios are made.

  1. Habemus superstratum! A constructive proof of the existence of superstrata

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Giusto, Stefano; Russo, Rodolfo; Shigemori, Masaki; Warner, Nicholas P.

    2015-05-01

    We construct the first example of a superstratum: a class of smooth horizonless supergravity solutions that are parameterized by arbitrary continuous functions of (at least) two variables and have the same charges as the supersymmetric D1-D5-P black hole. We work in Type IIB string theory on T 4 or K3 and our solutions involve a subset of fields that can be described by a six-dimensional supergravity with two tensor multiplets. The solutions can thus be constructed using a linear structure, and we give an explicit recipe to start from a superposition of modes specified by an arbitrary function of two variables and impose regularity to obtain the full horizonless solutions in closed form. We also give the precise CFT description of these solutions and show that they are not dual to descendants of chiral primaries. They are thus much more general than all the known solutions whose CFT dual is precisely understood. Hence our construction represents a substantial step toward the ultimate goal of constructing the fully generic superstratum that can account for a finite fraction of the entropy of the three-charge black hole in the regime of parameters where the classical black hole solution exists.

  2. When Charged Black Holes Merge

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    Most theoretical models assume that black holes arent charged. But a new study shows that mergers of charged black holes could explain a variety of astrophysical phenomena, from fast radio bursts to gamma-ray bursts.No HairThe black hole no hair theorem states that all black holes can be described by just three things: their mass, their spin, and their charge. Masses and spins have been observed and measured, but weve never measured the charge of a black hole and its widely believed that real black holes dont actually have any charge.That said, weve also never shown that black holes dont have charge, or set any upper limits on the charge that they might have. So lets suppose, for a moment, that its possible for a black hole to be charged. How might that affect what we know about the merger of two black holes? A recent theoretical study by Bing Zhang (University of Nevada, Las Vegas) examines this question.Intensity profile of a fast radio burst, a sudden burst of radio emission that lasts only a few milliseconds. [Swinburne Astronomy Productions]Driving TransientsZhangs work envisions a pair of black holes in a binary system. He argues that if just one of the black holes carries charge possibly retained by a rotating magnetosphere then it may be possible for the system to produce an electromagnetic signal that could accompany gravitational waves, such as a fast radio burst or a gamma-ray burst!In Zhangs model, the inspiral of the two black holes generates a global magnetic dipole thats perpendicular to the plane of the binarys orbit. The magnetic flux increases rapidly as the separation between the black holes decreases, generating an increasingly powerful magnetic wind. This wind, in turn, can give rise to a fast radio burst or a gamma-ray burst, depending on the value of the black holes charge.Artists illustration of a short gamma-ray burst, thought to be caused by the merger of two compact objects. [ESO/A. Roquette]Zhang calculates lower limits on the charge necessary to produce each phenomenon. For a 10-solar-mass black hole, he finds that the merger can generate a fast radio burst if the black holes charge is more than ~1012 Coulombs (roughly one billion times the charge that travels through a AA battery from full to empty). If its charge is more than ~1016 Coulombs, it can generate a gamma-ray burst.Limits on ChargeZhangs calculations are not just useful in the hypothetical scenario where black holes are charged. They could, in fact, be a way of testing whether black holes are charged.As we accumulate future gravitational-wave observations (and with two observations by LIGO already announced, it seems likely that there will be many more), we will grow a larger sample of follow-up observations in radio through gamma-ray wavelengths. Our detections or our lack of detections of fast radio bursts or gamma-ray bursts associated with these black-hole mergers will allow us to set some of the first real limits on the charge of black holes.CitationBing Zhang 2016 ApJ 827 L31. doi:10.3847/2041-8205/827/2/L31

  3. Planckian charged black holes in ultraviolet self-complete quantum gravity

    NASA Astrophysics Data System (ADS)

    Nicolini, Piero

    2018-03-01

    We present an analysis of the role of the charge within the self-complete quantum gravity paradigm. By studying the classicalization of generic ultraviolet improved charged black hole solutions around the Planck scale, we showed that the charge introduces important differences with respect to the neutral case. First, there exists a family of black hole parameters fulfilling the particle-black hole condition. Second, there is no extremal particle-black hole solution but quasi extremal charged particle-black holes at the best. We showed that the Hawking emission disrupts the condition of particle-black hole. By analyzing the Schwinger pair production mechanism, the charge is quickly shed and the particle-black hole condition can ultimately be restored in a cooling down phase towards a zero temperature configuration, provided non-classical effects are taken into account.

  4. Habemus superstratum! A constructive proof of the existence of superstrata

    DOE PAGES

    Bena, Iosif; Giusto, Stefano; Russo, Rodolfo; ...

    2015-05-21

    Here, we construct the first example of a superstratum: a class of smooth horizonless supergravity solutions that are parameterized by arbitrary continuous functions of (at least) two variables and have the same charges as the supersymmetric D1-D5-P black hole. We work in Type IIB string theory on T 4 or K 3 and our solutions involve a subset of fields that can be described by a six-dimensional supergravity with two tensor multiplets. The solutions can thus be constructed using a linear structure, and we give an explicit recipe to start from a superposition of modes specified by an arbitrary functionmore » of two variables and impose regularity to obtain the full horizonless solutions in closed form. We also give the precise CFT description of these solutions and show that they are not dual to descendants of chiral primaries. They are thus much more general than all the known solutions whose CFT dual is precisely understood. Hence our construction represents a substantial step toward the ultimate goal of constructing the fully generic superstratum that can account for a finite fraction of the entropy of the three-charge black hole in the regime of parameters where the classical black hole solution exists.« less

  5. Fermions tunnelling from the charged dilatonic black holes

    NASA Astrophysics Data System (ADS)

    Chen, De-You; Jiang, Qing-Quan; Zu, Xiao-Tao

    2008-10-01

    Kerner and Mann's recent work shows that for an uncharged and non-rotating black hole its Hawking temperature can be correctly derived by fermions tunnelling from its horizons. In this paper, our main work is to improve the analysis to deal with charged fermion tunnelling from the general dilatonic black holes, specifically including the charged, spherically symmetric dilatonic black hole, the rotating Einstein Maxwell dilaton axion (EMDA) black hole and the rotating Kaluza Klein (KK) black hole. As a result, the correct Hawking temperatures are well recovered by charged fermions tunnelling from these black holes.

  6. The region interior to the event horizon of the regular Hayward black hole

    NASA Astrophysics Data System (ADS)

    Perez-Roman, Ivan; Bretón, Nora

    2018-06-01

    The Painlevé-Gullstrand coordinates allow us to explore the interior of the regular Hayward black hole. The behavior of an infalling particle in traversing the Hayward black hole is compared with the one inside the Schwarzschild and Reissner-Nordstrom singular black holes. When approaching the origin the test particle trajectories present differences depending if the center is regular or singular. The velocities of the infalling test particle into the modified Hayward black hole are analyzed as well. As compared with the normal Hayward, in the modified Hayward black hole the particle moves faster and the surface gravity is smaller.

  7. Kerr black holes with scalar hair.

    PubMed

    Herdeiro, Carlos A R; Radu, Eugen

    2014-06-06

    We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M, J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^{2}>1, a quadrupole moment larger than J^{2}/M, and a larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (and other) models with more general self-interactions.

  8. Action growth of charged black holes with a single horizon

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Sasaki, Misao; Wang, Shao-Jiang

    2017-06-01

    According to the conjecture "complexity equals action," the complexity of a holographic state is equal to the action of a Wheeler-DeWitt (WDW) patch of black holes in anti-de Sitter space. In this paper we calculate the action growth of charged black holes with a single horizon, paying attention to the contribution from a spacelike singularity inside the horizon. We consider two kinds of such charged black holes: one is a charged dilaton black hole, and the other is a Born-Infeld black hole with β2Q2<1 /4 . In both cases, although an electric charge appears in the black hole solutions, the inner horizon is absent; instead a spacelike singularity appears inside the horizon. We find that the action growth of the WDW patch of the charged black hole is finite and satisfies the Lloyd bound. As a check, we also calculate the action growth of a charged black hole with a phantom Maxwell field. In this case, although the contributions from the bulk integral and the spacelike singularity are individually divergent, these two divergences just cancel each other and a finite action growth is obtained. But in this case, the Lloyd bound is violated as expected.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bena, Iosif; Kraus, Per; Warner, Nicholas P.

    We construct the most generic three-charge, three-dipole-charge, BPS black-ring solutions in a Taub-NUT background. These solutions depend on seven charges and six moduli, and interpolate between a four-dimensional black hole and a five-dimensional black ring. They are also instrumental in determining the correct microscopic description of the five-dimensional BPS black rings.

  10. The charged black-hole bomb: A lower bound on the charge-to-mass ratio of the explosive scalar field

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-04-01

    The well-known superradiant amplification mechanism allows a charged scalar field of proper mass μ and electric charge q to extract the Coulomb energy of a charged Reissner-Nordström black hole. The rate of energy extraction can grow exponentially in time if the system is placed inside a reflecting cavity which prevents the charged scalar field from escaping to infinity. This composed black-hole-charged-scalar-field-mirror system is known as the charged black-hole bomb. Previous numerical studies of this composed physical system have shown that, in the linearized regime, the inequality q / μ > 1 provides a necessary condition for the development of the superradiant instability. In the present paper we use analytical techniques to study the instability properties of the charged black-hole bomb in the regime of linearized scalar fields. In particular, we prove that the lower bound q/μ>√{rm /r- - 1/ rm /r+ - 1 } provides a necessary condition for the development of the superradiant instability in this composed physical system (here r± are the horizon radii of the charged Reissner-Nordström black hole and rm is the radius of the confining mirror). This analytically derived lower bound on the superradiant instability regime of the composed black-hole-charged-scalar-field-mirror system is shown to agree with direct numerical computations of the instability spectrum.

  11. Scalar field coupling to Einstein tensor in regular black hole spacetime

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Wu, Chen

    2018-02-01

    In this paper, we study the perturbation property of a scalar field coupling to Einstein's tensor in the background of the regular black hole spacetimes. Our calculations show that the the coupling constant η imprints in the wave equation of a scalar perturbation. We calculated the quasinormal modes of scalar field coupling to Einstein's tensor in the regular black hole spacetimes by the 3rd order WKB method.

  12. String loops in the field of braneworld spherically symmetric black holes and naked singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuchlík, Z.; Kološ, M., E-mail: zdenek.stuchlik@fpf.slu.cz, E-mail: martin.kolos@fpf.slu.cz

    We study motion of current-carrying string loops in the field of braneworld spherically symmetric black holes and naked singularities. The spacetime is described by the Reissner-Nordström geometry with tidal charge b reflecting the non-local tidal effects coming from the external dimension; both positive and negative values of the spacetime parameter b are considered. We restrict attention to the axisymmetric motion of string loops when the motion can be fully governed by an appropriately defined effective potential related to the energy and angular momentum of the string loops. In dependence on these two constants of the motion, the string loops canmore » be captured, trapped, or can escape to infinity. In close vicinity of stable equilibrium points at the centre of trapped states the motion is regular. We describe how it is transformed to chaotic motion with growing energy of the string loop. In the field of naked singularities the trapped states located off the equatorial plane of the system exist and trajectories unable to cross the equatorial plane occur, contrary to the trajectories in the field of black holes where crossing the equatorial plane is always admitted. We concentrate our attention to the so called transmutation effect when the string loops are accelerated in the deep gravitational field near the black hole or naked singularity by transforming the oscillatory energy to the energy of the transitional motion. We demonstrate that the influence of the tidal charge can be substantial especially in the naked singularity spacetimes with b > 1 where the acceleration to ultrarelativistic velocities with Lorentz factor γ ∼ 100 can be reached, being more than one order higher in comparison with those obtained in the black hole spacetimes.« less

  13. Dynamical black holes in low-energy string theory

    NASA Astrophysics Data System (ADS)

    Aniceto, Pedro; Rocha, Jorge V.

    2017-05-01

    We investigate time-dependent spherically symmetric solutions of the four-dimensional Einstein-Maxwell-axion-dilaton system, with the dilaton coupling that occurs in low-energy effective heterotic string theory. A class of dilaton-electrovacuum radiating solutions with a trivial axion, previously found by Güven and Yörük, is re-derived in a simpler manner and its causal structure is clarified. It is shown that such dynamical spacetimes featuring apparent horizons do not possess a regular light-like past null infinity or future null infinity, depending on whether they are radiating or accreting. These solutions are then extended in two ways. First we consider a Vaidya-like generalisation, which introduces a null dust source. Such spacetimes are used to test the status of cosmic censorship in the context of low-energy string theory. We prove that — within this family of solutions — regular black holes cannot evolve into naked singularities by accreting null dust, unless standard energy conditions are violated. Secondly, we employ S-duality to derive new time-dependent dyon solutions with a nontrivial axion turned on. Although they share the same causal structure as their Einstein-Maxwell-dilaton counterparts, these solutions possess both electric and magnetic charges.

  14. Strong field gravitational lensing by a charged Galileon black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shan-Shan; Xie, Yi, E-mail: clefairy035@163.com, E-mail: yixie@nju.edu.cn

    Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgrmore » A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.« less

  15. Cosmic censorship conjecture in Kerr-Sen black hole

    NASA Astrophysics Data System (ADS)

    Gwak, Bogeun

    2017-06-01

    The validity of the cosmic censorship conjecture for the Kerr-Sen black hole, which is a solution to the low-energy effective field theory for four-dimensional heterotic string theory, is investigated using charged particle absorption. When the black hole absorbs the particle, the charge on it changes owing to the conserved quantities of the particle. Changes in the black hole are constrained to the equation for the motion of the particle and are consistent with the laws of thermodynamics. Particle absorption increases the mass of the Kerr-Sen black hole to more than that of the absorbed charges such as angular momentum and electric charge; hence, the black hole cannot be overcharged. In the near-extremal black hole, we observe a violation of the cosmic censorship conjecture for the angular momentum in the first order of expansion and the electric charge in the second order. However, considering an adiabatic process carrying the conserved quantities as those of the black hole, we prove the stability of the black hole horizon. Thus, we resolve the violation. This is consistent with the third law of thermodynamics.

  16. Shadows of rotating five-dimensional charged EMCS black holes

    NASA Astrophysics Data System (ADS)

    Amir, Muhammed; Singh, Balendra Pratap; Ghosh, Sushant G.

    2018-05-01

    Higher-dimensional theories admit astrophysical objects like supermassive black holes, which are rather different from standard ones, and their gravitational lensing features deviate from general relativity. It is well known that a black hole shadow is a dark region due to the falling geodesics of photons into the black hole and, if detected, a black hole shadow could be used to determine which theory of gravity is consistent with observations. Measurements of the shadow sizes around the black holes can help to evaluate various parameters of the black hole metric. We study the shapes of the shadow cast by the rotating five-dimensional charged Einstein-Maxwell-Chern-Simons (EMCS) black holes, which is characterized by four parameters, i.e., mass, two spins, and charge, in which the spin parameters are set equal. We integrate the null geodesic equations and derive an analytical formula for the shadow of the five-dimensional EMCS black hole, in turn, to show that size of black hole shadow is affected due to charge as well as spin. The shadow is a dark zone covered by a deformed circle, and the size of the shadow decreases with an increase in the charge q when compared with the five-dimensional Myers-Perry black hole. Interestingly, the distortion increases with charge q. The effect of these parameters on the shape and size of the naked singularity shadow of the five-dimensional EMCS black hole is also discussed.

  17. Charged BTZ-like black hole solutions and the diffusivity-butterfly velocity relation

    NASA Astrophysics Data System (ADS)

    Ge, Xian-Hui; Sin, Sang-Jin; Tian, Yu; Wu, Shao-Feng; Wu, Shang-Yu

    2018-01-01

    We show that there exists a class of charged BTZ-like black hole solutions in Lifshitz spacetime with a hyperscaling violating factor. The charged BTZ black hole is characterized by a charge-dependent logarithmic term in the metric function. As concrete examples, we give five such charged BTZ-like black hole solutions and the standard charged BTZ metric can be regarded as a special instance of them. In order to check the recent proposed universal relations between diffusivity and the butterfly velocity, we first compute the diffusion constants of the standard charged BTZ black holes and then extend our calculation to arbitrary dimension d, exponents z and θ. Remarkably, the case d = θ and z = 2 is a very special in that the charge diffusion D c is a constant and the energy diffusion D e might be ill-defined, but v B 2 τ diverges. We also compute the diffusion constants for the case that the DC conductivity is finite but in the absence of momentum relaxation.

  18. Black branes as piezoelectrics.

    PubMed

    Armas, Jay; Gath, Jakob; Obers, Niels A

    2012-12-14

    We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six.

  19. Superradiant instability of near extremal and extremal four-dimensional charged hairy black holes in anti-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    González, P. A.; Papantonopoulos, Eleftherios; Saavedra, Joel; Vásquez, Yerko

    2017-03-01

    We study the instability of near extremal and extremal four-dimensional anti-de Sitter charged hairy black holes to radial neutral massive and charged massless scalar field perturbations. We solve the scalar field equation by using the improved asymptotic iteration method and the time domain analysis, and we find the quasinormal frequencies. For the charged scalar perturbations, we find the superradiance condition by computing the reflection coefficient in the low-frequency limit, and we show that in the superradiance regime, which depends on the scalar hair charge, all modes of radial charged massless perturbations are unstable, indicating that the charged hairy black hole is superradiantly unstable. On the other hand, calculating the quasinormal frequencies of radial neutral scalar perturbations in this background, we find stability of the charged hairy black hole.

  20. Scalar hair around charged black holes in Einstein-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Grandi, Nicolás; Landea, Ignacio Salazar

    2018-02-01

    We explore charged black hole solutions in Einstein-Gauss-Bonnet gravity in five dimensions, with a charged scalar hair. We interpret such hairy black holes as the final state of the superradiant instability previously reported for this system. We explore the relation of the hairy black hole solutions with the nonbackreacting quasibound states and scalar clouds, as well as with the boson star solutions.

  1. Regular black holes in f(T) Gravity through a nonlinear electrodynamics source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junior, Ednaldo L.B.; Rodrigues, Manuel E.; Houndjo, Mahouton J.S., E-mail: ednaldobarrosjr@gmail.com, E-mail: esialg@gmail.com, E-mail: sthoundjo@yahoo.fr

    2015-10-01

    We seek to obtain a new class of exact solutions of regular black holes in f(T) Gravity with non-linear electrodynamics material content, with spherical symmetry in 4D. The equations of motion provide the regaining of various solutions of General Relativity, as a particular case where the function f(T)=T. We developed a powerful method for finding exact solutions, where we get the first new class of regular black holes solutions in the f(T) Theory, where all the geometrics scalars disappear at the origin of the radial coordinate and are finite everywhere, as well as a new class of singular black holes.

  2. Charge loss (or the lack thereof) for AdS black holes

    NASA Astrophysics Data System (ADS)

    Ong, Yen Chin; Chen, Pisin

    2014-06-01

    The evolution of evaporating charged black holes is complicated to model in general, but is nevertheless important since the hints to the Information Loss Paradox and its recent firewall incarnation may lie in understanding more generic geometries than that of Schwarzschild spacetime. Fortunately, for sufficiently large asymptotically flat Reissner-Nordström black holes, the evaporation process can be modeled via a system of coupled linear ordinary differential equations, with charge loss rate governed by Schwinger pair-production process. The same model can be generalized to study the evaporation of AdS Reissner-Nordström black holes with flat horizon. It was recently found that such black holes always evolve towards extremality since charge loss is inefficient. This property is completely opposite to the asymptotically flat case in which the black hole eventually loses its charges and tends towards Schwarzschild limit. We clarify the underlying reason for this different behavior.

  3. Stationary black holes with stringy hair

    NASA Astrophysics Data System (ADS)

    Boos, Jens; Frolov, Valeri P.

    2018-01-01

    We discuss properties of black holes which are pierced by special configurations of cosmic strings. For static black holes, we consider radial strings in the limit when the number of strings grows to infinity while the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for an electrically charged static black hole with the stringy matter, with and without a cosmological constant. This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian curvature is determined by the energy density of the stringy matter. We discuss the embedding of a corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency conditions. We also found a relation between the square of the Weyl tensor invariant of the four-dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the angular momentum from rotating black holes by such strings is also discussed.

  4. Inspirals into a charged black hole

    NASA Astrophysics Data System (ADS)

    Zhu, Ruomin; Osburn, Thomas

    2018-05-01

    We model the quasicircular inspiral of a compact object into a more massive charged black hole. Extreme and intermediate mass-ratio inspirals are considered through a small mass-ratio approximation. Reissner-Nordström spacetime is used to describe the charged black hole. The effect of radiation reaction on the smaller body is quantified through calculation of electromagnetic and gravitational energy fluxes via solution of Einstein's and Maxwell's equations. Inspiral trajectories are determined by matching the orbital energy decay rate to the rate of radiative energy dissipation. We observe that inspirals into a charged black hole evolve more rapidly than comparable inspirals into a neutral black hole. Through analysis of a variety of inspiral configurations, we conclude that electric charge is an important effect concerning gravitational wave observations when the charge exceeds the threshold |Q |/M ≳0.071 √{ɛ }, where ɛ is the mass ratio.

  5. Hairy black holes and the endpoint of AdS4 charged superradiance

    NASA Astrophysics Data System (ADS)

    Dias, Óscar J. C.; Masachs, Ramon

    2017-02-01

    We construct hairy black hole solutions that merge with the anti-de Sitter (AdS4) Reissner-Nordström black hole at the onset of superradiance. These hairy black holes have, for a given mass and charge, higher entropy than the corresponding AdS4-Reissner-Nordström black hole. Therefore, they are natural candidates for the endpoint of the charged superradiant instability. On the other hand, hairy black holes never dominate the canonical and grand-canonical ensembles. The zero-horizon radius of the hairy black holes is a soliton (i.e. a boson star under a gauge transformation). We construct our solutions perturbatively, for small mass and charge, so that the properties of hairy black holes can be used to testify and compare with the endpoint of initial value simulations. We further discuss the near-horizon scalar condensation instability which is also present in global AdS4-Reissner-Nordström black holes. We highlight the different nature of the near-horizon and superradiant instabilities and that hairy black holes ultimately exist because of the non-linear instability of AdS.

  6. Thermodynamics of charged dilatonic BTZ black holes in rainbow gravity

    NASA Astrophysics Data System (ADS)

    Dehghani, M.

    2018-02-01

    In this paper, the charged three-dimensional Einstein's theory coupled to a dilatonic field has been considered in the rainbow gravity. The dilatonic potential has been written as the linear combination of two Liouville-type potentials. Four new classes of charged dilatonic rainbow black hole solutions, as the exact solution to the coupled field equations of the energy dependent space time, have been obtained. Two of them are correspond to the Coulomb's electric field and the others are consequences of a modified Coulomb's law. Total charge and mass as well as the entropy, temperature and electric potential of the new charged black holes have been calculated in the presence of rainbow functions. Although the thermodynamic quantities are affected by the rainbow functions, it has been found that the first law of black hole thermodynamics is still valid for all of the new black hole solutions. At the final stage, making use of the canonical ensemble method and regarding the black hole heat capacity, the thermal stability or phase transition of the new rainbow black hole solutions have been analyzed.

  7. Tunneling of Charged Massive Particles from Taub-NUT-Reissner-Nordström-AdS Black Holes

    NASA Astrophysics Data System (ADS)

    Ali, M. Hossain; Sultana, Kausari

    2014-05-01

    We apply the null-geodesic method to investigate tunneling radiation of charged and magnetized massive particles from Taub-NUT-Reissner-Nordström black holes endowed with electric as well as magnetic charges in Anti-de Sitter (AdS) spaces. The geodesics of charged massive particle tunneling from the black hole is not lightlike, but can be determined by the phase velocity. We find that the tunneling rate is related to the difference of Bekenstein-Hawking entropies of the black hole before and after the emission of particles. The entropy differs from just a quarter area at the horizon of black holes with NUT parameter. The emission spectrum is not precisely thermal anymore and the deviation from the precisely thermal spectrum can bring some information out, which can be treated as an explanation to the information loss paradox. The result can also be treated as a quantum-corrected radiation temperature, which is dependent on the black hole background and the radiation particle's energy and charges.

  8. Slow-motion scattering and coalescence of maximally charged black holes

    NASA Technical Reports Server (NTRS)

    Ferrell, Robert C.; Eardley, Douglas M.

    1987-01-01

    Systems consisting of several maximally charged, nonrotating black holes ('Reissner-Nordstrom' black holes) interacting with one another are studied. An effective action for the system in the slow-motion, fully strong-field regime is presented. An exact calculation of black-hole-black-hole scattering and coalescence in the slow-motion (but strong-field) limit is given.

  9. Rotating black holes with non-Abelian hair

    NASA Astrophysics Data System (ADS)

    Kleihaus, Burkhard; Kunz, Jutta; Navarro-Lérida, Francisco

    2016-12-01

    We here review asymptotically flat rotating black holes in the presence of non-Abelian gauge fields. Like their static counterparts these black holes are no longer uniquely determined by their global charges. In the case of pure SU(2) Yang-Mills fields, the rotation generically induces an electric charge, while the black holes do not carry a magnetic charge. When a Higgs field is coupled, rotating black holes with monopole hair arise in the case of a Higgs triplet, while in the presence of a complex Higgs doublet the black holes carry sphaleron hair. The inclusion of a dilaton allows for Smarr type mass formulae.

  10. Visible, invisible and trapped ghosts as sources of wormholes and black universes

    NASA Astrophysics Data System (ADS)

    Bolokhov, S. V.; Bronnikov, K. A.; Korolyov, P. A.; Skvortsova, M. V.

    2016-02-01

    We construct explicit examples of globally regular static, spherically symmetric solutions in general relativity with scalar and electromagnetic fields, describing traversable wormholes with flat and AdS asymptotics and regular black holes, in particular, black universes. (A black universe is a regular black hole with an expanding, asymptotically isotropic space-time beyond the horizon.) Such objects exist in the presence of scalar fields with negative kinetic energy (“phantoms”, or “ghosts”), which are not observed under usual physical conditions. To account for that, we consider what we call “trapped ghosts” (scalars whose kinetic energy is only negative in a strong-field region of space-time) and “invisible ghosts”, i.e., phantom scalar fields sufficiently rapidly decaying in the weak-field region. The resulting configurations contain different numbers of Killing horizons, from zero to four.

  11. Thermodynamic properties of charged three-dimensional black holes in the scalar-tensor gravity theory

    NASA Astrophysics Data System (ADS)

    Dehghani, M.

    2018-02-01

    Making use of the suitable transformation relations, the action of three-dimensional Einstein-Maxwell-dilaton gravity theory has been obtained from that of scalar-tensor modified gravity theory coupled to the Maxwell's electrodynamics as the matter field. Two new classes of the static three-dimensional charged dilatonic black holes, as the exact solutions to the coupled scalar, electromagnetic and gravitational field equations, have been obtained in the Einstein frame. Also, it has been found that the scalar potential can be written in the form of a generalized Liouville-type potential. The conserved black hole charge and masses as well as the black entropy, temperature, and electric potential have been calculated from the geometrical and thermodynamical approaches, separately. Through comparison of the results arisen from these two alternative approaches, the validity of the thermodynamical first law has been proved for both of the new black hole solutions in the Einstein frame. Making use of the canonical ensemble method, a black hole stability or phase transition analysis has been performed. Regarding the black hole heat capacity, with the black hole charge as a constant, the points of type-1 and type-2 phase transitions have been determined. Also, the ranges of the black hole horizon radius at which the Einstein black holes are thermally stable have been obtained for both of the new black hole solutions. Then making use of the inverse transformation relations, two new classes of the string black hole solutions have been obtained from their Einstein counterpart. The thermodynamics and thermal stability of the new string black hole solutions have been investigated. It has been found that thermodynamic properties of the new charged black holes are identical in the Einstein and Jordan frames.

  12. General nonextremal rotating charged Gödel black holes in minimal five-dimensional gauged supergravity.

    PubMed

    Wu, Shuang-Qing

    2008-03-28

    I present the general exact solutions for nonextremal rotating charged black holes in the Gödel universe of five-dimensional minimal supergravity theory. They are uniquely characterized by four nontrivial parameters: namely, the mass m, the charge q, the Kerr equal rotation parameter a, and the Gödel parameter j. I calculate the conserved energy, angular momenta, and charge for the solutions and show that they completely satisfy the first law of black hole thermodynamics. I also study the symmetry and separability of the Hamilton-Jacobi and the massive Klein-Gordon equations in these Einstein-Maxwell-Chern-Simons-Gödel black hole backgrounds.

  13. Remarks on regular black holes

    NASA Astrophysics Data System (ADS)

    Nicolini, Piero; Smailagic, Anais; Spallucci, Euro

    Recently, it has been claimed by Chinaglia and Zerbini that the curvature singularity is present even in the so-called regular black hole solutions of the Einstein equations. In this brief note, we show that this criticism is devoid of any physical content.

  14. Thermal stability of charged rotating quantum black holes

    NASA Astrophysics Data System (ADS)

    Sinha, Aloke Kumar; Majumdar, Parthasarathi

    2017-12-01

    Criteria for thermal stability of charged rotating black holes of any dimension are derived for horizon areas that are large relative to the Planck area (in these dimensions). The derivation is based on generic assumptions of quantum geometry, supported by some results of loop quantum gravity, and equilibrium statistical mechanics of the Grand Canonical ensemble. There is no explicit use of classical spacetime geometry in this analysis. The only assumption is that the mass of the black hole is a function of its horizon area, charge and angular momentum. Our stability criteria are then tested in detail against specific classical black holes in spacetime dimensions 4 and 5, whose metrics provide us with explicit relations for the dependence of the mass on the charge and angular momentum of the black holes. This enables us to predict which of these black holes are expected to be thermally unstable under Hawking radiation.

  15. Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability

    NASA Astrophysics Data System (ADS)

    Bosch, Pablo; Green, Stephen R.; Lehner, Luis

    2016-04-01

    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.

  16. Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability.

    PubMed

    Bosch, Pablo; Green, Stephen R; Lehner, Luis

    2016-04-08

    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.

  17. Rotating charged black holes accelerated by an electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bicak, Jiri; Kofron, David; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Muehlenberg 1, D-14476 Golm

    The Ernst method of removing nodal singularities from the charged C-metric representing a uniformly accelerated black hole with mass m, charge q and acceleration A by 'adding' an electric field E is generalized. Utilizing the new form of the C-metric found recently, Ernst's simple 'equilibrium condition' mA=qE valid for small accelerations is generalized for arbitrary A. The nodal singularity is removed also in the case of accelerating and rotating charged black holes, and the corresponding equilibrium condition is determined.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehghani, M.H.; Research Institute for Astrophysics and Astronomy of Maragha; Khodam-Mohammadi, A.

    First, we construct the Taub-NUT/bolt solutions of (2k+2)-dimensional Einstein-Maxwell gravity, when all the factor spaces of 2k-dimensional base space B have positive curvature. These solutions depend on two extra parameters, other than the mass and the NUT charge. These are electric charge q and electric potential at infinity V. We investigate the existence of Taub-NUT solutions and find that in addition to the two conditions of uncharged NUT solutions, there exist two extra conditions. These two extra conditions come from the regularity of vector potential at r=N and the fact that the horizon at r=N should be the outer horizonmore » of the NUT charged black hole. We find that the NUT solutions in 2k+2 dimensions have no curvature singularity at r=N, when the 2k-dimensional base space is chosen to be CP{sup 2k}. For bolt solutions, there exists an upper limit for the NUT parameter which decreases as the potential parameter increases. Second, we study the thermodynamics of these spacetimes. We compute temperature, entropy, charge, electric potential, action and mass of the black hole solutions, and find that these quantities satisfy the first law of thermodynamics. We perform a stability analysis by computing the heat capacity, and show that the NUT solutions are not thermally stable for even k's, while there exists a stable phase for odd k's, which becomes increasingly narrow with increasing dimensionality and wide with increasing V. We also study the phase behavior of the 4 and 6 dimensional bolt solutions in canonical ensemble and find that these solutions have a stable phase, which becomes smaller as V increases.« less

  19. Scattering of massless scalar waves by magnetically charged black holes in Einstein-Yang-Mills-Higgs theory

    NASA Astrophysics Data System (ADS)

    Gußmann, Alexander

    2017-03-01

    The existence of the classical black hole solutions of the Einstein-Yang-Mills-Higgs equations with non-Abelian Yang-Mills-Higgs hair implies that not all classical stationary magnetically charged black holes can be uniquely described by their asymptotic characteristics. In fact, in a certain domain of parameters, there exist different spherically-symmetric, non-rotating and asymptotically-flat classical black hole solutions of the Einstein-Yang-Mills-Higgs equations which have the same ADM mass and the same magnetic charge but significantly different geometries in the near-horizon regions. (These are black hole solutions which are described by a Reissner-Nordström metric on the one hand and the black hole solutions with non-Abelian Yang-Mills-Higgs hair which are described by a metric which is not of Reissner-Nordström form on the other hand). One can experimentally distinguish such black holes with the same asymptotic characteristics but different near-horizon geometries classically by probing the near-horizon regions of the black holes. We argue that one way to probe the near-horizon region of a black hole which allows one to distinguish magnetically charged black holes with the same asymptotic characteristics but different near-horizon geometries is by classical scattering of waves. Using the example of a minimally-coupled massless probe scalar field scattered by magnetically charged black holes which can be obtained as solutions of the Einstein-Yang-Mills-Higgs equations with a Higgs triplet and gauge group SU(2) in the limit of an infinite Higgs self-coupling constant we show how, in this case, the scattering cross sections differ for the magnetically charged black holes with different near-horizon geometries but the same asymptotic characteristics. We find in particular that the characteristic glory peaks in the cross sections are located at different scattering angles.

  20. Gravitational lensing and ghost images in the regular Bardeen no-horizon spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schee, Jan; Stuchlík, Zdeněk, E-mail: jan.schee@fpf.slu.cz, E-mail: zdenek.stuchlik@fpf.slu.cz

    We study deflection of light rays and gravitational lensing in the regular Bardeen no-horizon spacetimes. Flatness of these spacetimes in the central region implies existence of interesting optical effects related to photons crossing the gravitational field of the no-horizon spacetimes with low impact parameters. These effects occur due to existence of a critical impact parameter giving maximal deflection of light rays in the Bardeen no-horizon spacetimes. We give the critical impact parameter in dependence on the specific charge of the spacetimes, and discuss 'ghost' direct and indirect images of Keplerian discs, generated by photons with low impact parameters. The ghostmore » direct images can occur only for large inclination angles of distant observers, while ghost indirect images can occur also for small inclination angles. We determine the range of the frequency shift of photons generating the ghost images and determine distribution of the frequency shift across these images. We compare them to those of the standard direct images of the Keplerian discs. The difference of the ranges of the frequency shift on the ghost and direct images could serve as a quantitative measure of the Bardeen no-horizon spacetimes. The regions of the Keplerian discs giving the ghost images are determined in dependence on the specific charge of the no-horizon spacetimes. For comparison we construct direct and indirect (ordinary and ghost) images of Keplerian discs around Reissner-Nördström naked singularities demonstrating a clear qualitative difference to the ghost direct images in the regular Bardeen no-horizon spacetimes. The optical effects related to the low impact parameter photons thus give clear signature of the regular Bardeen no-horizon spacetimes, as no similar phenomena could occur in the black hole or naked singularity spacetimes. Similar direct ghost images have to occur in any regular no-horizon spacetimes having nearly flat central region.« less

  1. (2+1)-Dimensional charged black holes with scalar hair in Einstein-Power-Maxwell Theory

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Zou, De-Cheng

    2017-06-01

    In (2+1)-dimensional AdS spacetime, we obtain new exact black hole solutions, including two different models (power parameter k=1 and k≠1), in the Einstein-Power-Maxwell (EPM) theory with nonminimally coupled scalar field. For the charged hairy black hole with k≠1, we find that the solution contains a curvature singularity at the origin and is nonconformally flat. The horizon structures are identified, which indicates the physically acceptable lower bound of mass in according to the existence of black hole solutions. Later, the null geodesic equations for photon around this charged hairy black hole are also discussed in detail.

  2. The generalization of charged AdS black hole specific volume and number density

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Liang; He, Miao; Fang, Chao; Sun, Dao-Quan; Deng, Jian-Bo

    2017-04-01

    In this paper, by proposing a generalized specific volume, we restudy the P- V criticality of charged AdS black holes in the extended phase space. The results show that most of the previous conclusions can be generalized without change, but the ratio {\\tilde{ρ }}_c should be 3 {\\tilde{α }}/16 in general case. Further research on the thermodynamical phase transition of black hole leads us to a natural interpretation of our assumption, and more black hole properties can be generalized. Finally, we study the number density for charged AdS black hole in higher dimensions, the results show the necessity of our assumption.

  3. Integrability in conformally coupled gravity: Taub-NUT spacetimes and rotating black holes

    NASA Astrophysics Data System (ADS)

    Bardoux, Yannis; Caldarelli, Marco M.; Charmousis, Christos

    2014-05-01

    We consider four dimensional stationary and axially symmetric spacetimes for conformally coupled scalar-tensor theories. We show that, in analogy to the Lewis-Papapetrou problem in General Relativity (GR), the theory at hand can be recast in an analogous integrable form. We give the relevant rod formalism, introduced by Weyl for vacuum GR, explicitly giving the rod structure of the black hole of Bocharova et al. and Bekenstein (BBMB), in complete analogy to the Schwarzschild solution. The additional scalar field is shown to play the role of an extra Weyl potential. We then employ the Ernst method as a concrete solution generating example to obtain the Taub-NUT version of the BBMB hairy black hole. The solution is easily extended to include a cosmological constant. We show that the anti-de Sitter hyperbolic version of this solution is free of closed timelike curves that plague usual Taub-NUT metrics, and thus consists of a rotating, asymptotically locally anti-de Sitter black hole. This stationary solution has no curvature singularities whatsoever in the conformal frame, and the NUT charge is shown here to regularize the central curvature singularity of the corresponding static black hole. Given our findings we discuss the anti-de Sitter hyperbolic version of Taub-NUT in four dimensions, and show that the curvature singularity of the NUT-less solution is now replaced by a neighbouring chronological singularity screened by horizons. We argue that the properties of this rotating black hole are very similar to those of the rotating BTZ black hole in three dimensions.

  4. Quantum loop corrections of a charged de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Naji, J.

    2018-03-01

    A charged black hole in de Sitter (dS) space is considered and logarithmic corrected entropy used to study its thermodynamics. Logarithmic corrections of entropy come from thermal fluctuations, which play a role of quantum loop correction. In that case we are able to study the effect of quantum loop on black hole thermodynamics and statistics. As a black hole is a gravitational object, it helps to obtain some information about the quantum gravity. The first and second laws of thermodynamics are investigated for the logarithmic corrected case and we find that it is only valid for the charged dS black hole. We show that the black hole phase transition disappears in the presence of logarithmic correction.

  5. Global charges of stationary non-Abelian black holes.

    PubMed

    Kleihaus, Burkhard; Kunz, Jutta; Navarro-Lérida, Francisco

    2003-05-02

    We consider stationary axially symmetric black holes in SU(2) Einstein-Yang-Mills-dilaton theory. We present a mass formula for these stationary non-Abelian black holes, which also holds for Abelian black holes. The presence of the dilaton field allows for rotating black holes, which possess nontrivial electric and magnetic gauge fields, but do not carry a non-Abelian charge. We further present a new uniqueness conjecture.

  6. Thermodynamics and phase transition of charged AdS black holes with a global monopole

    NASA Astrophysics Data System (ADS)

    Deng, Gao-Ming; Fan, Jinbo; Li, Xinfei; Huang, Yong-Chang

    2018-01-01

    Thermodynamical properties of charged AdS black holes with a global monopole still remain obscure. In this paper, we investigate the thermodynamics and phase transition of the black holes in the extended phase space. It is shown that thermodynamical quantities of the black holes exhibit an interesting dependence on the internal global monopole, and they perfectly satisfy both the first law of thermodynamics and Smarr relation. Furthermore, analysis of the local and the global thermodynamical stability manifests that the charged AdS black hole undergoes an elegant phase transition at critical point. Of special interest, critical behaviors of the black holes resemble a Van der Waals liquid-gas system. Our results not only reveal the effect of a global monopole on thermodynamics of AdS black holes, but also further support that Van der Waals-like behavior of the black holes is a universal phenomenon.

  7. Equilibrium configurations of a charged fluid around a Kerr black hole

    NASA Astrophysics Data System (ADS)

    Trova, Audrey; Schroven, Kris; Hackmann, Eva; Karas, Vladimír; Kovář, Jiří; Slaný, Petr

    2018-05-01

    Equilibrium configurations of electrically charged perfect fluid surrounding a central rotating black hole endowed with a test electric charge and embedded in a large-scale asymptotically uniform magnetic field are presented. Following our previous studies considering the central black hole to be nonrotating, we show that in the rotating case conditions for the configurations existence change according to the spin of the black hole. We focus our attention on the charged fluid in rigid rotation, which can form toroidal configurations centered in the equatorial plane or the ones hovering above the black hole, along the symmetry axis. We conclude that a nonzero value of spin changes the existence conditions and the morphology of the solutions significantly. In the case of fast rotation, the morphology of the structures is close to an oblate shape.

  8. Nonlinear evolution and final fate of (charged) superradiant instability

    NASA Astrophysics Data System (ADS)

    Green, Stephen; Bosch, Pablo; Lehner, Luis

    2016-03-01

    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field, coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordstrom-AdS black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeateadly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.

  9. Black p-branes versus black holes in non-asymptotically flat Einstein-Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Habib Mazharimousavi, S.; Halilsoy, M.

    2016-09-01

    We present a class of non-asymptotically flat (NAF) charged black p-branes (BpB) with p-compact dimensions in higher-dimensional Einstein-Yang-Mills theory. Asymptotically the NAF structure manifests itself as an anti-de sitter spacetime. We determine the total mass/energy enclosed in a thin shell located outside the event horizon. By comparing the entropies of BpB with those of black holes in the same dimensions we derive transition criteria between the two types of black objects. Given certain conditions satisfied, our analysis shows that BpB can be considered excited states of black holes. An event horizon r+ versus charge square Q2 plot for the BpB reveals such a transition where r+ is related to the horizon radius rh of the black hole (BH) both with the common charge Q.

  10. On non-linear magnetic-charged black hole surrounded by quintessence

    NASA Astrophysics Data System (ADS)

    Nam, Cao H.

    2018-06-01

    We derive a non-linear magnetic-charged black hole surrounded by quintessence, which behaves asymptotically like the Schwarzschild black hole surrounded by quintessence but at the short distances like the dS geometry. The horizon properties of this black hole are investigated in detail. The thermodynamics of the black hole is studied in the local and global views. Finally, by calculating the heat capacity and the free energy, we point to that the black hole may undergo a thermal phase transition, between a larger unstable black hole and a smaller stable black hole, at a critical temperature.

  11. A monopole near a black hole

    PubMed Central

    Bunster, Claudio; Henneaux, Marc

    2007-01-01

    A striking property of an electric charge near a magnetic pole is that the system possesses angular momentum even when both the electric and the magnetic charges are at rest. The angular momentum is proportional to the product of the charges and independent of their distance. We analyze the effect of bringing gravitation into this remarkable system. To this end, we study an electric charge held at rest outside a magnetically charged black hole. We find that even if the electric charge is treated as a perturbation on a spherically symmetric magnetic Reissner–Nordstrom hole, the geometry at large distances is that of a magnetic Kerr–Newman black hole. When the charge approaches the horizon and crosses it, the exterior geometry becomes that of a Kerr–Newman hole, with electric and magnetic charges and with total angular momentum given by the standard value for a charged monopole pair. Thus, in accordance with the “no-hair theorem,” once the charge is captured by the black hole, the angular momentum associated with the charge monopole system loses all traces of its exotic origin and is perceived from the outside as common rotation. It is argued that a similar analysis performed on Taub–NUT space should give the same result. PMID:17626789

  12. Extremal black holes, Stueckelberg scalars and phase transitions

    NASA Astrophysics Data System (ADS)

    Marrani, Alessio; Miskovic, Olivera; Leon, Paula Quezada

    2018-02-01

    We calculate the entropy of a static extremal black hole in 4D gravity, non-linearly coupled to a massive Stueckelberg scalar. We find that the scalar field does not allow the black hole to be magnetically charged. We also show that the system can exhibit a phase transition due to electric charge variations. For spherical and hyperbolic horizons, the critical point exists only in presence of a cosmological constant, and if the scalar is massive and non-linearly coupled to electromagnetic field. On one side of the critical point, two extremal solutions coexist: Reissner-Nordström (A)dS black hole and the charged hairy (A)dS black hole, while on the other side of the critical point the black hole does not have hair. A near-critical analysis reveals that the hairy black hole has larger entropy, thus giving rise to a zero temperature phase transition. This is characterized by a discontinuous second derivative of the entropy with respect to the electric charge at the critical point. The results obtained here are analytical and based on the entropy function formalism and the second law of thermodynamics.

  13. Analytical study of a Kerr-Sen black hole and a charged massive scalar field

    NASA Astrophysics Data System (ADS)

    Bernard, Canisius

    2017-11-01

    It is reported that Kerr-Newman and Kerr-Sen black holes are unstable to perturbations of charged massive scalar field. In this paper, we study analytically the complex frequencies which characterize charged massive scalar fields in a near-extremal Kerr-Sen black hole. For near-extremal Kerr-Sen black holes and for charged massive scalar fields in the eikonal large-mass M ≫μ regime, where M is the mass of the black hole, and μ is the mass of the charged scalar field, we have obtained a simple expression for the dimensionless ratio ωI/(ωR-ωc) , where ωI and ωR are, respectively, the imaginary and real parts of the frequency of the modes, and ωc is the critical frequency for the onset of super-radiance. We have also found our expression is consistent with the result of Hod [Phys. Rev. D 94, 044036 (2016), 10.1103/PhysRevD.94.044036] for the case of a near-extremal Kerr-Newman black hole and the result of Zouros and Eardly [Ann. Phys. (N.Y.) 118, 139 (1979), 10.1016/0003-4916(79)90237-9] for the case of neutral scalar fields in the background of a near-extremal Kerr black hole.

  14. Black holes and gravitational waves in models of minicharged dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoso, Vitor; Perimeter Institute for Theoretical Physics,31 Caroline Street North Waterloo, Ontario N2L 2Y5; Macedo, Caio F.B.

    In viable models of minicharged dark matter, astrophysical black holes might be charged under a hidden U(1) symmetry and are formally described by the same Kerr-Newman solution of Einstein-Maxwell theory. These objects are unique probes of minicharged dark matter and dark photons. We show that the recent gravitational-wave detection of a binary black-hole coalescence by aLIGO provides various observational bounds on the black hole’s charge, regardless of its nature. The pre-merger inspiral phase can be used to constrain the dipolar emission of (ordinary and dark) photons, whereas the detection of the quasinormal modes set an upper limit on the finalmore » black hole’s charge. By using a toy model of a point charge plunging into a Reissner-Nordstrom black hole, we also show that in dynamical processes the (hidden) electromagnetic quasinormal modes of the final object are excited to considerable amplitude in the gravitational-wave spectrum only when the black hole is nearly extremal. The coalescence produces a burst of low-frequency dark photons which might provide a possible electromagnetic counterpart to black-hole mergers in these scenarios.« less

  15. Chaos in charged AdS black hole extended phase space

    NASA Astrophysics Data System (ADS)

    Chabab, M.; El Moumni, H.; Iraoui, S.; Masmar, K.; Zhizeh, S.

    2018-06-01

    We present an analytical study of chaos in a charged black hole in the extended phase space in the context of the Poincare-Melnikov theory. Along with some background on dynamical systems, we compute the relevant Melnikov function and find its zeros. Then we analyse these zeros either to identify the temporal chaos in the spinodal region, or to observe spatial chaos in the small/large black hole equilibrium configuration. As a byproduct, we derive a constraint on the Black hole' charge required to produce chaotic behaviour. To the best of our knowledge, this is the first endeavour to understand the correlation between chaos and phase picture in black holes.

  16. Unthermal charged massive Hawking radiation from a Reissner-Nordström-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Khayrul Hasan, M.

    2015-05-01

    We investigate the massive charged particles' Hawking radiation from a Reissner-Nordström-de Sitter (RNdS) black hole by Damour-Ruffini's method. We get the unthermal spectrum when the back-reaction of particles' energy and charge to spacetime is considered. The information will get out from the black hole with the corrected spectrum. The radiation is not exactly thermal and because the derivation obeys conservation laws, the non thermal Hawking radiation can carry information from the black hole. In our work the method is more simple and explicit and it can be used to explain the black hole information loss paradox, and the process satisfies underlying unitary theory.

  17. Thermodynamics of new black hole solutions in the Einstein-Maxwell-dilaton gravity

    NASA Astrophysics Data System (ADS)

    Dehghani, M.

    In the present work, thermodynamics of the new black hole solutions to the four-dimensional Einstein-Maxwell-dilaton gravity theory have been studied. The dilaton potential, as the solution to the scalar field equations, has been constructed out by a linear combination of three Liouville-type potentials. Three new classes of charged dilatonic black hole solutions, as the exact solutions to the coupled equations of gravitational, electromagnetic and scalar fields, have been introduced. The conserved charge and mass of the new black holes have been calculated by utilizing Gauss's electric law and Abbott-Deser mass proposal, respectively. Also, the temperature, entropy and the electric potential of these new classes of charged dilatonic black holes have been calculated, making use of the geometrical approaches. Through a Smarr-type mass formula, the intensive parameters of the black holes have been calculated and validity of the first law of black hole thermodynamics has been confirmed. A thermal stability or phase transition analysis has been performed, making use of the canonical ensemble method. The heat capacity of the new black holes has been calculated and the points of type one- and type two-phase transitions as well as the ranges at which the new charged dilatonic black holes are locally stable have been determined, precisely.

  18. New solutions of exotic charged black holes and their stability

    NASA Astrophysics Data System (ADS)

    Farhangkhah, N.

    2016-01-01

    We find a class of charged black hole solutions in third-order Lovelock Gravity. To obtain this class of solutions, we are not confined to the usual assumption of maximal symmetry on the horizon and will consider the solution whose boundary is Einstein space with supplementary conditions on its Weyl tensor. The Weyl tensor of such exotic horizons exposes two chargelike parameter to the solution. These parameters in addition with the electric charge, cause different features in comparison with the charged solution with constant-curvature horizon. For this class of asymptotically (A)dS solutions, the electric charge dominates the behavior of the metric as r goes to zero, and thus the central singularity is always timelike. We also compute the thermodynamic quantities for these solutions and will show that the first law of thermodynamics is satisfied. We also show that the extreme black holes with nonconstant-curvature horizons whose Ricci scalar are zero or a positive constant could exist depending on the value of the electric charge and chargelike parameters. Finally, we investigate the stability of the black holes by analyzing the behavior of free energy and heat capacity specially in the limits of small and large horizon radius. We will show that in contrast with charged solution with constant-curvature horizon, a phase transition occurs between very small and small black holes from a stable phase to an unstable one, while the large black holes show stability to both perturbative and nonperturbative fluctuations.

  19. Critical behavior and microscopic structure of charged AdS black holes via an alternative phase space

    NASA Astrophysics Data System (ADS)

    Dehyadegari, Amin; Sheykhi, Ahmad; Montakhab, Afshin

    2017-05-01

    It has been argued that charged Anti-de Sitter (AdS) black holes have similar thermodynamic behavior as the Van der Waals fluid system, provided one treats the cosmological constant as a thermodynamic variable (pressure) in an extended phase space. In this paper, we disclose the deep connection between charged AdS black holes and Van der Waals fluid system from an alternative point of view. We consider the mass of an AdS black hole as a function of square of the charge Q2 instead of the standard Q, i.e. M = M (S ,Q2 , P). We first justify such a change of view mathematically and then ask if a phase transition can occur as a function of Q2 for fixed P. Therefore, we write the equation of state as Q2 =Q2 (T , Ψ) where Ψ (conjugate of Q2) is the inverse of the specific volume, Ψ = 1 / v. This allows us to complete the analogy of charged AdS black holes with Van der Waals fluid system and derive the phase transition as well as critical exponents of the system. We identify a thermodynamic instability in this new picture with real analogy to Van der Waals fluid with physically relevant Maxwell construction. We therefore study the critical behavior of isotherms in Q2- Ψ diagram and deduce all the critical exponents of the system and determine that the system exhibits a small-large black hole phase transition at the critical point (Tc , Qc2 ,Ψc). This alternative view is important as one can imagine such a change for a given single black hole i.e. acquiring charge which induces the phase transition. Finally, we disclose the microscopic properties of charged AdS black holes by using thermodynamic geometry. Interestingly, we find that scalar curvature has a gap between small and large black holes, and this gap becomes exceedingly large as one moves away from the critical point along the transition line. Therefore, we are able to attribute the sudden enlargement of the black hole to the strong repulsive nature of the internal constituents at the phase transition.

  20. Quasinormal modes of gravitational perturbation around regular Bardeen black hole surrounded by quintessence

    NASA Astrophysics Data System (ADS)

    Saleh, Mahamat; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin

    2018-04-01

    In this paper, Quasinormal modes of gravitational perturbation are investigated for the regular Bardeen black hole surrounded by quintessence. Considering the metric of the Bardeen spacetime surrounded by quintessence, we derived the perturbation equation for gravitational perturbation using Regge-Wheeler gauge. The third order Wentzel-Kramers-Brillouin (WKB) approximation method is used to evaluate quasinormal frequencies. Explicitly, the behaviors of the black hole potential and quasinormal modes were plotted. The results show that, due to the presence of quintessence, the gravitational perturbation around the black hole damps more slowly and oscillates more slowly.

  1. Hawking radiation of five-dimensional charged black holes with scalar fields

    NASA Astrophysics Data System (ADS)

    Miao, Yan-Gang; Xu, Zhen-Ming

    2017-09-01

    We investigate the Hawking radiation cascade from the five-dimensional charged black hole with a scalar field coupled to higher-order Euler densities in a conformally invariant manner. We give the semi-analytic calculation of greybody factors for the Hawking radiation. Our analysis shows that the Hawking radiation cascade from this five-dimensional black hole is extremely sparse. The charge enhances the sparsity of the Hawking radiation, while the conformally coupled scalar field reduces this sparsity.

  2. New aspect of critical nonlinearly charged black hole

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Taghadomi, Z. S.; Corda, C.

    2018-04-01

    The motion of a point charged particle moving in the background of the critical power Maxwell charged AdS black holes in a probe approximation is studied. The extended phase space, where the cosmological constant appears as a pressure, is regarded and the effective potential is investigated. At last, the mass-to-charge ratio and the large q limit are studied.

  3. On the universality of thermodynamics and η/s ratio for the charged Lovelock black branes

    NASA Astrophysics Data System (ADS)

    Cadoni, Mariano; Frassino, Antonia M.; Tuveri, Matteo

    2016-05-01

    We investigate general features of charged Lovelock black branes by giving a detailed description of geometrical, thermodynamic and holographic properties of charged Gauss-Bonnet (GB) black branes in five dimensions. We show that when expressed in terms of effective physical parameters, the thermodynamic behaviour of charged GB black branes is completely indistinguishable from that of charged Einstein black branes. Moreover, the extremal, near-horizon limit of the two classes of branes is exactly the same as they allow for the same AdS2 × R 3, near-horizon, exact solution. This implies that, although in the UV the associated dual QFTs are different, they flow in the IR to the same fixed point. The calculation of the shear viscosity to entropy ratio η/s confirms these results. Despite the GB dual plasma has in general a non-universal temperature-dependent η/s, it flows monotonically to the universal value 1 /4 π in the IR. For negative (positive) GB coupling constant, η/s is an increasing (decreasing) function of the temperature and the flow respects (violates) the KSS bound.

  4. Black holes in higher spin supergravity

    NASA Astrophysics Data System (ADS)

    Datta, Shouvik; David, Justin R.

    2013-07-01

    We study black hole solutions in Chern-Simons higher spin supergravity based on the superalgebra sl(3|2). These black hole solutions have a U(1) gauge field and a spin 2 hair in addition to the spin 3 hair. These additional fields correspond to the R-symmetry charges of the supergroup sl(3|2). Using the relation between the bulk field equations and the Ward identities of a CFT with {N} = 2 super- {{{W}}_3} symmetry, we identify the bulk charges and chemical potentials with those of the boundary CFT. From these identifications we see that a suitable set of variables to study this black hole is in terms of the charges present in three decoupled bosonic sub-algebras of the {N} = 2 super- {{{W}}_3} algebra. The entropy and the partition function of these R-charged black holes are then evaluated in terms of the charges of the bulk theory as well as in terms of its chemical potentials. We then compute the partition function in the dual CFT and find exact agreement with the bulk partition function.

  5. The fingerprints of black holes—shadows and their degeneracies

    NASA Astrophysics Data System (ADS)

    Mars, Marc; Paganini, Claudio F.; Oancea, Marius A.

    2018-01-01

    We show that, away from the axis of symmetry, no continuous degeneration exists between the shadows of observers at any point in the exterior region of any Kerr–Newman black hole spacetime of unit mass. Therefore, except possibly for discrete changes, an observer can, by measuring the black holes shadow, determine the angular momentum and the charge of the black hole under observation as well as the observer’s radial position and angle of elevation above the equatorial plane. Furthermore, his/her relative velocity compared to a standard observer can also be measured. However, the black hole shadow does not allow for a full parameter resolution in the case of a Kerr–Newman–Taub–NUT black hole, as a continuous degeneration relating specific angular momentum, electric charge, Taub–NUT charge and elevation angle exists in this case.

  6. Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virbhadra, K. S.; Keeton, C. R.; Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854

    We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginallymore » strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.« less

  7. Holographic Van der Waals phase transition of the higher-dimensional electrically charged hairy black hole

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ling; Feng, Zhong-Wen; Zu, Xiao-Tao

    2018-01-01

    With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition.

  8. Triple points and phase diagrams in the extended phase space of charged Gauss-Bonnet black holes in AdS space

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Liu, Yu-Xiao

    2014-08-01

    We study the triple points and phase diagrams in the extended phase space of the charged Gauss-Bonnet black holes in d-dimensional anti-de Sitter space, where the cosmological constant appears as a dynamical pressure of the system and its conjugate quantity is the thermodynamic volume of the black holes. Employing the equation of state T=T(v,P), we demonstrate that the information of the phase transition and behavior of the Gibbs free energy are potential encoded in the T-v (T-rh) line with fixed pressure P. We get the phase diagrams for the charged Gauss-Bonnet black holes with different values of the charge Q and dimension d. The result shows that the small/large black hole phase transitions appear for any d, which is reminiscent of the liquid/gas transition of a Van der Waals type. Moreover, the interesting thermodynamic phenomena, i.e., the triple points and the small/intermediate/large black hole phase transitions are observed for d=6 and Q ∈(0.1705,0.1946).

  9. Relativistic dust accretion of charged particles in Kerr-Newman spacetime

    NASA Astrophysics Data System (ADS)

    Schroven, Kris; Hackmann, Eva; Lämmerzahl, Claus

    2017-09-01

    We describe a new analytical model for the accretion of particles from a rotating and charged spherical shell of dilute collisionless plasma onto a rotating and charged black hole. By assuming a continuous injection of particles at the spherical shell and by treating the black hole and a featureless accretion disk located in the equatorial plane as passive sinks of particles, we build a stationary accretion model. This may then serve as a toy model for plasma feeding an accretion disk around a charged and rotating black hole. Therefore, our new model is a direct generalization of the analytical accretion model introduced by E. Tejeda, P. A. Taylor, and J. C. Miller [Mon. Not. R. Astron. Soc. 429, 925 (2013), 10.1093/mnras/sts316]. We use our generalized model to analyze the influence of a net charge of the black hole, which will in general be very small, on the accretion of plasma. Within the assumptions of our model we demonstrate that already a vanishingly small charge of the black hole may in general still have a non-negligible effect on the motion of the plasma, as long as the electromagnetic field of the plasma is still negligible. Furthermore, we argue that the inner and outer edges of the forming accretion disk strongly depend on the charge of the accreted plasma. The resulting possible configurations of accretion disks are analyzed in detail.

  10. Charged scalar perturbations on charged black holes in de Rham-Gabadadze-Tolley massive gravity

    NASA Astrophysics Data System (ADS)

    Burikham, Piyabut; Ponglertsakul, Supakchai; Tannukij, Lunchakorn

    2017-12-01

    We explore the quasistationary profile of a massive charged scalar field in a class of charged black holes in de Rham-Gabadadze-Tolley (dRGT) massive gravity. We discuss how the linear term in the metric, which is a unique character of the dRGT massive gravity, affects the structure of the spacetime. Numerical calculations of the quasinormal modes are performed for a charged scalar field in the dRGT black hole background. For an asymptotically de Sitter (dS) black hole, an improved asymptotic iteration method is used to obtain the associated quasinormal frequencies. The unstable modes are found for the ℓ=0 case, and their corresponding real parts satisfy the superradiant condition. For ℓ=2 , the results show that all the de Sitter black holes considered here are stable against a small perturbation. For an asymptotically dRGT anti-de Sitter (AdS) black hole, unstable modes are found with the frequency satisfying the superradiant condition. Effects of massive-gravity parameters are discussed. Analytic calculation reveals the unique diffusive nature of quasinormal modes in the massive-gravity model with the linear term. Numerical results confirm the existence of the characteristic diffusive modes in both the dS and AdS cases.

  11. Self-force on a scalar charge in Kerr spacetime: Circular equatorial orbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warburton, Niels; Barack, Leor

    2010-04-15

    We present a calculation of the scalar-field self-force (SSF) acting on a scalar-charge particle in a strong-field orbit around a Kerr black hole. Our calculation specializes to circular and equatorial geodesic orbits. The analysis is an implementation of the standard mode-sum regularization scheme: We first calculate the multipole modes of the scalar-field perturbation using numerical integration in the frequency domain, and then apply a certain regularization procedure to each of the modes. The dissipative piece of the SSF is found to be consistent with the flux of energy and angular-momentum carried by the scalar waves through the event horizon andmore » out to infinity. The conservative (radial) component of the SSF is calculated here for the first time. When the motion is retrograde this component is found to be repulsive (outward pointing, as in the Schwarzschild case) for any spin parameter a and (Boyer-Lindquist) orbital radius r{sub 0}. However, for prograde orbits we find that the radial SSF becomes attractive (inward pointing) for r{sub 0}>r{sub c}(a), where r{sub c} is a critical a-dependent radius at which the radial SSF vanishes. The dominant conservative effect of the SSF in Schwarzschild spacetime is known to be of third post-Newtonian (3PN) order (with a logarithmic running). Our numerical results suggest that the leading-order PN correction due to the black hole's spin arises from spin-orbit coupling at 3PN order, which dominates the overall SSF effect at large r{sub 0}. In PN language, the change of sign of the radial SSF is attributed to an interplay between the spin-orbit term ({proportional_to}-ar{sub 0}{sup -4.5}) and the Schwarzschild term ({proportional_to}r{sub 0}{sup -5}logr{sub 0}).« less

  12. Electron in higher-dimensional weakly charged rotating black hole spacetimes

    NASA Astrophysics Data System (ADS)

    Cariglia, Marco; Frolov, Valeri P.; Krtouš, Pavel; Kubizňák, David

    2013-03-01

    We demonstrate separability of the Dirac equation in weakly charged rotating black hole spacetimes in all dimensions. The electromagnetic field of the black hole is described by a test field approximation, with the vector potential proportional to the primary Killing vector field. It is shown that the demonstrated separability can be intrinsically characterized by the existence of a complete set of mutually commuting first-order symmetry operators generated from the principal Killing-Yano tensor. The presented results generalize the results on integrability of charged particle motion and separability of charged scalar field studied in V. P. Frolov and P. Krtous [Phys. Rev. D 83, 024016 (2011)].

  13. 29 CFR 70.40 - Charges assessed for the production of records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in black and white paper copy is $0.15 per page. This charge includes the operator's time to... inch black and white paper copy, such as computer tapes, disks and color copies, the requester may be... matters will not be aggregated. (f) Interest charges. Disclosure officers will assess interest on an...

  14. 29 CFR 70.40 - Charges assessed for the production of records.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in black and white paper copy is $0.15 per page. This charge includes the operator's time to... inch black and white paper copy, such as computer tapes, disks and color copies, the requester may be... matters will not be aggregated. (f) Interest charges. Disclosure officers will assess interest on an...

  15. 29 CFR 70.40 - Charges assessed for the production of records.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in black and white paper copy is $0.15 per page. This charge includes the operator's time to... inch black and white paper copy, such as computer tapes, disks and color copies, the requester may be... matters will not be aggregated. (f) Interest charges. Disclosure officers will assess interest on an...

  16. 29 CFR 70.40 - Charges assessed for the production of records.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in black and white paper copy is $0.15 per page. This charge includes the operator's time to... inch black and white paper copy, such as computer tapes, disks and color copies, the requester may be... matters will not be aggregated. (f) Interest charges. Disclosure officers will assess interest on an...

  17. Thermodynamics and Hawking radiation of five-dimensional rotating charged Goedel black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Shuangqing; Peng Junjin; College of Science, Wuhan Textile University, Wuhan, Hubei 430074

    2011-02-15

    We study the thermodynamics of Goedel-type rotating charged black holes in five-dimensional minimal supergravity. These black holes exhibit some peculiar features such as the presence of closed timelike curves and the absence of a globally spatial-like Cauchy surface. We explicitly compute their energies, angular momenta, and electric charges that are consistent with the first law of thermodynamics. Besides, we extend the covariant anomaly cancellation method, as well as the approach of the effective action, to derive their Hawking fluxes. Both the methods of the anomaly cancellation and the effective action give the same Hawking fluxes as those from the Planckmore » distribution for blackbody radiation in the background of the charged rotating Goedel black holes. Our results further support that Hawking radiation is a quantum phenomenon arising at the event horizon.« less

  18. Charged black lens in de Sitter space

    NASA Astrophysics Data System (ADS)

    Tomizawa, Shinya

    2018-02-01

    We obtain a charged black lens solution in the five-dimensional Einstein-Maxwell-Chern-Simons theory with a positive cosmological constant. It is shown that the solution obtained here describes the formation of a black hole with the spatial cross section of a sphere from that of the lens space of L (n ,1 ) in five-dimensional de Sitter space.

  19. Charges in gravitational fields: From Fermi, via Hanni-Ruffini-Wheeler, to the 'electric Meissner effect'

    NASA Astrophysics Data System (ADS)

    Ruffini, R.

    2004-07-01

    Recent developments in obtaining a detailed model for gamma-ray bursts have shown the need for a deeper understanding of phenomena described by solutions of the Einstein-Maxwell equations, reviving interest in the behavior of charges close to a black hole. In particular a drastic difference has been found between the lines of force of a charged test particle in the fields of Schwarzschild and Reissner-Nordström black holes. This difference characterizes a general relativistic effect for the electric field of a charged test particle around a (charged) Reissner-Nordström black hole similar to the “Meissner effect” for a magnetic field around a superconductor. These new results are related to earlier work by Fermi and Hanni-Ruffini-Wheeler.

  20. Supersymmetric black holes and Freudenthal duality

    NASA Astrophysics Data System (ADS)

    Marrani, Alessio; Mandal, Taniya; Tripathy, Prasanta K.

    2017-07-01

    We study the effect of Freudenthal duality on supersymmetric extremal black hole attractors in 𝒩 = 2, D = 4 ungauged supergravity. Freudenthal duality acts on the dyonic black hole charges as an anti-involution which keeps the black hole entropy and the critical points of the effective black hole potential invariant. We analyze its effect on the recently discovered distinct, mutually exclusive phases of axionic supersymmetric black holes, related to the existence of nontrivial involutory constant matrices. In particular, we consider a supersymmetric D0 - D4 - D6 black hole and we explicitly Freudenthal-map it to a supersymmetric D0 - D2 - D4 - D6 black hole. We thus show that the charge representation space of a supersymmetric D0 - D2 - D4 - D6 black hole also contains mutually exclusive domains.

  1. Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories

    NASA Astrophysics Data System (ADS)

    Antoniou, G.; Bakopoulos, A.; Kanti, P.

    2018-03-01

    We consider a general Einstein-scalar-Gauss-Bonnet theory with a coupling function f (ϕ ) . We demonstrate that black-hole solutions appear as a generic feature of this theory since a regular horizon and an asymptotically flat solution may be easily constructed under mild assumptions for f (ϕ ). We show that the existing no-hair theorems are easily evaded, and a large number of regular black-hole solutions with scalar hair are then presented for a plethora of coupling functions f (ϕ ).

  2. Maximal volume behind horizons without curvature singularity

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Jun; Guo, Xin-Xuan; Wang, Towe

    2018-01-01

    The black hole information paradox is related to the area of event horizon, and potentially to the volume and singularity behind it. One example is the complexity/volume duality conjectured by Stanford and Susskind. Accepting the proposal of Christodoulou and Rovelli, we calculate the maximal volume inside regular black holes, which are free of curvature singularity, in asymptotically flat and anti-de Sitter spacetimes respectively. The complexity/volume duality is then applied to anti-de Sitter regular black holes. We also present an analytical expression for the maximal volume outside the de Sitter horizon.

  3. Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories.

    PubMed

    Antoniou, G; Bakopoulos, A; Kanti, P

    2018-03-30

    We consider a general Einstein-scalar-Gauss-Bonnet theory with a coupling function f(ϕ). We demonstrate that black-hole solutions appear as a generic feature of this theory since a regular horizon and an asymptotically flat solution may be easily constructed under mild assumptions for f(ϕ). We show that the existing no-hair theorems are easily evaded, and a large number of regular black-hole solutions with scalar hair are then presented for a plethora of coupling functions f(ϕ).

  4. Q ‑ Φ criticality and microstructure of charged AdS black holes in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Deng, Gao-Ming; Huang, Yong-Chang

    2017-12-01

    The phase transition and critical behaviors of charged AdS black holes in f(R) gravity with a conformally invariant Maxwell (CIM) source and constant curvature are further investigated. As a highlight, this research is carried out by employing new state parameters (T,Q, Φ) and contributes to deeper understanding of the thermodynamics and phase structure of black holes. Our analyses manifest that the charged f(R)-CIM AdS black hole undergoes a first-order small-large black hole phase transition, and the critical behaviors qualitatively behave like a Van der Waals liquid-vapor system. However, differing from the case in Einstein’s gravity, phase structures of the black holes in f(R) theory exhibit an interesting dependence on gravity modification parameters. Moreover, we adopt the thermodynamic geometry to probe the black hole microscopic properties. The results show that, on the one hand, both the Ruppeiner curvature and heat capacity diverge exactly at the critical point, on the other hand, the f(R)-CIM AdS black hole possesses the property as ideal Fermi gases. Of special interest, we discover a microscopic similarity between the black holes and a Van der Waals liquid-vapor system.

  5. Thermodynamics with pressure and volume under charged particle absorption

    NASA Astrophysics Data System (ADS)

    Gwak, Bogeun

    2017-11-01

    We investigate the variation of the charged anti-de Sitter black hole under charged particle absorption by considering thermodynamic volume. When the energy of the particle is considered to contribute to the internal energy of the black hole, the variation exactly corresponds to the prediction of the first law of thermodynamics. Nevertheless, we find the decrease of the Bekenstein-Hawking entropy for extremal and near-extremal black holes under the absorption, which is an irreversible process. This violation of the second law of thermodynamics is only found when considering thermodynamic volume. We test the weak cosmic censorship conjecture affected by the violation. Fortunately, the conjecture is still valid, but extremal and near-extremal black holes do not change their configurations when any particle enters the black hole. This result is quite different from the case in which thermodynamic volume is not considered.

  6. Superrotation charge and supertranslation hair on black holes

    DOE PAGES

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2017-05-31

    It is shown that black hole spacetimes in classical Einstein gravity are characterized by, in addition to their ADM mass M, momentummore » $$\\vec{P}$$, angular momentum $$\\vec{J}$$ and boost charge $$\\vec{/k}$$ , an infinite head of supertranslation hair. Furthermore, the distinct black holes are distinguished by classical superrotation charges measured at infinity. Solutions with supertranslation hair are diffeomorphic to the Schwarzschild spacetime, but the diffeomorphisms are part of the BMS subgroup and act nontrivially on the physical phase space. It is shown that a black hole can be supertranslated by throwing in an asymmetric shock wave. We derive a leading-order Bondi-gauge expression for the linearized horizon supertranslation charge and shown to generate, via the Dirac bracket, supertranslations on the linearized phase space of gravitational excitations of the horizon. The considerations of this paper are largely classical augmented by comments on their implications for the quantum theory.« less

  7. Superrotation charge and supertranslation hair on black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    It is shown that black hole spacetimes in classical Einstein gravity are characterized by, in addition to their ADM mass M, momentummore » $$\\vec{P}$$, angular momentum $$\\vec{J}$$ and boost charge $$\\vec{/k}$$ , an infinite head of supertranslation hair. Furthermore, the distinct black holes are distinguished by classical superrotation charges measured at infinity. Solutions with supertranslation hair are diffeomorphic to the Schwarzschild spacetime, but the diffeomorphisms are part of the BMS subgroup and act nontrivially on the physical phase space. It is shown that a black hole can be supertranslated by throwing in an asymmetric shock wave. We derive a leading-order Bondi-gauge expression for the linearized horizon supertranslation charge and shown to generate, via the Dirac bracket, supertranslations on the linearized phase space of gravitational excitations of the horizon. The considerations of this paper are largely classical augmented by comments on their implications for the quantum theory.« less

  8. Superrotation charge and supertranslation hair on black holes

    NASA Astrophysics Data System (ADS)

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2017-05-01

    It is shown that black hole spacetimes in classical Einstein gravity are characterized by, in addition to their ADM mass M, momentum \\overrightarrow{P} , angular momentum \\overrightarrow{J} and boost charge \\overrightarrow{K} , an infinite head of supertranslation hair. The distinct black holes are distinguished by classical superrotation charges measured at infinity. Solutions with super-translation hair are diffeomorphic to the Schwarzschild spacetime, but the diffeomorphisms are part of the BMS subgroup and act nontrivially on the physical phase space. It is shown that a black hole can be supertranslated by throwing in an asymmetric shock wave. A leading-order Bondi-gauge expression is derived for the linearized horizon supertranslation charge and shown to generate, via the Dirac bracket, supertranslations on the linearized phase space of gravitational excitations of the horizon. The considerations of this paper are largely classical augmented by comments on their implications for the quantum theory.

  9. Water Level Controls on Sap Flux of Canopy Species in Black Ash Wetlands

    Treesearch

    Joseph Shannon; Matthew Van Grinsven; Joshua Davis; Nicholas Bolton; Nam Noh; Thomas Pypker; Randall Kolka

    2018-01-01

    Black ash (Fraxinus nigra Marsh.) exhibits canopy dominance in regularly inundated wetlands, suggesting advantageous adaptation. Black ash mortality due to emerald ash borer (Agrilus planipennis Fairmaire) will alter canopy composition and site hydrology. Retention of these forested wetlands requires understanding black ash...

  10. Hawking temperature of rotating charged black strings from tunneling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Jamil; Saifullah, K., E-mail: jamil_051@yahoo.com, E-mail: saifullah@qau.edu.pk

    2011-11-01

    Thermal radiations from spherically symmetric black holes have been studied from the point of view of quantum tunneling. In this paper we extend this approach to study radiation of fermions from charged and rotating black strings. Using WKB approximation and Hamilton-Jacobi method we work out the tunneling probabilities of incoming and outgoing fermions and find the correct Hawking temperature for these objects. We show that in appropriate limits the results reduce to those for the uncharged and non-rotating black strings.

  11. Scalar solitons and the microscopic entropy of hairy black holes in three dimensions

    NASA Astrophysics Data System (ADS)

    Correa, Francisco; Martínez, Cristián; Troncoso, Ricardo

    2011-01-01

    General Relativity coupled to a self-interacting scalar field in three dimensions is shown to admit exact analytic soliton solutions, such that the metric and the scalar field are regular everywhere. Since the scalar field acquires slow fall-off at infinity, the soliton describes an asymptotically AdS spacetime in a relaxed sense as compared with the one of Brown and Henneaux. Nevertheless, the asymptotic symmetry group remains to be the conformal group, and the algebra of the canonical generators possesses the standard central extension. For this class of asymptotic behavior, the theory also admits hairy black holes which raises some puzzles concerning a holographic derivation of their entropy à la Strominger. Since the soliton is devoid of integration constants, it has a fixed (negative) mass, and it can be naturally regarded as the ground state of the "hairy sector", for which the scalar field is switched on. This assumption allows to exactly reproduce the semiclassical hairy black hole entropy from the asymptotic growth of the number of states by means of Cardy formula. Particularly useful is expressing the asymptotic growth of the number of states only in terms of the spectrum of the Virasoro operators without making any explicit reference to the central charges.

  12. Charged string loops in Reissner-Nordström black hole background

    NASA Astrophysics Data System (ADS)

    Oteev, Tursinbay; Kološ, Martin; Stuchlík, Zdeněk

    2018-03-01

    We study the motion of current carrying charged string loops in the Reissner-Nordström black hole background combining the gravitational and electromagnetic field. Introducing new electromagnetic interaction between central charge and charged string loop makes the string loop equations of motion to be non-integrable even in the flat spacetime limit, but it can be governed by an effective potential even in the black hole background. We classify different types of the string loop trajectories using effective potential approach, and we compare the innermost stable string loop positions with loci of the charged particle innermost stable orbits. We examine string loop small oscillations around minima of the string loop effective potential, and we plot radial profiles of the string loop oscillation frequencies for both the radial and vertical modes. We construct charged string loop quasi-periodic oscillations model and we compare it with observed data from microquasars GRO 1655-40, XTE 1550-564, and GRS 1915+105. We also study the acceleration of current carrying string loops along the vertical axis and the string loop ejection from RN black hole neighbourhood, taking also into account the electromagnetic interaction.

  13. Qubit and fermionic Fock spaces from type II superstring black holes

    NASA Astrophysics Data System (ADS)

    Belhaj, A.; Bensed, M.; Benslimane, Z.; Sedra, M. B.; Segui, A.

    Using Hodge diagram combinatorial data, we study qubit and fermionic Fock spaces from the point of view of type II superstring black holes based on complex compactifications. Concretely, we establish a one-to-one correspondence between qubits, fermionic spaces and extremal black holes in maximally supersymmetric supergravity obtained from type II superstring on complex toroidal and Calabi-Yau compactifications. We interpret the differential forms of the n-dimensional complex toroidal compactification as states of n-qubits encoding information on extremal black hole charges. We show that there are 2n copies of n qubit systems which can be split as 2n = 2n-1 + 2n-1. More precisely, 2n-1 copies are associated with even D-brane charges in type IIA superstring and the other 2n-1 ones correspond to odd D-brane charges in IIB superstring. This correspondence is generalized to a class of Calabi-Yau manifolds. In connection with black hole charges in type IIA superstring, an n-qubit system has been obtained from a canonical line bundle of n factors of one-dimensional projective space ℂℙ1.

  14. Thermodynamics of charged black holes with a nonlinear electrodynamics source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Hernan A.; Hassaiene, Mokhtar; Martinez, Cristian

    2009-11-15

    We study the thermodynamical properties of electrically charged black hole solutions of a nonlinear electrodynamics theory defined by a power p of the Maxwell invariant, which is coupled to Einstein gravity in four and higher spacetime dimensions. Depending on the range of the parameter p, these solutions present different asymptotic behaviors. We compute the Euclidean action with the appropriate boundary term in the grand canonical ensemble. The thermodynamical quantities are identified and, in particular, the mass and the charge are shown to be finite for all classes of solutions. Interestingly, a generalized Smarr formula is derived and it is shownmore » that this latter encodes perfectly the different asymptotic behaviors of the black hole solutions. The local stability is analyzed by computing the heat capacity and the electrical permittivity and we find that a set of small black holes is locally stable. In contrast to the standard Reissner-Nordstroem solution, there is a first-order phase transition between a class of these nonlinear charged black holes and the Minkowski spacetime.« less

  15. Self-reported physical activity among blacks: estimates from national surveys.

    PubMed

    Whitt-Glover, Melicia C; Taylor, Wendell C; Heath, Gregory W; Macera, Caroline A

    2007-11-01

    National surveillance data provide population-level estimates of physical activity participation, but generally do not include detailed subgroup analyses, which could provide a better understanding of physical activity among subgroups. This paper presents a descriptive analysis of self-reported regular physical activity among black adults using data from the 2003 Behavioral Risk Factor Surveillance System (n=19,189), the 2004 National Health Interview Survey (n=4263), and the 1999-2004 National Health and Nutrition Examination Survey (n=3407). Analyses were conducted between January and March 2006. Datasets were analyzed separately to estimate the proportion of black adults meeting national physical activity recommendations overall and stratified by gender and other demographic subgroups. The proportion of black adults reporting regular PA ranged from 24% to 36%. Regular physical activity was highest among men; younger age groups; highest education and income groups; those who were employed and married; overweight, but not obese, men; and normal-weight women. This pattern was consistent across surveys. The observed physical activity patterns were consistent with national trends. The data suggest that older black adults and those with low education and income levels are at greatest risk for inactive lifestyles and may require additional attention in efforts to increase physical activity in black adults. The variability across datasets reinforces the need for objective measures in national surveys.

  16. Regular use of a home blood pressure monitor by hypertensive adults--HealthStyles, 2005 and 2008.

    PubMed

    Ayala, Carma; Tong, Xin; Keenan, Nora L

    2012-03-01

    The authors analyzed HealthStyles surveys 2005 and 2008 combined to assess the prevalence of regular home blood pressure monitor (HBPM) use among hypertensive adults. All data were self-reported. The authors calculated odds ratios (ORs) of regular HBPM use and relative percent change (RPC) in the use of HBPM between the 2 survey years. There were 3739 (32.6%) hypertensives in the 2 survey years combined. Based on the self-reported data, the proportion of hypertensives who regularly used an HBPM was 43.2%. Male sex, age, race/ethnicity, household income, and education were all associated with differences in the prevalence of regular HBPM use. Patients 65 years and older (OR, 2.38; 95% confidence interval [CI], 1.49-3.81) were significantly more likely to be regular HBPM users than those 18 to 34 years. Non-Hispanic blacks were significantly less likely (OR, 0.69; 95% CI, 0.55-0.86) to be regular HBPM users than non-Hispanic whites. From 2005 to 2008, the RPC in regular HBPM use was 14.2% (from 40.1% to 45.8%); the largest RPCs were for the 3 youngest age groups, men, non-Hispanic blacks, and those with a household income of $40,000 to 59,900. Because HBPM has been demonstrated to aid in hypertension control, health care professionals should promote its use especially among hypertensives who are younger, non-Hispanic blacks, Hispanics, or with a lower income. © 2012 Wiley Periodicals, Inc.

  17. BPS-like bound and thermodynamics of the charged BTZ black hole

    NASA Astrophysics Data System (ADS)

    Cadoni, Mariano; Monni, Cristina

    2009-07-01

    The charged Bañados-Teitelboim-Zanelli (BTZ) black hole is plagued by several pathologies: (a) Divergent boundary terms are present in the action; hence, we have a divergent black-hole mass. (b) Once a finite, renormalized, mass M is defined, black-hole states exist for arbitrarily negative values of M. (c) There is no upper bound on the charge Q. We show that these pathological features are an artifact of the renormalization procedure. They can be completely removed by using an alternative renormalization scheme leading to a different definition M0 of the black-hole mass, which is the total energy inside the horizon. The new mass satisfies a BPS-like bound M0≥(π)/(2)Q2, and the heat capacity of the hole is positive. We also discuss the black-hole thermodynamics that arises when M0 is interpreted as the internal energy of the system. We show, using three independent approaches (black-hole thermodynamics, Einstein equations, and Euclidean action formulation), that M0 satisfies the first law if a term describing the mechanical work done by the electrostatic pressure is introduced.

  18. Charged black holes in quartic quasi-topological gravity

    NASA Astrophysics Data System (ADS)

    Ghanaatian, M.; Naeimipour, F.; Bazrafshan, A.; Abkar, M.

    2018-05-01

    In this paper, we construct exact solutions of charged black holes in the presence of quartic quasi-topological gravity. We obtain thermodynamics and conserved quantities of the solutions and check the first law of thermodynamics. In studying the physical properties of the solutions, we consider anti-de Sitter, de Sitter, and flat solutions of charged black holes in quartic quasi-topological gravity and compare them with Einstein and third-order quasi-topological gravities. We also investigate the thermal stability of the solutions and show that thermal stability is just for anti-de Sitter solutions, not for de Sitter and flat ones.

  19. Spherically symmetric charged black holes in f(R) gravitational theories

    NASA Astrophysics Data System (ADS)

    Nashed, G. G. L.

    2018-01-01

    In this study, we have derived electric and magnetic spherically symmetric black holes for the class f(R)=R+ζ R2 without assuming any restrictions on the Ricci scalar. These black holes asymptotically behave as the de Sitter spacetime under certain constrains. We have shown that the magnetic charge contributes in the metric spacetime similarly to the electric charge. The most interesting feature of some of these black holes is the fact that the Cauchy horizon is not identical to the event horizon. We have calculated the invariants of Ricci and Kretschmann scalars to investigate the nature of singularities of such black holes. Also, we have calculated the conserved quantities to match the constants of integration with the physical quantities. Finally, the thermodynamical quantities, like Hawking temperature, entropy, etc., have been evaluated and the validity of the first law of thermodynamics has been verified.

  20. Brown-York quasilocal energy in Lanczos-Lovelock gravity and black hole horizons

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sumanta; Dadhich, Naresh

    2015-12-01

    A standard candidate for quasilocal energy in general relativity is the Brown-York energy, which is essentially a two dimensional surface integral of the extrinsic curvature on the two-boundary of a spacelike hypersurface referenced to flat spacetime. Several years back one of us had conjectured that the black hole horizon is defined by equipartition of gravitational and non-gravitational energy. By employing the above definition of quasilocal Brown-York energy, we have verified the equipartition conjecture for static charged and charged axi-symmetric black holes in general relativity. We have further generalized the Brown-York formalism to all orders in Lanczos-Lovelock theories of gravity and have verified the conjecture for pure Lovelock charged black hole in all even d = 2 m + 2 dimensions, where m is the degree of Lovelock action. It turns out that the equipartition conjecture works only for pure Lovelock, and not for Einstein-Lovelock black holes.

  1. New black holes in D =5 minimal gauged supergravity: Deformed boundaries and frozen horizons

    NASA Astrophysics Data System (ADS)

    Blázquez-Salcedo, Jose Luis; Kunz, Jutta; Navarro-Lérida, Francisco; Radu, Eugen

    2018-04-01

    A new class of black hole solutions of the five-dimensional minimal gauged supergravity is presented. They are characterized by the mass, the electric charge, two equal magnitude angular momenta and the magnitude of the magnetic potential at infinity. These black holes possess a horizon of spherical topology; however, both the horizon and the sphere at infinity can be arbitrarily squashed, with nonextremal solutions interpolating between black strings and black branes. A particular set of extremal configurations corresponds to a new one-parameter family of supersymmetric black holes. While their conserved charges are determined by the squashing of the sphere at infinity, these supersymmetric solutions possess the same horizon geometry.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com; Bezerra, V.B., E-mail: valdir@fisica.ufpb.br; Muniz, C.R., E-mail: celiomuniz@yahoo.com

    This work considers the influence of the gravitational field produced by a charged and rotating black hole (Kerr–Newman spacetime) on a charged massive scalar field. We obtain exact solutions of both angular and radial parts of the Klein–Gordon equation in this spacetime, which are given in terms of the confluent Heun functions. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation of charged massive scalar particles. - Highlights: • The covariant Klein–Gordon equation for a charged massive scalar field in the Kerr–Newman black hole is solved.more » • Both angular and radial parts are transformed to a Heun-type equation. • The resulting Hawking radiation spectrum of scalar particles has a thermal character.« less

  3. Dancing with Black Holes

    NASA Astrophysics Data System (ADS)

    Aarseth, S. J.

    2008-05-01

    We describe efforts over the last six years to implement regularization methods suitable for studying one or more interacting black holes by direct N-body simulations. Three different methods have been adapted to large-N systems: (i) Time-Transformed Leapfrog, (ii) Wheel-Spoke, and (iii) Algorithmic Regularization. These methods have been tried out with some success on GRAPE-type computers. Special emphasis has also been devoted to including post-Newtonian terms, with application to moderately massive black holes in stellar clusters. Some examples of simulations leading to coalescence by gravitational radiation will be presented to illustrate the practical usefulness of such methods.

  4. Nonpolynomial Lagrangian approach to regular black holes

    NASA Astrophysics Data System (ADS)

    Colléaux, Aimeric; Chinaglia, Stefano; Zerbini, Sergio

    We present a review on Lagrangian models admitting spherically symmetric regular black holes (RBHs), and cosmological bounce solutions. Nonlinear electrodynamics, nonpolynomial gravity, and fluid approaches are explained in details. They consist respectively in a gauge invariant generalization of the Maxwell-Lagrangian, in modifications of the Einstein-Hilbert action via nonpolynomial curvature invariants, and finally in the reconstruction of density profiles able to cure the central singularity of black holes. The nonpolynomial gravity curvature invariants have the special property to be second-order and polynomial in the metric field, in spherically symmetric spacetimes. Along the way, other models and results are discussed, and some general properties that RBHs should satisfy are mentioned. A covariant Sakharov criterion for the absence of singularities in dynamical spherically symmetric spacetimes is also proposed and checked for some examples of such regular metric fields.

  5. Bardeen regular black hole with an electric source

    NASA Astrophysics Data System (ADS)

    Rodrigues, Manuel E.; Silva, Marcos V. de S.

    2018-06-01

    If some energy conditions on the stress-energy tensor are violated, is possible construct regular black holes in General Relativity and in alternative theories of gravity. This type of solution has horizons but does not present singularities. The first regular black hole was presented by Bardeen and can be obtained from Einstein equations in the presence of an electromagnetic field. E. Ayon-Beato and A. Garcia reinterpreted the Bardeen metric as a magnetic solution of General Relativity coupled to a nonlinear electrodynamics. In this work, we show that the Bardeen model may also be interpreted as a solution of Einstein equations in the presence of an electric source, whose electric field does not behave as a Coulomb field. We analyzed the asymptotic forms of the Lagrangian for the electric case and also analyzed the energy conditions.

  6. Generic effective source for scalar self-force calculations

    NASA Astrophysics Data System (ADS)

    Wardell, Barry; Vega, Ian; Thornburg, Jonathan; Diener, Peter

    2012-05-01

    A leading approach to the modeling of extreme mass ratio inspirals involves the treatment of the smaller mass as a point particle and the computation of a regularized self-force acting on that particle. In turn, this computation requires knowledge of the regularized retarded field generated by the particle. A direct calculation of this regularized field may be achieved by replacing the point particle with an effective source and solving directly a wave equation for the regularized field. This has the advantage that all quantities are finite and require no further regularization. In this work, we present a method for computing an effective source which is finite and continuous everywhere, and which is valid for a scalar point particle in arbitrary geodesic motion in an arbitrary background spacetime. We explain in detail various technical and practical considerations that underlie its use in several numerical self-force calculations. We consider as examples the cases of a particle in a circular orbit about Schwarzschild and Kerr black holes, and also the case of a particle following a generic timelike geodesic about a highly spinning Kerr black hole. We provide numerical C code for computing an effective source for various orbital configurations about Schwarzschild and Kerr black holes.

  7. Managing California black oak for tribal ecocultural restoration

    Treesearch

    Jonathan W. Long; Ron W. Goode; Raymond J. Gutteriez; Jessica J. Lackey; M. Kat Anderson

    2017-01-01

    Many tribes in California and Oregon value California black oak (Quercus kelloggii) as a traditional source of food and other values. Over centuries or millennia, Native Americans learned that they could enhance production of desired resources by regularly igniting low-intensity surface fires in stands of black oak. Although black oak is likely to...

  8. Supertranslations and Superrotations at the Black Hole Horizon.

    PubMed

    Donnay, Laura; Giribet, Gaston; González, Hernán A; Pino, Miguel

    2016-03-04

    We show that the asymptotic symmetries close to nonextremal black hole horizons are generated by an extension of supertranslations. This group is generated by a semidirect sum of Virasoro and Abelian currents. The charges associated with the asymptotic Killing symmetries satisfy the same algebra. When considering the special case of a stationary black hole, the zero mode charges correspond to the angular momentum and the entropy at the horizon.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomizawa, Shinya

    We show a uniqueness theorem for Kaluza-Klein black holes in the bosonic sector of five-dimensional minimal supergravity. More precisely, under the assumptions of the existence of two commuting axial isometries and a nondegenerate connected event horizon of the cross-section topology S{sup 3}, or lens space, we prove that a stationary charged rotating Kaluza-Klein black hole in five-dimensional minimal supergravity is uniquely characterized by its mass, two independent angular momenta, electric charge, magnetic flux, and nut charge, provided that there exists neither a nut nor a bolt (a bubble) in the domain of outer communication. We also show that under themore » assumptions of the same symmetry, same asymptotics, and the horizon cross section of S{sup 1}xS{sup 2}, a black ring within the same theory--if it exists--is uniquely determined by its dipole charge and rod intervals besides the charges and magnetic flux.« less

  10. Thermodynamics of novel charged dilatonic BTZ black holes

    NASA Astrophysics Data System (ADS)

    Dehghani, M.

    2017-10-01

    In this paper, the three-dimensional Einstein-Maxwell theory in the presence of a dilatonic scalar field has been studied. It has been shown that the dilatonic potential must be considered as the linear combination of two Liouville-type potentials. Two new classes of charged dilatonic BTZ black holes, as the exact solutions to the coupled scalar, vector and tensor field equations, have been obtained and their properties have been studied. The conserved charge and mass of the new black holes have been calculated, making use of the Gauss's law and Abbott-Deser proposal, respectively. Through comparison of the thermodynamical extensive quantities (i.e. temperature and entropy) obtained from both, the geometrical and the thermodynamical methods, the validity of the first law of black hole thermodynamics has been confirmed for both of the new black holes we just obtained. A black hole thermal stability or phase transition analysis has been performed, making use of the canonical ensemble method. Regarding the black hole heat capacity, it has been found that for either of the new black hole solutions there are some specific ranges in such a way that the black holes with the horizon radius in these ranges are locally stable. The points of type one and type two phase transitions have been determined. The black holes, with the horizon radius equal to the transition points are unstable. They undergo type one or type two phase transitions to be stabilized.

  11. Gravitational memory charges of supertranslation and superrotation on Rindler horizons

    NASA Astrophysics Data System (ADS)

    Hotta, Masahiro; Trevison, Jose; Yamaguchi, Koji

    2016-10-01

    In a Rindler-type coordinate system spanned in a region outside of a black hole horizon, we have nonvanishing classical holographic charges as soft hairs on the horizon for stationary black holes. Taking a large black hole mass limit, the spacetimes with the charges are described by asymptotic Rindler metrics. We construct a general theory of gravitational holographic charges for a (1 +3 )-dimensional linearized gravity field in the Minkowski background with Rindler horizons. Although matter crossing a Rindler horizon causes horizon deformation and a time-dependent coordinate shift—that is, gravitational memory—the supertranslation and superrotation charges on the horizon can be defined during and after its passage through the horizon. It is generally proven that holographic states on the horizon cannot store any information about absorbed perturbative gravitational waves. However, matter crossing the horizon really excites holographic states. By using gravitational memory operators, which consist of the holographic charge operators, we suggest a resolution of the no-cloning paradox of quantum information between matter falling into the horizon and holographic charges on the horizon from the viewpoint of the contextuality of quantum measurement.

  12. A classical instability of Reissner-Nordstrom solutions and the fate of magnetically charged black holes

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Nair, V. P.; Weinberg, Erick J.

    1991-01-01

    Working in the context of spontaneously broken gauge theories, we show that the magnetically charged Reissner-Nordstrom solution develops a classical instability if the horizon is sufficiently small. This instability has significant implications for the evolution of a magnetically charged black hole. In particular, it leads to the possibility that such a hole could evaporate completely, leaving in its place a nonsingular magnetic monopole.

  13. Hawking radiation of charged Dirac particles from a Kerr-Newman black hole

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Liu, Wenbiao

    2008-05-01

    Charged Dirac particles’ Hawking radiation from a Kerr-Newman black hole is calculated using Damour-Ruffini’s method. When energy conservation and the backreaction of particles to the space-time are considered, the emission spectrum is not purely thermal anymore. The leading term is exactly the Boltzman factor, and the deviation from the purely thermal spectrum can bring some information out, which can be treated as an explanation to the information loss paradox. The result can also be treated as a quantum-corrected radiation temperature, which is dependent on the black hole background and the radiation particle’s energy, angular momentum, and charge.

  14. Unthermal Charged Massive Hawking Radiation from a Reissner-Nordström Black Hole

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Liu, Wenbiao

    2008-03-01

    Using Damour-Ruffini’s method, the massive charged particles’ Hawking radiation from a Reissner-Nordström black hole is investigated. When the back-reaction of particles’ energy and charge to spacetime is considered, we get the unthermal spectrum. It is possible that the information will get out from the black hole with the corrected spectrum. It can be used to explain the information loss paradox, and the underlying unitary theory will be satisfied. The same conclusion as the works finished before can be drawn. However, our work is different from them, and the method is more simple and explicit.

  15. Excavating black hole continuum spectrum: Possible signatures of scalar hairs and of higher dimensions

    NASA Astrophysics Data System (ADS)

    Banerjee, Indrani; Chakraborty, Sumanta; SenGupta, Soumitra

    2017-10-01

    Continuum spectrum from black hole accretion disc holds enormous information regarding the strong gravity regime around the black hole and hence about the nature of gravitational interaction in extreme situations. Since in such strong gravity regime the dynamics of gravity should be modified from the Einstein-Hilbert one, its effect should be imprinted on the continuum spectrum originating from the black hole accretion. To explore the effects of these alternative theories on the black hole continuum spectrum in an explicit manner, we have discussed three alternative gravitational models having their origin in three distinct paradigms—(a) higher dimensions, (b) higher curvature gravity, and (c) generalized Horndeski theories. All of them can have signatures sculptured on the black hole continuum spectrum, distinct from the standard general relativistic scenario. Interestingly all these models exhibit black hole solutions with tidal charge parameter which in these alternative gravity scenarios can become negative, in sharp contrast with the Reissner-Nordström black hole. Using the observational data of optical luminosity for eighty Palomer Green quasars we have illustrated that the difference between the theoretical estimates and the observational results gets minimized for negative values of the tidal charge parameter. As a quantitative estimate of this result we concentrate on several error estimators, including reduced χ2 , Nash-Sutcliffe efficiency, index of agreement etc. Remarkably, all of them indicates a negative value of the tidal charge parameter, signaling the possibility of higher dimensions as well as scalar charge at play in those high gravity regimes.

  16. Four-qubit systems and dyonic black Hole-Black branes in superstring theory

    NASA Astrophysics Data System (ADS)

    Belhaj, A.; Bensed, M.; Benslimane, Z.; Sedra, M. B.; Segui, A.

    Using dyonic solutions in the type IIA superstring theory on Calabi-Yau (CY) manifolds, we reconsider the study of black objects and quantum information theory using string/string duality in six dimensions. Concretely, we relate four-qubits with a stringy quaternionic moduli space of type IIA compactification associated with a dyonic black solution formed by black holes (BHs) and black 2-branes (B2B) carrying eight electric charges and eight magnetic charges. This connection is made by associating the cohomology classes of the heterotic superstring on T4 to four-qubit states. These states are interpreted in terms of such dyonic charges resulting from the quaternionic symmetric space SO(4,4) SO(4)×SO(4) corresponding to a N = 4 sigma model superpotential in two dimensions. The superpotential is considered as a functional depending on four quaternionic fields mapped to a class of Clifford algebras denoted as Cl0,4. A link between such an algebra and the cohomology classes of T4 in heterotic superstring theory is also given.

  17. Electromagnetic perturbations of black holes in general relativity coupled to nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Toshmatov, Bobir; Stuchlík, Zdeněk; Schee, Jan; Ahmedov, Bobomurat

    2018-04-01

    The electromagnetic (EM) perturbations of the black hole solutions in general relativity coupled to nonlinear electrodynamics (NED) are studied for both electrically and magnetically charged black holes, assuming that the EM perturbations do not alter the spacetime geometry. It is shown that the effective potentials of the electrically and magnetically charged black holes related to test perturbative NED EM fields are related to the effective metric governing the photon motion, contrary to the effective potential of the linear electrodynamic (Maxwell) field that is related to the spacetime metric. Consequently, corresponding quasinormal (QN) frequencies differ as well. As a special case, we study new family of the NED black hole solutions which tend in the weak field limit to the Maxwell field, giving the Reissner-Nordström (RN) black hole solution. We compare the NED Maxwellian black hole QN spectra with the RN black hole QN spectra.

  18. Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition.

    PubMed

    Wei, Shao-Wen; Liu, Yu-Xiao

    2015-09-11

    Comparing with an ordinary thermodynamic system, we investigate the possible microscopic structure of a charged anti-de Sitter black hole completely from the thermodynamic viewpoint. The number density of the black hole molecules is introduced to measure the microscopic degrees of freedom of the black hole. We found that the number density suffers a sudden change accompanied by a latent heat when the black hole system crosses the small-large black hole coexistence curve, while when the system passes the critical point, it encounters a second-order phase transition with a vanishing latent heat due to the continuous change of the number density. Moreover, the thermodynamic scalar curvature suggests that there is a weak attractive interaction between two black hole molecules. These phenomena might cast new insight into the underlying microscopic structure of a charged anti-de Sitter black hole.

  19. Conductive resins improve charging and resolution of acquired images in electron microscopic volume imaging

    PubMed Central

    Nguyen, Huy Bang; Thai, Truc Quynh; Saitoh, Sei; Wu, Bao; Saitoh, Yurika; Shimo, Satoshi; Fujitani, Hiroshi; Otobe, Hirohide; Ohno, Nobuhiko

    2016-01-01

    Recent advances in serial block-face imaging using scanning electron microscopy (SEM) have enabled the rapid and efficient acquisition of 3-dimensional (3D) ultrastructural information from a large volume of biological specimens including brain tissues. However, volume imaging under SEM is often hampered by sample charging, and typically requires specific sample preparation to reduce charging and increase image contrast. In the present study, we introduced carbon-based conductive resins for 3D analyses of subcellular ultrastructures, using serial block-face SEM (SBF-SEM) to image samples. Conductive resins were produced by adding the carbon black filler, Ketjen black, to resins commonly used for electron microscopic observations of biological specimens. Carbon black mostly localized around tissues and did not penetrate cells, whereas the conductive resins significantly reduced the charging of samples during SBF-SEM imaging. When serial images were acquired, embedding into the conductive resins improved the resolution of images by facilitating the successful cutting of samples in SBF-SEM. These results suggest that improving the conductivities of resins with a carbon black filler is a simple and useful option for reducing charging and enhancing the resolution of images obtained for volume imaging with SEM. PMID:27020327

  20. Greybody factors and charges in Kerr/CFT

    DOE PAGES

    Cvetič, Mirjam; Larsen, Finn

    2009-09-01

    We compute greybody factors for near extreme Kerr black holes in D = 4 and D = 5. In D = 4 we include four charges so that our solutions can be continuously deformed to the BPS limit. In D = 5 we include two independent angular momenta so Left-Right symmetry is incorporated. We discuss the CFT interpretation of our emission amplitudes, including the overall frequency dependence and the dependence on all black hole parameters. We find that all additional parameters can be incorporated Kerr/CFT, with central charge independent of U(1) charges.

  1. Thermodynamics of charged Lovelock: AdS black holes

    NASA Astrophysics Data System (ADS)

    Prasobh, C. B.; Suresh, Jishnu; Kuriakose, V. C.

    2016-04-01

    We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime.

  2. A classical instability of Reissner-Nordstrom solutions and the fate of magnetically charged black holes

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Nair, V. P.; Weinberg, Erick J.

    1992-01-01

    Working in the context of spontaneously broken gauge theories, it is shown that the magnetically charged Reissner-Nordstrom solution develops a classical instability if the horizon is sufficiently small. This instability has significant implications for the evolution of a magnetically charged black hole. In particular, it leads to the possibility that such a hole could evaporate completely, leaving in its place a nonsingular magnetic monopole.

  3. Hawking radiation from charged black holes via gauge and gravitational anomalies.

    PubMed

    Iso, Satoshi; Umetsu, Hiroshi; Wilczek, Frank

    2006-04-21

    Extending the method of Robinson and Wolczek, we show that in order to avoid a breakdown of general covariance and gauge invariance at the quantum level the total flux of charge and energy in each outgoing partial wave of a charged quantum field in a Reissner-Nordström black hole background must be equal to that of a (1 + 1)-dimensional blackbody at the Hawking temperature with the appropriate chemical potential.

  4. Black string in dRGT massive gravity

    NASA Astrophysics Data System (ADS)

    Tannukij, Lunchakorn; Wongjun, Pitayuth; Ghosh, Suchant G.

    2017-12-01

    We present a cylindrically symmetric solution, both charged and uncharged, which is known as a black string solution to the nonlinear ghost-free massive gravity found by de Rham, Gabadadze, and Tolley (dRGT). This "dRGT black string" can be thought of as a generalization of the black string solution found by Lemos. Moreover, the dRGT black string solution includes other classes of black string solution such as the monopole-black string ones since the graviton mass contributes to the global monopole term as well as the cosmological-constant term. To investigate the solution, we compute mass, temperature, and entropy of the dRGT black string. We found that the existence of the graviton mass drastically affects the thermodynamics of the black string. Furthermore, the Hawking-Page phase transition is found to be possible for the dRGT black string as well as the charged dRGT black string. The dRGT black string solution is thermodynamically stable for r>r_c with negative thermodynamical potential and positive heat capacity while it is unstable for r

  5. Logarithmic corrections to entropy of magnetically charged AdS4 black holes

    NASA Astrophysics Data System (ADS)

    Jeon, Imtak; Lal, Shailesh

    2017-11-01

    Logarithmic terms are quantum corrections to black hole entropy determined completely from classical data, thus providing a strong check for candidate theories of quantum gravity purely from physics in the infrared. We compute these terms in the entropy associated to the horizon of a magnetically charged extremal black hole in AdS4×S7 using the quantum entropy function and discuss the possibility of matching against recently derived microscopic expressions.

  6. Exp(1076) Shades of Black: Aspects of Black Hole Microstates

    NASA Astrophysics Data System (ADS)

    Vasilakis, Orestis

    In this thesis we examine smooth supergravity solutions known as "microstate geometries". These solutions have neither a horizon, nor a singularity, yet they have the same asymptotic structure and conserved charges as black holes. Specifically we study supersymmetric and extremal non-supersymmetric solutions. The goal of this program is to construct enough microstates to account for the correct scaling behavior of the black hole entropy with respect to the charges within the supergravity approximation. For supersymmetric systems that are ⅛-BPS, microstate geometries account so far only for Q5/4 of the total entropy S ˜ Q3/2, while for non-supersymmetric systems the known microstate geometries are sporadic. For the supersymmetric case we construct solutions with three and four charges. Five-dimensional systems with three and four charges are ⅛-BPS. Thus they admit macroscopic horizons making the supergravity approximation valid. For the three-charge case we present some steps towards the construction of the superstratum, a microstate geometry depending on arbitrary functions of two variables, which is expected to provide the necessary entropy for this class of solutions. Specifically we construct multiple concentric solutions with three electric and two dipole magnetic charges which depend on arbitrary functions of two variables and examine their properties. These solutions have no KKM charge and thus are singular. For the four-charge case we construct microstate geometries by extending results available in the literature for three charges. We find smooth solutions in terms of bubbled geometries with ambipolar Gibbons-Hawking base space and by constructing the relevant supertubes. In the non-supersymmetric case we work with a three-charge system of extremal black holes known as almost-BPS, which provides a controlled way of breaking sypersymmetry. By using supertubes we construct the first systematic example of a family of almost-BPS microstate geometries and examine the moduli space of solutions. Furthermore by using brane probe analysis we show that, despite the breaking of supersymmetry, almost-BPS solutions receive no quantum corrections and thus must be subject to some kind of non-renormalization theorem.

  7. The State of Black America 1987.

    ERIC Educational Resources Information Center

    Dewart, Janet, Ed.

    This book consists of 12 papers on current issues affecting black Americans. Titles (and authors) are the following: (1) "Black America 1986: An Overview" (John E. Jacob); (2) "The Law and Black Americans: Retreat from Civil Rights" (Julius L. Chambers); (3) "Taking Charge: An Approach to Making the Educational Problems of Blacks Comprehensible…

  8. On a nonlinear Newtonian gravity and charging a black hole

    NASA Astrophysics Data System (ADS)

    Good, Michael R. R.

    2018-06-01

    A scalar field gravitational analog of the Reissner-Nordstrom solution is investigated. The nonlinear Newtonian model has an upper-limit of charge for a central mass, which agrees with the general relativistic condition required for the existence of the black hole horizon. The maximum limit for accumulation by bombardment of charged particles is found. The aim is to investigate the resulting physics after severing the effects of curvature from the effects of energy-mass equivalence.

  9. FAST TRACK COMMUNICATION Single-charge rotating black holes in four-dimensional gauged supergravity

    NASA Astrophysics Data System (ADS)

    Chow, David D. K.

    2011-02-01

    We consider four-dimensional U(1)4 gauged supergravity, and obtain asymptotically AdS4, non-extremal, charged, rotating black holes with one non-zero U(1) charge. The thermodynamic quantities are computed. We obtain a generalization that includes a NUT parameter. The general solution has a discrete symmetry involving inversion of the rotation parameter, and has a string frame metric that admits a rank-2 Killing-Stäckel tensor.

  10. Maxwell's equal area law for black holes in power Maxwell invariant

    NASA Astrophysics Data System (ADS)

    Li, Huai-Fan; Guo, Xiong-ying; Zhao, Hui-Hua; Zhao, Ren

    2017-08-01

    In this paper, we consider the phase transition of black hole in power Maxwell invariant by means of Maxwell's equal area law. First, we review and study the analogy of nonlinear charged black hole solutions with the Van der Waals gas-liquid system in the extended phase space, and obtain isothermal P- v diagram. Then, using the Maxwell's equal area law we study the phase transition of AdS black hole with different temperatures. Finally, we extend the method to the black hole in the canonical (grand canonical) ensemble in which charge (potential) is fixed at infinity. Interestingly, we find the phase transition occurs in the both ensembles. We also study the effect of the parameters of the black hole on the two-phase coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems.

  11. Black hole dynamics in Einstein-Maxwell-dilaton theory

    NASA Astrophysics Data System (ADS)

    Hirschmann, Eric W.; Lehner, Luis; Liebling, Steven L.; Palenzuela, Carlos

    2018-03-01

    We consider the properties and dynamics of black holes within a family of alternative theories of gravity, namely Einstein-Maxwell-dilaton theory. We analyze the dynamical evolution of individual black holes as well as the merger of binary black hole systems. We do this for a wide range of parameter values for the family of Einstein-Maxwell-dilaton theories, investigating, in the process, the stability of these black holes. We examine radiative degrees of freedom, explore the impact of the scalar field on the dynamics of merger, and compare with other scalar-tensor theories. We argue that the dilaton can largely be discounted in understanding merging binary systems and that the end states essentially interpolate between charged and uncharged, rotating black holes. For the relatively small charge values considered here, we conclude that these black hole systems will be difficult to distinguish from their analogs within General Relativity.

  12. Separability of black holes in string theory

    NASA Astrophysics Data System (ADS)

    Keeler, Cynthia; Larsen, Finn

    2012-10-01

    We analyze the origin of separability for rotating black holes in string theory, considering both massless and massive geodesic equations as well as the corresponding wave equations. We construct a conformal Killing-Stackel tensor for a general class of black holes with four independent charges, then identify two-charge configurations where enhancement to an exact Killing-Stackel tensor is possible. We show that further enhancement to a conserved Killing-Yano tensor is possible only for the special case of Kerr-Newman black holes. We construct natural null congruences for all these black holes and use the results to show that only the Kerr-Newman black holes are algebraically special in the sense of Petrov. Modifying the asymptotic behavior by the subtraction procedure that induces an exact SL(2)2 also preserves only the conformal Killing-Stackel tensor. Similarly, we find that a rotating Kaluza-Klein black hole possesses a conformal Killing-Stackel tensor but has no further enhancements.

  13. Gravitational collapse to a Kerr-Newman black hole

    NASA Astrophysics Data System (ADS)

    Nathanail, Antonios; Most, Elias R.; Rezzolla, Luciano

    2017-07-01

    We present the first systematic study of the gravitational collapse of rotating and magnetized neutron stars to charged and rotating (Kerr-Newman) black holes. In particular, we consider the collapse of magnetized and rotating neutron stars assuming that no pair-creation takes place and that the charge density in the magnetosphere is so low that the stellar exterior can be described as an electrovacuum. Under these assumptions, which are rather reasonable for a pulsar that has crossed the 'death line', we show that when the star is rotating, it acquires a net initial electrical charge, which is then trapped inside the apparent horizon of the newly formed back hole. We analyse a number of different quantities to validate that the black hole produced is indeed a Kerr-Newman one and show that, in the absence of rotation or magnetic field, the end result of the collapse is a Schwarzschild or Kerr black hole, respectively.

  14. Critical phenomena and chemical potential of a charged AdS black hole

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Liang, Bin; Liu, Yu-Xiao

    2017-12-01

    Inspired by the interpretation of the cosmological constant from the boundary gauge theory, we here treat it as the number of colors N and its conjugate quantity as the associated chemical potential μ in the black hole side. Then the thermodynamics and the chemical potential for a five-dimensional charged AdS black hole are studied. It is found that there exists a small-large black hole phase transition of van der Waals type. The critical phenomena are investigated in the N2-μ chart. The result implies that the phase transition can occur for large number of colors N , while is forbidden for small number. This to some extent implies that the interaction of the system increases with the number. In particular, in the reduced parameter space, all the thermodynamic quantities can be rescaled with the black hole charge such that these reduced quantities are charge-independent. Then we obtain the coexistence curve and the phase diagram. The latent heat is also numerically calculated. Moreover, the heat capacity and the thermodynamic scalar are studied. The result indicates that the information of the first-order black hole phase transition is encoded in the heat capacity and scalar. However, the phase transition point cannot be directly calculated with them. Nevertheless, the critical point linked to a second-order phase transition can be determined by either the heat capacity or the scalar. In addition, we calculate the critical exponents of the heat capacity and the scalar for the saturated small and large black holes near the critical point.

  15. Tidal Forces in Dyonic Reissner-Nördstrom Black Hole

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Kousar, Lubna

    2018-03-01

    This paper investigates the tidal as well as magnetic charge effects produced in dyonic Reissner-Nordström black hole. We evaluate Newtonian radial acceleration using radial geodesics for freely falling test particles. We establish system of equations governing radial and angular tidal forces using geodesic deviation equation and discuss their solutions for bodies falling freely towards this black hole. The radial tidal force turns out to be compressing outside the event horizon whereas the angular tidal force changes sign between event and Cauchy horizons unlike Schwarzschild black hole. The radial geodesic component starts decreasing in dyonic Reissner-Nordström black hole unlike Schwarzschild case. We conclude that magnetic charge strongly affects the radial as well as angular components of tidal force.

  16. Are black holes with hair a normal state of matter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieuwenhuizen, Th. M.

    Recent observations put forward that quasars are black holes with a magnetic dipole moment and no event horizon. To model hairy black holes a quantum field for hydrogen is considered in curved space, coupled to the scalar curvature. An exact, regular solution for the interior metric occurs for supermassive black holes. The equation of state is p = -{rho}c{sup 2}/3.

  17. Black Holes and the Information Paradox

    NASA Astrophysics Data System (ADS)

    't Hooft, Gerard

    In electromagnetism, like charges repel, opposite charges attract. A remarkable feature of the gravitational force is that like masses attract. This gives rise to an instability: the more mass you have, the stronger the attractive force, until an inevitable implosion follows, leading to a "black hole". It is in the black hole where an apparent conflict between Einstein's General Relativity and the laws of Quantum Mechanics becomes manifest. Most physicists now agree that a black hole should be described by a Schrödinger equation, with a Hermitean Hamiltonian, but this requires a modification of general relativity. Both General Relativity and Quantum mechanics are shaking on their foundations.

  18. Renormalized stress-energy tensor for stationary black holes

    NASA Astrophysics Data System (ADS)

    Levi, Adam

    2017-01-01

    We continue the presentation of the pragmatic mode-sum regularization (PMR) method for computing the renormalized stress-energy tensor (RSET). We show in detail how to employ the t -splitting variant of the method, which was first presented for ⟨ϕ2⟩ren , to compute the RSET in a stationary, asymptotically flat background. This variant of the PMR method was recently used to compute the RSET for an evaporating spinning black hole. As an example for regularization, we demonstrate here the computation of the RSET for a minimally coupled, massless scalar field on Schwarzschild background in all three vacuum states. We discuss future work and possible improvements of the regularization schemes in the PMR method.

  19. Surface charges for gravity and electromagnetism in the first order formalism

    NASA Astrophysics Data System (ADS)

    Frodden, Ernesto; Hidalgo, Diego

    2018-02-01

    A new derivation of surface charges for 3  +  1 gravity coupled to electromagnetism is obtained. Gravity theory is written in the tetrad-connection variables. The general derivation starts from the Lagrangian, and uses the covariant symplectic formalism in the language of forms. For gauge theories, surface charges disentangle physical from gauge symmetries through the use of Noether identities and the exactness symmetry condition. The surface charges are quasilocal, explicitly coordinate independent, gauge invariant and background independent. For a black hole family solution, the surface charge conservation implies the first law of black hole mechanics. As a check, we show the first law for an electrically charged, rotating black hole with an asymptotically constant curvature (the Kerr–Newman (anti-)de Sitter family). The charges, including the would-be mass term appearing in the first law, are quasilocal. No reference to the asymptotic structure of the spacetime nor the boundary conditions is required and therefore topological terms do not play a rôle. Finally, surface charge formulae for Lovelock gravity coupled to electromagnetism are exhibited, generalizing the one derived in a recent work by Barnich et al Proc. Workshop ‘ About Various Kinds of Interactions’ in honour of Philippe Spindel (4–5 June 2015, Mons, Belgium) C15-06-04 (2016 (arXiv:1611.01777 [gr-qc])). The two different symplectic methods to define surface charges are compared and shown equivalent.

  20. Aspects of hairy black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anabalón, Andrés, E-mail: andres.anabalon-at@uai.cl; Astefanesei, Dumitru

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  1. Entanglement entropy production in gravitational collapse: covariant regularization and solvable models

    NASA Astrophysics Data System (ADS)

    Bianchi, Eugenio; De Lorenzo, Tommaso; Smerlak, Matteo

    2015-06-01

    We study the dynamics of vacuum entanglement in the process of gravitational collapse and subsequent black hole evaporation. In the first part of the paper, we introduce a covariant regularization of entanglement entropy tailored to curved spacetimes; this regularization allows us to propose precise definitions for the concepts of black hole "exterior entropy" and "radiation entropy." For a Vaidya model of collapse we find results consistent with the standard thermodynamic properties of Hawking radiation. In the second part of the paper, we compute the vacuum entanglement entropy of various spherically-symmetric spacetimes of interest, including the nonsingular black hole model of Bardeen, Hayward, Frolov and Rovelli-Vidotto and the "black hole fireworks" model of Haggard-Rovelli. We discuss specifically the role of event and trapping horizons in connection with the behavior of the radiation entropy at future null infinity. We observe in particular that ( i) in the presence of an event horizon the radiation entropy diverges at the end of the evaporation process, ( ii) in models of nonsingular evaporation (with a trapped region but no event horizon) the generalized second law holds only at early times and is violated in the "purifying" phase, ( iii) at late times the radiation entropy can become negative (i.e. the radiation can be less correlated than the vacuum) before going back to zero leading to an up-down-up behavior for the Page curve of a unitarily evaporating black hole.

  2. 7 CFR 52.51 - Charges for inspection services on a contract basis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 40 hours per week for each inspector assigned to perform the inspection services in accordance with... assigned at their regular hourly rate. When work is performed, an additional hour at the regular hourly rate will be charged for each hour worked. (4) Night differential. A 10 percent night differential...

  3. 20 CFR 902.4 - Access to records.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... regular business hours on regular business days at the office of the Executive Director. Every request for... without undue difficulty. (c) Fees. A fee at the rate of $5.00 per hour or fraction thereof or the time... provided without charge or at a reduced charge where the Chairman determines that waiver or reduction of...

  4. Entropy bound of horizons for accelerating, rotating and charged Plebanski–Demianski black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debnath, Ujjal, E-mail: ujjaldebnath@yahoo.com

    We first review the accelerating, rotating and charged Plebanski–Demianski (PD) black hole, which includes the Kerr–Newman rotating black hole and the Taub-NUT spacetime. The main feature of this black hole is that it has 4 horizons like event horizon, Cauchy horizon and two accelerating horizons. In the non-extremal case, the surface area, entropy, surface gravity, temperature, angular velocity, Komar energy and irreducible mass on the event horizon and Cauchy horizon are presented for PD black hole. The entropy product, temperature product, Komar energy product and irreducible mass product have been found for event horizon and Cauchy horizon. Also their sumsmore » are found for both horizons. All these relations are dependent on the mass of the PD black hole and other parameters. So all the products are not universal for PD black hole. The entropy and area bounds for two horizons have been investigated. Also we found the Christodoulou–Ruffini mass for extremal PD black hole. Finally, using first law of thermodynamics, we also found the Smarr relation for PD black hole.« less

  5. REVIEWS OF TOPICAL PROBLEMS: "Magnetized" black holes

    NASA Astrophysics Data System (ADS)

    Aliev, A. N.; Gal'tsov, D. V.

    1989-01-01

    Physical aspects of the theory of black holes in an external electromagnetic field are reviewed. The "magnetized" black hole model is currently widely discussed in astrophysics because it provides a basis for the explanation of the high energy activity of galactic cores and quasars. The particular feature of this model is that it predicts unusual "gravimagnetic" phenomena that arise as a result of a natural combination of effects in electrodynamics and gravitation, namely, the appearance of an inductive potential difference during the rotation of a black hole in a magnetic field, the drift of a black hole in an external electromagnetic field, the change in the chemical potential of the event horizon, the creation of an effective ergosphere of a black hole in a magnetic field, and so on. Questions relating to the description of electromagnetic fields in Kerr space-time are examined, including their influence on the space-time metric, the interaction between a rotating charged black hole and an external electromagnetic field, the motion of charged particles near "magnetized" black holes, including their spontaneous and stimulated emission, and the influence of magnetic fields on quantum-mechanical processes in black holes.

  6. Phases of global AdS black holes

    NASA Astrophysics Data System (ADS)

    Basu, Pallab; Krishnan, Chethan; Subramanian, P. N. Bala

    2016-06-01

    We study the phases of gravity coupled to a charged scalar and gauge field in an asymptotically Anti-de Sitter spacetime ( AdS 4) in the grand canonical ensemble. For the conformally coupled scalar, an intricate phase diagram is charted out between the four relevant solutions: global AdS, boson star, Reissner-Nordstrom black hole and the hairy black hole. The nature of the phase diagram undergoes qualitative changes as the charge of the scalar is changed, which we discuss. We also discuss the new features that arise in the extremal limit.

  7. Davies Critical Point and Tunneling

    NASA Astrophysics Data System (ADS)

    La, Hoseong

    2012-04-01

    From the point of view of tunneling, the physical meaning of the Davies critical point of a second-order phase transition in the black hole thermodynamics is clarified. At the critical point, the nonthermal contribution vanishes so that the black hole radiation is entirely thermal. It separates two phases: one with radiation enhanced by the nonthermal contribution, the other suppressed by the nonthermal contribution. We show this in both charged and rotating black holes. The phase transition is also analyzed in the cases in which emissions of charges and angular momenta are incorporated.

  8. Self-consistent geodesic equation and quantum tunneling from charged AdS black holes

    NASA Astrophysics Data System (ADS)

    Deng, Gao-Ming

    2017-12-01

    Some urgent shortcomings in previous derivations of geodesic equations are remedied in this paper. In contrast to the unnatural and awkward treatment in previous works, here we derive the geodesic equations of massive and massless particles in a unified and self- consistent manner. Furthermore, we extend to investigate the Hawking radiation via tunneling from charged black holes in the context of AdS spacetime. Of special interest, the application of the first law of black hole thermodynamics in tunneling integration manifestly simplifies the calculation.

  9. Spherical accretion of matter by charged black holes on f(T) Gravity

    NASA Astrophysics Data System (ADS)

    Rodrigues, M. E.; Junior, E. L. B.

    2018-03-01

    We studied the spherical accretion of matter by charged black holes on f(T) Gravity. Considering the accretion model of a isentropic perfect fluid we obtain the general form of the Hamiltonian and the dynamic system for the fluid. We have analysed the movements of an isothermal fluid model with p=ω e and where p is the pressure and e the total energy density. The analysis of the cases shows the possibility of spherical accretion of fluid by black holes, revealing new phenomena as cyclical movement inside the event horizon.

  10. Thermodynamic Geometry of Charged AdS Black Hole Surrounded by Quintessence

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Man, Qing-Tao; Yu, Hao

    2018-02-01

    In this paper, we study the thermodynamic geometry for the charged AdS black hole surrounded by quintessence. Three different kinds of the geometries are constructed, and the corresponding curvatures are obtained. It is found that there are different divergence behaviors of these curvatures, which is general thought to closely link to the phase transition of the black hole. Supported by the National Natural Science Foundation of China under Grant Nos. 11675064, 11205074, and the Fundamental Research Funds for the Central Universities under Grant No. lzujbky-2016-121

  11. “Kerrr” black hole: The lord of the string

    NASA Astrophysics Data System (ADS)

    Smailagic, Anais; Spallucci, Euro

    2010-04-01

    Kerrr in the title is not a typo. The third “r” stands for regular, in the sense of pathology-free rotating black hole. We exhibit a long search-for, exact, Kerr-like, solution of the Einstein equations with novel features: (i) no curvature ring singularity; (ii) no “anti-gravity” universe with causality violating time-like closed world-lines; (iii) no “super-luminal” matter disk. The ring singularity is replaced by a classical, circular, rotating string with Planck tension representing the inner engine driving the rotation of all the surrounding matter. The resulting geometry is regular and smoothly interpolates among inner Minkowski space, borderline de Sitter and outer Kerr universe. The key ingredient to cure all unphysical features of the ordinary Kerr black hole is the choice of a “non-commutative geometry inspired” matter source as the input for the Einstein equations, in analogy with spherically symmetric black holes described in earlier works.

  12. Charged BTZ black holes in the context of massive gravity's rainbow

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Panahiyan, S.; Upadhyay, S.; Eslam Panah, B.

    2017-04-01

    Banados, Teitelboim, and Zanelli (BTZ) black holes are excellent laboratories for studying black hole thermodynamics, which is a bridge between classical general relativity and the quantum nature of gravitation. In addition, three-dimensional gravity could have equipped us for exploring some of the ideas behind the two-dimensional conformal field theory based on the AdS3/CFT2 . Considering the significant interest in these regards, we examine charged BTZ black holes. We consider the system contains massive gravity with energy dependent spacetime to enrich the results. In order to make high curvature (energy) BTZ black holes more realistic, we modify the theory by energy dependent constants. We investigate thermodynamic properties of the solutions by calculating heat capacity and free energy. We also analyze thermal stability and study the possibility of the Hawking-Page phase transition. At last, we study the geometrical thermodynamics of these black holes and compare the results of various approaches.

  13. Conserved charges of black holes in Weyl and Einstein-Gauss-Bonnet gravities

    NASA Astrophysics Data System (ADS)

    Peng, Jun-Jin

    2014-11-01

    An off-shell generalization of the Abbott-Deser-Tekin (ADT) conserved charge was recently proposed by Kim et al. They achieved this by introducing off-shell Noether currents and potentials. In this paper, we construct the crucial off-shell Noether current by the variation of the Bianchi identity for the expression of EOM, with the help of the property of Killing vector. Our Noether current, which contains an additional term that is just one half of the Lie derivative of a surface term with respect to the Killing vector, takes a different form in comparison with the one in their work. Then we employ the generalized formulation to calculate the quasi-local conserved charges for the most general charged spherically symmetric and the dyonic rotating black holes with AdS asymptotics in four-dimensional conformal Weyl gravity, as well as the charged spherically symmetric black holes in arbitrary dimensional Einstein-Gauss-Bonnet gravity coupled to Maxwell or nonlinear electrodynamics in AdS spacetime. Our results confirm those obtained through other methods in the literature.

  14. Black-hole/near-horizon-CFT duality and 4 dimensional classical spacetimes

    NASA Astrophysics Data System (ADS)

    Rodriguez, Leo L.

    2011-09-01

    In this thesis we accomplish two goals: We construct a two dimensional conformal field theory (CFT), in the form of a Liouville theory, in the near horizon limit for three and four dimensions black holes. The near horizon CFT assumes the two dimensional black hole solutions that were first introduced by Christensen and Fulling (1977 Phys. Rev. D 15 2088-104) and later expanded to a greater class of black holes via Robinson and Wilczek (2005 Phys. Rev. Lett. 95 011303). The two dimensions black holes admit a Diff( S1) or Witt subalgebra, which upon quantization in the horizon limit becomes Virasoro with calculable central charge. These charges and lowest Virasoro eigen-modes reproduce the correct Bekenstein-Hawking entropy of the four and three dimensions black holes via the Cardy formula (Blote et al 1986 Phys. Rev. Lett. 56 742; Cardy 1986 Nucl. Phys. B 270 186). Furthermore, the two dimensions CFT's energy momentum tensor is anomalous, i.e. its trace is nonzero. However, In the horizon limit the energy momentum tensor becomes holomorphic equaling the Hawking flux of the four and three dimensions black holes. This encoding of both entropy and temperature provides a uniformity in the calculation of black hole thermodynamics and statistical quantities for the non local effective action approach. We also show that the near horizon regime of a Kerr-Newman-AdS (KNAdS) black hole, given by its two dimensional analogue a la Robinson and Wilczek, is asymptotically AdS 2 and dual to a one dimensional quantum conformal field theory (CFT). The s-wave contribution of the resulting CFT's energy-momentum-tensor together with the asymptotic symmetries, generate a centrally extended Virasoro algebra, whose central charge reproduces the Bekenstein-Hawking entropy via Cardy's Formula. Our derived central charge also agrees with the near extremal Kerr/CFT Correspondence in the appropriate limits. We also compute the Hawking temperature of the KNAdS black hole by coupling its Robinson and Wilczek two dimensional analogue (RW2DA) to conformal matter.

  15. Accretion onto a charged Kiselev black hole

    NASA Astrophysics Data System (ADS)

    Abbas, G.; Ditta, A.

    2018-04-01

    Accretion of matter onto a compact is one of the interesting astrophysical processes. Here, we study the accretion of matter onto a charged Kiselev black hole. The problem of static and spherically symmetric accretion of a polytropic fluid is explored for the analytic solution of equations of motion. We have investigated the necessary conditions for existence of the critical flow points and the mass accretion rate. Finally, we discuss the polytropic gas accretion in detail. It has been found that in the accretion process the quintessence and charge parameters play a dominant role.

  16. Hawking Radiation of the Charged Particles via Tunneling from the ( n+2)-Dimensional Topological Reissner-Nordström-de Sitter Black Hole

    NASA Astrophysics Data System (ADS)

    Yan, Han

    2012-08-01

    Extending Parikh-Wilczek's semi-classical tunneling method, we discuss the Hawking radiation of the charged massive particles via tunneling from the cosmological horizon of ( n+2)-dimensional Topological Reissner-Nordström-de Sitter black hole.The result shows that, when energy conservation and electric charge conservation are taken into account, the derived spectrum deviates from the pure thermal one, but satisfies the unitary theory, which provides a probability for the solution of the information loss paradox.

  17. Bekenstein bounds, Penrose inequalities, and black hole formation

    NASA Astrophysics Data System (ADS)

    Jaracz, Jaroslaw S.; Khuri, Marcus A.

    2018-06-01

    A universal geometric inequality for bodies relating energy, size, angular momentum, and charge is naturally implied by Bekenstein's entropy bounds. We establish versions of this inequality for axisymmetric bodies satisfying appropriate energy conditions, thus lending credence to the most general form of Bekenstein's bound. Similar techniques are then used to prove a Penrose-like inequality in which the ADM energy is bounded from below in terms of horizon area, angular momentum, and charge. Lastly, new criteria for the formation of black holes is presented involving concentration of angular momentum, charge, and nonelectromagnetic matter energy.

  18. The interaction of Dirac particles with a Hawking charged radiating black hole

    NASA Astrophysics Data System (ADS)

    Kubik, Erik

    2007-08-01

    The interaction of spin 1/2 fields with a charged, evaporating black hole (EBH) is investigated. Using the Vaidya metric to model the Hawking evaporating black hole, the wave equation for a massless spinor field is obtained. The resulting field equation is solved utilizing techniques developed by Brill and Wheeler. Unlike previous efforts, a charged, evaporating black hole has never been used as a background to investigate spin 1/2 quantum field propagation, e.g., Brill and Wheeler considered massless spin 1/2 interactions in a static, Schwarzschild background. Using the WKB approximation, the wave equation is solved for the case of an EBH with constant luminosity. Analysis of the effective potential at different stages of evaporation is made including the dependence on the parameters of the system such as the total angular momentum, energy of the incident field, and luminosity of the evaporating black hole. Utilizing techniques of Mukhopad-hey, the transmission and reflection coefficients for the massless spinors are computed and compared to Schwarzschild result for both the high energy and hard scattering cases. The effect of the time dependence of the space-time metric has an important effect on the behavior of quantum fields over the lifetime of the evaporating black hole and may provide a signature for the detection of such objects.

  19. Validity of Maxwell equal area law for black holes conformally coupled to scalar fields in {AdS}_5 spacetime

    NASA Astrophysics Data System (ADS)

    Miao, Yan-Gang; Xu, Zhen-Ming

    2017-06-01

    We investigate the P{-}V criticality and the Maxwell equal area law for a five-dimensional spherically symmetric AdS black hole with a scalar hair in the absence of and in the presence of a Maxwell field, respectively. Especially in the charged case, we give the exact P{-}V critical values. More importantly, we analyze the validity and invalidity of the Maxwell equal area law for the AdS hairy black hole in the scenarios without and with charges, respectively. Within the scope of validity of the Maxwell equal area law, we point out that there exists a representative van der Waals-type oscillation in the P{-}V diagram. This oscillating part, which indicates the phase transition from a small black hole to a large one, can be replaced by an isobar. The small and large black holes have the same Gibbs free energy. We also give the distribution of the critical points in the parameter space both without and with charges, and we obtain for the uncharged case the fitting formula of the co-existence curve. Meanwhile, the latent heat is calculated, which gives the energy released or absorbed between the small and large black hole phases in the isothermal-isobaric procedure.

  20. Constraints for transonic black hole accretion

    NASA Technical Reports Server (NTRS)

    Abramowicz, Marek A.; Kato, Shoji

    1989-01-01

    Regularity conditions and global topological constraints leave some forbidden regions in the parameter space of the transonic isothermal, rotating matter onto black holes. Unstable flows occupy regions touching the boundaries of the forbidden regions. The astrophysical consequences of these results are discussed.

  1. Near-horizon Structure of Escape Zones of Electrically Charged Particles around Weakly Magnetized Rotating Black Hole

    NASA Astrophysics Data System (ADS)

    Kopáček, Ondřej; Karas, Vladimír

    2018-01-01

    An interplay of magnetic fields and gravitation drives accretion and outflows near black holes. However, a specific mechanism is still a matter of debate; it is very likely that different processes dominate under various conditions. In particular, for the acceleration of particles and their collimation in jets, an ordered component of the magnetic field seems to be essential. Here we discuss the role of large-scale magnetic fields in transporting the charged particles and dust grains from the bound orbits in the equatorial plane of a rotating (Kerr) black hole and the resulting acceleration along trajectories escaping the system in a direction parallel to the symmetry axis (perpendicular to the accretion disk). We consider a specific scenario of destabilization of circular geodesics of initially neutral matter by charging (e.g., due to photoionization). Some particles may be set on escaping trajectories and attain relativistic velocity. The case of charged particles differs from charged dust grains by their charge-to-mass ratio, but the acceleration mechanism operates in a similar manner. It appears that the chaotic dynamics controls the outflow and supports the formation of near-horizon escape zones. We employ the technique of recurrence plots to characterize the onset of chaos in the outflowing medium. We investigate the system numerically and construct the basin-boundary plots, which show the location and the extent of the escape zones. The effects of black hole spin and magnetic field strength on the formation and location of escape zones are discussed, and the maximal escape velocity is computed.

  2. Tunneling of Charged and Magnetized Fermions from a Rotating Dyonic Taub-NUT Black Hole

    NASA Astrophysics Data System (ADS)

    Sultana, Kausari

    2017-12-01

    We investigate tunneling of charged and magnetized Dirac particles from a rotating dyonic Taub-NUT (TN) black hole (BH) called the Kerr-Newman-KasuyaTub-NUT (KNKTN) BH endowed with electric as well as magnetic charges. We derive the tunneling probability of outgoing charged particles by using the semiclassical WKB approximation to the covariant Dirac equation and obtain the corresponding Hawking temperature. The emission spectrum deviates from the purely thermal spectrum with the leading term exactly the Boltzman factor, if energy conservation and the backreaction of particles to the spacetime are considered. The results provides a quantumcorrected radiation temperature depending on the BH background and the radiation particles energy, angular momentum, and charges. The results are consistent with those already available in literature.

  3. Photon orbits and thermodynamic phase transition of d -dimensional charged AdS black holes

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Liu, Yu-Xiao

    2018-05-01

    We study the relationship between the null geodesics and thermodynamic phase transition for the charged AdS black hole. In the reduced parameter space, we find that there exist nonmonotonic behaviors of the photon sphere radius and the minimum impact parameter for the pressure below its critical value. The study also shows that the changes of the photon sphere radius and the minimum impact parameter can serve as order parameters for the small-large black hole phase transition. In particular, these changes have an universal exponent of 1/2 near the critical point for any dimension d of spacetime. These results imply that there may exist universal critical behavior of gravity near the thermodynamic critical point of the black hole system.

  4. Criticality for charged black branes

    NASA Astrophysics Data System (ADS)

    Hennigar, Robie A.

    2017-09-01

    We show that the inclusion of higher curvature terms in the gravitational action can lead to phase transitions and critical behaviour for charged black branes. The higher curvature terms considered here belong to the recently constructed generalized quasi-topological class [arXiv:1703.01631], which possess a number of interesting properties, such as being ghost-free on constant curvature backgrounds and non-trivial in four dimensions. We show that critical behaviour is a generic feature of the black branes in all dimensions d ≥ 4, and contextualize the results with a review of the properties of black branes in Lovelock and quasi-topological gravity, where critical behaviour is not possible. These results may have interesting implications for the CFTs dual to this class of theories.

  5. Racial and ethnic disparities in police-reported intimate partner violence perpetration: a mixed methods approach.

    PubMed

    Lipsky, Sherry; Cristofalo, Meg; Reed, Sarah; Caetano, Raul; Roy-Byrne, Peter

    2012-07-01

    The objectives of this study were to examine racial and ethnic disparities in perpetrator and incident characteristics and discrepancies between police charges and reported perpetrator behaviors in police-reported intimate partner violence (IPV). This cross-sectional study used standardized police data and victim narratives of IPV incidents reported to the police in Dallas, Texas in 2004. The sample included non-Hispanic White, non-Hispanic Black, and Hispanic male perpetrators who were residents of Dallas (N = 4470). Offense charges were prioritized in descending order: sexual assault, aggravated assault, simple assault, kidnapping, robbery, and intimidation. Textual data from the victim narratives were coded, based on the revised Conflict Tactics Scales (CTS), and categorized in descending order of priority: sexual (severe, minor), physical (severe, minor), and psychological (severe, minor) assault. Perpetrators were more likely to be Black and Hispanic. Perpetrator and incident characteristics varied significantly by race/ethnicity, particularly age, age difference between partners, marital status, injury, and interracial relationships. Qualitative data revealed that greater proportions of Black and Hispanic men perpetrated severe physical, but not sexual violence, compared with White men. The greatest disparity between CTS categories and police charges occurred among those cases identified by the CTS as severe physical IPV; 84% were charged with simple assault. Significant differences by race/ethnicity were found only for simple assault charges, which were coded as severe physical as opposed to minor physical IPV more often among Black (69% and 31%) compared with White (62% and 38%) men. The disparities revealed in this study highlight the need to enhance primary and secondary prevention efforts within Black and Hispanic communities and to increase linkages between police, community, and public health organizations.

  6. Magnetic black holes and monopoles in a nonminimal Einstein-Yang-Mills theory with a cosmological constant: Exact solutions

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Lemos, José P. S.; Zayats, Alexei E.

    2016-04-01

    Alternative theories of gravity and their solutions are of considerable importance since, at some fundamental level, the world can reveal new features. Indeed, it is suspected that the gravitational field might be nonminimally coupled to the other fields at scales not yet probed, bringing into the forefront nonminimally coupled theories. In this mode, we consider a nonminimal Einstein-Yang-Mills theory with a cosmological constant. Imposing spherical symmetry and staticity for the spacetime and a magnetic Wu-Yang ansatz for the Yang-Mills field, we find expressions for the solutions of the theory. Further imposing constraints on the nonminimal parameters, we find a family of exact solutions of the theory depending on five parameters—two nonminimal parameters, the cosmological constant, the magnetic charge, and the mass. These solutions represent magnetic monopoles and black holes in magnetic monopoles with de Sitter, Minkowskian, and anti-de Sitter asymptotics, depending on the sign and value of the cosmological constant Λ . We classify completely the family of solutions with respect to the number and the type of horizons and show that the spacetime solutions can have, at most, four horizons. For particular sets of the parameters, these horizons can become double, triple, and quadruple. For instance, for a positive cosmological constant Λ , there is a critical Λc for which the solution admits a quadruple horizon, evocative of the Λc that appears for a given energy density in both the Einstein static and Eddington-Lemaître dynamical universes. As an example of our classification, we analyze solutions in the Drummond-Hathrell nonminimal theory that describe nonminimal black holes. Another application is with a set of regular black holes previously treated.

  7. Exact solutions in 3D gravity with torsion

    NASA Astrophysics Data System (ADS)

    González, P. A.; Vásquez, Yerko

    2011-08-01

    We study the three-dimensional gravity with torsion given by the Mielke-Baekler (MB) model coupled to gravitational Chern-Simons term, and that possess electric charge described by Maxwell-Chern-Simons electrodynamics. We find and discuss this theory's charged black holes solutions and uncharged solutions. We find that for vanishing torsion our solutions by means of a coordinate transformation can be written as three-dimensional Chern-Simons black holes. We also discuss a special case of this theory, Topologically Massive Gravity (TMG) at chiral point, and we show that the logarithmic solution of TMG is also a solution of the MB model at a fixed point in the space of parameters. Furthermore, we show that our solutions generalize Gödel type solutions in a particular case. Also, we recover BTZ black hole in Riemann-Cartan spacetime for vanishing charge.

  8. Mergers of Charged Black Holes: Gravitational-wave Events, Short Gamma-Ray Bursts, and Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Zhang, Bing

    2016-08-01

    The discoveries of GW150914, GW151226, and LVT151012 suggest that double black hole (BH-BH) mergers are common in the universe. If at least one of the two merging black holes (BHs) carries a certain amount of charge, possibly retained by a rotating magnetosphere, the inspiral of a BH-BH system would drive a global magnetic dipole normal to the orbital plane. The rapidly evolving magnetic moment during the merging process would drive a Poynting flux with an increasing wind power. The magnetospheric activities during the final phase of the merger would make a fast radio burst (FRB) if the BH charge can be as large as a factor of \\hat{q}˜ ({10}-9{--}{10}-8) of the critical charge Q c of the BH. At large radii, dissipation of the Poynting flux energy in the outflow would power a short-duration high-energy transient, which would appear as a detectable short-duration gamma-ray burst (GRB) if the charge can be as large as \\hat{q}˜ ({10}-5{--}{10}-4). The putative short GRB coincident with GW150914 recorded by Fermi GBM may be interpreted with this model. Future joint GW/GRB/FRB searches would lead to a measurement or place a constraint on the charges carried by isolate BHs.

  9. Are Separate Black and White MMPI Norms Needed?: An IQ-Controlled Comparison of Accused Murderers.

    ERIC Educational Resources Information Center

    Holcomb, William R.; And Others

    1984-01-01

    Investigated racial differences in the Minnesota Multiphasic Personality Inventory by comparing samples of Black and White men charged with murder (N=160). Results indicated Black murderers tend to deny symptoms of pathology and are more socially outgoing. The confounding effects of intelligence suggested separate Black and White norms are…

  10. Holography for a De Sitter-Esque geometry

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; de Buyl, Sophie; Detournay, Stéphane

    2011-05-01

    Warped dS3 arises as a solution to topologically massive gravity (TMG) with positive cosmological constant +1/ ℓ 2 and Chern-Simons coefficient 1/ μ in the region μ 2 ℓ 2 < 27. It is given by a real line fibration over two-dimensional de Sitter space and is equivalent to the rotating Nariai geometry at fixed polar angle. We study the thermodynamic and asymptotic structure of a family of geometries with warped dS3 asymptotics. Interestingly, these solutions have both a cosmological horizon and an internal one, and their entropy is unbounded from above unlike black holes in regular de Sitter space. The asymptotic symmetry group resides at future infinity and is given by a semi-direct product of a Virasoro algebra and a current algebra. The right moving central charge vanishes when μ 2 ℓ 2 = 27/5. We discuss the possible holographic interpretation of these de Sitter-esque spacetimes.

  11. Harmonic maps and black holes

    NASA Astrophysics Data System (ADS)

    Lopes Costa, João

    2010-05-01

    We address two applications of existence and uniqueness properties of harmonic maps to the theory of stationary and axisymmetric electro-vacuum black holes. More specifically, we will consider: (1) The classification of such black hole space-times and (2) the proof of a Dain inequality with charge.

  12. Transport properties of ultrathin black phosphorus on hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doganov, Rostislav A.; Özyilmaz, Barbaros; Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore

    2015-02-23

    Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitride—an atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explainmore » the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400 K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.« less

  13. Dyonic AdS black holes in maximal gauged supergravity

    NASA Astrophysics Data System (ADS)

    Chow, David D. K.; Compère, Geoffrey

    2014-03-01

    We present two new classes of dyonic anti-de Sitter black hole solutions of four-dimensional maximal N =8, SO(8) gauged supergravity. They are (1) static black holes of N=2, U(1)4 gauged supergravity with four electric and four magnetic charges, with spherical, planar or hyperbolic horizons; and (2) rotating black holes of N =2, U(1)2 gauged supergravity with two electric and two magnetic charges. We study their thermodynamics, and point out that the formulation of a consistent thermodynamics for dyonic anti-de Sitter black holes is dependent on the existence of boundary conditions for the gauge fields. We identify several distinct classes of boundary conditions for gauge fields in U(1)4 supergravity. We study a general family of metrics containing the rotating solutions, and find Killing-Yano tensors with torsion in two conformal frames, which underlie separability.

  14. In-School Neighborhood Youth Corps. 14/15 Year-Old Black Teenage Girl Project, Memphis, Tennessee. Final Report.

    ERIC Educational Resources Information Center

    Fox, Andrew; And Others

    This study analyzes the effects on 14- and 15-year-old black teenage girls of entering and participating in a specially designed work program. The girls were provided with supports in their work settings, well-defined tasks, supervisors as well as regularly scheduled peer interaction groups led by a young black woman considered to be an…

  15. Deflection of light by black holes and massless wormholes in massive gravity

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet; Sarkar, Nayan; Rahaman, Farook; Banerjee, Ayan; Hansraj, Sudan

    2018-04-01

    Weak gravitational lensing by black holes and wormholes in the context of massive gravity (Bebronne and Tinyakov, JHEP 0904:100, 2009) theory is studied. The particular solution examined is characterized by two integration constants, the mass M and an extra parameter S namely `scalar charge'. These black hole reduce to the standard Schwarzschild black hole solutions when the scalar charge is zero and the mass is positive. In addition, a parameter λ in the metric characterizes so-called `hair'. The geodesic equations are used to examine the behavior of the deflection angle in four relevant cases of the parameter λ . Then, by introducing a simple coordinate transformation r^λ =S+v^2 into the black hole metric, we were able to find a massless wormhole solution of Einstein-Rosen (ER) (Einstein and Rosen, Phys Rev 43:73, 1935) type with scalar charge S. The programme is then repeated in terms of the Gauss-Bonnet theorem in the weak field limit after a method is established to deal with the angle of deflection using different domains of integration depending on the parameter λ . In particular, we have found new analytical results corresponding to four special cases which generalize the well known deflection angles reported in the literature. Finally, we have established the time delay problem in the spacetime of black holes and wormholes, respectively.

  16. "To look at death another way": Black teenage males' perspectives on second-lines and regular funerals in New Orleans.

    PubMed

    Bordere, Tashel C

    The purpose of this study was to describe how Black adolescent males understand "second-line" (musical processions) and "regular"/traditional funeral rituals in New Orleans following the violent deaths of significant persons in their lives. In-depth interviews were conducted with 10 Black males between the ages of 12 and 15 using descriptive phenomenology methodology. Findings revealed that these participants understood death as a cause for celebration, remembrance, and unity related to their experiences with the second-line ritual. Three elements of the life world of Black teenage males were descriptive of second lines, including: a) observed locations of second lines; b) dancing to good music; and c) observed messages conveyed through t-shirts. Participants provided gender-based descriptions of perceived spoken and unspoken rights in grieving at the two distinct rituals. Related to their second-line experience, the teens reflect on ways in which they wish to have their deaths ritualized.

  17. Rational orbits around charged black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, Vedant; Levin, Janna; Institute for Strings, Cosmology and Astroparticle Physics, Columbia University, New York, New York 10027

    2010-10-15

    We show that all eccentric timelike orbits in Reissner-Nordstroem spacetime can be classified using a taxonomy that draws upon an isomorphism between periodic orbits and the set of rational numbers. By virtue of the fact that the rationals are dense, the taxonomy can be used to approximate aperiodic orbits with periodic orbits. This may help reduce computational overhead for calculations in gravitational wave astronomy. Our dynamical systems approach enables us to study orbits for both charged and uncharged particles in spite of the fact that charged particle orbits around a charged black hole do not admit a simple one-dimensional effectivemore » potential description. Finally, we show that comparing periodic orbits in the Reissner-Nordstroem and Schwarzschild geometries enables us to distinguish charged and uncharged spacetimes by looking only at the orbital dynamics.« less

  18. Entropy and temperature from black-hole/near-horizon-CFT duality

    NASA Astrophysics Data System (ADS)

    Rodriguez, Leo; Yildirim, Tuna

    2010-08-01

    We construct a two-dimensional CFT, in the form of a Liouville theory, in the near-horizon limit of four- and three-dimensional black holes. The near-horizon CFT assumes two-dimensional black hole solutions first introduced by Christensen and Fulling (1977 Phys. Rev. D 15 2088-104) and expanded to a greater class of black holes via Robinson and Wilczek (2005 Phys. Rev. Lett. 95 011303). The two-dimensional black holes admit a Diff(S1) subalgebra, which upon quantization in the horizon limit becomes Virasoro with calculable central charge. This charge and the lowest Virasoro eigen-mode reproduce the correct Bekenstein-Hawking entropy of the four- and three-dimensional black holes via the known Cardy formula (Blöte et al 1986 Phys. Rev. Lett. 56 742; Cardy 1986 Nucl. Phys. B 270 186). Furthermore, the two-dimensional CFT's energy-momentum tensor is anomalous. However, in the horizon limit the energy-momentum tensor becomes holomorphic equaling the Hawking flux of the four- and three-dimensional black holes. This encoding of both entropy and temperature provides a uniformity in the calculation of black hole thermodynamic and statistical quantities for the non-local effective action approach.

  19. Hairy black holes in scalar extended massive gravity

    NASA Astrophysics Data System (ADS)

    Tolley, Andrew J.; Wu, De-Jun; Zhou, Shuang-Yong

    2015-12-01

    We construct static, spherically symmetric black hole solutions in scalar extended ghost-free massive gravity and show the existence of hairy black holes in this class of extension. While the existence seems to be a generic feature, we focus on the simplest models of this extension and find that asymptotically flat hairy black holes can exist without fine-tuning the theory parameters, unlike the bi-gravity extension, where asymptotical flatness requires fine-tuning in the parameter space. Like the bi-gravity extension, we are unable to obtain asymptotically dS regular black holes in the simplest models considered, but it is possible to obtain asymptotically AdS black holes.

  20. Absorption and radiation of nonminimally coupled scalar field from charged BTZ black hole

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Chen, Juhua; Wang, Yongjiu

    2018-06-01

    In this paper we investigate the absorption and radiation of nonminimally coupled scalar field from the charged BTZ black hole. We find the analytical expressions for the reflection coefficient, the absorption cross section and the decay rate in strong coupling case. We find that the reflection coefficient is directly governed by Hawking temperature TH, scalar wave frequency ω , Bekenstein-Hawking entropy S_{BH}, angular momentum m and coupling constant ξ.

  1. Hawking radiation and propagation of massive charged scalar field on a three-dimensional Gödel black hole

    NASA Astrophysics Data System (ADS)

    González, P. A.; Övgün, Ali; Saavedra, Joel; Vásquez, Yerko

    2018-06-01

    In this paper we consider the three-dimensional Gödel black hole as a background and we study the vector particle tunneling from this background in order to obtain the Hawking temperature. Then, we study the propagation of a massive charged scalar field and we find the quasinormal modes analytically, which turns out be unstable as a consequence of the existence of closed time-like curves. Also, we consider the flux at the horizon and at infinity, and we compute the reflection and transmission coefficients as well as the absorption cross section. Mainly, we show that massive charged scalar waves can be superradiantly amplified by the three-dimensional Gödel black hole and that the coefficients have an oscillatory behavior. Moreover, the absorption cross section is null at the high frequency limit and for certain values of the frequency.

  2. Holographic models with anisotropic scaling

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, E. J.; Danielsson, U. H.; Thorlacius, L.; Zingg, T.

    2013-12-01

    We consider gravity duals to d+1 dimensional quantum critical points with anisotropic scaling. The primary motivation comes from strongly correlated electron systems in condensed matter theory but the main focus of the present paper is on the gravity models in their own right. Physics at finite temperature and fixed charge density is described in terms of charged black branes. Some exact solutions are known and can be used to obtain a maximally extended spacetime geometry, which has a null curvature singularity inside a single non-degenerate horizon, but generic black brane solutions in the model can only be obtained numerically. Charged matter gives rise to black branes with hair that are dual to the superconducting phase of a holographic superconductor. Our numerical results indicate that holographic superconductors with anisotropic scaling have vanishing zero temperature entropy when the back reaction of the hair on the brane geometry is taken into account.

  3. Hawking radiation of scalar particles from accelerating and rotating black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillani, Usman A.; Rehman, Mudassar; Saifullah, K., E-mail: mani_precious2001@yahoo.com, E-mail: mudassar051@yahoo.com, E-mail: saifullah@qau.edu.pk

    2011-06-01

    Hawking radiation of uncharged and charged scalar particles from accelerating and rotating black holes is studied. We calculate the tunneling probabilities of these particles from the rotation and acceleration horizons of these black holes. Using this method we recover the correct Hawking temperature as well.

  4. Quantum statistical relation for black holes in nonlinear electrodynamics coupled to Einstein-Gauss-Bonnet AdS gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskovic, Olivera; Olea, Rodrigo

    2011-03-15

    We consider curvature-squared corrections to Einstein-Hilbert gravity action in the form of a Gauss-Bonnet term in D>4 dimensions. In this theory, we study the thermodynamics of charged static black holes with anti-de Sitter (AdS) asymptotics, and whose electric field is described by nonlinear electrodynamics. These objects have received considerable attention in recent literature on gravity/gauge dualities. It is well-known that, within the framework of anti-de Sitter/conformal field theory (AdS/CFT) correspondence, there exists a nonvanishing Casimir contribution to the internal energy of the system, manifested as the vacuum energy for global AdS spacetime in odd dimensions. Because of this reason, wemore » derive a quantum statistical relation directly from the Euclidean action and not from the integration of the first law of thermodynamics. To this end, we employ a background-independent regularization scheme which consists, in addition to the bulk action, of counterterms that depend on both extrinsic and intrinsic curvatures of the boundary (Kounterterm series). This procedure results in a consistent inclusion of the vacuum energy and chemical potential in the thermodynamic description for Einstein-Gauss-Bonnet AdS gravity regardless of the explicit form of the nonlinear electrodynamics Lagrangian.« less

  5. Conserved charges of minimal massive gravity coupled to scalar field

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2018-02-01

    Recently, the theory of topologically massive gravity non-minimally coupled to a scalar field has been proposed, which comes from the Lorentz-Chern-Simons theory (JHEP 06, 113, 2015), a torsion-free theory. We extend this theory by adding an extra term which makes the torsion to be non-zero. We show that the BTZ spacetime is a particular solution to this theory in the case where the scalar field is constant. The quasi-local conserved charge is defined by the concept of the generalized off-shell ADT current. Also a general formula is found for the entropy of the stationary black hole solution in context of the considered theory. The obtained formulas are applied to the BTZ black hole solution in order to obtain the energy, the angular momentum and the entropy of this solution. The central extension term, the central charges and the eigenvalues of the Virasoro algebra generators for the BTZ black hole solution are thus obtained. The energy and the angular momentum of the BTZ black hole using the eigenvalues of the Virasoro algebra generators are calculated. Also, using the Cardy formula, the entropy of the BTZ black hole is found. It is found that the results obtained in two different ways exactly match, just as expected.

  6. Quintessence Reissner Nordström Anti de Sitter Black Holes and Joule Thomson Effect

    NASA Astrophysics Data System (ADS)

    Ghaffarnejad, H.; Yaraie, E.; Farsam, M.

    2018-06-01

    In this work we investigate corrections of the quintessence regime of the dark energy on the Joule-Thomson (JT) effect of the Reissner Nordström anti de Sitter (RNAdS) black hole. The quintessence dark energy has equation of state as p q = ω ρ q in which -1<ω <- 1/3. Our calculations are restricted to ansatz: ω = - 1 (the cosmological constant regime) and ω =- 2/3 (quintessence dark energy). To study the JT expansion of the AdS gas under the constant black hole mass, we calculate inversion temperature T i of the quintessence RNAdS black hole where its cooling phase is changed to heating phase at a particular (inverse) pressure P i . Position of the inverse point { T i , P i } is determined by crossing the inverse curves with the corresponding Gibbons-Hawking temperature on the T-P plan. We determine position of the inverse point versus different numerical values of the mass M and the charge Q of the quintessence AdS RN black hole. The cooling-heating phase transition (JT effect) is happened for M > Q in which the causal singularity is still covered by the horizon. Our calculations show sensitivity of the inverse point { T i , P i } position on the T-P plan to existence of the quintessence dark energy just for large numerical values of the AdS RN black holes charge Q. In other words the quintessence dark energy dose not affect on position of the inverse point when the AdS RN black hole takes on small charges.

  7. Conformal Field Theory and black hole physics

    NASA Astrophysics Data System (ADS)

    Sidhu, Steve

    2012-01-01

    This thesis reviews the use of 2-dimensional conformal field theory applied to gravity, specifically calculating Bekenstein-Hawking entropy of black holes in (2+1) dimensions. A brief review of general relativity, Conformal Field Theory, energy extraction from black holes, and black hole thermodynamics will be given. The Cardy formula, which calculates the entropy of a black hole from the AdS/CFT duality, will be shown to calculate the correct Bekenstein-Hawking entropy of the static and rotating BTZ black holes. The first law of black hole thermodynamics of the static, rotating, and charged-rotating BTZ black holes will be verified.

  8. Regular scalar collapse

    NASA Astrophysics Data System (ADS)

    Lasukov, V. V.

    2012-06-01

    It is shown that negative Scalars can claim to be the object referred to as black holes, therefore observation of black holes means observation of Scalars. In contrast to blackholes, negative Scalars contain no singularity inside. Negative Scalars can be observed from the effect of generation of ordinary matter by the Lemaître primordial atom.

  9. Including General and Special Education: Initiatives of One Small Historically Black College.

    ERIC Educational Resources Information Center

    Dice, Marvin L.; Diederich, Ronald; Gammon, Nancy W.; Schultze, Betty; Starr, Robert

    This paper describes initial activities to revise the existing preservice teacher education curriculum to accommodate inclusion of students with disabilities and to improve collaboration between regular and special educators at Harris Stowe State College (Missouri), an historically black college. The identification of institutional and attitudinal…

  10. Template directed assembly of nanoelements in viscous polymer environments

    NASA Astrophysics Data System (ADS)

    Modi, Satyamkumar

    Polymer melt-based manufacturing methods, such as injection molding, offer the potential of directly fabricating three-dimensional parts with nanostructured surfaces in a one-step, high-rate, and solventless process. Electrophoretic deposition has the potential to produce in-mold assembly of nanoparticles during injection molding. The process is fast, is cost effective and can be automated. This electrophoretic deposition, however, has been performed from low-viscosity media and polymer melts are far more viscous. This research provided a fundamental understanding of the electrophoretic deposition process in viscous media. Electrophoresis was performed using a model system of carbon black and polystyrene in tetrahydrofuran (THF). Examined were the effects of processing parameters, polystyrene molecular weight, and carbon black charge. The presence of polystyrene did not prevent deposition of carbon black, but deposition rates decreased at shorter deposition times; deposition was not linear with increasing applied voltage; and greater solution concentrations reduced the critical voltages. A comparison of experimental data with Hamaker's model showed that about 1.6% of the available polystyrene was initially deposited with the carbon black. At voltages above the critical voltage, the deposited mass indicated formation of electrically insulating layers on the electrodes. Increases in polystyrene molecular weight reduced the electrophoretic deposition of the carbon black particles due to increases in suspension viscosity and preferential adsorption of the longer polystyrene chains on the carbon black particles. At low deposition times (≤ 5 seconds), only carbon black deposited onto the electrodes. For longer deposition times, polystyrene co-deposited with the carbon black, with the amount of polystyrene increasing with molecular weight and decreasing with greater charge on the polystyrene molecules. The additional of function groups to the carbon black surface decoupled the carbon black and polystyrene, however, the deposition of the carbon black particles, followed by deposition of a thick layer of polystyrene was observed. This polystyrene deposition was present regardless of the applied voltage, the deposition time, the polystyrene molecular weight, polystyrene material (i.e., charge), and solvent polarity. This deposition behavior suggests that use of lower molecular polymers and unmodified carbon blacks, and control of electrical properties will permit electrophoretic deposition of nanoparticles from polymer melts.

  11. Holography, black holes and condensed matter physics

    NASA Astrophysics Data System (ADS)

    Gentle, Simon Adam

    In this thesis we employ holographic techniques to explore strongly-coupled quantum field theories at non-zero temperature and density. First we consider a state dual to a charged black hole with planar horizon and compute retarded Green's functions for conserved currents in the shear channel. We demonstrate the intricate motion of their poles and stress the importance of the residues at the poles beyond the hydrodynamic regime. We then explore the collective excitations of holographic quantum liquids arising on D3/D5 and D3/D7 brane intersections as a function of temperature and magnetic field in the probe limit. We observe a crossover from hydrodynamic charge diffusion to a sound mode similar to the zero sound mode in the collisionless regime of a Landau Fermi liquid. The location of this crossover is approximately independent of the magnetic field. The sound mode has a gap proportional to the magnetic field, leading to strong suppression of spectral weight for intermediate frequencies and sufficiently large magnetic fields. In the second part we explore the solution space of AdS gravity in the hope of learning general lessons about such theories. First we study charged scalar solitons in global AdS4. These solutions have a rich phase space and exhibit critical behaviour as a function of the scalar charge and scalar boundary conditions. We demonstrate how the planar limit of global solitons coincides generically with the zero-temperature limit of black branes with charged scalar hair. We exhibit these features in both phenomenological models and consistent truncations of eleven-dimensional supergravity. We then discover new branches of hairy black brane in SO(6) gauged supergravity. Despite the imbalance provided by three chemical potentials conjugate to the three R-charges, there is always at least one branch with charged scalar hair, emerging at a temperature where the normal phase is locally thermodynamically stable.

  12. Church Attendance as a Predictor of Number of Sexual Health Topics Discussed among High Risk HIV Negative Black Women

    PubMed Central

    Williams, Terrinieka T.; Pichon, Latrice C.; Davey-Rothwell, Melissa; Latkin, Carl A.

    2015-01-01

    Research suggests that sexual health communication is associated with safer sex practices. In this study, we examined the relationship between church attendance and sexual health topics discussed with both friends and sexual partners among a sample of urban Black women. Participants were 434 HIV negative Black women who were at high risk for contracting HIV through heterosexual sex. They were recruited from Baltimore, Maryland using a network-based sampling approach. Data were collected through face-to-face interviews and Audio-Computer-Assisted Self-Interviews (ACASI). Fifty-four percent of the participants attended church once a month or more (regular attendees). Multivariate logistic regression analyses revealed that regular church attendance among high-risk HIV negative Black women was a significant predictor of the number of sexual health topics discussed with both friends (AOR = 1.85, p =.003) and sexual partners (AOR= 1.68, p =.014). Future efforts to reduce HIV incidence among high-risk Black women may benefit from partnerships with churches that equip faith leaders and congregants with the tools to discuss sexual health topics with both their sexual partners and friends. PMID:25966802

  13. Asymmetric Wormholes via Electrically Charged Lightlike Branes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guendelman, E.; Kaganovich, A.; Nissimov, E.

    2010-06-17

    We consider a self-consistent Einstein-Maxwell-Kalb-Ramond system in the bulk D = 4 space-time interacting with a variable-tension electrically charged lightlike brane. The latter serves both as a material and charge source for gravity and electromagnetism, as well as it dynamically generates a bulk space varying cosmological constant. We find an asymmetric wormhole solution describing two 'universes' with different spherically symmetric black-hole-type geometries connected through a 'throat' occupied by the lightlike brane. The electrically neutral 'left universe' comprises the exterior region of Schwarzschild-de-Sitter (or pure Schwarzschild) space-time above the inner(Schwarzschild-type) horizon, whereas the electrically charged 'right universe' consists of the exteriormore » Reissner-Nordstroem (or Reissner-Nordstroem-de-Sitter) black hole region beyond the outer Reissner-Nordstroem horizon. All physical parameters of the wormhole are uniquely determined by two free parameters - the electric charge and Kalb-Ramond coupling of the lightlike brane.« less

  14. AdS charged black holes in Einstein-Yang-Mills gravity's rainbow: Thermal stability and P - V criticality

    NASA Astrophysics Data System (ADS)

    Hendi, Seyed Hossein; Momennia, Mehrab

    2018-02-01

    Motivated by the interesting non-abelian gauge field, in this paper, we look for the analytical solutions of Yang-Mills theory in the context of gravity's rainbow. Regarding the trace of quantum gravity in black hole thermodynamics, we examine the first law of thermodynamics and also thermal stability in the canonical ensemble. We show that although the rainbow functions and Yang-Mills charge modify the solutions, the first law of thermodynamics is still valid. Based on the phenomenological similarities between the adS black holes and van der Waals liquid/gas systems, we study the critical behavior of the Yang-Mills black holes in the extended phase space thermodynamics. We also investigate the effects of various parameters on thermal instability as well as critical properties by using appropriate figures.

  15. Explosion and Final State of an Unstable Reissner-Nordström Black Hole.

    PubMed

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Montero, Pedro J; Font, José A; Herdeiro, Carlos

    2016-04-08

    A Reissner-Nordström black hole (BH) is superradiantly unstable against spherical perturbations of a charged scalar field enclosed in a cavity, with a frequency lower than a critical value. We use numerical relativity techniques to follow the development of this unstable system-dubbed a charged BH bomb-into the nonlinear regime, solving the full Einstein-Maxwell-Klein-Gordon equations, in spherical symmetry. We show that (i) the process stops before all the charge is extracted from the BH, and (ii) the system settles down into a hairy BH: a charged horizon in equilibrium with a scalar field condensate, whose phase is oscillating at the (final) critical frequency. For a low scalar field charge q, the final state is approached smoothly and monotonically. For large q, however, the energy extraction overshoots, and an explosive phenomenon, akin to a bosenova, pushes some energy back into the BH. The charge extraction, by contrast, does not reverse.

  16. Quasinormal modes, bifurcations, and nonuniqueness of charged scalar-tensor black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doneva, Daniela D.; Theoretical Astrophysics, Eberhard-Karls University of Tuebingen, Tuebingen 72076; Yazadjiev, Stoytcho S.

    In the present paper, we study the scalar sector of the quasinormal modes of charged general relativistic, static, and spherically symmetric black holes coupled to nonlinear electrodynamics and embedded in a class of scalar-tensor theories. We find that for a certain domain of the parametric space, there exists unstable quasinormal modes. The presence of instabilities implies the existence of scalar-tensor black holes with primary hair that bifurcate from the embedded general relativistic black-hole solutions at critical values of the parameters corresponding to the static zero modes. We prove that such scalar-tensor black holes really exist by solving the full systemmore » of scalar-tensor field equations for the static, spherically symmetric case. The obtained solutions for the hairy black holes are nonunique, and they are in one-to-one correspondence with the bounded states of the potential governing the linear perturbations of the scalar field. The stability of the nonunique hairy black holes is also examined, and we find that the solutions for which the scalar field has zeros are unstable against radial perturbations. The paper ends with a discussion of possible formulations of a new classification conjecture.« less

  17. Hispanic ethnicity is associated with increased costs after carotid endarterectomy and carotid stenting in the United States.

    PubMed

    Propper, Brandon; Black, James H; Schneider, Eric B; Lum, Ying Wei; Malas, Mahmoud B; Arnold, Margaret W; Abularrage, Christopher J

    2013-09-01

    We have previously demonstrated an adverse impact of black race and Hispanic ethnicity on the outcomes of carotid endarterectomy (CEA) and carotid artery stenting (CAS). The current study was undertaken to examine the influence of race and ethnicity on the cost of CEA and CAS. The Nationwide Inpatient Sample (2005-2009) was queried using ICD-9 codes for CEA and CAS in patients with carotid artery stenosis. The primary outcome was total hospital charges. Multivariate analysis was performed using a generalized linear model adjusting for age, sex, race, comorbidities (Charlson index), high-risk status, procedure type, symptomatic status, year, insurance type, and surgeon and hospital operative volumes and characteristics. Hispanic and black patients were more likely to have a symptomatic presentation, and were more likely to undergo either CEA or CAS by low-volume surgeons at low-volume hospitals (P < 0.05, all). They were also less likely to have private insurance or Medicare (P < 0.001). Overall, CEA was less expensive than CAS over the 4-y study period ($29,502 ± $104 versus $46,713 ± $409, P < 0.001). Total hospital charges after CEA were increased in both blacks ($39,562 ± $843) and Hispanics ($45,325 ± $735) compared with whites on univariate analysis ($28,403 ± $101, P < 0.001). After CAS, total hospital charges were similarly increased in both blacks ($51,770 ± $2085) and Hispanics ($63,637 ± $2766) compared with whites on univariate analysis ($45,550 ± $412, P < 0.001). On multivariable analysis, however, only Hispanic ethnicity remained independently associated with increased charges after both CEA (exponentiated coefficient 1.18; 95% CI [1.15-1.20]; P < 0.001) and CAS (exponentiated coefficient 1.17; 95% CI [1.09-1.24]; P < 0.001). Hispanic ethnicity was independently associated with increased hospital charges after both CEA and CAS. The increased charges seen in black patients were explained, in part, by decreased surgeon operative volume and increased postoperative complications. Further efforts are warranted to contain costs in minorities undergoing carotid revascularization. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Lux in obscuro II: photon orbits of extremal AdS black holes revisited

    NASA Astrophysics Data System (ADS)

    Tang, Zi-Yu; Ong, Yen Chin; Wang, Bin

    2017-12-01

    A large class of spherically symmetric static extremal black hole spacetimes possesses a stable null photon sphere on their horizons. For the extremal Kerr-Newman family, the photon sphere only really coincides with the horizon in the sense clarified by Doran. The condition under which a photon orbit is stable on an asymptotically flat extremal Kerr-Newman black hole horizon has recently been clarified; it is found that a sufficiently large angular momentum destabilizes the photon orbit, whereas an electrical charge tends to stabilize it. We investigated the effect of a negative cosmological constant on this observation, and found the same behavior in the case of extremal asymptotically Kerr-Newman-AdS black holes in (3+1) -dimensions. In (2+1) -dimensions, in the presence of an electrical charge, the angular momentum never becomes large enough to destabilize the photon orbit. We comment on the instabilities of black hole spacetimes with a stable photon orbit.

  19. Meissner effect for axially symmetric charged black holes

    NASA Astrophysics Data System (ADS)

    Gürlebeck, Norman; Scholtz, Martin

    2018-04-01

    In our previous work [N. Gürlebeck and M. Scholtz, Phys. Rev. D 95, 064010 (2017), 10.1103/PhysRevD.95.064010], we have shown that electric and magnetic fields are expelled from the horizons of extremal, stationary and axially symmetric uncharged black holes; this is called the Meissner effect for black holes. Here, we generalize this result in several directions. First, we allow that the black hole carries charge, which requires a generalization of the definition of the Meissner effect. Next, we introduce the notion of almost isolated horizons, which is weaker than the usual notion of isolated horizons, since the geometry of the former is not necessarily completely time independent. Moreover, we allow the horizon to be pierced by strings, thereby violating the usual assumption on the spherical topology made in the definition of the weakly isolated horizon. Finally, we spell out in detail all assumptions entering the proof and show that the Meissner effect is an inherent property of black holes even in full nonlinear theory.

  20. Black Hole as a Supercollider

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    Recently, it was found that in the vicinity of the black hole horizon of a rotating black hole two particles can collide in such a way that the energy in their centre of mass frame becomes infinite (so-called BSW effect). I give a brief review of basic features of this effect and show that this is a generic property of rotating black holes. In addition, there exists its counterpart for radial motion of charged particles in the charged black hole background. Simple kinematic explanation is suggested that is based on observation that all massive particles fall in two classes. In the first case (by definition, "usual particles"), the velocity approaches that of light on the horizon in the locally-nonrotating frame due to special relationship between the energy and the angular momentum. In the second case, it tends to some value less than speed of light. As a result, the relative velocity also tends to the speed of light with infinitely growing Lorentz factor.

  1. Black Hole as a Supercollider

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    2011-06-01

    Recently, it was found that in the vicinity of the black hole horizon of a rotating black hole two particles can collide in such a way that the energy in their centre of mass frame becomes infinite (so-called BSW effect). I give a brief review of basic features of this effect and show that this is a generic property of rotating black holes. In addition, there exists its counterpart for radial motion of charged particles in the charged black hole background. Simple kinematic explanation is suggested that is based on observation that all massive particles fall in two classes. In the first case (by definition, "usual particles"), the velocity approaches that of light on the horizon in the locally-nonrotating frame due to special relationship between the energy and the angular momentum. In the second case, it tends to some value less than speed of light. As a result, the relative velocity also tends to the speed of light with infinitely growing Lorentz factor.

  2. Topological transport from a black hole

    NASA Astrophysics Data System (ADS)

    Melnikov, Dmitry

    2018-03-01

    In this paper the low temperature zero-frequency transport in a 2 + 1-dimensional theory dual to a dyonic black hole is discussed. It is shown that transport exhibits topological features: the transverse electric and heat conductivities satisfy the Wiedemann-Franz law of free electrons; the direct heat conductivity is measured in units of the central charge of CFT2+1, while the direct electric conductivity vanishes; the thermoelectric conductivity is non-zero at vanishing temperature, while the O (T) behavior, controlled by the Mott relation, is subleading. Provided that the entropy of the black hole, and the dual system, is non-vanishing at T = 0, the observations indicate that the dyonic black hole describes a ħ → 0 limit of a highly degenerate topological state, in which the black hole charge measures the density of excited non-abelian quasiparticles. The holographic description gives further evidence that non-abelian nature of quasiparticles can be determined by the low temperature behavior of the thermoelectric transport.

  3. Charged rotating black holes in Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant

    NASA Astrophysics Data System (ADS)

    Blázquez-Salcedo, Jose Luis; Kunz, Jutta; Navarro-Lérida, Francisco; Radu, Eugen

    2017-03-01

    We consider rotating black hole solutions in five-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant and a generic value of the Chern-Simons coupling constant λ . Using both analytical and numerical techniques, we focus on cohomogeneity-1 configurations, with two equal-magnitude angular momenta, which approach at infinity a globally anti-de Sitter background. We find that the generic solutions share a number of basic properties with the known Cvetič, Lü, and Pope black holes which have λ =1 . New features occur as well; for example, when the Chern-Simons coupling constant exceeds a critical value, the solutions are no longer uniquely determined by their global charges. Moreover, the black holes possess radial excitations which can be labelled by the node number of the magnetic gauge potential function. Solutions with small values of λ possess other distinct features. For instance, the extremal black holes there form two disconnected branches, while not all near-horizon solutions are associated with global solutions.

  4. Cold black holes in the Harlow–Hayden approach to firewalls

    DOE PAGES

    Ong, Yen Chin; McInnes, Brett; Chen, Pisin

    2014-12-31

    Firewalls are controversial principally because they seem to imply departures from general relativistic expectations in regions of spacetime where the curvature need not be particularly large. One of the virtues of the Harlow–Hayden approach to the firewall paradox, concerning the time available for decoding of Hawking radiation emanating from charged AdS black holes, is precisely that it operates in the context of cold black holes, which are not strongly curved outside the event horizon. Here we clarify this point. The approach is based on ideas borrowed from applications of the AdS/CFT correspondence to the quark–gluon plasma. Firewalls aside, our workmore » presents a detailed analysis of the thermodynamics and evolution of evaporating charged AdS black holes with flat event horizons. We show that, in one way or another, these black holes are always eventually destroyed in a time which, while long by normal standards, is short relative to the decoding time of Hawking radiation.« less

  5. Quasinormal Modes and Strong Cosmic Censorship.

    PubMed

    Cardoso, Vitor; Costa, João L; Destounis, Kyriakos; Hintz, Peter; Jansen, Aron

    2018-01-19

    The fate of Cauchy horizons, such as those found inside charged black holes, is intrinsically connected to the decay of small perturbations exterior to the event horizon. As such, the validity of the strong cosmic censorship (SCC) conjecture is tied to how effectively the exterior damps fluctuations. Here, we study massless scalar fields in the exterior of Reissner-Nordström-de Sitter black holes. Their decay rates are governed by quasinormal modes of the black hole. We identify three families of modes in these spacetimes: one directly linked to the photon sphere, well described by standard WKB-type tools; another family whose existence and time scale is closely related to the de Sitter horizon; finally, a third family which dominates for near-extremally charged black holes and which is also present in asymptotically flat spacetimes. The last two families of modes seem to have gone unnoticed in the literature. We give a detailed description of linear scalar perturbations of such black holes, and conjecture that SCC is violated in the near extremal regime.

  6. Quasinormal Modes and Strong Cosmic Censorship

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Costa, João L.; Destounis, Kyriakos; Hintz, Peter; Jansen, Aron

    2018-01-01

    The fate of Cauchy horizons, such as those found inside charged black holes, is intrinsically connected to the decay of small perturbations exterior to the event horizon. As such, the validity of the strong cosmic censorship (SCC) conjecture is tied to how effectively the exterior damps fluctuations. Here, we study massless scalar fields in the exterior of Reissner-Nordström-de Sitter black holes. Their decay rates are governed by quasinormal modes of the black hole. We identify three families of modes in these spacetimes: one directly linked to the photon sphere, well described by standard WKB-type tools; another family whose existence and time scale is closely related to the de Sitter horizon; finally, a third family which dominates for near-extremally charged black holes and which is also present in asymptotically flat spacetimes. The last two families of modes seem to have gone unnoticed in the literature. We give a detailed description of linear scalar perturbations of such black holes, and conjecture that SCC is violated in the near extremal regime.

  7. The angular distribution of infrared radiances emerging from broken fields of cumulus clouds

    NASA Technical Reports Server (NTRS)

    Naber, P. S.; Weinman, J. A.

    1984-01-01

    Infrared radiances were simultaneously measured from broken cloud fields over the eastern Pacific Ocean by means of the eastern and western geostationary satellites. The measurements were compared with the results of models that characterized the clouds as black circular cylinders disposed randomly on a plane and as black cuboids disposed in regular and in shifted periodic arrays. The data were also compared with the results obtained from a radiative transfer model that considered emission and scattering by a regular array of periodic cuboidal clouds. It was found that the radiances did not depend significantly on the azimuth angle; this suggested that the observed cloud fields were not regular periodic arrays. However, the dependence on zenith angle suggested that the clouds were not disposed randomly either. The implication of these measurements on the understanding of the transfer of infrared radiances through broken cloud fields is considered.

  8. D = 5 Einstein-Maxwell-Chern-Simons black holes.

    PubMed

    Kunz, Jutta; Navarro-Lérida, Francisco

    2006-03-03

    Five-dimensional Einstein-Maxwell-Chern-Simons theory with a Chern-Simons coefficient lambda = 1 has supersymmetric black holes with a vanishing horizon angular velocity but finite angular momentum. Here supersymmetry is associated with a borderline between stability and instability, since for lambda > 1 a rotational instability arises, where counterrotating black holes appear, whose horizon rotates in the opposite sense to the angular momentum. For lambda > 2 black holes are no longer uniquely characterized by their global charges, and rotating black holes with vanishing angular momentum appear.

  9. Charged Dirac Particles' Hawking Radiation via Tunneling of Both Horizons and Thermodynamics Properties of Kerr-Newman-Kasuya-Taub-NUT-AdS Black Holes

    NASA Astrophysics Data System (ADS)

    Ali, M. Hossain; Sultana, Kausari

    2013-12-01

    We investigate Hawking radiation of electrically and magnetically charged Dirac particles from a dyonic Kerr-Newman-Kasuya-Taub-NUT-Anti-de Sitter (KNKTN-AdS) black hole by considering thermal characters of both the outer and inner horizons. We apply Damour-Ruffini method and membrane method to calculate the temperature and the entropy of the inner horizon of the KNKTN-AdS black hole. The inner horizon admits thermal character with positive temperature and entropy proportional to its area. The inner horizon entropy contributes to the total entropy of the black hole in the context of Nernst theorem. Considering conservation of energy, charges, angular momentum, and the back-reaction of emitting particles to the spacetime, we obtain the emission spectra for both the inner and outer horizons. The total emission rate is obtained as the product of the emission rates of the inner and outer horizons. It deviates from the purely thermal spectrum with the leading term exactly the Boltzman factor and can bring some information out. The result thus can be treated as an explanation to the information loss paradox.

  10. Tunneling Radiation Characteristic of the Charged Particle from the Reissner Nordström anti de Sitter Black Hole

    NASA Astrophysics Data System (ADS)

    Chen, De-You; Jiang, Qing-Quan; Yang, Shu-Zheng

    2007-12-01

    Applying Parikh’s semi-classical quantum tunneling method, the tunneling radiation characteristic of the charged particle from the event horizon of the Reissner Nordström anti de Sitter black hole is researched. The result shows the derived spectrum is not purely thermal one, but is consistent with the underlying unitary theory, which gives a might explanation to the information loss paradox and is the correct amendment to the Hawking radiation.

  11. Long-Ranged Oppositely Charged Interactions for Designing New Types of Colloidal Clusters

    NASA Astrophysics Data System (ADS)

    Demirörs, Ahmet Faik; Stiefelhagen, Johan C. P.; Vissers, Teun; Smallenburg, Frank; Dijkstra, Marjolein; Imhof, Arnout; van Blaaderen, Alfons

    2015-04-01

    Getting control over the valency of colloids is not trivial and has been a long-desired goal for the colloidal domain. Typically, tuning the preferred number of neighbors for colloidal particles requires directional bonding, as in the case of patchy particles, which is difficult to realize experimentally. Here, we demonstrate a general method for creating the colloidal analogs of molecules and other new regular colloidal clusters without using patchiness or complex bonding schemes (e.g., DNA coating) by using a combination of long-ranged attractive and repulsive interactions between oppositely charged particles that also enable regular clusters of particles not all in close contact. We show that, due to the interplay between their attractions and repulsions, oppositely charged particles dispersed in an intermediate dielectric constant (4 <ɛ <10 ) provide a viable approach for the formation of binary colloidal clusters. Tuning the size ratio and interactions of the particles enables control of the type and shape of the resulting regular colloidal clusters. Finally, we present an example of clusters made up of negatively charged large and positively charged small satellite particles, for which the electrostatic properties and interactions can be changed with an electric field. It appears that for sufficiently strong fields the satellite particles can move over the surface of the host particles and polarize the clusters. For even stronger fields, the satellite particles can be completely pulled off, reversing the net charge on the cluster. With computer simulations, we investigate how charged particles distribute on an oppositely charged sphere to minimize their energy and compare the results with the solutions to the well-known Thomson problem. We also use the simulations to explore the dependence of such clusters on Debye screening length κ-1 and the ratio of charges on the particles, showing good agreement with experimental observations.

  12. Physical process first law and increase of horizon entropy for black holes in Einstein-Gauss-Bonnet gravity.

    PubMed

    Chatterjee, Ayan; Sarkar, Sudipta

    2012-03-02

    We establish the physical process version of the first law by studying small perturbations of a stationary black hole with a regular bifurcation surface in Einstein-Gauss-Bonnet gravity. Our result shows that when the stationary black hole is perturbed by a matter stress energy tensor and finally settles down to a new stationary state, the Wald entropy increases as long as the matter satisfies the null energy condition.

  13. Numerical evidences for the angular momentum-mass inequality for multiple axially symmetric black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dain, Sergio; Ortiz, Omar E.; Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Ciudad Universitaria

    2009-07-15

    We present numerical evidences for the validity of the inequality between the total mass and the total angular momentum for multiple axially symmetric (nonstationary) black holes. We use a parabolic heat flow to solve numerically the stationary axially symmetric Einstein equations. As a by-product of our method, we also give numerical evidences that there are no regular solutions of Einstein equations that describe two extreme, axially symmetric black holes in equilibrium.

  14. Chromophoric dissolved organic matter of black waters in a highly eutrophic Chinese lake: Freshly produced from algal scums?

    PubMed

    Zhou, Yongqiang; Jeppesen, Erik; Zhang, Yunlin; Niu, Cheng; Shi, Kun; Liu, Xiaohan; Zhu, Guangwei; Qin, Boqiang

    2015-12-15

    Field campaigns and an incubation experiment were conducted to evaluate the sources of chromophoric dissolved organic matter (CDOM) in black water spots in highly polluted regions of the Chinese Lake Taihu. A significant positive correlation (p<0.0001) was found between chlorophyll a (Chl-a) and the CDOM absorption coefficient a(350), indicating that algae degradation was likely the primary source of CDOM in black waters. This is supported by our field results that Chl-a, a(350) and the spectral slope ratio (SR) were significantly higher in the black water samples than in the regular samples (p<0.001). Our incubation experiment further substantiated the primary significance of biological CDOM source where a(350) increased with decreasing Chl-a concentrations. After seven days' incubation, a 72.2% decrease and a 74.9% increase were recorded for Chl-a and a(350), respectively, relative to the initial values. Parallel factor analysis identified five fluorescent components. The maximal fluorescence intensity (Fmax) of tryptophan-like C1 and microbial humic-like C3 of black water samples was significantly higher than in the regular water samples (p<0.0005). This is consistent with incubation experiment results showing a rapid increase in Fmax of the two components, emphasizing the priority of the in situ biological CDOM source in black water spots. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Introducing the Black Hole

    ERIC Educational Resources Information Center

    Ruffini, Remo; Wheeler, John A.

    1971-01-01

    discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)

  16. Hawking radiation via anomaly cancellation for the black holes of five-dimensional minimal gauged supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porfyriadis, Achilleas P.

    2009-04-15

    The anomaly cancellation method proposed by Wilczek et al. is applied to the general charged rotating black holes in five-dimensional minimal gauged supergravity. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula. The black holes have charge and two unequal angular momenta, and these give rise to appropriate terms in the effective U(1) gauge field of the reduced (1+1)-dimensional theory. In particular, it is found that the terms in this U(1) gauge field correspond exactly to the correct electrostatic potential and the two angular velocities on the horizon of the black holes,more » and so the results for the Hawking fluxes derived here from the anomaly cancellation method are in complete agreement with the ones obtained from integrating the Planck distribution.« less

  17. On exponentially suppressed corrections to BMPV black hole entropy

    NASA Astrophysics Data System (ADS)

    Lal, Shailesh; Narayan, Prithvi

    2018-05-01

    The microscopic formula for the degeneracy of BMPV black hole microstates contains a series of exponentially suppressed corrections to the leading Bekenstein Hawking expression. We identify saddle points of the quantum entropy function for the BMPV black hole which are natural counterparts to these corrections and discuss the matching of leading and next-to-leading terms from the microscopic and macroscopic sides in a limit where the black hole charges are large.

  18. Hawking radiation of Dirac particles from black strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Jamil; Saifullah, K., E-mail: jamil_051@yahoo.com, E-mail: saifullah@qau.edu.pk

    2011-08-01

    Hawking radiation has been studied as a phenomenon of quantum tunneling in different black holes. In this paper we extend this semi-classical approach to cylindrically symmetric black holes. Using the Hamilton-Jacobi method and WKB approximation we calculate the tunneling probabilities of incoming and outgoing Dirac particles from the event horizon and find the Hawking temperature of these black holes. We obtain results both for uncharged as well as charged particles.

  19. Separability of massive field equations for spin-0 and spin-1/2 charged particles in the general nonextremal rotating charged black hole spacetimes in minimal five-dimensional gauged supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Shuangqing

    We continue to investigate the separability of massive field equations for spin-0 and spin-1/2 charged particles in the general, nonextremal, rotating, charged, Chong-Cvetic-Lue-Pope black holes with two independent angular momenta and a nonzero cosmological constant in minimal D=5 gauged supergravity theory. We show that the complex Klein-Gordon equation and the modified Dirac equation with the inclusion of an extra counterterm can be separated by variables into purely radial and purely angular parts in this general Einstein-Maxwell-Chern-Simons background spacetime. A second-order symmetry operator that commutes with the complex Laplacian operator is constructed from the separated solutions and expressed compactly in termsmore » of a rank-2 Staeckel-Killing tensor which admits a simple diagonal form in the chosen pentad one-forms so that it can be understood as the square of a rank-3 totally antisymmetric tensor. A first-order symmetry operator that commutes with the modified Dirac operator is expressed in terms of a rank-3 generalized Killing-Yano tensor and its covariant derivative. The Hodge dual of this generalized Killing-Yano tensor is a generalized principal conformal Killing-Yano tensor of rank-2, which can generate a 'tower' of generalized (conformal) Killing-Yano and Staeckel-Killing tensors that are responsible for the whole hidden symmetries of this general, rotating, charged, Kerr-anti-de Sitter black hole geometry. In addition, the first laws of black hole thermodynamics have been generalized to the case that the cosmological constant can be viewed as a thermodynamical variable.« less

  20. Thermodynamic studies of different black holes with modifications of entropy

    NASA Astrophysics Data System (ADS)

    Haldar, Amritendu; Biswas, Ritabrata

    2018-02-01

    In recent years, the thermodynamic properties of black holes are topics of interests. We investigate the thermodynamic properties like surface gravity and Hawking temperature on event horizon of regular black holes viz. Hayward Class and asymptotically AdS (Anti-de Sitter) black holes. We also analyze the thermodynamic volume and naive geometric volume of asymptotically AdS black holes and show that the entropy of these black holes is simply the ratio of the naive geometric volume to thermodynamic volume. We plot the different graphs and interpret them physically. We derive the `cosmic-Censorship-Inequality' for both type of black holes. Moreover, we calculate the thermal heat capacity of aforesaid black holes and study their stabilities in different regimes. Finally, we compute the logarithmic correction to the entropy for both the black holes considering the quantum fluctuations around the thermal equilibrium and study the corresponding thermodynamics.

  1. A two-component Matched Interface and Boundary (MIB) regularization for charge singularity in implicit solvation

    NASA Astrophysics Data System (ADS)

    Geng, Weihua; Zhao, Shan

    2017-12-01

    We present a new Matched Interface and Boundary (MIB) regularization method for treating charge singularity in solvated biomolecules whose electrostatics are described by the Poisson-Boltzmann (PB) equation. In a regularization method, by decomposing the potential function into two or three components, the singular component can be analytically represented by the Green's function, while other components possess a higher regularity. Our new regularization combines the efficiency of two-component schemes with the accuracy of the three-component schemes. Based on this regularization, a new MIB finite difference algorithm is developed for solving both linear and nonlinear PB equations, where the nonlinearity is handled by using the inexact-Newton's method. Compared with the existing MIB PB solver based on a three-component regularization, the present algorithm is simpler to implement by circumventing the work to solve a boundary value Poisson equation inside the molecular interface and to compute related interface jump conditions numerically. Moreover, the new MIB algorithm becomes computationally less expensive, while maintains the same second order accuracy. This is numerically verified by calculating the electrostatic potential and solvation energy on the Kirkwood sphere on which the analytical solutions are available and on a series of proteins with various sizes.

  2. Applications of AdS-CFT to problems in black hole physics and hydrodynamics

    NASA Astrophysics Data System (ADS)

    Hansen, James Michael

    The work contained in this thesis is divided naturally into two parts. In the first part we present a systematic treatment of angular momentum charges in asymptotically AdS spacetimes. This treatment, motivated by AdS-CFT, explains the puzzle of charges generated by coordinate transformations in a manifestly diffeomorphism invariant theory. In the second part we explore a promising connection between the dynamics of dyonic black holes and 2+1 dimensional conformal fluids in the presence of a strong magnetic field. We explicitly demonstrate that long-wavelength perturbations of the dyonic black hole satisfy the equations of motion of a conformal fluid and derive the stress tensor, currents, and transport properties of this fluid.

  3. Constraints on Mass, Spin and Magnetic Field of Microquasar H 1743-322 from Observations of QPOs

    NASA Astrophysics Data System (ADS)

    Tursunov, A. A.; Kološ, M.

    2018-03-01

    The study of quasi-periodic oscillations (QPOs) of X-ray flux observed in many microquasars can provide a powerful tool for testing of the phenomena occurring in strong gravity regime. QPOs phenomena can be well related to the oscillations of charged particles in accretion disks orbiting Kerr black holes immersed in external large-scalemagnetic fields. In the present paper we study the model ofmagnetic relativistic precession and provide estimations of the mass and spin of the central object of the microquasar H 1743-322 which is a candidate for a black hole. Moreover, we discuss the possible values of external magnetic field and study its influence on the motion of charged particles around rotating black hole.

  4. Action and entanglement in gravity and field theory.

    PubMed

    Neiman, Yasha

    2013-12-27

    In nongravitational quantum field theory, the entanglement entropy across a surface depends on the short-distance regularization. Quantum gravity should not require such regularization, and it has been conjectured that the entanglement entropy there is always given by the black hole entropy formula evaluated on the entangling surface. We show that these statements have precise classical counterparts at the level of the action. Specifically, we point out that the action can have a nonadditive imaginary part. In gravity, the latter is fixed by the black hole entropy formula, while in nongravitating theories it is arbitrary. From these classical facts, the entanglement entropy conjecture follows by heuristically applying the relation between actions and wave functions.

  5. Modified Dispersion Relations: from Black-Hole Entropy to the Cosmological Constant

    NASA Astrophysics Data System (ADS)

    Garattini, Remo

    2012-07-01

    Quantum Field Theory is plagued by divergences in the attempt to calculate physical quantities. Standard techniques of regularization and renormalization are used to keep under control such a problem. In this paper we would like to use a different scheme based on Modified Dispersion Relations (MDR) to remove infinities appearing in one loop approximation in contrast to what happens in conventional approaches. In particular, we apply the MDR regularization to the computation of the entropy of a Schwarzschild black hole from one side and the Zero Point Energy (ZPE) of the graviton from the other side. The graviton ZPE is connected to the cosmological constant by means of of the Wheeler-DeWitt equation.

  6. Chemical potential driven phase transition of black holes in anti-de Sitter space

    NASA Astrophysics Data System (ADS)

    Galante, Mario; Giribet, Gaston; Goya, Andrés; Oliva, Julio

    2015-11-01

    Einstein-Maxwell theory conformally coupled to a scalar field in D dimensions may exhibit a phase transition at low temperature whose end point is an asymptotically anti-de Sitter black hole with a scalar field profile that is regular everywhere outside and on the horizon. This provides a tractable model to study the phase transition of hairy black holes in anti-de Sitter space in which the backreaction on the geometry can be solved analytically.

  7. Black holes with gravitational hair in higher dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anabalon, Andres; Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1 D-14476 Golm; Canfora, Fabrizio

    2011-10-15

    A new class of vacuum black holes for the most general gravity theory leading to second order field equations in the metric in even dimensions is presented. These space-times are locally anti-de Sitter in the asymptotic region, and are characterized by a continuous parameter that does not enter in the conserve charges, nor it can be reabsorbed by a coordinate transformation: it is therefore a purely gravitational hair. The black holes are constructed as a warped product of a two-dimensional space-time, which resembles the r-t plane of the Banados-Teitelboim-Zanelli black hole, times a warp factor multiplying the metric of amore » D-2-dimensional Euclidean base manifold, which is restricted by a scalar equation. It is shown that all the Noether charges vanish. Furthermore, this is consistent with the Euclidean action approach: even though the black hole has a finite temperature, both the entropy and the mass vanish. Interesting examples of base manifolds are given in eight dimensions which are products of Thurston geometries, giving then a nontrivial topology to the black hole horizon. The possibility of introducing a torsional hair for these solutions is also discussed.« less

  8. Breakdown of the equal area law for holographic entanglement entropy

    NASA Astrophysics Data System (ADS)

    McCarthy, Fiona; Kubizňák, David; Mann, Robert B.

    2017-11-01

    We investigate a holographic version of Maxwell's equal area law analogous to that for the phase transition in the black hole temperature/black hole entropy plane of a charged AdS black hole. We consider proposed area laws for both the black hole temperature/holographic entanglement entropy plane and the black hole temperature/2- point correlation function plane. Despite recent claims to the contrary, we demonstrate numerically that neither proposal is valid. We argue that there is no physical reason to expect such a construction in these planes.

  9. Pragmatic approach to gravitational radiation reaction in binary black holes

    PubMed

    Lousto

    2000-06-05

    We study the relativistic orbit of binary black holes in systems with small mass ratio. The trajectory of the smaller object (another black hole or a neutron star), represented as a particle, is determined by the geodesic equation on the perturbed massive black hole spacetime. Here we study perturbations around a Schwarzschild black hole using Moncrief's gauge invariant formalism. We decompose the perturbations into l multipoles to show that all l-metric coefficients are C0 at the location of the particle. Summing over l, to reconstruct the full metric, gives a formally divergent result. We succeed in bringing this sum to a Riemann's zeta-function regularization scheme and numerically compute the first-order geodesics.

  10. The persistence of the large volumes in black holes

    NASA Astrophysics Data System (ADS)

    Ong, Yen Chin

    2015-08-01

    Classically, black holes admit maximal interior volumes that grow asymptotically linearly in time. We show that such volumes remain large when Hawking evaporation is taken into account. Even if a charged black hole approaches the extremal limit during this evolution, its volume continues to grow; although an exactly extremal black hole does not have a "large interior". We clarify this point and discuss the implications of our results to the information loss and firewall paradoxes.

  11. Regular threshold-energy increase with charge for neutral-particle emission in collisions of electrons with oligonucleotide anions.

    PubMed

    Tanabe, T; Noda, K; Saito, M; Starikov, E B; Tateno, M

    2004-07-23

    Electron-DNA anion collisions were studied using an electrostatic storage ring with a merging electron-beam technique. The rate of neutral particles emitted in collisions started to increase from definite threshold energies, which increased regularly with ion charges in steps of about 10 eV. These threshold energies were almost independent of the length and sequence of DNA, but depended strongly on the ion charges. Neutral particles came from breaks of DNAs, rather than electron detachment. The step of the threshold energy increase approximately agreed with the plasmon excitation energy. It is deduced that plasmon excitation is closely related to the reaction mechanism. Copyright 2004 The American Physical Society

  12. Pragmatic mode-sum regularization method for semiclassical black-hole spacetimes

    NASA Astrophysics Data System (ADS)

    Levi, Adam; Ori, Amos

    2015-05-01

    Computation of the renormalized stress-energy tensor is the most serious obstacle in studying the dynamical, self-consistent, semiclassical evaporation of a black hole in 4D. The difficulty arises from the delicate regularization procedure for the stress-energy tensor, combined with the fact that in practice the modes of the field need to be computed numerically. We have developed a new method for numerical implementation of the point-splitting regularization in 4D, applicable to the renormalized stress-energy tensor as well as to ⟨ϕ2⟩ren , namely the renormalized ⟨ϕ2⟩. So far we have formulated two variants of this method: t -splitting (aimed for stationary backgrounds) and angular splitting (for spherically symmetric backgrounds). In this paper we introduce our basic approach, and then focus on the t -splitting variant, which is the simplest of the two (deferring the angular-splitting variant to a forthcoming paper). We then use this variant, as a first stage, to calculate ⟨ϕ2⟩ren in Schwarzschild spacetime, for a massless scalar field in the Boulware state. We compare our results to previous ones, obtained by a different method, and find full agreement. We discuss how this approach can be applied (using the angular-splitting variant) to analyze the dynamical self-consistent evaporation of black holes.

  13. Quasar Drenched in Water Vapor Artist Concept

    NASA Image and Video Library

    2012-08-31

    Artist concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below.

  14. Anomalous double-stripe charge ordering in β -NaFe2O3 with double triangular layers consisting of almost perfect regular Fe4 tetrahedra

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shintaro; Ueda, Hiroaki; Michioka, Chishiro; Yoshimura, Kazuyoshi; Nakamura, Shin; Katsufuji, Takuro; Sawa, Hiroshi

    2018-05-01

    The physical properties of the mixed-valent iron oxide β -NaFe2O3 were investigated by means of synchrotron radiation x-ray diffraction, magnetization, electrical resistivity, differential scanning calorimetry, 23Na NMR, and 57FeM o ̈ssbauer measurements. This compound has double triangular layers consisting of almost perfect regular Fe4 tetrahedra, which suggests geometrical frustration. We found that this compound exhibits an electrostatically unstable double-stripe-type charge ordering, which is stabilized by the cooperative compression of Fe3 +O6 octahedra, owing to a valence change and Fe2 +O6 octahedra due to Jahn-Teller distortion. Our results indicate the importance of electron-phonon coupling for charge ordering in the region of strong charge frustration.

  15. Charge orbits of extremal black holes in five-dimensional supergravity

    NASA Astrophysics Data System (ADS)

    Cerchiai, Bianca L.; Ferrara, Sergio; Marrani, Alessio; Zumino, Bruno

    2010-10-01

    We derive the U-duality charge orbits, as well as the related moduli spaces, of “large” and “small” extremal black holes in nonmaximal ungauged Maxwell-Einstein supergravities with symmetric scalar manifolds in d=5 space-time dimensions. The stabilizer groups of the various classes of orbits are obtained by determining and solving suitable U-invariant sets of constraints, both in “bare” and “dressed” charge bases, with various methods. After a general treatment of attractors in real special geometry (also considering nonsymmetric cases), the N=2 “magic” theories, as well as the N=2 Jordan symmetric sequence, are analyzed in detail. Finally, the half-maximal (N=4) matter-coupled supergravity is also studied in this context.

  16. Towards a second law for Lovelock theories

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sayantani; Haehl, Felix M.; Kundu, Nilay; Loganayagam, R.; Rangamani, Mukund

    2017-03-01

    In classical general relativity described by Einstein-Hilbert gravity, black holes behave as thermodynamic objects. In particular, the laws of black hole mechanics can be interpreted as laws of thermodynamics. The first law of black hole mechanics extends to higher derivative theories via the Noether charge construction of Wald. One also expects the statement of the second law, which in Einstein-Hilbert theory owes to Hawking's area theorem, to extend to higher derivative theories. To argue for this however one needs a notion of entropy for dynamical black holes, which the Noether charge construction does not provide. We propose such an entropy function for the family of Lovelock theories, treating the higher derivative terms as perturbations to the Einstein-Hilbert theory. Working around a dynamical black hole solution, and making no assumptions about the amplitude of departure from equilibrium, we construct a candidate entropy functional valid to all orders in the low energy effective field theory. This entropy functional satisfies a second law, modulo a certain subtle boundary term, which deserves further investigation in non-spherically symmetric situations.

  17. Phase structure of higher spin black hole

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Long, Jiang; Wang, Yi-Nan

    2013-03-01

    In this paper, we investigate the phase structure of the black holes with one single higher spin hair, focusing specifically on the spin 3 and spin widetilde{4} black holes. Based on dimensional analysis and the requirement of thermodynamic consistency, we derive a universal formula relating the entropy with the conserved charges for arbitrary AdS 3 higher spin black holes. Then we use it to study the phase structure of the higher spin black holes. We find that there are six branches of solutions in the spin 3 gravity, eight branches of solutions in the spin widetilde{4} gravity and twelve branches of solutions in the G 2 gravity. In each case, all the branches are related by a simple angle shift in the entropy functions. In the spin 3 case, we reproduce all the results found before. In the spin widetilde{4} case, we find that at low temperature it lies in the BTZ branch while at high temperature it undergoes a phase transition to one of the two other branches, depending on the signature of the chemical potential, a reflection of charge conjugate asymmetry found before.

  18. Racial/Ethnic Disparities in Consistent Reporting of Smoking-Related Behaviors

    PubMed Central

    Soulakova, Julia N; Huang, Huang; Crockett, Lisa J

    2016-01-01

    This study assessed the effect of race/ethnicity on the prevalence of inconsistent reports regarding ever smoking, time since smoking cessation, and age of initiating regular smoking. We used the Tobacco Use Supplement to the Current Population Survey data, which came from a test-retest reliability study, and considered three racial/ethnic subpopulations, Hispanics, Non-Hispanic (NH) Blacks and NH Whites. Initial exploration of highly disagreeing reports of time since smoking cessation and age of onset of regular smoking initiation indicated that the majority of these reports corresponded to NH Whites. However, the proportion of the extremely discrepant reports was very small (less than 0.8%), and these reports were not included in the main analyses. Univariate analyses revealed that for each smoking measure, NH Whites tended to report most consistently when compared to Hispanics and NH Blacks. However, the only statistically significant result was that Hispanics were more likely to report their regular smoking initiation age inconsistently than were NH Whites. Analyses that adjusted for other factors confirmed this finding, i.e., Hispanics were 1.8 times more likely to provide inconsistent reports of their age of onset of regular smoking than were NH Whites. Furthermore, these analyses showed that the impact of race/ethnicity on the prevalence of inconsistent reporting may depend on other factors, e.g., age and employment status. For example, non-employed NH Blacks were 1.9 times more likely to recant ever smoking than were non-employed NH Whites. The lower consistency in reports by Hispanics and NH Blacks underscores the importance of developing new survey design and research strategies for detecting relatively small differences in reporting among the racial/ethnic minorities. Additional efforts to motivate racial/ethnic minorities to participate in national surveys may not only help increase representation of these subpopulations in study samples but also help improve overall data quality. PMID:27088100

  19. Dynamics of charge-transfer excitons in type-II semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Stein, M.; Lammers, C.; Richter, P.-H.; Fuchs, C.; Stolz, W.; Koch, M.; Vänskä, O.; Weseloh, M. J.; Kira, M.; Koch, S. W.

    2018-03-01

    The formation, decay, and coherence properties of charge-transfer excitons in semiconductor heterostructures are investigated by applying four-wave-mixing and terahertz spectroscopy in combination with a predictive microscopic theory. A charge-transfer process is identified where the optically induced coherences decay directly into a charge-transfer electron-hole plasma and exciton states. It is shown that charge-transfer excitons are more sensitive to the fermionic electron-hole substructure than regular excitons.

  20. Smarr formula for Lovelock black holes: A Lagrangian approach

    NASA Astrophysics Data System (ADS)

    Liberati, Stefano; Pacilio, Costantino

    2016-04-01

    The mass formula for black holes can be formally expressed in terms of a Noether charge surface integral plus a suitable volume integral, for any gravitational theory. The integrals can be constructed as an application of Wald's formalism. We apply this formalism to compute the mass and the Smarr formula for static Lovelock black holes. Finally, we propose a new prescription for Wald's entropy in the case of Lovelock black holes, which takes into account topological contributions to the entropy functional.

  1. Double-black-hole solutions of the Einstein-Maxwell-dilaton theory in five dimensions

    NASA Astrophysics Data System (ADS)

    Stelea, Cristian

    2018-01-01

    We describe a solution-generating technique that maps a static charged solution of the Einstein-Maxwell theory in four (or five) dimensions to a five-dimensional solution of the Einstein-Maxwell-Dilaton theory. As examples of this technique first we show how to construct the dilatonic version of the Reissner-Nordström solution in five dimensions and then we consider the more general case of the double black hole solutions and describe some of their properties. We found that in the general case the value of the conical singularities in between the black holes is affected by the dilaton's coupling constant to the gauge field and only in the particular case when all charges are proportional to the masses this dependence cancels out.

  2. Gaussian black holes in Rastall gravity

    NASA Astrophysics Data System (ADS)

    Spallucci, Euro; Smailagic, Anais

    In this short note we present the solution of Rastall gravity equations sourced by a Gaussian matter distribution. We find that the black hole metric shares all the common features of other regular, General Relativity BH solutions discussed in the literature: there is no curvature singularity and the Hawking radiation leaves a remnant at zero temperature in the form of a massive ordinary particle.

  3. 38 CFR 21.9640 - Rates of payment of educational assistance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... percent) and who— (1) Is enrolled at an institution of higher learning located in the United States, or at... amount for established charges paid directly to the institution of higher learning for the entire quarter... charged by the institution of higher learning; or (2) The maximum amount of tuition regularly charged per...

  4. 38 CFR 21.9640 - Rates of payment of educational assistance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... percent) and who— (1) Is enrolled at an institution of higher learning located in the United States, or at... amount for established charges paid directly to the institution of higher learning for the entire quarter... charged by the institution of higher learning; or (2) The maximum amount of tuition regularly charged per...

  5. 38 CFR 21.9640 - Rates of payment of educational assistance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... percent) and who— (1) Is enrolled at an institution of higher learning located in the United States, or at... amount for established charges paid directly to the institution of higher learning for the entire quarter... charged by the institution of higher learning; or (2) The maximum amount of tuition regularly charged per...

  6. 38 CFR 21.9640 - Rates of payment of educational assistance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... percent) and who— (1) Is enrolled at an institution of higher learning located in the United States, or at... amount for established charges paid directly to the institution of higher learning for the entire quarter... charged by the institution of higher learning; or (2) The maximum amount of tuition regularly charged per...

  7. 32 CFR 766.11 - Fees for landing, parking and storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... aircraft will be charged fees if their government charges similar fees for U.S. Government aircraft. (2... (Regular and Reserve) or retired, provided the aircraft is not used for commercial purposes. (7) Landing... landing), a landing fee in excess of the normal landing fee will be charged to cover the additional...

  8. Hawking radiation from black rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, Umpei; Murata, Keiju

    2008-01-15

    We calculate the quantum radiation from the 5-dimensional charged rotating black rings by demanding the radiation eliminate the possible anomalies on the horizons. It is shown that the temperature, energy flux, and angular-momentum flux exactly coincide with those of the Hawking radiation. The black rings considered in this paper contain the Myers-Perry black hole as a limit, and the quantum radiation for this black hole, obtained in the literature, is recovered in the limit. The results support the picture that the Hawking radiation can be regarded as the anomaly eliminator on horizons and suggest its general applicability to the higher-dimensionalmore » black holes discovered recently.« less

  9. Flexible multichannel vagus nerve electrode for stimulation and recording for heart failure treatment.

    PubMed

    Xue, Ning; Martinez, Ignacio Delgado; Sun, Jianhai; Cheng, Yuhua; Liu, Chunxiu

    2018-07-30

    Vagus nerve stimulation is an emerging bioelectronic medicine to modulate cardiac function, as the nerve provides parasympathetic innervation to the heart. In this study, we developed a polyimide based 2D cuff electrode to wrap around on the vagus nerve. Thanks to the tiny size and bendable protruding structure of the contact tips of the device, the electrode sites are able to flexibly bend to touch the nerve, selectively record and stimulate the vagus nerve. Gold, platinum and platinum black materials were chosen to compose the electrodes for nerve stimulation and recording, respectively. Since the platinum black has ~30 times larger charge delivery capacity (CDC) than gold, Pt black electrode is used for nerve stimulation. The electrochemical impedance spectroscopy and cyclic voltammetry measurement of the three materials were conducted in vitro, revealing the results of 405 kΩ, 41 kΩ, 10.5 kΩ, @1 kHz and 0.81 mC/cm 2 , 4.26 mC/cm 2 , 25.5 mC/cm 2 , respectively (n = 3). The cuff electrodes were implanted into the right-sided vagus nerve of rats for in vivo experiment. Biphasic current configuration was implemented for nerve stimulation with frequency of 10 Hz, pulse during of 300 μs and various currents stimulus. The result shows the heart beat frequency drops up to 36% during the stimulation and was able to return the regular frequency as stimulation was removed. Subsequently, the vagus nerve signals were recorded with the four channel cuff electrodes. The magnitude of the compound nerve action potentials (CNAPs) is ~10 μV and the signal to noise ratio (SNR) is ~20. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Revisit on the thermodynamic stability of Hořava-Lifshitz black hole

    NASA Astrophysics Data System (ADS)

    Meng, Xudong; Wang, Ruihong

    We study the thermodynamic properties of the black hole derived in Hořava-Lifshitz (HL) gravity without the detailed-balance condition. The parameter Ξ = 𝜖2 in the HL black hole plays the same role as that of the electric charge in the Reissner-Nordström-anti-de Sitter (RN-AdS) black hole. By analogy, we treat the parameter Ξ as the thermodynamic variable and obtain the first law of thermodynamics for the HL black hole. Although the HL black hole and the RN-AdS black hole have the similar mass and temperature, due to their very different entropy, the two black holes have very different thermodynamic properties. By calculating the heat capacity and the free energy, we analyze the thermodynamic stability of the HL black hole.

  11. AdS and Lifshitz black hole solutions in conformal gravity sourced with a scalar field

    NASA Astrophysics Data System (ADS)

    Herrera, Felipe; Vásquez, Yerko

    2018-07-01

    In this paper we obtain exact asymptotically anti-de Sitter black hole solutions and asymptotically Lifshitz black hole solutions with dynamical exponents z = 0 and z = 4 of four-dimensional conformal gravity coupled with a self-interacting conformally invariant scalar field. Then, we compute their thermodynamical quantities, such as the mass, the Wald entropy and the Hawking temperature. The mass expression is obtained by using the generalized off-shell Noether potential formulation. It is found that the anti-de Sitter black holes as well as the Lifshitz black holes with z = 0 have zero mass and zero entropy, although they have non-zero temperature. A similar behavior has been observed in previous works, where the integration constant is not associated with a conserved charge, and it can be interpreted as a kind of gravitational hair. On the other hand, the Lifshitz black holes with dynamical exponent z = 4 have non-zero conserved charges, and the first law of black hole thermodynamics holds. Also, we analyze the horizon thermodynamics for the Lifshitz black holes with z = 4, and we show that the first law of black hole thermodynamics arises from the field equations evaluated on the horizon. Furthermore, we study the propagation of a conformally coupled scalar field on these backgrounds and we find the quasinormal modes analytically in several cases. We find that for anti-de Sitter black holes and Lifshitz black holes with z = 4, there is a continuous spectrum of frequencies for Dirichlet boundary condition; however, we show that discrete sets of well defined quasinormal frequencies can be obtained by considering Neumann boundary conditions.

  12. 5 CFR 9901.363 - Premium pay for health care personnel.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to be on-call outside his or her regular duty hours or during hours on a holiday when the employee is excused from regular duty. (3) An employee may not be scheduled to be on-call unless it is essential for... status. (6) An employee may not be charged leave during periods of regularly scheduled on-call duty; nor...

  13. 18 CFR 401.110 - Fees.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... include staff time associated with: (A) Processing FOIA requests; (B) Locating and reviewing files; (C) Monitoring file reviews; (D) Generating computer records (electronic print-outs); and (E) Preparing logs of..., black and white copies. The charge for copying standard sized, black and white public records shall be...

  14. 18 CFR 401.110 - Fees.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... include staff time associated with: (A) Processing FOIA requests; (B) Locating and reviewing files; (C) Monitoring file reviews; (D) Generating computer records (electronic print-outs); and (E) Preparing logs of..., black and white copies. The charge for copying standard sized, black and white public records shall be...

  15. Quasinormal Modes of Charged Dilaton Black Holes and Their Entropy Spectra

    NASA Astrophysics Data System (ADS)

    Sakalli, I.

    2013-08-01

    In this study, we employ the scalar perturbations of the charged dilaton black hole (CDBH) found by Chan, Horne and Mann (CHM), and described with an action which emerges in the low-energy limit of the string theory. A CDBH is neither asymptotically flat (AF) nor non-asymptotically flat (NAF) spacetime. Depending on the value of its dilaton parameter a, it has both Schwarzschild and linear dilaton black hole (LDBH) limits. We compute the complex frequencies of the quasinormal modes (QNMs) of the CDBH by considering small perturbations around its horizon. By using the highly damped QNM in the process prescribed by Maggiore, we obtain the quantum entropy and area spectra of these black holes (BHs). Although the QNM frequencies are tuned by a, we show that the quantum spectra do not depend on a, and they are equally spaced. On the other hand, the obtained value of undetermined dimensionless constant ɛ is the double of Bekenstein's result. The possible reason of this discrepancy is also discussed.

  16. Duality between electric and magnetic black holes

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.; Ross, Simon F.

    1995-11-01

    A number of attempts have recently been made to extend the conjectured S duality of Yang-Mills theory to gravity. Central to these speculations has been the belief that electrically and magnetically charged black holes, the solitons of quantum gravity, have identical quantum properties. This is not obvious, because, although duality is a symmetry of the classical equations of motion, it changes the sign of the Maxwell action. Nevertheless, we show that the chemical potential and charge projection that one has to introduce for electric but not magnetic black holes exactly compensate for the difference in action in the semiclassical approximation. In particular, we show that the pair production of electric black holes is not a runaway process, as one might think if one just went by the action of the relevant instanton. We also comment on the definition of the entropy in cosmological situations, and show that we need to be more careful when defining the entropy than we are in an asymptotically flat case.

  17. Horndeski theories confront the Gravity Probe B experiment

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sajal; Chakraborty, Sumanta

    2018-06-01

    In this work we have investigated various properties of a spinning gyroscope in the context of Horndeski theories. In particular, we have focused on two specific situations—(a) when the gyroscope follows a geodesic trajectory and (b) when it is endowed with an acceleration. In both these cases, besides developing the basic formalism, we have also applied the same to understand the motion of a spinning gyroscope in various static and spherically symmetric spacetimes pertaining to Horndeski theories. Starting with the Schwarzschild de Sitter spacetime as a warm up exercise, we have presented our results for two charged Galileon black holes as well as for a black hole in scalar coupled Einstein-Gauss-Bonnet gravity. In all these cases we have shown that the spinning gyroscope can be used to distinguish black holes from naked singularities. Moreover, using the numerical estimation of the geodetic precession from the Gravity Probe B experiment, we have constrained the gauge/scalar charge of the black holes in these Horndeski theories. Implications are also discussed.

  18. Building cosmological frozen stars

    NASA Astrophysics Data System (ADS)

    Kastor, David; Traschen, Jennie

    2017-02-01

    Janis-Newman-Winicour (JNW) solutions generalize Schwarzschild to include a massless scalar field. While they share the familiar infinite redshift feature of Schwarzschild, they suffer from the presence of naked singularities. Cosmological versions of JNW spacetimes were discovered some years ago, in the most general case, by Fonarev. Fonarev solutions are also plagued by naked singularities, but have the virtue, unlike e.g. Schwarzschild-deSitter, of being dynamical. Given that exact dynamical cosmological black hole solutions are scarce, Fonarev solutions merit further study. We show how Fonarev solutions can be obtained via generalized dimensional reduction from simpler static vacuum solutions. These results may lead towards constructions of actual dynamical cosmological black holes. In particular, we note that cosmological versions of extremal charged dilaton black holes are known. JNW spacetimes represent a different limiting case of the family of charged dilaton black holes, which have been important in the context of string theory, and better understanding their cosmological versions of JNW spacetimes thus provides a second data point towards finding cosmological versions of the entire family.

  19. Null hypersurface quantization, electromagnetic duality and asympotic symmetries of Maxwell theory

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Arpan; Hung, Ling-Yan; Jiang, Yikun

    2018-03-01

    In this paper we consider introducing careful regularization at the quantization of Maxwell theory in the asymptotic null infinity. This allows systematic discussions of the commutators in various boundary conditions, and application of Dirac brackets accordingly in a controlled manner. This method is most useful when we consider asymptotic charges that are not localized at the boundary u → ±∞ like large gauge transformations. We show that our method reproduces the operator algebra in known cases, and it can be applied to other space-time symmetry charges such as the BMS transformations. We also obtain the asymptotic form of the U(1) charge following from the electromagnetic duality in an explicitly EM symmetric Schwarz-Sen type action. Using our regularization method, we demonstrate that the charge generates the expected transformation of a helicity operator. Our method promises applications in more generic theories.

  20. Overlay of multiframe SEM images including nonlinear field distortions

    NASA Astrophysics Data System (ADS)

    Babin, S.; Borisov, S.; Ivonin, I.; Nakazawa, S.; Yamazaki, Y.

    2018-03-01

    To reduce charging and shrinkage, CD-SEMs utilize low electron energies and multiframe imaging. This results in every next frame being altered due to stage and beam instability, as well as due to charging. Regular averaging of the frames blurs the edges; this directly effects the extracted values of critical dimensions. A technique was developed to overlay multiframe images without the loss of quality. This method takes into account drift, rotation, and magnification corrections, as well as nonlinear distortions due to wafer charging. A significant improvement in the signal to noise ratio and overall image quality without degradation of the feature's edge quality was achieved. The developed software is capable of working with regular and large size images up to 32K pixels in each direction.

  1. A black hole with torsion in 5D Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Cvetković, B.; Simić, D.

    2018-03-01

    We analyze static spherically symmetric solutions of five dimensional (5D) Lovelock gravity in the first order formulation. In the Riemannian sector, when torsion vanishes, the Boulware–Deser black hole represents a unique static spherically symmetric black hole solution for the generic choice of the Lagrangian parameters. We show that a special choice of the Lagrangian parameters, different from the Lovelock Chern–Simons gravity, leads to the existence of a static black hole solution with torsion, the metric of which is asymptotically anti-de Sitter (AdS). We calculate the conserved charges and thermodynamical quantities of this black hole solution.

  2. Black holes as antimatter factories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambi, Cosimo; Petrov, Alexey A.; Dolgov, Alexander D., E-mail: cosimo.bambi@ipmu.jp, E-mail: dolgov@fe.infn.it, E-mail: apetrov@physics.wayne.edu

    2009-09-01

    We consider accretion of matter onto a low mass black hole surrounded by ionized medium. We show that, because of the higher mobility of protons than electrons, the black hole would acquire positive electric charge. If the black hole's mass is about or below 10{sup 20} g, the electric field at the horizon can reach the critical value which leads to vacuum instability and electron-positron pair production by the Schwinger mechanism. Since the positrons are ejected by the emergent electric field, while electrons are back-captured, the black hole operates as an antimatter factory which effectively converts protons into positrons.

  3. Superradiance of charged black holes in Einstein–Gauss–Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Fierro, Octavio; Grandi, Nicolás; Oliva, Julio

    2018-05-01

    In this paper we show that electrically charged black holes in Einstein–Gauss–Bonnet gravity suffer from a superradiant instability. It is triggered by a charged scalar field that fulfils Dirichlet boundary conditions at a mirror located outside the horizon. As in general relativity, the unstable modes exist provided that the mirror is located beyond a critical radius, making the instability a long wavelength one. We explore the effects of the Gauss–Bonnet corrections on the critical radius and find evidence that the critical radius decreases as the Gauss–Bonnet coupling α increases. Due to the, up to date, lack of an analytic rotating solution for Einstein–Gauss–Bonnet theory, this is the first example of a superradiant instability in the presence of higher curvature terms in the action.

  4. A note on the entropy of rotating BPS AdS7 × S4 black holes

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Morteza; Hristov, Kiril; Zaffaroni, Alberto

    2018-05-01

    In this note we show that the entropy of BPS, rotating, electrically charged AdS7 × S 4 black holes can be obtained by an extremization principle involving a particular combination of anomaly coefficients of the six-dimensional N=(2,0) theory. This result extends our previous finding for BPS, rotating AdS5 × S 5 black holes.

  5. Charged Particles' Hawking Radiation via Tunneling of Both Horizons from Reissner-Nordström-Taub-NUT Black Holes

    NASA Astrophysics Data System (ADS)

    Ali, M. Hossain; Sultana, Kausari

    2013-08-01

    In some recent derivations thermal characters of the inner horizon have been employed; however, the understanding of possible role that may play the inner horizons of black holes in black hole thermodynamics is still somewhat incomplete. Motivated by this problem we investigate Hawking radiation of the Reissner-Nordström-Taub-NUT (RNTN) black hole by considering thermal characters of both the outer and inner horizons. We apply Damour-Ruffini method and the thin film brick wall model to calculate the temperature and the entropy of the inner horizon of the RNTN black hole. The inner horizon admits thermal character with positive temperature and entropy proportional to its area, and it thus may contribute to the total entropy of the black hole in the context of Nernst theorem. Considering conservations of energy and charge and the back-reaction of emitting particles to the spacetime, the emission spectra are obtained for both the inner and outer horizons. The total emission rate is the product of the emission rates of the inner and outer horizons, and it deviates from the purely thermal spectrum and can bring some information out. Thus, the result can be treated as an explanation to the information loss paradox.

  6. ENHANCED TOXICITY OF CHARGED CARBON NANOTUBES AND ULTRAFINE CARBON BLACK PARTICLES

    EPA Science Inventory

    Man-made carbonaceous nano-particles such as single and multi-walled carbon nano-tubes (CNT) and ultra-fine carbon black (UFCB) particles are finding increasing applications in industry, but their potential toxic effects is of concern. In aqueous media, these particles cluster in...

  7. 7 CFR 51.38 - Basis for fees and rates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... condition inspection, a one hour charge shall be added to the carlot fee; (4) When inspections are performed... grader's regularly scheduled work week, a charge for overtime or holiday work shall be made at the rate... ($74, on or after March 1, 2008) per hour; Provided, that: (1) Charges for time shall be rounded to the...

  8. Racial Consciousness, Social Capital, and Educational Reform in Brazil: Black Community-Based Projects that Defy Educational Attainment Canons.

    ERIC Educational Resources Information Center

    Valentim, Silvani S.

    This study examined a Preparatory Course for Blacks and the Economically Disadvantaged (PBED) in a poor area of Rio de Janeiro, Brazil. The PBED is an alternative educational project that offers regular classes on evenings and weekends using volunteer labor, donated space, and contributions from students who can afford it. Case studies were used…

  9. Influence of regular black tea consumption on tobacco associated DNA damage and HPV prevalence in human oral mucosa.

    PubMed

    Pal, Debolina; Banerjee, Sarmistha; Indra, Dipanjana; Mandal, Shyamsundar; Dum, Anirudha; Bhowmik, Anup; Panda, Chinmay Kr; Das, Sukta

    2007-01-01

    Black tea is more widely consumed than green tea worldwide, particularly in India. Therefore, it is necessary to focus attention on black tea with respect to its health promoting and anti-cancer actions. In order to establish the concept that black tea is a potential candidate for cancer prevention, it is important to provide epidemiological evidence derived from investigations of human populations. In view of this, the objective of the present study was to determine the correlation between nature of black tea consumption and DNA damage in normal subjects with or without tobacco habit and oral cancer patients, taking the latter as positive controls. Much experimental evidence points to associations between tobacco habit and HPV 16 and HPV 18 (Human Papilloma virus) infection. But no studies have taken into account the possible confounding effect of black tea consumption on DNA damage along with HPV infection. A pilot study was therefore undertaken. Comet assay was used to evaluate the DNA damage among normal subjects including tobacco users (n = 86), non-tobacco users (n = 45) and Oral cancer patients (n = 37). Percentage of damaged cells was scored in the buccal squamous cells of all subjects mentioned above. HPV analysis was performed on 79 samples (including 37 oral cancer patients). The evaluation of various confounding factors like age, tenure of tobacco habit and tea habit showed significant associations with DNA damage. The observations strongly indicate that regular intake of black tea at least above four cups can reduce tobacco associated DNA damage among normal tobacco users. HPV prevalence was not seen to be associated with age, tenure of tobacco habit or the tea drinking habit.

  10. Microscopic entropy of the three-dimensional rotating black hole of Bergshoeff-Hohm-Townsend massive gravity

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston; Oliva, Julio; Tempo, David; Troncoso, Ricardo

    2009-12-01

    Asymptotically anti-de Sitter rotating black holes for the Bergshoeff-Hohm-Townsend massive gravity theory in three dimensions are considered. In the special case when the theory admits a unique maximally symmetric solution, apart from the mass and the angular momentum, the black hole is described by an independent “gravitational hair” parameter, which provides a negative lower bound for the mass. This bound is saturated at the extremal case, and since the temperature and the semiclassical entropy vanish, it is naturally regarded as the ground state. The absence of a global charge associated with the gravitational hair parameter reflects itself through the first law of thermodynamics in the fact that the variation of this parameter can be consistently reabsorbed by a shift of the global charges, giving further support to consider the extremal case as the ground state. The rotating black hole fits within relaxed asymptotic conditions as compared with the ones of Brown and Henneaux, such that they are invariant under the standard asymptotic symmetries spanned by two copies of the Virasoro generators, and the algebra of the conserved charges acquires a central extension. Then it is shown that Strominger’s holographic computation for general relativity can also be extended to the Bergshoeff-Hohm-Townsend theory; i.e., assuming that the quantum theory could be consistently described by a dual conformal field theory at the boundary, the black hole entropy can be microscopically computed from the asymptotic growth of the number of states according to Cardy’s formula, in exact agreement with the semiclassical result.

  11. Charge-transport anisotropy in black phosphorus: critical dependence on the number of layers.

    PubMed

    Banerjee, Swastika; Pati, Swapan K

    2016-06-28

    Phosphorene is a promising candidate for modern electronics because of the anisotropy associated with high electron-hole mobility. Additionally, superior mechanical flexibility allows the strain-engineering of various properties including the transport of charge carriers in phosphorene. In this work, we have shown the criticality of the number of layers to dictate the transport properties of black phosphorus. Trilayer black phosphorus (TBP) has been proposed as an excellent anisotropic material, based on the transport parameters using Boltzmann transport formalisms coupled with density functional theory. The mobilities of both the electron and the hole are found to be higher along the zigzag direction (∼10(4) cm(2) V(-1) s(-1) at 300 K) compared to the armchair direction (∼10(2) cm(2) V(-1) s(-1)), resulting in the intrinsic directional anisotropy. Application of strain leads to additional electron-hole anisotropy with 10(3) fold higher mobility for the electron compared to the hole. Critical strain for maximum anisotropic response has also been determined. Whether the transport anisotropy is due to the spatial or charge-carrier has been determined through analyses of the scattering process of electrons and holes, and their recombination as well as relaxation dynamics. In this context, we have derived two descriptors (S and F(k)), which are general enough for any 2D or quasi-2D systems. Information on the scattering involving purely the carrier states also helps to understand the layer-dependent photoluminescence and electron (hole) relaxation in black phosphorus. Finally, we justify trilayer black phosphorus (TBP) as the material of interest with excellent transport properties.

  12. Mass and angular momentum of black holes in low-energy heterotic string theory

    NASA Astrophysics Data System (ADS)

    Peng, Jun-Jin

    2016-04-01

    We investigate conserved charges in the low-energy effective field theory describing heterotic string theory. Starting with a general Lagrangian that consists of a metric, a scalar field, a vector gauge field, together with a two-form potential, we derive off-shell Noether potentials of the Lagrangian and generalize the Abbott-Deser-Tekin (ADT) formalism to the off-shell level by establishing one-to-one correspondence between the ADT potential and the off-shell Noether potential. It is proved that the off-shell generalized ADT formalism is conformally invariant. Then, we apply the formulation to compute mass and angular momentum of the four-dimensional Kerr-Sen black hole and the five-dimensional rotating charged black string in the string frame without a necessity to transform the metrics into the Einstein frame.

  13. Rotating charged black hole spacetimes in quadratic f(R) gravitational theories

    NASA Astrophysics Data System (ADS)

    Nashed, G. G. L.

    Motivated by the substantial modifications of gravitational theories and by the models that come out of f(R), we apply the field equation of the charged f(R) = R + βR2 as well as a general vector potential containing three unknown functions to two spherically symmetric spacetimes. We solve the output of the differential equations and derive a class of black holes that are electrically and magnetically rotating spacetimes. The asymptotic behavior of these black holes acts as anti-de Sitter spacetime. Moreover, these solutions have asymptotic curvature singularities as those of General Relativity. We investigate this by calculating the invariants of curvature. Also, we address the issue of the energy conditions and show that the strong energy condition is satisfied provided β > 0. Finally, we compute the conserved quantities like mass and angular momentum.

  14. Black hole thermodynamics from a variational principle: asymptotically conical backgrounds

    DOE PAGES

    An, Ok Song; Cvetič, Mirjam; Papadimitriou, Ioannis

    2016-03-14

    The variational problem of gravity theories is directly related to black hole thermodynamics. For asymptotically locally AdS backgrounds it is known that holographic renormalization results in a variational principle in terms of equivalence classes of boundary data under the local asymptotic symmetries of the theory, which automatically leads to finite conserved charges satisfying the first law of thermodynamics. We show that this connection holds well beyond asymptotically AdS black holes. In particular, we formulate the variational problem for N = 2 STU supergravity in four dimensions with boundary conditions corresponding to those obeyed by the so called ‘subtracted geometries’. Wemore » show that such boundary conditions can be imposed covariantly in terms of a set of asymptotic second class constraints, and we derive the appropriate boundary terms that render the variational problem well posed in two different duality frames of the STU model. This allows us to define finite conserved charges associated with any asymptotic Killing vector and to demonstrate that these charges satisfy the Smarr formula and the first law of thermodynamics. Moreover, by uplifting the theory to five dimensions and then reducing on a 2-sphere, we provide a precise map between the thermodynamic observables of the subtracted geometries and those of the BTZ black hole. Finally, surface terms play a crucial role in this identification.« less

  15. Black hole thermodynamics from a variational principle: asymptotically conical backgrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Ok Song; Cvetič, Mirjam; Papadimitriou, Ioannis

    The variational problem of gravity theories is directly related to black hole thermodynamics. For asymptotically locally AdS backgrounds it is known that holographic renormalization results in a variational principle in terms of equivalence classes of boundary data under the local asymptotic symmetries of the theory, which automatically leads to finite conserved charges satisfying the first law of thermodynamics. We show that this connection holds well beyond asymptotically AdS black holes. In particular, we formulate the variational problem for N = 2 STU supergravity in four dimensions with boundary conditions corresponding to those obeyed by the so called ‘subtracted geometries’. Wemore » show that such boundary conditions can be imposed covariantly in terms of a set of asymptotic second class constraints, and we derive the appropriate boundary terms that render the variational problem well posed in two different duality frames of the STU model. This allows us to define finite conserved charges associated with any asymptotic Killing vector and to demonstrate that these charges satisfy the Smarr formula and the first law of thermodynamics. Moreover, by uplifting the theory to five dimensions and then reducing on a 2-sphere, we provide a precise map between the thermodynamic observables of the subtracted geometries and those of the BTZ black hole. Finally, surface terms play a crucial role in this identification.« less

  16. Stationary Black Holes: Uniqueness and Beyond.

    PubMed

    Heusler, Markus

    1998-01-01

    The spectrum of known black hole solutions to the stationary Einstein equations has increased in an unexpected way during the last decade. In particular, it has turned out that not all black hole equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black hole space-times ceases to exist in self-gravitating non-linear field theories. This text aims to review some of the recent developments and to discuss them in the light of the uniqueness theorem for the Einstein-Maxwell system.

  17. Stationary Black Holes: Uniqueness and Beyond.

    PubMed

    Chruściel, Piotr T; Costa, João Lopes; Heusler, Markus

    2012-01-01

    The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.

  18. Scattering and absorption of massless scalar waves by Born-Infeld black holes

    NASA Astrophysics Data System (ADS)

    Sanchez, Pablo Alejandro; Bretón, Nora; Bergliaffa, Santiago Esteban Perez

    2018-06-01

    We present the results of a study of the scattering of massless planar scalar waves by a Born-Infeld black hole. The scattering and absorption cross sections are calculated using partial-wave methods. The numerical results are checked by reproducing those of the Reissner-Nordstrom black hole, and also using several approximations, with which our results are in very good agreement. The dependence of these phenomena on the effective potential, the charge of the black hole, and the value of the Born-Infeld parameter is discussed.

  19. Brumation of introduced Black and White Tegus, Tupinambis merianae (Squamata: Teiidae), in southern Florida

    USGS Publications Warehouse

    McEachern, Michelle; Yackel Adams, Amy A.; Klug, Page E.; Fitzgerald, Lee A.; Reed, Robert N.

    2015-01-01

    An established population of Tupinambis merianae (Black and White Tegu) in southeastern Florida threatens the Everglades ecosystem. Understanding the behavioral ecology of Black and White Tegus could aid in management and control plans. Black and White Tegus are seasonally active and brumate during the winter in their native range, but brumation behavior is largely unstudied in either the native or the invasive range. We describe the first observations of Black and White Tegu brumation in southeastern Florida after monitoring 5 free-ranging, adult male Black and White Tegus through an inactive season using radiotelemetry and automated cameras. Duration of brumation averaged 137 days, beginning in September and ending by February. One of the 5 Black and White Tegus emerged to bask regularly during brumation, which to our knowledge represents the first documented instance of a free-ranging Black and White Tegu basking during brumation. These preliminary findings provide a basis for future research of brumation behavior.

  20. Light-cone reduction vs. TsT transformations: a fluid dynamics perspective

    NASA Astrophysics Data System (ADS)

    Dutta, Suvankar; Krishna, Hare

    2018-05-01

    We compute constitutive relations for a charged (2+1) dimensional Schrödinger fluid up to first order in derivative expansion, using holographic techniques. Starting with a locally boosted, asymptotically AdS, 4 + 1 dimensional charged black brane geometry, we uplift that to ten dimensions and perform TsT transformations to obtain an effective five dimensional local black brane solution with asymptotically Schrödinger isometries. By suitably implementing the holographic techniques, we compute the constitutive relations for the effective fluid living on the boundary of this space-time and extract first order transport coefficients from these relations. Schrödinger fluid can also be obtained by reducing a charged relativistic conformal fluid over light-cone. It turns out that both the approaches result the same system at the end. Fluid obtained by light-cone reduction satisfies a restricted class of thermodynamics. Here, we see that the charged fluid obtained holographically also belongs to the same restricted class.

  1. Ulcers

    MedlinePlus

    ... These include both regular and decaffeinated coffee, tea, chocolate, meat extracts, alcohol, black pepper, chili powder, mustard ... Disease, peptic ulcers, proton pump inhibitor, sucralfate, triple therapy January 1, 1996 Copyright © American Academy of Family ...

  2. Holographic charged Rényi entropies

    NASA Astrophysics Data System (ADS)

    Belin, Alexandre; Hung, Ling-Yan; Maloney, Alexander; Matsuura, Shunji; Myers, Robert C.; Sierens, Todd

    2013-12-01

    We construct a new class of entanglement measures by extending the usual definition of Rényi entropy to include a chemical potential. These charged Rényi entropies measure the degree of entanglement in different charge sectors of the theory and are given by Euclidean path integrals with the insertion of a Wilson line encircling the entangling surface. We compute these entropies for a spherical entangling surface in CFT's with holographic duals, where they are related to entropies of charged black holes with hyperbolic horizons. We also compute charged Rényi entropies in free field theories.

  3. The remnants in Reissner-Nordström-de Sitter quintessence black hole

    NASA Astrophysics Data System (ADS)

    Feng, Zhongwen; Zhang, Li; Zu, Xiaotao

    2014-08-01

    According to the effects of quantum gravity, we investigated the fermion tunneling from the Reissner-Nordström-de Sitter quintessence (RN-dSQ) black hole. The corrected temperature is not only determined by the mass and charge of the black hole, but also depended on the quantum number of the emitted fermion and β, which is a small value representing the effects of quantum gravity. The effects of quantum gravity slowed down the increase of the temperature and led to the remnants of the black hole. We think it is a method to avoid the information loss paradox of black holes.

  4. Thermodynamics of charged Lifshitz black holes with quadratic corrections

    NASA Astrophysics Data System (ADS)

    Bravo-Gaete, Moisés; Hassaïne, Mokhtar

    2015-03-01

    In arbitrary dimension, we consider the Einstein-Maxwell Lagrangian supplemented by the more general quadratic-curvature corrections. For this model, we derive four classes of charged Lifshitz black hole solutions for which the metric function is shown to depend on a unique integration constant. The masses of these solutions are computed using the quasilocal formalism based on the relation established between the off-shell Abbott-Deser-Tekin and Noether potentials. Among these four solutions, three of them are interpreted as extremal in the sense that their masses vanish identically. For the last family of solutions, both the quasilocal mass and the electric charge are shown to depend on the integration constant. Finally, we verify that the first law of thermodynamics holds for each solution and a Smarr formula is also established for the four solutions.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Shao-Wen; Liu, Yu-Xiao; Fu, Chun-E

    In this paper, we study numerically the quasi-equatorial lensing by the stationary, axially-symmetric black hole in Kerr-Taub-NUT spacetime in the strong field limit. The deflection angle of light ray and other strong deflection limit coefficients are obtained numerically and they are found to be closely dependent on the NUT charge n and spin a. We also compute the magnification and the positions of the relativistic images. The caustics are studied and the results show that these caustics drift away from the optical axis, which is quite different from the Schwarzschild black hole case. Moreover, the intersections of the critical curvesmore » on the equatorial plane are obtained and it is shown that they increase with the NUT charge. These results show that there is a significant effect of the NUT charge on the strong gravitational lensing.« less

  6. Swift/BAT hard X-ray monitoring: A New Outburst of Black Hole Transient H1743-322

    NASA Astrophysics Data System (ADS)

    Lin, Jie; Yu, Wenfei; Yan, Zhen; Zhang, Hui; Zhang, Wenda

    2016-02-01

    H 1743-322 is one of the a few black hole transients which undergo frequent outbursts in the past decade. From December 2009 to June 2015, it has turned into outbursts for at least eight times (ATEL #2364, #2774, #3277, #3842, #4418, #5241, #6474, and #7607), and its outbursts take place rather regularly with recurrence time of about 7-8 months.

  7. Brans-Dicke Theory with Λ>0: Black Holes and Large Scale Structures.

    PubMed

    Bhattacharya, Sourav; Dialektopoulos, Konstantinos F; Romano, Antonio Enea; Tomaras, Theodore N

    2015-10-30

    A step-by-step approach is followed to study cosmic structures in the context of Brans-Dicke theory with positive cosmological constant Λ and parameter ω. First, it is shown that regular stationary black-hole solutions not only have constant Brans-Dicke field ϕ, but can exist only for ω=∞, which forces the theory to coincide with the general relativity. Generalizations of the theory in order to evade this black-hole no-hair theorem are presented. It is also shown that in the absence of a stationary cosmological event horizon in the asymptotic region, a stationary black-hole horizon can support a nontrivial Brans-Dicke hair. Even more importantly, it is shown next that the presence of a stationary cosmological event horizon rules out any regular stationary solution, appropriate for the description of a star. Thus, to describe a star one has to assume that there is no such stationary horizon in the faraway asymptotic region. Under this implicit assumption generic spherical cosmic structures are studied perturbatively and it is shown that only for ω>0 or ω≲-5 their predicted maximum sizes are consistent with observations. We also point out how, many of the conclusions of this work differ qualitatively from the Λ=0 spacetimes.

  8. Correlates of satisfaction and dissatisfaction with medical care: a community perspective.

    PubMed

    Hulka, B S; Kupper, L L; Daly, M B; Cassel, J C; Schoen, F

    1975-08-01

    The attitude of the public toward physicians and medical services is an issue of current concern and debate. To address this problem, an instrument was developed using Thurstone scaling methods in conjunction with a Likert format and a modified scoring technique. Following pretesting of the instrument among both patient and population samples, a survey was conducted among the residents of a probability sample of households in a city of 200,000 people. The attitude questionnaire was completed by 1,713 adults in 1,112 households. Overall, attitudes were favorable toward the professional competency and the personal qualities of physicians. Accessibility, including costs and convenience, were less highly regarded. Men were less satisfied than women and blacks less satisfied than whites. Particularly negative attitudes were expressed toward the personal qualities of physicians by young blacks, whereas among blacks over 60 the negative effect was toward cost and convenience. Having a regular physician and long attendance with that physician were correlated with positive attitudes. The most negative sentiment was expressed by women without regular source of care. Medical services are being sought and obtained by a large segment of society, but problems of costs and acceptability for the elderly, low social class persons, members of large families, and for blacks still remain.

  9. 'Triply cursed': racism, homophobia and HIV-related stigma are barriers to regular HIV testing, treatment adherence and disclosure among young Black gay men.

    PubMed

    Arnold, Emily A; Rebchook, Gregory M; Kegeles, Susan M

    2014-06-01

    In the USA, young Black gay men are disproportionately impacted upon by HIV. In this qualitative study consisting of in-depth interviews with 31 young Black gay men and nine service providers, where we used thematic analysis to guide our interpretations, we found that HIV-related stigma and homophobia, within the larger societal context of racism, were related to sexual risk behaviour, reluctance to obtain HIV testing or care, lower adherence to treatment medication, and non-disclosure of a positive HIV status to sexual partners. Participants experienced homophobia and HIV-related stigma from churches and families within the Black community and from friends within the Black gay community, which otherwise provide support in the face of racism. Vulnerability to HIV was related to strategies that young Black gay men enacted to avoid being stigmatised or as a way of coping with alienation and rejection.

  10. Effect of an external magnetic field on particle acceleration by a rotating black hole surrounded with quintessential energy

    NASA Astrophysics Data System (ADS)

    Shaymatov, Sanjar; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Abdujabbarov, Ahmadjon

    We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter ωq ∈ (‑1; ‑1/3) characterizing its equation of state, and the quintessential field-intensity parameter c determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength B there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter c; the center-of-mass energy decreases if the quintessential field-intensity parameter c increases.

  11. Radial accretion flows on static spherically symmetric black holes

    NASA Astrophysics Data System (ADS)

    Chaverra, Eliana; Sarbach, Olivier

    2015-08-01

    We analyze the steady radial accretion of matter into a nonrotating black hole. Neglecting the self-gravity of the accreting matter, we consider a rather general class of static, spherically symmetric and asymptotically flat background spacetimes with a regular horizon. In addition to the Schwarzschild metric, this class contains certain deformation of it, which could arise in alternative gravity theories or from solutions of the classical Einstein equations in the presence of external matter fields. Modeling the ambient matter surrounding the black hole by a relativistic perfect fluid, we reformulate the accretion problem as a dynamical system, and under rather general assumptions on the fluid equation of state, we determine the local and global qualitative behavior of its phase flow. Based on our analysis and generalizing previous work by Michel, we prove that for any given positive particle density number at infinity, there exists a unique radial, steady-state accretion flow which is regular at the horizon. We determine the physical parameters of the flow, including its accretion and compression rates, and discuss their dependency on the background metric.

  12. Schistura maculosa, a new species of loach (Teleostei: Nemacheilidae) from Mizoram, northeastern India.

    PubMed

    Lalronunga, Samuel; Lalnuntluanga; Lalramliana

    2013-01-01

    Schistura maculosa, a new species of loach, is described from Tuingo and Pharsih Rivers, tributaries of Tuivai River (Barak drainage) in Mizoram, northeastern India. It is distinguished from other closely related Schistura species in having an axillary pelvic lobe; an incomplete lateral line; 20-30 narrow black bars on the body; 3-4 rows of black spots horizontally across the dorsal-fin; a slightly emarginate caudal-fin, with 5-7 rows of black spots more or less regularly arranged vertically on rays across the fin, and 8+8 branched caudal-fin rays.

  13. α '-corrected black holes in String Theory

    NASA Astrophysics Data System (ADS)

    Cano, Pablo A.; Meessen, Patrick; Ortín, Tomás; Ramírez, Pedro F.

    2018-05-01

    We consider the well-known solution of the Heterotic Superstring effective action to zeroth order in α ' that describes the intersection of a fundamental string with momentum and a solitonic 5-brane and which gives a 3-charge, static, extremal, supersymmetric black hole in 5 dimensions upon dimensional reduction on T5. We compute explicitly the first-order in α ' corrections to this solution, including SU(2) Yang-Mills fields which can be used to cancel some of these corrections and we study the main properties of this α '-corrected solution: supersymmetry, values of the near-horizon and asymptotic charges, behavior under α '-corrected T-duality, value of the entropy (using Wald formula directly in 10 dimensions), existence of small black holes etc. The value obtained for the entropy agrees, within the limits of approximation, with that obtained by microscopic methods. The α ' corrections coming from Wald's formula prove crucial for this result.

  14. Stability of holographic superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanno, Sugumi; Soda, Jiro

    We study the dynamical stability of holographic superconductors. We first classify perturbations around black hole background solutions into vector and scalar sectors by means of a 2-dimensional rotational symmetry. We prove the stability of the vector sector by explicitly constructing the positive definite Hamiltonian. To reveal a mechanism for the stabilization of a superconducting phase, we construct a quadratic action for the scalar sector. From the action, we see the stability of black holes near a critical point is determined by the equation of motion for a charged scalar field. We show the effective mass of the charged scalar fieldmore » in hairy black holes is always above the Breitenlohner-Freedman bound near the critical point due to the backreaction of a gauge field. It implies the stability of the superconducting phase. We also argue that the stability continues away from the critical point.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com; Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB; Bezerra, V.B., E-mail: valdir@fisica.ufpb.br

    Charged massive scalar fields are considered in the gravitational and electromagnetic field produced by a dyonic black hole with a cosmic string along its axis of symmetry. Exact solutions of both angular and radial parts of the covariant Klein–Gordon equation in this background are obtained, and are given in terms of the confluent Heun functions. The role of the presence of the cosmic string in these solutions is showed up. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation spectrum and the energy flux. -- Highlights:more » •A cosmic string is introduced along the axis of symmetry of the dyonic black hole. •The covariant Klein–Gordon equation for a charged massive scalar field in this background is analyzed. •Both angular and radial parts are transformed to a confluent Heun equation. •The resulting Hawking radiation spectrum and the energy flux are obtained.« less

  16. Quasinormal modes of scale dependent black holes in (1 +2 )-dimensional Einstein-power-Maxwell theory

    NASA Astrophysics Data System (ADS)

    Rincón, Ángel; Panotopoulos, Grigoris

    2018-01-01

    We study for the first time the stability against scalar perturbations, and we compute the spectrum of quasinormal modes of three-dimensional charged black holes in Einstein-power-Maxwell nonlinear electrodynamics assuming running couplings. Adopting the sixth order Wentzel-Kramers-Brillouin (WKB) approximation we investigate how the running of the couplings change the spectrum of the classical theory. Our results show that all modes corresponding to nonvanishing angular momentum are unstable both in the classical theory and with the running of the couplings, while the fundamental mode can be stable or unstable depending on the running parameter and the electric charge.

  17. A New Type of Advocacy

    ERIC Educational Resources Information Center

    Hawkins, B. Denise

    2011-01-01

    While it has been just two years since Dr. Lorenzo Esters joined the Association of Public and Land-Grant Universities, or APLU, his efforts to orchestrate new partners while forging coalitions appear to be yielding fruit. Dr. Esters is charged with representing the interests of 18 Black land-grant colleges and public Black colleges and…

  18. Noether charge, black hole volume, and complexity

    NASA Astrophysics Data System (ADS)

    Couch, Josiah; Fischler, Willy; Nguyen, Phuc H.

    2017-03-01

    In this paper, we study the physical significance of the thermodynamic volumes of AdS black holes using the Noether charge formalism of Iyer and Wald. After applying this formalism to study the extended thermodynamics of a few examples, we discuss how the extended thermodynamics interacts with the recent complexity = action proposal of Brown et al. (CA-duality). We, in particular, discover that their proposal for the late time rate of change of complexity has a nice decomposition in terms of thermodynamic quantities reminiscent of the Smarr relation. This decomposition strongly suggests a geometric, and via CA-duality holographic, interpretation for the thermodynamic volume of an AdS black hole. We go on to discuss the role of thermodynamics in complexity = action for a number of black hole solutions, and then point out the possibility of an alternate proposal, which we dub "complexity = volume 2.0". In this alternate proposal the complexity would be thought of as the spacetime volume of the Wheeler-DeWitt patch. Finally, we provide evidence that, in certain cases, our proposal for complexity is consistent with the Lloyd bound whereas CA-duality is not.

  19. Toward one-loop tunneling rates of near-extremal magnetic black hole pair production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, P.

    Pair production of magnetic Reissner-Nordstroem black holes (of charges [plus minus][ital q]) was recently studied in the leading WKB approximation. Here we consider generic quantum fluctuations in the corresponding instanton geometry given by the Euclidean Ernst metric, in order to simulate the behavior of the one-loop tunneling rate. A detailed study of the Ernst metric suggests that for a sufficiently weak field [ital B], the problem can be reduced to that of quantum fluctuations around a single near-extremal Euclidean black hole in thermal equilibrium with a heat bath of finite size. After appropriate renormalization procedures, typical one-loop contributions to themore » WKB exponent are shown to be inversely proportional to [ital B], as [ital B][r arrow]0, indicating that the leading Schwinger term is corrected by a small fraction [similar to][h bar]/[ital q][sup 2]. We demonstrate that this correction to the Schwinger term is actually due to a semiclassical shift of the black hole mass-to-charge ratio that persists even in the extremal limit. Finally we discuss a few loose ends.« less

  20. One-Loop Test of Quantum Black Holes in anti–de Sitter Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, James T.; Pando Zayas, Leopoldo A.; Rathee, Vimal

    Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS4 black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.

  1. Scalar Dyon Production In Near Extremal Kerr-Newman Black Holes

    NASA Astrophysics Data System (ADS)

    Chen, Chiang-Mei; Kim, Sang Pyo; Sun, Jia-Rui; Tang, Fu-Yi

    2018-01-01

    The pair production of charged scalar dyons is analytically studied in near-extremal Kerr-Newman (KN) dyonic black holes. The pair production rate and its thermal interpretation are given. Moreover, the absorption cross section ratio has been compared with the two-point function of the conformal field theories (CFTs) holographically dual to the near horizon geometry, namely warped AdS3, of the near extremal Kerr-Newman black holes to verify the threefold dyonic KN/CFTs correspondence.

  2. One-Loop Test of Quantum Black Holes in anti–de Sitter Space

    DOE PAGES

    Liu, James T.; Pando Zayas, Leopoldo A.; Rathee, Vimal; ...

    2018-06-01

    Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS4 black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.

  3. One-Loop Test of Quantum Black Holes in anti-de Sitter Space

    NASA Astrophysics Data System (ADS)

    Liu, James T.; Pando Zayas, Leopoldo A.; Rathee, Vimal; Zhao, Wenli

    2018-06-01

    Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS4 black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.

  4. One-Loop Test of Quantum Black Holes in anti-de Sitter Space.

    PubMed

    Liu, James T; Pando Zayas, Leopoldo A; Rathee, Vimal; Zhao, Wenli

    2018-06-01

    Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS_{4} black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.

  5. Asymptotically spacelike warped anti-de Sitter spacetimes in generalized minimal massive gravity

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2017-06-01

    In this paper we show that warped AdS3 black hole spacetime is a solution of the generalized minimal massive gravity (GMMG) and introduce suitable boundary conditions for asymptotically warped AdS3 spacetimes. Then we find the Killing vector fields such that transformations generated by them preserve the considered boundary conditions. We calculate the conserved charges which correspond to the obtained Killing vector fields and show that the algebra of the asymptotic conserved charges is given as the semi direct product of the Virasoro algebra with U(1) current algebra. We use a particular Sugawara construction to reconstruct the conformal algebra. Thus, we are allowed to use the Cardy formula to calculate the entropy of the warped black hole. We demonstrate that the gravitational entropy of the warped black hole exactly coincides with what we obtain via Cardy’s formula. As we expect, the warped Cardy formula also gives us exactly the same result as we obtain from the usual Cardy’s formula. We calculate mass and angular momentum of the warped black hole and then check that obtained mass, angular momentum and entropy to satisfy the first law of the black hole mechanics. According to the results of this paper we believe that the dual theory of the warped AdS3 black hole solution of GMMG is a warped CFT.

  6. 30 CFR 100.3 - Determination of penalty amount; regular assessment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... criteria are: (i) The appropriateness of the penalty to the size of the business of the operator charged; (ii) The operator's history of previous violations; (iii) Whether the operator was negligent; (iv) The... ability to continue in business. (2) A regular assessment is determined by first assigning the appropriate...

  7. INTERIOR VIEW OF TANK CHARGING ROOM ON LEVEL 4; NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF TANK CHARGING ROOM ON LEVEL 4; NOTE HERRINGBONE-PATTERNED BRICK FLOOR; TIMBER SUBSTRUCTURE CARRIED CRANE USED TO REMOVE HEAVY TANK COVERS; WINDOWS IN ROOFTOP MONITOR PROVIDED AMPLE NATURAL LIGHT - Rath Packing Company, Inedible Tank House, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  8. Quasinormal modes of Reissner-Nordstrom black holes

    NASA Technical Reports Server (NTRS)

    Leaver, Edward W.

    1990-01-01

    A matrix-eigenvalue algorithm is presented for accurately computing the quasi-normal frequencies and modes of charged static blackholes. The method is then refined through the introduction of a continued-fraction step. The approach should generalize to a variety of nonseparable wave equations, including the Kerr-Newman case of charged rotating blackholes.

  9. 7 CFR 301.38-8 - Costs and charges.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Costs and charges. 301.38-8 Section 301.38-8 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-8 Costs and...

  10. 7 CFR 301.38-8 - Costs and charges.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Costs and charges. 301.38-8 Section 301.38-8 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-8 Costs and...

  11. 7 CFR 301.38-8 - Costs and charges.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Costs and charges. 301.38-8 Section 301.38-8 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-8 Costs and...

  12. 7 CFR 301.38-8 - Costs and charges.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Costs and charges. 301.38-8 Section 301.38-8 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-8 Costs and...

  13. 7 CFR 301.38-8 - Costs and charges.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Costs and charges. 301.38-8 Section 301.38-8 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-8 Costs and...

  14. Disparities in Regular Source of Dental Care among Mothers of Medicaid-Enrolled Preschool Children

    PubMed Central

    Grembowski, David; Spiekerman, Charles; Milgrom, Peter

    2008-01-01

    For mothers of Medicaid children aged 3 to 6 years, we examined whether mothers’ characteristics and local supply of dentists and public dental clinics are associated with having a regular source of dental care. Disproportionate stratified sampling by racial/ethnic group selected 11,305 children aged 3 to 6 in Medicaid in Washington state. Mothers (N=4,373) completed a mixed-mode survey that was combined with dental supply measures. Results reveal 38% of mothers had a regular dental place and 27% had a regular dentist. Dental insurance, greater education, income, and length of residence and better mental health were associated with having a regular place or dentist for Black, Hispanic and White mothers, along with increased supply of private dentists and safety net clinics for White and Hispanic mothers. Mothers lacking a regular source of dental care may increase oral health disparities in their children. PMID:17982208

  15. Charged perfect fluid tori in strong central gravitational and dipolar magnetic fields

    NASA Astrophysics Data System (ADS)

    Kovář, Jiří; Slaný, Petr; Cremaschini, Claudio; Stuchlík, Zdeněk; Karas, Vladimír; Trova, Audrey

    2016-06-01

    We study electrically charged perfect fluid toroidal structures encircling a spherically symmetric gravitating object with Schwarzschild spacetime geometry and endowed with a dipole magnetic field. The work represents a direct continuation of our previous general-relativistic studies of electrically charged fluid in the approximation of zero conductivity, which formed tori around a Reissner-Nordström black hole or a Schwarzschild black hole equipped with a test electric charge and immersed in an asymptotically uniform magnetic field. After a general introduction of the zero-conductivity charged fluid model, we discuss a variety of possible topologies of the toroidal fluid configurations. Along with the charged equatorial tori forming interesting coupled configurations, we demonstrate the existence of the off-equatorial tori, for which the dipole type of magnetic field seems to be necessary. We focus on orbiting structures with constant specific angular momentum and on those in permanent rigid rotation. We stress that the general analytical treatment developed in our previous works is enriched here by the integrated form of the pressure equations. To put our work into an astrophysical context, we identify the central object with an idealization of a nonrotating magnetic neutron star. Constraining ranges of its parameters and also parameters of the circling fluid, we discuss a possible relevance of the studied toroidal structures, presenting along with their topology also pressure, density, temperature and charge profiles.

  16. The first law of black hole mechanics for fields with internal gauge freedom

    NASA Astrophysics Data System (ADS)

    Prabhu, Kartik

    2017-02-01

    We derive the first law of black hole mechanics for physical theories based on a local, covariant and gauge-invariant Lagrangian where the dynamical fields transform non-trivially under the action of some internal gauge transformations. The theories of interest include General Relativity formulated in terms of tetrads, Einstein-Yang-Mills theory and Einstein-Dirac theory. Since the dynamical fields of these theories have some internal gauge freedom, we argue that there is no natural group action of diffeomorphisms of spacetime on such dynamical fields. In general, such fields cannot even be represented as smooth, globally well-defined tensor fields on spacetime. Consequently the derivation of the first law by Iyer and Wald cannot be used directly. Nevertheless, we show how such theories can be formulated on a principal bundle and that there is a natural action of automorphisms of the bundle on the fields. These bundle automorphisms encode both spacetime diffeomorphisms and internal gauge transformations. Using this reformulation we define the Noether charge associated to an infinitesimal automorphism and the corresponding notion of stationarity and axisymmetry of the dynamical fields. We first show that we can define certain potentials and charges at the horizon of a black hole so that the potentials are constant on the bifurcate Killing horizon, giving a generalised zeroth law for bifurcate Killing horizons. We further identify the gravitational potential and perturbed charge as the temperature and perturbed entropy of the black hole which gives an explicit formula for the perturbed entropy analogous to the Wald entropy formula. We then obtain a general first law of black hole mechanics for such theories. The first law relates the perturbed Hamiltonians at spatial infinity and the horizon, and the horizon contributions take the form of a ‘potential times perturbed charge’ term. We also comment on the ambiguities in defining a prescription for the total entropy for black holes.

  17. Charged black holes in compactified spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karlovini, Max; Unge, Rikard von

    2005-11-15

    We construct and investigate a compactified version of the four-dimensional Reissner-Nordstroem-Taub-NUT solution, generalizing the compactified Schwarzschild black hole that has been previously studied by several workers. Our approach to compactification is based on dimensional reduction with respect to the stationary Killing vector, resulting in three-dimensional gravity coupled to a nonlinear sigma model. Knowing that the original noncompactified solution corresponds to a target space geodesic, the problem can be linearized much in the same way as in the case of no electric or Taub-NUT charge. An interesting feature of the solution family is that, for nonzero electric charge but vanishing Taub-NUTmore » charge, the solution has a curvature singularity on a torus that surrounds the event horizon, but this singularity is removed when the Taub-NUT charge is switched on. We also treat the Schwarzschild case in a more complete way than has been done previously. In particular, the asymptotic solution (the Levi-Civita solution with the height coordinate made periodic) has to our knowledge only been calculated up to a determination of the mass parameter. The periodic Levi-Civita solution contains three essential parameters, however, and the remaining two are explicitly calculated here.« less

  18. Detection and quantification of Leptographium wageneri, the cause of black-stain root disease, from bark beetles (Coleoptera: Scolytidae) in North California using regular and real-time PCR

    Treesearch

    Wolfgang Schweigkofler; William J. Otrosina; Sheri L. Smith; Daniel R. Cluck; Kevin Maeda; Kabir G. Peay; Matteo Garbelotto

    2005-01-01

    Black-stain root disease is a threat to conifer forests in western North America. The disease is caused by the ophiostomatoid fungus Leptographium wageneri (W.B. Kendr.) M.J. Wingf., which is associated with a number of bark beetle (Coleoptera: Scolytidae) and weevil species (Coleoptera: Curculionidae). We developed a polymerase chain reaction test...

  19. Renormalized Stress-Energy Tensor of an Evaporating Spinning Black Hole.

    PubMed

    Levi, Adam; Eilon, Ehud; Ori, Amos; van de Meent, Maarten

    2017-04-07

    We provide the first calculation of the renormalized stress-energy tensor (RSET) of a quantum field in Kerr spacetime (describing a stationary spinning black hole). More specifically, we employ a recently developed mode-sum regularization method to compute the RSET of a minimally coupled massless scalar field in the Unruh vacuum state, the quantum state corresponding to an evaporating black hole. The computation is done here for the case a=0.7M, using two different variants of the method: t splitting and φ splitting, yielding good agreement between the two (in the domain where both are applicable). We briefly discuss possible implications of the results for computing semiclassical corrections to certain quantities, and also for simulating dynamical evaporation of a spinning black hole.

  20. Thermodynamics of dyonic black holes with Thurston horizon geometries

    NASA Astrophysics Data System (ADS)

    Bravo-Gaete, Moisés; Hassaïne, Mokhtar

    2018-01-01

    In five dimensions, we consider a model described by the Einstein gravity with a source given by a scalar field and various Abelian gauge fields with dilatoniclike couplings. For this model, we are able to construct two dyonic black holes whose three-dimensional horizons are modeled by two nontrivial homogeneous Thurston's geometries. The dyonic solutions are of Lifshitz type with an arbitrary value of the dynamical exponent. In fact, the first gauge field ensures the anisotropy asymptotic while the remaining Abelian fields sustain the electric and magnetic charges. Using the Hamiltonian formalism, the mass, the electric, and magnetic charges are explicitly computed. Interestingly enough, the dyonic solutions behave like Chern-Simons vortices in the sense that their electric and magnetic charges turn to be proportional. The extension with an hyperscaling violating factor is also scrutinized where we notice that for specific values of the violating factor, purely magnetic solutions are possible.

  1. Black tea extract and dental caries formation in hamsters.

    PubMed

    Linke, Harald A B; LeGeros, Racquel Z

    2003-01-01

    Several studies have suggested that green tea and Oolong tea extracts have antibacterial and anticariogenic properties in vitro and in vivo. The aim of the present study was to determine the effect of a standardized black tea extract (BTE) on caries formation in inbred hamsters on a regular and a cariogenic diet. Eighty hamsters were divided into four groups of 20 animals each. Two groups received a pelleted regular diet (LabChow) with water or BTE ad libitum. The other two groups received a powdered cariogenic diet (Diet 2000, containing 56% sucrose) with water or BTE ad libitum. The animals were kept for 3 months on their respective diets and then were sacrificed. The heads were retained, the jaws were prepared and stained using alizarin mordant red II, and were then scored for dental caries according to the Keyes method. This is the first study indicating that BTE, as compared with water, significantly decreased caries formation by 56.6% in hamsters on a regular diet and by 63.7% in hamsters on a cariogenic diet (P < 0.05). In the cariogenic diet group BTE, reduced the mandibular caries score of the hamsters slightly more than the maxillary caries score. The fluoride content of the standardized BTE solution was frequently monitored during the experiment; the mean fluoride concentration was found to be 4.22 ppm. A frequent intake of black tea can significantly decrease caries formation, even in the presence of sugars in the diet.

  2. Phase transition of charged-AdS black holes and quasinormal modes: A time domain analysis

    NASA Astrophysics Data System (ADS)

    Chabab, M.; El Moumni, H.; Iraoui, S.; Masmar, K.

    2017-10-01

    In this work, we investigate the time evolution of a massless scalar perturbation around small and large RN-AdS4 black holes for the purpose of probing the thermodynamic phase transition. We show that below the critical point the scalar perturbation decays faster with increasing of the black hole size, both for small and large black hole phases. Our analysis of the time profile of quasinormal mode reveals a sharp distinction between the behaviors of both phases, providing a reliable tool to probe the black hole phase transition. However at the critical point P=Pc, as the black hole size extends, we note that the damping time increases and the perturbation decays faster, the oscillation frequencies raise either in small and large black hole phase. In this case the time evolution approach fails to track the AdS4 black hole phase.

  3. Food prices and food shopping decisions of black women.

    PubMed

    DiSantis, Katherine I; Grier, Sonya A; Oakes, J Michael; Kumanyika, Shiriki K

    2014-06-01

    Identifying food pricing strategies to encourage purchases of lower-calorie food products may be particularly important for black Americans. Black children and adults have higher than average obesity prevalence and disproportionate exposure to food marketing environments in which high calorie foods are readily available and heavily promoted. The main objective of this study was to characterize effects of price on food purchases of black female household shoppers in conjunction with other key decision attributes (calorie content/healthfulness, package size, and convenience). Factorial discrete choice experiments were conducted with 65 low- and middle-/higher-income black women. The within-subject study design assessed responses to hypothetical scenarios for purchasing frozen vegetables, bread, chips, soda, fruit drinks, chicken, and cheese. Linear models were used to estimate the effects of price, calorie level (or healthfulness for bread), package size, and convenience on the propensity to purchase items. Moderating effects of demographic and personal characteristics were assessed. Compared with a price that was 35% lower, the regular price was associated with a lesser propensity to purchase foods in all categories (β = -0.33 to -0.82 points on a 1 to 5 scale). Other attributes, primarily calorie content/healthfulness, were more influential than price for four of seven foods. The moderating variable most often associated with propensity to pay the regular versus lower price was the reported use of nutrition labels. Price reductions alone may increase purchases of certain lower-calorie or more healthful foods by black female shoppers. In other cases, effects may depend on combining price changes with nutrition education or improvements in other valued attributes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. REPORT TO CONGRESS ON BLACK CARBON | Science ...

    EPA Pesticide Factsheets

    The Report to Congress on Black Carbon describes domestic and international sources of black carbon emissions, and summarizes available scientific information on the climate effects of black carbon. Further, the Report evaluates available black carbon mitigation options and their potential for protecting climate, public health, and the environment. The EPA Advisory Council on Clean Air Compliance Analysis has peer-reviewed the report. In the October 2009 Interior Appropriations bill, Congress requested that EPA, in consultation with other Federal agencies, study the emissions and impacts of black carbon in the US and internationally. To fulfill this charge, EPA has conducted an intensive effort to compile, assess, and summarize available scientific information on the current and future impacts of black carbon, and to evaluate the effectiveness of available mitigation approaches and technologies for protecting climate, public health, and the environment.

  5. Across-horizon scattering and information transfer

    NASA Astrophysics Data System (ADS)

    Emelyanov, V. A.; Klinkhamer, F. R.

    2018-06-01

    We address the question whether or not two electrically charged elementary particles can Coulomb scatter if one of these particles is inside the Schwarzschild black-hole horizon and the other outside. It can be shown that the quantum process is consistent with the local energy–momentum conservation law. This result implies that across-horizon scattering is a physical effect, relevant to astrophysical black holes. We propose a Gedankenexperiment which uses the quantum scattering process to transfer information from inside the black-hole horizon to outside.

  6. Accretion onto a moving Reissner-Nordström black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Lei; Yang, Rongjia, E-mail: jiaoleizhijia@163.com, E-mail: yangrongjia@tsinghua.org.cn

    We obtain an analytic solution for accretion of a gaseous medium with a adiabatic equation of state ( P =ρ) onto a Reissner-Nordström black hole which moves at a constant velocity through the medium. We obtain the specific expression for each component of the velocity and present the mass accretion rate which depends on the mass and the electric charge. The result we obtained may be helpful to understand the physical mechanism of accretion onto a moving black hole.

  7. Perfect relativistic magnetohydrodynamics around black holes in horizon penetrating coordinates

    NASA Astrophysics Data System (ADS)

    Cherubini, Christian; Filippi, Simonetta; Loppini, Alessandro; Moradi, Rahim; Ruffini, Remo; Wang, Yu; Xue, She-Sheng

    2018-03-01

    Plasma accreting processes on black holes represent a central problem for relativistic astrophysics. In this context, here we specifically revisit the classical Ruffini-Wilson work developed for analytically modeling via geodesic equations the accretion of perfect magnetized plasma on a rotating Kerr black hole. Introducing the horizon penetrating coordinates found by Doran 25 years later, we revisit the entire approach studying Maxwell invariants, electric and magnetic fields, volumetric charge density and electromagnetic total energy. We finally discuss the physical implications of this analysis.

  8. Trumpet slices in Kerr spacetimes.

    PubMed

    Dennison, Kenneth A; Baumgarte, Thomas W; Montero, Pedro J

    2014-12-31

    We introduce a new time-independent family of analytical coordinate systems for the Kerr spacetime representing rotating black holes. We also propose a (2+1)+1 formalism for the characterization of trumpet geometries. Applying this formalism to our new family of coordinate systems we identify, for the first time, analytical and stationary trumpet slices for general rotating black holes, even for charged black holes in the presence of a cosmological constant. We present results for metric functions in this slicing and analyze the geometry of the rotating trumpet surface.

  9. I'm No Jezebel; I Am Young, Gifted, and Black: Identity, Sexuality, and Black Girls

    ERIC Educational Resources Information Center

    Townsend, Tiffany G.; Thomas, Anita Jones; Neilands, Torsten B.; Jackson, Tiffany R.

    2010-01-01

    Scholars have highlighted the detrimental influence of racially charged stereotypes and images on self-perception and well being. Others have suggested that identity components (e.g., ethnic identity and self-concept) serve a protective function. The purposes of this study were (a) to explore the relationship among stereotypic images, beauty…

  10. Thermodynamics sheds light on black hole dynamics

    NASA Astrophysics Data System (ADS)

    Cárdenas, Marcela; Julié, Félix-Louis; Deruelle, Nathalie

    2018-06-01

    We propose to unify two a priori distinct aspects of black hole physics: their thermodynamics, and their description as point particles, which is an essential starting point in the post-Newtonian approach to their dynamics. We will find that, when reducing a black hole to a point particle endowed with its specific effective mass, one in fact describes a black hole satisfying the first law of thermodynamics, such that its global charges, and hence its entropy, remain constant. This gives a thermodynamical interpretation of its effective mass, thus opening a promising synergy between black hole thermodynamics and the analytical approaches to the two-body problems in gravity theories. To illustrate this relationship, the Einstein-Maxwell-dilaton theory, which contains simple examples of asympotically flat, hairy black hole solutions, will serve as a laboratory.

  11. Quantum Model of a Charged Black Hole

    NASA Astrophysics Data System (ADS)

    Gladush, V. D.

    A canonical approach for constructing of the classical and quantum description spherically-symmetric con guration gravitational and electromagnetic elds is considered. According to the sign of the square of the Kodama vector, space-time is divided into R-and T-regions. By virtue of the generalized Birkho theorem, one can choose coordinate systems such that the desired metric functions in the T-region depend on the time, and in the R-domain on the space coordinate. Then, the initial action for the con guration breaks up into terms describing the elds in the T- and R-regions with the time and space evolutionary variable, respectively. For these regions, Lagrangians of the con guration are constructed, which contain dynamic and non-dynamic degrees of freedom, leading to constrains. We concentrate our attention on dynamic T-regions. There are two additional conserved physical quantities: the charge and the total mass of the system. The Poisson bracket of the total mass with the Hamiltonian function vanishes in the weak sense. A classical solution of the eld equations in the con guration space (minisuperspace) is constructed without xing non-dynamic variable. In the framework of the canonical approach to the quantum mechanics of the system under consideration, physical states are found by solving the Hamiltonian constraint in the operator form (the DeWitt equation) for the system wave function Ψ. It also requires that Ψ is an eigenfunction of the operators of charge and total mass. For the symmetric of the mass operator the corresponding ordering of operators is carried out. Since the total mass operator commutes with the Hamiltonian in the weak sense, its eigenfunctions must be constructed in conjunction with the solution of the DeWitt equation. The consistency condition leads to the ansatz, with the help of which the solution of the DeWitt equation for the state Ψem with a defined total mass and charge is constructed, taking into account the regularity condition on the horizon. The mass and charge spectra of the con guration in this approach turn out to be continuous. It is interesting that formal quantization in the R-region with a space evolutionary coordinate leads to a similar result.

  12. Physics Beyond the Standard Model: Exotic Leptons and Black Holes at Future Colliders

    NASA Astrophysics Data System (ADS)

    Harris, Christopher M.

    2005-02-01

    The Standard Model of particle physics has been remarkably successful in describing present experimental results. However, it is assumed to be only a low-energy effective theory which will break down at higher energy scales, theoretically motivated to be around 1 TeV. There are a variety of proposed models of new physics beyond the Standard Model, most notably supersymmetric and extra dimension models. New charged and neutral heavy leptons are a feature of a number of theories of new physics, including the `intermediate scale' class of supersymmetric models. Using a time-of-flight technique to detect the charged leptons at the Large Hadron Collider, the discovery range (in the particular scenario studied in the first part of this thesis) is found to extend up to masses of 950 GeV. Extra dimension models, particularly those with large extra dimensions, allow the possible experimental production of black holes. The remainder of the thesis describes some theoretical results and computational tools necessary to model the production and decay of these miniature black holes at future particle colliders. The grey-body factors which describe the Hawking radiation emitted by higher-dimensional black holes are calculated numerically for the first time and then incorporated in a Monte Carlo black hole event generator; this can be used to model black hole production and decay at next-generation colliders. It is hoped that this generator will allow more detailed examination of black hole signatures and help to devise a method for extracting the number of extra dimensions present in nature.

  13. Numeric simulation of relativistic stellar core collapse and the formation of Reissner-Nordstroem black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghezzi, Cristian R.; Letelier, Patricio S.

    2007-01-15

    The time evolution of a set of 22M{sub {center_dot}} unstable charged stars that collapse is computed integrating the Einstein-Maxwell equations. The model simulates the collapse of a spherical star that had exhausted its nuclear fuel and has or acquires a net electric charge in its core while collapsing. When the charge-to-mass ratio is Q/{radical}(G)M{>=}1, the star does not collapse but spreads. On the other hand, a different physical behavior is observed with a charge-to-mass ratio of 1>Q/{radical}(G)M>0.1. In this case, the collapsing matter forms a bubble enclosing a lower density core. We discuss an immediate astrophysical consequence of these resultsmore » that is a more efficient neutrino trapping during the stellar collapse and an alternative mechanism for powerful supernova explosions. The outer space-time of the star is the Reissner-Nordstroem solution that matches smoothly with our interior numerical solution; thus the collapsing models form Reissner-Nordstroem black holes.« less

  14. Scalar charges and the first law of black hole thermodynamics

    NASA Astrophysics Data System (ADS)

    Astefanesei, Dumitru; Ballesteros, Romina; Choque, David; Rojas, Raúl

    2018-07-01

    We present a variational formulation of Einstein-Maxwell-dilaton theory in flat spacetime, when the asymptotic value of the scalar field is not fixed. We obtain the boundary terms that make the variational principle well posed and then compute the finite gravitational action and corresponding Brown-York stress tensor. We show that the total energy has a new contribution that depends on the asymptotic value of the scalar field and discuss the role of scalar charges for the first law of thermodynamics. We also extend our analysis to hairy black holes in Anti-de Sitter spacetime and investigate the thermodynamics of an exact solution that breaks the conformal symmetry of the boundary.

  15. On holographic entanglement entropy with second order excitations

    NASA Astrophysics Data System (ADS)

    He, Song; Sun, Jia-Rui; Zhang, Hai-Qing

    2018-03-01

    We study the low-energy corrections to the holographic entanglement entropy (HEE) in the boundary CFT by perturbing the bulk geometry up to second order excitations. Focusing on the case that the boundary subsystem is a strip, we show that the area of the bulk minimal surface can be expanded in terms of the conserved charges, such as mass, angular momentum and electric charge of the AdS black brane. We also calculate the variation of the energy in the subsystem and verify the validity of the first law-like relation of thermodynamics at second order. Moreover, the HEE is naturally bounded at second order perturbations if the cosmic censorship conjecture for the dual black hole still holds.

  16. Peculiarities of the electron energy spectrum in the Coulomb field of a superheavy nucleus

    NASA Astrophysics Data System (ADS)

    Voronov, B. L.; Gitman, D. M.; Levin, A. D.; Ferreira, R.

    2016-05-01

    We consider the peculiarities of the electron energy spectrum in the Coulomb field of a superheavy nucleus and discuss the long history of an incorrect interpretation of this problem in the case of a pointlike nucleus and its current correct solution. We consider the spectral problem in the case of a regularized Coulomb potential. For some special regularizations, we derive an exact equation for the point spectrum in the energy interval (-m,m) and find some of its solutions numerically. We also derive an exact equation for charges yielding bound states with the energy E = -m; some call them supercritical charges. We show the existence of an infinite number of such charges. Their existence does not mean that the oneparticle relativistic quantum mechanics based on the Dirac Hamiltonian with the Coulomb field of such charges is mathematically inconsistent, although it is physically unacceptable because the spectrum of the Hamiltonian is unbounded from below. The question of constructing a consistent nonperturbative second-quantized theory remains open, and the consequences of the existence of supercritical charges from the standpoint of the possibility of constructing such a theory also remain unclear.

  17. Sine-Gordon solitonic scalar stars and black holes

    NASA Astrophysics Data System (ADS)

    Franzin, Edgardo; Cadoni, Mariano; Tuveri, Matteo

    2018-06-01

    We study exact, analytic, static, spherically symmetric, four-dimensional solutions of minimally coupled Einstein-scalar gravity, sourced by a scalar field whose profile has the form of the sine-Gordon soliton. We present a horizonless, everywhere regular and positive-mass solution—a solitonic star—and a black hole. The scalar potential behaves as a constant near the origin and vanishes at infinity. In particular, the solitonic scalar star interpolates between an anti-de Sitter and an asympototically flat spacetime. The black-hole spacetime is unstable against linear perturbations, while due to numerical issues, we were not able to determine with confidence whether or not the starlike background solution is stable.

  18. Characteristics and correlates of quitting among black and white low-income pregnant smokers.

    PubMed

    Ward, Kenneth D; Vander Weg, Mark W; Sell, Marie A; Scarinci, Isabel C; Read, Mary Cocke

    2006-01-01

    To examine race-specific differences in correlates of cessation in low income pregnant women. Two hundred forty-eight low-income black and white pregnant women who smoked regularly prior to pregnancy were interviewed to assess several potential correlates of quitting. Race differences emerged in characteristics commonly thought to influence quitting including income, education level, marital status, nicotine dependence, and smoking history. However, race was not correlated with having quit smoking, nor did it influence the effect of other variables in quitting. Factors that influence the decision to quit smoking during pregnancy do not appear to differ between low-income black and white women.

  19. Can It Really Be This Black and White? An Analysis of the Relative Importance of Ethnic Group and Other Sociodemographic Factors to Patterns of Drug Use and Related Risk among Young Londoners

    ERIC Educational Resources Information Center

    McCambridge, Jim; Strang, John

    2005-01-01

    Two hundred regular users of illegal drugs, aged 16-20, were recruited by peers in ten further education colleges across inner London. Data collected by self-completion questionnaire are presented on patterns of cigarette, alcohol, cannabis, stimulant and other drug use among White, Black and Asian ethnic groups. Multiple and logistic regression…

  20. Charged particle dynamics in multiple colliding electromagnetic waves. Survey of random walk, Lévy flights, limit circles, attractors and structurally determinate patterns

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; Bulanov, S. S.; Gong, Z.; Yan, X. Q.; Kando, M.

    2017-04-01

    The multiple colliding laser pulse concept formulated by Bulanov et al. (Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motion resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.

  1. Charged particle dynamics in multiple colliding electromagnetic waves. Survey of random walk, Lévy flights, limit circles, attractors and structurally determinate patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.

    The multiple colliding laser pulse concept formulated by Bulanovet al.(Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Lastly, under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motionmore » resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.« less

  2. Charged particle dynamics in multiple colliding electromagnetic waves. Survey of random walk, Lévy flights, limit circles, attractors and structurally determinate patterns

    DOE PAGES

    Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; ...

    2017-03-09

    The multiple colliding laser pulse concept formulated by Bulanovet al.(Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Lastly, under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motionmore » resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.« less

  3. On the definition of dielectric permittivity for media with temporal dispersion in the presence of free charge carriers

    NASA Astrophysics Data System (ADS)

    Bordag, M.; Geyer, B.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2010-01-01

    We show that in the presence of free charge carriers the definition of the frequency-dependent dielectric permittivity requires additional regularization. As an example, the dielectric permittivity of the Drude model is considered and its time-dependent counterpart is derived and analyzed. The respective electric displacement cannot be represented in terms of the standard Fourier integral. The regularization procedure allowing the circumvention of these difficulties is suggested. For the purpose of comparison it is shown that the frequency-dependent dielectric permittivity of insulators satisfies all rigorous mathematical criteria. This permits us to conclude that in the presence of free charge carriers the concept of dielectric permittivity is not as well defined as for insulators and we make a link to widely discussed puzzles in the theory of thermal Casimir force which might be caused by the use of this kind of permittivities.

  4. What happens to Petrov classification, on horizons of axisymmetric dirty black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanatarov, I. V., E-mail: igor.tanatarov@gmail.com; Department of Physics and Technology, Kharkov V.N. Karazin National University, 4 Svoboda Square, Kharkov 61077; Zaslavskii, O. B., E-mail: zaslav@ukr.net

    2014-02-15

    We consider axisymmetric stationary dirty black holes with regular non-extremal or extremal horizons, and compute their on-horizon Petrov types. The Petrov type (PT) in the frame of the observer crossing the horizon can be different from that formally obtained in the usual (but singular in the horizon limit) frame of an observer on a circular orbit. We call this entity the boosted Petrov type (BPT), as the corresponding frame is obtained by a singular boost from the regular one. The PT off-horizon can be more general than PT on-horizon and that can be more general than the BPT on horizon.more » This is valid for all regular metrics, irrespective of the extremality of the horizon. We analyze and classify the possible relations between the three characteristics and discuss the nature and features of the underlying singular boost. The three Petrov types can be the same only for space-times of PT D and O off-horizon. The mutual alignment of principal null directions and the generator in the vicinity of the horizon is studied in detail. As an example, we also analyze a special class of metrics with utra-extremal horizons (for which the regularity conditions look different from the general case) and compare their off-horizon and on-horizon algebraic structure in both frames.« less

  5. High Performance Simulations of Accretion Disk Dynamics and Jet Formations Around Kerr Black Holes

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Mizuno, Yosuke; Watson, Michael

    2007-01-01

    We investigate jet formation in black-hole systems using 3-D General Relativistic Particle-In-Cell (GRPIC) and 3-D GRMHD simulations. GRPIC simulations, which allow charge separations in a collisionless plasma, do not need to invoke the frozen condition as in GRMHD simulations. 3-D GRPIC simulations show that jets are launched from Kerr black holes as in 3-D GRMHD simulations, but jet formation in the two cases may not be identical. Comparative study of black hole systems with GRPIC and GRMHD simulations with the inclusion of radiate transfer will further clarify the mechanisms that drive the evolution of disk-jet systems.

  6. Holographic research on phase transitions for a five dimensional AdS black hole with conformally coupled scalar hair

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ling; Yang, Shu-Zheng; Zu, Xiao-Tao

    2017-01-01

    In the framework of holography, we survey the phase structure for a higher dimensional hairy black hole including the effects of the scalar field hair. It is worth emphasizing that, not only black hole entropy, but also entanglement entropy and two point correlation function exhibit the Van der Waals-like phase transition in a fixed scalar charge ensemble. Furthermore, by making use of numerical computation, we show that the Maxwell's equal area law is valid for the first order phase transition. In addition, we also discuss how the hair parameter affects the black hole's phase transition.

  7. The fields of a naked singularity and a black hole in mutual equilibrium

    NASA Astrophysics Data System (ADS)

    Paolino, Armando; Pizzi, Marco

    2008-01-01

    Recently Alekseev and Belinski have presented a new exact solution of the Einstein-Maxwell equation which describes two Reissner-Nordstrom (RN) sources in reciprocal equilibrium (no struts nor strings) one source is a naked singularity, the other is a black hole. In this paper we use the Alekseev-Belinki solution in the special case in which the charge of the black hole is zero-therefore we have a naked singularity near a neutral black hole. We give the plots of the electric force lines in both the cases in which the naked singularity has a mass comparable with the black hole and in which it is much smaller. The analysis of this latter case confirm the goodness of the Hanni-Ruffini approximation.

  8. Large-D gravity and low-D strings.

    PubMed

    Emparan, Roberto; Grumiller, Daniel; Tanabe, Kentaro

    2013-06-21

    We show that in the limit of a large number of dimensions a wide class of nonextremal neutral black holes has a universal near-horizon limit. The limiting geometry is the two-dimensional black hole of string theory with a two-dimensional target space. Its conformal symmetry explains the properties of massless scalars found recently in the large-D limit. For black branes with string charges, the near-horizon geometry is that of the three-dimensional black strings of Horne and Horowitz. The analogies between the α' expansion in string theory and the large-D expansion in gravity suggest a possible effective string description of the large-D limit of black holes. We comment on applications to several subjects, in particular to the problem of critical collapse.

  9. Destroying charged black holes in higher dimensions with test particles

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Liu, Weiyang; Tang, Hao; Yue, Rui-Hong

    2017-07-01

    A possible way to destroy the Tangherlini Reissner-Nordström black hole is discussed in the spirit of Wald’s gedanken experiment. By neglecting radiation and self force effects, the absorbing condition and destruction condition of the test point particle which is capable of destroying the black hole are obtained. We find that it is impossible to challenge the weak cosmic censorship for an initially extremal black hole in all dimensions. Instead, it is shown that the near extremal black hole will turn into a naked singularity in this particular process, in which case the allowed range of the particle’s energy is very narrow. The result indicates that the self-force effects may well change the outcome of the calculation.

  10. Thermal stability of black holes with arbitrary hairs

    NASA Astrophysics Data System (ADS)

    Sinha, Aloke Kumar

    2018-02-01

    We have derived the criteria for thermal stability of charged rotating black holes, for horizon areas that are large relative to the Planck area (in these dimensions). In this paper, we generalized it for black holes with arbitrary hairs. The derivation uses results of loop quantum gravity and equilibrium statistical mechanics of the grand canonical ensemble and there is no explicit use of classical spacetime geometry at all in this analysis. The assumption is that the mass of the black hole is a function of its horizon area and all the hairs. Our stability criteria are then tested in detail against some specific black holes, whose metrics provide us with explicit relations for the dependence of the mass on the area and other hairs of the black holes. This enables us to predict which of these black holes are expected to be thermally unstable under Hawking radiation.

  11. Strain-Modulated Bandgap and Piezo-Resistive Effect in Black Phosphorus Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Zuocheng; Li, Likai; Horng, Jason; Wang, Nai Zhou; Yang, Fangyuan; Yu, Yijun; Zhang, Yu; Chen, Guorui; Watanabe, Kenji; Taniguchi, Takashi; Chen, Xian Hui; Wang, Feng; Zhang, Yuanbo

    2017-10-01

    Energy bandgap largely determines the optical and electronic properties of a semiconductor. Variable bandgap therefore makes versatile functionality possible in a single material. In layered material black phosphorus, the bandgap can be modulated by the number of layers; as a result, few-layer black phosphorus has discrete bandgap values that are relevant for opto-electronic applications in the spectral range from red, in monolayer, to mid-infrared in the bulk limit. Here, we further demonstrate continuous bandgap modulation by mechanical strain applied through flexible substrates. The strain-modulated bandgap significantly alters the charge transport in black phosphorus at room temperature; we for the first time observe a large piezo-resistive effect in black phosphorus field-effect transistors (FETs). The effect opens up opportunities for future development of electro-mechanical transducers based on black phosphorus, and we demonstrate strain gauges constructed from black phosphorus thin crystals.

  12. “Triply cursed”: Racism, homophobia, and HIV-related stigma are barriers to regular HIV testing, treatment adherence, and disclosure among young Black gay men

    PubMed Central

    Arnold, Emily A.; Rebchook, Gregory M.; Kegeles, Susan M.

    2014-01-01

    In the USA, young Black gay men are disproportionately impacted by HIV. In this qualitative study consisting of in-depth interviews with 31 young Black gay men and 9 service providers, where we used thematic analysis to guide our interpretations, we found that HIV-related stigma and homophobia, within the larger societal context of racism, were related to sexual risk behaviour, reluctance to obtain HIV testing or care, lower adherence to treatment medication, and disclosure of a positive HIV status to sexual partners. Participants experienced homophobia and HIV-related stigma from churches and families within the Black community, and from friends within the Black gay community, that otherwise provide support in the face of racism. Vulnerability to HIV was related to strategies that young Black gay men enacted to avoid being stigmatised or as a way of coping with their alienation and rejection. PMID:24784224

  13. Money or Diversity? An Implementation Analysis of the Voluntary Transfer Program in St. Louis, 1999-2009

    ERIC Educational Resources Information Center

    Grooms, Ain A.

    2016-01-01

    A dual transfer program was created in 1983 in the St. Louis metropolitan area following a 1972 lawsuit brought upon the city, charging it with withholding an equal educational opportunity for Black students. Through this program, Black students from St. Louis City are provided with free transportation to one of 15 suburban school districts, and…

  14. 7 CFR Appendix A to Subpart A of... - Fee Schedule

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Market Street, St. Louis, MO. 63103. (f) Charges for unsuccessful searches, or searches which fail to... caused by any special instructions from the purchaser. Class of work and unit Price 1. Black and white line negatives: 4 by 5 (each $6.00 8 by 10 (each) 8.50 11 by 14 (each) 11.00 2. Black and white...

  15. 7 CFR Appendix A to Subpart A of... - Fee Schedule

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Market Street, St. Louis, MO. 63103. (f) Charges for unsuccessful searches, or searches which fail to... caused by any special instructions from the purchaser. Class of work and unit Price 1. Black and white line negatives: 4 by 5 (each $6.00 8 by 10 (each) 8.50 11 by 14 (each) 11.00 2. Black and white...

  16. What's in a Picture? Evidence of Discrimination from Prosper.com

    ERIC Educational Resources Information Center

    Pope, Devin G.; Sydnor, Justin R.

    2011-01-01

    We find evidence of significant racial disparities in a new type of credit market known as peer-to-peer lending. Loan listings with blacks in the attached picture are 25 to 35 percent less likely to receive funding than those of whites with similar credit profiles. Despite the higher average interest rates charged to blacks, lenders making such…

  17. Modified Hawking Radiation from a Kerr-Newman Black Hole due to Back-Reaction

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Wang, Gang; Liu, Wenbiao

    Hawking radiation from a general Kerr-Newman black hole is investigated using Damour-Ruffini's method. Considering the back-reaction of particle's energy, charge and angular momentum to the spacetime, we obtain a modified nonthermal spectrum. Maybe the information loss paradox can be explained, furthermore, the result is also consistent with the result obtained using Parikh and Wilczek's method.

  18. A systematic construction of microstate geometries with low angular momentum

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Heidmann, Pierre; Ramírez, Pedro F.

    2017-10-01

    We outline a systematic procedure to obtain horizonless microstate geometries that have the same charges as three-charge five-dimensional black holes with a macroscopically-large horizon area and an arbitrarily-small angular momentum. There are two routes through which such solutions can be constructed: using multi-center Gibbons-Hawking (GH) spaces or using superstratum technology. So far the only solutions corre-sponding to microstate geometries for black holes with no angular momentum have been obtained via superstrata [1], and multi-center Gibbons-Hawking spaces have been believed to give rise only to microstate geometries of BMPV black holes with a large angular mo-mentum [2]. We perform a thorough search throughout the parameter space of smooth horizonless solutions with four GH centers and find that these have an angular momentum that is generally larger than 80% of the cosmic censorship bound. However, we find that solutions with three GH centers and one supertube (which are smooth in six-dimensional supergravity) can have an arbitrarily-low angular momentum. Our construction thus gives a recipe to build large classes of microstate geometries for zero-angular-momentum black holes without resorting to superstratum technology.

  19. Study of preparation of TiB{sub 2} by TiC in Al melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Haimin; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061; Liu Xiangfa, E-mail: xfliu@sdu.edu.cn

    2012-01-15

    TiB{sub 2} particles are prepared by TiC in Al melts and the characteristics of them are studied. It is found that TiC particles are unstable when boron exists in Al melts with high temperature and will transform to TiB{sub 2} and Al{sub 4}C{sub 3}. Most of the synthesized TiB{sub 2} particles are regular hexagonal prisms with submicron size. The diameter of the undersurfaces of these prisms is ranging from 200 nm to 1 {mu}m and the height is ranging from 100 nm to 300 nm. It is considered that controlling the transformation from TiC to TiB{sub 2} is an effectivemore » method to prepare small and uniform TiB{sub 2} particles. - Highlights: Black-Right-Pointing-Pointer TiC can easily transform into TiB{sub 2} in Al melts. Black-Right-Pointing-Pointer TiB{sub 2} formed by TiC will grow into regular hexagonal prisms with submicron size. Black-Right-Pointing-Pointer Controlling the transformation from TiC to TiB{sub 2} is an effective method to prepare small and uniform TiB{sub 2} particles.« less

  20. Collapse of charged scalar field in dilaton gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowska, Anna; Rogatko, Marek; Moderski, Rafal

    2011-04-15

    We elaborated the gravitational collapse of a self-gravitating complex charged scalar field in the context of the low-energy limit of the string theory, the so-called dilaton gravity. We begin with the regular spacetime and follow the evolution through the formation of an apparent horizon and the final central singularity.

  1. Black hole thermodynamics in Lovelock gravity's rainbow with (A)dS asymptote

    NASA Astrophysics Data System (ADS)

    Hendi, Seyed Hossein; Dehghani, Ali; Faizal, Mir

    2017-01-01

    In this paper, we combine Lovelock gravity with gravity's rainbow to construct Lovelock gravity's rainbow. Considering the Lovelock gravity's rainbow coupled to linear and also nonlinear electromagnetic gauge fields, we present two new classes of topological black hole solutions. We compute conserved and thermodynamic quantities of these black holes (such as temperature, entropy, electric potential, charge and mass) and show that these quantities satisfy the first law of thermodynamics. In order to study the thermal stability in canonical ensemble, we calculate the heat capacity and determinant of the Hessian matrix and show in what regions there are thermally stable phases for black holes. Also, we discuss the dependence of thermodynamic behavior and thermal stability of black holes on rainbow functions. Finally, we investigate the critical behavior of black holes in the extended phase space and study their interesting properties.

  2. Smooth Horizonless Geometries Deep Inside the Black-Hole Regime.

    PubMed

    Bena, Iosif; Giusto, Stefano; Martinec, Emil J; Russo, Rodolfo; Shigemori, Masaki; Turton, David; Warner, Nicholas P

    2016-11-11

    We construct the first family of horizonless supergravity solutions that have the same mass, charges, and angular momenta as general supersymmetric rotating D1-D5-P black holes in five dimensions. This family includes solutions with arbitrarily small angular momenta, deep within the regime of quantum numbers and couplings for which a large classical black hole exists. These geometries are well approximated by the black-hole solution, and in particular exhibit the same near-horizon throat. Deep in this throat, the black-hole singularity is resolved into a smooth cap. We also identify the holographically dual states in the N=(4,4) D1-D5 orbifold conformal field theory (CFT). Our solutions are among the states counted by the CFT elliptic genus, and provide examples of smooth microstate geometries within the ensemble of supersymmetric black-hole microstates.

  3. Intrinsic and extrinsic electrical and thermal transport of bulk black phosphorus

    NASA Astrophysics Data System (ADS)

    Hu, Sile; Xiang, Junsen; Lv, Meng; Zhang, Jiahao; Zhao, Hengcan; Li, Chunhong; Chen, Genfu; Wang, Wenhong; Sun, Peijie

    2018-01-01

    We report a comprehensive investigation of the electrical, thermal, and thermoelectric transport properties of bulk single-crystalline black phosphorus in wide temperature (2-300 K) and field (0-9 T) ranges. Electrical transport below T ≈ 250 K is found to be dominated by extrinsic hole-type charge carriers with large mobility exceeding 104 cm2/V s at low temperatures. While thermal transport measurements reveal an enhanced in-plane thermal conductivity maximum κ = 180 W/m K at T ≈ 25 K, it appears still to be largely constrained by extrinsic phonon scattering processes, e.g., the electron-phonon process, in addition to intrinsic umklapp scattering. The thermoelectric power and Nernst effect seem to be strongly influenced by ambipolar transport of charge carriers with opposite signs in at least the high-temperature region above 200 K, which diminishes the thermoelectric power factor of this material. Our results provide a timely update to the transport properties of bulk black phosphorus for future fundamental and applied research.

  4. Single-Wall Carbon Nanotube Anodes for Lithium Cells

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Raffaelle, Ryne; Gennett, Tom; Kumta, Prashant; Maranchi, Jeff; Heben, Mike

    2006-01-01

    In recent experiments, highly purified batches of single-wall carbon nanotubes (SWCNTs) have shown promise as superior alternatives to the graphitic carbon-black anode materials heretofore used in rechargeable thin-film lithium power cells. The basic idea underlying the experiments is that relative to a given mass of graphitic carbon-black anode material, an equal mass of SWCNTs can be expected to have greater lithium-storage and charge/discharge capacities. The reason for this expectation is that whereas the microstructure and nanostructure of a graphitic carbon black is such as to make most of the interior of the material inaccessible for intercalation of lithium, a batch of SWCNTs can be made to have a much more open microstructure and nanostructure, such that most of the interior of the material is accessible for intercalation of lithium. Moreover, the greater accessibility of SWCNT structures can be expected to translate to greater mobilities for ion-exchange processes and, hence, an ability to sustain greater charge and discharge current densities.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akiyama, Kazunori; Fish, Vincent L.; Doeleman, Sheperd S.

    We propose a new imaging technique for radio and optical/infrared interferometry. The proposed technique reconstructs the image from the visibility amplitude and closure phase, which are standard data products of short-millimeter very long baseline interferometers such as the Event Horizon Telescope (EHT) and optical/infrared interferometers, by utilizing two regularization functions: the ℓ {sub 1}-norm and total variation (TV) of the brightness distribution. In the proposed method, optimal regularization parameters, which represent the sparseness and effective spatial resolution of the image, are derived from data themselves using cross-validation (CV). As an application of this technique, we present simulated observations of M87more » with the EHT based on four physically motivated models. We confirm that ℓ {sub 1} + TV regularization can achieve an optimal resolution of ∼20%–30% of the diffraction limit λ / D {sub max}, which is the nominal spatial resolution of a radio interferometer. With the proposed technique, the EHT can robustly and reasonably achieve super-resolution sufficient to clearly resolve the black hole shadow. These results make it promising for the EHT to provide an unprecedented view of the event-horizon-scale structure in the vicinity of the supermassive black hole in M87 and also the Galactic center Sgr A*.« less

  6. Hidden conformal symmetry of rotating black holes in minimal five-dimensional gauged supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setare, M. R.; Kamali, V.

    2010-10-15

    In the present paper we show that for a low frequency limit the wave equation of a massless scalar field in the background of nonextremal charged rotating black holes in five-dimensional minimal gauged and ungauged supergravity can be written as the Casimir of an SL(2,R) symmetry. Our result shows that the entropy of the black hole is reproduced by the Cardy formula. Also the absorption cross section is consistent with the finite temperature absorption cross section for a two-dimensional conformal field theory.

  7. Crystal structure of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center in a zinc or cadmium-bound form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoyama, Hideshi, E-mail: h-yokoya@u-shizuoka-ken.ac.jp; Tsuruta, Osamu; Akao, Naoya

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Structures of a metal-bound Helicobacter pylori neutrophil-activating protein were determined. Black-Right-Pointing-Pointer Two zinc ions were tetrahedrally coordinated by ferroxidase center (FOC) residues. Black-Right-Pointing-Pointer Two cadmium ions were coordinated in a trigonal-bipyramidal and octahedral manner. Black-Right-Pointing-Pointer The second metal ion was more weakly coordinated than the first at the FOC. Black-Right-Pointing-Pointer A zinc ion was found in one negatively-charged pore suitable as an ion path. -- Abstract: Helicobacter pylori neutrophil-activating protein (HP-NAP) is a Dps-like iron storage protein forming a dodecameric shell, and promotes adhesion of neutrophils to endothelial cells. The crystal structure of HP-NAP in a Zn{sup 2+}-more » or Cd{sup 2+}-bound form reveals the binding of two zinc or two cadmium ions and their bridged water molecule at the ferroxidase center (FOC). The two zinc ions are coordinated in a tetrahedral manner to the conserved residues among HP-NAP and Dps proteins. The two cadmium ions are coordinated in a trigonal-bipyramidal and distorted octahedral manner. In both structures, the second ion is more weakly coordinated than the first. Another zinc ion is found inside of the negatively-charged threefold-related pore, which is suitable for metal ions to pass through.« less

  8. Reversible hydration and aqueous exfoliation of the acetate-intercalated layered double hydroxide of Ni and Al: Observation of an ordered interstratified phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohara, G.V.; Vishnu Kamath, P., E-mail: vishnukamath8@hotmail.com; Milius, Wolfgang

    2012-12-15

    Acetate-intercalated layered double hydroxides (LDHs) of Ni and Al undergo reversible hydration in the solid state in response to the ambient humidity. The LDH with a high layer charge (0.33/formula unit) undergoes facile hydration in a single step, whereas the LDH with a lower layer charge (0.24/formula unit) exhibits an ordered interstratified intermediate, comprising the hydrated and dehydrated layers stacked alternatively. This phase, also known as the staged S-2 phase, coexists with the end members suggesting the existence of a solution-type equilibrium between the S-2 phase and the end members of the hydration cycle. These LDHs also undergo facile aqueousmore » exfoliation into 2-5 nm-thick tactoids with a radial dimension of 0.2-0.5 {mu}m. - Graphical abstract: Schematic of the hydrated, dehydrated and interstratified phases observed during the hydration-dehydration of Ni/Al-CH{sub 3}COO LDH. Highlights: Black-Right-Pointing-Pointer Ni/Al-acetate LDHs were synthesized by HPFS method by hydrolysis of acetamide. Black-Right-Pointing-Pointer Intercalated acetate ion shows reversible hydration with variation in humidity. Black-Right-Pointing-Pointer An ordered interstratified phase was observed during hydration/dehydration cycle. Black-Right-Pointing-Pointer A solution type equilibrium is observed between hydration-dehydration phases. Black-Right-Pointing-Pointer These LDHs undergo facile aqueous exfoliation.« less

  9. Black holes in quasi-topological gravity and conformal couplings

    NASA Astrophysics Data System (ADS)

    Chernicoff, Mariano; Fierro, Octavio; Giribet, Gaston; Oliva, Julio

    2017-02-01

    Lovelock theory of gravity provides a tractable model to investigate the effects of higher-curvature terms in the context of AdS/CFT. Yielding second order, ghost-free field equations, this theory represents a minimal setup in which higher-order gravitational couplings in asymptotically Anti-de Sitter (AdS) spaces, including black holes, can be solved analytically. This however has an obvious limitation as in dimensions lower than seven, the contribution from cubic or higher curvature terms is merely topological. Therefore, in order to go beyond quadratic order and study higher terms in AdS5 analytically, one is compelled to look for other toy models. One such model is the so-called quasi-topological gravity, which, despite being a higher-derivative theory, provides a tractable setup with R 3 and R 4 terms. In this paper, we investigate AdS5 black holes in quasi-topological gravity. We consider the theory conformally coupled to matter and in presence of Abelian gauge fields. We show that charged black holes in AdS5 which, in addition, exhibit a backreaction of the matter fields on the geometry can be found explicitly in this theory. These solutions generalize the black hole solution of quasi-topological gravity and exist in a region of the parameter spaces consistent with the constraints coming from causality and other consistency conditions. They have finite conserved charges and exhibit non-trivial thermodynamical properties.

  10. Charge generation layers for solution processed tandem organic light emitting diodes with regular device architecture.

    PubMed

    Höfle, Stefan; Bernhard, Christoph; Bruns, Michael; Kübel, Christian; Scherer, Torsten; Lemmer, Uli; Colsmann, Alexander

    2015-04-22

    Tandem organic light emitting diodes (OLEDs) utilizing fluorescent polymers in both sub-OLEDs and a regular device architecture were fabricated from solution, and their structure and performance characterized. The charge carrier generation layer comprised a zinc oxide layer, modified by a polyethylenimine interface dipole, for electron injection and either MoO3, WO3, or VOx for hole injection into the adjacent sub-OLEDs. ToF-SIMS investigations and STEM-EDX mapping verified the distinct functional layers throughout the layer stack. At a given device current density, the current efficiencies of both sub-OLEDs add up to a maximum of 25 cd/A, indicating a properly working tandem OLED.

  11. Regular black holes from semi-classical down to Planckian size

    NASA Astrophysics Data System (ADS)

    Spallucci, Euro; Smailagic, Anais

    In this paper, we review various models of curvature singularity free black holes (BHs). In the first part of the review, we describe semi-classical solutions of the Einstein equations which, however, contains a “quantum” input through the matter source. We start by reviewing the early model by Bardeen where the metric is regularized by-hand through a short-distance cutoff, which is justified in terms of nonlinear electro-dynamical effects. This toy-model is useful to point-out the common features shared by all regular semi-classical black holes. Then, we solve Einstein equations with a Gaussian source encoding the quantum spread of an elementary particle. We identify, the a priori arbitrary, Gaussian width with the Compton wavelength of the quantum particle. This Compton-Gauss model leads to the estimate of a terminal density that a gravitationally collapsed object can achieve. We identify this density to be the Planck density, and reformulate the Gaussian model assuming this as its peak density. All these models, are physically reliable as long as the BH mass is big enough with respect to the Planck mass. In the truly Planckian regime, the semi-classical approximation breaks down. In this case, a fully quantum BH description is needed. In the last part of this paper, we propose a nongeometrical quantum model of Planckian BHs implementing the Holographic Principle and realizing the “classicalization” scenario recently introduced by Dvali and collaborators. The classical relation between the mass and radius of the BH emerges only in the classical limit, far away from the Planck scale.

  12. Associations between black tea and coffee consumption and risk of lung cancer among current and former smokers.

    PubMed

    Baker, Julie A; McCann, Susan E; Reid, Mary E; Nowell, Susan; Beehler, Gregory P; Moysich, Kirsten B

    2005-01-01

    Although cigarette smoking is a clear risk factor for lung cancer, the other determinants of lung cancer risk among smokers are less clear. Tea and coffee contain catechins and flavonoids, which have been shown to exhibit anticarcinogenic properties. Conversely, caffeine may elevate cancer risk through a variety of mechanisms. The current study investigated the effects of regular consumption of black tea and coffee on lung cancer risk among 993 current and former smokers with primary incident lung cancer and 986 age-, sex-, and smoking-matched hospital controls with non-neoplastic conditions. Results indicated that lung cancer risk was not different for those with the highest black tea consumption (>or=2 cups/day) compared with nondrinkers of tea [adjusted odds ratio (aOR)=0.90; 95% confidence interval (CI)=0.66-1.24]. However, elevated lung cancer risk was observed for participants who consumed 2-3 cups of regular coffee daily (aOR=1.34; 95% CI=0.99-1.82) or >or=4 cups of regular coffee daily (aOR=1.51, 95% CI=1.11-2.05). In contrast, decaffeinated coffee drinking was associated with decreased lung cancer risk for both participants who consumed or=2 cups/day (aOR=0.64; 95% CI=0.51-0.80). These results suggest that any chemoprotective effects of phytochemicals in coffee and tea may be overshadowed by the elevated risk associated with caffeine in these beverages.

  13. On the global Casimir effect in the Schwarzschild spacetime

    NASA Astrophysics Data System (ADS)

    Muniz, C. R.; Tahim, M. O.; Cunha, M. S.; Vieira, H. S.

    2018-01-01

    In this paper we study the vacuum quantum fluctuations of the stationary modes of an uncharged scalar field with mass m around a Schwarzschild black hole with mass M, at zero and non-zero temperatures. The procedure consists of calculating the energy eigenvalues starting from the exact solutions found for the dynamics of the scalar field, considering a frequency cutoff in which the particle is not absorbed by the black hole. From this result, we obtain the exterior contributions for the vacuum energy associated to the stationary states of the scalar field, by considering the half-summing of the levels of energy and taking into account the respective degeneracies, in order to better capture the nontrivial topology of the black hole spacetime. Then we use the Riemann's zeta function to regularize the vacuum energy thus found. Such a regularized quantity is the Casimir energy, whose analytic computation we show to yield a convergent series. The Casimir energy obtained does not take into account any boundaries artificially imposed on the system, just the nontrivial spacetime topology associated to the source and its singularity. We suggest that this latter manifests itself through the vacuum tension calculated on the event horizon. We also investigate the problem by considering the thermal corrections via Helmholtz free energy calculation, computing the Casimir internal energy, the corresponding tension on the event horizon, the Casimir entropy, and the thermal capacity of the regularized quantum vacuum, analyzing their behavior at low and high temperatures, pointing out the thermodynamic instability of the system in the considered regime, i.e. mMll 1.

  14. Multipole moments of bumpy black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigeland, Sarah J.

    General relativity predicts the existence of black holes, compact objects whose spacetimes depend only on their mass, spin, and charge in vacuum (the 'no-hair' theorem). As various observations probe deeper into the strong fields of black hole candidates, it is becoming possible to test this prediction. Previous work suggested that such tests can be performed by measuring whether the multipolar structure of black hole candidates has the form that general relativity demands, and introduced a family of 'bumpy black hole' spacetimes to be used for making these measurements. These spacetimes have generalized multipoles, where the deviation from the Kerr metricmore » depends on the spacetime's 'bumpiness'. In this paper, we show how to compute the Geroch-Hansen moments of a bumpy black hole, demonstrating that there is a clean mapping between the deviations used in the bumpy black hole formalism and the Geroch-Hansen moments. We also extend our previous results to define bumpy black holes whose current moments, analogous to magnetic moments of electrodynamics, deviate from the canonical Kerr value.« less

  15. Nonminimal Wu-Yang wormhole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, A. B.; Zayats, A. E.; Sushkov, S. V.

    2007-04-15

    We discuss exact solutions of a three-parameter nonminimal Einstein-Yang-Mills model, which describe the wormholes of a new type. These wormholes are considered to be supported by the SU(2)-symmetric Yang-Mills field, nonminimally coupled to gravity, the Wu-Yang ansatz for the gauge field being used. We distinguish between regular solutions, describing traversable nonminimal Wu-Yang wormholes, and black wormholes possessing one or two event horizons. The relation between the asymptotic mass of the regular traversable Wu-Yang wormhole and its throat radius is analyzed.

  16. Comprehensive Study of Intercity Bus Service in Nebraska

    DOT National Transportation Integrated Search

    1988-03-01

    This study is prompted by the proposed abandonment of regular-route intercity : bus service across northern Nebraska. The current route, which is operated by : Black Hills Stage Lines, provides service from Omaha through Norfolk and Chadron : to Rapi...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argurio, Riccardo; Dehouck, Francois

    We study how gravitational duality acts on rotating solutions, using the Kerr-NUT black hole as an example. After properly reconsidering how to take into account both electric (i.e. masslike) and magnetic (i.e. NUT-like) sources in the equations of general relativity, we propose a set of definitions for the dual Lorentz charges. We then show that the Kerr-NUT solution has nontrivial such charges. Further, we clarify in which respect Kerr's source can be seen as a mass M with a dipole of NUT charges.

  18. Sodium dodecyl benzene sulphonate mediated tautomerism of Eriochrome Black-T: Effect of charge transfer interaction

    NASA Astrophysics Data System (ADS)

    Ghosh, Sumit

    2010-11-01

    Interaction between anionic surfactant, sodium dodecyl benzene sulphonate, (SDBS) and an anionic dye Eriochrome Black-T, (EBT) has been investigated by visible spectroscopy, conductometry, dynamic light scattering and zeta potential measurements. Spectral changes of EBT observed on addition of SDBS indicate formation of quinone-hydrazone tautomer at pH 7.0, whereas in absence of SDBS this change appears at pH ˜ 9.45. However, at pH 7.0 this change in tautomerism is not observed in presence of sodium dodecyl sulphate (SDS). Experimental results indicate presence of charge transfer interaction between less stable quinone-hydrazone tautomer of EBT and SDBS molecules, which is confirmed using Benesi-Hildebrand and Scott equations.

  19. Racial Coverage of the 1950s Print Media and the Case of Emmett Till.

    ERIC Educational Resources Information Center

    Rhodes, Jane

    The Emmett Till murder case in 1955 marked the turning point in the coverage of blacks by the white American press. Till, a black teenager from Chicago, was murdered in 1955 while visiting relatives in Mississippi. The Till murder was covered extensively in the press, since the two white men charged with killing him were acquitted by an all-white,…

  20. Non-Existence of Black Hole Solutionsfor a Spherically Symmetric, Static Einstein-Dirac-Maxwell System

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    We consider for j=1/2, 3/2,... a spherically symmetric, static system of (2j+1) Dirac particles, each having total angular momentum j. The Dirac particles interact via a classical gravitational and electromagnetic field. The Einstein-Dirac-Maxwell equations for this system are derived. It is shown that, under weak regularity conditions on the form of the horizon, the only black hole solutions of the EDM equations are the Reissner-Nordstrom solutions. In other words, the spinors must vanish identically. Applied to the gravitational collapse of a "cloud" of spin-1/2-particles to a black hole, our result indicates that the Dirac particles must eventually disappear inside the event horizon.

  1. Thermodynamics of higher dimensional black holes with higher order thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Pourhassan, B.; Kokabi, K.; Rangyan, S.

    2017-12-01

    In this paper, we consider higher order corrections of the entropy, which coming from thermal fluctuations, and find their effect on the thermodynamics of higher dimensional charged black holes. Leading order thermal fluctuation is logarithmic term in the entropy while higher order correction is proportional to the inverse of original entropy. We calculate some thermodynamics quantities and obtain the effect of logarithmic and higher order corrections of entropy on them. Validity of the first law of thermodynamics investigated and Van der Waals equation of state of dual picture studied. We find that five-dimensional black hole behaves as Van der Waals, but higher dimensional case have not such behavior. We find that thermal fluctuations are important in stability of black hole hence affect unstable/stable black hole phase transition.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The EV Everywhere Workplace Charging Challenge aims to have 500 U.S. employers offering workplace charging by 2018. These reports describe the progress made in the Challenge. In 2015, the Workplace Charging Challenge celebrated a major milestone – it reached the halfway point to its goal of 500 Challenge partners committed to installing workplace charging by 2018. More than 250 employers have joined as Challenge partners and the installation of workplace charging as a sustainable business practice is growing across the country. Their efforts have resulted in more than 600 workplaces with over 5,500 charging stations accessible to nearly one millionmore » employees. In 2015, more than 9,000 PEV-driving employees charged at these worksites on a regular basis. Our Workplace Charging Challenge Mid-Program Review reports this progress and other statistics related to workplace charging, including employee satisfaction and charger usage.« less

  3. Ergoregions in magnetized black hole spacetimes

    NASA Astrophysics Data System (ADS)

    Gibbons, G. W.; Mujtaba, A. H.; Pope, C. N.

    2013-06-01

    The spacetimes obtained by Ernst’s procedure for appending an external magnetic field B to a seed Kerr-Newman black hole are commonly believed to be asymptotic to the static Melvin metric. We show that this is not in general true. Unless the electric charge of the black hole satisfies Q= jB(1+{\\textstyle {\\frac{\\scriptstyle 1}{\\scriptstyle 4} } } j^2 B^4), where j is the angular momentum of the original seed solution, an ergoregion extends all the way from the black hole horizon to infinity. We find that if the condition on the electric charge is satisfied then the metric is asymptotic to the static Melvin metric, and the electromagnetic field carries not only magnetic, but also electric, flux along the axis. We give a self-contained account of the solution-generating procedure, including explicit formulae for the metric and the vector potential. In the case when Q= jB(1+{\\textstyle {\\frac{\\scriptstyle 1}{\\scriptstyle 4} } } j^2 B^4), we show that there is an arbitrariness in the choice of asymptotically timelike Killing field K_\\Omega = {\\partial }/{\\partial }t+ \\Omega \\, {\\partial }/{\\partial }\\phi, because there is no canonical choice of Ω. For one choice, Ω = Ωs, the metric is asymptotically static, and there is an ergoregion confined to the neighbourhood of the horizon. On the other hand, by choosing Ω = ΩH, so that K_{\\Omega _H} is co-rotating with the horizon, then for sufficiently large B numerical studies indicate there is no ergoregion at all. For smaller values, in a range B- < B < B+, there is a toroidal ergoregion outside and disjoint from the horizon. If B ⩽ B- this ergoregion expands all the way to infinity in a cylindrical region near to the rotation axis. For black holes whose size is small compared to the Melvin radius 2/B, and neglecting back-reaction of the electromagnetic field, we recover Wald’s result that it is energetically favourable for the hole to acquire a charge 2jB.

  4. Deformation of extremal black holes from stringy interactions

    NASA Astrophysics Data System (ADS)

    Chen, Baoyi; Stein, Leo C.

    2018-04-01

    Black holes are a powerful setting for studying general relativity and theories beyond GR. However, analytical solutions for rotating black holes in beyond-GR theories are difficult to find because of the complexity of such theories. In this paper, we solve for the deformation to the near-horizon extremal Kerr metric due to two example string-inspired beyond-GR theories: Einstein-dilaton-Gauss-Bonnet and dynamical Chern-Simons theory. We accomplish this by making use of the enhanced symmetry group of NHEK and the weak-coupling limit of EdGB and dCS. We find that the EdGB metric deformation has a curvature singularity, while the dCS metric is regular. From these solutions, we compute orbital frequencies, horizon areas, and entropies. This sets the stage for analytically understanding the microscopic origin of black hole entropy in beyond-GR theories.

  5. 7 CFR 56.28 - Types of service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Charges or fees are based on time, travel, and expenses needed to perform the work. [69 FR 76375, Dec. 21... of shell eggs. Requests are made not on a regular basis. Charges or fees are based on the time, travel, and expenses needed to perform the work. This service also may be called the fee grading service...

  6. 7 CFR 56.28 - Types of service.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Charges or fees are based on time, travel, and expenses needed to perform the work. [69 FR 76375, Dec. 21... of shell eggs. Requests are made not on a regular basis. Charges or fees are based on the time, travel, and expenses needed to perform the work. This service also may be called the fee grading service...

  7. 7 CFR 56.28 - Types of service.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Charges or fees are based on time, travel, and expenses needed to perform the work. [69 FR 76375, Dec. 21... of shell eggs. Requests are made not on a regular basis. Charges or fees are based on the time, travel, and expenses needed to perform the work. This service also may be called the fee grading service...

  8. 7 CFR 56.28 - Types of service.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Charges or fees are based on time, travel, and expenses needed to perform the work. [69 FR 76375, Dec. 21... of shell eggs. Requests are made not on a regular basis. Charges or fees are based on the time, travel, and expenses needed to perform the work. This service also may be called the fee grading service...

  9. 7 CFR 56.28 - Types of service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Charges or fees are based on time, travel, and expenses needed to perform the work. [69 FR 76375, Dec. 21... of shell eggs. Requests are made not on a regular basis. Charges or fees are based on the time, travel, and expenses needed to perform the work. This service also may be called the fee grading service...

  10. Quasinormal modes of charged magnetic black branes & chiral magnetic transport

    NASA Astrophysics Data System (ADS)

    Ammon, Martin; Kaminski, Matthias; Koirala, Roshan; Leiber, Julian; Wu, Jackson

    2017-04-01

    We compute quasinormal modes (QNMs) of the metric and gauge field perturbations about black branes electrically and magnetically charged in the Einstein-Maxwell-Chern-Simons theory. By the gauge/gravity correspondence, this theory is dual to a particular class of field theories with a chiral anomaly, in a thermal charged plasma state subjected to a constant external magnetic field, B. The QNMs are dual to the poles of the two-point functions of the energy-momentum and axial current operators, and they encode information about the dissipation and transport of charges in the plasma. Complementary to the gravity calculation, we work out the hydrodynamic description of the dual field theory in the presence of a chiral anomaly, and a constant external B. We find good agreement with the weak field hydrodynamics, which can extend beyond the weak B regime into intermediate regimes. Furthermore, we provide results that can be tested against thermodynamics and hydrodynamics in the strong B regime. We find QNMs exhibiting Landau level behavior, which become long-lived at large B if the anomaly coefficient exceeds a critical magnitude. Chiral transport is analyzed beyond the hydrodynamic approximation for the five (formerly) hydrodynamic modes, including a chiral magnetic wave.

  11. Charged anti-de Sitter BTZ black holes in Maxwell-f(T) gravity

    NASA Astrophysics Data System (ADS)

    Nashed, G. G. L.; Capozziello, S.

    2018-05-01

    Inspired by the Bañados, Teitelboim and Zanelli (BTZ) formalism, we discuss the Maxwell-f(T) gravity in (2 + 1) dimensions. The main task is to derive exact solutions for a special form of f(T) = T + 𝜖T2, with T being the torsion scalar of Weitzenböck geometry. To this end, a triad field is applied to the equations of motion of charged f(T) and sets of circularly symmetric noncharged and charged solutions have been derived. We show that, in the charged case, the monopole-like and the ln terms are linked by a correlative constant despite the known results in teleparallel geometry and its extensions.39 Furthermore, it is possible to show that the event horizon is not identical with the Cauchy horizon due to such a constant. The singularities and the horizons of these black holes are examined: they are new and have no analogue in the literature due to the fact that their curvature singularities are soft. We calculate the energy content of these solutions by using the general vector form of the energy-momentum within the framework of f(T) gravity. Finally, some thermodynamical quantities, like entropy and Hawking temperature, are derived.

  12. Quantum Black Hole Model and HAWKING’S Radiation

    NASA Astrophysics Data System (ADS)

    Berezin, Victor

    The black hole model with a self-gravitating charged spherical symmetric dust thin shell as a source is considered. The Schroedinger-type equation for such a model is derived. This equation appeared to be a finite differences equation. A theory of such an equation is developed and general solution is found and investigated in details. The discrete spectrum of the bound state energy levels is obtained. All the eigenvalues appeared to be infinitely degenerate. The ground state wave functions are evaluated explicitly. The quantum black hole states are selected and investigated. It is shown that the obtained black hole mass spectrum is compatible with the existence of Hawking’s radiation in the limit of low temperatures both for large and nearly extreme Reissner-Nordstrom black holes. The above mentioned infinite degeneracy of the mass (energy) eigenvalues may appeared helpful in resolving the well known information paradox in the black hole physics.

  13. 14 CFR Appendix A to Part 129 - Application for Operations Specifications by Foreign Air Carriers

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... employee of the applicant having knowledge of the matter set forth therein, and must have attached thereto... different colors are used, the identification will be accomplished as follows: 1. Regular route: Black. 2...

  14. Are social network correlates of heavy drinking similar among black homeless youth and white homeless youth?

    PubMed

    Wenzel, Suzanne L; Hsu, Hsun-Ta; Zhou, Annie; Tucker, Joan S

    2012-11-01

    Understanding factors associated with heavy drinking among homeless youth is important for prevention efforts. Social networks are associated with drinking among homeless youth, and studies have called for attention to racial differences in networks that may affect drinking behavior. This study investigates differences in network characteristics by the racial background of homeless youth, and associations of network characteristics with heavy drinking. (Heavy drinking was defined as having five or more drinks of alcohol in a row within a couple of hours on at least one day within the past 30 days.) A probability sample of 235 Black and White homeless youths ages 13-24 were interviewed in Los Angeles County. We used chi-square or one-way analysis of variance tests to examine network differences by race and logistic regressions to identify network correlates of heavy drinking among Black and White homeless youth. The networks of Black youth included significantly more relatives and students who attend school regularly, whereas the networks of White youth were more likely to include homeless persons, relatives who drink to intoxication, and peers who drink to intoxication. Having peers who drink heavily was significantly associated with heavy drinking only among White youth. For all homeless youth, having more students in the network who regularly attend school was associated with less risk of heavy drinking. This study is the first to our knowledge to investigate racial differences in network characteristics and associations of network characteristics with heavy drinking among homeless youth. White homeless youth may benefit from interventions that reduce their ties with peers who drink. Enhancing ties to school-involved peers may be a promising intervention focus for both Black and White homeless youth.

  15. Are Social Network Correlates of Heavy Drinking Similar Among Black Homeless Youth and White Homeless Youth?

    PubMed Central

    Wenzel, Suzanne L.; Hsu, Hsun-Ta; Zhou, Annie; Tucker, Joan S.

    2012-01-01

    Objective: Understanding factors associated with heavy drinking among homeless youth is important for prevention efforts. Social networks are associated with drinking among homeless youth, and studies have called for attention to racial differences in networks that may affect drinking behavior. This study investigates differences in network characteristics by the racial background of homeless youth, and associations of network characteristics with heavy drinking. (Heavy drinking was defined as having five or more drinks of alcohol in a row within a couple of hours on at least one day within the past 30 days.) Method: A probability sample of 235 Black and White homeless youths ages 13–24 were interviewed in Los Angeles County. We used chi-square or one-way analysis of variance tests to examine network differences by race and logistic regressions to identify network correlates of heavy drinking among Black and White homeless youth. Results: The networks of Black youth included significantly more relatives and students who attend school regularly, whereas the networks of White youth were more likely to include homeless persons, relatives who drink to intoxication, and peers who drink to intoxication. Having peers who drink heavily was significantly associated with heavy drinking only among White youth. For all homeless youth, having more students in the network who regularly attend school was associated with less risk of heavy drinking. Conclusions: This study is the first to our knowledge to investigate racial differences in network characteristics and associations of network characteristics with heavy drinking among homeless youth. White homeless youth may benefit from interventions that reduce their ties with peers who drink. Enhancing ties to school-involved peers may be a promising intervention focus for both Black and White homeless youth. PMID:23036205

  16. The role of amino acid electron-donor/acceptor atoms in host-cell binding peptides is associated with their 3D structure and HLA-binding capacity in sterile malarial immunity induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patarroyo, Manuel E., E-mail: mepatarr@mail.com; Universidad Nacional de Colombia, Bogota; Almonacid, Hannia

    Highlights: Black-Right-Pointing-Pointer Fundamental residues located in some HABPs are associated with their 3D structure. Black-Right-Pointing-Pointer Electron-donor atoms present in {beta}-turn, random, distorted {alpha}-helix structures. Black-Right-Pointing-Pointer Electron-donor atoms bound to HLA-DR53. Black-Right-Pointing-Pointer Electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. -- Abstract: Plasmodium falciparum malaria continues being one of the parasitic diseases causing the highest worldwide mortality due to the parasite's multiple evasion mechanisms, such as immunological silence. Membrane and organelle proteins are used during invasion for interactions mediated by high binding ability peptides (HABPs); these have amino acids which establish hydrogen bonds between them in some of theirmore » critical binding residues. Immunisation assays in the Aotus model using HABPs whose critical residues had been modified have revealed a conformational change thereby enabling a protection-inducing response. This has improved fitting within HLA-DR{beta}1{sup Asterisk-Operator} molecules where amino acid electron-donor atoms present in {beta}-turn, random or distorted {alpha}-helix structures preferentially bound to HLA-DR53 molecules, whilst HABPs having amino acid electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. This data has great implications for vaccine development.« less

  17. Holographic duality: Stealing dimensions from metals

    NASA Astrophysics Data System (ADS)

    Zaanen, Jan

    2013-10-01

    Although electrically charged black holes seem remote from superconductors and strange metals in the laboratory, they might be intimately related by the holographic dualities discovered in string theory.

  18. Optimal management of batteries in electric systems

    DOEpatents

    Atcitty, Stanley; Butler, Paul C.; Corey, Garth P.; Symons, Philip C.

    2002-01-01

    An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

  19. Non-Abelian clouds around Reissner-Nordström black holes: The existence line

    NASA Astrophysics Data System (ADS)

    Radu, Eugen; Tchrakian, D. H.; Yang, Yisong

    2016-06-01

    A known feature of electrically charged Reissner-Nordström-anti-de Sitter planar black holes is that they can become unstable when considered as solutions of Einstein-Yang-Mills theory. The mechanism for this is that the linearized Yang-Mills equations in the background of the Reissner-Nordström (RN) black holes possess a normalizable zero mode, resulting in non-Abelian (nA) magnetic clouds near the horizon. In this work we show that the same pattern may occur also for asymptotically flat RN black holes. Different from the anti-de Sitter case, in the Minkowskian background the prerequisites for the existence of the nA clouds are (i) a large enough gauge group, and (ii) the presence of some extra interaction terms in the matter Lagrangian. To illustrate this mechanism we present two specific examples, one in four- and the other in five-dimensional asymptotically flat spacetime. In the first case, we augment the usual S U (3 ) Yang-Mills Lagrangian with a higher-order (quartic) curvature term, while for the second one we add the Chern-Simons density to the S O (6 ) Yang-Mills system. In both cases, an Abelian gauge symmetry is spontaneously broken near a RN black hole horizon with the appearance of a condensate of nA gauge fields. In addition to these two examples, we review the corresponding picture for anti-de Sitter black holes. All these solutions are studied both analytically and numerically, existence proofs being provided for nA clouds in the background of RN black holes. The proofs use shooting techniques which are suggested by and in turn offer insights for our numerical methods. They indicate that, for a black hole of given mass, appropriate electric charge values are required to ensure the existence of solutions interpolating desired boundary behavior at the horizons and spatial infinity.

  20. Thermodynamics of a Higher Dimensional Noncommutative Inspired Anti-de Sitter-Einstein-Born-Infeld Black Hole

    NASA Astrophysics Data System (ADS)

    González, Angélica; Linares, Román; Maceda, Marco; Sánchez-Santos, Oscar

    2018-04-01

    We analyze noncommutative deformations of a higher dimensional anti-de Sitter-Einstein-Born-Infeld black hole. Two models based on noncommutative inspired distributions of mass and charge are discussed and their thermodynamical properties such as the equation of state are explicitly calculated. In the (3 + 1)-dimensional case the Gibbs energy function of each model is used to discuss the presence of phase transitions.

  1. Phase transition and thermodynamic geometry of f (R ) AdS black holes in the grand canonical ensemble

    NASA Astrophysics Data System (ADS)

    Li, Gu-Qiang; Mo, Jie-Xiong

    2016-06-01

    The phase transition of a four-dimensional charged AdS black hole solution in the R +f (R ) gravity with constant curvature is investigated in the grand canonical ensemble, where we find novel characteristics quite different from that in the canonical ensemble. There exists no critical point for T -S curve while in former research critical point was found for both the T -S curve and T -r+ curve when the electric charge of f (R ) black holes is kept fixed. Moreover, we derive the explicit expression for the specific heat, the analog of volume expansion coefficient and isothermal compressibility coefficient when the electric potential of f (R ) AdS black hole is fixed. The specific heat CΦ encounters a divergence when 0 <Φ b . This finding also differs from the result in the canonical ensemble, where there may be two, one or no divergence points for the specific heat CQ . To examine the phase structure newly found in the grand canonical ensemble, we appeal to the well-known thermodynamic geometry tools and derive the analytic expressions for both the Weinhold scalar curvature and Ruppeiner scalar curvature. It is shown that they diverge exactly where the specific heat CΦ diverges.

  2. Riemann solvers and Alfven waves in black hole magnetospheres

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Balsara, Dinshaw; Kim, Jinho; Garain, Sudip

    2016-09-01

    In the magnetosphere of a rotating black hole, an inner Alfven critical surface (IACS) must be crossed by inflowing plasma. Inside the IACS, Alfven waves are inward directed toward the black hole. The majority of the proper volume of the active region of spacetime (the ergosphere) is inside of the IACS. The charge and the totally transverse momentum flux (the momentum flux transverse to both the wave normal and the unperturbed magnetic field) are both determined exclusively by the Alfven polarization. Thus, it is important for numerical simulations of black hole magnetospheres to minimize the dissipation of Alfven waves. Elements of the dissipated wave emerge in adjacent cells regardless of the IACS, there is no mechanism to prevent Alfvenic information from crossing outward. Thus, numerical dissipation can affect how simulated magnetospheres attain the substantial Goldreich-Julian charge density associated with the rotating magnetic field. In order to help minimize dissipation of Alfven waves in relativistic numerical simulations we have formulated a one-dimensional Riemann solver, called HLLI, which incorporates the Alfven discontinuity and the contact discontinuity. We have also formulated a multidimensional Riemann solver, called MuSIC, that enables low dissipation propagation of Alfven waves in multiple dimensions. The importance of higher order schemes in lowering the numerical dissipation of Alfven waves is also catalogued.

  3. Thermodynamics of higher spin black holes in AdS3

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Jottar, Juan I.

    2014-01-01

    We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL( N, ) × SL( N, ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges.

  4. Black holes with halos

    NASA Astrophysics Data System (ADS)

    Monten, Ruben; Toldo, Chiara

    2018-02-01

    We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.

  5. Squashed, magnetized black holes in D = 5 minimal gauged supergravity

    NASA Astrophysics Data System (ADS)

    Blázquez-Salcedo, Jose Luis; Kunz, Jutta; Navarro-Lérida, Francisco; Radu, Eugen

    2018-02-01

    We construct a new class of black hole solutions in five-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant. These configurations are cohomogeneity-1, with two equal-magnitude angular momenta. In the generic case, they possess a non-vanishing magnetic potential at infinity with a boundary metric which is the product of time and a squashed three-dimensional sphere. Both extremal and non-extremal black holes are studied. The non-extremal black holes satisfying a certain relation between electric charge, angular momenta and magnitude of the magnetic potential at infinity do not trivialize in the limit of vanishing event horizon size, becoming particle-like (non-topological) solitonic configurations. Among the extremal black holes, we show the existence of a new one-parameter family of supersymmetric solutions, which bifurcate from a critical Gutowski-Reall configuration.

  6. On the theoretical description of weakly charged surfaces.

    PubMed

    Wang, Rui; Wang, Zhen-Gang

    2015-03-14

    It is widely accepted that the Poisson-Boltzmann (PB) theory provides a valid description for charged surfaces in the so-called weak coupling limit. Here, we show that the image charge repulsion creates a depletion boundary layer that cannot be captured by a regular perturbation approach. The correct weak-coupling theory must include the self-energy of the ion due to the image charge interaction. The image force qualitatively alters the double layer structure and properties, and gives rise to many non-PB effects, such as nonmonotonic dependence of the surface energy on concentration and charge inversion. In the presence of dielectric discontinuity, there is no limiting condition for which the PB theory is valid.

  7. Black tea: Phytochemicals, cancer chemoprevention, and clinical studies.

    PubMed

    Singh, Brahma N; Rawat, A K S; Bhagat, R M; Singh, B R

    2017-05-03

    Tea (Camellia sinensis L.) is the most popular, flavored, functional, and therapeutic non-alcoholic drink consumed by two-thirds of the world's population. Black tea leaves are reported to contain thousands of bioactive constituents such as polyphenols, amino acids, volatile compounds, and alkaloids that exhibit a range of promising pharmacological properties. Due to strong antioxidant property, black tea inhibits the development of various cancers by regulating oxidative damage of biomolecules, endogenous antioxidants, and pathways of mutagen and transcription of antioxidant gene pool. Regular drinking of phytochemicals-rich black tea is linked to regulate several molecular targets, including COX-2, 5-LOX, AP-1, JNK, STAT, EGFR, AKT, Bcl2, NF-κB, Bcl-xL, caspases, p53, FOXO1, TNFα, PARP, and MAPK, which may be the basis of how dose of black tea prevents and cures cancer. In vitro and preclinical studies support the anti-cancer activity of black tea; however, its effect in human trails is uncertain, although more clinical experiments are needed at molecular levels to understand its anti-cancer property. This review discusses the current knowledge on phytochemistry, chemopreventive activity, and clinical applications of black tea to reveal its anti-cancer effect.

  8. The Capra Research Program for Modelling Extreme Mass Ratio Inspirals

    NASA Astrophysics Data System (ADS)

    Thornburg, Jonathan

    2011-02-01

    Suppose a small compact object (black hole or neutron star) of mass m orbits a large black hole of mass M ≫ m. This system emits gravitational waves (GWs) that have a radiation-reaction effect on the particle's motion. EMRIs (extreme-mass-ratio inspirals) of this type will be important GW sources for LISA. To fully analyze these GWs, and to detect weaker sources also present in the LISA data stream, will require highly accurate EMRI GW templates. In this article I outline the ``Capra'' research program to try to model EMRIs and calculate their GWs ab initio, assuming only that m ≪ M and that the Einstein equations hold. Because m ≪ M the timescale for the particle's orbit to shrink is too long for a practical direct numerical integration of the Einstein equations, and because this orbit may be deep in the large black hole's strong-field region, a post-Newtonian approximation would be inaccurate. Instead, we treat the EMRI spacetime as a perturbation of the large black hole's ``background'' (Schwarzschild or Kerr) spacetime and use the methods of black-hole perturbation theory, expanding in the small parameter m/M. The particle's motion can be described either as the result of a radiation-reaction ``self-force'' acting in the background spacetime or as geodesic motion in a perturbed spacetime. Several different lines of reasoning lead to the (same) basic O(m/M) ``MiSaTaQuWa'' equations of motion for the particle. In particular, the MiSaTaQuWa equations can be derived by modelling the particle as either a point particle or a small Schwarzschild black hole. The latter is conceptually elegant, but the former is technically much simpler and (surprisingly for a nonlinear field theory such as general relativity) still yields correct results. Modelling the small body as a point particle, its own field is singular along the particle worldline, so it's difficult to formulate a meaningful ``perturbation'' theory or equations of motion there. Detweiler and Whiting found an elegant decomposition of the particle's metric perturbation into a singular part which is spherically symmetric at the particle and a regular part which is smooth (and non-symmetric) at the particle. If we assume that the singular part (being spherically symmetric at the particle) exerts no force on the particle, then the MiSaTaQuWa equations follow immediately. The MiSaTaQuWa equations involve gradients of a (curved-spacetime) Green function, integrated over the particle's entire past worldline. These expressions aren't amenable to direct use in practical computations. By carefully analysing the singularity structure of each term in a spherical-harmonic expansion of the particle's field, Barack and Ori found that the self-force can be written as an infinite sum of modes, each of which can be calculated by (numerically) solving a set of wave equations in 1{+}1 dimensions, summing the gradients of the resulting fields at the particle position, and then subtracting certain analytically-calculable ``regularization parameters''. This ``mode-sum'' regularization scheme has been the basis for much further research including explicit numerical calculations of the self-force in a variety of situations, initially for Schwarzschild spacetime and more recently extending to Kerr spacetime. Recently Barack and Golbourn developed an alternative ``m-mode'' regularization scheme. This regularizes the physical metric perturbation by subtracting from it a suitable ``puncture function'' approximation to the Detweiler-Whiting singular field. The residual is then decomposed into a Fourier sum over azimuthal (e^{imϕ}) modes, and the resulting equations solved numerically in 2{+}1 dimensions. Vega and Detweiler have developed a related scheme that uses the same puncture-function regularization but then solves the regularized perturbation equation numerically in 3{+}1 dimensions, avoiding a mode-sum decomposition entirely. A number of research projects are now using these puncture-function regularization schemes, particularly for calculations in Kerr spacetime. Most Capra research to date has used 1st order perturbation theory, with the particle moving on a fixed (usually geodesic) worldline. Much current research is devoted to generalizing this to allow the particle worldline to be perturbed by the self-force, and to obtain approximation schemes which remain valid over long (EMRI-inspiral) timescales. To obtain the very high accuracies needed to fully exploit LISA's observations of the strongest EMRIs, 2nd order perturbation theory will probably also be needed; both this and long-time approximations remain frontiers for future Capra research.

  9. Black holes with su(N) gauge field hair and superconducting horizons

    NASA Astrophysics Data System (ADS)

    Shepherd, Ben L.; Winstanley, Elizabeth

    2017-01-01

    We present new planar dyonic black hole solutions of the su(N) Einstein-Yang-Mills equations in asymptotically anti-de Sitter space-time, focussing on su(2) and su(3) gauge groups. The magnetic part of the gauge field forms a condensate close to the planar event horizon. We compare the free energy of a non-Abelian hairy black hole with that of an embedded Reissner-Nordström-anti-de Sitter (RN-AdS) black hole having the same Hawking temperature and electric charge. We find that the hairy black holes have lower free energy. We present evidence that there is a phase transition at a critical temperature, above which the only solutions are embedded RN-AdS black holes. At the critical temperature, an RN-AdS black hole can decay into a hairy black hole, and it is thermodynamically favourable to do so. Working in the probe limit, we compute the frequency-dependent conductivity, and find that enlarging the gauge group from su(2) to su(3) eliminates a divergence in the conductivity at nonzero frequency.

  10. Motion of charged particles in a NUTty Einstein-Maxwell spacetime and causality violation

    NASA Astrophysics Data System (ADS)

    Clément, Gérard; Guenouche, Mourad

    2018-06-01

    We investigate the motion of electrically charged test particles in spacetimes with closed timelike curves, a subset of the black hole or wormhole Reissner-Nordström-NUT spacetimes without periodic identification of time. We show that, while in the wormhole case there are closed worldlines inside a potential well, the wordlines of initially distant charged observers moving under the action of the Lorentz force can never close or self-intersect. This means that for these observers causality is preserved, which is an instance of our weak chronology protection criterion.

  11. Mass, angular momentum, and charge inequalities for black holes in Einstein-Maxwell-axion-dilaton gravity

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek

    2014-02-01

    Mass, angular momentum, and charge inequalities for axisymmetric maximal time-symmetric initial data invariant under an action of U(1) group, in Einstein-Maxwell-axion-dilaton gravity being the low-energy limit of the heterotic string theory, is established. We assume that a data set with two asymptotically flat regions is given on a smooth simply connected manifold. We also pay attention to the area momentum charge inequalities for a closed orientable two-dimensional spacelike surface embedded in the spacetime of the considered theory.

  12. Quasilocal conserved charges in a covariant theory of gravity.

    PubMed

    Kim, Wontae; Kulkarni, Shailesh; Yi, Sang-Heon

    2013-08-23

    In any generally covariant theory of gravity, we show the relationship between the linearized asymptotically conserved current and its nonlinear completion through the identically conserved current. Our formulation for conserved charges is based on the Lagrangian description, and so completely covariant. By using this result, we give a prescription to define quasilocal conserved charges in any higher derivative gravity. As applications of our approach, we demonstrate the angular momentum invariance along the radial direction of black holes and reproduce more efficiently the linearized potential on the asymptotic anti-de Sitter space.

  13. Constructing the AdS dual of a Fermi liquid: AdS black holes with Dirac hair

    NASA Astrophysics Data System (ADS)

    Čubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad

    2011-10-01

    We provide evidence that the holographic dual to a strongly coupled charged Fermi liquid has a non-zero fermion density in the bulk. We show that the pole-strength of the stable quasiparticle characterizing the Fermi surface is encoded in the AdS probability density of a single normalizable fermion wavefunction in AdS. Recalling Migdal's theorem which relates the pole strength to the Fermi-Dirac characteristic discontinuity in the number density at ω F , we conclude that the AdS dual of a Fermi liquid is described by occupied on-shell fermionic modes in AdS. Encoding the occupied levels in the total spatially averaged probability density of the fermion field directly, we show that an AdS Reissner-Nordström black holein a theory with charged fermions has a critical temperature, at which the system undergoes a first-order transition to a black hole with a non-vanishing profile for the bulk fermion field. Thermodynamics and spectral analysis support that the solution with non-zero AdS fermion-profile is the preferred ground state at low temperatures.

  14. Observables and microscopic entropy of higher spin black holes

    NASA Astrophysics Data System (ADS)

    Compère, Geoffrey; Jottar, Juan I.; Song, Wei

    2013-11-01

    In the context of recently proposed holographic dualities between higher spin theories in AdS3 and (1 + 1)-dimensional CFTs with symmetry algebras, we revisit the definition of higher spin black hole thermodynamics and the dictionary between bulk fields and dual CFT operators. We build a canonical formalism based on three ingredients: a gauge-invariant definition of conserved charges and chemical potentials in the presence of higher spin black holes, a canonical definition of entropy in the bulk, and a bulk-to-boundary dictionary aligned with the asymptotic symmetry algebra. We show that our canonical formalism shares the same formal structure as the so-called holomorphic formalism, but differs in the definition of charges and chemical potentials and in the bulk-to-boundary dictionary. Most importantly, we show that it admits a consistent CFT interpretation. We discuss the spin-2 and spin-3 cases in detail and generalize our construction to theories based on the hs[ λ] algebra, and on the sl( N,[InlineMediaObject not available: see fulltext.]) algebra for any choice of sl(2 ,[InlineMediaObject not available: see fulltext.]) embedding.

  15. Connecting Fundamental Constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Mario, D.

    2008-05-29

    A model for a black hole electron is built from three basic constants only: h, c and G. The result is a description of the electron with its mass and charge. The nature of this black hole seems to fit the properties of the Planck particle and new relationships among basic constants are possible. The time dilation factor in a black hole associated with a variable gravitational field would appear to us as a charge; on the other hand the Planck time is acting as a time gap drastically limiting what we are able to measure and its dimension willmore » appear in some quantities. This is why the Planck time is numerically very close to the gravitational/electric force ratio in an electron: its difference, disregarding a {pi}{radical}(2) factor, is only 0.2%. This is not a coincidence, it is always the same particle and the small difference is between a rotating and a non-rotating particle. The determination of its rotational speed yields accurate numbers for many quantities, including the fine structure constant and the electron magnetic moment.« less

  16. Invariant functionals in higher-spin theory

    NASA Astrophysics Data System (ADS)

    Vasiliev, M. A.

    2017-03-01

    A new construction for gauge invariant functionals in the nonlinear higher-spin theory is proposed. Being supported by differential forms closed by virtue of the higher-spin equations, invariant functionals are associated with central elements of the higher-spin algebra. In the on-shell AdS4 higher-spin theory we identify a four-form conjectured to represent the generating functional for 3d boundary correlators and a two-form argued to support charges for black hole solutions. Two actions for 3d boundary conformal higher-spin theory are associated with the two parity-invariant higher-spin models in AdS4. The peculiarity of the spinorial formulation of the on-shell AdS3 higher-spin theory, where the invariant functional is supported by a two-form, is conjectured to be related to the holomorphic factorization at the boundary. The nonlinear part of the star-product function F* (B (x)) in the higher-spin equations is argued to lead to divergencies in the boundary limit representing singularities at coinciding boundary space-time points of the factors of B (x), which can be regularized by the point splitting. An interpretation of the RG flow in terms of proposed construction is briefly discussed.

  17. Exploring Discrimination and Mental Health Disparities Faced By Black Sexual Minority Women Using a Minority Stress Framework.

    PubMed

    Calabrese, Sarah K; Meyer, Ilan H; Overstreet, Nicole M; Haile, Rahwa; Hansen, Nathan B

    2015-09-01

    Black sexual minority women are triply marginalized due to their race, gender, and sexual orientation. We compared three dimensions of discrimination-frequency (regularity of occurrences), scope (number of types of discriminatory acts experienced), and number of bases (number of social statuses to which discrimination was attributed)-and self-reported mental health (depressive symptoms, psychological well-being, and social well-being) between 64 Black sexual minority women and each of two groups sharing two of three marginalized statuses: (a) 67 White sexual minority women and (b) 67 Black sexual minority men. Black sexual minority women reported greater discrimination frequency, scope, and number of bases and poorer psychological and social well-being than White sexual minority women and more discrimination bases, a higher level of depressive symptoms, and poorer social well-being than Black sexual minority men. We then tested and contrasted dimensions of discrimination as mediators between social status (race or gender) and mental health outcomes. Discrimination frequency and scope mediated the association between race and mental health, with a stronger effect via frequency among sexual minority women. Number of discrimination bases mediated the association between gender and mental health among Black sexual minorities. Future research and clinical practice would benefit from considering Black sexual minority women's mental health in a multidimensional minority stress context.

  18. Phi ({Phi}) and psi ({Psi}) angles involved in malarial peptide bonds determine sterile protective immunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patarroyo, Manuel E., E-mail: mepatarr@gmail.com; Universidad Nacional de Colombia, Bogota; Moreno-Vranich, Armando

    Highlights: Black-Right-Pointing-Pointer Phi ({Phi}) and psi ({Psi}) angles determine sterile protective immunity. Black-Right-Pointing-Pointer Modified peptide's tendency to assume a regular conformation related to a PPII{sub L}. Black-Right-Pointing-Pointer Structural modifications in mHABPs induce Ab and protective immunity. Black-Right-Pointing-Pointer mHABP backbone atom's interaction with HLA-DR{beta}1{sup Asterisk-Operator} is stabilised by H-bonds. -- Abstract: Modified HABP (mHABP) regions interacting with HLA-DR{beta}1{sup Asterisk-Operator} molecules have a more restricted conformation and/or sequence than other mHABPs which do not fit perfectly into their peptide binding regions (PBR) and do not induce an acceptable immune response due to the critical role of their {Phi} and {Psi} torsion angles.more » These angle's critical role was determined in such highly immunogenic, protection-inducing response against experimental malaria using the conformers (mHABPs) obtained by {sup 1}H-NMR and superimposed into HLA-DR{beta}1{sup Asterisk-Operator }-like Aotus monkey molecules; their phi ({Phi}) and psi ({Psi}) angles were measured and the H-bond formation between these molecules was evaluated. The aforementioned mHABP propensity to assume a regular conformation similar to a left-handed polyproline type II helix (PPII{sub L}) led to suggesting that favouring these conformations according to their amino acid sequence would lead to high antibody titre production and sterile protective immunity induction against malaria, thereby adding new principles or rules for vaccine development, malaria being one of them.« less

  19. Superresolution Interferometric Imaging with Sparse Modeling Using Total Squared Variation: Application to Imaging the Black Hole Shadow

    NASA Astrophysics Data System (ADS)

    Kuramochi, Kazuki; Akiyama, Kazunori; Ikeda, Shiro; Tazaki, Fumie; Fish, Vincent L.; Pu, Hung-Yi; Asada, Keiichi; Honma, Mareki

    2018-05-01

    We propose a new imaging technique for interferometry using sparse modeling, utilizing two regularization terms: the ℓ 1-norm and a new function named total squared variation (TSV) of the brightness distribution. First, we demonstrate that our technique may achieve a superresolution of ∼30% compared with the traditional CLEAN beam size using synthetic observations of two point sources. Second, we present simulated observations of three physically motivated static models of Sgr A* with the Event Horizon Telescope (EHT) to show the performance of proposed techniques in greater detail. Remarkably, in both the image and gradient domains, the optimal beam size minimizing root-mean-squared errors is ≲10% of the traditional CLEAN beam size for ℓ 1+TSV regularization, and non-convolved reconstructed images have smaller errors than beam-convolved reconstructed images. This indicates that TSV is well matched to the expected physical properties of the astronomical images and the traditional post-processing technique of Gaussian convolution in interferometric imaging may not be required. We also propose a feature-extraction method to detect circular features from the image of a black hole shadow and use it to evaluate the performance of the image reconstruction. With this method and reconstructed images, the EHT can constrain the radius of the black hole shadow with an accuracy of ∼10%–20% in present simulations for Sgr A*, suggesting that the EHT would be able to provide useful independent measurements of the mass of the supermassive black holes in Sgr A* and also another primary target, M87.

  20. Flexible Display Technologies...Do They Have a Role in the Cockpit?

    DTIC Science & Technology

    2005-03-01

    can be updated as needed via wireless technology. The main element of Radio PaperTM is an electronic ink, consisting of millions of microcapsules ...creating black text and images against an otherwise white (negatively charged) background. The microcapsules can retain their charge (and hence the image...for as long as months without additional power. Figure 3. Example of eltrophoretic display (Source: E-Ink Corporation). The microcapsules are

  1. Dynamical formation of a Reissner-Nordström black hole with scalar hair in a cavity

    NASA Astrophysics Data System (ADS)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Herdeiro, Carlos; Font, José A.; Montero, Pedro J.

    2016-08-01

    In a recent Letter [Sanchis-Gual et al., Phys. Rev. Lett. 116, 141101 (2016)], we presented numerical relativity simulations, solving the full Einstein-Maxwell-Klein-Gordon equations, of superradiantly unstable Reissner-Nordström black holes (BHs), enclosed in a cavity. Low frequency, spherical perturbations of a charged scalar field trigger this instability. The system's evolution was followed into the nonlinear regime, until it relaxed into an equilibrium configuration, found to be a hairy BH: a charged horizon in equilibrium with a scalar field condensate, whose phase is oscillating at the (final) critical frequency. Here, we investigate the impact of adding self-interactions to the scalar field. In particular, we find sufficiently large self-interactions suppress the exponential growth phase, known from linear theory, and promote a nonmonotonic behavior of the scalar field energy. Furthermore, we discuss in detail the influence of the various parameters in this model: the initial BH charge, the initial scalar perturbation, the scalar field charge, the mass, and the position of the cavity's boundary (mirror). We also investigate the "explosive" nonlinear regime previously reported to be akin to a bosenova. A mode analysis shows that the "explosions" can be interpreted as the decay into the BH of modes that exit the superradiant regime.

  2. Quasilocal energy for three-dimensional massive gravity solutions with chiral deformations of AdS{sub 3} boundary conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garbarz, Alan, E-mail: alan-at@df.uba.ar; Giribet, Gaston, E-mail: gaston-at@df.uba.ar, E-mail: af.goya-at@df.uba.ar; Goya, Andrés, E-mail: gaston-at@df.uba.ar, E-mail: af.goya-at@df.uba.ar

    2015-03-26

    We consider critical gravity in three dimensions; that is, the New Massive Gravity theory formulated about Anti-de Sitter (AdS) space with the specific value of the graviton mass for which it results dual to a two-dimensional conformai field theory with vanishing central charge. As it happens with Kerr black holes in four-dimensional critical gravity, in three-dimensional critical gravity the Bañados-Teitelboim-Zanelli black holes have vanishing mass and vanishing angular momentum. However, provided suitable asymptotic conditions are chosen, the theory may also admit solutions carrying non-vanishing charges. Here, we give simple examples of exact solutions that exhibit falling-off conditions that are evenmore » weaker than those of the so-called Log-gravity. For such solutions, we define the quasilocal stress-tensor and use it to compute conserved charges. Despite the drastic deformation of AdS{sub 3} asymptotic, these solutions have finite mass and angular momentum, which are shown to be non-zero.« less

  3. Charged boson stars and black holes with nonminimal coupling to gravity

    NASA Astrophysics Data System (ADS)

    Verbin, Y.; Brihaye, Y.

    2018-02-01

    We find new spherically symmetric charged boson star solutions of a complex scalar field coupled nonminimally to gravity by a "John-type" term of Horndeski theory, that is a coupling between the kinetic scalar term and Einstein tensor. We study the parameter space of the solutions and find two distinct families according to their position in parameter space. More widespread is the family of solutions (which we call branch 1) existing for a finite interval of the central value of the scalar field starting from zero and ending at some finite maximal value. This branch contains as a special case the charged boson stars of the minimally coupled theory. In some regions of parameter space we find a new second branch ("branch 2") of solutions which are more massive and more stable than those of branch 1. This second branch exists also in a finite interval of the central value of the scalar field, but its end points (either both or in some cases only one) are extremal Reissner-Nordström black hole solutions.

  4. 34 CFR 676.21 - FSEOG Federal share limitations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Controlled Colleges and Universities Program, or Alaska Native and Native Hawaiian-Serving Institutions Program (34 CFR part 607); or (iii) The Strengthening Historically Black Colleges and Universities Program (34 CFR part 608); and (2) Requests that increased Federal share as part of its regular SEOG funding...

  5. 34 CFR 676.21 - FSEOG Federal share limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Controlled Colleges and Universities Program, or Alaska Native and Native Hawaiian-Serving Institutions Program (34 CFR part 607); or (iii) The Strengthening Historically Black Colleges and Universities Program (34 CFR part 608); and (2) Requests that increased Federal share as part of its regular SEOG funding...

  6. 34 CFR 676.21 - FSEOG Federal share limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Controlled Colleges and Universities Program, or Alaska Native and Native Hawaiian-Serving Institutions Program (34 CFR part 607); or (iii) The Strengthening Historically Black Colleges and Universities Program (34 CFR part 608); and (2) Requests that increased Federal share as part of its regular SEOG funding...

  7. 34 CFR 676.21 - FSEOG Federal share limitations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Controlled Colleges and Universities Program, or Alaska Native and Native Hawaiian-Serving Institutions Program (34 CFR part 607); or (iii) The Strengthening Historically Black Colleges and Universities Program (34 CFR part 608); and (2) Requests that increased Federal share as part of its regular SEOG funding...

  8. 34 CFR 676.21 - FSEOG Federal share limitations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Controlled Colleges and Universities Program, or Alaska Native and Native Hawaiian-Serving Institutions Program (34 CFR part 607); or (iii) The Strengthening Historically Black Colleges and Universities Program (34 CFR part 608); and (2) Requests that increased Federal share as part of its regular SEOG funding...

  9. Innermost stable circular orbit of spinning particle in charged spinning black hole background

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Peng; Wei, Shao-Wen; Guo, Wen-Di; Sui, Tao-Tao; Liu, Yu-Xiao

    2018-04-01

    In this paper we investigate the innermost stable circular orbit (ISCO) (spin-aligned or anti-aligned orbit) for a classical spinning test particle with the pole-dipole approximation in the background of Kerr-Newman black hole in the equatorial plane. It is shown that the orbit of the spinning particle is related to the spin of the test particle. The motion of the spinning test particle will be superluminal if its spin is too large. We give an additional condition by considering the superluminal constraint for the ISCO in the black hole backgrounds. We obtain numerically the relations between the ISCO and the properties of the black holes and the test particle. It is found that the radius of the ISCO for a spinning test particle is smaller than that of a nonspinning test particle in the black hole backgrounds.

  10. Hawking Radiation of the Charged Particle Via Tunneling from the Reissner-Nordström Black Hole

    NASA Astrophysics Data System (ADS)

    Pu, Jin; Han, Yan

    2017-08-01

    Since Parikh and Wilczek proposed a semiclassical tunneling method to investigate the Hawking radiation of static and spherically symmetric black holes, the method has been extensively developed to study various black holes. However, in almost all of the subsequent papers, there exists a important shortcoming that the geodesic equation of the massive particle is defined inconsistently with that of the massless particle. In this paper, we propose a new idea to reinvestigate the tunneling radiation from the event horizon of the Reissner-Nordström black hole. In our treatment, by starting from the Lagrangian analysis on the action, we redefine the geodesic equation of the massive and massless particle via tunneling from the event horizon of the Reissner-Nordström black hole, which overcomes the shortcoming mentioned above. The highlight of our work is a new and important development for the Parikh-Wilczek's semiclassical tunneling method.

  11. Radiating black hole solutions in Einstein-Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, Alfredo E.; Instituto Universitario Aeronautico, Avenida Fuerza Aerea km 6.5.; Gallo, Emanuel

    2006-03-15

    In this paper, we find some new exact solutions to the Einstein-Gauss-Bonnet equations. First, we prove a theorem which allows us to find a large family of solutions to the Einstein-Gauss-Bonnet gravity in n-dimensions. This family of solutions represents dynamic black holes and contains, as particular cases, not only the recently found Vaidya-Einstein-Gauss-Bonnet black hole, but also other physical solutions that we think are new, such as the Gauss-Bonnet versions of the Bonnor-Vaidya (de Sitter/anti-de Sitter) solution, a global monopole, and the Husain black holes. We also present a more general version of this theorem in which less restrictive conditionsmore » on the energy-momentum tensor are imposed. As an application of this theorem, we present the exact solution describing a black hole radiating a charged null fluid in a Born-Infeld nonlinear electrodynamics.« less

  12. The geometry of singularities and the black hole information paradox

    NASA Astrophysics Data System (ADS)

    Stoica, O. C.

    2015-07-01

    The information loss occurs in an evaporating black hole only if the time evolution ends at the singularity. But as we shall see, the black hole solutions admit analytical extensions beyond the singularities, to globally hyperbolic solutions. The method used is similar to that for the apparent singularity at the event horizon, but at the singularity, the resulting metric is degenerate. When the metric is degenerate, the covariant derivative, the curvature, and the Einstein equation become singular. However, recent advances in the geometry of spacetimes with singular metric show that there are ways to extend analytically the Einstein equation and other field equations beyond such singularities. This means that the information can get out of the singularity. In the case of charged black holes, the obtained solutions have nonsingular electromagnetic field. As a bonus, if particles are such black holes, spacetime undergoes dimensional reduction effects like those required by some approaches to perturbative Quantum Gravity.

  13. Observing the contour profile of a Kerr-Sen black hole

    NASA Astrophysics Data System (ADS)

    Lan, X. G.; Pu, J.

    2018-06-01

    In this paper, the shadow and the corresponding naked singularity cast by a Kerr-Sen black hole are studied. It is found that the shadow of a rotating black hole would be a dark zone surrounded by a deformed circle, and the shadow is distorted more away from a circle when the black hole approaches the extremal case. Besides, it is shown that the mean radius of the shadow decreases and distortion parameter increases with the increasing of charge, respectively. However, the mean radius and the distortion parameter vary complicatedly with the change of spin parameter. In the beginning, both observables decrease rapidly with the increasing of specific angular momentum, nevertheless, they increase slightly in the latter part. These results show that there would be a significant effect of the spin on the shadows, which would be of great importance for probing the nature of the black hole.

  14. Could the dynamics of the Universe be influenced by what is going on inside black holes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avelino, P.P., E-mail: pedro.avelino@astro.up.pt

    We investigate the potential impact of mass inflation inside black holes on the dynamics of the Universe, considering a recent reformulation of general relativity, proposed in [1], which prevents the vacuum energy from acting as a gravitational source. The interior dynamics of accreting black holes is studied, at the classical level, using the homogeneous approximation and taking charge as a surrogate for angular momentum. We show that, depending on the accreting fluid properties, mass inflation inside black holes could influence the value of the cosmological constant and thus the dynamics of the Universe. A full assessment of the cosmological rolemore » played by black holes will require a deeper understanding of the extremely energetic regimes expected inside real astrophysical black holes, including their relation with the physics of the very early Universe, and may eventually lead to an entirely new paradigm for the origin and evolution of the Universe.« less

  15. Persistent superconductor currents in holographic lattices.

    PubMed

    Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo

    2014-07-04

    We consider a persistent superconductor current along the direction with no translational symmetry in a holographic gravity model. Incorporating a lattice structure into the model, we numerically construct novel solutions of hairy charged stationary black branes with momentum or rotation along the latticed direction. The lattice structure prevents the horizon from rotating, and the total momentum is only carried by matter fields outside the black brane horizon. This is consistent with the black hole rigidity theorem, and it suggests that in dual field theory with lattices, superconductor currents are made up of "composite" fields, rather than "fractionalized" degrees of freedom. We also show that our solutions are consistent with the superfluid hydrodynamics.

  16. Analysis of crystalline lens coloration using a black and white charge-coupled device camera.

    PubMed

    Sakamoto, Y; Sasaki, K; Kojima, M

    1994-01-01

    To analyze lens coloration in vivo, we used a new type of Scheimpflug camera that is a black and white type of charge-coupled device (CCD) camera. A new methodology was proposed. Scheimpflug images of the lens were taken three times through red (R), green (G), and blue (B) filters, respectively. Three images corresponding with the R, G, and B channels were combined into one image on the cathode-ray tube (CRT) display. The spectral transmittance of the tricolor filters and the spectral sensitivity of the CCD camera were used to correct the scattering-light intensity of each image. Coloration of the lens was expressed on a CIE standard chromaticity diagram. The lens coloration of seven eyes analyzed by this method showed values almost the same as those obtained by the previous method using color film.

  17. Multiple reentrant phase transitions and triple points in Lovelock thermodynamics

    NASA Astrophysics Data System (ADS)

    Frassino, Antonia M.; Kubizňák, David; Mann, Robert B.; Simovic, Fil

    2014-09-01

    We investigate the effects of higher curvature corrections from Lovelock gravity on the phase structure of asymptotically AdS black holes, treating the cosmological constant as a thermodynamic pressure. We examine how various thermodynamic phenomena, such as Van der Waals behaviour, reentrant phase transitions (RPT), and tricritical points are manifest for U(1) charged black holes in Gauss-Bonnet and 3rd-order Lovelock gravities. We furthermore observe a new phenomenon of `multiple RPT' behaviour, in which for fixed pressure the small/large/small/large black hole phase transition occurs as the temperature of the system increases. We also find that when the higher-order Lovelock couplings are related in a particular way, a peculiar isolated critical point emerges for hyperbolic black holes and is characterized by non-standard critical exponents.

  18. Non-BPS attractors in 5 d and 6 d extended supergravity

    NASA Astrophysics Data System (ADS)

    Andrianopoli, L.; Ferrara, S.; Marrani, A.; Trigiante, M.

    2008-05-01

    We connect the attractor equations of a certain class of N=2, d=5 supergravities with their (1,0), d=6 counterparts, by relating the moduli space of non-BPS d=5 black hole/black string attractors to the moduli space of extremal dyonic black string d=6 non-BPS attractors. For d=5 real special symmetric spaces and for N=4,6,8 theories, we explicitly compute the flat directions of the black object potential corresponding to vanishing eigenvalues of its Hessian matrix. In the case N=4, we study the relation to the (2,0), d=6 theory. We finally describe the embedding of the N=2, d=5 magic models in N=8, d=5 supergravity as well as the interconnection among the corresponding charge orbits.

  19. Electron-positron outflow from black holes.

    PubMed

    van Putten, M H

    2000-04-24

    Cosmological gamma-ray bursts (GRBs) appear as the brightest transient phenomena in the Universe. The nature of their central engine is a missing link in the theory of fireballs to stellar mass progenitors, and may be associated with low mass black holes. In contact with an external magnetic field B, black hole spin produces a gravitational potential on the wave function of charged particles. We show that a rapidly rotating black hole of mass M produces outflow from initially electrostatic equilibrium with normalized isotropic emission approximately 10(48)(B/B(c))(2)(M/7M)(2)sin (2) theta erg/s, where B(c) = 4.4x10(13) G. The half-opening angle satisfies theta >or = square root[B(c)/3B]. The outflow proposed as input to GRB fireball models.

  20. Ergosurfaces for Kerr black holes with scalar hair

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos; Radu, Eugen

    2014-06-01

    We have recently reported the existence of Kerr black holes with scalar hair in General Relativity minimally coupled to a massive, complex scalar field [C. Herdeiro and E. Radu, Phys. Rev. Lett. 112, 221101 (2014)]. These solutions interpolate between boson stars and Kerr black holes. The latter have a well-known topologically S2 ergosurface (ergosphere) whereas the former develop a S1×S1 ergosurface (ergotorus) in a region of parameter space. We show that hairy black holes always have an ergoregion, and that this region is delimited by either an ergosphere or an ergo-Saturn—i.e. a S2⊕(S1×S1) ergosurface. In the phase space of solutions, the ergotorus can either appear disconnected from the ergosphere or pinch off from it. We provide a heuristic argument, based on a measure of the size of the ergoregion, that superradiant instabilities—which are likely to be present—are weaker for hairy black holes than for Kerr black holes with the same global charges. We observe that Saturn-like, and even more remarkable, ergosurfaces should also arise for other rotating "hairy" black holes.

  1. Conserved charges of the extended Bondi-Metzner-Sachs algebra

    NASA Astrophysics Data System (ADS)

    Flanagan, Éanna É.; Nichols, David A.

    2017-02-01

    Isolated objects in asymptotically flat spacetimes in general relativity are characterized by their conserved charges associated with the Bondi-Metzner-Sachs (BMS) group. These charges include total energy, linear momentum, intrinsic angular momentum and center-of-mass location, and, in addition, an infinite number of supermomentum charges associated with supertranslations. Recently, it has been suggested that the BMS symmetry algebra should be enlarged to include an infinite number of additional symmetries known as super-rotations. We show that the corresponding charges are finite and well defined, and can be divided into electric parity "super center-of-mass" charges and magnetic parity "superspin" charges. The supermomentum charges are associated with ordinary gravitational-wave memory, and the super center-of-mass charges are associated with total (ordinary plus null) gravitational-wave memory, in the terminology of Bieri and Garfinkle. Superspin charges are associated with the ordinary piece of spin memory. Some of these charges can give rise to black hole hair, as described by Strominger and Zhiboedov. We clarify how this hair evades the no-hair theorems.

  2. Greybody factors for a minimally coupled scalar field in a three-dimensional Einstein-power-Maxwell black hole background

    NASA Astrophysics Data System (ADS)

    Panotopoulos, Grigoris; Rincón, Ángel

    2018-04-01

    In the present work we study the propagation of a probe minimally coupled scalar field in Einstein-power-Maxwell charged black hole background in (1 +2 ) dimensions. We find analytical expressions for the reflection coefficient as well as for the absorption cross section in the low energy regime, and we show graphically their behavior as functions of the frequency for several values of the free parameters of the theory.

  3. Intercalation of paracetamol into the hydrotalcite-like host

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovanda, Frantisek, E-mail: Frantisek.Kovanda@vscht.cz; Maryskova, Zuzana; Kovar, Petr

    2011-12-15

    Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg-Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 Degree-Sign C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly nearmore » the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals. - Graphical abstract: Molecular simulations showed disordered arrangement of paracetamol molecules in the interlayer; most of the interlayer water molecules are located near the hydroxide sheets. Black-Small-Square Highlights: Black-Right-Pointing-Pointer Paracetamol was intercalated in Mg-Al hydrotalcite-like host by rehydration/reconstruction procedure. Black-Right-Pointing-Pointer Paracetamol phenolic groups interact with positively charged sites in hydroxide sheets. Black-Right-Pointing-Pointer Molecular simulations showed disordered arrangement of guest molecules in the interlayer. Black-Right-Pointing-Pointer Slower release of paracetamol intercalated in the hydrotalcite-like host was observed.« less

  4. Characterization of zirconium carbides using electron microscopy, optical anisotropy, Auger depth profiles, X-ray diffraction, and electron density calculated by charge flipping method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinthaka Silva, G.W., E-mail: chinthaka.silva@gmail.com; Kercher, Andrew A., E-mail: rokparent@comcast.net; Hunn, John D., E-mail: hunnjd@ornl.gov

    2012-10-15

    Samples with five different zirconium carbide compositions (C/Zr molar ratio=0.84, 0.89, 0.95, 1.05, and 1.17) have been fabricated and studied using a variety of experimental techniques. Each sample was zone refined to ensure that the end product was polycrystalline with a grain size of 10-100 {mu}m. It was found that the lattice parameter was largest for the x=0.89 composition and smallest for the x=1.17 total C/Zr composition, but was not linear; this nonlinearity is possibly explained using electron densities calculated using charge flipping technique. Among the five samples, the unit cell of the ZrC{sub 0.89} sample showed the highest electronmore » density, corresponding to the highest carbon incorporation and the largest lattice parameter. The ZrC{sub 0.84} sample showed the lowest carbon incorporation, resulting in a larger number of carbon vacancies and resultant strain. Samples with larger carbon ratios (x=0.95, 1.05, and 1.17) showed a slight decrease in lattice parameter, due to a decrease in electron density. Optical anisotropy measurements suggest that these three samples contained significant amounts of a graphitic carbon phase, not bonded to the Zr atoms. - Graphical abstract: Characterization of zirconium carbides using electron microscopy, optical anisotropy, Auger depth profiles, X-ray diffraction, and electron density calculated by the charge flipping method. Highlights: Black-Right-Pointing-Pointer The lattice parameter variation: ZrC{sub 0.89}>ZrC{sub 0.84}>ZrC{sub 0.95}>ZrC{sub 1.05}>ZrC{sub 1.17}. Black-Right-Pointing-Pointer Surface oxygen with no correlation to the lattice parameter variation. Black-Right-Pointing-Pointer ZrC{sub 0.89} had highest electron densities correspond to highest carbon incorporation. Black-Right-Pointing-Pointer Second highest lattice parameter in ZrC{sub 0.84} due to strain. Black-Right-Pointing-Pointer Unit cell electron density order: ZrC{sub 0.95}>ZrC{sub 1.05}>ZrC{sub 1.17}.« less

  5. Unlearning Racism: The Classroom as Community.

    ERIC Educational Resources Information Center

    Dozier, Judy Massey

    A female African American educator with dreadlocks in a class of predominantly white college students begins each semester by warning students that the terms "black" and "white" will be used regularly. She also points out factors that might inhibit speaking in class, such as white students' fears that awkward phrasing of their…

  6. Education's Enduring Prejudices: Disability at the Door

    ERIC Educational Resources Information Center

    Valeo, A.

    2009-01-01

    Ontario's current education system is struggling with the task of fully including children with disabilities in the regular classrooms of their neighbourhood school. While many educators understand that it is wrong to deny admission to publicly funded schools because the child may be Black or female, they nonetheless feel that segregation of…

  7. Shaw University Regains Its Momentum.

    ERIC Educational Resources Information Center

    Nicklin, Julie L.

    1994-01-01

    Shaw University (North Carolina), a black institution near closing in 1986, has reorganized its finances and remade its image under a new president. It has since renovated buildings, lowered its debt, operated on a balanced budget for five years, built a substantial endowment, doubled its enrollment, and provided regular faculty raises. (MSE)

  8. 77 FR 1101 - Self-Regulatory Organizations; C2 Options Exchange, Incorporated; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ... Login ID and FIX Login ID to $500 per month for regular access and $1000 per month for Sponsored User... a FIX fee of $1200 for a minimum of two monthly login IDs (so, $600 for one), or a fee of $2,400 for... to increase the fees charged for a CMI Login ID and FIX Login ID to $500 per month for regular access...

  9. Hairy black hole solutions in U(1) gauge-invariant scalar-vector-tensor theories

    NASA Astrophysics Data System (ADS)

    Heisenberg, Lavinia; Tsujikawa, Shinji

    2018-05-01

    In U (1) gauge-invariant scalar-vector-tensor theories with second-order equations of motion, we study the properties of black holes (BH) on a static and spherically symmetric background. In shift-symmetric theories invariant under the shift of scalar ϕ → ϕ + c, we show the existence of new hairy BH solutions where a cubic-order scalar-vector interaction gives rise to a scalar hair manifesting itself around the event horizon. In the presence of a quartic-order interaction besides the cubic coupling, there are also regular BH solutions endowed with scalar and vector hairs.

  10. Rotating hairy black holes in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Erices, Cristián; Martínez, Cristián

    2018-01-01

    A class of exact rotating black hole solutions of gravity nonminimally coupled to a self-interacting scalar field in arbitrary dimensions is presented. These spacetimes are asymptotically locally anti-de Sitter manifolds and have a Ricci-flat event horizon hiding a curvature singularity at the origin. The scalar field is real and regular everywhere, and its effective mass, coming from the nonminimal coupling with the scalar curvature, saturates the Breitenlohner-Freedman bound for the corresponding spacetime dimension. The rotating black hole is obtained by applying an improper coordinate transformation to the static one. Although both spacetimes are locally equivalent, they are globally different, as it is confirmed by the nonvanishing angular momentum of the rotating black hole. It is found that the mass is bounded from below by the angular momentum, in agreement with the existence of an event horizon. The thermodynamical analysis is carried out in the grand canonical ensemble. The first law is satisfied, and a Smarr formula is exhibited. The thermodynamical local stability of the rotating hairy black holes is established from their Gibbs free energy. However, the global stability analysis establishes that the vacuum spacetime is always preferred over the hairy black hole. Thus, the hairy black hole is likely to decay into the vacuum one for any temperature.

  11. Characteristics of genetics-related news content in Black weekly newspapers

    PubMed Central

    Caburnay, Charlene A.; Babb, Patricia; Kaphingst, Kimberly A.; Roberts, Jessica; Rath, Suchitra

    2013-01-01

    Background/Aims/Objectives The media are an important source of health information, especially for those with less access to regular health care. Black news outlets such as Black newspapers are a source of health information for African Americans. This study characterized media coverage of genetics-related information in Black weekly newspapers and general audience newspapers from the same communities. Methods All health stories in a sample of 24 Black weekly newspapers and 12 general audience newspapers from January 2004 to December 2007 were reviewed for genetics-related stories. These stories were further coded for both journalistic and public health variables. Results Of all health-related stories identified, only 2% (n=357) were considered genetics-related. Genetics-related stories in Black newspapers–compared to those in general audience newspapers–were larger, more locally- and racially-relevant, and more likely to contain recommendations or action steps to improve health or reduce disease risks and to mention the importance of knowing one's family history. Stories in general audience newspapers were more likely to discuss causes of disease, mention genetic testing or therapy, and suggest a high/moderate degree of genetic determinism. Conclusions Black newspapers are a viable communication channel to disseminate findings and implications of human genome research to African American audiences. PMID:24080971

  12. Characteristics of genetics-related news content in Black weekly newspapers.

    PubMed

    Caburnay, C A; Babb, P; Kaphingst, K A; Roberts, J; Rath, S

    2014-01-01

    BACKGROUND/AIMS/OBJECTIVES: The media are an important source of health information, especially for those with less access to regular health care. Black news outlets such as Black newspapers are a source of health information for African Americans. This study characterized media coverage of genetics-related information in Black weekly newspapers and general audience newspapers from the same communities. All health stories in a sample of 24 Black weekly newspapers and 12 general audience newspapers from January 2004 to December 2007 were reviewed for genetics-related stories. These stories were further coded for both journalistic and public health variables. Of all health-related stories identified, only 2% (n = 357) were considered genetics related. Genetics-related stories in Black newspapers - compared to those in general audience newspapers - were larger, more locally and racially relevant, and more likely to contain recommendations or action steps to improve health or reduce disease risks and to mention the importance of knowing one's family history. Stories in general audience newspapers were more likely to discuss causes of disease, mention genetic testing or therapy, and suggest a high/moderate degree of genetic determinism. Black newspapers are a viable communication channel to disseminate findings and implications of human genome research to African American audiences.

  13. "Black Magic": Pepper in a Magnetic Field

    ERIC Educational Resources Information Center

    Peterson, John E.

    1977-01-01

    Describes a procedure to demonstrate the effect of a magnetic force on a moving charge. The materials used are inexpensive and with the use of an overhead projector, easily visible to an entire class. (CP)

  14. Quasi-local conserved charges in Lorenz-diffeomorphism covariant theory of gravity

    NASA Astrophysics Data System (ADS)

    Adami, H.; Setare, M. R.

    2016-04-01

    In this paper, using the combined Lorenz-diffeomorphism symmetry, we find a general formula for the quasi-local conserved charge of the covariant gravity theories in a first order formalism of gravity. We simplify the general formula for the Lovelock theory of gravity. Afterwards, we apply the obtained formula on BHT gravity to obtain the energy and angular momentum of the rotating OTT black hole solution in the context of this theory.

  15. Accelerated observers and the notion of singular spacetime

    NASA Astrophysics Data System (ADS)

    Olmo, Gonzalo J.; Rubiera-Garcia, Diego; Sanchez-Puente, Antonio

    2018-03-01

    Geodesic completeness is typically regarded as a basic criterion to determine whether a given spacetime is regular or singular. However, the principle of general covariance does not privilege any family of observers over the others and, therefore, observers with arbitrary motions should be able to provide a complete physical description of the world. This suggests that in a regular spacetime, all physically acceptable observers should have complete paths. In this work we explore this idea by studying the motion of accelerated observers in spherically symmetric spacetimes and illustrate it by considering two geodesically complete black hole spacetimes recently described in the literature. We show that for bound and locally unbound accelerations, the paths of accelerated test particles are complete, providing further support to the regularity of such spacetimes.

  16. Exploring Discrimination and Mental Health Disparities Faced By Black Sexual Minority Women Using a Minority Stress Framework

    PubMed Central

    Calabrese, Sarah K.; Meyer, Ilan H.; Overstreet, Nicole M.; Haile, Rahwa; Hansen, Nathan B.

    2015-01-01

    Black sexual minority women are triply marginalized due to their race, gender, and sexual orientation. We compared three dimensions of discrimination—frequency (regularity of occurrences), scope (number of types of discriminatory acts experienced), and number of bases (number of social statuses to which discrimination was attributed)—and self-reported mental health (depressive symptoms, psychological well-being, and social well-being) between 64 Black sexual minority women and each of two groups sharing two of three marginalized statuses: (a) 67 White sexual minority women and (b) 67 Black sexual minority men. Black sexual minority women reported greater discrimination frequency, scope, and number of bases and poorer psychological and social well-being than White sexual minority women and more discrimination bases, a higher level of depressive symptoms, and poorer social well-being than Black sexual minority men. We then tested and contrasted dimensions of discrimination as mediators between social status (race or gender) and mental health outcomes. Discrimination frequency and scope mediated the association between race and mental health, with a stronger effect via frequency among sexual minority women. Number of discrimination bases mediated the association between gender and mental health among Black sexual minorities. Future research and clinical practice would benefit from considering Black sexual minority women's mental health in a multidimensional minority stress context. PMID:26424904

  17. Linking Mother and Child Access to Dental Care

    PubMed Central

    Grembowski, David; Spiekerman, Charles; Milgrom, Peter

    2016-01-01

    Objectives Among young children in low-income families covered by Medicaid, we estimate by racial/ethnic group whether children who have mothers with a regular source of dental care (RSDC) at baseline have greater dental utilization in the following year than children with mothers without a regular source. Patients and Methods From a population of 108,151 children enrolled in Medicaid aged 3 to 6 and their low-income mothers in Washington state, a disproportionate stratified random sample of 11,305 children aged 3 to 6 was selected from enrollment records in four racial/ethnic groups: 3,791 Black; 2,806 Hispanic 1,902 White; and 2,806 other racial/ethnic groups. In a prospective cohort design, we conducted a baseline survey of mothers and for respondents, collected their children’s Medicaid dental claims in the 1-year follow-up period. Mutivariable regression models estimated the associations between the mothers having a RSDC at baseline and their children’s prospective dental utilization. Results About 38% of mothers had a RSDC. Among children of Black and Hispanic mothers, having a mother with a RSDC at baseline was associated with greater odds of receiving any dental care in the following year (OR 1.69, 95% CI 1.10-2.62 for children of Black mothers; OR 1.84, CI 1.23-2.73 for children of Hispanic mothers). For children with dental utilization, children of Black or Hispanic mothers with a RSDC received 1.22 (CI 1.08-1.38) and 1.10 (CI 1.01-1.19) more preventive services, respectively. For children of White mothers, associations were in the same direction but not significant. Conclusions For young children of Black and Hispanic mothers, dental care utilization is higher when their mothers have a RSDC. For low-income young children with Medicaid, increasing the mothers’ access to dental care may increase the children’s utilization of dental and preventive services, which, in turn, may reduce racial/ethnic inequalities in oral health. PMID:18829778

  18. 48 CFR 1652.232-71 - Payments-experience-rated contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for error or fraud, the subscription charges received for the Plan by the Employees Health Benefits... accounting, OPM will place any surplus demonstration project premiums in the regular Contingency Reserves of...

  19. FAST TRACK COMMUNICATION: Regularized Kerr-Newman solution as a gravitating soliton

    NASA Astrophysics Data System (ADS)

    Burinskii, Alexander

    2010-10-01

    The charged, spinning and gravitating soliton is realized as a regular solution of the Kerr-Newman (KN) field coupled with a chiral Higgs model. A regular core of the solution is formed by a domain wall bubble interpolating between the external KN solution and a flat superconducting interior. An internal electromagnetic (em) field is expelled to the boundary of the bubble by the Higgs field. The solution reveals two new peculiarities: (i) the Higgs field is oscillating, similar to the known oscillon models; (ii) the em field forms on the edge of the bubble a Wilson loop, resulting in quantization of the total angular momentum.

  20. Enhanced photoelectrochemical properties of copper-assisted catalyzed etching black silicon by electrodepositing cobalt

    NASA Astrophysics Data System (ADS)

    Cai, Weidong; Xiong, Haiying; Su, Xiaodong; Zhou, Hao; Shen, Mingrong; Fang, Liang

    2017-11-01

    Black silicon (Si) photoelectrodes are promising for improving the performance of photoelectrochemical (PEC) water splitting. Here, we report the fabrication of p-black Si and n+p-black Si photocathodes via a controllable copper-assisted catalyzed etching method. The etching process affects only the topmost less than 200 nm of Si and is independent of the surface doping. The synergistic effects of the excellent light harvesting of the black Si and the improved charge transfer properties of the p-n junction boost the production and utilization of photogenerated carriers. The mean reflectance of the pristine Si samples is about 10% from 400 to 950 nm, while that of the black Si samples is reduced as low as 5%. In addition, the PEC properties of the n+p-black Si photocathode can be further enhanced by depositing a cobalt (Co) layer. Compared with the p-Si sample, the onset potential of the Co/n+p-black Si photocathode is positively shifted by 560 mV to 0.33 V vs. reversible hydrogen electrode and the saturation photocurrent density is increased from 22.7 to 32.6 mA/cm2. The design of the Co/n+p-black Si photocathode offers an efficient strategy for preparing PEC solar energy conversion devices.

Top