Secondary Structures of Ubiquitin Ions Soft-Landed onto Self-Assembled Monolayer Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Qichi; Laskin, Julia
2016-06-09
The secondary structures of multiply charged ubiquitin ions soft-landed onto self-assembled monolayer (SAM) surfaces were studied using in situ infrared reflection-absorption spectroscopy (IRRAS). Two charge states of ubiquitin, 5+ and 13+, were mass selected separately from a mixture of different charge states produced by electrospray ionization (ESI). The low 5+ charge state represents a native-like folded state of ubiquitin, while the high 13+ charge state assumes an extended, almost linear conformation. Each of the two charge states was soft-landed onto a CH 3- and COOH-terminated SAM of alkylthiols on gold (HSAM and COOH-SAM). HSAM is a hydrophobic surface known tomore » stabilize helical conformations of soft-landed protonated peptides, whereas COOH-SAM is a hydrophilic surface that preferentially stabilizes β-sheet conformations. IRRAS spectra of the soft-landed ubiquitin ions were acquired as a function of time during and after ion soft-landing. Similar to smaller peptide ions, helical conformations of ubiquitin are found to be more abundant on HSAM, while the relative abundance of β-sheet conformations increases on COOH-SAM. The initial charge state of ubiquitin also has a pronounced effect on its conformation on the surface. Specifically, on both surfaces, a higher relative abundance of helical conformations and lower relative abundance of β-sheet conformations is observed for the 13+ charge state compared to the 5+ charge state. Time-resolved experiments indicate that the α-helical band in the spectrum of the 13+ charge state slowly increases with time on the HSAM surface and decreases in the spectrum of the 13+ charge state on COOH-SAM. These results further support the preference of the hydrophobic HSAM surface toward helical conformations and demonstrate that soft-landed protein ions may undergo slow conformational changes during and after deposition.« less
Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study
USDA-ARS?s Scientific Manuscript database
We investigated ten soils from six states in United States to determine the relationship between potentiometric titration derived soil surface charge and Phosphorus-31 (P) nuclear magnetic resonance (NMR) speciation with the concentration of water-extractable P (WEP). The surface charge value at the...
Electronically shielded solid state charged particle detector
Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.
1996-08-20
An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.
Electronically shielded solid state charged particle detector
Balmer, David K.; Haverty, Thomas W.; Nordin, Carl W.; Tyree, William H.
1996-08-20
An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.
NASA Astrophysics Data System (ADS)
Johnson, Grant; Priest, Thomas; Laskin, Julia
2012-02-01
Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Gold clusters were synthesized in methanol solution by reduction of a gold precursor with a weak reducing agent in the presence of a diphosphine capping ligand. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (SIMS) it is demonstrated that the cluster retains its 3+ charge state when soft landed onto the surface of a fluorinated self assembled monolayer on gold. In contrast, when deposited onto carboxylic acid terminated and conventional alkyl thiol surfaces on gold the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the surface have been investigated using in-situ Fourier Transform Ion Cyclotron Resonance SIMS. It is shown that an extremely slow interfacial charge reduction occurs on the fluorinated monolayer surface while an almost instantaneous neutralization takes place on the surface of the alkyl thiol monolayer. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected ions onto selected substrates.
NASA Astrophysics Data System (ADS)
Shrestha, K.; Chou, M.; Graf, D.; Yang, H. D.; Lorenz, B.; Chu, C. W.
2017-05-01
Weak antilocalization (WAL) effects in Bi2Te3 single crystals have been investigated at high and low bulk charge-carrier concentrations. At low charge-carrier density the WAL curves scale with the normal component of the magnetic field, demonstrating the dominance of topological surface states in magnetoconductivity. At high charge-carrier density the WAL curves scale with neither the applied field nor its normal component, implying a mixture of bulk and surface conduction. WAL due to topological surface states shows no dependence on the nature (electrons or holes) of the bulk charge carriers. The observations of an extremely large nonsaturating magnetoresistance and ultrahigh mobility in the samples with lower carrier density further support the presence of surface states. The physical parameters characterizing the WAL effects are calculated using the Hikami-Larkin-Nagaoka formula. At high charge-carrier concentrations, there is a greater number of conduction channels and a decrease in the phase coherence length compared to low charge-carrier concentrations. The extremely large magnetoresistance and high mobility of topological insulators have great technological value and can be exploited in magnetoelectric sensors and memory devices.
Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.
Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva
2008-11-01
Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.
A switchable polymer layer: Chain folding in end-charged polymer brushes
NASA Astrophysics Data System (ADS)
Heine, David; Wu, David T.
2001-03-01
We use a self-consistent field approximation to model the configurations of end-charged homopolymer and block copolymer brushes in response to an external electric field due to charges on the grafting surface. By varying the charge density on the grafting surface, we can cause the chains either to extend outward, greatly increasing the brush height, or to loop back to the grafting surface. We show that such a copolymer brush can present one block at the exposed surface in the extended state and present the other block in the retracted state. This occurs for both a solvated brush and a dry brush. We also compare these results to those of a modified Alexander-de Gennes model for the end-charged homopolymer brush.
Model for thickness dependence of radiation charging in MOS structures
NASA Technical Reports Server (NTRS)
Viswanathan, C. R.; Maserjian, J.
1976-01-01
The model considers charge buildup in MOS structures due to hole trapping in the oxide and the creation of sheet charge at the silicon interface. The contribution of hole trapping causes the flatband voltage to increase with thickness in a manner in which square and cube dependences are limiting cases. Experimental measurements on samples covering a 200 - 1000 A range of oxide thickness are consistent with the model, using independently obtained values of hole-trapping parameters. An important finding of our experimental results is that a negative interface charge contribution due to surface states created during irradiation compensates most of the positive charge in the oxide at flatband. The tendency of the surface states to 'track' the positive charge buildup in the oxide, for all thicknesses, applies both in creation during irradiation and in annihilation during annealing. An explanation is proposed based on the common defect origin of hole traps and potential surface states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winnerl, Andrea, E-mail: andrea.winnerl@wsi.tum.de; Pereira, Rui N.; Stutzmann, Martin
2015-10-21
In this work, we use GaN with different deposited Pt nanostructures as a controllable model system to investigate the kinetics of photo-generated charge carriers in hybrid photocatalysts. We combine conductance and contact potential difference measurements to investigate the influence of Pt on the processes involved in the capture and decay of photo-generated charge carriers at and close to the GaN surface. We found that in the presence of Pt nanostructures the photo-excitation processes are similar to those found in Pt free GaN. However, in GaN with Pt nanostructures, photo-generated holes are preferentially trapped in surface states of the GaN coveredmore » with Pt and/or in electronic states of the Pt and lead to an accumulation of positive charge there, whereas negative charge is accumulated in localized states in a shallow defect band of the GaN covered with Pt. This preferential accumulation of photo-generated electrons close to the surface is responsible for a dramatic acceleration of the turn-off charge transfer kinetics and a stronger dependence of the surface photovoltage on light intensity when compared to a Pt free GaN surface. Our study shows that in hybrid photocatalysts, the metal nanostructures induce a spatially inhomogeneous surface band bending of the semiconductor that promotes a lateral drift of photogenerated charges towards the catalytic nanostructures.« less
Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.
2017-04-04
An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.
Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.
2016-05-03
An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.
NASA Astrophysics Data System (ADS)
Nedeljković, N. N.; Majkić, M. D.; Božanić, D. K.; Dojčilović, R. J.
2016-06-01
We consider the population dynamics of the intermediate Rydberg states of highly charged ions (core charge Z\\gg 1, principal quantum number {n}{{A}}\\gg 1) interacting with solid surfaces at arbitrary collision geometry. The recently developed resonant two-state vector model for the grazing incidence (2012 J. Phys. B: At. Mol. Opt. Phys. 45 215202) is extended to the quasi-resonant case and arbitrary angle of incidence. According to the model, the population probabilities depend both on the projectile parallel and perpendicular velocity components, in a complementary way. A cascade neutralization process for {{{Xe}}}Z+ ions, for Z=15{--}45, interacting with a conductive-surface is considered by taking into account the population dynamics. For an arbitrary collision geometry and given range of ionic velocities, a micro-staircase model for the simultaneous calculation of the kinetic energy gain and the charge state of the ion in front of the surface is proposed. The relevance of the obtained results for the explanation of the formation of nanostructures on solid surfaces by slow highly charged ions for normal incidence geometry is briefly discussed.
Villanova, John W; Barnes, Edwin; Park, Kyungwha
2017-02-08
Dirac semimetals (DSMs) have topologically robust three-dimensional Dirac (doubled Weyl) nodes with Fermi-arc states. In heterostructures involving DSMs, charge transfer occurs at the interfaces, which can be used to probe and control their bulk and surface topological properties through surface-bulk connectivity. Here we demonstrate that despite a band gap in DSM films, asymmetric charge transfer at the surface enables one to accurately identify locations of the Dirac-node projections from gapless band crossings and to examine and engineer properties of the topological Fermi-arc surface states connecting the projections, by simulating adatom-adsorbed DSM films using a first-principles method with an effective model. The positions of the Dirac-node projections are insensitive to charge transfer amount or slab thickness except for extremely thin films. By varying the amount of charge transfer, unique spin textures near the projections and a separation between the Fermi-arc states change, which can be observed by gating without adatoms.
Battery Power Management in Heavy-duty HEVs based on the Estimated Critical Surface Charge
2011-03-01
health prospects without any penalty on fuel efficiency. Keywords: Lithium - ion battery ; power management; critical surface charge; Lithium-ion...fuel efficiency. 15. SUBJECT TERMS Lithium - ion battery ; power management; critical surface charge; Lithium-ion concentration; estimation; extended...Di Domenico, D., Fiengo, G., and Stefanopoulou, A. (2008) ’ Lithium - ion battery state of charge estimation with a kalman filter based on a
A Spacecraft Charging Capability for SXTF.
1979-01-17
surfaces can charge up. ’Iiiis differential charging of satellite surfaces can cause vacutum sparks , and dielectric breakdowns, and wi 11 effect the S...times required to reach steady charge state in the spacecraft internal dielectrics upon electron irradiation. In space , typical times (order of magni...WORDS (Continue on reverse side it necessary end Identify by block nunmber) Spacecraft charging Dielectric breakdown SGEMP Electron accelerators
Optimization of the parameters of ITO-CdTe photovoltaic cells
NASA Astrophysics Data System (ADS)
Adib, N.; Simashkevich, A. V.; Sherban, D. A.
The effect of the surface state density at the interface and of the static charge in the intermediate oxide layer on the photoelectric parameters of solar cells based on ITO-nCdTe semiconductor-insulator-semiconductor structures is calculated theoretically. It is shown that,under AMI conditions, the conversion efficiency of such cells can be as high as 12 percent (short-circuit current, 23 mA/sq cm; open-circuit voltage, 0.65 V; fill factor, 0.8), provided that the surface states are acceptors and the oxide is negatively charged. It is concluded that surface states and the dielectric layer charge have a positive effect on the efficiency of solar cells of this type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia
2012-11-29
The ionic charge state of monodisperse cationic gold clusters on surfaces may be controlled by selecting the coverage of mass-selected ions soft landed onto a substrate. Polydisperse diphosphine-capped gold clusters were synthesized in solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine in the presence of 1,3-bis(diphenylphosphino)propane. The polydisperse gold clusters were introduced into the gas phase by electrospray ionization and mass selection was employed to select a multiply charged cationic cluster species (Au11L53+, m/z = 1409, L = 1,3-bis(diphenylphosphino)propane) which was delivered to the surfaces of four different self-assembled monolayers on gold (SAMs) at coverages of 1011 and 1012 clusters/mm2.more » Employing the spatial profiling capabilities of in-situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) it is shown that, in addition to the chemical functionality of the monolayer (as demonstrated previously: ACS Nano, 2012, 6, 573) the coverage of cationic gold clusters on the surface may be used to control the distribution of ionic charge states of the soft-landed multiply charged clusters. In the case of a 1H,1H,2H,2H-perfluorodecanethiol SAM (FSAM) almost complete retention of charge by the deposited Au11L53+ clusters was observed at a lower coverage of 1011 clusters/mm2. In contrast, at a higher coverage of 1012 clusters/mm2, pronounced reduction of charge to Au11L52+ and Au11L5+ was observed on the FSAM. When soft landed onto 16- and 11-mercaptohexadecanoic acid surfaces on gold (16,11-COOH-SAMs), the mass-selected Au11L53+ clusters exhibited partial reduction of charge to Au11L52+ at lower coverage and additional reduction of charge to both Au11L52+ and Au11L5+ at higher coverage. The reduction of charge was found to be more pronounced on the surface of the shorter (thinner) C11 than the longer (thicker) C16-COOH-SAM. On the surface of the 1-dodecanethiol (HSAM) monolayer, the most abundant charge state was found to be Au11L52+ at lower coverage and Au11L5+ at higher coverage, respectively. A coverage-dependent electron tunneling mechanism is proposed to account for the observed reduction of charge of mass-selected multiply charged gold clusters soft landed on SAMs. The results demonstrate that one of the critical parameters that influence the chemical and physical properties of supported metal clusters, ionic charge state, may be controlled by selecting the coverage of charged species soft landed onto surfaces.« less
Charge Separation and Exciton Dynamics at Polymer/ZnO Interface from First-Principles Simulations.
Wu, Guangfen; Li, Zi; Zhang, Xu; Lu, Gang
2014-08-07
Charge separation and exciton dynamics play a crucial role in determining the performance of excitonic photovoltaics. Using time-dependent density functional theory with a range-separated exchange-correlation functional as well as nonadiabatic ab initio molecular dynamics, we have studied the formation and dynamics of charge-transfer (CT) excitons at polymer/ZnO interface. The interfacial atomic structure, exciton density of states and conversions between exciton species are examined from first-principles. The exciton dynamics exhibits both adiabatic and nonadiabatic characters. While the adiabatic transitions are facilitated by C═C vibrations along the polymer (P3HT) backbone, the nonadiabatic transitions are realized by exciton hopping between the excited states. We find that the localized ZnO surface states lead to localized low-energy CT states and poor charge separation. In contrast, the surface states of crystalline C60 are indistinguishable from the bulk states, resulting in delocalized CT states and efficient charge separation in polymer/fullerene (P3HT/PCBM) heterojunctions. The hot CT states are found to cool down in an ultrafast time scale and may not play a major role in charge separation of P3HT/ZnO. Finally we suggest that the dimensions of nanostructured acceptors can be tuned to obtain both efficient charge separation and high open circuit voltages.
Dissociation of methane on the surface of charged defective carbon nanotubes
NASA Astrophysics Data System (ADS)
Guo, Z. H.; Yan, X. H.; Xiao, Y.
2010-03-01
Based on the framework of density functional theory (CASTEP and DMOL 3 codes), we simulate the dissociation of methane (CH 4) molecule on the surface of charged defective carbon nanotubes (CNTs). The results display that a charged CNT with carbon (C) and molybdenum (Mo) dopants can effectively dissociate CH 4 molecule, and the adsorption strength of H and CH 3 can be controlled by the injected negative charges. Moreover, the barrier between the transition state (TS) and the reactant is 0.1014 eV, and a single imaginary frequency of -0.3 cm is found for the transition state structure.
Charge state manipulation of qubits in diamond
Grotz, Bernhard; Hauf, Moritz V.; Dankerl, Markus; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Wrachtrup, Jörg; Stutzmann, Martin; Reinhard, Friedemann; Garrido, Jose A.
2012-01-01
The nitrogen-vacancy (NV) centre in diamond is a promising candidate for a solid-state qubit. However, its charge state is known to be unstable, discharging from the qubit state NV− into the neutral state NV0 under various circumstances. Here we demonstrate that the charge state can be controlled by an electrolytic gate electrode. This way, single centres can be switched from an unknown non-fluorescent state into the neutral charge state NV0, and the population of an ensemble of centres can be shifted from NV0 to NV−. Numerical simulations confirm the manipulation of the charge state to be induced by the gate-controlled shift of the Fermi level at the diamond surface. This result opens the way to a dynamic control of transitions between charge states and to explore hitherto inaccessible states, such as NV+. PMID:22395620
Laucirica, Gregorio; Marmisollé, Waldemar A; Azzaroni, Omar
2017-03-22
Although not always considered a preponderant interaction, amine-phosphate interactions are omnipresent in multiple chemical and biological systems. This study aims to answer questions that are still pending about their nature and consequences. We focus on the description of the charge state as surface charges constitute directing agents of the interaction of amine groups with either natural or synthetic counterparts. Our results allow us to quantitatively determine the relative affinities of HPO 4 2- and H 2 PO 4 - from the analysis of the influence of phosphates on the zeta-potential of amino-functionalized surfaces in a broad pH range. We show that phosphate anions enhance the protonation of amino groups and, conversely, charged amines induce further proton dissociation of phosphates, yielding a complex dependence of the surface effective charge on the pH and phosphate concentration. We also demonstrate that phosphate-amine interaction is specific and the modulation of surface charge occurs in the physiological phosphate concentration range, emphasizing its biochemical and biotechnological relevance and the importance of considering this veiled association in both in vivo and in vitro studies.
Charge Dynamics in near-Surface, Variable-Density Ensembles of Nitrogen-Vacancy Centers in Diamond.
Dhomkar, Siddharth; Jayakumar, Harishankar; Zangara, Pablo R; Meriles, Carlos A
2018-06-13
Although the spin properties of superficial shallow nitrogen-vacancy (NV) centers have been the subject of extensive scrutiny, considerably less attention has been devoted to studying the dynamics of NV charge conversion near the diamond surface. Using multicolor confocal microscopy, here we show that near-surface point defects arising from high-density ion implantation dramatically increase the ionization and recombination rates of shallow NVs compared to those in bulk diamond. Further, we find that these rates grow linearly, not quadratically, with laser intensity, indicative of single-photon processes enabled by NV state mixing with other defect states. Accompanying these findings, we observe NV ionization and recombination in the dark, likely the result of charge transfer to neighboring traps. Despite the altered charge dynamics, we show that one can imprint rewritable, long-lasting patterns of charged-initialized, near-surface NVs over large areas, an ability that could be exploited for electrochemical biosensing or to optically store digital data sets with subdiffraction resolution.
NASA Astrophysics Data System (ADS)
Winnerl, Andrea; Pereira, Rui N.; Stutzmann, Martin
2017-05-01
In this work, we use conductance and contact potential difference photo-transient data to study the influence of the growth technique, doping, and crystal polarity on the kinetics of photo-generated charges in GaN. We found that the processes, and corresponding time scales, involved in the decay of charge carriers generated at and close to the GaN surface via photo-excitation are notably independent of the growth technique, doping (n- and p-types), and also crystal polarity. Hence, the transfer of photo-generated charges from band states back to surface states proceeds always by hopping via shallow defect states in the space-charge region (SCR) close to the surface. Concerning the charge carrier photo-generation kinetics, we observe considerable differences between samples grown with different techniques. While for GaN grown by metal-organic chemical vapor deposition, the accumulation of photo-conduction electrons results mainly from a combined trapping-hopping process (slow), where photo-generated electrons hop via shallow defect states to the conduction band (CB), in hydride vapor phase epitaxy and molecular beam epitaxy materials, a faster direct process involving electron transfer via CB states is also present. The time scales of both processes are quite insensitive to the doping level and crystal polarity. However, these processes become irrelevant for very high doping levels (both n- and p-types), where the width of the SCR is much smaller than the photon penetration depth, and therefore, most charge carriers are generated outside the SCR.
NASA Astrophysics Data System (ADS)
Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil
2011-07-01
The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.
Hu, Dehua; Liu, Qing; Tisdale, Jeremy; ...
2015-04-15
This paper reports Seebeck effects driven by both surface polarization difference and entropy difference by using intramolecular charge-transfer states in n-type and p-type conjugated polymers, namely IIDT and IIDDT, based on vertical conductor/polymer/conductor thin-film devices. Large Seebeck coefficients of -898 V/K and 1300 V/K from are observed from n-type IIDT p-type IIDDT, respectively, when the charge-transfer states are generated by a white light illumination of 100 mW/cm2. Simultaneously, electrical conductivities are increased from almost insulating states in dark condition to conducting states under photoexcitation in both n-type IIDT and p-type IIDDT devices. We find that the intramolecular charge-transfer states canmore » largely enhance Seebeck effects in the n-type IIDT and p-type IIDDT devices driven by both surface polarization difference and entropy difference. Furthermore, the Seebeck effects can be shifted between polarization and entropy regimes when electrical conductivities are changed. This reveals a new concept to develop Seebeck effects by controlling polarization and entropy regimes based on charge-transfer states in vertical conductor/polymer/conductor thin-film devices.« less
Abnormal Multiple Charge Memory States in Exfoliated Few-Layer WSe2 Transistors.
Chen, Mikai; Wang, Yifan; Shepherd, Nathan; Huard, Chad; Zhou, Jiantao; Guo, L J; Lu, Wei; Liang, Xiaogan
2017-01-24
To construct reliable nanoelectronic devices based on emerging 2D layered semiconductors, we need to understand the charge-trapping processes in such devices. Additionally, the identified charge-trapping schemes in such layered materials could be further exploited to make multibit (or highly desirable analog-tunable) memory devices. Here, we present a study on the abnormal charge-trapping or memory characteristics of few-layer WSe 2 transistors. This work shows that multiple charge-trapping states with large extrema spacing, long retention time, and analog tunability can be excited in the transistors made from mechanically exfoliated few-layer WSe 2 flakes, whereas they cannot be generated in widely studied few-layer MoS 2 transistors. Such charge-trapping characteristics of WSe 2 transistors are attributed to the exfoliation-induced interlayer deformation on the cleaved surfaces of few-layer WSe 2 flakes, which can spontaneously form ambipolar charge-trapping sites. Our additional results from surface characterization, charge-retention characterization at different temperatures, and density functional theory computation strongly support this explanation. Furthermore, our research also demonstrates that the charge-trapping states excited in multiple transistors can be calibrated into consistent multibit data storage levels. This work advances the understanding of the charge memory mechanisms in layered semiconductors, and the observed charge-trapping states could be further studied for enabling ultralow-cost multibit analog memory devices.
Tang, Bolin; Zhang, Bo; Zhuang, Junjun; Wang, Qi; Dong, Lingqing; Cheng, Kui; Weng, Wenjian
2018-07-01
Surface potential of biomaterials can dramatically influence cellular osteogenic differentiation. In this work, a wide range of surface potential on ferroelectric polyvinylidene fluoride trifluoroethylene (P(VDF-TrFE)) films was designed to get insight into the interfacial interaction of cell-charged surface. The P(VDF-TrFE) films poled by contact electric poling at various electric fields obtained well stabilized surface potential, with wide range from -3 to 915 mV. The osteogenic differentiation level of cells cultured on the films was strongly dependent on surface potential and reached the optimum at 391 mV in this system. Binding specificity assay indicated that surface potential could effectively govern the binding state of the adsorbed fibronectin (FN) with integrin. Molecular dynamic (MD) simulation further revealed that surface potential brought a significant difference in the relative distance between RGD and synergy PHSRN sites of adsorbed FN, resulting in a distinct integrin-FN binding state. These results suggest that the full binding of integrin α5β1 with both RGD and PHSRN sites of FN possesses a strong ability to activate osteogenic signaling pathway. This work sheds light on the underlying mechanism of osteogenic differentiation behavior on charged material surfaces, and also provides a guidance for designing a reasonable charged surface to enhance osteogenic differentiation. The ferroelectric P(VDF-TrFE) films with steady and a wide range of surface potential were designed to understand underlying mechanism of cell-charged surface interaction. The results showed that the charged surface well favored upregulation of osteogenic differentiation of MC3T3-E1 cells, and more importantly, a highest level occurred on the film with a moderate surface potential. Experiments and molecular dynamics simulation demonstrated that the surface potential could govern fibronectin conformation and then the integrin-fibronectin binding. We propose that a full binding state of integrin α5β1 with fibronectin induces effective activation of integrin-mediated FAK/ERK signaling pathway to upregulate cellular osteogenic differentiation. This work provides a guidance for designing a reasonable charged surface to enhance osteogenic differentiation. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Krasnoslobodtsev, Alexey V.; Smirnov, Sergei N.
2008-01-01
Surface assisted photoinduced transient displacement charge (SPTDC) technique was used to study charge transfer in self-assembled monolayers of 7-diethylaminocoumarin covalently linked to oxide surface in atmosphere of different gases. The dipole signal was found to be opposite to that in solution and dependent on the nature of gas and its pressure. The results were explained by collision-induced relaxation that impedes uninhibited tilting of molecules onto the surface. Collisions with paramagnetic oxygen induce intersystem crossing to long-lived triplet dipolar states of coumarin with the rate close to the half of that for the collision rate. PMID:16956285
Quasiparticles and charge transfer at the two surfaces of the honeycomb iridate Na2IrO3
NASA Astrophysics Data System (ADS)
Moreschini, L.; Lo Vecchio, I.; Breznay, N. P.; Moser, S.; Ulstrup, S.; Koch, R.; Wirjo, J.; Jozwiak, C.; Kim, K. S.; Rotenberg, E.; Bostwick, A.; Analytis, J. G.; Lanzara, A.
2017-10-01
Direct experimental investigations of the low-energy electronic structure of the Na2IrO3 iridate insulator are sparse and draw two conflicting pictures. One relies on flat bands and a clear gap, the other involves dispersive states approaching the Fermi level, pointing to surface metallicity. Here, by a combination of angle-resolved photoemission, photoemission electron microscopy, and x-ray absorption, we show that the correct picture is more complex and involves an anomalous band, arising from charge transfer from Na atoms to Ir-derived states. Bulk quasiparticles do exist, but in one of the two possible surface terminations the charge transfer is smaller and they remain elusive.
NASA Astrophysics Data System (ADS)
Bedwani, Stephane
To assess the importance of charge-transfer on the interface properties, we studied the interaction of the tetracyanoethylene (TCNE) molecule with various copper surfaces. TCNE, a highly electrophilic molecule, appears as an ideal candidate to study the influence of high charge-transfer on the electronic and structural properties of molecule-surface interfaces. Indeed, various TCNE-transition metal complexes exhibit magnetism at room temperature, which is in agreement with a very significant change of the residual charge on the TCNE molecule. The adsorption of TCNE molecules on Cu(100) and Cu(111) surfaces was studied by scanning tunneling microscopy (STM) and by density functional theory (DFT) calculations with a local density approximation (LDA). DFT-LDA calculations were performed to determine the geometric and electronic structure of the studied interfaces. Mulliken analysis was used to evaluate the partial net charge on the adsorbed species. The density of states (DOS) diagrams provided informations on the nature of the frontier orbitals involved in the charge-transfer at molecule-metal interfaces. To validate the theoretical observations, a comparative study was conducted between our simulated STM images and experimental STM images provided by our collaborators. The theoretical STM images were obtained with the SPAGS-STM software using the Landauer-Buttiker formalism with a semi-empirical Hamiltonian based on the extended Huckel theory (EHT) and parameterized using DFT calculations. During the development of the SPAGS-STM software, we have created a discretization module allowing rapid generation of STM images. This module is based on an adaptive Delaunay meshing scheme to minimize the amount of tunneling current to be computed. The general idea consists into refining the mesh, and therefore the calculations, near large contrast zones rather than over the entire image. The adapted mesh provides an STM image resolution equivalent to that obtained with a conventional Cartesian grid but with a significantly smaller number of calculated pixels. This module is independent of the solver used to compute the tunneling current and can be transposed to different imaging techniques. Our work on the adsorption of TCNE molecules on Cu(100) surfaces revealed that the molecules assemble into a 1D chain, thereby buckling excessively a few Cu atoms from the surface. The large deformations observed at the molecule-metal interface show that the Cu atoms close to the TCNE nitrile groups assist the molecular assembly and show a distinct behavior compared with other Cu atoms. A strong charge-transfer is observed at the interface leading to an almost complete occupation of the state ascribed to the lowest unoccupied molecular orbital (LUMO) of TCNE in gas phase. In addition, a back-donation of charge from the molecule to the metal via the states associated with the highest occupied molecular orbitals (HOMO) of TCNE in gas phase may be seen. The magnitude of the charge-transfer between a TCNE molecule and Cu atoms is of the same order on the Cu(111) surface but causes much less buckling than that on the Cu(100) surface. However, experimental STM images of single TCNE molecules adsorbed on Cu(111) surfaces reveal a surprising electronic multistability. In addition, scanning tunneling spectroscopy (STS) reveals that one of these states has a magnetic nature and shows a Kondo resonance. STM simulations identified the source of two non-magnetic states. DFT-LDA calculations were able to ascribe the magnetic state to the partial occupation of a state corresponding to the LUMO+2 of TCNE. Moreover, the calculations showed that additional molecular deformations to those of TCNE in adsorbed phase, such the elongation of the C=C central bond and the bend of nitrile groups toward the surface, favor this charge-transfer to the LUMO+2. This suggested the presence of a Kondo state through the vibrational excitation of the stretching mode of the C=C central bond. The main results of this thesis led to the conclusion that strong charge-transfer between adsorbed molecules on a metallic surface may induce significant buckling of the surface. This surface reconstruction mechanism that involves a bidirectional charge-transfer between the species results into a partial net charge over the molecule. This mechanism is involved in the supramolecular self-assembly process that appears similar to a coordination network. Moreover, the adsorbed molecule presents some important geometric distortions that alter its electronic structure. Additional distortions on the adsorbed molecule induced by some molecular vibration modes seem to explain a stable magnetic state that can be switch on or off by an electrical impulse. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Ma, Xin; Zhou, Mowei; Wysocki, Vicki H.
2014-03-01
Ion mobility (IM) and tandem mass spectrometry (MS/MS) coupled with native MS are useful for studying noncovalent protein complexes. Collision induced dissociation (CID) is the most common MS/MS dissociation method. However, some protein complexes, including glycogen phosphorylase B kinase (PHB) and L-glutamate dehydrogenase (GDH) examined in this study, are resistant to dissociation by CID at the maximum collision energy available in the instrument. Surface induced dissociation (SID) was applied to dissociate the two refractory protein complexes. Different charge state precursor ions of the two complexes were examined by CID and SID. The PHB dimer was successfully dissociated to monomers and the GDH hexamer formed trimeric subcomplexes that are informative of its quaternary structure. The unfolding of the precursor and the percentages of the distinct products suggest that the dissociation pathways vary for different charge states. The precursors at lower charge states (+21 for PHB dimer and +27 for GDH hexamer) produce a higher percentage of folded fragments and dissociate more symmetrically than the precusors at higher charge states (+29 for PHB dimer and +39 for GDH hexamer). The precursors at lower charge state may be more native-like than the higher charge state because a higher percentage of folded fragments and a lower percentage of highly charged unfolded fragments are detected. The combination of SID and charge reduction is shown to be a powerful tool for quaternary structure analysis of refractory noncovalent protein complexes, as illustrated by the data for PHB dimer and GDH hexamer.
Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge
NASA Astrophysics Data System (ADS)
Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng
2018-04-01
Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm2, the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.
Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.
Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng
2018-04-19
Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.
Ashok, Aditya; Vijayaraghavan, S N; Unni, Gautam E; Nair, Shantikumar V; Shanmugam, Mariyappan
2018-04-27
The present study elucidates dispersive electron transport mediated by surface states in tin oxide (SnO 2 ) nanoparticle-based dye sensitized solar cells (DSSCs). Transmission electron microscopic studies on SnO 2 show a distribution of ∼10 nm particles exhibiting (111) crystal planes with inter-planar spacing of 0.28 nm. The dispersive transport, experienced by photo-generated charge carriers in the bulk of SnO 2 , is observed to be imposed by trapping and de-trapping processes via SnO 2 surface states present close to the band edge. The DSSC exhibits 50% difference in performance observed between the forward (4%) and reverse (6%) scans due to the dispersive transport characteristics of the charge carriers in the bulk of the SnO 2 . The photo-generated charge carriers are captured and released by the SnO 2 surface states that are close to the conduction band-edge resulting in a very significant variation; this is confirmed by the hysteresis observed in the forward and reverse scan current-voltage measurements under AM1.5 illumination. The hysteresis behavior assures that the charge carriers are accumulated in the bulk of electron acceptor due to the trapping, and released by de-trapping mediated by surface states observed during the forward and reverse scan measurements.
NASA Astrophysics Data System (ADS)
Ashok, Aditya; Vijayaraghavan, S. N.; Unni, Gautam E.; Nair, Shantikumar V.; Shanmugam, Mariyappan
2018-04-01
The present study elucidates dispersive electron transport mediated by surface states in tin oxide (SnO2) nanoparticle-based dye sensitized solar cells (DSSCs). Transmission electron microscopic studies on SnO2 show a distribution of ˜10 nm particles exhibiting (111) crystal planes with inter-planar spacing of 0.28 nm. The dispersive transport, experienced by photo-generated charge carriers in the bulk of SnO2, is observed to be imposed by trapping and de-trapping processes via SnO2 surface states present close to the band edge. The DSSC exhibits 50% difference in performance observed between the forward (4%) and reverse (6%) scans due to the dispersive transport characteristics of the charge carriers in the bulk of the SnO2. The photo-generated charge carriers are captured and released by the SnO2 surface states that are close to the conduction band-edge resulting in a very significant variation; this is confirmed by the hysteresis observed in the forward and reverse scan current-voltage measurements under AM1.5 illumination. The hysteresis behavior assures that the charge carriers are accumulated in the bulk of electron acceptor due to the trapping, and released by de-trapping mediated by surface states observed during the forward and reverse scan measurements.
Effect of solid surface charge on the binding behaviour of a metal-binding peptide
Donatan, Senem; Sarikaya, Mehmet; Tamerler, Candan; Urgen, Mustafa
2012-01-01
Over the last decade, solid-binding peptides have been increasingly used as molecular building blocks coupling bio- and nanotechnology. Despite considerable research being invested in this field, the effects of many surface-related parameters that define the binding of peptide to solids are still unknown. In the quest to control biological molecules at solid interfaces and, thereby, tailoring the binding characteristics of the peptides, the use of surface charge of the solid surface may probably play an important role, which then can be used as a potential tuning parameter of peptide adsorption. Here, we report quantitative investigation on the viscoelastic properties and binding kinetics of an engineered gold-binding peptide, 3RGBP1, adsorbed onto the gold surface at different surface charge densities. The experiments were performed in aqueous solutions using an electrochemical dissipative quartz crystal microbalance system. Hydrodynamic mass, hydration state and surface coverage of the adsorbed peptide films were determined as a function of surface charge density of the gold metal substrate. Under each charged condition, binding of 3rGBP1 displayed quantitative differences in terms of adsorbed peptide amount, surface coverage ratio and hydration state. Based on the intrinsically disordered structure of the peptide, we propose a possible mechanism for binding of the peptide that can be used for tuning surface adsorption in further studies. Controlled alteration of peptide binding on solid surfaces, as shown here, may provide novel methods for surface functionalization used for bioenabled processing and fabrication of future micro- and nanodevices. PMID:22491974
Uncoated microcantilevers as chemical sensors
Thundat, Thomas G.
2001-01-01
A method and device are provided for chemical sensing using cantilevers that do not use chemically deposited, chemically specific layers. This novel device utilizes the adsorption-induced variation in the surfaces states on a cantilever. The methodology involves exciting charge carriers into or out of the surface states with photons having increasing discrete levels of energy. The excitation energy is provided as discrete levels of photon energy by scanning the wavelength of an exciting source that is illuminating the cantilever surface. When the charge carriers are excited into or out of the surface states, the cantilever bending changes due to changes in surface stress. The amount of cantilever bending with respect to an identical cantilever as a function of excitation energy is used to determine the energy levels associated with adsorbates.
Experimental evidence of beam-foil plasma creation during ion-solid interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Prashant, E-mail: prashant@iuac.res.in; Nandi, Tapan
2016-08-15
Charge state evolution of the energetic projectile ions during the passage through thin carbon foils has been revisited using the X-ray spectroscopy technique. Contributions from the bulk and the solid surface in the charge changing processes have been segregated by measuring the charge state distribution of the projectile ions in the bulk of the target during the ion–solid interaction. Interestingly, the charge state distribution measured in the bulk exhibits Lorentzian profile in contrast to the well-known Gaussian structure observed using the electromagnetic methods and the theoretical predictions. The occurrence of such behavior is a direct consequence of the imbalance betweenmore » charge changing processes, which has been seen in various cases of the laboratory plasma. It suggests that the ion-solid collisions constitute high-density, localized plasma in the bulk of the solid target, called the beam-foil plasma. This condensed beam-foil plasma is similar to the high-density solar and stellar plasma which may have practical implementations in various fields, in particular, plasma physics and nuclear astrophysics. The present work suggests further modification in the theoretical charge state distribution calculations by incorporating the plasma coupling effects during the ion–solid interactions. Moreover, the multi-electron capture from the target exit surface has been confirmed through comparison between experimentally measured and theoretically predicted values of the mean charge state of the projectile ions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Dehua; Liu, Qing; Tisdale, Jeremy
This paper reports Seebeck effects driven by both surface polarization difference and entropy difference by using intramolecular charge-transfer states in n-type and p-type conjugated polymers, namely IIDT and IIDDT, based on vertical conductor/polymer/conductor thin-film devices. Large Seebeck coefficients of -898 V/K and 1300 V/K from are observed from n-type IIDT p-type IIDDT, respectively, when the charge-transfer states are generated by a white light illumination of 100 mW/cm2. Simultaneously, electrical conductivities are increased from almost insulating states in dark condition to conducting states under photoexcitation in both n-type IIDT and p-type IIDDT devices. We find that the intramolecular charge-transfer states canmore » largely enhance Seebeck effects in the n-type IIDT and p-type IIDDT devices driven by both surface polarization difference and entropy difference. Furthermore, the Seebeck effects can be shifted between polarization and entropy regimes when electrical conductivities are changed. This reveals a new concept to develop Seebeck effects by controlling polarization and entropy regimes based on charge-transfer states in vertical conductor/polymer/conductor thin-film devices.« less
Rational Design of Multilayer Collagen Nanosheets with Compositional and Structural Control.
Jiang, Tao; Vail, Owen A; Jiang, Zhigang; Zuo, Xiaobing; Conticello, Vincent P
2015-06-24
Two collagen-mimetic peptides, CP(+) and CP(-), are reported in which the sequences comprise a multiblock architecture having positively charged N-terminal (Pro-Arg-Gly)3 and negatively charged C-terminal (Glu-Hyp-Gly)3 triad extensions, respectively. CP(+) rapidly self-associates into positively charged nanosheets based on a monolayer structure. In contrast, CP(-) self-assembles to form negatively charged monolayer nanosheets at a much slower rate, which can be accelerated in the presence of calcium(II) ion. A 2:1 mixture of unassociated CP(-) peptide with preformed CP(+) nanosheets generates structurally defined triple-layer nanosheets in which two CP(-) monolayers have formed on the identical surfaces of the CP(+) nanosheet template. Experimental data from electrostatic force microscopy (EFM) image analysis, zeta potential measurements, and charged nanoparticle binding assays support a negative surface charge state for the triple-layer nanosheets, which is the reverse of the positive surface charge state observed for the CP(+) monolayer nanosheets. The electrostatic complementarity between the CP(+) and CP(-) triple helical cohesive ends at the layer interfaces promotes a (CP(-)/CP(+)/CP(-)) compositional gradient along the z-direction of the nanosheet. This structurally informed approach represents an attractive strategy for the fabrication of two-dimensional nanostructures with compositional control.
NASA Astrophysics Data System (ADS)
Lytvtnenko, D. M.; Slyusarenko, Yu. V.; Kirdin, A. I.
2012-10-01
A consistent theory of equilibrium states of same sign charges above the surface of liquid dielectric film located on solid substrate in the presence of external attracting constant electric field is proposed. The approach to the development of the theory is based on the Thomas-Fermi model generalized to the systems under consideration and on the variational principle. The using of self-consistent field model allows formulating a theory containing no adjustable constants. In the framework of the variational principle we obtain the self-consistency equations for the parameters describing the system: the distribution function of charges above the liquid dielectric surface, the electrostatic field potentials in all regions of the system and the surface profile of the liquid dielectric. The self-consistency equations are used to describe the phase transition associated with the formation of spatially periodic structures in the system of charges on liquid dielectric surface. Assuming the non-degeneracy of the gas of charges above the surface of liquid dielectric film the solutions of the self-consistency equations near the critical point are obtained. In the case of the symmetric phase we obtain the expressions for the potentials and electric fields in all regions of the studied system. The distribution of the charges above the surface of liquid dielectric film for the symmetric phase is derived. The system parameters of the phase transition to nonsymmetric phase - the states with a spatially periodic ordering are obtained. We derive the expression determining the period of two-dimensional lattice as a function of physical parameters of the problem - the temperature, the external attractive electric field, the number of electrons per unit of the flat surface area of the liquid dielectric, the density of the dielectric, its surface tension and permittivity, and the permittivity of the solid substrate. The possibility of generalizing the developed theory in the case of degenerate gas of like-charged particles above the liquid dielectric surface is discussed.
Static charge outside chamber induces dielectric breakdown of solid-state nanopore membranes
NASA Astrophysics Data System (ADS)
Matsui, Kazuma; Goto, Yusuke; Yanagi, Itaru; Yanagawa, Yoshimitsu; Ishige, Yu; Takeda, Ken-ichi
2018-04-01
Reducing device capacitance is effective for decreasing current noise observed in a solid-state nanopore-based DNA sequencer. On the other hand, we have recently found that voltage stress causes pinhole-like defects in such low-capacitance devices. The origin of voltage stress, however, has not been determined. In this research, we identified that a dominant origin is static charge on the outer surface of a flow cell. Even though the outer surface was not in direct contact with electrolytes in the flow cell, the charge induces high voltage stress on a membrane according to the capacitance coupling ratio of the flow cell to the membrane.
Park, Byoungnam; Whitham, Kevin; Bian, Kaifu; Lim, Yee-Fun; Hanrath, Tobias
2014-12-21
We used a bilayer field effect transistor (FET) consisting of a thin PbS nanocrystals (NCs) film interfaced with vacuum-deposited pentacene to probe trap states in NCs. We interpret the observed threshold voltage shift in context of charge carrier trapping by PbS NCs and relate the magnitude of the threshold voltage shift to the number of trapped carriers. We explored a series of NC surface ligands to modify the interface between PbS NCs and pentacene and demonstrate the impact of interface chemistry on charge carrier density and the FET mobility in a pentacene FET.
Der, Bryan S.; Kluwe, Christien; Miklos, Aleksandr E.; Jacak, Ron; Lyskov, Sergey; Gray, Jeffrey J.; Georgiou, George; Ellington, Andrew D.; Kuhlman, Brian
2013-01-01
Reengineering protein surfaces to exhibit high net charge, referred to as “supercharging”, can improve reversibility of unfolding by preventing aggregation of partially unfolded states. Incorporation of charged side chains should be optimized while considering structural and energetic consequences, as numerous mutations and accumulation of like-charges can also destabilize the native state. A previously demonstrated approach deterministically mutates flexible polar residues (amino acids DERKNQ) with the fewest average neighboring atoms per side chain atom (AvNAPSA). Our approach uses Rosetta-based energy calculations to choose the surface mutations. Both protocols are available for use through the ROSIE web server. The automated Rosetta and AvNAPSA approaches for supercharging choose dissimilar mutations, raising an interesting division in surface charging strategy. Rosetta-supercharged variants of GFP (RscG) ranging from −11 to −61 and +7 to +58 were experimentally tested, and for comparison, we re-tested the previously developed AvNAPSA-supercharged variants of GFP (AscG) with +36 and −30 net charge. Mid-charge variants demonstrated ∼3-fold improvement in refolding with retention of stability. However, as we pushed to higher net charges, expression and soluble yield decreased, indicating that net charge or mutational load may be limiting factors. Interestingly, the two different approaches resulted in GFP variants with similar refolding properties. Our results show that there are multiple sets of residues that can be mutated to successfully supercharge a protein, and combining alternative supercharge protocols with experimental testing can be an effective approach for charge-based improvement to refolding. PMID:23741319
Real-Space Mapping of Surface Trap States in CIGSe Nanocrystals Using 4D Electron Microscopy.
Bose, Riya; Bera, Ashok; Parida, Manas R; Adhikari, Aniruddha; Shaheen, Basamat S; Alarousu, Erkki; Sun, Jingya; Wu, Tom; Bakr, Osman M; Mohammed, Omar F
2016-07-13
Surface trap states in copper indium gallium selenide semiconductor nanocrystals (NCs), which serve as undesirable channels for nonradiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with subpicosecond temporal and nanometer spatial resolutions. Here, we precisely map the collective surface charge carrier dynamics of copper indium gallium selenide NCs as a function of the surface trap states before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, the removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.
NASA Astrophysics Data System (ADS)
Xie, Yun; Pan, Yufang; Zhang, Rong; Liang, Ying; Li, Zhanchao
2015-01-01
Molecular dynamics simulations were employed to investigate the modulation of protein behaviors on the electrically responsive zwitterionic phosphorylcholine self-assembled monolayers (PC-SAMs). Results show that PC-SAMs could sensitively respond to the applied electric fields and exhibit three states with different charge distributions, namely both the negatively charged phosphate groups and the positively charged choline groups are exposed to the solution in the absence of electric fields (state 1), phosphate groups exposed in the presence of positive electric fields (state 2), and choline groups exposed in the presence of negative electric fields (state 3). Under state 1, the adsorption of Cyt c on the PC-SAM is reversible and the orientations of Cyt c are randomly distributed. Under state 2, the adsorption of Cyt c is enhanced due to the electrostatic attractions between the exposed phosphate groups and the positively charged protein; when adsorbed on the PC-SAMs, Cyt c tends to adopt the orientation with the heme plane perpendicular to the surface plane, and the percentage of this orientation increases as the field strength rises up. Under state 3, the adsorption of Cyt c is retarded because of the electrostatic repulsions between the exposed choline groups and the protein; however, if the gaps between PC chains are large enough, Cyt c could insert into the PC-SAM and access the phosphate groups after overcoming a slight energy barrier. Under three states, the basic backbone structures of Cyt c are well kept within the simulation time since the conformation of Cyt c is mainly affected by the surface-generated electric fields, whose strengths are modulated by the external electric fields and are not strong enough to deform protein. The results indicate the possibility of regulating protein behaviors, including promoting or retarding protein adsorption and regulating protein orientations, on responsive surfaces by applying electric fields on the surfaces without worrying protein deformation, which may be helpful in the applications of protein separation and controlled drug delivery.
NASA Astrophysics Data System (ADS)
Wang, Weiwang; Li, Shengtao; Min, Daomin
2016-04-01
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al2O3 nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al2O3 nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and the strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al2O3 nanodielectrics is improved.
Tuning the Fabrication of Nanostructures by Low-Energy Highly Charged Ions.
El-Said, Ayman S; Wilhelm, Richard A; Heller, Rene; Sorokin, Michael; Facsko, Stefan; Aumayr, Friedrich
2016-09-16
Slow highly charged ions have been utilized recently for the creation of monotype surface nanostructures (craters, calderas, or hillocks) in different materials. In the present study, we report on the ability of slow highly charged xenon ions (^{129}Xe^{Q+}) to form three different types of nanostructures on the LiF(100) surface. By increasing the charge state from Q=15 to Q=36, the shape of the impact induced nanostructures changes from craters to hillocks crossing an intermediate stage of caldera structures. A dimensional analysis of the nanostructures reveals an increase of the height up to 1.5 nm as a function of the potential energy of the incident ions. Based on the evolution of both the geometry and size of the created nanostructures, defect-mediated desorption and the development of a thermal spike are utilized as creation mechanisms of the nanostructures at low and high charge states, respectively.
Hwang, Sooyeon; Kim, Seung Min; Bak, Seong-Min; Cho, Byung-Won; Chung, Kyung Yoon; Lee, Jeong Yong; Chang, Wonyoung; Stach, Eric A
2014-09-10
In this work, we take advantage of in situ transmission electron microscopy (TEM) to investigate thermally induced decomposition of the surface of Li(x)Ni(0.8)Co(0.15)Al(0.05)O2 (NCA) cathode materials that have been subjected to different states of charge (SOC). While uncharged NCA is stable up to 400 °C, significant changes occur in charged NCA with increasing temperature. These include the development of surface porosity and changes in the oxygen K-edge electron energy loss spectra, with pre-edge peaks shifting to higher energy losses. These changes are closely related to O2 gas released from the structure, as well as to phase changes of NCA from the layered structure to the disordered spinel structure, and finally to the rock-salt structure. Although the temperatures where these changes initiate depend strongly on the state of charge, there also exist significant variations among particles with the same state of charge. Notably, when NCA is charged to x = 0.33 (the charge state that is the practical upper limit voltage in most applications), the surfaces of some particles undergo morphological and oxygen K-edge changes even at temperatures below 100 °C, a temperature that electronic devices containing lithium ion batteries (LIB) can possibly see during normal operation. Those particles that experience these changes are likely to be extremely unstable and may trigger thermal runaway at much lower temperatures than would be usually expected. These results demonstrate that in situ heating experiments are a unique tool not only to study the general thermal behavior of cathode materials but also to explore particle-to-particle variations, which are sometimes of critical importance in understanding the performance of the overall system.
Tan, B S; Harrison, N; Zhu, Z; Balakirev, F; Ramshaw, B J; Srivastava, A; Sabok-Sayr, S A; Sabok, S A; Dabrowski, B; Lonzarich, G G; Sebastian, Suchitra E
2015-08-04
The normal state in the hole underdoped copper oxide superconductors has proven to be a source of mystery for decades. The measurement of a small Fermi surface by quantum oscillations on suppression of superconductivity by high applied magnetic fields, together with complementary spectroscopic measurements in the hole underdoped copper oxide superconductors, point to a nodal electron pocket from charge order in YBa2Cu3(6+δ). Here, we report quantum oscillation measurements in the closely related stoichiometric material YBa2Cu4O8, which reveals similar Fermi surface properties to YBa2Cu3(6+δ), despite the nonobservation of charge order signatures in the same spectroscopic techniques, such as X-ray diffraction, that revealed signatures of charge order in YBa2Cu3(6+δ). Fermi surface reconstruction in YBa2Cu4O8 is suggested to occur from magnetic field enhancement of charge order that is rendered fragile in zero magnetic fields because of its potential unconventional nature and/or its occurrence as a subsidiary to more robust underlying electronic correlations.
Conducting ion tracks generated by charge-selected swift heavy ions
NASA Astrophysics Data System (ADS)
Gupta, Srashti; Gehrke, H. G.; Krauser, J.; Trautmann, C.; Severin, D.; Bender, M.; Rothard, H.; Hofsäss, H.
2016-08-01
Conducting ion tracks in tetrahedral amorphous carbon (ta-C) thin films were generated by irradiation with swift heavy ions of well-defined charge state. The conductivity of tracks and the surface topography of the films, showing characteristic hillocks at each track position, were investigated using conductive atomic force microscopy measurements. The dependence of track conductivity and hillock size on the charge state of the ions was studied using 4.6 MeV/u Pb ions of charge state 53+, 56+ and 60+ provided by GANIL, as well as 4.8 MeV/u Bi and Au ions of charge state from 50+ to 61+ and 4.2 MeV/u 238U ions in equilibrium charge state provided by UNILAC of GSI. For the charge state selection at GSI, an additional stripper-foil system was installed at the M-branch that now allows routine irradiations with ions of selected charge states. The conductivity of tracks in ta-C increases significantly when the charge state increases from 51+ to 60+. However, the conductivity of individual tracks on the same sample still shows large variations, indicating that tracks formed in ta-C are either inhomogeneous or the conductivity is limited by the interface between ion track and Si substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunaratne, Kalupathirannehelage Don D.; Johnson, Grant E.; Andersen, Amity
2014-12-04
We investigate the controlled deposition of Keggin polyoxometalate (POM) anions, PMo12O403- and PMo12O402-, onto different self-assembled monolayer (SAM) surfaces via soft landing of mass-selected ions. Utilizing in situ infrared reflection absorption spectroscopy (IRRAS), ex situ cyclic voltammetry (CV) and electronic structure calculations, we examine the structure and charge retention of supported multiply-charged POM anions and characterize the redox properties of the modified surfaces. SAMs of alkylthiol (HSAM), perfluorinated alkylthiol (FSAM), and alkylthiol terminated with NH3+ functional groups (NH3+SAM) are chosen as model substrates for soft landing to examine the factors which influence the immobilization and charge retention of multiply chargedmore » anionic molecules. The distribution of charge states of POMs on different SAM surfaces are determined by comparing the IRRAS spectra with vibrational spectra calculated using density functional theory (DFT). In contrast to the results obtained previously for multiply charged cations, soft landed anions are found to retain charge on all three SAM surfaces. This charge retention is attributed to the substantial electron binding energy of the POM anions. Investigation of redox properties by CV reveals that, while surfaces prepared by soft landing exhibit similar features to those prepared by adsorption of POM from solution, the soft landed POM2- has a pronounced shift in oxidation potential compared to POM3- for one of the redox couples. These results demonstrate that ion soft landing is uniquely suited for precisely controlled preparation of substrates with specific electronic and chemical properties that cannot be achieved using conventional deposition techniques.« less
Piezoelectric modulation of surface voltage in GaN and AlGaN/GaN: charge screening effects and 2DEG
NASA Astrophysics Data System (ADS)
Wilson, Marshall; Schrayer, Bret; Savtchouk, Alexandre; Hillard, Bob; Lagowski, Jacek
2017-02-01
Surface voltage response to pulses of piezoelectric polarization is measured with a Kelvin-probe providing a unique means for investigation of the dynamics of polarization induced sheet charge and 2DEG. Combined with biasing of the surface with a corona-deposited charge from accumulation to deep depletion and corresponding non-contact C-V type characterization, the technique identifies surface band bending and interface traps as key factors that affect the magnitude and time decay of piezoelectric polarization. For 2DEG structures, surface potential pinning is observed when the 2DEG is fully populated. Pinning is released by negative corona charging to fully deplete the 2DEG. These results are consistent with the role of surface states. Presently demonstrated polarization modulation and wafer scale measurements shall impact the in-depth characterization and fundamental understanding of AlGaN/GaN 2DEG structures.
NASA Astrophysics Data System (ADS)
Annese, E.; Fujii, J.; Baldacchini, C.; Zhou, B.; Viol, C. E.; Vobornik, I.; Betti, M. G.; Rossi, G.
2008-05-01
The interaction of pentacene molecules in contact with the Cu(119) stepped surface has been directly imaged by scanning tunneling microscopy and analyzed by angle resolved photoemission spectroscopy. Interacting molecules, which are in contact with copper, generate dispersive electronic states associated with a perturbed electron charge density distribution of the molecular orbitals. In contrast, the electron charge density of molecules of the pentacene on top of the first layer, which is not in direct contact with the Cu surface, shows an intramolecular structure very similar to that of the free molecule. Our results indicate that the delocalization of the molecular states in the pentacene/Cu system is confined to the very first molecular layer at the interface.
Karaveli, Sinan; Gaathon, Ophir; Wolcott, Abraham; Sakakibara, Reyu; Shemesh, Or A.; Peterka, Darcy S.; Boyden, Edward S.; Owen, Jonathan S.; Yuste, Rafael; Englund, Dirk
2016-01-01
The negatively charged nitrogen vacancy (NV−) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV− state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials. PMID:27035935
Karaveli, Sinan; Gaathon, Ophir; Wolcott, Abraham; Sakakibara, Reyu; Shemesh, Or A; Peterka, Darcy S; Boyden, Edward S; Owen, Jonathan S; Yuste, Rafael; Englund, Dirk
2016-04-12
The negatively charged nitrogen vacancy (NV(-)) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV(-) state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials.
NASA Astrophysics Data System (ADS)
Karaveli, Sinan; Gaathon, Ophir; Wolcott, Abraham; Sakakibara, Reyu; Shemesh, Or A.; Peterka, Darcy S.; Boyden, Edward S.; Owen, Jonathan S.; Yuste, Rafael; Englund, Dirk
2016-04-01
The negatively charged nitrogen vacancy (NV-) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV- state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials.
Chen, Xiaojie; Tieleman, D Peter; Liang, Qing
2018-02-01
The interactions between nanoparticles and lipid bilayers are critical in applications of nanoparticles in nanomedicine, cell imaging, toxicology, and elsewhere. Here, we investigate the interactions between nanoparticles coated with neutral and/or charged ligands and phase-separated lipid bilayers using coarse-grained molecular dynamics simulation. Both penetration and adsorption processes as well as the final distribution of the nanoparticles can be readily modulated by varying the ligand density and the surface charge of the nanoparticles. Completely hydrophobic (neutral) nanoparticles with larger size initially preferentially penetrate into the liquid-disordered region of the lipid bilayer and finally transfer into the liquid-ordered region; partially hydrophilic nanoparticles with low or moderate surface charge tend to either distribute in the liquid-disordered region or be adsorbed on the surface of the lipid bilayer, while strongly hydrophilic nanoparticles with high surface charge always reside on the surface of the lipid bilayer. Interactions of the nanoparticles with the lipid bilayers are affected by the surface charge of nanoparticles, hydrophobic mismatch, bending of the ligands, and the packing state of the lipids. Insight in these factors can be used to improve the efficiency of designing nanoparticles for specific applications.
Simultaneous detection of refractive index and surface charges in nanolaser biosensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Keisuke; Kishi, Yoji; Hachuda, Shoji
2015-01-12
The emission intensity of a GaInAsP photonic crystal nanolaser is affected by the pH of the solution, in which the nanolaser is immersed. This phenomenon can be explained by the change in the redox potential, which modifies the filling of electrons at surface states of the semiconductor and hence the nonradiative surface recombination. This phenomenon allows the nanolaser to simultaneously and independently detect the refractive index and electric charges near the surface on the basis of the variation in emission wavelength and intensity, respectively. This paper demonstrates this function through alternate deposition of charged polyelectrolytes and hybridization of deoxyribonucleic acids.
Dielectrics for long term space exposure and spacecraft charging: A briefing
NASA Technical Reports Server (NTRS)
Frederickson, A. R.
1989-01-01
Charging of dielectrics is a bulk, not a surface property. Radiation driven charge stops within the bulk and is not quickly conducted to the surface. Very large electric fields develop in the bulk due to this stopped charge. At space radiation levels, it typically requires hours or days for the internal electric fields to reach steady state. The resulting electric fields are large enough to produce electrical failure within the insulator. This type failure is thought to produce nearly all electric discharge anomalies. Radiation also induces bond breakage, creates reactive radicals, displaces atoms and, in general, severely changes the chemistry of the solid state material. Electric fields can alter this process by reacting with charged species, driving them through the solid. Irradiated polymers often lose as much as a percent of their mass, or more, at exposures typical in space. Very different aging or contaminant emission can be induced by the stopped charge electric fields. These radiation effects are detailed.
NASA Astrophysics Data System (ADS)
Yoon, Ok Ja; Lee, Hyun Jung; Jang, Yeong Mi; Kim, Hyun Woo; Lee, Won Bok; Kim, Sung Su; Lee, Nae-Eung
2011-08-01
The O 2 and N 2/H 2 plasma treatments of single-walled carbon nanotube (SWCNT) papers as scaffolds for enhanced neuronal cell growth were conducted to functionalize their surfaces with different functional groups and to roughen their surfaces. To evaluate the effects of the surface roughness and functionalization modifications of the SWCNT papers, we investigated the neuronal morphology, mitochondrial membrane potential, and acetylcholine/acetylcholinesterase levels of human neuroblastoma during SH-SY5Y cell growth on the treated SWCNT papers. Our results demonstrated that the plasma-chemical functionalization caused changes in the surface charge states with functional groups with negative and positive charges and then the increased surface roughness enhanced neuronal cell adhesion, mitochondrial membrane potential, and the level of neurotransmitter in vitro. The cell adhesion and mitochondrial membrane potential on the negatively charged SWCNT papers were improved more than on the positively charged SWCNT papers. Also, measurements of the neurotransmitter level showed an enhanced acetylcholine level on the negatively charged SWCNT papers compared to the positively charged SWCNT papers.
NASA Astrophysics Data System (ADS)
Dey, Rik; Register, Leonard F.; Banerjee, Sanjay K.
2018-04-01
The spin-momentum locking of the surface states in a three-dimensional topological insulator (TI) allows a charge current on the surface of the TI induced by an applied spin current onto the surface, which is known as the inverse Edelstein effect (IEE), that could be achieved either by injecting pure spin current by spin-pumping from a ferromagnetic metal (FM) layer or by injecting spin-polarized charge current by direct tunneling of electrons from the FM to the TI. Here, we present a theory of the observed IEE effect in a TI-FM heterostructure for the spin-polarized tunneling experiments. If an electrical current is passed from the FM to the surface of the TI, because of density-of-states polarization of the FM, an effective imbalance of spin-polarized electrons occurs on the surface of the TI. Due to the spin-momentum helical locking of the surface states in the TI, a difference of transverse charge accumulation appears on the TI surface in a direction orthogonal to the direction of the magnetization of the FM, which is measured as a voltage difference. Here, we derive the two-dimensional transport equations of electrons on the surface of a diffusive TI, coupled to a FM, starting from the quantum kinetic equation, and analytically solve the equations for a rectangular geometry to calculate the voltage difference.
Suppression of low-frequency charge noise in superconducting resonators by surface spin desorption.
de Graaf, S E; Faoro, L; Burnett, J; Adamyan, A A; Tzalenchuk, A Ya; Kubatkin, S E; Lindström, T; Danilov, A V
2018-03-20
Noise and decoherence due to spurious two-level systems located at material interfaces are long-standing issues for solid-state quantum devices. Efforts to mitigate the effects of two-level systems have been hampered by a lack of knowledge about their chemical and physical nature. Here, by combining dielectric loss, frequency noise and on-chip electron spin resonance measurements in superconducting resonators, we demonstrate that desorption of surface spins is accompanied by an almost tenfold reduction in the charge-induced frequency noise in the resonators. These measurements provide experimental evidence that simultaneously reveals the chemical signatures of adsorbed magnetic moments and highlights their role in generating charge noise in solid-state quantum devices.
Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf
2015-05-07
We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to the (equal) mean charges on the two surfaces and the osmotic pressure of monovalent ions residing between them. These effects can be quite significant even with a small degree of surface charge disorder relative to the mean surface charge. The strong coupling, disorder-induced attraction is typically much stronger than the van der Waals interaction between the surfaces, especially within a range of several nanometers for the inter-surface separation, where such effects are predicted to be most pronounced.
Sensing Coulomb impurities with 1/f noise in 3D Topological Insulator
NASA Astrophysics Data System (ADS)
Bhattacharyya, Semonti; Banerjee, Mitali; Nhalil, Hariharan; Elizabeth, Suja; Ghosh, Arindam
2015-03-01
Electrical transport in the non-trivial surface states of bulk Topological Insulator (TI) reveal several intriguing properties ranging from bipolar field effect transistor action, weak antilocalization in quantum transport, to the recently discovered quantum anomalous Hall effect. Many of these phenomena depend crucially on the nature of disorder and its screening by the Dirac Fermions at the TI surface. We have carried out a systematic study of low-frequency 1/f noise in Bi1.6Sb0.4Te2Se1 single crystals, to explore the dominant source of scattering of surface electrons and monitor relative contributions of the surface and bulk channels. Our results reveal that while trapped coulomb impurities at the substrate-TI interface are dominating source of scattering for thin (10 nm) TI, charged crystal disorder contribute strongly in thick TI (110 nm) channels. An unexpected maximum at 25K in noise from thick TI devices indicate scattering of the surface states by a cooperative charge dynamics in the bulk of the TI, possibly associated with the Selenium vacancies. Our experiment demonstrates, for the first time, impact of the bulk charge distribution on the surface state transport in TIs that could be crucial to the implementation of these materials in electronic applications.
Charge retention of soft-landed phosphotungstate Keggin anions on self-assembled monolayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunaratne, K. Don D.; Prabhakaran, Venkateshkumar; Andersen, Amity
Soft landing of mass-selected ions onto surfaces often results in partial loss of charge that may affect the structure and reactivity of deposited species. In this study, Keggin phosphotungstate anions in two selected charge states, PW12O403- (WPOM3-) and PW12O402- (WPOM2-), were soft-landed onto different self-assembled monolayer (SAM) surfaces and examined using in situ infrared reflection absorption spectroscopy (IRRAS) and density functional theory (DFT) calculations. Partial retention of the 3- charge was observed when WPOM3- was soft-landed onto the fluorinated SAM (FSAM), while the charge state distribution was dominated by the 2- charge after both WPOM3- and WPOM2- were deposited ontomore » a hydrophilic alkylthiol SAM terminated with cationic NH3+ functional groups (NH3+SAM). We found that during the course of the soft landing of WPOM3-, the relative abundance of WPOM3- on FSAM decreased while that of WPOM2- increased. We propose that the higher stability of immobilized WPOM2- in comparison with WPOM3- makes it the preferred charge state of WPOM on both the FSAM and NH3+SAM. We also observe weaker binding of WPOM anions to SAMs in comparison with phosphomolybdate ions (MoPOM) reported previously (J. Phys. Chem. C 2014, 118, 27611–27622). The weaker binding of WPOM to SAMs is attributed to the lower reactivity of WPOM reported in the literature. This study demonstrates that both the charge retention and the reactivity of deposited anionic POM clusters on surfaces are determined by the type of addenda metal atoms in the cluster.« less
Insulator Surface Charge as a Function of Pressure: Theory and Simulation
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Calle, Carlos I.; Mucciolo, Eduardo; Hintze, Paul
2005-01-01
A two-phase equilibrium model was developed to explain the discontinuous surface charge decay versus atmospheric pressure of insulators that had been charged triboelectrically. The two-phase model is an electrostatic form of the Langmuir Isotherm for ions adsorbed on a surface in equilibrium with ions in the gas phase. In this paper, the model was extended to account for vibrational states of the adsorbed surface ions via the vibrational partition function. An analysis is performed that rules out Paschen discharge as the cause of the discharge observed. Also, a numerical simulation is performed using NWChem to calculate the adsorption energies of ions on insulator surfaces for comparison to curve fit adsorption energies developed from the model and experimental data.
NASA Astrophysics Data System (ADS)
Subotnik, Joseph E.; Yeganeh, Sina; Cave, Robert J.; Ratner, Mark A.
2008-12-01
This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken-Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization of the Boys algorithm for creating diabatic states with localized spin density that should be useful for Dexter triplet-triplet energy transfer.
Subotnik, Joseph E; Yeganeh, Sina; Cave, Robert J; Ratner, Mark A
2008-12-28
This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken-Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization of the Boys algorithm for creating diabatic states with localized spin density that should be useful for Dexter triplet-triplet energy transfer.
Charging rates of metal-dielectric structures. [with implications for spacecraft
NASA Technical Reports Server (NTRS)
Purvis, C. K.; Staskus, J. V.; Roche, J. C.; Berkopec, F. D.
1979-01-01
Metal plates partially covered by 0.01-centimeter-thick fluorinated ethylene-propylene (FEP) Teflon were charged in the Lewis Research Center's geomagnetic substorm simulation facility using 5-, 8-, 10-, and 12-kilovolt electron beams. Surface voltage as a function of time was measured for various initial conditions (Teflon discharged or precharged) with the metal plate grounded or floating. Results indicate that both the charging rates and the levels to which the samples become charged are influenced by the geometry and initial charge state of the insulating surfaces. The experiments are described and the results are presented and discussed. NASA charging analyzer program (NASCAP) models of the experiments have been generated, and the predictions obtained are described. Implications of the study results for spacecraft are discussed.
Surface charge sensing by altering the phase transition in VO2
NASA Astrophysics Data System (ADS)
Kumar, S.; Esfandyarpour, R.; Davis, R.; Nishi, Y.
2014-08-01
Detection of surface charges has various applications in medicine, electronics, biotechnology, etc. The source of surface charge induction may range from simple charge-polarized molecules like water to complicated proteins. It was recently discovered that surface charge accumulation can alter the temperature at which VO2 undergoes a Mott transition. Here, we deposited polar molecules onto the surface of two-terminal thin-film VO2 lateral devices and monitored the joule-heating-driven Mott transition, or conductance switching. We observed that the power required to induce the conductance switching reduced upon treatment with polar molecules and, using in-situ blackbody-emission direct measurement of local temperature, we show that this reduction in power was accompanied by reduction in the Mott transition temperature. Further evidence suggested that this effect has specificity to the nature of the species used to induce surface charges. Using x-ray absorption spectroscopy, we also show that there is no detectable change in oxidation state of vanadium or structural phase in the bulk of the 40 nm VO2 thin-film even as the phase transition temperature is reduced by up to 20 K by the polar molecules. The ability to alter the phase transition parameters by depositing polar molecules suggests a potential application in sensing surface charges of different origins and this set of results also highlights interesting aspects of the phase transition in VO2.
NASA Astrophysics Data System (ADS)
Tran, Phong A.; Nguyen, Hiep T.; Fox, Kate; Tran, Nhiem
2018-03-01
Iron oxide magnetic nanoparticles have significant potential in biomedical applications such as in diagnosis, imaging and therapeutic agent delivery. The choice of stabilizers and surface functionalization is important as it is known to strongly influence the cytotoxicity of the nanoparticles. The present study aimed at investigating the effects of surface charges on the cytotoxicity of iron oxide nanoparticles. We used a co-precipitation method to synthesize iron oxide nanoparticles which were then stabilized with either chitosan (CS) or polyvinyl alcohol (PVA) which have net positive charge and zero charge at physiological pH, respectively. The nanoparticles were characterized in terms of size, charges and chemical oxidation state. Cytotoxicity of the nanoparticles was assessed using mouse fibroblast cells and was correlated with surface charges of the nanoparticles and their aggregation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenhardt, A.; Reiß, S.; Krischok, S., E-mail: stefan.krischok@tu-ilmenau.de
2014-01-28
The influence of selected donor- and acceptor-type adsorbates on the electronic properties of InN(0001) surfaces is investigated implementing in-situ photoelectron spectroscopy. The changes in work function, surface band alignment, and chemical bond configurations are characterized during deposition of potassium and exposure to oxygen. Although an expected opponent charge transfer characteristic is observed with potassium donating its free electron to InN, while dissociated oxygen species extract partial charge from the substrate, a reduction of the surface electron accumulation occurs in both cases. This observation can be explained by adsorbate-induced saturation of free dangling bonds at the InN resulting in the disappearancemore » of surface states, which initially pin the Fermi level and induce downward band bending.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weiwang; Li, Shengtao, E-mail: sli@xjtu.edu.cn; Min, Daomin
2016-04-15
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al{sub 2}O{sub 3} nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al{sub 2}O{sub 3} nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and themore » strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al{sub 2}O{sub 3} nanodielectrics is improved.« less
Strongly localized image states of spherical graphitic particles.
Gumbs, Godfrey; Balassis, Antonios; Iurov, Andrii; Fekete, Paula
2014-01-01
We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube.
NASA Astrophysics Data System (ADS)
Fazleev, N. G.; Olenga, Antoine; Weiss, A. H.
2013-03-01
The process by which oxide layers are formed on metal surfaces is still not well understood. In this work we present the results of theoretical studies of positron states and annihilation characteristics of surface-trapped positrons at the oxidized Cu(110) surface. An ab-initio investigation of stability and associated electronic properties of different adsorption phases of oxygen on Cu(110) has been performed on the basis of density functional theory and using DMOl3 code. The changes in the positron work function and the surface dipole moment when oxygen atoms occupy on-surface and sub-surface sites have been attributed to charge redistribution within the first two layers, buckling effects within each layer and interlayer expansion. The computed positron binding energy, positron surface state wave function, and annihilation probabilities of surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, elemental content, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data obtained from studies of oxidized transition metal surfaces using positron annihilation induced Auger electron spectroscopy. This work was supported in part by the National Science Foundation Grant DMR-0907679.
Defect states and charge transport in quantum dot solids
Brawand, Nicholas P.; Goldey, Matthew B.; Vörös, Márton; ...
2017-01-16
Defects at the surface of semiconductor quantum dots (QDs) give rise to electronic states within the gap, which are detrimental to charge transport properties of QD devices. We investigated charge transport in silicon quantum dots with deep and shallow defect levels, using ab initio calculations and constrained density functional theory. We found that shallow defects may be more detrimental to charge transport than deep ones, with associated transfer rates differing by up to 5 orders of magnitude for the small dots (1-2 nm) considered here. Hence, our results indicate that the common assumption, that the ability of defects to trapmore » charges is determined by their position in the energy gap of the QD, is too simplistic, and our findings call for a reassessment of the role played by shallow defects in QD devices. Altogether, our results highlight the key importance of taking into account the atomistic structural properties of QD surfaces when investigating transport properties.« less
Theoretical aspects of studies of oxide and semiconductor surfaces using low energy positrons
NASA Astrophysics Data System (ADS)
Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.
2011-01-01
This paper presents the results of a theoretical study of positron surface and bulk states and annihilation characteristics of surface trapped positrons at the oxidized Cu(100) single crystal and at both As- and Ga-rich reconstructed GaAs(100) surfaces. The variations in atomic structure and chemical composition of the topmost layers of the surfaces associated with oxidation and reconstructions and the charge redistribution at the surfaces are found to affect localization and spatial extent of the positron surface-state wave functions. The computed positron binding energy, work function, and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the surfaces. Theoretical positron annihilation probabilities with relevant core electrons computed for the oxidized Cu(100) surface and the As- and Ga-rich reconstructed GaAs(100) surfaces are compared with experimental ones estimated from the positron annihilation induced Auger peak intensities measured from these surfaces.
Studies in electron phenomena in MOS structures: The pulsed C-V method. M.S. Thesis. Abstract Only
NASA Technical Reports Server (NTRS)
Kaplan, G.
1983-01-01
The pulse hysteresis capacitance voltage (C-V) provides a straight forward technique for measuring the change of various charges in MOS structures and a tool for investigating the kinetics of various electron phenomena is developed and described. The method can be used for measuring the energy distribution and kinetics of surface states with the resolution of about 1/5 x 10 to the -9 power cm eV. Some transients in an MOS structure, particularly, the thermal generation of minority charge carriers via surface states and the relaxation of minority charge carriers supplied from the inversion layer outside the MOS structure are theoretically investigated. Analytical expressions which clearly present the physics of those electron phenomena are derived.
Charge transfer excitons and image potential states on organic semiconductor surfaces
NASA Astrophysics Data System (ADS)
Yang, Qingxin; Muntwiler, Matthias; Zhu, X.-Y.
2009-09-01
We report two types of excited electronic states on organic semiconductor surfaces: image potential states (IPS) and charge transfer excitons (CTE). In the former, an excited electron is localized in the surface-normal direction by the image potential and delocalized in the surface plane. In the latter, the electron is localized in all directions by both the image potential and the Coulomb potential from a photogenerated hole on an organic molecule. We use crystalline pentacene and tetracene surfaces as model systems, and time- and angle-resolved two-photon photoemission spectroscopy to probe the energetics and dynamics of both the IPS and the CTE states. On either pentacene or tetracene surfaces, we observe delocalized image bands and a series of CT excitons with binding energies <0.5eV below the image-band minimum. The binding energies of these CT excitons agree well with solutions to the atomic-H-like Schrödinger equation based on the image potential and the electron-hole Coulomb potential. We hypothesize that the formation of CT excitons should be general to the surfaces of organic semiconductors where the relatively narrow valance-band width facilitates the localization of the hole and the low dielectric constant ensures strong electron-hole attraction.
Potassium-intercalated H2Pc films: Alkali-induced electronic and geometrical modifications
NASA Astrophysics Data System (ADS)
Nilson, K.; Åhlund, J.; Shariati, M.-N.; Schiessling, J.; Palmgren, P.; Brena, B.; Göthelid, E.; Hennies, F.; Huismans, Y.; Evangelista, F.; Rudolf, P.; Göthelid, M.; Mârtensson, N.; Puglia, C.
2012-07-01
X-ray spectroscopy studies of potassium intercalated metal-free phthalocyanine multilayers adsorbed on Al(110) have been undertaken. Photoelectron spectroscopy measurements show the presence of several charge states of the molecules upon K intercalation, due to a charge transfer from the alkali. In addition, the comparison of valence band photoemission spectra with the density functional theory calculations of the density of states of the H2Pc- anion indicates a filling of the formerly lowest unoccupied molecular orbital by charge transfer from the alkali. This is further confirmed by x-ray absorption spectroscopy (XAS) studies, which show a decreased density of unoccupied states. XAS measurements in different experimental geometries reveal that the molecules in the pristine film are standing upright on the surface or are only slightly tilted away from the surface normal but upon K intercalation, the molecular orientation is changed in that the tilt angle of the molecules increases.
Skepö, Marie; Linse, Per; Arnebrant, Thomas
2006-06-22
Structural properties of the acidic proline rich protein PRP-1 of salivary origin in bulk solution and adsorbed onto a negatively charged surface have been studied by Monte Carlo simulations. A simple model system with focus on electrostatic interactions and short-ranged attractions among the uncharged amino acids has been used. In addition to PRP-1, some mutants were considered to assess the role of the interactions in the systems. Contrary to polyelectrolytes, the protein has a compact structure in salt-free bulk solutions, whereas at high salt concentration the protein becomes more extended. The protein adsorbs to a negatively charged surface, although its net charge is negative. The adsorbed protein displays an extended structure, which becomes more compact upon addition of salt. Hence, the conformational response upon salt addition in the adsorbed state is the opposite as compared to that in bulk solution. The conformational behavior of PRP-1 in bulk solution and at charged surfaces as well as its propensity to adsorb to surfaces with the same net charge are rationalized by the block polyampholytic character of the protein. The presence of a triad of positively charged amino acids in the C-terminal was found to be important for the adsorption of the protein.
Unoccupied surface states of LaB6(001) studied by k -resolved inverse photoemission
NASA Astrophysics Data System (ADS)
Morimoto, Osamu; Kunii, Satoru; Kakizaki, Akito
2006-06-01
We have measured k -resolved inverse photoemission spectra of LaB6(001) to study unoccupied surface states. The surface states are observed near the Fermi level (EF) and at 6.8eV above EF , which are originated from La5d and La4f states, respectively. The surface state near EF shows energy dispersion along the Γ - M direction of the surface Brillouin zone, which does not agree with that of a recently reported theoretical calculation. It is deduced that at a LaB6(001) surface, electrons are transferred from the subsurface to the topmost La layer. This charge redistribution can reduce surface dipole moments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yafyasov, A. M., E-mail: yafyasov@gmail.com; Bogevolnov, V. B.; Ryumtsev, E. I.
A semiconductor—organic-insulator system with spatially distributed charge is created with a uniquely low density of fast surface states (N{sub ss}) at the interface. A system with N{sub ss} ≈ 5 × 10{sup 10} cm{sup –2} is obtained for the example of n-Ge and the physical characteristics of the interface are measured for this system with liquid and metal field electrodes. For a system with an organic insulator, the range of variation of the surface potential from enrichment of the space-charge region of the semiconductor to the inversion state is first obtained without changing the mechanism of interaction between the adsorbedmore » layer and the semiconductor surface. The effect of enhanced polarization of the space-charge region of the semiconductor occurs due to a change in the spatial structure of mobile charge in the organic dielectric layer. The system developed in the study opens up technological opportunities for the formation of a new generation of electronic devices based on organic film structures and for experimental modeling of the electronic properties of biological membranes.« less
Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu
2015-05-20
A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid-liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid-liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid-liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid-liquid interfaces.
Origin and evolution of surface spin current in topological insulators
NASA Astrophysics Data System (ADS)
Dankert, André; Bhaskar, Priyamvada; Khokhriakov, Dmitrii; Rodrigues, Isabel H.; Karpiak, Bogdan; Kamalakar, M. Venkata; Charpentier, Sophie; Garate, Ion; Dash, Saroj P.
2018-03-01
The Dirac surface states of topological insulators offer a unique possibility for creating spin polarized charge currents due to the spin-momentum locking. Here we demonstrate that the control over the bulk and surface contribution is crucial to maximize the charge-to-spin conversion efficiency. We observe an enhancement of the spin signal due to surface-dominated spin polarization while freezing out the bulk conductivity in semiconducting Bi1.5Sb0.5Te1.7Se1.3 below 100 K . Detailed measurements up to room temperature exhibit a strong reduction of the magnetoresistance signal between 2 and100 K , which we attribute to the thermal excitation of bulk carriers and to the electron-phonon coupling in the surface states. The presence and dominance of this effect up to room temperature is promising for spintronic science and technology.
Dynamic probe of ZnTe(110) surface by scanning tunneling microscopy
Kanazawa, Ken; Yoshida, Shoji; Shigekawa, Hidemi; Kuroda, Shinji
2015-01-01
The reconstructed surface structure of the II–VI semiconductor ZnTe (110), which is a promising material in the research field of semiconductor spintronics, was studied by scanning tunneling microscopy/spectroscopy (STM/STS). First, the surface states formed by reconstruction by the charge transfer of dangling bond electrons from cationic Zn to anionic Te atoms, which are similar to those of IV and III–V semiconductors, were confirmed in real space. Secondly, oscillation in tunneling current between binary states, which is considered to reflect a conformational change in the topmost Zn–Te structure between the reconstructed and bulk-like ideal structures, was directly observed by STM. Third, using the technique of charge injection, a surface atomic structure was successfully fabricated, suggesting the possibility of atomic-scale manipulation of this widely applicable surface of ZnTe. PMID:27877752
Amplification of the electroosmotic velocity by induced charges at fluidic interfaces
NASA Astrophysics Data System (ADS)
Steffes, Clarissa; Baier, Tobias; Hardt, Steffen
2010-11-01
The performance of microfluidic devices like electroosmotic pumps is strongly limited by drag forces at the channel walls. In order to replace the standard no-slip condition at the wall with a more favorable slip condition, superhydrophobic surfaces are employed. In the Cassie-Baxter state, air is entrapped in the surface cavities, so that a significant fraction of water-air interfaces at which slip does occur is provided. However, such surfaces do not enhance electroosmotic flow. Since no net charge accumulates at the water-air interfaces, the driving force is reduced, and no flow enhancement is obtained. We consider electrodes incorporated in the superhydrophobic structure to induce charges at these interfaces, thereby increasing the driving force. A theoretical model is set up, yielding an understanding of the influence of the surface morphology on the flow, which serves as a basis for ongoing experimental work. While a considerable enhancement of the electroosmotic velocity is already expected for standard superhydrophobic surfaces, greater amplifications of one order of magnitude may be achieved by substituting the air in the surface cavities by oil, reducing the risk for electric breakdown or transition to the unfavorable Wenzel state.
Reid, Michael S; Kedzior, Stephanie A; Villalobos, Marco; Cranston, Emily D
2017-08-01
This work explores cellulose nanocrystal (CNC) thin films (<50 nm) and particle-particle interactions by investigating film swelling in aqueous solutions with varying ionic strength (1-100 mM). CNC film hydration was monitored in situ via surface plasmon resonance, and the kinetics of liquid uptake were quantified. The contribution of electrostatic double-layer forces to film swelling was elucidated by using CNCs with different surface charges (anionic sulfate half ester groups, high and low surface charge density, and cationic trimethylammonium groups). Total water uptake in the thin films was found to be independent of ionic strength and surface chemistry, suggesting that in the aggregated state van der Waals forces dominate over double-layer forces to hold the films together. However, the rate of swelling varied significantly. The water uptake followed Fickian behavior, and the measured diffusion constants decreased with the ionic strength gradient between the film and the solution. This work highlights that nanoparticle interactions and dispersion are highly dependent on the state of particle aggregation and that the rate of water uptake in aggregates and thin films can be tailored based on surface chemistry and solution ionic strength.
Command Surface of Self-Organizing Structures by Radical Polymers with Cooperative Redox Reactivity.
Sato, Kan; Mizuma, Takahiro; Nishide, Hiroyuki; Oyaizu, Kenichi
2017-10-04
Robust radical-substituted polymers with ideal redox capability were used as "command surfaces" for liquid crystal orientation. The alignment of the smectic liquid crystal electrolytes with low-dimensional ion conduction pathways was reversible and readily switched in response to the redox states of the polymers. In one example, a charge storage device with a cooperative redox effect was fabricated. The bulk ionic conductivity of the cell was significantly decreased only after the electrode was fully charged, due to the anisotropic ionic conductivity of the electrolytes (ratio >10 3 ). The switching enabled both a rapid cell response and long charge retention. Such a cooperative command surface of self-assembled structures will give rise to new highly energy efficient supramolecular-based devices including batteries, charge carriers, and actuators.
Genesis of charge orders in high temperature superconductors
Tu, Wei-Lin; Lee, Ting-Kuo
2016-01-01
One of the most puzzling facts about cuprate high-temperature superconductors in the lightly doped regime is the coexistence of uniform superconductivity and/or antiferromagnetism with many low-energy charge-ordered states in a unidirectional charge density wave or a bidirectional checkerboard structure. Recent experiments have discovered that these charge density waves exhibit different symmetries in their intra-unit-cell form factors for different cuprate families. Using a renormalized mean-field theory for a well-known, strongly correlated model of cuprates, we obtain a number of charge-ordered states with nearly degenerate energies without invoking special features of the Fermi surface. All of these self-consistent solutions have a pair density wave intertwined with a charge density wave and sometimes a spin density wave. Most of these states vanish in the underdoped regime, except for one with a large d-form factor that vanishes at approximately 19% doping of the holes, as reported by experiments. Furthermore, these states could be modified to have a global superconducting order, with a nodal-like density of states at low energy. PMID:26732076
Scanning tunneling spectroscopy of molecular thin films and semiconductor nanostructures
NASA Astrophysics Data System (ADS)
Gaan, Sandeep
Work presented in this thesis mostly deals with nano-scale study of electronic properties of organic semiconducting molecules using pentacene (Pn) as a model system and compared with various SiC surfaces to gain more insight into physical processes at nano-scale. In addition, InAs quantum dots (QDs) in a GaAs matrix are studied to probe electronic states of individual QDs. Scanning tunneling microscopy (STM) and spectroscopy (STS) are the primary experimental techniques used to probe local electronic properties on the nano-scale. Vacuum sublimated Pn thin films were deposited onto SiC substrates for STM/STS experiments. STM studies show high quality ordered Pn films. Atomic force microscopy (AFM) images reveal dendritic growth pattern of these films. Local density of states (LDOS) measurements using STS reveals a HOMO-LUMO bandgap. In order to study charge transport properties of Pn films, different amount of charge were injected into the sample by systematically changing the tip-sample separation. Saturation of the tunnel current was observed at positive sample voltages (LUMO states). This effect was attributed to a transport/space charge limitation in tunnel current by treating it as a situation analogous to charge injection into insulators which gives rise to space charge limited current (also previously observed in the case of organic semiconductors). Using a simple model we were able to derive a hopping rate that characterizes nano-scale transport in Pn films at least in the vicinity of the STM probe-tip. We have studied effect of transport limitation in the tunnel current for various semiconductor surfaces. In order to probe surfaces of varying conductivities, we have used Si-rich SiC surfaces such as 3x3 and 3x3 -R30° (both Mott-Hubbard insulators) as well as a highly conducting C-rich graphene surface, and compared those results with the data obtained from Pn. We observe variation of the decay constant kappa (which characterizes the tunneling process) on these surfaces of varying conductivities. The graphene surface shows no transport limitation in the tunnel current, as evidenced by only small changes in kappa as a function of tunnel current for these surfaces. This result is in sharp contrast to the case of Pn where kappa rapidly decays to zero with increasing tunnel current due to transport/space charge limited effects in the semiconductor. Thus, the change is kappa value in STM experiments is reflective of non-ideal behavior of the tunneling. As a specific case of transport limitation on the nano-scale we have also studied InAs QDs grown in a GaAs matrix. We observe that the occupation of discrete quantized states in the dots with electrons has a significant effect on tunneling spectra. When the QD state is occupied by an electron the potential in the dot is modified such that this state does not contribute to the tunnel current. The state then remains "invisible" in the tunneling spectra. Only in presence of transport channels in the vicinity of the dots can the electron localized in the QD state leak out to the substrate, and only then does the state appears in the spectrum. In our experiments these transport channels arise from steps which form as a result of in situ cleaving process for cross-sectional STM (XSTM) measurements.
Tereshchuk, Polina; Freire, Rafael L H; Ungureanu, Crina G; Seminovski, Yohanna; Kiejna, Adam; Da Silva, Juarez L F
2015-05-28
Despite extensive studies of transition metal (TM) clusters supported on ceria (CeO2), fundamental issues such as the role of the TM atoms in the change in the oxidation state of Ce atoms are still not well understood. In this work, we report a theoretical investigation based on static and ab initio molecular dynamics density functional theory calculations of the interaction of 13-atom TM clusters (TM = Pd, Ag, Pt, Au) with the unreduced CeO2(111) surface represented by a large surface unit cell and employing Hubbard corrections for the strong on-site Coulomb correlation in the Ce f-electrons. We found that the TM13 clusters form pyramidal-like structures on CeO2(111) in the lowest energy configurations with the following stacking sequence, TM/TM4/TM8/CeO2(111), while TM13 adopts two-dimensional structures at high energy structures. TM13 induces a change in the oxidation state of few Ce atoms (3 of 16) located in the topmost Ce layer from Ce(IV) (itinerant Ce f-states) to Ce(III) (localized Ce f-states). There is a charge flow from the TM atoms to the CeO2(111) surface, which can be explained by the electronegativity difference between the TM (Pd, Ag, Pt, Au) and O atoms, however, the charge is not uniformly distributed on the topmost O layer due to the pressure induced by the TM13 clusters on the underlying O ions, which yields a decrease in the ionic charge of the O ions located below the cluster and an increase in the remaining O ions. Due to the charge flow mainly from the TM8-layer to the topmost O-layer, the charge cannot flow from the Ce(IV) atoms to the O atoms with the same magnitude as in the clean CeO2(111) surface. Consequently, the effective cationic charge decreases mainly for the Ce atoms that have a bond with the O atoms not located below the cluster, and hence, those Ce atoms change their oxidation state from IV to III. This increases the size of the Ce(III) compared with the Ce(IV) cations, which builds-in a strain within the topmost Ce layer, and hence, also affecting the location of the Ce(III) cations and the structure of the TM13 clusters.
NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Lv, Yuzhen; Li, Chengrong; Tu, Youping; Xiong, Jun
2018-06-01
The flashover phenomenon of the insulator is the main cause for insulating failure of GIS/GIL, and one of the most critical impacting factors is the accumulation of surface charge. The common methods to restrain the surface charge accumulation are reviewed in this paper. Through the reasonable comparison and analysis of these methods, nano-coatings for the insulator were selected as a way to restrain the surface charge accumulation. Based on this, six nano-coated epoxy resin samples with different concentrations of P25-TiO2 nanoparticles were produced. A high precision 3D surface charge measurement system was developed in this paper with a spatial resolution of 4.0 mm2 and a charge resolution of 0.01 µC (m2 · mV)‑1. The experimental results for the epoxy resin sample showed that with the concentration of nanoparticles of the coating material increasing, the surface charge density tended to first decrease and then increase. In the sample coated with 0.5% concentration of nanoparticles, the suppression effect is the optimum, leading to a 63.8% reduction of charge density under DC voltage. The application test for actual nano-coated GIS/GIL basin insulator indicated that the maximum suppression degree for the charge density under DC voltage could reach 48.3%, while it could reach 22.2% for switching impulse voltage and 12.5% for AC context. The control mechanism of nano-coatings on charge accumulation was proposed based on the analysis for surface morphology features and traps characteristics; the shallow traps dominate in the migration of charges while the deep traps operate on the charge accumulation. With the concentration of nanoparticles in nano-coating material mounting up, the density of shallow traps continuously increases, while for deep traps, it first decreases and then increases. For the sample with 0.5% concentration of nanoparticles coated, the competition between shallow traps and deep traps comes to the most balanced state, producing the most significant suppression impact on surface charge accumulation.
Watkins, Herschel M.; Vallée-Bélisle, Alexis; Ricci, Francesco; Makarov, Dmitrii E.; Plaxco, Kevin W.
2012-01-01
Surface-tethered biomolecules play key roles in many biological processes and biotechnologies. However, while the physical consequences of such surface attachment have seen significant theoretical study, to date this issue has seen relatively little experimental investigation. In response we present here a quantitative experimental and theoretical study of the extent to which attachment to a charged –but otherwise apparently inert– surface alters the folding free energy of a simple biomolecule. Specifically, we have measured the folding free energy of a DNA stem loop both in solution and when site-specifically attached to a negatively charged, hydroxyl-alkane-coated gold surface. We find that, whereas surface attachment is destabilizing at low ionic strength it becomes stabilizing at ionic strengths above ~130 mM. This behavior presumably reflects two competing mechanisms: excluded volume effects, which stabilize the folded conformation by reducing the entropy of the unfolded state, and electrostatics, which, at lower ionic strengths, destabilizes the more compact folded state via repulsion from the negatively charged surface. To test this hypothesis we have employed existing theories of the electrostatics of surface-bound polyelectrolytes and the entropy of surface-bound polymers to model both effects. Despite lacking any fitted parameters, these theoretical models quantitatively fit our experimental results, suggesting that, for this system, current knowledge of both surface electrostatics and excluded volume effects is reasonably complete and accurate. PMID:22239220
Local Charge Injection and Extraction on Surface-Modified Al2O3 Nanoparticles in LDPE.
Borgani, Riccardo; Pallon, Love K H; Hedenqvist, Mikael S; Gedde, Ulf W; Haviland, David B
2016-09-14
We use a recently developed scanning probe technique to image with high spatial resolution the injection and extraction of charge around individual surface-modified aluminum oxide nanoparticles embedded in a low-density polyethylene (LDPE) matrix. We find that the experimental results are consistent with a simple band structure model where localized electronic states are available in the band gap (trap states) in the vicinity of the nanoparticles. This work offers experimental support to a previously proposed mechanism for enhanced insulating properties of nanocomposite LDPE and provides a powerful experimental tool to further investigate such properties.
Dadarlat, Voichita M.; Post, Carol Beth
2016-01-01
In this paper we use the results from all atom MD simulations of proteins and peptides to assess individual contribution of charged atomic groups to the enthalpic stability of the native state of globular proteins and investigate how the distribution of charged atomic groups in terms of solvent accessibility relates to protein enthalpic stability. The contributions of charged groups is calculated using a comparison of nonbonded interaction energy terms from equilibrium simulations of charged amino acid dipeptides in water (the “unfolded state”) and charged amino acids in globular proteins (the “folded state”). Contrary to expectation, the analysis shows that many buried, charged atomic groups contribute favorably to protein enthalpic stability. The strongest enthalpic contributions favoring the folded state come from the carboxylate (COO−) groups of either Glu or Asp. The contributions from Arg guanidinium groups are generally somewhat stabilizing, while NH3+ groups from Lys contribute little toward stabilizing the folded state. The average enthalpic gain due to the transfer of a methyl group in an apolar amino acid from solution to the protein interior is described for comparison. Notably, charged groups that are less exposed to solvent contribute more favorably to protein native-state enthalpic stability than charged groups that are solvent exposed. While solvent reorganization/release has favorable contributions to folding for all charged atomic groups, the variation in folded state stability among proteins comes mainly from the change in the nonbonded interaction energy of charged groups between the unfolded and folded states. A key outcome is that the calculated enthalpic stabilization is found to be inversely proportional to the excess charge density on the surface, in support of an hypothesis proposed previously. PMID:18303881
Solvation of excess electrons trapped in charge pockets on molecular surfaces
NASA Astrophysics Data System (ADS)
Jalbout, Abraham F.
This work considers the ability of hydrogen fluoride (HF) to solvate excess electrons located on cyclic hydrocarbon surfaces. The principle applied involves the formation of systems in which excess electrons can be stabilized not only on concentrated molecular surface charge pockets but also by HF. Recent studies have shown that OH groups can form stable hydrogen-bonded networks on one side of a hydrocarbon surface (i.e. cyclohexane sheets), at the same time, the hydrogen atoms on the opposite side of this surface form a pocket of positive charge can attract the excess electron. This density can be further stabilized by the addition of an HF molecule that can form an 'anion with an internally solvated electron' (AISE) state. These systems are shown to be stable with respect to vertical electron detachment (VDE).
Phase transition detection by surface photo charge effect in liquid crystals
NASA Astrophysics Data System (ADS)
Ivanov, O.; Petrov, M.; Naradikian, H.; Perez-Diaz, J. L.
2018-05-01
The surface photo charge effect (SPCE) was applied for the first time at structure and phase transitions study of hydrogen bonded in dimer liquid crystals (HBDLCs). Due to the high sensitivity of this method, besides first-order phase transitions, characteristic for the p,n-octyloxibenzoic acids (8OBA), an order transition was definitely detected within the nematic range. We state that the SPCE, arising at the solid-HBDLCs interface due to the double electrical layer, is invariably concomitant with solid surface-liquid interfaces, and indicates that the changes of the characteristics of this layer, under incident optical irradiation, induce surface charge rearrangement and alternating potential difference. A mechanism of induction of the SPCE at the interface of solid surface-anisotropic liquids is proposed. We also indicate that this mechanism can be adapted for solid surface-isotropic liquid interface, including colloids (milk) and fog (aerosols)-condensed medium.
NASA Astrophysics Data System (ADS)
Sallis, S.; Pereira, N.; Mukherjee, P.; Quackenbush, N. F.; Faenza, N.; Schlueter, C.; Lee, T.-L.; Yang, W. L.; Cosandey, F.; Amatucci, G. G.; Piper, L. F. J.
2016-06-01
The pronounced capacity fade in Ni-rich layered oxide lithium ion battery cathodes observed when cycling above 4.1 V (versus Li/Li+) is associated with a rise in impedance, which is thought to be due to either bulk structural fatigue or surface reactions with the electrolyte (or combination of both). Here, we examine the surface reactions at electrochemically stressed Li1-xNi0.8Co0.15Al0.05O2 binder-free powder electrodes with a combination of electrochemical impedance spectroscopy, spatially resolving electron microscopy, and spatially averaging X-ray spectroscopy techniques. We circumvent issues associated with cycling by holding our electrodes at high states of charge (4.1 V, 4.5 V, and 4.75 V) for extended periods and correlate charge-transfer impedance rises observed at high voltages with surface modifications retained in the discharged state (2.7 V). The surface modifications involve significant cation migration (and disorder) along with Ni and Co reduction, and can occur even in the absence of significant Li2CO3 and LiF. These data provide evidence that surface oxygen loss at the highest levels of Li+ extraction is driving the rise in impedance.
NASA Astrophysics Data System (ADS)
Wirtz, Ludger; Reinhold, Carlos O.; Lemell, Christoph; Burgdörfer, Joachim
2003-01-01
We present a simulation of the neutralization of highly charged ions in front of a lithium fluoride surface including the close-collision regime above the surface. The present approach employs a Monte Carlo solution of the Liouville master equation for the joint probability density of the ionic motion and the electronic population of the projectile and the target surface. It includes single as well as double particle-hole (de)excitation processes and incorporates electron correlation effects through the conditional dynamics of population strings. The input in terms of elementary one- and two-electron transfer rates is determined from classical trajectory Monte Carlo calculations as well as quantum-mechanical Auger calculations. For slow projectiles and normal incidence, the ionic motion depends sensitively on the interplay between image acceleration towards the surface and repulsion by an ensemble of positive hole charges in the surface (“trampoline effect”). For Ne10+ we find that image acceleration is dominant and no collective backscattering high above the surface takes place. For grazing incidence, our simulation delineates the pathways to complete neutralization. In accordance with recent experimental observations, most ions are reflected as neutral or even as singly charged negative particles, irrespective of the charge state of the incoming ions.
Ion Current Rectification, Limiting and Overlimiting Conductances in Nanopores
van Oeffelen, Liesbeth; Van Roy, Willem; Idrissi, Hosni; Charlier, Daniel; Lagae, Liesbet; Borghs, Gustaaf
2015-01-01
Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be. PMID:25978328
A charging model for three-axis stabilized spacecraft
NASA Technical Reports Server (NTRS)
Massaro, M. J.; Green, T.; Ling, D.
1977-01-01
A charging model was developed for geosynchronous, three-axis stabilized spacecraft when under the influence of a geomagnetic substorm. The differential charging potentials between the thermally coated or blanketed outer surfaces and metallic structure of a spacecraft were determined when the spacecraft was immersed in a dense plasma cloud of energetic particles. The spacecraft-to-environment interaction was determined by representing the charged particle environment by equivalent current source forcing functions and by representing the spacecraft by its electrically equivalent circuit with respect to the plasma charging phenomenon. The charging model included a sun/earth/spacecraft orbit model that simulated the sum illumination conditions of the spacecraft outer surfaces throughout the orbital flight on a diurnal as well as a seasonal basis. Transient and steady-state numerical results for a three-axis stabilized spacecraft are presented.
Effective field theories for superconducting systems with multiple Fermi surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braga, P.R., E-mail: pedro.rangel.braga@gmail.com; Granado, D.R., E-mail: diegorochagrana@uerj.br; Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent
2016-11-15
In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defectsmore » and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.« less
NASA Astrophysics Data System (ADS)
Lei, Huaping; Wang, Caizhuang; Yao, Yongxin; Wang, Yangang; Hupalo, Myron; McDougall, Dan; Tringides, Michael; Ho, Kaiming
2013-12-01
The adsorption, diffusion, and molecular dissociation of hydrogen on the biaxially strained Mg (0001) surface have been systematically investigated by the first principle calculations based on density functional theory. When the strain changes from the compressive to tensile state, the adsorption energy of H atom linearly increases while its diffusion barrier linearly decreases oppositely. The dissociation barrier of H2 molecule linearly reduces in the tensile strain region. Through the chemical bonding analysis including the charge density difference, the projected density of states and the Mulliken population, the mechanism of the strain effect on the adsorption of H atom and the dissociation of H2 molecule has been elucidated by an s-p charge transfer model. With the reduction of the orbital overlap between the surface Mg atoms upon the lattice expansion, the charge transfers from p to s states of Mg atoms, which enhances the hybridization of H s and Mg s orbitals. Therefore, the bonding interaction of H with Mg surface is strengthened and then the atomic diffusion and molecular dissociation barriers of hydrogen decrease accordingly. Our works will be helpful to understand and to estimate the influence of the lattice deformation on the performance of Mg-containing hydrogen storage materials.
Stable topological insulators achieved using high energy electron beams
Zhao, Lukas; Konczykowski, Marcin; Deng, Haiming; Korzhovska, Inna; Begliarbekov, Milan; Chen, Zhiyi; Papalazarou, Evangelos; Marsi, Marino; Perfetti, Luca; Hruban, Andrzej; Wołoś, Agnieszka; Krusin-Elbaum, Lia
2016-01-01
Topological insulators are potentially transformative quantum solids with metallic surface states which have Dirac band structure and are immune to disorder. Ubiquitous charged bulk defects, however, pull the Fermi energy into the bulk bands, denying access to surface charge transport. Here we demonstrate that irradiation with swift (∼2.5 MeV energy) electron beams allows to compensate these defects, bring the Fermi level back into the bulk gap and reach the charge neutrality point (CNP). Controlling the beam fluence, we tune bulk conductivity from p- (hole-like) to n-type (electron-like), crossing the Dirac point and back, while preserving the Dirac energy dispersion. The CNP conductance has a two-dimensional character on the order of ten conductance quanta and reveals, both in Bi2Te3 and Bi2Se3, the presence of only two quantum channels corresponding to two topological surfaces. The intrinsic quantum transport of the topological states is accessible disregarding the bulk size. PMID:26961901
The human peripheral subunit-binding domain folds rapidly while overcoming repulsive Coulomb forces
Arbely, Eyal; Neuweiler, Hannes; Sharpe, Timothy D; Johnson, Christopher M; Fersht, Alan R
2010-01-01
Peripheral subunit binding domains (PSBDs) are integral parts of large multienzyme complexes involved in carbohydrate metabolism. PSBDs facilitate shuttling of prosthetic groups between different catalytic subunits. Their protein surface is characterized by a high density of positive charges required for binding to subunits within the complex. Here, we investigated folding thermodynamics and kinetics of the human PSBD (HSBD) using circular dichroism and tryptophan fluorescence experiments. HSBD was only marginally stable under physiological solvent conditions but folded within microseconds via a barrier-limited apparent two-state transition, analogous to its bacterial homologues. The high positive surface-charge density of HSBD leads to repulsive Coulomb forces that modulate protein stability and folding kinetics, and appear to even induce native-state movement. The electrostatic strain was alleviated at high solution-ionic-strength by Debye-Hückel screening. Differences in ionic-strength dependent characteristics among PSBD homologues could be explained by differences in their surface charge distributions. The findings highlight the trade-off between protein function and stability during protein evolution. PMID:20662005
Chen, Wen-Jie; Xiao, Meng; Chan, C. T.
2016-01-01
Weyl points, as monopoles of Berry curvature in momentum space, have captured much attention recently in various branches of physics. Realizing topological materials that exhibit such nodal points is challenging and indeed, Weyl points have been found experimentally in transition metal arsenide and phosphide and gyroid photonic crystal whose structure is complex. If realizing even the simplest type of single Weyl nodes with a topological charge of 1 is difficult, then making a real crystal carrying higher topological charges may seem more challenging. Here we design, and fabricate using planar fabrication technology, a photonic crystal possessing single Weyl points (including type-II nodes) and multiple Weyl points with topological charges of 2 and 3. We characterize this photonic crystal and find nontrivial 2D bulk band gaps for a fixed kz and the associated surface modes. The robustness of these surface states against kz-preserving scattering is experimentally observed for the first time. PMID:27703140
NASA Astrophysics Data System (ADS)
Majkić, M. D.; Nedeljković, N. N.; Dojčilović, R. J.
2017-09-01
We consider the slow highly charged ions impinging upon a metal surface covered with a thin dielectric film, and formation of the surface nanostructures (craters) from the standpoint of the required energy. For the moderate ionic velocities, the size of the surface features depends on the deposited kinetic energy of the projectile and the ionic neutralization energy. The neutralization energy is calculated by employing the recently developed quasi-resonant two-state vector model for the intermediate Rydberg state population and the micro-staircase model for the cascade neutralization. The electron interactions with the ionic core, polarized dielectric and charge induced on the metal surface are modelled by the appropriate asymptotic expressions and the method for calculation of the effective ionic charges in the dielectric is proposed. The results are presented for the interaction of \\text{X}{{\\text{e}}Z+} ions (velocity v=0.25 a.u.; 25) with the metal surface (Co) covered with a thin dielectric film, for model values of dielectric constant inside the interaction region. In the absence of dielectric film, the neutralization energy is lower than the potential (ionization) energy due to the incomplete neutralization. The presence of dielectric film additionally decreases the neutralization energy. We calculate the projectile neutralization energy in the perturbed dielectric (perturbation is caused by the ionic motion and the surface structure formation). We correlate the neutralization energy added to the deposited kinetic energy with the experimentally obtained energy necessary for the formation of the nano-crater of a given depth.
NASA Astrophysics Data System (ADS)
Brigitte Neuland, Maike; Allenbach, Marc; Föhn, Martina; Wurz, Peter
2017-04-01
The detection of energetic neutral atoms is a substantial requirement on every space mission mapping particle populations of a planetary magnetosphere or plasma of the interstellar medium. For imaging neutrals, these first have to be ionised. Regarding the constraints of weight, volume and power consumption, the technique of surface ionisation complies with all specifications of a space mission. Particularly low energy neutral atoms, which cannot be ionised by passing through a foil, are ionised by scattering on a charge state conversion surface [1]. Since more than 30 years intense research work is done to find and optimise suitable materials for use as charge state conversion surfaces for space application. Crucial parameters are the ionisation efficiency of the surface material and the scattering properties. Regarding these parameters, diamond-like carbon was proven advantageously: While efficiently ionising incoming neutral atoms, diamond stands out by its durability and chemical inertness [2]. In the IBEX-Lo sensor, a diamond-like carbon surface is used for ionisation of neutral atoms. Building on the successes of the IBEX mission [3], the follow up mission IMAP (InterstellarMApping Probe) will take up to further explore the boundaries of the heliosphere. The IMAP mission is planned to map neutral atoms in a larger energy range and with a distinct better angular resolution and sensitivity than IBEX [4]. The aspired performance of the IMAP sensors implies also for charge state conversion surfaces with improved characteristics. We investigated samples of diamond-like carbon, manufactured by the chemical vapour deposition (CVD) method, regarding their ionisation efficiency, scattering and reflexion properties. Experiments were carried out at the ILENA facility at the University of Bern [5] with hydrogen and oxygen atoms, which are the species of main interest in magnetospheric research [1]. We compare the results of earlier investigations of a metallised CVD sample [6] to our latest measurements of a Boron-doped CVD diamond sample. We additionally measured the B-concentration in the sample to prove our predictions of the B-concentration needed to reach sufficient conductibility for the sample not getting electrostatically charged during instrument operation. The results of narrower scattering cones and higher ionisation efficiency show that diamond-like carbon still is the preferred material for charge state conversion surfaces and that new surface technologies offer improved diamond conversion surfaces with different properties and hence the possibility for improvement of the performance of neutral atom imaging instruments. References: [1] P. Wurz, Detection of Energetic Neutral Atoms, in The Outer Heliosphere: Beyond the Planets, Copernicus Gesellschaft e.V., Katlenburg-Lindau, Germany, 2000, p. 251-288. [2] P. Wurz, R. Schletti, M.R. Aellig, Surf. Sci. 373(1997), 56-66. [3] D.J. McComas et al., Geophys. Res. Lett. 38(2011), L18101. [4] N.A. Schwadron et al., J. of Phys.. Conf. Series 767(2016): 012025 [5] P. Wahlström, J.A. Scheer, A. Riedo, P. Wurz and M. Wieser, J. Spacecr. Rockets 50 (2013): 402-410. [6] M.B. Neuland, J.A. Scheer, A. Riedo and P. Wurz, Appl. Surf. Sci. 313(2014):293-303.
NASA Astrophysics Data System (ADS)
Dong, Dengpan; Vatamanu, Jenel P.; Wei, Xiaoyu; Bedrov, Dmitry
2018-05-01
Atomistic molecular dynamics simulations were conducted to study the wetting states of 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid (IL) nanodroplets on surfaces with different strengths of van der Waals (VDW) interactions and in the presence of an electric field. By adjusting the depth of Lennard-Jones potential, the van der Waals interaction between the solid surface and ionic liquid was systematically varied. The shape of the droplets was analyzed to extract the corresponding contact angle utilized to characterize wetting states of the nanodroplets. The explored range of surface-IL interactions allowed contact angles ranging from complete IL spreading on the surface to poor wettability. The effect of the external electrical field was explored by adding point charges to the surface atoms. Systems with two charge densities (±0.002 e/atom and ±0.004 e/atom) that correspond to 1.36 V/nm and 2.72 V/nm electric fields were investigated. Asymmetrical wetting states were observed for both cases. At 1.36 V/nm electric field, contributions of IL-surface VDW interactions and Coulombic interactions to the wetting state were competitive. At 2.72 V/nm field, electrostatic interactions dominate the interaction between the nanodroplet and surface, leading to enhanced wettability on all surfaces.
The Role of Nanoparticle Surface Functionality in the Disruption of Model Cell Membranes
Moghadam, Babak Y.; Hou, Wen-Che; Corredor, Charlie; Westerhoff, Paul; Posner, Jonathan D.
2012-01-01
Lipid bilayers are biomembranes common to cellular life and constitute a continuous barrier between cells and their environment. Understanding the interaction of engineered nanomaterials (ENMs) with lipid bilayers is an important step toward predicting subsequent biological effects. In this study, we assess the effect of varying the surface functionality and concentration of 10 nm-diameter gold (Au) and titanium dioxide (TiO2) ENMs on the disruption of negatively charged lipid bilayer vesicles (liposomes) using a dye leakage assay. Our findings show that Au ENMs having both positive and negative surface charge induce leakage that reaches a steady state after several hours. Positively charged particles with identical surface functionality and different core composition show similar leakage effects and result in faster and greater leakage than negatively charged particles, which suggests that surface functionality, not particle core composition, is a critical factor in determining the interaction between ENMs and lipid bilayers. The results suggest that particles permanently adsorb to bilayers and that only one positively charged particle is required to disrupt a liposome and trigger leakage of its entire contents in contrast to mellitin molecules, the most widely studied membrane lytic peptide, which requires hundred of molecules to generate leakage. PMID:22921268
Disorder Effects in Charge Transport and Spin Response of Topological Insulators
NASA Astrophysics Data System (ADS)
Zhao, Lukas Zhonghua
Topological insulators are a class of solids in which the non-trivial inverted bulk band structure gives rise to metallic surface states that are robust against impurity backscattering. First principle calculations predicted Bi2Te3, Sb2Te3 and Bi2Se3 to be three-dimensional (3D) topological insulators with a single Dirac cone on the surface. The topological surface states were subsequently observed by angle-resolved photoemission (ARPES) and scanning tunneling microscopy (STM). The investigations of charge transport through topological surfaces of 3D topological insulators, however, have faced a major challenge due to large charge carrier densities in the bulk donated by randomly distributed defects such as vacancies and antisites. This bulk disorder intermixes surface and bulk conduction channels, thereby complicating access to the low-energy (Dirac point) charge transport or magnetic response and resulting in the relatively low measured carrier mobilities. Moreover, charge inhomogeneity arising from bulk disorder can result in pronounced nanoscale spatial fluctuations of energy on the surface, leading to the formation of surface `puddles' of different carrier types. Great efforts have been made to combat the undesirable effects of disorder in 3D topological insulators and to reduce bulk carriers through chemical doping, nanostructure fabrication, and electric gating. In this work we have developed a new way to reduce bulk carrier densities using high-energy electron irradiation, thereby allowing us access to the topological surface quantum channels. We also found that disorder in 3D topological insulators can be beneficial. It can play an important part in enabling detection of unusual magnetic response from Dirac fermions and in uncovering new excitations, namely surface superconductivity in Dirac `puddles'. In Chapter 3 we show how by using differential magnetometry we could probe spin rotation in the 3D topological material family (Bi2Se 3, Bi2Te3 and Sb2Te3), and describe our detection of paramagnetic singularity in the magnetic susceptibility at low magnetic fields that persists up to room temperature, and which we have demonstrated to arise from the surfaces of the samples. The singularity is universal to the entire family, largely independent of the bulk carrier density, and consistent with the existence of electronic states near the spin-degenerate Dirac point of the 2D helical metal. The exceptional thermal stability of the signal points to an intrinsic surface cooling process, probably of thermoelectric organ, and establishes a sustainable platform for the singular field-tunable Dirac spin response. In Chapter 4 we describe our discovery of surface superconductivity in a hole-conducting topological insulator Sb2Te3 with transition to zero resistance induced through a minor tuning of growth chemistry that depletes bulk conduction channels. The depletion shifts Fermi energy towards the Dirac point as witnessed by over two orders of magnitude reduced bulk hole density and by the largest carrier mobility (~ 25,000 cm 2 V-1 s-1) found in any topological material. Direct evidence from transport, the unprecedentedly large diamagnetic screening, and the presence of up to ~ 25 meV gaps in differential conductance detected by scanning tunneling spectroscopy (STM) reveal the superconducting condensate to emerge first in surface puddles at unexpectedly high temperature, near 50 K. Percolative Josephson paths mediated by diffusing quasiparticles establish global phase coherence around 9 K. Rich structure of this state lends itself to manipulation and tuning via growth conditions and the topological material's parameters such as Fermi velocity and mean free path. In Chapter 5 we describe a new approach we have developed to reaching stable charge neutrality in 3D topological materials. The technique uses swift (~ 2.5 MeV energy) electron beams to compensate charged bulk defects and bring the Fermi level back into the bulk gap. By controlling the beam fluence we could tune bulk conductivity from p- (hole-like) to n-type (electron-like), crossing the Dirac point and back, while preserving the robust topological signatures of surface channels. We establish that at charge neutrality conductance has a two-dimensional (2D) character with a minimum value on the order of ten conductance quanta G=e 2 /h. From quantum interference contribution to 2D conductance we demonstrate in two systems, Bi2Te3 and Bi2Se 3, that at charge neutrality only two quantum channels corresponding to two topological surfaces are present. The charge neutrality point achieved using electron irradiation with long penetration range shows a route to intrinsic quantum transport of the topological states unconstrained by the bulk size.
Vibrational inelastic and charge transfer processes in H++H2 system: An ab initio study
NASA Astrophysics Data System (ADS)
Amaran, Saieswari; Kumar, Sanjay
2007-12-01
State-resolved differential cross sections, total and integral cross sections, average vibrational energy transfer, and the relative probabilities are computed for the H++H2 system using the newly obtained ab initio potential energy surfaces at the full CI/cc-pVQZ level of accuracy which allow for both the direct vibrational inelastic and the charge transfer processes. The quantum dynamics is treated within the vibrational close-coupling infinite-order-sudden approximation approach using the two ab initio quasidiabatic potential energy surfaces. The computed collision attributes for both the processes are compared with the available state-to-state scattering experiments at Ec.m.=20eV. The results are in overall good agreement with most of the observed scattering features such as rainbow positions, integral cross sections, and relative vibrational energy transfers. A comparison with the earlier theoretical study carried out on the semiempirical surfaces (diatomics in molecules) is also made to illustrate the reliability of the potential energy surfaces used in the present work.
Luo, Long; Holden, Deric A; White, Henry S
2014-03-25
A solid-state nanopore separating two aqueous solutions containing different concentrations of KCl is demonstrated to exhibit negative differential resistance (NDR) when a constant pressure is applied across the nanopore. NDR refers to a decrease in electrical current when the voltage applied across the nanopore is increased. NDR results from the interdependence of solution flow (electroosmotic and pressure-engendered) with the distributions of K+ and Cl- within the nanopore. A switch from a high-conductivity state to a low-conductivity state occurs over a very narrow voltage window (<2 mV) that depends on the nanopore geometry, electrolyte concentration, and nanopore surface charge density. Finite element simulations based on a simultaneous solution of the Navier-Stokes, Poisson, and Nernst-Planck equations demonstrate that NDR results from a positive feedback mechanism between the ion distributions and electroosmotic flow, yielding a true bistability in fluid flow and electrical current at a critical applied voltage, i.e., the NDR "switching potential". Solution pH and Ca2+ were separately employed as chemical stimuli to investigate the dependence of the NDR on the surface charge density. The NDR switching potential is remarkably sensitive to the surface charge density, and thus to pH and the presence of Ca2+, suggesting possible applications in chemical sensing.
Simultaneous Magnetic and Charge Doping of Topological Insulators with Carbon
NASA Astrophysics Data System (ADS)
Shen, Lei; Zeng, Minggang; Lu, Yunhao; Yang, Ming; Feng, Yuan Ping
2013-12-01
A two-step doping process, magnetic followed by charge or vice versa, is required to produce massive topological surface states (TSS) in topological insulators for many physics and device applications. Here, we demonstrate simultaneous magnetic and hole doping achieved with a single dopant, carbon, in Bi2Se3 by first-principles calculations. Carbon substitution for Se (CSe) results in an opening of a sizable surface Dirac gap (up to 82 meV), while the Fermi level remains inside the bulk gap and close to the Dirac point at moderate doping concentrations. The strong localization of 2p states of CSe favors spontaneous spin polarization via a p-p interaction and formation of ordered magnetic moments mediated by surface states. Meanwhile, holes are introduced into the system by CSe. This dual function of carbon doping suggests a simple way to realize insulating massive TSS.
Rational modification of protein stability by targeting surface sites leads to complicated results
Xiao, Shifeng; Patsalo, Vadim; Shan, Bing; Bi, Yuan; Green, David F.; Raleigh, Daniel P.
2013-01-01
The rational modification of protein stability is an important goal of protein design. Protein surface electrostatic interactions are not evolutionarily optimized for stability and are an attractive target for the rational redesign of proteins. We show that surface charge mutants can exert stabilizing effects in distinct and unanticipated ways, including ones that are not predicted by existing methods, even when only solvent-exposed sites are targeted. Individual mutation of three solvent-exposed lysines in the villin headpiece subdomain significantly stabilizes the protein, but the mechanism of stabilization is very different in each case. One mutation destabilizes native-state electrostatic interactions but has a larger destabilizing effect on the denatured state, a second removes the desolvation penalty paid by the charged residue, whereas the third introduces unanticipated native-state interactions but does not alter electrostatics. Our results show that even seemingly intuitive mutations can exert their effects through unforeseen and complex interactions. PMID:23798426
Ambipolar surface state thermoelectric power of topological insulator Bi2Se3.
Kim, Dohun; Syers, Paul; Butch, Nicholas P; Paglione, Johnpierre; Fuhrer, Michael S
2014-01-01
We measure gate-tuned thermoelectric power of mechanically exfoliated Bi2Se3 thin films in the topological insulator regime. The sign of the thermoelectric power changes across the charge neutrality point as the majority carrier type switches from electron to hole, consistent with the ambipolar electric field effect observed in conductivity and Hall effect measurements. Near the charge neutrality point and at low temperatures, the gate-dependent thermoelectric power follows the semiclassical Mott relation using the expected surface state density of states but is larger than expected at high electron doping, possibly reflecting a large density of states in the bulk gap. The thermoelectric power factor shows significant enhancement near the electron-hole puddle carrier density ∼0.5 × 10(12) cm(-2) per surface at all temperatures. Together with the expected reduction of lattice thermal conductivity in low-dimensional structures, the results demonstrate that nanostructuring and Fermi level tuning of three-dimensional topological insulators can be promising routes to realize efficient thermoelectric devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskin, Julia; Johnson, Grant E.; Prabhakaran, Venkateshkumar
Immobilization of complex molecules and clusters on supports plays an important role in a variety of disciplines including materials science, catalysis and biochemistry. In particular, deposition of clusters on surfaces has attracted considerable attention due to their non-scalable, highly size-dependent properties. The ability to precisely control the composition and morphology of clusters and small nanoparticles on surfaces is crucial for the development of next generation materials with rationally tailored properties. Soft- and reactive landing of ions onto solid or liquid surfaces introduces unprecedented selectivity into surface modification by completely eliminating the effect of solvent and sample contamination on the qualitymore » of the film. The ability to select the mass-to-charge ratio of the precursor ion, its kinetic energy and charge state along with precise control of the size, shape and position of the ion beam on the deposition target makes soft-landing an attractive approach for surface modification. High-purity uniform thin films on surfaces generated using mass-selected ion deposition facilitate understanding of critical interfacial phenomena relevant to catalysis, energy generation and storage, and materials science. Our efforts have been directed toward understanding charge retention by soft-landed metal and metal-oxide cluster ions, which may affect both their structure and reactivity. Specifically, we have examined the effect of the surface on charge retention by both positively and negatively charged cluster ions. We found that the electronic properties of the surface play an important role in charge retention by cluster cations. Meanwhile, the electron binding energy is a key factor determining charge retention by cluster anions. These findings provide the scientific foundation for the rational design of interfaces for advanced catalysts and energy storage devices. Further optimization of electrode-electrolyte interfaces for applications in energy storage and electrocatalysis may be achieved by understanding and controlling the properties of soft-landed cluster ions.« less
Surface-induced magnetism of the solids with impurities and vacancies
NASA Astrophysics Data System (ADS)
Morozovska, A. N.; Eliseev, E. A.; Glinchuk, M. D.; Blinc, R.
2011-04-01
Using the quantum-mechanical approach combined with the image charge method we calculated the lowest energy levels of the impurities and neutral vacancies with two electrons or holes located in the vicinity of flat surface of different solids. Unexpectedly we obtained that the magnetic triplet state is the ground state of the impurities and neutral vacancies in the vicinity of surface, while the nonmagnetic singlet is the ground state in the bulk, for e.g. He atom, Li+, Be++ ions, etc. The energy difference between the lowest triplet and singlet states strongly depends on the electron (hole) effective mass μ, dielectric permittivity of the solid ε2 and the distance from the surface z0. For z0=0 and defect charge ∣Z∣=2 the energy difference is more than several hundreds of Kelvins at μ=(0.5-1)me and ε2=2-10, more than several tens of Kelvins at μ=(0.1-0.2)me and ε2=5-10, and not more than several Kelvins at μ<0.1me and ε2>15 (me is the mass of a free electron). Pair interaction of the identical surface defects (two doubly charged impurities or vacancies with two electrons or holes) reveals the ferromagnetic spin state with the maximal exchange energy at the definite distance between the defects (∼5-25 nm). We estimated the critical concentration of surface defects and transition temperature of ferromagnetic long-range order appearance in the framework of percolation and mean field theories, and RKKY approach for semiconductors like ZnO. We obtained that the nonmagnetic singlet state is the lowest one for a molecule with two electrons formed by a pair of identical surface impurities (like surface hydrogen), while its next state with deep enough negative energy minimum is the magnetic triplet. The metastable magnetic triplet state appeared for such molecule at the surface indicates the possibility of metastable ortho-states of the hydrogen-like molecules, while they are absent in the bulk of material. The two series of spectral lines are expected due to the coexistence of ortho- and para-states of the molecules at the surface. We hope that obtained results could provide an alternative mechanism of the room temperature ferromagnetism observed in TiO2, HfO2, and In2O3 thin films with contribution of the oxygen vacancies. We expect that both anion and cation vacancies near the flat surface act as magnetic defects because of their triplet ground state and Hund's rule. The theoretical forecasts are waiting for experimental justification allowing for the number of the defects in the vicinity of surface is much larger than in the bulk of as-grown samples.
Many-body instabilities and mass generation in slow Dirac materials
NASA Astrophysics Data System (ADS)
Triola, Christopher; Zhu, Jian-Xin; Migliori, Albert; Balatsky, Alexander V.
2015-07-01
Some Kondo insulators are expected to possess topologically protected surface states with linear Dirac spectrum: the topological Kondo insulators. Because the bulk states of these systems typically have heavy effective electron masses, the surface states may exhibit extraordinarily small Fermi velocities that could force the effective fine structure constant of the surface states into the strong coupling regime. Using a tight-binding model, we study the many-body instabilities of these systems and identify regions of parameter space in which the system exhibits spin density wave and charge density wave order.
Liouville master equation for multi-electron dynamics during ion-surface interactions
NASA Astrophysics Data System (ADS)
Wirtz, L.; Reinhold, C. O.; Lemell, C.; Burgdorfer, J.
2003-05-01
We present a simulation of the neutralization of highly charged ions in front of a LiF(100) surface including the close-collision regime above the surface. Our approach employs a Monte-Carlo solution of the Liouville master equation for the joint probability density of the ionic motion and the electronic population of the projectile and the target surface. It includes single as well as double particle-hole (de)excitation processes and incorporates electron correlation effects through the conditional dynamics of population strings. The input in terms of elementary one- and two-electron transfer rates is determined from CTMC calculations as well as quantum mechanical Auger calculations. For slow projectiles and normal incidence, the ionic motion depends sensitively on the interplay between image acceleration towards the surface and repulsion by an ensemble of positive hole charges in the surface (``trampoline effect"). For Ne10+ ions we find that image acceleration dominates and no collective backscattering high above the surface takes place. For grazing incidence, our simulation delineates the pathways to complete neutralization. In accordance with recent experimental observations, most ions are reflected as neutrals or even as singly charged negative particles, irrespective of the charge state of the incoming ion.
NASA Astrophysics Data System (ADS)
Beer, Chris; Whall, Terry; Parker, Evan; Leadley, David; De Jaeger, Brice; Nicholas, Gareth; Zimmerman, Paul; Meuris, Marc; Szostak, Slawomir; Gluszko, Grzegorz; Lukasiak, Lidia
2007-12-01
Effective mobility measurements have been made at 4.2K on high performance high-k gated germanium p-type metal-oxide-semiconductor field effect transistors with a range of Ge/gate dielectric interface state densities. The mobility is successfully modelled by assuming surface roughness and interface charge scattering at the SiO2 interlayer/Ge interface. The deduced interface charge density is approximately equal to the values obtained from the threshold voltage and subthreshold slope measurements on each device. A hydrogen anneal reduces both the interface state density and the surface root mean square roughness by 20%.
Probing Ultrafast Electron Dynamics at Surfaces Using Soft X-Ray Transient Reflectivity Spectroscopy
NASA Astrophysics Data System (ADS)
Baker, L. Robert; Husek, Jakub; Biswas, Somnath; Cirri, Anthony
The ability to probe electron dynamics with surface sensitivity on the ultrafast time scale is critical for understanding processes such as charge separation, injection, and surface trapping that mediate efficiency in catalytic and energy conversion materials. Toward this goal, we have developed a high harmonic generation (HHG) light source for femtosecond soft x-ray reflectivity. Using this light source we investigated the ultrafast carrier dynamics at the surface of single crystalline α-Fe2O3, polycrystalline α-Fe2O3, and the mixed metal oxide, CuFeO2. We have recently demonstrated that CuFeO2 in particular is a selective catalyst for photo-electrochemical CO2 reduction to acetate; however, the role of electronic structure and charge carrier dynamics in mediating catalytic selectivity has not been well understood. Soft x-ray reflectivity measurements probe the M2,3, edges of the 3d transition metals, which provide oxidation and spin state resolution with element specificity. In addition to chemical state specificity, these measurements are also surface sensitive, and by independently simulating the contributions of the real and imaginary components of the complex refractive index, we can differentiate between surface and sub-surface contributions to the excited state spectrum. Accordingly, this work demonstrates the ability to probe ultrafast carrier dynamics in catalytic materials with element and chemical state specificity and with surface sensitivity.
DOT National Transportation Integrated Search
2010-11-01
In May 2009, the I-95 Coalition convened a workshop of experts to discuss how the Coalition could best contribute to the national dialogue regarding VMT-based charge systems. Following the recommendations of the National Surface Transportation Policy...
Optoelectronically probing the density of nanowire surface trap states to the single state limit
NASA Astrophysics Data System (ADS)
Dan, Yaping
2015-02-01
Surface trap states play a dominant role in the optoelectronic properties of nanoscale devices. Understanding the surface trap states allows us to properly engineer the device surfaces for better performance. But characterization of surface trap states at nanoscale has been a formidable challenge using the traditional capacitive techniques. Here, we demonstrate a simple but powerful optoelectronic method to probe the density of nanowire surface trap states to the single state limit. In this method, we choose to tune the quasi-Fermi level across the bandgap of a silicon nanowire photoconductor, allowing for capture and emission of photogenerated charge carriers by surface trap states. The experimental data show that the energy density of nanowire surface trap states is in a range from 109 cm-2/eV at deep levels to 1012 cm-2/eV near the conduction band edge. This optoelectronic method allows us to conveniently probe trap states of ultra-scaled nano/quantum devices at extremely high precision.
pH-Switchable Interaction of a Carboxybetaine Ester-Based SAM with DNA and Gold Nanoparticles.
Filip, Jaroslav; Popelka, Anton; Bertok, Tomas; Holazova, Alena; Osicka, Josef; Kollar, Jozef; Ilcikova, Marketa; Tkac, Jan; Kasak, Peter
2017-07-11
We describe a self-assembled monolayer (SAM) on a gold surface with a carboxybetaine ester functionality to control the interaction between DNA and gold nanoparticles via pH. The negatively charged phosphate backbone of DNA interacts with and adsorbs to the positively charged carboxybetaine esters on the SAM. DNA release can be achieved by the hydrolysis of carboxybetaine ester (CBE) to a zwitterionic carboxybetaine state. Furthermore, the adsorption of negatively charged citrate-capped gold nanoparticles to a SAM-modified plain gold surface can be controlled by the pH. The SAM based on carboxybetaine ester allows for the homogeneous adsorption of particles, whereas the SAM after hydrolysis at high pH repels AuNP adsorption. The antifouling surface properties of the surface modified with carboxybetaine were investigated with protein samples.
Conductorlike behavior of a photoemitting dielectric surface
NASA Technical Reports Server (NTRS)
De, B. R.
1979-01-01
It has been suggested in the past that a uniformly illuminated photoemitting dielectric surface of finite extent acquires in the steady state a surface charge distribution as if the surface were conducting (i.e., the surface becomes equipotential). In this paper an analytical proof of this conductorlike behavior is given. The only restrictions are that the photoelectron emission from the surface has azimuthal symmetry and that the photosheath may be assumed to be collisionless. It is tacitly assumed that a steady state is attainable, which means that the photoelectron spectrum has a high-energy cutoff.
NASA Astrophysics Data System (ADS)
Brigitte Neuland, Maike; Riedo, Andreas; Scheer, Jürgen; Wurz, Peter
2014-05-01
The detection of energetic neutral atoms is a substantial requirement on every space mission mapping particle populations of a planetary magnetosphere or plasma of the interstellar medium. For imaging neutrals, these first have to be ionized. Regarding the constraints of weight, volume and power consumption, the technique of surface ionization complies with all specifications of a space mission. Particularly low energy neutral atoms, which cannot be ionized by passing through a foil, are ionized by scattering on a charge state conversion surface. Since more than 30 years intense research work is done to find suitable materials for use as charge state conversion surfaces. Crucial parameters are the ionisation efficiency of the surface material and the scattering properties. Against all expectations, insulators showed very promising characteristics for serving as conversion surfaces. Particularly diamond-like carbon was proven advantageously: While efficiently ionising incoming neutral atoms, diamond stands out by its durability and chemical inertness. In the IBEX-Lo sensor, a diamond-like carbon surface is used for ionisation of neutral atoms. Energy resolved maps of neutral atoms from the IBEX mission revealed phenomena of the interaction between heliosphere and local interstellar medium (LISM) that demand for new theory and explanations [McComas et al., 2011]. Building on the successes of the IBEX mission, a follow up mission concept to further explore the boundaries of the heliosphere already exists. The Interstellar MApping Probe (IMAP) is planned to map neutral atoms in a larger energy range and with a distinct better angular resolution and sensitivity than IBEX [McComas et al.]. The aspired performance of the IMAP sensors implies also for charge state conversion surfaces with improved characteristics. We investigated samples of diamond-like carbon, manufactured by the chemical vapour and pulsed laser deposition method, regarding their ionisation efficiency, scattering and reflexion properties. Experiments were carried out at the ILENA facility [Wahlström et al., 2013] with hydrogen and oxygen atoms, which are the species of main interest in magnetospheric research [Wurz et al., 1997]. Results of very narrow scattering cones and sufficient ionisation efficiency show that diamond-like carbon still is the preferred material for charge state conversion surfaces. But our measurements show that new surface technologies offer improved diamond conversion surfaces with different properties and hence the possibility for improvement of the performance of neutral atom imaging instruments. References: [McComas et al., 2011] D.J. McComas, H.O. Funsten, S.A. Fuselier, W.S. Lewis, E. Möbius and N.A. Schwadron, IBEX observations of Heliospheric energetic neutral atoms: Current understanding and future directions, Geophys. Res. Lett. 38, L18101, 2011 [McComas et al.] Interstellar Mapping Probe (IMAP) mission concept: Illuminating the dark boundaries at the edge of our solar system, decadal survey white paper [Wahlström et al., 2013] P. Wahlström, J.A. Scheer, A. Riedo, P. Wurz and M. Wieser, J. Spacecr. Rockets 50 (2), 402-410 [Wurz et al., 1997] P. Wurz, R. Schletti, M.R. Aellig, Hydrogen and oxygen negative ion production by surface ionization using diamond surfaces, Surf. Sci. 373, 56-66, 1997.
Evidence against a charge density wave on Bi(111)
Kim, T. K.; Wells, J.; Kirkegaard, C.; ...
2005-08-18
The Bi(111) surface was studied by scanning tunneling microscopy (STM), transmission electron microscopy (TEM) and angle-resolved photoemission (ARPES) in order to verify the existence of a recently proposed surface charge density wave (CDW). The STM and TEM results to not support a CDW scenario at low temperatures. Thus the quasiparticle interference pattern observed in STM confirms the spin-orbit split character of the surface states which prevents the formation of a CDW, even in the case of good nesting. The dispersion of the electronic states observed with ARPES agrees well with earlier findings. In particular, the Fermi contour of the electronmore » pocket at the centre of the surface Brillouin zone is found to have a hexagonal shape. However, no gap opening or other signatures of a CDW phase transition can be found in the temperature-dependent data.« less
InN/GaN quantum dot superlattices: Charge-carrier states and surface electronic structure
NASA Astrophysics Data System (ADS)
Kanouni, F.; Brezini, A.; Djenane, M.; Zou, Q.
2018-03-01
We have theoretically investigated the electron energy spectra and surface states energy in the three dimensionally ordered quantum dot superlattices (QDSLs) made of InN and GaN semiconductors. The QDSL is assumed in this model to be a matrix of GaN containing cubic dots of InN of the same size and uniformly distributed. For the miniband’s structure calculation, the resolution of the effective mass Schrödinger equation is done by decoupling it in the three directions within the framework of Kronig-Penney model. We found that the electrons minibands in infinite ODSLs are clearly different from those in the conventional quantum-well superlattices. The electrons localization and charge-carrier states are very dependent on the quasicrystallographic directions, the size and the shape of the dots which play a role of the artificial atoms in such QD supracrystal. The energy spectrum of the electron states localized at the surface of InN/GaN QDSL is represented by Kronig-Penney like-model, calculated via direct matching procedure. The calculation results show that the substrate breaks symmetrical shape of QDSL on which some localized electronic surface states can be produced in minigap regions. Furthermore, we have noticed that the surface states degeneracy is achieved in like very thin bands located in the minigaps, identified by different quantum numbers nx, ny, nz. Moreover, the surface energy bands split due to the reduction of the symmetry of the QDSL in z-direction.
Inversion layer solar cell fabrication and evaluation
NASA Technical Reports Server (NTRS)
Call, R. L.
1972-01-01
Silicon solar cells with induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. This charged layer was supplied through three mechanisms: (1) supplying a positive potential to a transparent electrode separated from the silicon surface by a dielectric, (2) contaminating the oxide layer with positive ions, and (3) forming donor surface states that leave a positive charge on the surface. A movable semi-infinite shadow delineated the extent of sensitivity of the cell due to the inversion region. Measurements of the inversion layer cell response to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. Theory of the conductance of the inversion layer vs. strength of the inversion layer was compared with experiment and found to match. Theoretical determinations of junction depth and inversion layer strength were made as a function of the surface potential for the transparent electrode cell.
NASA Technical Reports Server (NTRS)
Call, R. L.
1973-01-01
Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. This charged layer was supplied through three mechanisms: (1) applying a positive potential to a transparent electrode separated from the silicon surface by a dielectric, (2) contaminating the oxide layer with positive ions, and (3) forming donor surface states that leave a positive charge on the surface. A movable semi-infinite shadow delineated the extent of sensitivity of the cell due to the inversion region. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagatomi, T.; Kuwayama, T.; Takai, Y.
2009-11-15
The application of ion scattering spectroscopy (ISS) to the in situ measurement of the surface potential developed on an insulator surface under positive ion irradiation was investigated. The ISS spectra measured for a MgO film of 600 nm thickness on a Si substrate by the irradiation of 950 eV He{sup +} ions revealed that the surface is positively charged by approximately 180 V. For accurate measurement of the surface potential, a correction to take into account the angular deflection of primary ions induced by the high surface potential is required. The dependence of the surface potential on the sample temperaturemore » revealed that no charging is induced above 700 deg. C, indicating that accumulated charges can be removed by heating to 700 deg. C. From the measurement of the ion-induced secondary electron yield using a collector electrode located in front of the sample surface, the surface potential and ion-induced secondary electron yield were found to be strongly affected by the experimental setup. Secondary electrons produced by the impact of slow positive secondary ions, the maximum energy of which corresponds to the surface potential, play an important role when the bias voltage applied to the collector electrode is positively high for the present experimental setup. The surface potential developed on the surface of MgO films of 600 and 200 nm thickness was measured in situ, revealing that the amount of accumulated charges and the time required to attain the steady state of charging are slightly dependent on the beam current of primary ions and strongly dependent on the thickness of the MgO film. The present results confirmed that the application of ISS has high potential for investigating charging phenomena and the secondary electron emission from insulator surfaces under positive ion irradiation.« less
Martínez-Velarte, M. Carmen; Kretz, Bernhard; Moro-Lagares, Maria; ...
2017-06-13
Here, we show that the chemical inhomogeneity in ternary three-dimensional topological insulators preserves the topological spin texture of their surface states against a net surface magnetization. The spin texture is that of a Dirac cone with helical spin structure in the reciprocal space, which gives rise to spin-polarized and dissipation-less charge currents. Thanks to the nontrivial topology of the bulk electronic structure, this spin texture is robust against most types of surface defects. However, magnetic perturbations break the time-reversal symmetry, enabling magnetic scattering and loss of spin coherence of the charge carriers. This intrinsic incompatibility precludes the design of magnetoelectronicmore » devices based on the coupling between magnetic materials and topological surface states. We demonstrate that the magnetization coming from individual Co atoms deposited on the surface can disrupt the spin coherence of the carriers in the archetypal topological insulator Bi 2Te 3, while in Bi 2Se 2Te the spin texture remains unperturbed. This is concluded from the observation of elastic backscattering events in quasiparticle interference patterns obtained by scanning tunneling spectroscopy. The mechanism responsible for the protection is investigated by energy resolved spectroscopy and ab initio calculations, and it is ascribed to the distorted adsorption geometry of localized magnetic moments due to Se–Te disorder, which suppresses the Co hybridization with the surface states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Velarte, M. Carmen; Kretz, Bernhard; Moro-Lagares, Maria
Here, we show that the chemical inhomogeneity in ternary three-dimensional topological insulators preserves the topological spin texture of their surface states against a net surface magnetization. The spin texture is that of a Dirac cone with helical spin structure in the reciprocal space, which gives rise to spin-polarized and dissipation-less charge currents. Thanks to the nontrivial topology of the bulk electronic structure, this spin texture is robust against most types of surface defects. However, magnetic perturbations break the time-reversal symmetry, enabling magnetic scattering and loss of spin coherence of the charge carriers. This intrinsic incompatibility precludes the design of magnetoelectronicmore » devices based on the coupling between magnetic materials and topological surface states. We demonstrate that the magnetization coming from individual Co atoms deposited on the surface can disrupt the spin coherence of the carriers in the archetypal topological insulator Bi 2Te 3, while in Bi 2Se 2Te the spin texture remains unperturbed. This is concluded from the observation of elastic backscattering events in quasiparticle interference patterns obtained by scanning tunneling spectroscopy. The mechanism responsible for the protection is investigated by energy resolved spectroscopy and ab initio calculations, and it is ascribed to the distorted adsorption geometry of localized magnetic moments due to Se–Te disorder, which suppresses the Co hybridization with the surface states.« less
Surface states and annihilation characteristics of positrons trapped at the oxidized Cu(100) surface
NASA Astrophysics Data System (ADS)
Fazleev, N. G.; Weiss, A. H.
2013-06-01
In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. Oxidation of the Cu(100) surface has been studied by performing an ab-initio investigation of the stability and electronic structure of the Cu(100) missing row reconstructed surface at various on-surface and subsurface oxygen coverages ranging from 0.5 to 1.5 monolayers using density functional theory (DFT). All studied structures have been found to be energetically more favorable as compared to structures formed by purely on-surface oxygen adsorption. The observed decrease in the positron work function when oxygen atoms occupy on-surface and subsurface sites has been attributed to a significant charge redistribution within the first two layers, buckling effects within each layer and an interlayer expansion. The computed positron binding energy, positron surface state wave function, and annihilation probabilities of the surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). The results presented provide an explanation for the changes observed in the probability of annihilation of surface trapped positrons with Cu 3p core-level electrons as a function of annealing temperature.
A universal steady state I-V relationship for membrane current
NASA Technical Reports Server (NTRS)
Chernyak, Y. B.; Cohen, R. J. (Principal Investigator)
1995-01-01
A purely electrical mechanism for the gating of membrane ionic channel gives rise to a simple I-V relationship for membrane current. Our approach is based on the known presence of gating charge, which is an established property of the membrane channel gating. The gating charge is systematically treated as a polarization of the channel protein which varies with the external electric field and modifies the effective potential through which the ions migrate in the channel. Two polarization effects have been considered: 1) the up or down shift of the whole potential function, and 2) the change in the effective electric field inside the channel which is due to familiar effect of the effective reduction of the electric field inside a dielectric body because of the presence of surface charges on its surface. Both effects are linear in the channel polarization. The ionic current is described by a steady state solution of the Nernst-Planck equation with the potential directly controlled by the gating charge system. The solution describes reasonably well the steady state and peak-current I-V relationships for different channels, and when applied adiabatically, explains the time lag between the gating charge current and the rise of the ionic current. The approach developed can be useful as an effective way to model the ionic currents in axons, cardiac cells and other excitable tissues.
Regulation of the Electric Charge in Phosphatidic Acid Domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenjie; Anderson, Nathaniel A.; Travesset, Alex
Although a minor component of the lipidome, phosphatidic acid (PA) plays a crucial role in nearly all signaling pathways involving cell membranes, in part because of its variable electrical charge in response to environmental conditions. To investigate how charge is regulated in domains of PA, we applied surface-sensitive X-ray reflectivity and fluorescence near-totalreflection techniques to determine the binding of divalent ions (Ca2+ at various pH values) to 1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA) and to the simpler lipid dihexadecyl phosphate (DHDP) spread as monolayers at the air/water interface. We found that the protonation state of PA is controlled not only by the pKa andmore » local pH but also by the strong affinity to PA driven by electrostatic correlations from divalent ions and the cooperative effect of the two dissociable protons, which dramatically enhance the surface charge. A precise theoretical model is presented providing a general framework to predict the protonation state of PA. Implications for recent experiments on charge regulation by hydrogen bonding and the role of pH in PA signaling are discussed in detail.« less
Shirke, Abhijit N.; Basore, Danielle; Holton, Samantha; Su, An; Baugh, Evan; Butterfoss, Glenn L.; Makhatadze, George
2016-01-01
Cutinases are esterases of industrial importance for applications in recycling and surface modification of polyesters. The cutinase from Thielavia terrestris (TtC) is distinct in terms of its ability to retain its stability and activity in acidic pH. Stability and activity in acidic pHs are desirable for esterases as the pH of the reaction tends to go down with the generation of acid. The pH stability and activity are governed by the charged state of the residues involved in catalysis or in substrate binding. In this study, we performed the detailed structural and biochemical characterization of TtC coupled with surface charge analysis to understand its acidic tolerance. The stability of TtC in acidic pH was rationalized by evaluating the contribution of charge interactions to the Gibbs free energy of unfolding at varying pHs. The activity of TtC was found to be limited by substrate binding affinity, which is a function of the surface charge. Additionally, the presence of glycosylation affects the biochemical characteristics of TtC owing to steric interactions with residues involved in substrate binding. PMID:26758295
NASA Astrophysics Data System (ADS)
Singh, Vivek; Yu, Yixuan; Sun, Qi-C.; Korgel, Brian; Nagpal, Prashant
2014-11-01
While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in nanoscaled silicon semiconductors. Therefore, these results can have important implications for the design of optoelectronics and thermoelectric devices based on nanostructured silicon.While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in nanoscaled silicon semiconductors. Therefore, these results can have important implications for the design of optoelectronics and thermoelectric devices based on nanostructured silicon. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04688a
Competition between surface adsorption and folding of fibril-forming polypeptides
NASA Astrophysics Data System (ADS)
Ni, Ran; Kleijn, J. Mieke; Abeln, Sanne; Cohen Stuart, Martien A.; Bolhuis, Peter G.
2015-02-01
Self-assembly of polypeptides into fibrillar structures can be initiated by planar surfaces that interact favorably with certain residues. Using a coarse-grained model, we systematically studied the folding and adsorption behavior of a β -roll forming polypeptide. We find that there are two different folding pathways depending on the temperature: (i) at low temperature, the polypeptide folds in solution into a β -roll before adsorbing onto the attractive surface; (ii) at higher temperature, the polypeptide first adsorbs in a disordered state and folds while on the surface. The folding temperature increases with increasing attraction as the folded β -roll is stabilized by the surface. Surprisingly, further increasing the attraction lowers the folding temperature again, as strong attraction also stabilizes the adsorbed disordered state, which competes with folding of the polypeptide. Our results suggest that to enhance the folding, one should use a weakly attractive surface. They also explain the recent experimental observation of the nonmonotonic effect of charge on the fibril formation on an oppositely charged surface [C. Charbonneau et al., ACS Nano 8, 2328 (2014), 10.1021/nn405799t].
Many-body instabilities and mass generation in slow Dirac materials
NASA Astrophysics Data System (ADS)
Triola, Christopher; Zhu, Jianxin; Migliori, Albert; Balatsky, Alexander
2015-03-01
Some Kondo insulators are expected to possess topologically protected surface states with linear Dirac spectrum, the topological Kondo insulators. Because the bulk states of these systems typically have heavy effective electron masses, the surface states may exhibit extraordinarily small Fermi velocities that could force the effective fine structure constant of the surface states into the strong coupling regime. Using a tight-binding model we study the many-body instabilities of these systems and identify regions of parameter space for which antiferromagnetic, ferromagnetic and charge density wave instabilities occur. Work Supported by USDOE BES E304.
Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes
NASA Astrophysics Data System (ADS)
Loo, Rachel R. Ogorzalek; Loo, Joseph A.
2016-06-01
Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit "unfolding" to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein's size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size "contractions" seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes.
Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes.
Loo, Rachel R Ogorzalek; Loo, Joseph A
2016-06-01
Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit "unfolding" to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein's size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size "contractions" seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes. Graphical Abstract ᅟ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, J.; Gajdos, F.; Blumberger, J., E-mail: j.blumberger@ucl.ac.uk
2016-08-14
We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on themore » adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.« less
NASA Astrophysics Data System (ADS)
Spencer, J.; Gajdos, F.; Blumberger, J.
2016-08-01
We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.
NASA Astrophysics Data System (ADS)
Wei, Wei; Gu, Zhaolin
2015-10-01
Particulates in natural and industrial flows have two basic forms: liquid (droplet) and solid (particle). Droplets would be charged in the presence of the applied electric field (e.g. electrospray). Similar to the droplet charging, particles can also be charged under the external electric field (e.g. electrostatic precipitator), while in the absence of external electric field, tribo-electrostatic charging is almost unavoidable in gas-solid two-phase flows due to the consecutive particle contacts (e.g. electrostatic in fluidized bed or wind-blown sand). The particle charging may be beneficial, or detrimental. Although electrostatics in particulate entrained fluid flow systems have been so widely used and concerned, the mechanisms of particulate charging are still lack of a thorough understanding. The motivation of this review is to explore a clear understanding of particulate charging and movement of charged particulate in two-phase flows, by summarizing the electrification mechanisms, physical models of particulate charging, and methods of charging/charged particulate entrained fluid flow simulations. Two effective methods can make droplets charged in industrial applications: corona charging and induction charging. The droplet charge to mass ratio by corona charging is more than induction discharge. The particle charging through collisions could be attributed to electron transfer, ion transfer, material transfer, and/or aqueous ion shift on particle surfaces. The charges on charged particulate surface can be measured, nevertheless, the charging process in nature or industry is difficult to monitor. The simulation method might build a bridge of investigating from the charging process to finally charged state on particulate surface in particulate entrained fluid flows. The methodology combining the interface tracking under the action of the applied electric with the fluid flow governing equations is applicable to the study of electrohydrodynamics problems. The charge distribution and mechanical behaviors of liquid surface can be predicted by using this method. The methodology combining particle charging model with Computational Fluid Dynamics (CFD) and Discrete element method (DEM) is applicable to study the particle charging/charged processes in gas-solid two phase flows, the influence factors of particle charging, such as gas-particle interaction, contact force, contact area, and various velocities, are described systematically. This review would explore a clear understanding of the particulate charging and provide theoretical references to control and utilize the charging/charged particulate entrained fluid system.
ELECTROSTATIC AIR CLEANING DEVICE AND METHOD
Silverman, L.; Anderson, D.M.
1961-07-18
A method and apparatus for utilizing friction-charged particulate material from an aerosol are described. A bed of the plastic spheres is prepared, and the aerosol is passed upwardly through the bed at a rate just large enough to maintain the bed in a fluidized state wim over-all circulation of the balls. Wire members criss-crossing through the bed rub against the balls and maintain their surfaces with electrostatic charges. The particulate material in the aerosol adheres to the surfaces of the balls.
NASA Astrophysics Data System (ADS)
Hildebrandt, Peter
1991-05-01
The effect of electrostatic fields on the structure of cytochrome c bound to charged interfaces was studied by resonance Raman and surface enhanced resonance Raman spectroscopy. Binding of this heme protein to the Ag electrode or heteropolytungstates which may be regarded as simple model systems for biological interfaces establishes an equilibrium between two conformational states (I II). In state I the structure and the redox potential are the same as for the uncomplexed cytochrome c. In state II however the heme pocket assumes an open structure and the axial iron Met80 bond is weakened leading to thennal coordination equilibrium between the fivecoordinated high spin and the sixcoordinated low spin configuration. These structural changes are accompanied by a decrease of the redox potential by 420 mV. The structural rearrangement of the heme pocket in state II is presumably initiated by the dissociation of the internal salt bridge of Lys13 due to electrostatic interactions with the negatively charged surfaces of the model systems. From detailed Raman spectroscopic studies characteristic spectral properties of the states I and II were identified. Based on these findings the interactions of cytochrome c with phospholipid vesicles as well as with its physiological reaction partner cytocbrome c oxidase were analysed. A systematic study of the cytochmme c/phospholipid system by varying the lipid composition and the temperature revealed mutual structural changes in both the lipid and the protein structure.
A theoretical study of structural and electronic properties of pentacene/Al(100) interface.
Saranya, G; Nair, Shiny; Natarajan, V; Kolandaivel, P; Senthilkumar, K
2012-09-01
The first principle calculations within the framework of density functional theory have been performed for the pentacene molecule deposited on the aluminum Al(100) substrate to study the structural and electronic properties of the pentacene/Al(100) interface. The most stable configuration was found at bridge site with 45° rotation of the pentacene molecule on Al(100) surface with a vertical distance of 3.4 Å within LDA and 3.8 Å within GGA functionals. The calculated adsorption energy reveals that the adsorption of pentacene molecule on Al(100) surface is physisorption. For the stable adsorption geometry the electronic properties such as density of states (DOS), partial density of states (PDOS), Mulliken population analysis and Schottky barrier height are studied. The analysis of atomic charge, DOS and PDOS show that the charge is transferred from the Al(100) surface to pentacene molecule, and the transferred charge is about -0.05 electrons. For the adsorbed system, the calculated Schottky barrier height for hole and electron transport is 0.27 and 1.55 eV, respectively. Copyright © 2012 Elsevier Inc. All rights reserved.
Importance of considering helium excited states in He+ scattering by an aluminum surface
NASA Astrophysics Data System (ADS)
Iglesias-García, A.; García, Evelina A.; Goldberg, E. C.
2014-11-01
The He+/Al system is a very interesting projectile-surface combination which was thought initially as an example of a pure Auger neutralization mechanism. Then, because of the measured reionization explained by the antibonding interaction of the projectile state with the core target states, the resonant charge exchange with the band states was considered as another important contribution to the neutralization. Nevertheless, by only considering the neutralization to the ground state of helium, the measured ion survival probability is still overestimated. On the other hand, measurements of electron emission from an Al surface bombarded by He positive ions suggested the possibility of occupied excited states of helium due to the ion-surface collision. In this work, we also include the excited states of He within the time-dependent scattering process in which both neutralization mechanisms, resonant and Auger, are simultaneously contemplated. Our starting point is a multiorbital Anderson Hamiltonian projected over the selected space of ground and excited atomic configurations. An extra term related to the Auger mechanism is added to this Hamiltonian. A difference with previous works is that this approach includes the electron spin and, therefore, the spin fluctuation statistics in the charge-exchange process is correctly taken into account. We find a notable improvement in the agreement with the experiments and also that the interference between both mechanisms is not dramatic.
What's on the Surface? Physics and Chemistry of Delta-Doped Surfaces
NASA Technical Reports Server (NTRS)
Hoenk, Michael
2011-01-01
Outline of presentation: 1. Detector surfaces and the problem of stability 2. Delta-doped detectors 3. Physics of Delta-doped Silicon 4. Chemistry of the Si-SiO2 Interface 5. Physics and Chemistry of Delta-doped Surfaces a. Compensation b. Inversion c. Quantum exclusion. Conclusions: 1. Quantum confinement of electrons and holes dominates the behavior of delta-doped surfaces. 2. Stability of delta-doped detectors: Delta-layer creates an approx 1 eV tunnel barrier between bulk and surface. 3. At high surface charge densities, Tamm-Shockley states form at the surface. 4. Surface passivation by quantum exclusion: Near-surface delta-layer suppresses T-S trapping of minority carriers. 5. The Si-SiO2 interface compensates the surface 6. For delta-layers at intermediate depth, surface inversion layer forms 7. Density of Si-SiO2 interface charge can be extremely high (>10(exp 14)/sq cm)
Single-molecule interfacial electron transfer dynamics in solar energy conversion
NASA Astrophysics Data System (ADS)
Dhital, Bharat
This dissertation work investigated the parameters affecting the interfacial electron transfer (ET) dynamics in dye-semiconductor nanoparticles (NPs) system by using single-molecule fluorescence spectroscopy and imaging combined with electrochemistry. The influence of the molecule-substrate electronic coupling, the molecular structure, binding geometry on the surface and the molecule-attachment surface chemistry on interfacial charge transfer processes was studied on zinc porphyrin-TiO2 NP systems. The fluorescence blinking measurement on TiO2 NP demonstrated that electronic coupling regulates dynamics of charge transfer processes at the interface depending on the conformation of molecule on the surface. Moreover, semiconductor surface charge induced electronic coupling of molecule which is electrostatically adsorbed on the semiconductor surface also predominantly alters the ET dynamics. Furthermore, interfacial electric field and electron accepting state density dependent ET dynamics has been dissected in zinc porphyrin-TiO2 NP system by observing the single-molecule fluorescence blinking dynamics and fluorescence lifetime with and without applied bias. The significant difference in fluorescence fluctuation and lifetime suggested the modulation of charge transfer dynamics at the interface with external electric field perturbation. Quasi-continuous distribution of fluorescence intensity with applied negative potential was attributed to the faster charge recombination due to reduced density of electron accepting states. The driving force and electron accepting state density ET dependent dynamics has also been probed in zinc porphyrin-TiO2 NP and zinc porphyrin-indium tin oxide (ITO) systems. Study of a molecule adsorbed on two different semiconductors (ITO and TiO2), with large difference in electron densities and distinct driving forces, allows us to observe the changes in rates of back electron transfer process reflected by the suppressed fluorescence blinking of molecule on ITO surface. Finally, the electric field effect on the interface properties has been probed by using surface-enhanced Raman spectroscopy and supported by density functional theory calculations in alizarin-TiO2 system. The perturbation, created by the external potential, has been observed to cause a shift and/or splitting interfacial bond vibrational mode, typical indicator of the coupling energy changes between alizarin and TiO2. Such splitting provides evidence for electric field-dependent electronic coupling changes that have a significant impact on the interfacial electron transfer dynamics.
Tuning Topological Surface States by Charge Transfer
NASA Astrophysics Data System (ADS)
Chen, Zhiyi
Three-dimensional (3D) topological insulators (TIs), Bi2Se 3, Bi2Te3, Sb2Te3, are a class of materials that has non-trivial bulk band structure and metallic surface states. Access to charge transport through Dirac surface states in TIs can be challenging due to their intermixing with bulk states or non-topological two-dimensional electron gas quantum well states caused by bending of electronic bands near the surface. The band bending arises via charge transfer from surface adatoms or interfaces and, therefore, the choice of layers abutting topological surfaces is critical. Surfaces of these 3D TIs have also been proposed to host new quantum phases at the interfaces with other types of materials, provided that the topological properties of interfacial regions remain unperturbed. This thesis presents a systematic experimental study of both bulk conducting and surface charge transfer problems. We started with optimizing growth condition of Bi2Se3 on various substrates, to achieve best quality of Bi2Se3 single layers we can get. We then move on to growth of Bi2Se3/ZnxCd1-xSe bilayers. Here we improved lattice mismatch between Bi2Se 3 and ZnxCd1-xSe layers by tuning lattice parameter of ZnxCd1-xSe. After that, we achieved molecular beam epitaxial growth of Bi2Se3/ZnxCd1-x Se superlattices that hold only one topological surface channel per TI layer. The topological nature of conducting channels is supported by pi-Berry phase evident from observed Shubnikov de Haas quantum oscillations and by the associated two-dimensional weak antilocalization quantum interference correction to magnetoresistance. Both density functional theory calculations and transport measurements suggest that a single topological Dirac cone per TI layer can be realized by asymmetric interfaces: Se-terminated Znx Cd1-xSe interface with the TI remains 'electronically intact', while charge transfer occurs at the Zn-terminated interface. Our findings indicate that topological transport could be controlled by adjusting charge transfer from non-topological spacers in hybrid structures. The first chapter contains a brief introduction to TIs. It describes basic concepts and notations used later in the bulk of the thesis. These include the topological surface states of a TI, crystal structure of 3D TIs, the origin of defects and their effects on transport study. The second chapter presents experimental techniques employed for growth and for structural, and electrical characterization of the 3D TIs thin films and superlattices. First, every component of our custom-designed molecular beam epitaxy system will be described in detail, and then the important in situ surface morphology monitoring tool - RHEED will also be mentioned, as well as high resolution X-ray diffraction (XRD). In the second part, a standard procedure for device fabrication will be presented. The last part will focus on the electron transport measurement setup and various techniques for characterization. In the third chapter we present explorations of different substrates for growth of Bi2Se3 thin films, describe growth of Bi2Se3 thin films on sapphire, GaAs(111), InP(001) and InP(111), then optimize growth conditions accordingly. The quality of films are investigated to study the effects of substrates on quality of the films. The fourth chapter is a growth study of superlattice of a TI with a traditional II-VI semiconductor, Bi2Se3/ZnxCd1-x Se. we explore II-VI semiconductor family and study the optimal material to grow on top of Bi2Se3. Then we focus on the growth of Bi2Se3/ZnxCd1-xSe superlattice and structural study. The fifth chapter studies charge transfer at the interface between Bi 2Se3 layer and ZnxCd1-xSe layer. We start by looking at the result of charge transport study of our superlattice. Then we will present the result of our density functional theory (DFT) calculation, which showed completely different charge transfer between Bi2Se 3 sits on top of ZnxCd1-xSe and ZnxCd 1-xSe on top of Bi2Se3. This will provide a perfect explanation of our experimental results. Then we designed experiment using transport measurement to test and confirm out explanation. The sixth chapter gives a short summary of this thesis work and a proposal for future work.
Ultrafast investigation of photoinduced charge transfer in aminoanthraquinone pharmaceutical product
NASA Astrophysics Data System (ADS)
Zhang, Song; Sun, Simei; Zhou, Miaomiao; Wang, Lian; Zhang, Bing
2017-02-01
We investigated the mechanism of intramolecular charge transfer and the following radiationless dynamics of the excited states of 1-aminoanthraquinone using steady state and time-resolved absorption spectroscopy combined with quantum chemical calculations. Following photoexcitation with 460 nm, conformational relaxation via twisting of the amino group, charge transfer and the intersystem crossing (ISC) processes have been established to be the major relaxation pathways responsible for the ultrafast nonradiative of the excited S1 state. Intramolecular proton transfer, which could be induced by intramolecular hydrogen bonding is inspected and excluded. Time-dependent density functional theory (TDDFT) calculations reveal the change of the dipole moments of the S0 and S1 states along the twisted coordinate of the amino group, indicating the mechanism of twisted intra-molecular charge transfer (TICT). The timescale of TICT is measured to be 5 ps due to the conformational relaxation and a barrier on the S1 potential surface. The ISC from the S1 state to the triplet manifold is a main deactivation pathway with the decay time of 28 ps. Our results observed here have yield a physically intuitive and complete picture of the photoinduced charge transfer and radiationless dynamics in anthraquinone pharmaceutial products.
NASA Technical Reports Server (NTRS)
Reeves, R. D.; Balmain, K. G.
1981-01-01
A two dimensional model was developed to describe the charging of thin polymer films exposed to a uniform mon-energetic electron beam. The study was motivated by observed anomalous behavior of geosynchronous satellites which was attributed to electrical discharges associated with the differential charging of satellite surfaces of magnetospheric electrons. Electric fields both internal and external to the irradiated specimen were calculated at steady state in order to identify regions of high electrical stress. Particular emphasis was placed on evaluating the charging characteristics near the material's edge. The model was used to identify and quantify the effects of some of the experimental parameters notably: beam energy; beam angle of incidence; beam current density; material thickness; and material width. Simulations of the following situations were also conducted: positive or negative precharging over part of the surface; a central gap in the material; and a discontinuity in the material's thickness.
Electron capture into large-l Rydberg states of multiply charged ions escaping from solid surfaces
NASA Astrophysics Data System (ADS)
Nedeljković, N.; Nedeljković, Lj.; Mirković, M.
2003-07-01
We have investigated the electron capture into large-l Rydberg states of multiply charged ionic projectiles (e.g., the core charges Z=6, 7, and 8) escaping solid surfaces with intermediate velocities (v≈1 a.u.) in the normal emergence geometry. A model of the nonresonant electron capture from the solid conduction band into the moving large angular-momentum Rydberg states of the ions is developed through a generalization of our results obtained previously for the low-l cases (l=0, 1, and 2). The model is based on the two-wave-function dynamics of the Demkov-Ostrovskii type. The electron exchange process is described by a mixed flux through a moving plane (“Firsov plane”), placed between the solid surface and the ionic projectile. Due to low eccentricities of the large-l Rydberg systems, the mixed flux must be evaluated through the whole Firsov plane. It is for this purpose that a suitable asymptotic method is developed. For intermediate ionic velocities and for all relevant values of the principal quantum number n≈Z, the population probability Pnl is obtained as a nonlinear l distribution. The theoretical predictions concerning the ions S VI, Cl VII, and Ar VIII are compared with the available results of the beam-foil experiments.
NASA Astrophysics Data System (ADS)
Lytvynenko, D. M.; Slyusarenko, Yu V.
2017-08-01
A theory of quasi-neutral equilibrium states of charges above a liquid dielectric surface is developed. This theory is based on the first principles of quantum statistics for systems comprising many identical particles. The proposed approach involves applying the variational principle, modified for the considered systems, and the Thomas-Fermi model. In the terms of the developed theory self-consistency equations are obtained. These equations provide the relation between the main parameters describing the system: the potential of the static electric field, the distribution function of charges and the surface profile of the liquid dielectric. The equations are used to study the phase transition in the system to a spatially periodic state. The proposed method can be applied in analyzing the properties of the phase transition in the system in relation to the spatially periodic states of wave type. Using the analytical and numerical methods, we perform a detailed study of the dependence of the critical parameters of such a phase transition on the thickness of the liquid dielectric film. Some stability criteria for the new asymmetric phase of the studied system are discussed.
Large apparent electric size of solid-state nanopores due to spatially extended surface conduction.
Lee, Choongyeop; Joly, Laurent; Siria, Alessandro; Biance, Anne-Laure; Fulcrand, Rémy; Bocquet, Lydéric
2012-08-08
Ion transport through nanopores drilled in thin membranes is central to numerous applications, including biosensing and ion selective membranes. This paper reports experiments, numerical calculations, and theoretical predictions demonstrating an unexpectedly large ionic conduction in solid-state nanopores, taking its origin in anomalous entrance effects. In contrast to naive expectations based on analogies with electric circuits, the surface conductance inside the nanopore is shown to perturb the three-dimensional electric current streamlines far outside the nanopore in order to meet charge conservation at the pore entrance. This unexpected contribution to the ionic conductance can be interpreted in terms of an apparent electric size of the solid-state nanopore, which is much larger than its geometric counterpart whenever the number of charges carried by the nanopore surface exceeds its bulk counterpart. This apparent electric size, which can reach hundreds of nanometers, can have a major impact on the electrical detection of translocation events through nanopores, as well as for ionic transport in biological nanopores.
Electronic structure and surface properties of MgB2(0001) upon oxygen adsorption
NASA Astrophysics Data System (ADS)
Kim, Chang-Eun; Ray, Keith G.; Bahr, David F.; Lordi, Vincenzo
2018-05-01
We use density-functional theory to investigate the bulk and surface properties of MgB2. The unique bonding structure of MgB2 is investigated by Bader's atoms-in-molecules, charge density difference, and occupancy projected band structure analyses. Oxygen adsorption on the charge-depleted surfaces of MgB2 is studied by a surface potential energy mapping method, reporting a complete map including low-symmetry binding sites. The B-terminated MgB2(0001) demonstrates reconstruction of the graphenelike B layer, and the reconstructed geometry exposes a threefold site of the subsurface Mg, making it accessible from the surface. Detailed reconstruction mechanisms are studied by simulated annealing method based on ab initio molecular dynamics and nudged elastic band calculations. The surface clustering of B atoms significantly modifies the B 2 p states to occupy low energy valence states. The present paper emphasizes that a thorough understanding of the surface phase may explain an apparent inconsistency in the experimental surface characterization of MgB2. Furthermore, these results suggest that the surface passivation can be an important technical challenge when it comes to development of a superconducting device using MgB2.
Cuadra, Jorge; Baranov, Denis G; Wersäll, Martin; Verre, Ruggero; Antosiewicz, Tomasz J; Shegai, Timur
2018-03-14
Formation of dressed light-matter states in optical structures, manifested as Rabi splitting of the eigen energies of a coupled system, is one of the key effects in quantum optics. In pursuing this regime with semiconductors, light is usually made to interact with excitons, electrically neutral quasiparticles of semiconductors; meanwhile interactions with charged three-particle states, trions, have received little attention. Here, we report on strong interaction between localized surface plasmons in silver nanoprisms and excitons and trions in monolayer tungsten disulfide (WS 2 ). We show that the plasmon-exciton interactions in this system can be efficiently tuned by controlling the charged versus neutral exciton contribution to the coupling process. In particular, we show that a stable trion state emerges and couples efficiently to the plasmon resonance at low temperature by forming three bright intermixed plasmon-exciton-trion polariton states. Our findings open up a possibility to exploit electrically charged polaritons at the single nanoparticle level.
Pyramidal pits created by single highly charged ions in BaF{sub 2} single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Said, A. S.; Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura; Heller, R.
2010-07-15
In various insulators, the impact of individual slow highly charged ions (eV-keV) creates surface nanostructures, whose size depends on the deposited potential energy. Here we report on the damage created on a cleaved BaF{sub 2} (111) surface by irradiation with 4.5xq keV highly charged xenon ions from a room-temperature electron-beam ion trap. Up to charge states q=36, no surface topographic changes on the BaF{sub 2} surface are observed by scanning force microscopy. The hidden stored damage, however, can be made visible using the technique of selective chemical etching. Each individual ion impact develops into a pyramidal etch pits, as canmore » be concluded from a comparison of the areal density of observed etch pits with the applied ion fluence (typically 10{sup 8} ions/cm{sup 2}). The dimensional analysis of the measured pits reveals the significance of the deposited potential energy in the creation of lattice distortions/defects in BaF{sub 2}.« less
Spatial Charge Inhomogeneity and Defect States in Topological Dirac Semimetal Thin Films
NASA Astrophysics Data System (ADS)
Edmonds, Mark; Collins, James; Hellerstedt, Jack; Yudhistira, Indra; Rodrigues, Joao Nuno Barbosa; Gomes, Lidia Carvalho; Adam, Shaffique; Fuhrer, Michael
Dirac materials are characterized by a charge neutrality point, where the system breaks into electron/hole puddles. In graphene, substrate disorder drives fluctuations in EF, necessitating ultra-clean substrates to observe Dirac point physics. Three-dimensional topological Dirac semimetals (TDS) obviate the substrate, and should show reduced EF fluctuations due to better metallic screening and higher dielectric constants. Yet, the local response of the charge carriers in a TDS to various perturbations has yet to be explored. Here we map the potential fluctuations in TDS 20nm Na3Bi films grown via MBE using scanning tunneling microscopy/spectroscopy. The potential fluctuations are significantly smaller than room temperature (ΔEF 5 meV = 60 K) and comparable to the highest quality graphene on h-BN; far smaller than graphene on SiO2,or the Dirac surface state of a topological insulator. This observation bodes well for exploration of Dirac point physics in TDS materials. Furthermore, surface Na vacancies show a bound resonance state close to the Dirac point with large spatial extent, a possible analogue to resonant impurities in graphene.
Adsorption of charged albumin subdomains on a graphite surface.
Raffaini, Giuseppina; Ganazzoli, Fabio
2006-03-01
We report some new molecular dynamics simulation results about the adsorption on a hydrophobic graphite surface of two albumin subdomains, each formed by three different alpha-helices, considering the correctly charged side groups at pH = 7 instead of the neutral ones as done in our previous exploratory paper (Raffaini and Ganazzoli, Langmuir 2003;19:3403-3412). We find that the presence of charges affects somewhat the initial adsorption stage on the electrostatically neutral surface, but not the final one. Thus, we recover the result that a monolayer of aminoacids is eventually formed, with a rough parallelism of distant strands to optimize both the intramolecular and the surface interactions. This feature is consistent with the adsorption on the hydrophobic surface being driven by dispersion forces only, and with the "soft" nature of albumin. Additional optimizations of the final monolayer carried out at pH = 3 and 11 do not modify appreciably this picture, suggesting that adsorption on graphite is basically independent of pH. The enhanced hydration of the final adsorption state due to the (delocalized) charges of the side groups is also discussed in comparison with similar results of the neutralized subdomains. (c) 2005 Wiley Periodicals, Inc.
Reasonable Temperature Schedules for Cold or Hot Charging of Continuously Cast Steel Slabs
NASA Astrophysics Data System (ADS)
Li, Yang; Chen, Xin; Liu, Ke; Wang, Jing; Wen, Jin; Zhang, Jiaquan
2013-12-01
Some continuously cast steel slabs are sensitive to transverse fracture problems during transportation or handling away from their storage state, while some steel slabs are sensitive to surface transverse cracks during the following rolling process in a certain hot charging temperature range. It is revealed that the investigated steel slabs with high fracture tendency under room cooling condition always contain pearlite transformation delayed elements, which lead to the internal brittle bainitic structure formation, while some microalloyed steels exhibit high surface crack susceptibility to hot charging temperatures due to carbonitride precipitation. According to the calculated internal cooling rates and CCT diagrams, the slabs with high fracture tendency during cold charging should be slowly cooled after cutting to length from hot strand or charged to the reheating furnace directly above their bainite formation temperatures. Based on a thermodynamic calculation for carbonitride precipitation in austenite, the sensitive hot charging temperature range of related steels was revealed for the determination of reasonable temperature schedules.
Nuclear Dynamics at Molecule–Metal Interfaces: A Pseudoparticle Perspective
Galperin, Michael; Nitzan, Abraham
2015-11-20
We discuss nuclear dynamics at molecule-metal interfaces including nonequilibrium molecular junctions. Starting from the many-body states (pseudoparticle) formulation of the molecule-metal system in the molecular vibronic basis, we introduce gradient expansion to reduce the adiabatic nuclear dynamics (that is, nuclear dynamics on a single molecular potential surface) into its semiclassical form while maintaining the effect of the nonadiabatic electronic transitions between different molecular charge states. Finally, this yields a set of equations for the nuclear dynamics in the presence of these nonadiabatic transitions, which reproduce the surface-hopping formulation in the limit of small metal-molecule coupling (where broadening of the molecularmore » energy levels can be disregarded) and Ehrenfest dynamics (motion on the potential of mean force) when information on the different charging states is traced out.« less
Nelson, Tammie; Fernandez-Alberti, Sebastian; Chernyak, Vladimir; Roitberg, Adrian E; Tretiak, Sergei
2011-05-12
Nonadiabatic dynamics generally defines the entire evolution of electronic excitations in optically active molecular materials. It is commonly associated with a number of fundamental and complex processes such as intraband relaxation, energy transfer, and light harvesting influenced by the spatial evolution of excitations and transformation of photoexcitation energy into electrical energy via charge separation (e.g., charge injection at interfaces). To treat ultrafast excited-state dynamics and exciton/charge transport we have developed a nonadiabatic excited-state molecular dynamics (NA-ESMD) framework incorporating quantum transitions. Our calculations rely on the use of the Collective Electronic Oscillator (CEO) package accounting for many-body effects and actual potential energy surfaces of the excited states combined with Tully's fewest switches algorithm for surface hopping for probing nonadiabatic processes. This method is applied to model the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene, PPV). Our analysis shows intricate details of photoinduced vibronic relaxation and identifies specific slow and fast nuclear motions that are strongly coupled to the electronic degrees of freedom, namely, torsion and bond length alternation, respectively. Nonadiabatic relaxation of the highly excited mA(g) state is predicted to occur on a femtosecond time scale at room temperature and on a picosecond time scale at low temperature.
Surface structure modification of single crystal graphite after slow, highly charged ion irradiation
NASA Astrophysics Data System (ADS)
Alzaher, I.; Akcöltekin, S.; Ban-d'Etat, B.; Manil, B.; Dey, K. R.; Been, T.; Boduch, P.; Rothard, H.; Schleberger, M.; Lebius, H.
2018-04-01
Single crystal graphite was irradiated by slow, highly charged ions. The modification of the surface structure was studied by means of Low-Energy Electron Diffraction. The observed damage cross section increases with the potential energy, i.e. the charge state of the incident ion, at a constant kinetic energy. The potential energy is more efficient for the damage production than the kinetic energy by more than a factor of twenty. Comparison with earlier results hints to a strong link between early electron creation and later target atom rearrangement. With increasing ion fluence, the initially large-scale single crystal is first transformed into μ m-sized crystals, before complete amorphisation takes place.
Rettig, L.; Cortés, R.; Chu, J. -H.; ...
2016-01-25
Non-equilibrium conditions may lead to novel properties of materials with broken symmetry ground states not accessible in equilibrium as vividly demonstrated by non-linearly driven mid-infrared active phonon excitation. Potential energy surfaces of electronically excited states also allow to direct nuclear motion, but relaxation of the excess energy typically excites fluctuations leading to a reduced or even vanishing order parameter as characterized by an electronic energy gap. Here, using femtosecond time-and angle-resolved photoemission spectroscopy, we demonstrate a tendency towards transient stabilization of a charge density wave after near-infrared excitation, counteracting the suppression of order in the non-equilibrium state. Analysis of themore » dynamic electronic structure reveals a remaining energy gap in a highly excited transient state. In conclusion, our observation can be explained by a competition between fluctuations in the electronically excited state, which tend to reduce order, and transiently enhanced Fermi surface nesting stabilizing the order.« less
Discrete space charge affected field emission: Flat and hemisphere emitters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Kevin L., E-mail: kevin.jensen@nrl.navy.mil; Shiffler, Donald A.; Tang, Wilkin
Models of space-charge affected thermal-field emission from protrusions, able to incorporate the effects of both surface roughness and elongated field emitter structures in beam optics codes, are desirable but difficult. The models proposed here treat the meso-scale diode region separate from the micro-scale regions characteristic of the emission sites. The consequences of discrete emission events are given for both one-dimensional (sheets of charge) and three dimensional (rings of charge) models: in the former, results converge to steady state conditions found by theory (e.g., Rokhlenko et al. [J. Appl. Phys. 107, 014904 (2010)]) but show oscillatory structure as they do. Surfacemore » roughness or geometric features are handled using a ring of charge model, from which the image charges are found and used to modify the apex field and emitted current. The roughness model is shown to have additional constraints related to the discrete nature of electron charge. The ability of a unit cell model to treat field emitter structures and incorporate surface roughness effects inside a beam optics code is assessed.« less
Electrostatics of colloids in mixtures
NASA Astrophysics Data System (ADS)
Samin, Sela; Tsori, Yoav
2013-03-01
We examine the force between two charged colloids immersed in salty aqueous mixtures close to the coexistence curve. In an initially water-poor phase, the short-range solvation-related forces promote the condensation of a water-rich phase at a distance in the range 1-100nm. This leads to a strong long-range attraction between the colloids and hence to a deep metastable or globally stable energetic state. Our calculations are in good agreement with recent experiments on the reversible aggregation of colloids in critical mixtures. The specific nature of the solvation energy of ions can lead to some surprising effects, whereby positively charged surfaces attract while negatively charged surfaces repel. For hydrophilic anions and hydrophobic cations, a repulsive interaction is predicted between oppositely charged and hydrophilic colloids even though both the electrostatic and adsorption forces alone are attractive.
Exploring Photoinduced Excited State Evolution in Heterobimetallic Ru(II)-Co(III) Complexes.
Kuhar, Korina; Fredin, Lisa A; Persson, Petter
2015-06-18
Quantum chemical calculations provide detailed theoretical information concerning key aspects of photoinduced electron and excitation transfer processes in supramolecular donor-acceptor systems, which are particularly relevant to fundamental charge separation in emerging molecular approaches for solar energy conversion. Here we use density functional theory (DFT) calculations to explore the excited state landscape of heterobimetallic Ru-Co systems with varying degrees of interaction between the two metal centers, unbound, weakly bound, and tightly bound systems. The interplay between structural and electronic factors involved in various excited state relaxation processes is examined through full optimizations of multiple charge/spin states of each of the investigated systems. Low-energy relaxed heterobimetallic states of energy transfer and excitation transfer character are characterized in terms of energy, structure, and electronic properties. These findings support the notion of efficient photoinduced charge separation from a Ru(II)-Co(III) ground state, via initial optical excitation of the Ru-center, to low-energy Ru(III)-Co(II) states. The strongly coupled system has significant involvement of the conjugated bridge, qualitatively distinguishing it from the other two weakly coupled systems. Finally, by constructing potential energy surfaces for the three systems where all charge/spin state combinations are projected onto relevant reaction coordinates, excited state decay pathways are explored.
Design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS)
NASA Astrophysics Data System (ADS)
Satyal, S.; Joglekar, P.; Kalaskar, S.; Shastry, K.; Weiss, A. H.
2010-03-01
Surface properties measured under UHV conditions cannot be extended to surfaces interacting with gases under realistic pressures due to surface reconstruction and other strong perturbations of the surface. We present the design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS) currently under construction at the University of Texas at Arlington. This new system will enable us to probe the surface and gather defect specific chemical and charge state information from surfaces under realistic pressures. Differential pumping will be used to maintain the sample in a gas environment while the rest of the beam is maintained under UHV. The Elemental content of the surface interacting with the gas environment will be determined from the Doppler broadened gamma spectra. This system will include a time of flight (TOF) positron annihilation induced Auger spectrometer (TOF-PAES) which correlates with the Doppler measurements at lower pressures. These new technique help to understand the charge transfer mechanisms at the surface.
Woo Choi, Jin; Woo, Hee Chul; Huang, Xiaoguang; Jung, Wan-Gil; Kim, Bong-Joong; Jeon, Sie-Wook; Yim, Sang-Youp; Lee, Jae-Suk; Lee, Chang-Lyoul
2018-05-22
The photoluminescence quantum yield (PLQY) and charge carrier mobility of organic-inorganic perovskite QDs were enhanced by the optimization of crystallinity and surface passivation as well as solid-state ligand exchange. The crystallinity of perovskite QDs was determined by the Effective solvent field (Esol) of various solvents for precipitation. The solvent with high Esol could more quickly countervail the localized field generated by the polar solvent, and it causes fast crystallization of the dissolved precursor, which results in poor crystallinity. The post-ligand adding process (PLAP) and post-ligand exchange process (PLEP) increase the PLQY of perovskite QDs by reducing non-radiative recombination and the density of surface defect states through surface passivation. Particularly, the post ligand exchange process (PLEP) in the solid-state improved the charge carrier mobility of perovskite QDs in addition to the PLQY enhancement. The ligand exchange with short alkyl chain length ligands could improve the packing density of perovskite QDs in films by reducing the inter-particle distance between perovskite QDs. The maximum hole mobility of 6.2 × 10-3 cm2 V-1 s-1, one order higher than that of pristine QDs without the PLEP, is obtained at perovskite QDs with hexyl ligands. By using PLEP treatment, compared to the pristine device, a 2.5 times higher current efficiency in perovskite QD-LEDs was achieved due to the improved charge carrier mobility and PLQY.
Surface charges and J H Poynting’s disquisitions on energy transfer in electrical circuits
NASA Astrophysics Data System (ADS)
Matar, M.; Welti, R.
2017-11-01
In this paper we review applications given by J H Poynting (1884) on the transfer of electromagnetic energy in DC circuits. These examples were strongly criticized by O Heaviside (1887). Heaviside stated that Poynting had a misconception about the nature of the electric field in the vicinity of a wire through which a current flows. The historical review of this conflict and its resolution based on the consideration of electrical charges on the surface of the wires can be useful for student courses on electromagnetism or circuit theory.
Liu, Hanshuo; Bugnet, Matthieu; Tessaro, Matteo Z; Harris, Kristopher J; Dunham, Mark J R; Jiang, Meng; Goward, Gillian R; Botton, Gianluigi A
2016-10-26
Layered lithium transition metal oxides are one of the most important types of cathode materials in lithium-ion batteries (LIBs) that possess high capacity and relatively low cost. Nevertheless, these layered cathode materials suffer structural changes during electrochemical cycling that could adversely affect the battery performance. Clear explanations of the cathode degradation process and its initiation, however, are still under debate and not yet fully understood. We herein systematically investigate the chemical evolution and structural transformation of the LiNi x Mn y Co 1-x-y O 2 (NMC) cathode material in order to understand the battery performance deterioration driven by the cathode degradation upon cycling. Using high-resolution electron energy loss spectroscopy (HR-EELS) we clarify the role of transition metals in the charge compensation mechanism, particularly the controversial Ni 2+ (active) and Co 3+ (stable) ions, at different states-of-charge (SOC) under 4.6 V operation voltage. The cathode evolution is studied in detail from the first-charge to long-term cycling using complementary diagnostic tools. With the bulk sensitive 7 Li nuclear magnetic resonance (NMR) measurements, we show that the local ordering of transition metal and Li layers (R3[combining macron]m structure) is well retained in the bulk material upon cycling. In complement to the bulk measurements, we locally probe the valence state distribution of cations and the surface structure of NMC particles using EELS and scanning transmission electron microscopy (STEM). The results reveal that the surface evolution of NMC is initiated in the first-charging step with a surface reduction layer formed at the particle surface. The NMC surface undergoes phase transformation from the layered structure to a poor electronic and ionic conducting transition-metal oxide rock-salt phase (R3[combining macron]m → Fm3[combining macron]m), accompanied by irreversible lithium and oxygen loss. In addition to the electrochemical cycling effect, electrolyte exposure also shows non-negligible influence on cathode surface degradation. These chemical and structural changes of the NMC cathode could contribute to the first-cycle coulombic inefficiency, restrict the charge transfer characteristics and ultimately impact the cell capacity.
Charging and exciton-mediated decharging of metal nanoparticles in organic semiconductor matrices
NASA Astrophysics Data System (ADS)
Ligorio, Giovanni; Vittorio Nardi, Marco; Christodoulou, Christos; Florea, Ileana; Monteiro, Nicolas-Crespo; Ersen, Ovidiu; Brinkmann, Martin; Koch, Norbert
2014-04-01
Gold nanoparticles (Au-NPs) were deposited on the surface of n- and p-type organic semiconductors to form defined model systems for charge storage based electrically addressable memory elements. We used ultraviolet photoelectron spectroscopy to study the electronic properties and found that the Au-NPs become positively charged because of photoelectron emission, evidenced by spectral shifts to higher binding energy. Upon illumination with light that can be absorbed by the organic semiconductors, dynamic charge neutrality of the Au-NPs could be re-established through electron transfer from excitons. The light-controlled charge state of the Au-NPs could add optical addressability to memory elements.
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3
NASA Astrophysics Data System (ADS)
Ziatdinov, M.; Banerjee, A.; Maksov, A.; Berlijn, T.; Zhou, W.; Cao, H. B.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Baddorf, A. P.; Kalinin, S. V.
2016-12-01
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, α-RuCl3. Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of α-RuCl3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at the nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of ~0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual α-RuCl3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface.
Wang, Hailong; Kally, James; Lee, Joon Sue; Liu, Tao; Chang, Houchen; Hickey, Danielle Reifsnyder; Mkhoyan, K Andre; Wu, Mingzhong; Richardella, Anthony; Samarth, Nitin
2016-08-12
We report the observation of ferromagnetic resonance-driven spin pumping signals at room temperature in three-dimensional topological insulator thin films-Bi_{2}Se_{3} and (Bi,Sb)_{2}Te_{3}-deposited by molecular beam epitaxy on Y_{3}Fe_{5}O_{12} thin films. By systematically varying the Bi_{2}Se_{3} film thickness, we show that the spin-charge conversion efficiency, characterized by the inverse Rashba-Edelstein effect length (λ_{IREE}), increases dramatically as the film thickness is increased from two quintuple layers, saturating above six quintuple layers. This suggests a dominant role of surface states in spin and charge interconversion in topological-insulator-ferromagnet heterostructures. Our conclusion is further corroborated by studying a series of Y_{3}Fe_{5}O_{12}/(Bi,Sb)_{2}Te_{3} heterostructures. Finally, we use the ferromagnetic resonance linewidth broadening and the inverse Rashba-Edelstein signals to determine the effective interfacial spin mixing conductance and λ_{IREE}.
Electrochemical properties of polycrystalline TiO/sub 2/ electrodes prepared by anodic oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogami, G.; Ogawa, V.; Nishiyama, Y.
1988-12-01
Polycrystalline TiO/sub 2/ electrodes were characterized by electroluminescence and capacitance-voltage measurements. The intensity of electroluminescence in a polycrystalline TiO/sub 2/ was about two orders of magnitude larger than that in a single crystalline TiO/sub 2/. Due to the intensive light emission which could be seen with the naked eye, a spectroscopic analysis by using a monochromator was possible. The emission spectrum showed a broad band peaked at 570 nm, which was assigned to a radiation recombination of a hole injected from the electrolyte with an electron on the surface state, the distribution of which was estimated from the C-V measurements.more » Mott-Schottky plots for a polycrystalline TiO/sub 2/ showed little frequency dispersion. Cole-Cole plots could be fitted by two semicircles. Through the analysis of relaxation times, charging and discharging process at the electrode surface could be clarified. The analysis of the impedance data have revealed that the surface state is distributed from the conduction bandage to the midgap in the forbidden gap. The surface-state density falls with energy from the conduction band. It has been concluded that the dynamic electron distribution of the surface states, which is determined by the competitive charge transfer process of electrons and holes injected from the electrolyte and from the semiconductor determines the luminescence characteristics of this material.« less
Device for detecting the specific gravity of a liquid. [Patent application
Derouin, C.R.; Kerwin, W.J.; McCormick, J.B.; Bobbett, R.E.
1980-11-18
A device for detecting the specific gravity of a liquid and a device for detecting the state of charge of a liquid phase electrolyte battery are described. In one embodiment of the present invention, a change in the critical angle of total internal reflection is utilized to determine the index of refraction of the liquid to be measured. It is shown that the index of refraction of the liquid is a function of the specific gravity of the liquid. In applications for measuring the state of charge of a battery, the specific gravity is proportional to the state of charge of the battery. A change in intensity of rays intersecting an interface surface indicates the critical angle which is a direct indication of the specific gravity of the liquid and the state of charge of a battery. In another embodiment, a light beam is projected through a transparent medium and then through a portion of the liquid to be measured. A change in refraction due to a change in the index of refraction of the liquid produces a deflection of the beam which is measured by a detector. The magnitude of deflection of the beam is directly proportional to the specific gravity of the liquid and the state of charge of a battery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshimoto, Shinya, E-mail: yosshi@issp.u-tokyo.ac.jp; Shiozawa, Yuichiro; Koitaya, Takanori
Electronic states and electrical conductivity of the native oxide Si(111) surface adsorbed with an electron donor tetrakis(dimethylamino)ethylene (TDAE) were investigated using ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy (XPS), and independently driven four-probe conductivity measurements. The formation of positively charged TDAE species is confirmed by the downward shift of the vacuum level by 1.45 eV, the absence of HOMO level in the valence band, and observation of the positively charged state in the N 1s XPS spectra. Si 2p XPS spectra and four-probe conductivity measurements revealed that TDAE adsorption induces an increase in downward band bending and a reduction in electrical resistancemore » of the surface, respectively. The sheet conductivity and the electron density of the surface are 1.1 μS/◻ and 4.6 × 10{sup 9} cm{sup −2}, respectively, after TDAE adsorption, and they are as high as 350% of the original surface. These results demonstrate that the electron density of the semiconductor surface is successfully controlled by the electron donor molecule TDAE.« less
Brummer, S B; Robblee, L S; Hambrecht, F T
1983-01-01
Smaller, more charge-intensive electrodes are needed for "safe" stimulation of the nervous system. In this paper we review critical concepts and the state of the art in electrodes. Control of charge density and charge balance are essential to avoid tissue electrolysis. Chemical criteria for "safe" stimulation are reviewed ("safe" is equated with "chemically reversible"). An example of a safe, but generally impractical, charge-injection process is double-layer charging. The limit here is the onset of irreversible faradaic processes. More charge can be safely injected with so-called "capacitor" electrodes, such as porous intermixtures of Ta/Ta2O5. BaTiO3 has excellent dielectric properties and may provide a new generation of capacitor electrodes. Faradaic charge injection is usually partially irreversible since some of the products escape into the solution. With Pt, up to 400 muc/cm2 real area can be absorbed by faradaic reactions of surface-adsorbed species, but a small part is lost due to metal dissolution. The surface of "activated" Ir is covered with a multilayer hydrated oxide. Charge injection occurs via rapid valence change within this oxide. Little or no metal dissolution is observed, and gassing limits are not exceeded even under stringent conditions.
Interaction Between Cyanine Dye IR-783 and Polystyrene Nanoparticles in Solution.
Zhang, Yunzhi; Xu, Hui; Casabianca, Leah B
2018-05-17
The interactions between small molecule drugs or dyes and nanoparticles are important to the use of nanoparticles in medicine. Noncovalent adsorption of dyes on nanoparticle surfaces is also important to the development of nanoparticle dual-use imaging contrast agents. In the present work, solution-state NMR is used to examine the noncovalent interaction between a near-infrared cyanine dye and the surface of polystyrene nanoparticles in solution. Using 1D proton NMR, we can approximate the number of dye molecules that associate with each nanoparticle for different sized nanoparticles. Saturation-Transfer Difference (STD)-NMR was also used to show that protons near the positively-charged nitrogen in the dye are more strongly associated with the negatively-charged nanoparticle surface than protons near the negatively-charged sulfate groups of the dye. The methods described here can be used to study similar drug or dye molecules interacting with the surface of organic nanoparticles. This article is protected by copyright. All rights reserved.
Energetics and kinetics of primary charge separation in bacterial photosynthesis.
LeBard, David N; Kapko, Vitaliy; Matyushov, Dmitry V
2008-08-21
We report the results of molecular dynamics (MD) simulations and formal modeling of the free-energy surfaces and reaction rates of primary charge separation in the reaction center of Rhodobacter sphaeroides. Two simulation protocols were used to produce MD trajectories. Standard force-field potentials were employed in the first protocol. In the second protocol, the special pair was made polarizable to reproduce a high polarizability of its photoexcited state observed by Stark spectroscopy. The charge distribution between covalent and charge-transfer states of the special pair was dynamically adjusted during the simulation run. We found from both protocols that the breadth of electrostatic fluctuations of the protein/water environment far exceeds previous estimates, resulting in about 1.6 eV reorganization energy of electron transfer in the first protocol and 2.5 eV in the second protocol. Most of these electrostatic fluctuations become dynamically frozen on the time scale of primary charge separation, resulting in much smaller solvation contributions to the activation barrier. While water dominates solvation thermodynamics on long observation times, protein emerges as the major thermal bath coupled to electron transfer on the picosecond time of the reaction. Marcus parabolas were obtained for the free-energy surfaces of electron transfer by using the first protocol, while a highly asymmetric surface was obtained in the second protocol. A nonergodic formulation of the diffusion-reaction electron-transfer kinetics has allowed us to reproduce the experimental results for both the temperature dependence of the rate and the nonexponential decay of the population of the photoexcited special pair.
Surface magnetism in a chiral d -wave superconductor with hexagonal symmetry
NASA Astrophysics Data System (ADS)
Goryo, Jun; Imai, Yoshiki; Rui, W. B.; Sigrist, Manfred; Schnyder, Andreas P.
2017-10-01
Surface properties are examined in a chiral d -wave superconductor with hexagonal symmetry, whose one-body Hamiltonian possesses intrinsic spin-orbit coupling identical to the one characterizing the topological nature of the Kane-Mele honeycomb insulator. In the normal state, spin-orbit coupling gives rise to spontaneous surface spin currents, whereas in the superconducting state, besides the spin currents, there exist also charge surface currents, due to chiral pairing symmetry. Interestingly, the combination of these two currents results in a surface spin polarization, whose spatial dependence is markedly different on the zigzag and armchair surfaces. We discuss various potential candidate materials, such as SrPtAs, which may exhibit these surface properties.
Partial Model of Insulator/Insulator Contact Charging
NASA Technical Reports Server (NTRS)
Hogue, Michael; Calle, C. I.; Buhler, C. R.; Mucciolo, E. R.
2005-01-01
Two papers present a two-phase equilibrium model that partly explains insulator/ insulator contact charging. In this model, a vapor of ions within a gas is in equilibrium with a submonolayer of ions of the same species that have been adsorbed on the surface of an insulator. The surface is modeled as having localized states, each with a certain energy of adsorption for an ion. In an earlier version of the model described in the first paper, the ions do not interact with each other. Using the grand canonical ensemble, the chemical potentials of both vapor and absorbed phases are derived and equated to determine the vapor pressure. If a charge is assigned to the vapor particles (in particular, if single ionization is assumed), then the surface charge density associated with adsorbed ions can be calculated as a function of pressure. In a later version of the model presented in the second paper, the submodel of the vapor phase is extended to include electrostatic interactions between vapor ions and adsorbed ones as well as the screening effect, at a given distance from the surface, of ions closer to the surface. Theoretical values of this model closely match preliminary experimental data on the discharge of insulators as a function of pressure.
STM studies of an atomic-scale gate electrode formed by a single charged vacancy in GaAs
NASA Astrophysics Data System (ADS)
Lee, Donghun; Daughton, David; Gupta, Jay
2009-03-01
Electric-field control of spin-spin interactions at the atomic level is desirable for the realization of spintronics and spin-based quantum computation. Here we demonstrate the realization of an atomic-scale gate electrode formed by a single charged vacancy on the GaAs(110) surface[1]. We can position these vacancies with atomic precision using the tip of a home-built, low temperature STM. Tunneling spectroscopy of single Mn acceptors is used to quantify the electrostatic field as a function of distance from the vacancy. Single Mn acceptors are formed by substituting Mn adatoms for Ga atoms in the first layer of the p-GaAs(110) surface[2]. Depending on the distance, the in-gap resonance of single Mn acceptors can shift as much as 200meV. Our data indicate that the electrostatic field decays according to a screened Coulomb potential. The charge state of the vacancy can be switched to neutral, as evidenced by the Mn resonance returning to its unperturbed position. Reversible control of the local electric field as well as charged states of defects in semiconductors can open new insights such as realizing an atomic-scale gate control and studying spin-spin interactions in semiconductors. http://www.physics.ohio-state.edu/sim jgupta [1] D. Lee and J.A. Gupta (in preparation) [2] D. Kitchen et al., Nature 442, 436-439 (2006)
Chang, Jin; Ogomi, Yuhei; Ding, Chao; Zhang, Yao Hong; Toyoda, Taro; Hayase, Shuzi; Katayama, Kenji; Shen, Qing
2017-03-01
The surface chemistry of colloidal quantum dots (QDs) plays an important role in determining the photoelectric properties of QD films and the corresponding quantum dot heterojunction solar cells (QDHSCs). To investigate the effects of the ligand structure on the photovoltaic performance and exciton dynamics of QDHSCs, PbS QDHSCs were fabricated by the solid state ligand exchange method with mercaptoalkanoic acid as the cross-linking ligand. Temperature-dependent photoluminescence and ultrafast transient absorption spectra show that the electronic coupling and charge transfer rate within QD ensembles were monotonically enhanced as the ligand length decreased. However, in practical QDHSCs, the second shortest ligand 3-mercaptopropionic acid (MPA) showed higher power conversion efficiency than the shortest ligand thioglycolic acid (TGA). This could be attributed to the difference in their surface trap states, supported by thermally stimulated current measurements. Moreover, compared with the non-conjugated ligand MPA, the conjugated ligand 4-mercaptobenzoic acid (MBA) introduces less trap states and has a similar charge transfer rate in QD ensembles, but has poor photovoltaic properties. This unexpected result could be contributed by the QD-ligand orbital mixing, leading to the charge transfer from QDs to ligands instead of charge transfer between adjacent QDs. This work highlights the significant effects of ligand structures on the photovoltaic properties and exciton dynamics of QDHSCs, which would shed light on the further development of QD-based photoelectric devices.
NASA Astrophysics Data System (ADS)
Chou, Jyh-Pin; Bodrog, Zoltán; Gali, Adam
2018-03-01
Solid-state qubits from paramagnetic point defects in solids are promising platforms to realize quantum networks and novel nanoscale sensors. Recent advances in materials engineering make it possible to create proximate qubits in solids that might interact with each other, leading to electron spin or charge fluctuation. Here we develop a method to calculate the tunneling-mediated charge diffusion between point defects from first principles and apply it to nitrogen-vacancy (NV) qubits in diamond. The calculated tunneling rates are in quantitative agreement with previous experimental data. Our results suggest that proximate neutral and negatively charged NV defect pairs can form a NV-NV molecule. A tunneling-mediated model for the source of decoherence of the near-surface NV qubits is developed based on our findings on the interacting qubits in diamond.
Influence of metallic surface states on electron affinity of epitaxial AlN films
NASA Astrophysics Data System (ADS)
Mishra, Monu; Krishna, Shibin; Aggarwal, Neha; Gupta, Govind
2017-06-01
The present article investigates surface metallic states induced alteration in the electron affinity of epitaxial AlN films. AlN films grown by plasma-assisted molecular beam epitaxy system with (30% and 16%) and without metallic aluminium on the surface were probed via photoemission spectroscopic measurements. An in-depth analysis exploring the influence of metallic aluminium and native oxide on the electronic structure of the films is performed. It was observed that the metallic states pinned the Fermi Level (FL) near valence band edge and lead to the reduction of electron affinity (EA). These metallic states initiated charge transfer and induced changes in surface and interface dipoles strength. Therefore, the EA of the films varied between 0.6-1.0 eV due to the variation in contribution of metallic states and native oxide. However, the surface barrier height (SBH) increased (4.2-3.5 eV) adversely due to the availability of donor-like surface states in metallic aluminium rich films.
Nan, Tianxiang; Zhou, Ziyao; Liu, Ming; Yang, Xi; Gao, Yuan; Assaf, Badih A; Lin, Hwaider; Velu, Siddharth; Wang, Xinjun; Luo, Haosu; Chen, Jimmy; Akhtar, Saad; Hu, Edward; Rajiv, Rohit; Krishnan, Kavin; Sreedhar, Shalini; Heiman, Don; Howe, Brandon M; Brown, Gail J; Sun, Nian X
2014-01-14
Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling.
Electron emission from tungsten surface induced by neon ions
NASA Astrophysics Data System (ADS)
Xu, Zhongfeng; Zeng, Lixia; Zhao, Yongtao; Cheng, Rui; Zhang, Xiaoan; Ren, Jieru; Zhou, Xianming; Wang, Xing; Lei, Yu; Li, Yongfeng; Yu, Yang; Liu, Xueliang; Xiao, Guoqing; Li, Fuli
2014-04-01
The electron emission from W surface induced by Neq+ has been measured. For the same charge state, the electron yield gradually increases with the projectile velocity. Meanwhile, the effect of the potential energy of projectile has been found obviously. Our results give the critical condition for "trampoline effect".
NASA Technical Reports Server (NTRS)
Weinberg, I.
1975-01-01
An experimental and theoretical investigation of the feasibility of using the MOS C-V (capacitance-voltage) technique to determine impurity and surface state concentrations on the diffused face of Si solar cells with Ta2O5 coatings. Impurity concentration 10 A from the diffused surface is found to be 2.9 times 10 to the 20th power per cu cm. Charge density in surface and oxide states is 2.1 times 10 to the 13th power per sq cm. These data agree with theoretical predictions.-
Solid-State Division progress report for period ending March 31, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, P.H.; Watson, D.M.
1983-09-01
Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials). (DLC)
Durán-Álvarez, Agustín; Maldonado-Domínguez, Mauricio; González-Antonio, Oscar; Durán-Valencia, Cecilia; Romero-Ávila, Margarita; Barragán-Aroche, Fernando; López-Ramírez, Simón
2016-03-22
The adsorption of surfactants (DTAB, SDS, and CAPB) at the calcite-water interface was studied through surface zeta potential measurements and multiscale molecular dynamics. The ground-state polarization of surfactants proved to be a key factor for the observed behavior; correlation was found between adsorption and the hard or soft charge distribution of the amphiphile. SDS exhibits a steep aggregation profile, reaching saturation and showing classic ionic-surfactant behavior. In contrast, DTAB and CAPB featured diversified adsorption profiles, suggesting interplay between supramolecular aggregation and desorption from the solid surface and alleviating charge buildup at the carbonate surface when bulk concentration approaches CMC. This manifests as an adsorption profile with a fast initial step, followed by a metastable plateau and finalizing with a sharp decrease and stabilization of surface charge. Suggesting this competition of equilibria, elicited at the CaCO3 surface, this study provides atomistic insight into the adsorption mechanism for ionic surfactants on calcite, which is in accordance with experimental evidence and which is a relevant criterion for developing enhanced oil recovery processes.
Zhang, Jie; Zhang, Yinan; Song, Tao; Shen, Xinlei; Yu, Xuegong; Lee, Shuit-Tong; Sun, Baoquan; Jia, Baohua
2017-07-05
Organic-inorganic hybrid solar cells based on n-type crystalline silicon and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) exhibited promising efficiency along with a low-cost fabrication process. In this work, ultrathin flexible silicon substrates, with a thickness as low as tens of micrometers, were employed to fabricate hybrid solar cells to reduce the use of silicon materials. To improve the light-trapping ability, nanostructures were built on the thin silicon substrates by a metal-assisted chemical etching method (MACE). However, nanostructured silicon resulted in a large amount of surface-defect states, causing detrimental charge recombination. Here, the surface was smoothed by solution-processed chemical treatment to reduce the surface/volume ratio of nanostructured silicon. Surface-charge recombination was dramatically suppressed after surface modification with a chemical, associated with improved minority charge-carrier lifetime. As a result, a power conversion efficiency of 9.1% was achieved in the flexible hybrid silicon solar cells, with a substrate thickness as low as ∼14 μm, indicating that interface engineering was essential to improve the hybrid junction quality and photovoltaic characteristics of the hybrid devices.
Expansion of a multicomponent current-carrying plasma jet into vacuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasov, V. I.; Paperny, V. L., E-mail: paperny@math.isu.runnet.ru
An expression for the ion−ion coupling in a multicomponent plasma jet is derived for an arbitrary ratio between the thermal and relative velocities of the components. The obtained expression is used to solve the problem on the expansion of a current-carrying plasma microjet emitted from the cathode surface into vacuum. Two types of plasmas with two ion components are analyzed: (i) plasma in which the ion components of equal masses are in the charge states Z{sub 1}= +1 and Z{sub 2}= +2 and (ii) plasma with ions in equal charge states but with the mass ratio m{sub 1}/m{sub 2} =more » 2. It is shown that, for such plasmas, the difference between the velocities of the plasma components remains substantial (about 10% of the average jet velocity in case (i) and 15% in case (ii)) at distances of several centimeters from the emission center, where it can be measured experimentally, provided that its initial value at the emitting cathode surface exceeds a certain threshold. This effect is investigated as a function of the mass ratio and charge states of the ion components.« less
2015-01-01
The effects of different anions on the extent of electrothermal supercharging of proteins from aqueous ammonium and sodium salt solutions were investigated. Sulfate and hydrogen phosphate are the most effective anions at producing high charge state protein ions from buffered aqueous solution, whereas iodide and perchlorate are ineffective with electrothermal supercharging. The propensity for these anions to produce high charge state protein ions follows the following trend: sulfate > hydrogen phosphate > thiocyanate > bicarbonate > chloride > formate ≈ bromide > acetate > iodide > perchlorate. This trend correlates with the reverse Hofmeister series over a wide range of salt concentrations (1 mM to 2 M) and with several physical properties, including solvent surface tension, anion viscosity B-coefficient, and anion surface/bulk partitioning coefficient, all of which are related to the Hofmeister series. The effectiveness of electrothermal supercharging does not depend on bubble formation, either from thermal degradation of the buffer or from coalescence of dissolved gas. These results provide evidence that the effect of different ions in the formation of high charge state ions by electrothermal supercharging is largely a result of Hofmeister effects on protein stability leading to protein unfolding in the heated ESI droplet. PMID:24410546
Charge and current orders in the spin-fermion model with overlapping hot spots
NASA Astrophysics Data System (ADS)
Volkov, Pavel A.; Efetov, Konstantin B.
2018-04-01
Experiments carried over the last years on the underdoped cuprates have revealed a variety of symmetry-breaking phenomena in the pseudogap state. Charge-density waves, breaking of C4 rotational symmetry as well as time-reversal symmetry breaking have all been observed in several cuprate families. In this regard, theoretical models where multiple nonsuperconducting orders emerge are of particular interest. We consider the recently introduced [Volkov and Efetov, Phys. Rev. B 93, 085131 (2016), 10.1103/PhysRevB.93.085131] spin-fermion model with overlapping `hot spots' on the Fermi surface. Focusing on the particle-hole instabilities we obtain a rich phase diagram with the chemical potential relative to the dispersion at (0 ,π );(π ,0 ) and the Fermi surface curvature in the antinodal regions being the control parameters. We find evidence for d-wave Pomeranchuk instability, d-form factor charge density waves, as well as commensurate and incommensurate staggered bond current phases similar to the d-density wave state. The current orders are found to be promoted by the curvature. Considering the appropriate parameter range for the hole-doped cuprates, we discuss the relation of our results to the pseudogap state and incommensurate magnetic phases of the cuprates.
Tunneling spectroscopy of close-spaced dangling-bond pairs in Si(001):H
Engelund, Mads; Zuzak, Rafał; Godlewski, Szymon; Kolmer, Marek; Frederiksen, Thomas; García-Lekue, Aran; Sánchez-Portal, Daniel; Szymonski, Marek
2015-01-01
We present a combined experimental and theoretical study of the electronic properties of close-spaced dangling-bond (DB) pairs in a hydrogen-passivated Si(001):H p-doped surface. Two types of DB pairs are considered, called “cross” and “line” structures. Our scanning tunneling spectroscopy (STS) data show that, although the spectra taken over different DBs in each pair exhibit a remarkable resemblance, they appear shifted by a constant energy that depends on the DB-pair type. This spontaneous asymmetry persists after repeated STS measurements. By comparison with density functional theory (DFT) calculations, we demonstrate that the magnitude of this shift and the relative position of the STS peaks can be explained by distinct charge states for each DB in the pair. We also explain how the charge state is modified by the presence of the scanning tunneling microscopy (STM) tip and the applied bias. Our results indicate that, using the STM tip, it is possible to control the charge state of individual DBs in complex structures, even if they are in close proximity. This observation might have important consequences for the design of electronic circuits and logic gates based on DBs in passivated silicon surfaces. PMID:26404520
Molecular layers of ZnPc and FePc on Au(111) surface: Charge transfer and chemical interaction
NASA Astrophysics Data System (ADS)
Ahmadi, Sareh; Shariati, M. Nina; Yu, Shun; Göthelid, Mats
2012-08-01
We have studied zinc phthalocyanine (ZnPc) and iron phthalocyanine (FePc) thick films and monolayers on Au(111) using photoelectron spectroscopy and x-ray absorption spectroscopy. Both molecules are adsorbed flat on the surface at monolayer. ZnPc keeps this orientation in all investigated coverages, whereas FePc molecules stand up in the thick film. The stronger inter-molecular interaction of FePc molecules leads to change of orientation, as well as higher conductivity in FePc layer in comparison with ZnPc, which is reflected in thickness-dependent differences in core-level shifts. Work function changes indicate that both molecules donate charge to Au; through the π-system. However, the Fe3d derived lowest unoccupied molecular orbital receives charge from the substrate when forming an interface state at the Fermi level. Thus, the central atom plays an important role in mediating the charge, but the charge transfer as a whole is a balance between the two different charge transfer channels; π-system and the central atom.
Unprecedented Ionization Processes in Mass Spectrometry Provide Missing Link between ESI and MALDI.
Trimpin, Sarah; Lee, Chuping; Weidner, Steffen M; El-Baba, Tarick J; Lutomski, Corinne A; Inutan, Ellen D; Foley, Casey D; Ni, Chi-Kung; McEwen, Charles N
2018-03-05
In the field of mass spectrometry, producing intact, highly-charged protein ions from surfaces is a conundrum with significant potential payoff in application areas ranging from biomedical to clinical research. Here, we report on the ability to form intact, highly-charged protein ions on high vacuum time-of-flight mass spectrometers in the linear and reflectron modes achievable using experimental conditions that allow effective matrix removal from both the sample surfaces and from the charged clusters formed by the laser ablation event. The charge states are the highest reported on high vacuum mass spectrometers, yet they remain at only around a third of the highest charge obtained using laser ablation with a suitable matrix at atmospheric pressure. Other than physical instrument modifications, the key to forming abundant and stable highly-charged ions appears to be the volatility of the matrix used. Cumulative results suggest mechanistic links between the ionization process reported here and traditional ionization methods of electrospray ionization and matrix-assisted laser desorption/ionization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Noel, P.; Thomas, C.; Fu, Y.; Vila, L.; Haas, B.; Jouneau, P.-H.; Gambarelli, S.; Meunier, T.; Ballet, P.; Attané, J. P.
2018-04-01
We report the observation of spin-to-charge current conversion in strained mercury telluride at room temperature, using spin pumping experiments. We show that a HgCdTe barrier can be used to protect the HgTe from direct contact with the ferromagnet, leading to very high conversion rates, with inverse Edelstein lengths up to 2.0 ±0.5 nm . The influence of the HgTe layer thickness on the conversion efficiency is found to differ strongly from what is expected in spin Hall effect systems. These measurements, associated with the temperature dependence of the resistivity, suggest that these high conversion rates are due to the spin momentum locking property of HgTe surface states.
Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents
NASA Astrophysics Data System (ADS)
Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.
2009-03-01
Roseoflavin (8-dimethylamino-8-demethyl- D-riboflavin) and riboflavin in aqueous and organic solvents are studied by optical absorption spectroscopy, fluorescence spectroscopy, and fluorescence decay kinetics. Solvent polarity dependent absorption shifts are observed. The fluorescence quantum yields are solvent dependent. For roseoflavin the fluorescence decay shows a bi-exponential dependence (ps to sub-ps time constant, and 100 ps to a few ns time constant). The roseoflavin photo-dynamics is explained in terms of fast intra-molecular charge transfer (diabatic electron transfer) from the dimethylamino electron donor group to the pteridin carbonyl electron acceptor followed by intra-molecular charge recombination. The fast fluorescence component is due to direct locally-excited-state emission, and the slow fluorescence component is due to delayed locally-excited-state emission and charge transfer state emission. The fluorescence decay of riboflavin is mono-exponential. The S 1-state potential energy surface is determined by vibronic relaxation and solvation dynamics due to excited-state dipole moment changes (adiabatic optical electron transfer).
Effects of positive ion implantation into antireflection coating of silicon solar cells
NASA Technical Reports Server (NTRS)
Middleton, A. E.; Harpster, J. W.; Collis, W. J.; Kim, C. K.
1971-01-01
The state of technological development of Si solar cells for highest obtained efficiency and radiation resistance is summarized. The various theoretical analyses of Si solar cells are reviewed. It is shown that factors controlling blue response are carrier diffusion length, surface recombination, impurity concentration profile in surface region, high level of surface impurity concentration (degeneracy), reflection coefficient of oxide, and absorption coefficient of Si. The theory of ion implantation of charge into the oxide antireflection coating is developed and side effects are discussed. The experimental investigations were directed at determining whether the blue response of Si solar cells could be improved by phosphorus ion charges introduced into the oxide antireflection coating.
Bernoulli potential in type-I and weak type-II superconductors: II. Surface dipole
NASA Astrophysics Data System (ADS)
Lipavský, P.; Morawetz, K.; Koláček, J.; Mareš, J. J.; Brandt, E. H.; Schreiber, M.
2004-09-01
The Budd-Vannimenus theorem is modified to apply to superconductors in the Meissner state. The obtained identity links the surface value of the electrostatic potential to the density of free energy at the surface which allows one to evaluate the electrostatic potential observed via the capacitive pickup without the explicit solution of the charge profile.
Controlling the charge state of supported nanoparticles in catalysis: lessons from model systems.
Pacchioni, Gianfranco; Freund, Hans-Joachim
2018-04-26
Model systems are very important to identify the working principles of real catalysts, and to develop concepts that can be used in the design of new catalytic materials. In this review we report examples of the use of model systems to better understand and control the occurrence of charge transfer at the interface between supported metal nanoparticles and oxide surfaces. In the first part of this article we concentrate on the nature of the support, and on the basic difference in metal/oxide bonding going from a wide-gap non-reducible oxide material to reducible oxide semiconductors. The roles of oxide nanostructuring, bulk and surface defectiveness, and doping with hetero-atoms are also addressed, as they are all aspects that severely affect the metal/oxide interaction. Particular attention is given to the experimental measures of the occurrence of charge transfer at the metal/oxide interface. In this respect, systems based on oxide ultrathin films are particularly important as they allow the use of scanning probe spectroscopies which, often in combination with other measurements and with first principles theoretical simulations, allow full characterization of small supported nanoparticles and their charge state. In a few selected cases, a precise count of the electrons transferred between the oxide and the supported nanoparticle has been possible. Charge transfer can occur through thin, two-dimensional oxide layers also thanks to their structural flexibility. The flow of charge through the oxide film and the formation of charged adsorbates are accompanied in fact by a substantial polaronic relaxation of the film surface which can be rationalized based on electrostatic arguments. In the final part of this review the relationships between model systems and real catalysts are addressed by discussing some examples of how lessons learned from model systems have helped in rationalizing the behavior of real catalysts under working conditions.
Anumalla, Bramhini; Prabhu, N Prakash
2018-01-25
When organisms are subjected to stress conditions, one of their adaptive responses is accumulation of small organic molecules called osmolytes. These osmolytes affect the structure and stability of the biological macromolecules including proteins. The present study examines the effect of a negatively charged amino acid osmolyte, glutamate (Glu), on two model proteins, ribonuclease A (RNase A) and α-lactalbumin (α-LA), which have positive and negative surface charges at pH 7, respectively. These proteins follow two-state unfolding transitions during both heat and chemical induced denaturation processes. The addition of Glu stabilizes the proteins against temperature and induces an early equilibrium intermediate during unfolding. The stability is found to be enthalpy-driven, and the free energy of stabilization is more for α-LA compared to RNase A. The decrease in the partial molar volume and compressibility of both of the proteins in the presence of Glu suggests that the proteins attain a more compact state through surface hydration which could provide a more stable conformation. This is also supported by molecule dynamic simulation studies which demonstrate that the water density around the proteins is increased upon the addition of Glu. Further, the intermediates could be completely destabilized by lower concentrations (∼0.5 M) of guanidinium chloride and salt. However, urea subverts the Glu-induced intermediate formed by α-LA, whereas it only slightly destabilizes in the case of RNase A which has a positive surface charge and could possess charge-charge interactions with Glu. This suggests that, apart from hydration, columbic interactions might also contribute to the stability of the intermediate. Gdm-induced denaturation of RNase A and α-LA in the absence and the presence of Glu at different temperatures was carried out. These results also show the Glu-induced stabilization of both of the proteins; however, all of the unfolding transitions followed two-state transitions during chemical denaturation. The extent of stability exerted by Glu is higher for RNase A at higher temperature, whereas it provides more stability for α-LA at lower temperature. Thus, the experiments indicate that Glu induces a thermal equilibrium intermediate and increases the thermodynamic stability of proteins irrespective of their surface charges. The extent of stability varies between the proteins in a temperature-dependent manner.
Sindona, A; Pisarra, M; Maletta, S; Riccardi, P; Falcone, G
2010-12-01
Resonant neutralization of hyperthermal energy Na(+) ions impinging on Cu(100) surfaces is studied, focusing on two specific collision events: one in which the projectile is reflected off the surface, the other in which the incident atom penetrates the outer surface layers initiating a series of scattering processes, within the target, and coming out together with a single surface atom. A semi-empirical model potential is adopted that embeds: (i) the electronic structure of the sample, (ii) the central field of the projectile, and (iii) the contribution of the Cu atom ejected in multiple scattering events. The evolution of the ionization orbital of the scattered atom is simulated, backwards in time, using a wavepacket propagation algorithm. The output of the approach is the neutralization probability, obtained by projecting the time-reversed valence wavefunction of the projectile onto the initially filled conduction band states. The results are in agreement with available data from the literature (Keller et al 1995 Phys. Rev. Lett. 75 1654) indicating that the motion of surface atoms, exiting the targets with kinetic energies of the order of a few electronvolts, plays a significant role in the final charge state of projectiles.
Evidence of circular Rydberg states in beam-foil experiments: Role of the surface wake field
NASA Astrophysics Data System (ADS)
Sharma, Gaurav; Puri, Nitin K.; Kumar, Pravin; Nandi, T.
2017-12-01
We have employed the concept of the surface wake field to model the formation of the circular Rydberg states in the beam-foil experiments. The experimental studies of atomic excitation processes show the formation of circular Rydberg states either in the bulk of the foil or at the exit surface, and the mechanism is explained by several controversial theories. The present model is based on the interesting fact that the charge state fraction as well as the surface wake field depend on the foil thickness and it resolves a long-standing discrepancy on the mechanism of the formation of circular Rydberg states. The influence of exit layers is twofold. Initially, the high angular momentum Rydberg states are produced in the last layers of the foil by the Stark switching due to the bulk wake field and finally, they are transferred to the circular Rydberg states as a single multiphoton process due to the influence of the surface wake field.
Resonances and thresholds in the Rydberg-level population of multiply charged ions at solid surfaces
NASA Astrophysics Data System (ADS)
Nedeljković, Lj. D.; Nedeljković, N. N.
1998-12-01
We present a theoretical study of resonances and thresholds, two specific features of Rydberg-state formation of multiply charged ions (Z=6, 7, and 8) escaping a solid surface at intermediate velocities (v~1 a.u.) in the normal emergence geometry. The resonances are recognized in pronounced maxima of the experimentally observed population curves of Ar VIII ions for resonant values of the principal quantum number n=nres=11 and for the angular momentum quantum numbers l=1 and 2. Absence of optical signals in detectors of beam-foil experiments for n>nthr of S VI and Cl VII ions (with l=0, 1, and 2) and Ar VIII for l=0 is interpreted as a threshold phenomenon. An interplay between resonance and threshold effects is established within the framework of quantum dynamics of the low angular momentum Rydberg-state formation, based on a generalization of Demkov-Ostrovskii's charge-exchange model. In the model proposed, the Ar VIII resonances appear as a consequence of electron tunneling in the very vicinity of the ion-surface potential barrier top and at some critical ion-surface distances Rc. The observed thresholds are explained by means of a decay mechanism of ionic Rydberg states formed dominantly above the Fermi level EF of a solid conduction band. The theoretically predicted resonant and threshold values, nres and nthr of the principal quantum number n, as well as the obtained population probabilities Pnl=Pnl(v,Z), are in sufficiently good agreement with all available experimental findings.
Surface Dangling-Bond States and Band Lineups in Hydrogen-Terminated Si, Ge, and Ge/Si Nanowires
NASA Astrophysics Data System (ADS)
Kagimura, R.; Nunes, R. W.; Chacham, H.
2007-01-01
We report an ab initio study of the electronic properties of surface dangling-bond (SDB) states in hydrogen-terminated Si and Ge nanowires with diameters between 1 and 2 nm, Ge/Si nanowire heterostructures, and Si and Ge (111) surfaces. We find that the charge transition levels ɛ(+/-) of SDB states behave as a common energy reference among Si and Ge wires and Si/Ge heterostructures, at 4.3±0.1eV below the vacuum level. Calculations of ɛ(+/-) for isolated atoms indicate that this nearly constant value is a periodic-table atomic property.
Angular dependent XPS study of surface band bending on Ga-polar n-GaN
NASA Astrophysics Data System (ADS)
Huang, Rong; Liu, Tong; Zhao, Yanfei; Zhu, Yafeng; Huang, Zengli; Li, Fangsen; Liu, Jianping; Zhang, Liqun; Zhang, Shuming; Dingsun, An; Yang, Hui
2018-05-01
Surface band bending and composition of Ga-polar n-GaN with different surface treatments were characterized by using angular dependent X-ray photoelectron spectroscopy. Upward surface band bending of varying degree was observed distinctly upon to the treatment methods. Besides the nitrogen vacancies, we found that surface states of oxygen-containing absorbates (O-H component) also contribute to the surface band bending, which lead the Fermi level pined at a level further closer to the conduction band edge on n-GaN surface. The n-GaN surface with lower surface band bending exhibits better linear electrical properties for Ti/GaN Ohmic contacts. Moreover, the density of positively charged surface states could be derived from the values of surface band bending.
Ge, Aimin; Matsusaki, Michiya; Qiao, Lin; Akashi, Mitsuru; Ye, Shen
2016-04-26
Sum frequency generation (SFG) vibrational spectroscopy was employed to investigate the surface structures of polyelectrolyte multilayers (PEMs) constructed by sequentially alternating adsorption of poly(diallyldimethylammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS). It was found that the surface structures and surface charge density of the as-deposited PEMs of PDDA/PSS significantly depend on the concentration of sodium chloride (NaCl) present in the polyelectrolyte solutions. Furthermore, it was found that the surface structure of the as-deposited PEMs is in a metastable state and will reach the equilibrium state by diffusion of the polyelectrolyte chain after an aging process, resulting in a polyelectrolyte mixture on the PEM surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apostol, Nicoleta Georgiana, E-mail: nicoleta.apostol@infim.ro
2014-11-24
This work reports on the use of X-ray photoelectron spectroscopy to quantify band bending at ferroelectric free surfaces and at their interfaces with metals. Surfaces exhibiting out-of-plane ferroelectric polarization are characterized by a band bending, due to the formation of a dipole layer at the surface, composed by the uncompensated polarization charges (due to ionic displacement) and to the depolarization charge sheet of opposite sign, composed by mobile charge carriers, which migrate near surface, owing to the depolarization electric field. To this surface band bending due to out-of-plane polarization states, metal-semiconductor Schottky barriers must be considered additionally when ferroelectrics aremore » covered by metal layers. It is found that the net band bending is not always an algebraic sum of the two effects discussed above, since sometimes the metal is able to provide additional charge carriers, which are able to fully compensate the surface charge of the ferroelectric, up to the vanishing of the ferroelectric band bending. The two cases which will be discussed in more detail are Au and Cu deposited by molecular beam epitaxy on PbZr{sub 0.2}Ti{sub 0.8}O{sub 3}(001) single crystal thin layers, prepared by pulsed laser deposition. Gold forms unconnected nanoparticles, and their effect on the band bending is the apparition of a Schottky band bending additional to the band bending due to the out-of-plane polarization. Copper, starting with a given thickness, forms continuous metal layers connected to the ground of the system, and provide electrons in sufficient quantity to compensate the band bending due to the out-of-plane polarization.« less
Humidity-Induced Charge Leakage and Field Attenuation in Electric Field Microsensors
Zhang, Haiyan; Fang, Dongming; Yang, Pengfei; Peng, Chunrong; Wen, Xiaolong; Xia, Shanhong
2012-01-01
The steady-state zero output of static electric field measuring systems often fluctuates, which is caused mainly by the finite leakage resistance of the water film on the surface of the electric field microsensor package. The water adsorption has been calculated using the Boltzmann distribution equation at various relative humidities for borosilicate glass and polytetrafluoroethylene surfaces. At various humidities, water film thickness has been calculated, and the induced charge leakage and field attenuation have been theoretically investigated. Experiments have been performed with microsensors to verify the theoretical predictions and the results are in good agreement. PMID:22666077
Multiple charge density wave states at the surface of TbT e 3
Fu, Ling; Kraft, Aaron M.; Sharma, Bishnu; ...
2016-11-01
We studied TbTe 3 using scanning tunneling microscopy (STM) in the temperature range of 298–355 K. Our measurements detect a unidirectional charge density wave (CDW) state in the surface Te layer with a wave vector consistent with that of the bulk q CDW = 0.30 ± 0.01c*. However, unlike previous STM measurements, and differing from measurements probing the bulk, we detect two perpendicular orientations for the unidirectional CDW with no directional preference for the in-plane crystal axes (a or c axis) and no noticeable difference in wave vector magnitude. In addition, we find regions in which the bidirectional CDW statesmore » coexist. We propose that observation of two unidirectional CDW states indicates a decoupling of the surface Te layer from the rare-earth block layer below, and that strain variations in the Te surface layer drive the local CDW direction to the specific unidirectional or, in rare occurrences, bidirectional CDW orders observed. This indicates that similar driving mechanisms for CDW formation in the bulk, where anisotropic lattice strain energy is important, are at play at the surface. Furthermore, the wave vectors for the bidirectional order we observe differ from those theoretically predicted for checkerboard order competing with stripe order in a Fermi-surface nesting scenario, suggesting that factors beyond Fermi-surface nesting drive CDW order in TbTe 3. As a result, our temperature-dependent measurements provide evidence for localized CDW formation above the bulk transition temperature T CDW.« less
Measurements of charge state breeding efficiency at BNL test EBIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondrashev, S.; Alessi, J.; Beebe, E.N.
Charge breeding of singly charged ions is required to efficiently accelerate rare isotope ion beams for nuclear and astrophysics experiments, and to enhance the accuracy of low-energy Penning trap-assisted spectroscopy. An efficient charge breeder for the Californium Rare Isotope Breeder Upgrade (CARIBU) to the ANL Tandem Linear Accelerator System (ATLAS) facility is being developed using the BNL Test Electron Beam Ion Source (Test EBIS) as a prototype. Parameters of the CARIBU EBIS charge breeder are similar to those of the BNL Test EBIS except the electron beam current will be adjustable in the range from 1 to 2 {angstrom}. Themore » electron beam current density in the CARIBU EBIS trap will be significantly higher than in existing operational charge state breeders based on the EBIS concept. The charge state breeding efficiency is expected to be about 25% for the isotope ions extracted from the CARIBU. For the success of our EBIS project, it is essential to demonstrate high breeding efficiency at the BNL Test EBIS tuned to the regime close to the parameters of the CARIBU EBIS at ANL. The breeding efficiency optimization and measurements have been successfully carried out using a Cs{sup +} surface ionization ion source for externally pulsed injection into the BNL Test EBIS. A Cs{sup +} ion beam with a total number of ions of 5 x 10{sup 8} and optimized pulse length of 70 {mu}s has been injected into the Test EBIS and charge-bred for 5.3 ms for two different electron beam currents 1 and 1.5 {angstrom}. In these experiments we have achieved 70% injection/extraction efficiency and breeding efficiency into the most abundant charge state 17%.« less
Large Enhancement of Thermal Conductivity and Lorenz Number in Topological Insulator Thin Films.
Luo, Zhe; Tian, Jifa; Huang, Shouyuan; Srinivasan, Mithun; Maassen, Jesse; Chen, Yong P; Xu, Xianfan
2018-02-27
Topological insulators (TI) have attracted extensive research effort due to their insulating bulk states but conducting surface states. However, investigation and understanding of thermal transport in topological insulators, particularly the effect of surface states, are lacking. In this work, we studied thickness-dependent in-plane thermal and electrical conductivity of Bi 2 Te 2 Se TI thin films. A large enhancement in both thermal and electrical conductivity was observed for films with thicknesses below 20 nm, which is attributed to the surface states and bulk-insulating nature of these films. Moreover, a surface Lorenz number much larger than the Sommerfeld value was found. Systematic transport measurements indicated that the Fermi surface is located near the charge neutrality point (CNP) when the film thickness is below 20 nm. Possible reasons for the large Lorenz number include electrical and thermal current decoupling in the surface state Dirac fluid, and bipolar diffusion transport. A simple computational model indicates that the surface states and bipolar diffusion indeed can lead to enhanced electrical and thermal transport and a large Lorenz number.
NASA Astrophysics Data System (ADS)
Swedberg, Elena
Ferroelectric and antiferroelectric ultrathin films have attracted a lot of attention recently due to their remarkable properties and their potential to allow for device miniaturization in numerous applications. However, when the ferroelectric films are scaled down, it brings about an unavoidable depolarizing field. A partial surface charge compensation allows to control the residual depolarizing field and manipulate the properties of ultrathin ferroelectric films. In this dissertation we take advantage of atomistic first-principles-based simulations to expand our understanding of the role of the partial surface charge compensation in the properties of ferroelectric and antiferroelectric ultrathin films. The application of our computational methodology to study the effect of the partial surface charge compensation in ferroelectric ultrathin films led to the prediction that, depending on the quality of the surface charge compensation, ferroelectric thin films respond to an electric field in a qualitatively different manner. They can be tuned to behave like a linear dielectric, a ferroelectric or even an antiferroelectric. This effect was shown to exist in films with different mechanical boundary conditions and different crystal symmetries. There are a number of potential applications where such properties of ferroelectric thin films can be used. One of these potential applications is energy storage. We will show that, in the antiferroelectric regime, ferroelectric thin films exhibit drastic enhancement of energy storage density which is a desirable property. One of the most promising applications of ferroelectric ultrathin films that emerged only recently is the harvesting of the giant electrocaloric effect. Interestingly, despite numerous studies of the electrocaloric effect in ferroelectric thin films, it is presently unknown how a residual depolarizing field affects the electrocaloric properties of such films. Application of state-of-the-art computational methods to investigate the electrocaloric effect in ferroelectric films with partial surface charge compensation led to the prediction that the residual depolarizing field can perform a dual role in the electrocaloric effect in these films. When the depolarizing field creates competition between the monodomain and nanodomain states, we predict an enhancement of the electrocaloric effect due to the frustration that increases the entropy of the state and therefore the electrocaloric temperature change. On the other hand, when the depolarizing field leads to a formation of nanodomains, thin films either exhibit a small electrocaloric effect or lose their electrocaloric properties altogether to the irreversible nanodomain motion. When the residual depolarizing field is weak enough to permit the formation of monodomain phases, the electrocaloric effect is significantly reduced as compared to bulk. We believe that our findings could potentially reveal additional opportunities to optimize solid state cooling technology. While the electrocaloric effect has been a popular topic of interest in recent years [12], there still exists numerous gaps in the fundamental understanding of the effect. In particular, it is presently unknown whether the scaling laws, known to exist for magnetocaloric materials, can be applied to ferroelectric and antiferroelectric electrocalorics. We predict the existence of scaling laws for low-field electrocaloric temperature change in antiferroelectric and ferroelectric materials. With the help of first-principles-based simulations, we showed computationally that the scaling laws exist for antiferroelectric PbZrO3 along with ferroelectrics PbTiO3, BaTiO 3 and KNbO3. Additional evidence of the scaling laws existence are provided using experimental data from the literature. Interestingly, our studies on ferroelectric films predicted the existence of antiferroelectric behavior in ultrathin films with partial surface charge compensation. One may wonder whether it is possible to stabilize the ferroelectric phase in antiferroelectric films and what role the surface charge screening would play in such a transition. Motivated to address these fundamental questions, we used computational experiments to study antiferroelectric ultrathin films with a residual depolarizing field. Our studies led to the following predictions. We found that PbZrO3 thin films exhibit the ferroelectric phase upon scaling down and under the condition of efficient surface charge compensation. We also found a strong competition between the antiferroelectric and ferroelectric phases for the thin films of the critical size associated with antiferroelectric-ferroelectric phase transition. This finding motivated us to study the electrocaloric effect in PbZrO3 thin films with antiferroelectric-ferroelectric phase competition. We found that high tunability of the phase transition by the electric field leads to a wide range of temperatures associated with a strong electrocaloric effect. In addition, we found that epitaxial strain provides further tunability to the electrocaloric properties. In summary, our studies led to a broader and deeper understanding of the abundantly many roles surface charge compensation plays in ultrathin ferroelectrics and antiferroelectrics.
Two-dimensional electron beam charging model for polymer films
NASA Technical Reports Server (NTRS)
Reeves, R. D.; Balmain, K. G.
1981-01-01
A two-dimensional model is developed to describe the charging of strips of thin polymer films above a grounded substrate exposed to a uniform mono-energetic electron beam. The study is motivated by the observed anomalous behavior of geosynchronous satellites, which has been attributed to differential charging of the satellite surfaces exposed to magnetospheric electrons. Surface and bulk electric fields are calcuated at steady state in order to identify regions of high electrical stress, with emphasis on behavior near the material's edge. The model is used to study the effects of some of the experimental parameters, notably beam energy, beam angle of incidence, beam current density, material thickness and material width. Also examined are the consequences of a central gap in the material and a discontinuity in the material thickness.
NASA Astrophysics Data System (ADS)
Haque, Syed N.; Hussain, Tariq; Chowdhry, Babur Z.; Douroumis, Dennis; Scoutaris, Nikolaos; Nokhodchi, Ali; Maniruzzaman, Mohammed
2017-12-01
This study investigated the surface of semi-crystalline composite granules produced via a novel mechano-chemical process and assessed the effect of electrostatic charging. Ibuprofen (IBU), a model drug with low solubility and known associated processing challenges was loaded in composite granules to improve its processibility and dissolution rates. Synthetic amorphous mesoporous magnesium alumina metasilicate (MAS) was co-processed with hydrophilic HPMC polymer in the presence of polyethylene glycol 2000 (PEG) and deionised water. The solid state analyses conducted by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) revealed the existence of semi-crystalline IBU in the complex composite structures. Dynamic vapour sorption (DVS) study showed the water sorption and desorption profiles of the manufactured composite granules as well as the effect of water on the solid-state stability of IBU in various formulations. Advanced surface analysis conducted via energy dispersive X-ray (EDS) revealed homogenous distribution of the drug/excipients on the surface of the granules while atomic force microscopy (AFM) complemented the findings. The electrostatic charge analysis showed variable charge property which is affected by the size of the particles/granules. As expected, the in vitro dissolution study showed about 5 fold increase in the release rates of IBU compared to that of the bulk drug. The mechanochemical processing has been demonstrated as an efficient technique to develop semi-crystalline composite granules with enhanced dissolution rates of water insoluble drugs.
Xie, Ying Peng; Yang, Yongqiang; Wang, Guosheng; Liu, Gang
2017-10-01
The solid-state Z-scheme trinary/binary heterostructures show the advantage of utilizing the high-energy photogenerated charge carriers in photocatalysis. However, the key factors controlling such Z-scheme in the binary heterostructures are still unclear. In this paper, we showed that oxygen vacancies could act as an interface electron transfer mediator to promote the direct Z-scheme charge transfer process in binary semiconductor heterostructures of CdS/ZnS. Increasing the concentration of surface oxygen vacancies of ZnO crystal can greatly enhance photocatalytic hydrogen generation of CdS/ZnO heterostructure. This was attributed to the strengthened direct Z-scheme charge transfer process in CdS/ZnO, as evidenced by steady-state/time-resolved photoluminescence spectroscopy and selective photodeposition of metal particles on the heterostructure. Copyright © 2017 Elsevier Inc. All rights reserved.
Secondary ion emission from Ti, V, Cu, Ag and Au surfaces under KeV Cs + irradiation
NASA Astrophysics Data System (ADS)
van der Heide, P. A. W.
2005-02-01
Low energy mono-atomic singly charged secondary ion emissions from Ti, V, Cu, Ag and Au substrates during the initial stages of sputtering with Cs + primary ions have been studied. With the exception of the Ag - secondary ions, all exhibited exponential like correlations with the Cs induced work function changes. This, along with the lack of variations in the valence band structure around the Fermi edge, is consistent with resonance charge transfer to/from states located at the Fermi edge. The insensitivity of Ag - to work function appears to stem from the dominance of a separate ion formation process, namely charge transfer into vacant 4d states in the sputtered population, which themselves appear to be produced through collective oscillations. A similar excitation-mediated process involving different levels also appears to be active in the formation of other negatively charged transition metal ions, albeit to a much lesser degree.
Faraday Rotation Due to Surface States in the Topological Insulator (Bi1-xSbx)2Te3.
Shao, Yinming; Post, Kirk W; Wu, Jhih-Sheng; Dai, Siyuan; Frenzel, Alex J; Richardella, Anthony R; Lee, Joon Sue; Samarth, Nitin; Fogler, Michael M; Balatsky, Alexander V; Kharzeev, Dmitri E; Basov, D N
2017-02-08
Using magneto-infrared spectroscopy, we have explored the charge dynamics of (Bi,Sb) 2 Te 3 thin films on InP substrates. From the magneto-transmission data we extracted three distinct cyclotron resonance (CR) energies that are all apparent in the broad band Faraday rotation (FR) spectra. This comprehensive FR-CR data set has allowed us to isolate the response of the bulk states from the intrinsic surface states associated with both the top and bottom surfaces of the film. The FR data uncovered that electron- and hole-type Dirac Fermions reside on opposite surfaces of our films, which paves the way for observing many exotic quantum phenomena in topological insulators.
NASA Astrophysics Data System (ADS)
Cui, W.; Zhao, X. L.; An, Y. H.; Guo, D. Y.; Qing, X. Y.; Wu, Z. P.; Li, P. G.; Li, L. H.; Cui, C.; Tang, W. H.
2017-04-01
Conductive Ga2O3 thin films with an In2O3 buffer layer have been prepared on c-plane sapphire substrates using a laser molecular beam epitaxy technique. The effects of the In2O3 buffer layer on the structure and optical, electrical and surface state properties of the Ga2O3 films have been studied. The change in conductivity of the thin films is attributed to different thicknesses of the In2O3 buffer layer, which determine the concentration of charge carriers injected into the upper Ga2O3 layer from the interface of the bilayer thin films. In addition, the increase in flat band voltage shift and capacitance values as the In2O3 buffer layer thickens are attributed to the increase in surface state density, which also contributes to the rapid shrinkage of the optical band gap of the Ga2O3. With transparency to visible light, high n-type conduction and the ability to tune the optical band gap and surface state density, we propose that Ga2O3/In2O3 bilayer thin film is an ideal n-type semiconductor for fabrication of transparent power devices, solar cell electrodes and gas sensors.
Multiple Weyl points and the sign change of their topological charges in woodpile photonic crystals
NASA Astrophysics Data System (ADS)
Chang, Ming-Li; Xiao, Meng; Chen, Wen-Jie; Chan, C. T.
2017-03-01
We show that Weyl points with topological charges 1 and 2 can be found in very simple chiral woodpile photonic crystals and the distribution of the charges can be changed by changing the material parameters without altering space-group symmetry. The underlying physics can be understood through a tight-binding model. Gapless surface states and their backscattering immune properties also are demonstrated in these systems. Obtaining Weyl points in these easily fabricated woodpile photonic crystals will facilitate the realization of Weyl point physics in optical and IR frequencies.
NASA Astrophysics Data System (ADS)
Chernakov, Dmitry I.; Sidorov, Alexander I.; Stolyarchuk, Maxim V.; Kozlova, Darya A.; Krykova, Victoria A.; Nikonorov, Nikolay V.
2018-02-01
It is shown experimentally that in photo-thermo-refractive glasses the transformation of charged silver subnanosized molecular clusters to neutral state by UV irradiation results in the increase of glass refractive index. The increment of the refractive index reaches Δn = 0.76·10-4. Computer simulation has shown that the polarizability of neutral molecular clusters is by 20-40% larger than of charged ones. The reason of this is the increase of electron density and volume of electron density surfaces during the transformation of molecular cluster to the neutral state. The transition molecular cluster from the ground state to the excited state also results in the increase of its polarizability.
Riga, Esther K; Vöhringer, Maria; Widyaya, Vania Tanda; Lienkamp, Karen
2017-10-01
Contact-active antimicrobial polymer surfaces bear cationic charges and kill or deactivate bacteria by interaction with the negatively charged parts of their cell envelope (lipopolysaccharides, peptidoglycan, and membrane lipids). The exact mechanism of this interaction is still under debate. While cationic antimicrobial polymer surfaces can be very useful for short-term applications, they lose their activity once they are contaminated by a sufficiently thick layer of adhering biomolecules or bacterial cell debris. This layer shields incoming bacteria from the antimicrobially active cationic surface moieties. Besides discussing antimicrobial surfaces, this feature article focuses on recent strategies that were developed to overcome the contamination problem. This includes bifunctional materials with simultaneously presented antimicrobial and protein-repellent moieties; polymer surfaces that can be switched from an antimicrobial, cell-attractive to a cell-repellent state; polymer surfaces that can be regenerated by enzyme action; degradable antimicrobial polymers; and antimicrobial polymer surfaces with removable top layers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Sun, Zelai; Li, Chengrong
2017-11-01
Surface charge accumulation can incur changes in electric field distribution, involved in the electron propagation process, and result in a significant decrease in the surface flashover voltage. The existing 2D surface charge measurement fails to meet the actual needs in real engineering applications that usually adopt the 45° conical frustum insulators. The present research developed a novel 3D measurement platform to capture surface charge distribution on solid insulation under nanosecond pulse in a vacuum. The results indicate that all surface charges are positive under a positive pulse and negative under a negative pulse. Surface charges tend to accumulate more near the upper electrode. Surface charge density increases significantly with the increase in pulse counts and amplitudes. Accumulation of surface charge results in a certain decrease of flashover voltage. Taking consideration of the secondary electron emission for the surface charge accumulation, four materials were obtained to demonstrate the effects on surface charge. Combining the effect incurred by secondary electron emission and the weighty action taken by surface charge accumulation on the flashover phenomena, the discharge mechanism along the insulator surface under nanosecond pulse voltage was proposed.
NASA Astrophysics Data System (ADS)
Ito, S.; Feng, B.; Arita, M.; Someya, T.; Chen, W.-C.; Takayama, A.; Iimori, T.; Namatame, H.; Taniguchi, M.; Cheng, C.-M.; Tang, S.-J.; Komori, F.; Matsuda, I.
2018-04-01
Alkali-metal adsorption on the surface of materials is widely used for in situ surface electron doping, particularly for observing unoccupied band structures by angle-resolved photoemission spectroscopy (ARPES). However, the effects of alkali-metal atoms on the resulting band structures have yet to be fully investigated, owing to difficulties in both experiments and calculations. Here, we combine ARPES measurements on cesium-adsorbed ultrathin bismuth films with first-principles calculations of the electronic charge densities and demonstrate a simple method to evaluate alkali-metal induced band deformation. We reveal that deformation of bismuth surface bands is directly correlated with vertical charge-density profiles at each electronic state of bismuth. In contrast, a change in the quantized bulk bands is well described by a conventional rigid-band-shift picture. We discuss these two aspects of the band deformation holistically, considering spatial distributions of the electronic states and cesium-bismuth hybridization, and provide a prescription for applying alkali-metal adsorption to a wide range of materials.
NASA Astrophysics Data System (ADS)
Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.; Varavin, V. S.; Dvoretskii, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Sidorov, G. Yu.
2017-12-01
Metal-insulator-semiconductor (MIS) structures based on n(p)-Hg1-xCdxTe (x = 0.22-0.40) with near-surface variable-gap layers were grown by the molecular-beam epitaxy (MBE) technique on the Si (0 1 3) substrates. Electrical properties of MIS structures were investigated experimentally at various temperatures (9-77 K) and directions of voltage sweep. The ;narrow swing; technique was used to determine the spectra of fast surface states with the exception of hysteresis effects. It is established that the density of fast surface states at the MCT/Al2O3 interface at a minimum does not exceed 3 × 1010 eV-1 × cm-2. For MIS structures based on n-MCT/Si(0 1 3), the differential resistance of the space-charge region in strong inversion mode in the temperature range 50-90 K is limited by the Shockley-Read-Hall generation in the space-charge region.
NASA Astrophysics Data System (ADS)
Barr, Timothy J.
Interfacial electron transfer reactions facilitate charge separation and recombination in dye-sensitized solar cells (DSSCs). Understanding what controls these electron transfer reactions is necessary to develop efficient DSSCs. Gerischer proposed a theory for interfacial electron transfer where the rate constant was related to the energetic overlap between the donor and acceptor states. The present work focuses on understanding how the composition of the CH3CN electrolyte influenced this overlap. It was found that the identity of the electrolyte cation tuned the energetic position of TiO2 electron acceptor states, similar to how pH influences the flatband potential of bulk semiconductors in aqueous electrolytes. For example, the onset for absorption changes, that were attributed to electrons in the TiO2 thin film, were 0.5 V more positive in Mg2+ containing electrolyte than TBA+, where TBA+ is tetrabutylammonium. Similar studies performed on mesoporous, nanocrystalline SnO2 thin films reported a similar cation dependence, but also found evidence for electrons that did not absorb in the visible region that were termed ‘phantom electrons.’. Electron injection is known to generate surface electric fields on the order of 2 MV/cm. The rearrangement of cations in response to surface electric fields, termed screening, was investigated. It was found that magnitude of the electric field and the screening dynamics were dependent on the identity of the electrolyte cation. The rate of charge recombination to the anionic iodide/triiodide redox mediator correlated with the screening ability of the cation, and was initially thought to control charge recombination. However, it was difficult to determine whether electron diffusion or driving force were also cation dependent. Therefore, a in-lab built apparatus, termed STRiVE, was constructed that could disentangle the influence electron diffusion, driving force, and electric fields had on charge recombination. It was found that electron diffusion was independent of the electrolyte cation. Furthermore, charge recombination displayed the same cation-sensitivity using both anionic and cationic redox mediators, indicating electric fields did not cause the cation-dependence of charge recombination. Instead, it was found that the electrolyte cation tuned the energetic position of the TiO2 acceptor states and modulated the driving force for charge recombination.
NASA Astrophysics Data System (ADS)
Badu-Tawiah, Abraham K.; Campbell, Dahlia I.; Cooks, R. Graham
2012-06-01
The exposure of charged microdroplets containing organic ions to solid-phase reagents at ambient surfaces results in heterogeneous ion/surface reactions. The electrosprayed droplets were driven pneumatically in ambient air and then electrically directed onto a surface coated with reagent. Using this reactive soft landing approach, acid-catalyzed Girard condensation was achieved at an ambient surface by directing droplets containing Girard T ions onto a dry keto-steroid. The charged droplet/surface reaction was much more efficient than the corresponding bulk solution-phase reaction performed on the same scale. The increase in product yield is ascribed to solvent evaporation, which causes moderate pH values in the starting droplet to reach extreme values and increases reagent concentrations. Comparisons are made with an experiment in which the droplets were pneumatically accelerated onto the ambient surface (reactive desorption electrospray ionization, DESI). The same reaction products were observed but differences in spatial distribution were seen associated with the "splash" of the high velocity DESI droplets. In a third type of experiment, the reactions of charged droplets with vapor phase reagents were examined by allowing electrosprayed droplets containing a reagent to intercept the headspace vapor of an analyte. Deposition onto a collector surface and mass analysis showed that samples in the vapor phase were captured by the electrospray droplets, and that instantaneous derivatization of the captured sample is possible in the open air. The systems examined under this condition included the derivatization of cortisone vapor with Girard T and that of 4-phenylpyridine N-oxide and 2-phenylacetophenone vapors with ethanolamine.
Earthquake lights and the stress-activation of positive hole charge carriers in rocks
St-Laurent, F.; Derr, J.S.; Freund, F.T.
2006-01-01
Earthquake-related luminous phenomena (also known as earthquake lights) may arise from (1) the stress-activation of positive hole (p-hole) charge carriers in igneous rocks and (2) the accumulation of high charge carrier concentrations at asperities in the crust where the stress rates increase very rapidly as an earthquake approaches. It is proposed that, when a critical charge carrier concentration is reached, the p-holes form a degenerated solid state plasma that can break out of the confined rock volume and propagate as a rapidly expanding charge cloud. Upon reaching the surface the charge cloud causes dielectric breakdown at the air-rock interface, i.e. corona discharges, accompanied by the emission of light and high frequency electromagnetic radiation. ?? 2006 Elsevier Ltd. All rights reserved.
Jung, Youngsoo; Son, You-Hwan; Lee, Jung-Kun; Phuoc, Tran X; Soong, Yee; Chyu, Minking K
2011-09-01
Two different types of clay nanoparticle hybrid, iron oxide nanoparticle clay hybrid (ICH) and Al(2)O(3)-SiO(2) nanoparticle clay hybrid (ASCH), were synthesized and their effects on the rheological properties of aqueous bentonite fluids in steady state and dynamic state were explored. When ICH particles were added, bentonite particles in the fluid cross-link to form relatively well-oriented porous structure. This is attributed to the development of positively charged edge surfaces in ICH that leads to strengthening of the gel structure of the bentonite susensions. The role of ASCH particles on the interparticle association of the bentonite fluids is different from that of ICH and sensitive to pH. As pH of ASCH-added bentonite suspensions increased, the viscosity, yield stress, storage modulus, and flow stress decreased. In contrast, at low pH, the clay suspensions containing ASCH additives were coagulated and their rheological properties become close to those of ICH added bentonite fluids. A correlation between the net surface charge of the hybrid additives and the rheological properties of the fluids indicates that the embedded nanoparticles within the interlayer space control the variable charge of the edge surfaces of the platelets and determine the particles association behavior of the clay fluids.
Low power arcjet system spacecraft impacts
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.
1993-01-01
Application of electrothermal arcjets on communications satellites requires assessment of integration concerns identified by the user community. Perceived risks include plume contamination of spacecraft materials, induced arcing or electrostatic discharges between differentially charged spacecraft surfaces, and conducted and radiated electromagnetic interference (EMI) for both steady state and transient conditions. A Space Act agreement between Martin Marietta Astro Space, the Rocket Research Company, and NASA's Lewis Research Center was established to experimentally examine these issues. Spacecraft materials were exposed to an arcjet plume for 40 hours, representing 40 weeks of actual spacecraft life, and contamination was characterized by changes in surface properties. With the exception of the change in emittance of one sample, all measurable changes in surface properties resulted in acceptable end of life characteristics. Charged spacecraft samples were benignly and consistently reduced to ground potential during exposure to the powered arcjet plume, suggesting that the arcjet could act as a charge control device on spacecraft. Steady state EMI signatures obtained using two different power processing units were similar to emissions measured in a previous test. Emissions measured in UHF, S, C, Ku and Ka bands obtained a null result which verified previous work in the UHF, S, and C bands. Characteristics of conducted and radiated transient emissions appear within standard spacecraft susceptibility criteria.
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3
Ziatdinov, M.; Banerjee, A.; Maksov, A.; Berlijn, T.; Zhou, W.; Cao, H. B.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Baddorf, A. P.; Kalinin, S. V.
2016-01-01
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, α-RuCl3. Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of α-RuCl3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at the nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of ≈0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual α-RuCl3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface. PMID:27941761
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3.
Ziatdinov, M; Banerjee, A; Maksov, A; Berlijn, T; Zhou, W; Cao, H B; Yan, J-Q; Bridges, C A; Mandrus, D G; Nagler, S E; Baddorf, A P; Kalinin, S V
2016-12-12
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, α-RuCl 3 . Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of α-RuCl 3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at the nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of ≈0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual α-RuCl 3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface.
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl 3
Ziatdinov, Maxim A.; Banerjee, Arnab; Maksov, Artem B.; ...
2016-12-12
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, -RuCl3. Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of -RuCl3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at themore » nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of 0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual -RuCl3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface.« less
Change of carrier density at the pseudogap critical point of a cuprate superconductor.
Badoux, S; Tabis, W; Laliberté, F; Grissonnanche, G; Vignolle, B; Vignolles, D; Béard, J; Bonn, D A; Hardy, W N; Liang, R; Doiron-Leyraud, N; Taillefer, Louis; Proust, Cyril
2016-03-10
The pseudogap is a partial gap in the electronic density of states that opens in the normal (non-superconducting) state of cuprate superconductors and whose origin is a long-standing puzzle. Its connection to the Mott insulator phase at low doping (hole concentration, p) remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate doping is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 tesla to show that Fermi-surface reconstruction by charge order in the cuprate YBa2Cu3Oy ends sharply at a critical doping p = 0.16 that is distinctly lower than the pseudogap critical point p* = 0.19 (ref. 11). This shows that the pseudogap and charge order are separate phenomena. We find that the change in carrier density n from n = 1 + p in the conventional metal at high doping (ref. 12) to n = p at low doping (ref. 13) starts at the pseudogap critical point. This shows that the pseudogap and the antiferromagnetic Mott insulator are linked.
Single Nanoparticle Translocation Through Chemically Modified Solid Nanopore
NASA Astrophysics Data System (ADS)
Tan, Shengwei; Wang, Lei; Liu, Hang; Wu, Hongwen; Liu, Quanjun
2016-02-01
The nanopore sensor as a high-throughput and low-cost technology can detect single nanoparticle in solution. In the present study, the silicon nitride nanopores were fabricated by focused Ga ion beam (FIB), and the surface was functionalized with 3-aminopropyltriethoxysilane to change its surface charge density. The positively charged nanopore surface attracted negatively charged nanoparticles when they were in the vicinity of the nanopore. And, nanoparticle translocation speed was slowed down to obtain a clear and deterministic signal. Compared with previous studied small nanoparticles, the electrophoretic translocation of negatively charged polystyrene (PS) nanoparticles (diameter ~100 nm) was investigated in solution using the Coulter counter principle in which the time-dependent nanopore current was recorded as the nanoparticles were driven across the nanopore. A linear dependence was found between current drop and biased voltage. An exponentially decaying function ( t d ~ e -v/v0 ) was found between the duration time and biased voltage. The interaction between the amine-functionalized nanopore wall and PS microspheres was discussed while translating PS microspheres. We explored also translocations of PS microspheres through amine-functionalized solid-state nanopores by varying the solution pH (5.4, 7.0, and 10.0) with 0.02 M potassium chloride (KCl). Surface functionalization showed to provide a useful step to fine-tune the surface property, which can selectively transport molecules or particles. This approach is likely to be applied to gene sequencing.
Multipactor saturation in parallel-plate waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorolla, E.; Mattes, M.
2012-07-15
The saturation stage of a multipactor discharge is considered of interest, since it can guide towards a criterion to assess the multipactor onset. The electron cloud under multipactor regime within a parallel-plate waveguide is modeled by a thin continuous distribution of charge and the equations of motion are calculated taking into account the space charge effects. The saturation is identified by the interaction of the electron cloud with its image charge. The stability of the electron population growth is analyzed and two mechanisms of saturation to explain the steady-state multipactor for voltages near above the threshold onset are identified. Themore » impact energy in the collision against the metal plates decreases during the electron population growth due to the attraction of the electron sheet on the image through the initial plate. When this growth remains stable till the impact energy reaches the first cross-over point, the electron surface density tends to a constant value. When the stability is broken before reaching the first cross-over point the surface charge density oscillates chaotically bounded within a certain range. In this case, an expression to calculate the maximum electron surface charge density is found whose predictions agree with the simulations when the voltage is not too high.« less
Ab initio simulations of water splitting on hematite
NASA Astrophysics Data System (ADS)
Seriani, Nicola
2017-11-01
In recent years, hematite has attracted great interest as a photocatalyst for water splitting, but many questions remain unanswered about the mechanisms and the main limiting factors. For this reason, density functional theory has been used to understand the optical, electronic and chemical properties of this material at an atomistic level. Bulk doping can be used to reduce the band gap, and to increase photoabsorption and charge mobility. Charge transport takes place through adiabatic polaron hopping. The stable (0 0 0 1) surface has a stoichiometric termination when exposed to oxygen, it becomes hydroxylated in water, and it has an oxygen-rich termination under illumination in a photoelectrochemical setup. On the oxygen-rich termination, surface states are present that might act as recombination centres for electrons and holes. On the contrary, on the hydroxylated termination surface states appear only on reaction intermediates. The intrinsic surface states disappear in the presence of an overlayer of gallium oxide. The reaction of water oxidation is assumed to proceed by four proton-coupled electron transfers and it is shown to involve a nucleophilic attack with the formation of an OOH group. Calculated overpotentials are in the range of 0.5-0.6 V. Open questions and future research directions are briefly discussed.
Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo
2012-11-13
The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed.
Topological states in a two-dimensional metal alloy in Si surface: BiAg/Si(111)-4 ×4 surface
NASA Astrophysics Data System (ADS)
Zhang, Xiaoming; Cui, Bin; Zhao, Mingwen; Liu, Feng
2018-02-01
A bridging topological state with a conventional semiconductor platform offers an attractive route towards future spintronics and quantum device applications. Here, based on first-principles and tight-binding calculations, we demonstrate the existence of topological states hosted by a two-dimensional (2D) metal alloy in a Si surface, the BiAg/Si(111)-4 ×4 surface, which has already been synthesized experimentally. It exhibits a topological insulating state with an energy gap of 71 meV (˜819 K ) above the Fermi level and a topological metallic state with quasiquantized conductance below the Fermi level. The underlying mechanism leading to the formation of such nontrivial states is revealed by analysis of the "charge-transfer" and "orbital-filtering" effect of the Si substrate. A minimal effective tight-binding model is employed to reveal the formation mechanism of the topological states. Our finding opens opportunities to detect topological states and measure its quantized conductance in a large family of 2D surface metal alloys, which have been or are to be grown on semiconductor substrates.
Potential energy surfaces of the electronic states of Li{sub 2}F and Li{sub 2}F{sup −}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhowmick, Somnath; Hagebaum-Reignier, Denis, E-mail: denis.hagebaum-reignier@univ-amu.fr; Jeung, Gwang-Hi
2016-07-21
The potential energy surfaces of the ground and low-lying excited states for the insertion reaction of atomic fluorine (F) and fluoride (F{sup −}) into the dilithium (Li{sub 2}) molecule have been investigated. We have carried out explicitly correlated multi-reference configuration interaction (MRCI-F12) calculations using Dunning’s augmented correlation-consistent basis sets. For the neutral system, the insertion of F into Li{sub 2} proceeds via a harpoon-type mechanism on the ground state surface, involving a covalent state and an ionic state which avoid each other at long distance. A detailed analysis of the changes in the dipole moment along the reaction coordinate revealsmore » multiple avoided crossings among the excited states and shows that the charge-transfer processes play a pivotal role for the stabilization of the low-lying electronic states of Li{sub 2}F. For the anionic system, which is studied for the first time, the insertion of F{sup −} is barrierless for many states and there is a gradual charge transfer from F{sup −} to Li{sub 2} along the reaction path. We also report the optimized parameters and the spectroscopic properties of the five lowest states of the neutral and seven lowest states of the anionic systems, which are strongly stabilized with respect to their respective Li{sub 2} + F/F{sup −} asymptotes. The observed barrierless insertion mechanisms for both systems make them good candidates for investigation under the ultracold regime.« less
Evolving optical second-harmonic anisotropy at the cleaved Bi2Se3 surface
NASA Astrophysics Data System (ADS)
An, Yong; Green, Avery; Diebold, Alain
Bismuth selenide (Bi2Se3) is a centrosymmetric topological insulator with conducting surface states. The surface states have been studied by various electrical and optical techniques in air, but ambience effects and surface aging have not been adequately addressed. Optical second-harmonic generation (SHG) is a suitable probe for the Bi2Se3 surface because SHG arises from symmetry breaking at the surface and thus should detect surface states preferentially over bulk states. However, a strong time dependence of SHG is often observed, hampering the detection and investigation of the surface states. Here we find a new phenomenon in which the major and minor intensity lobes of a measured rotational-anisotropy SHG pattern from a cleaved Bi2Se3 (111) surface can significantly change with time and eventually switch their amplitudes. This switching provides a means for tracking the progress of surface oxidation inside a quintuple layer of Bi2Se3. We also perform pump-probe SHG experiments, comparatively on freshly cleaved and oxidized Bi2Se3 surfaces, to study charge dynamics at the oxide/Bi2Se3 interface and to detect spin polarization of photoexcited surface states in the Bi2Se3 topological insulator. This work was supported by the SRC NRI Institute for Nanoelectronics Discovery and Exploration (INDEX).
A Surface Science Perspective on TiO2 Photocatalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Michael A.
2011-06-15
The field of surface science provides a unique approach to understanding bulk, surface and interfacial phenomena occurring during TiO2 photochemistry and photocatalysis. This review highlights, from a surface science perspective, recent literature providing molecular-level insights into phonon-initiated events on TiO2 surfaces obtained in seven key scientific issues: (1) photon absorption, (2) charge transport and trapping, (3) electron transfer dynamics, (4) the adsorbed state, (5) mechanisms, (6) poisons and promoters, and (7) phase and form.
NASA Astrophysics Data System (ADS)
Berland, K.; Einstein, T. L.; Hyldgaard, P.
2012-01-01
The response of the Cu(111) Shockley surface state to an external electrical field is characterized by combining a density-functional theory calculation for a slab geometry with an analysis of the Kohn-Sham wave functions. Our analysis is facilitated by a decoupling of the Kohn-Sham states via a rotation in Hilbert space. We find that the surface state displays isotropic dispersion, quadratic until the Fermi wave vector but with a significant quartic contribution beyond. We calculate the shift in energetic position and effective mass of the surface state for an electrical field perpendicular to the Cu(111) surface; the response is linear over a broad range of field strengths. We find that charge transfer occurs beyond the outermost copper atoms and that accumulation of electrons is responsible for a quarter of the screening of the electrical field. This allows us to provide well converged determinations of the field-induced changes in the surface state for a moderate number of layers in the slab geometry.
NASA Technical Reports Server (NTRS)
Swaminathan, Prasanna; Dennison, J. R.; Sim, Alec; Brunson, Jerilyn; Crapo, Eric; Frederickson, A. R.
2004-01-01
Conductivity of insulating materials is a key parameter to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. Classical ASTM and IEC methods to measure thin film insulator conductivity apply a constant voltage to two electrodes around the sample and measure the resulting current for tens of minutes. However, conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator. Charge decay methods expose one side of the insulator in vacuum to sequences of charged particles, light, and plasma, with a metal electrode attached to the other side of the insulator. Data are obtained by capacitive coupling to measure both the resulting voltage on the open surface and emission of electrons from the exposed surface, as well monitoring currents to the electrode. Instrumentation for both classical and charge storage decay methods has been developed and tested at Jet Propulsion Laboratory (JPL) and at Utah State University (USU). Details of the apparatus, test methods and data analysis are given here. The JPL charge storage decay chamber is a first-generation instrument, designed to make detailed measurements on only three to five samples at a time. Because samples must typically be tested for over a month, a second-generation high sample throughput charge storage decay chamber was developed at USU with the capability of testing up to 32 samples simultaneously. Details are provided about the instrumentation to measure surface charge and current; for charge deposition apparatus and control; the sample holders to properly isolate the mounted samples; the sample carousel to rotate samples into place; the control of the sample environment including sample vacuum, ambient gas, and sample temperature; and the computer control and data acquisition systems. Measurements are compared here for a number of thin film insulators using both methods at both facilities. We have found that conductivity determined from charge storage decay methods is 102 to 104 larger than values obtained from classical methods. Another Spacecraft Charging Conference presentation describes more extensive measurements made with these apparatus. This work is supported through funding from the NASA Space Environments and Effects Program and the USU Space Dynamics Laboratory Enabling Technologies Program.
Quantification of surface charge density and its effect on boundary slip.
Jing, Dalei; Bhushan, Bharat
2013-06-11
Reduction of fluid drag is important in the micro-/nanofluidic systems. Surface charge and boundary slip can affect the fluid drag, and surface charge is also believed to affect boundary slip. The quantification of surface charge and boundary slip at a solid-liquid interface has been widely studied, but there is a lack of understanding of the effect of surface charge on boundary slip. In this paper, the surface charge density of borosilicate glass and octadecyltrichlorosilane (OTS) surfaces immersed in saline solutions with two ionic concentrations and deionized (DI) water with different pH values and electric field values is quantified by fitting experimental atomic force microscopy (AFM) electrostatic force data using a theoretical model relating the surface charge density and electrostatic force. Results show that pH and electric field can affect the surface charge density of glass and OTS surfaces immersed in saline solutions and DI water. The mechanisms of the effect of pH and electric field on the surface charge density are discussed. The slip length of the OTS surface immersed in saline solutions with two ionic concentrations and DI water with different pH values and electric field values is measured, and their effects on the slip length are analyzed from the point of surface charge. Results show that a larger absolute value of surface charge density leads to a smaller slip length for the OTS surface.
The origin of nulls mode changes and timing noise in pulsars
NASA Astrophysics Data System (ADS)
Jones, P. B.
A solvable polar cap model obtained previously has normal states which may be associated with radio emission and null states. The solutions cannot be time-independent; the neutron star surface temperature T and mean surface nuclear charge Z are both functions of time. The normal and null states, and the transitions between them, form closed cycles in the T-Z plane. Normal-null transitions can occur inside a fraction of the area on the neutron star surface intersected by open magnetic flux lines. The fraction increases with pulsar period and becomes unity when the pulsar nears extinction. Frequency noise, mode changes, and pulse nulls have a common explanation in the transitions.
The origin of nulls, mode changes and timing noise in pulsars
NASA Astrophysics Data System (ADS)
Jones, P. B.
1982-09-01
A solvable polar cap model obtained previously has normal states which may be associated with radio emission, and null states. The solutions cannot be time-independent; the neutron star surface temperature T and mean surface nuclear charge Z are both functions of time. The normal and null states and the transitions between them, form closed cycles in the T-Z plane. Normal-null transitions can occur inside a fraction of the area of the neutron star surface intersected by open magnetic flux lines. The fraction increases with pulsar period and becomes unity when the pulsar nears extinction. Frequency noise, mode changes and pulse nulls have a common explanation in the transitions.
McUmber, Aaron C; Randolph, Theodore W; Schwartz, Daniel K
2015-07-02
High-throughput single-molecule total internal reflection fluorescence microscopy was used to investigate the effects of pH and ionic strength on bovine serum albumin (BSA) adsorption, desorption, and interfacial diffusion at the aqueous-fused silica interface. At high pH and low ionic strength, negatively charged BSA adsorbed slowly to the negatively charged fused silica surface. At low pH and low ionic strength, where BSA was positively charged, or in solutions at higher ionic strength, adsorption was approximately 1000 times faster. Interestingly, neither surface residence times nor the interfacial diffusion coefficients of BSA were influenced by pH or ionic strength. These findings suggested that adsorption kinetics were dominated by energy barriers associated with electrostatic interactions, but once adsorbed, protein-surface interactions were dominated by short-range nonelectrostatic interactions. These results highlight the ability of single-molecule techniques to isolate elementary processes (e.g., adsorption and desorption) under steady-state conditions, which would be impossible to measure using ensemble-averaging methods.
Hassan, Asra; Zhang, Xiaoyi; Liu, Xiaohan; ...
2017-08-28
Understanding the electronic structure of doped semiconductors is essential to realize advancements in electronics and in the rational design of nanoscale devices. Here, we report the results of time-resolved X-ray absorption studies on copper-doped cadmium sulfide nanoparticles that provide an explicit description of the electronic dynamics of the dopants. The interaction of a dopant ion and an excess charge carrier is unambiguously observed via monitoring the oxidation state. The experimental data combined with DFT calculations demonstrate that dopant bonding to the host matrix is modulated by its interaction with charge carriers. Additionally, the transient photoluminescence and the kinetics of dopantmore » oxidation reveal the presence of two types of surface-bound ions that create mid-gap states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Asra; Zhang, Xiaoyi; Liu, Xiaohan
Understanding the electronic structure of doped semiconductors is essential to realize advancements in electronics and in the rational design of nanoscale devices. Here, we report the results of time-resolved X-ray absorption studies on copper-doped cadmium sulfide nanoparticles that provide an explicit description of the electronic dynamics of the dopants. The interaction of a dopant ion and an excess charge carrier is unambiguously observed via monitoring the oxidation state. The experimental data combined with DFT calculations demonstrate that dopant bonding to the host matrix is modulated by its interaction with charge carriers. Additionally, the transient photoluminescence and the kinetics of dopantmore » oxidation reveal the presence of two types of surface-bound ions that create mid-gap states.« less
NASA Astrophysics Data System (ADS)
Kong, Xiang-Ping; Wang, Juan
2016-12-01
The adsorption behavior of Cu(II) on the basal hydroxylated kaolinite(001) surface in aqueous environment was investigated by first-principles calculations and molecular dynamics simulations. Structures of possible monodentate and bidentate inner-sphere adsorption complexes of Cu(II) were examined, and the charge transfer and bonding mechanism were analyzed. Combining the binding energy of complex, the radial distribution function of Cu(II) with oxygen and the extended X-ray absorption fine structure data, monodentate complex on site of surface oxygen with ;upright; hydrogen and bidentate complex on site of two oxygens (one with ;upright; hydrogen and one with ;lying; hydrogen) of single Al center have been found to be the major adsorption species of Cu(II). Both adsorption species are four-coordinated with a square planar geometry. The distribution of surface hydroxyls with ;lying; hydrogen around Cu(II) plays a key role in the structure and stability of adsorption complex. Upon the Mulliken population analysis and partial density of states, charge transfer occurs with Cu(II) accepting some electrons from both surface oxygens and aqua oxygens, and the bonding Cu 3d-O 2p state filling is primarily responsible for the strong covalent interaction of Cu(II) with surface oxygen.
Maffeis, Valentin; Brisse, Romain; Labet, Vanessa; Jousselme, Bruno; Gustavsson, Thomas
2018-06-13
There is a high interest in the development of new push-pull dyes for the use in dye sensitized solar cells. The pronounced charge transfer character of the directly photoexcited state is in principle favorable for a charge injection. Here, we report a time-resolved fluorescence study of a triphenylamine-bithiophene-naphthalimide dye in four solvents of varying polarity using fluorescence upconversion. The recording of femtosecond time-resolved fluorescence spectra corrected for the group velocity dispersion allows for a detailed analysis discriminating between spectral shifts and total intensity decays. After photoexcitation, the directly populated state (S 1 /FC) evolves toward a relaxed charge transfer state (S 1 /CT). This S 1 /CT state is characterized by a lower radiative transition moment and a higher nonradiative quenching. The fast dynamic shift of the fluorescence band is well described by solvation dynamics in polar solvents, but less so in nonpolar solvents, hinting that the excited-state relaxation process occurs on a free energy surface whose topology is strongly governed by the solvent polarity. This study underlines the influence of the environment on the intramolecular charge transfer (ICT) process, and the necessity to analyze time-resolved data in detail when solvation and ICT occur simultaneously.
An equivalent body surface charge model representing three-dimensional bioelectrical activity
NASA Technical Reports Server (NTRS)
He, B.; Chernyak, Y. B.; Cohen, R. J.
1995-01-01
A new surface-source model has been developed to account for the bioelectrical potential on the body surface. A single-layer surface-charge model on the body surface has been developed to equivalently represent bioelectrical sources inside the body. The boundary conditions on the body surface are discussed in relation to the surface-charge in a half-space conductive medium. The equivalent body surface-charge is shown to be proportional to the normal component of the electric field on the body surface just outside the body. The spatial resolution of the equivalent surface-charge distribution appears intermediate between those of the body surface potential distribution and the body surface Laplacian distribution. An analytic relationship between the equivalent surface-charge and the surface Laplacian of the potential was found for a half-space conductive medium. The effects of finite spatial sampling and noise on the reconstruction of the equivalent surface-charge were evaluated by computer simulations. It was found through computer simulations that the reconstruction of the equivalent body surface-charge from the body surface Laplacian distribution is very stable against noise and finite spatial sampling. The present results suggest that the equivalent body surface-charge model may provide an additional insight to our understanding of bioelectric phenomena.
A low-spin Fe(III) complex with 100-ps ligand-to-metal charge transfer photoluminescence
NASA Astrophysics Data System (ADS)
Chábera, Pavel; Liu, Yizhu; Prakash, Om; Thyrhaug, Erling; Nahhas, Amal El; Honarfar, Alireza; Essén, Sofia; Fredin, Lisa A.; Harlang, Tobias C. B.; Kjær, Kasper S.; Handrup, Karsten; Ericson, Fredric; Tatsuno, Hideyuki; Morgan, Kelsey; Schnadt, Joachim; Häggström, Lennart; Ericsson, Tore; Sobkowiak, Adam; Lidin, Sven; Huang, Ping; Styring, Stenbjörn; Uhlig, Jens; Bendix, Jesper; Lomoth, Reiner; Sundström, Villy; Persson, Petter; Wärnmark, Kenneth
2017-03-01
Transition-metal complexes are used as photosensitizers, in light-emitting diodes, for biosensing and in photocatalysis. A key feature in these applications is excitation from the ground state to a charge-transfer state; the long charge-transfer-state lifetimes typical for complexes of ruthenium and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron and copper being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs, it remains a formidable scientific challenge to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3‧-dimethyl-1,1‧-bis(p-tolyl)-4,4‧-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(III) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.
Ab initio study of H + + H 2 collisions: Elastic/inelastic and charge transfer processes
NASA Astrophysics Data System (ADS)
Saieswari, A.; Kumar, Sanjay
2007-12-01
An ab initio full configuration interaction study has been undertaken to obtain the global potential energy surfaces for the ground and the first excited electronic state of the H + + H 2 system employing Dunning's cc-pVQZ basis set. Using the ab initio approach the corresponding quasi-diabatic potential energy surfaces and coupling potentials have been obtained. A time-independent quantum mechanical study has been also undertaken for both the inelastic and charge transfer processes at the experimental collision energy Ec.m. = 20.0 eV and the preliminary results show better agreement with the experimental data as compared to the earlier available theoretical studies.
Influence of the Amino Acid Sequence on Protein-Mineral Interactions in Soil
NASA Astrophysics Data System (ADS)
Chacon, S. S.; Reardon, P. N.; Purvine, S.; Lipton, M. S.; Washton, N.; Kleber, M.
2017-12-01
The intimate associations between protein and mineral surfaces have profound impacts on nutrient cycling in soil. Proteins are an important source of organic C and N, and a subset of proteins, extracellular enzymes (EE), can catalyze the depolymerization of soil organic matter (SOM). Our goal was to determine how variation in the amino acid sequence could influence a protein's susceptibility to become chemically altered by mineral surfaces to infer the fate of adsorbed EE function in soil. We hypothesized that (1) addition of charged amino acids would enhance the adsorption onto oppositely charged mineral surfaces (2) addition of aromatic amino acids would increase adsorption onto zero charged surfaces (3) Increase adsorption of modified proteins would enhance their susceptibility to alterations by redox active minerals. To test these hypotheses, we generated three engineered proxies of a model protein Gb1 (IEP 4.0, 6.2 kDA) by inserting either negatively charged, positively charged or aromatic amino acids in the second loop. These modified proteins were allowed to interact with functionally different mineral surfaces (goethite, montmorillonite, kaolinite and birnessite) at pH 5 and 7. We used LC-MS/MS and solution-state Heteronuclear Single Quantum Coherence Spectroscopy NMR to observe modifications on engineered proteins as a consequence to mineral interactions. Preliminary results indicate that addition of any amino acids to a protein increase its susceptibility to fragmentation and oxidation by redox active mineral surfaces, and alter adsorption to the other mineral surfaces. This suggest that not all mineral surfaces in soil may act as sorbents for EEs and chemical modification of their structure should also be considered as an explanation for decrease in EE activity. Fragmentation of proteins by minerals can bypass the need to produce proteases, but microbial acquisition of other nutrients that require enzymes such as cellulases, ligninases or phosphatases may be hampered by mineral association.
Single-electron induced surface plasmons on a topological nanoparticle
Siroki, G.; Lee, D.K.K.; Haynes, P. D.; Giannini, V.
2016-01-01
It is rarely the case that a single electron affects the behaviour of several hundred thousands of atoms. Here we demonstrate a phenomenon where this happens. The key role is played by topological insulators—materials that have surface states protected by time-reversal symmetry. Such states are delocalized over the surface and are immune to its imperfections in contrast to ordinary insulators. For topological insulators, the effects of these surface states will be more strongly pronounced in the case of nanoparticles. Here we show that under the influence of light a single electron in a topologically protected surface state creates a surface charge density similar to a plasmon in a metallic nanoparticle. Such an electron can act as a screening layer, which suppresses absorption inside the particle. In addition, it can couple phonons and light, giving rise to a previously unreported topological particle polariton mode. These effects may be useful in the areas of plasmonics, cavity electrodynamics and quantum information. PMID:27491515
Hydrated proton and hydroxide charge transfer at the liquid/vapor interface of water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soniat, Marielle; Rick, Steven W., E-mail: srick@uno.edu; Kumar, Revati
2015-07-28
The role of the solvated excess proton and hydroxide ions in interfacial properties is an interesting scientific question with applications in a variety of aqueous behaviors. The role that charge transfer (CT) plays in interfacial behavior is also an unsettled question. Quantum calculations are carried out on clusters of water with an excess proton or a missing proton (hydroxide) to determine their CT. The quantum results are applied to analysis of multi-state empirical valence bond trajectories. The polyatomic nature of the solvated excess proton and hydroxide ion results in directionally dependent CT, depending on whether a water molecule is amore » hydrogen bond donor or acceptor in relation to the ion. With polyatomic molecules, CT also depends on the intramolecular bond distances in addition to intermolecular distances. The hydrated proton and hydroxide affect water’s liquid/vapor interface in a manner similar to monatomic ions, in that they induce a hydrogen-bonding imbalance at the surface, which results in charged surface waters. This hydrogen bond imbalance, and thus the charged waters at the surface, persists until the ion is at least 10 Å away from the interface.« less
Electron band bending of polar, semipolar and non-polar GaN surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartoš, I.; Romanyuk, O., E-mail: romanyuk@fzu.cz; Houdkova, J.
2016-03-14
The magnitudes of the surface band bending have been determined by X-ray photoelectron spectroscopy for polar, semipolar, and non-polar surfaces of wurtzite GaN crystals. All surfaces have been prepared from crystalline GaN samples grown by the hydride-vapour phase epitaxy and separated from sapphire substrates. The Ga 3d core level peak shifts have been used for band bending determination. Small band bending magnitudes and also relatively small difference between the band bendings of the surfaces with opposite polarity have been found. These results point to the presence of electron surface states of different amounts and types on surfaces of different polaritymore » and confirm the important role of the electron surface states in compensation of the bound surface polarity charges in wurtzite GaN crystals.« less
Faraday Rotation Due to Surface States in the Topological Insulator (Bi 1–xSbx) 2Te 3
Shao, Yinming; Post, Kirk W.; Wu, Jhih-Sheng; ...
2016-12-29
For this research, using magneto-infrared spectroscopy, we have explored the charge dynamics of (Bi,Sb) 2Te 3 thin films on InP substrates. From the magneto-transmission data we extracted three distinct cyclotron resonance (CR) energies that are all apparent in the broad band Faraday rotation (FR) spectra. This comprehensive FR-CR data set has allowed us to isolate the response of the bulk states from the intrinsic surface states associated with both the top and bottom surfaces of the film. Finally, the FR data uncovered that electron- and hole-type Dirac Fermions reside on opposite surfaces of our films, which paves the way formore » observing many exotic quantum phenomena in topological insulators.« less
Impact of the Topological Surface State on the Thermoelectric Transport in Sb2Te3 Thin Films.
Hinsche, Nicki F; Zastrow, Sebastian; Gooth, Johannes; Pudewill, Laurens; Zierold, Robert; Rittweger, Florian; Rauch, Tomáš; Henk, Jürgen; Nielsch, Kornelius; Mertig, Ingrid
2015-04-28
Ab initio electronic structure calculations based on density functional theory and tight-binding methods for the thermoelectric properties of p-type Sb2Te3 films are presented. The thickness-dependent electrical conductivity and the thermopower are computed in the diffusive limit of transport based on the Boltzmann equation. Contributions of the bulk and the surface to the transport coefficients are separated, which enables to identify a clear impact of the topological surface state on the thermoelectric properties. When the charge carrier concentration is tuned, a crossover between a surface-state-dominant and a Fuchs-Sondheimer transport regime is achieved. The calculations are corroborated by thermoelectric transport measurements on Sb2Te3 films grown by atomic layer deposition.
Ghosh, Sandip; Mukherjee, Saikat; Mukherjee, Bijit; Mandal, Souvik; Sharma, Rahul; Chaudhury, Pinaki; Adhikari, Satrajit
2017-08-21
The workability of beyond Born-Oppenheimer theory to construct diabatic potential energy surfaces (PESs) of a charge transfer atom-diatom collision process has been explored by performing scattering calculations to extract accurate integral cross sections (ICSs) and rate constants for comparison with most recent experimental quantities. We calculate non-adiabatic coupling terms among the lowest three singlet states of H 3 + system (1 1 A ' , 2 1 A ' , and 3 1 A ' ) using MRCI level of calculation and solve the adiabatic-diabatic transformation equation to formulate the diabatic Hamiltonian matrix of the same process [S. Mukherjee et al., J. Chem. Phys. 141, 204306 (2014)] for the entire region of nuclear configuration space. The nonadiabatic effects in the D + + H 2 reaction has been studied by implementing the coupled 3D time-dependent wave packet formalism in hyperspherical coordinates [S. Adhikari and A. J. C. Varandas, Comput. Phys. Commun. 184, 270 (2013)] with zero and non-zero total angular momentum (J) on such newly constructed accurate (ab initio) diabatic PESs of H 3 + . We have depicted the convergence profiles of reaction probabilities for the reactive non-charge transfer, non-reactive charge transfer, and reactive charge transfer processes for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. Finally, total and state-to-state ICSs are calculated as a function of collision energy for the initial rovibrational state (v = 0, j = 0) of the H 2 molecule, and consequently, those quantities are compared with previous theoretical and experimental results.
NASA Astrophysics Data System (ADS)
Rulis, Paul; Yao, Hongzhi; Ouyang, Lizhi; Ching, W. Y.
2007-12-01
Fluorapatite (FAP) and hydroxyapatite (HAP) are two very important bioceramic crystals. The (001) surfaces of FAP and HAP crystals are studied by ab initio density functional calculations using a supercell slab geometry. It is shown that in both crystals, the O-terminated (001) surface is more stable with calculated surface energies of 0.865 and 0.871J/m2 for FAP and HAP, respectively. In FAP, the two surfaces are symmetric. In HAP, the orientation of the OH group along the c axis reduces the symmetry such that the top and bottom surfaces are no longer symmetric. It is revealed that the atoms near the surface and subsurface are significantly relaxed especially in the case of HAP. The largest relaxations occurred via the lateral movements of the O ions at the subsurface level. The electronic structures of the surface models in the form of layer-by-layer resolved partial density of states for all the atoms show systematic variation from the surface region toward the bulk region. The calculated Mulliken effective charge on each type of atom and the bond order values between cations (Ca, P) and anions (O, F) show different charge transfers and bond strength variations from the bulk crystal values. Electron charge density calculations show that the surfaces of both FAP and HAP crystals are mostly positively charged due to the presence of Ca ions at the surface. The positively charged surfaces have implications for the absorption on apatite surfaces of water and other organic molecules in an aqueous environment which are an important part of its bioactivity. The x-ray absorption near-edge structure (XANES) spectra ( Ca-K , O-K , F-K , P-K , and P-L3 edges) of both the surface models and the bulk crystals are calculated and compared. The calculations use a supercell approach which takes into account the electron-core-hole interaction. It is shown that the site-specific XANES spectra show significant differences between atoms near the surface and in the bulk and are very sensitive to the local atomic environment of each atom. This information will be very valuable for characterizing the apatite materials and in the interpretation of experimental data. Comparisons of several sets of experimental data with the weighted sums of the calculated spectra at different sites for the same element show very good agreement.
Operando Positron Annihilation Gamma Spectrometer (OPAGS)
NASA Astrophysics Data System (ADS)
Satyal, S.; Shastry, K.; Mukherjee, S.; Weiss, A. H.
2009-03-01
Surface properties measured under UHV conditions cannot be extended to surfaces interacting with gases under realistic pressures due to surface reconstruction and other strong perturbations of the surface. Surface probing techniques require UHV conditions to perform efficiently and avoid data loss due to scattering of outgoing particles. This poster describes the design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS) currently under construction at the University of Texas at Arlington. The new system will be capable of obtaining surface and defect specific chemical and charge state information from surfaces under realistic pressures. Differential pumping will be used to maintain the sample in a gas environment while the rest of the beam is under UHV. Elemental content of the surface interacting with the gas environment will be determined from the Doppler broadened gamma spectra. This system will also include a time of flight (TOF) Auger spectrometer which correlates with the results of the Doppler measurements at lower pressures. By employing the unique capabilities of OPAGS together with those of the TOF PAES spectroscopy the charge transfer mechanisms at the surface in catalytic systems can be understood.
Sheng, Xia; Chen, Liping; Xu, Tao; Zhu, Kai; Feng, Xinjian
2016-03-01
Charge transport within electrode materials plays a key role in determining the optoelectronic device performance. Aligned single-crystal TiO 2 nanowire arrays offer an ideal electron transport path and are expected to have higher electron mobility. Unfortunately, their transport is found not to be superior to that in nanoparticle films. Here we show that the low electron transport in rutile TiO 2 nanowires is mainly caused by surface traps in relatively deep energy levels, which cannot be removed by conventional approaches, such as oxygen annealing treatment. Moreover, we demonstrate an effective wet-chemistry approach to minimize these trap states, leading to over 20-fold enhancement in electron diffusion coefficient and 62% improvement in solar cell performance. On the basis of our results, the potential of TiO 2 NWs can be developed and well-utilized, which is significantly important for their practical applications.
NASA Astrophysics Data System (ADS)
Pandit, Bidhan; Dubal, Deepak P.; Gómez-Romero, Pedro; Kale, Bharat B.; Sankapal, Babasaheb R.
2017-03-01
A simple and scalable approach has been reported for V2O5 encapsulation over interconnected multi-walled carbon nanotubes (MWCNTs) network using chemical bath deposition method. Chemically synthesized V2O5/MWCNTs electrode exhibited excellent charge-discharge capability with extraordinary cycling retention of 93% over 4000 cycles in liquid-electrolyte. Electrochemical investigations have been performed to evaluate the origin of capacitive behavior from dual contribution of surface-controlled and diffusion-controlled charge components. Furthermore, a complete flexible solid-state, flexible symmetric supercapacitor (FSS-SSC) device was assembled with V2O5/MWCNTs electrodes which yield remarkable values of specific power and energy densities along with enhanced cyclic stability over liquid configuration. As a practical demonstration, the constructed device was used to lit the ‘VNIT’ acronym assembled using 21 LED’s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cubrovic, Mihailo; Liu Yan; Schalm, Koenraad
2011-10-15
We argue that the electron star and the anti-de Sitter (AdS) Dirac hair solution are two limits of the free charged Fermi gas in AdS. Spectral functions of holographic duals to probe fermions in the background of electron stars have a free parameter that quantifies the number of constituent fermions that make up the charge and energy density characterizing the electron star solution. The strict electron star limit takes this number to be infinite. The Dirac hair solution is the limit where this number is unity. This is evident in the behavior of the distribution of holographically dual Fermi surfaces.more » As we decrease the number of constituents in a fixed electron star background the number of Fermi surfaces also decreases. An improved holographic Fermi ground state should be a configuration that shares the qualitative properties of both limits.« less
Liu, Xiangsheng; Li, Huan; Chen, Yangjun; Jin, Qiao; Ren, Kefeng; Ji, Jian
2014-09-01
Mixed-charge zwitterionic surface modification shows great potential as a simple strategy to fabricate nanoparticle (NP) surfaces that are nonfouling. Here, the in vivo fate of 16 nm mixed-charge gold nanoparticles (AuNPs) is investigated, coated with mixed quaternary ammonium and sulfonic groups. The results show that mixed-charge AuNPs have a much longer blood half-life (≈30.6 h) than do poly(ethylene glycol) (PEG, M¯w = 2000) -coated AuNPs (≈6.65 h) and they accumulate in the liver and spleen far less than do the PEGylated AuNPs. Using transmission electron microscopy, it is further confirmed that the mixed-charge AuNPs have much lower uptake and different existing states in liver Kupffer cells and spleen macrophages one month after injection compared with the PEGylated AuNPs. Moreover, these mixed-charge AuNPs do not cause appreciable toxicity at this tested dose to mice in a period of 1 month as evidenced by histological examinations. Importantly, the mixed-charge AuNPs have higher accumulation and slower clearance in tumors than do PEGylated AuNPs for times of 24-72 h. Results from this work show promise for effectively designing tumor-targeting NPs that can minimize reticuloendothelial system clearance and circulate for long periods by using a simple mixed-charge strategy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transmission of low-energy negative ions through insulating nanocapillaries
NASA Astrophysics Data System (ADS)
Zhang, Qi; Liu, Zhonglin; Li, Pengfei; Jin, Bo; Song, Guangyin; Jin, Dingkun; Niu, Ben; Wei, Long; Ha, Shuai; Xie, Yiming; Ma, Yue; Wan, Chengliang; Cui, Ying; Zhou, Peng; Zhang, Hongqiang; Chen, Ximeng
2018-04-01
A simulation is performed to study the transmission of low-energy C l- ions through A l2O3 nanocapillaries. For the trajectory simulations, there are several processes involved: the image forces induced by the projectile; the electrostatic force from the deposited charges; the scattering from the inner surface and charge exchange. The simulation reproduces the main features of the experiments; i.e., the double peak structure in the transmitted angular distribution and the transmitted fractions of C l- , C l+ , and C l0 were found in the charge state distribution. The transmitted C l- ions are centered around the beam direction while the transmitted fractions of C l0 and C l+ are centered around the tilt angles. The role of the deposited charge is also studied by simulations. With the deposited charge, it is found that C l- is dominant in the transmission and the majority of the ions, centered around the tilt angle, are mainly from the single deflection by the negative charge patches on the inner surfaces of the capillaries, and only a few directly transmitted C l- ions are centered around the incident direction. There are also a few transmitted fractions of C l0 and C l+ from close surface scatterings. In the case that there are no negative charge patches, the simulation agrees with the experiment in detail: The majority of the directly transmitted C l- ions are centered around the incident direction while only a few scattered C l- ions are centered around the tilt angle from the single close collisions with the inner surfaces of the capillaries. There is a portion, comparable to the transmitted fraction of C l- , of the transmitted fractions of C l0 and C l+ , centered around the tilt angle, from the single scatterings with the inner surfaces of the capillaries. This confirms that at the present experimental conditions there are most probably no negative charge patches formed to guide the negative ions through insulating A l2O3 nanocapillaries.
Enhanced absorption of light by charged nanoparticles.
Rosenkrantz, Etai; Arnon, Shlomi
2010-04-15
We found that various charged nanoparticles (NPs) can raise the attenuation of electromagnetic (EM) radiation over 30 times more efficiently during resonance in comparison to equivalent noncharged particles for a given set of parameters. A condition that indicates a state of resonance between the incident EM radiation and the NP surface excitations is mathematically derived. Our results shed light on the mechanism responsible for the strong absorption of light by such charged NPs. The outcome of this research could help to design a new generation of communication devices as well as a new technique for biological cell imaging.
Zhang, Wei; Liu, Na; Shi, Haigang; Liu, Jun; Shi, Lianxin; Zhang, Bo; Wang, Huaiyu; Ji, Junhui; Chu, Paul K.
2015-01-01
Positively-charged surfaces on implants have a similar potential to upregulate osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) as electromagnetic therapy approved for bone regeneration. Generally, their osteogenesis functions are generally considered to stem from the charge-induced adhesion of extracellular matrix (ECM) proteins without exploring the underlying surface charge/cell signaling molecule pathways. Herein, a positively-charged surface with controllable tertiary amines is produced on a polymer implant by plasma surface modification. In addition to inhibiting the TNF-α expression, the positively-charged surface with tertiary amines exhibits excellent cytocompatibility as well as remarkably upregulated osteogenesis-related gene/protein expressions and calcification of the contacted BMSCs. Stimulated by the charged surface, these BMSCs display high iNOS expressions among the three NOS isoforms. Meanwhile, downregulation of the iNOS by L-Can or siRNA inhibit osteogenic differentiation in the BMSCs. These findings suggest that a positively-charged surface with tertiary amines induces osteogenesis of BMSCs via the surface charge/iNOS signaling pathway in addition to elevated ECM protein adhesion. Therefore, creating a positively-charged surface with tertiary amines is a promising approach to promote osseointegration with bone tissues. PMID:25791957
NASA Astrophysics Data System (ADS)
Marguet, S.; Mialocq, J. C.; Millie, P.; Berthier, G.; Momicchioli, F.
1992-03-01
The solvent-induced changes of trans-cis isomerization efficiency and electronic structure of the excited state of the DCM dye have been considered by means of CS INDO MRCI calculations. The potential energy curves, dipole moments and atomic charge densities as a function of two internal coordinates, namely the rotation angle about the central "double" bond and the twisting of the dimethylamino group, have been obtained for the ground state and the lowest excited states. The structural requirements for the existence of ICT (intramolecular charge transfer) excited states have been investigated by considering internal rotations about three single bonds. The reliability of the potential surfaces and of the solvation models has been discussed with reference to test-calculations on the DMABN molecule. In the first excited singlet state of DCM, the low-energy barrier for the trans-cis isomerization has been found unaffected by the solvent polarity. The only singlet excited state presenting a large ICT character has been found to be the S 2 state for a perpendicularly twisted conformation of the dimethylamino group (TICT state). The assumption of a deactivation of the trans-isomer in the locally excited state through the TICT funnel has been largely discussed with reference to the simplifications of the present theoretical approach.
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrov, D. A.; Bell, G. I.; Smedley, J.
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
Dimitrov, D. A.; Bell, G. I.; Smedley, J.; ...
2017-10-26
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
Modulation of protein stability and aggregation properties by surface charge engineering.
Raghunathan, Govindan; Sokalingam, Sriram; Soundrarajan, Nagasundarapandian; Madan, Bharat; Munussami, Ganapathiraman; Lee, Sun-Gu
2013-09-01
An attempt to alter protein surface charges through traditional protein engineering approaches often affects the native protein structure significantly and induces misfolding. This limitation is a major hindrance in modulating protein properties through surface charge variations. In this study, as a strategy to overcome such a limitation, we attempted to co-introduce stabilizing mutations that can neutralize the destabilizing effect of protein surface charge variation. Two sets of rational mutations were designed; one to increase the number of surface charged amino acids and the other to decrease the number of surface charged amino acids by mutating surface polar uncharged amino acids and charged amino acids, respectively. These two sets of mutations were introduced into Green Fluorescent Protein (GFP) together with or without stabilizing mutations. The co-introduction of stabilizing mutations along with mutations for surface charge modification allowed us to obtain functionally active protein variants (s-GFP(+15-17) and s-GFP(+5-6)). When the protein properties such as fluorescent activity, folding rate and kinetic stability were assessed, we found the possibility that the protein stability can be modulated independently of activity and folding by engineering protein surface charges. The aggregation properties of GFP could also be altered through the surface charge engineering.
Liu, Jie; Peng, Chunwang; Yu, Gaobo; Zhou, Jian
2015-10-06
The surrounding conditions, such as surface charge density and ionic strength, play an important role in enzyme adsorption. The adsorption of a nonmodular type-A feruloyl esterase from Aspergillus niger (AnFaeA) on charged surfaces was investigated by parallel tempering Monte Carlo (PTMC) and all-atom molecular dynamics (AAMD) simulations at different surface charge densities (±0.05 and ±0.16 C·m(-2)) and ionic strengths (0.007 and 0.154 M). The adsorption energy, orientation, and conformational changes were analyzed. Simulation results show that whether AnFaeA can adsorb onto a charged surface is mainly controlled by electrostatic interactions between AnFaeA and the charged surface. The electrostatic interactions between AnFaeA and charged surfaces are weakened when the ionic strength increases. The positively charged surface at low surface charge density and high ionic strength conditions can maximize the utilization of the immobilized AnFaeA. The counterion layer plays a key role in the adsorption of AnFaeA on the negatively charged COOH-SAM. The native conformation of AnFaeA is well preserved under all of these conditions. The results of this work can be used for the controlled immobilization of AnFaeA.
The Effect of Solution Chemistry on Nucleation of Nesquehonite
NASA Astrophysics Data System (ADS)
Zhao, L.; Zhu, C.; Wang, Z.
2016-12-01
The interfaces between minerals and aqueous solutions are key to important Earth surface processes, including chemical weathering, mineral dissolution/precipitation, and pollutant absorption/release. Mineral surface properties, such as the surface structure and the surface energy, determine the outcomes of many geochemical reactions. Several factors could affect surface energy, but the effect of solution chemistry, particularly the solution stoichiometry, on the surface energy and nucleation process is poorly understood. The goal of this study is to understand the effect of solution chemistry on the nucleation of nesquehonite. Nesquehonite nucleation experiments were conducted in aqueous solutions having similar Mg2+/ CO32- activity ratios, but different saturation states and solution pH. The experimental results show that induction-time estimates from our precipitation experiments with similar Mg2+/CO32- activity ratios are consistent with classical nucleation theory (CNT), while the surface energy derived from CNT varies with Mg2+/CO32- activity ratios. Our observations can be explained by the different absorption behaviors of Mg2+ and CO32- and and/or reduced Gibbs free energies through better screening of the electric double layer. A surface energy model involving solution composition is developed that combines surface complexation with electrostatic models. The new model takes into account how surface charge may affect surface energy. It implies that the highest surface energy may occur around the point of zero charge (p.z.c), where the nucleation is fastest (or conversely, where the induction time is shortest) under low saturation states, but not under high saturation states. An accelerated attachment rate of monomers at the p.z.c. is consistent with high surface energy, since it represents higher reactivity of surface ions and less work needed to break the solvated water molecules. This study provides deeper insights into mechanisms of nesquehonite nucleation in nature, and guidelines for accelerating the precipitation rates of nesquehonite.
Investigating the Role of Adducts in Protein Supercharging with Sulfolane
NASA Astrophysics Data System (ADS)
Douglass, Kevin Aart; Venter, Andre R.
2012-03-01
The supercharging effect of sulfolane on cytochrome c (cyt c) during electrospray ionization mass spectrometry (ESI-MS) in the absence of conformational effects was investigated. The addition of sulfolane on the order of 1 mM or greater to denaturing solutions of cyt c results in supercharging independent of protein concentration over the range of 0.1 to 10 μM. While supercharging was observed in the positive mode, no change in the charge state distribution was observed in the negative mode, ruling out polarity-independent factors such as conformational changes or surface tension effects. A series of sulfolane adducts observed with increasing intensity concurrent with increasing charge state suggests that a direct interaction between sulfolane and the charged sites of cyt c plays an important role in supercharging. We propose that charge delocalization occurring through large-scale dipole reordering of the highly polar supercharging reagent reduces the electrostatic barrier for proximal charging along the cyt c amino acid chain. Supporting this claim, supercharging was shown to increase with increasing dipole moment for several supercharging reagents structurally related to sulfolane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp
2016-07-06
Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.
Thermodynamic States in Explosion Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, A L
2010-03-12
We investigate the thermodynamic states occurring in explosion fields from condensed explosive charges. These states are often modeled with a Jones-Wilkins-Lee (JWL) function. However, the JWL function is not a Fundamental Equation of Thermodynamics, and therefore cannot give a complete specification of such states. We use the Cheetah code of Fried to study the loci of states of the expanded detonation products gases from C-4 charges, and their combustion products air. In the Le Chatelier Plane of specific-internal-energy versus temperature, these loci are fit with a Quadratic Model function u(T), which has been shown to be valid for T
Effect of Surface Hydration on Antifouling Properties of Mixed Charged Polymers.
Leng, Chuan; Huang, Hao; Zhang, Kexin; Hung, Hsiang-Chieh; Xu, Yao; Li, Yaoxin; Jiang, Shaoyi; Chen, Zhan
2018-05-07
Interfacial water structure on a polymer surface in water (or surface hydration) is related to the antifouling activity of the polymer. Zwitterionic polymer materials exhibit excellent antifouling activity due to their strong surface hydration. It was proposed to replace zwitterionic polymers using mixed charged polymers because it is much easier to prepare mixed charged polymer samples with much lower costs. In this study, using sum frequency generation (SFG) vibrational spectroscopy, we investigated interfacial water structures on mixed charged polymer surfaces in water, and how such structures change while exposing to salt solutions and protein solutions. The 1:1 mixed charged polymer exhibits excellent antifouling property while other mixed charged polymers with different ratios of the positive/negative charges do not. It was found that on the 1:1 mixed charged polymer surface, SFG water signal is dominated by the contribution of the strongly hydrogen bonded water molecules, indicating strong hydration of the polymer surface. The responses of the 1:1 mixed charged polymer surface to salt solutions are similar to those of zwitterionic polymers. Interestingly, exposure to high concentrations of salt solutions leads to stronger hydration of the 1:1 mixed charged polymer surface after replacing the salt solution with water. Protein molecules do not substantially perturb the interfacial water structure on the 1:1 mixed charged polymer surface and do not adsorb to the surface, showing that this mixed charged polymer is an excellent antifouling material.
NASA Astrophysics Data System (ADS)
Jia, Huimin; He, Weiwei; Zhang, Beibei; Yao, Lei; Yang, Xiaokai; Zheng, Zhi
2018-05-01
A modified successive ionic layer adsorption and reaction (SILAR) method was developed to fabricate 2D ordered BiOX (X = CI, Br, I) nanosheet array films on FTO substrates at room temperature. The formation of BiOX films were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV-vis absorption spectroscopy, and X-ray photoelectron spectroscopy (XPS). The semiconductor surface states determine the type of semiconductor. Although BiOCI, BiOBr and BiOI belong to the bismuth oxyhalide semiconductor family and possess similar crystal and electronic structures, they show different conductivity types due to their respective surface states. Mott-Schottky curve results demonstrate that the BiOCl and BiOI nanosheet arrays display n-type semiconductor properties, while the BiOBr films exhibit p-type semiconductor properties. Assisted by surface photovoltage (SPV) and transient photovoltage (TPV) techniques, the photoinduced charge transfer dynamics on the surface/interface of the BiOX/FTO nanosheet films were systematically and comparatively investigated. As revealed by the results, both the separation and transfer dynamics of the photo-induced carrier are influenced by film thickness.
Morimoto, Takahiro; Furusaki, Akira; Nagaosa, Naoto
2015-04-10
Three-dimensional topological insulators of finite thickness can show the quantum Hall effect (QHE) at the filling factor ν=0 under an external magnetic field if there is a finite potential difference between the top and bottom surfaces. We calculate energy spectra of surface Weyl fermions in the ν=0 QHE and find that gapped edge states with helical spin structure are formed from Weyl fermions on the side surfaces under certain conditions. These edge channels account for the nonlocal charge transport in the ν=0 QHE which is observed in a recent experiment on (Bi_{1-x}Sb_{x})_{2}Te_{3} films. The edge channels also support spin transport due to the spin-momentum locking. We propose an experimental setup to observe various spintronics functions such as spin transport and spin conversion.
Orienting proteins by nanostructured surfaces: evidence of a curvature-driven geometrical resonance.
Messina, Grazia M L; Bocchinfuso, Gianfranco; Giamblanco, Nicoletta; Mazzuca, Claudia; Palleschi, Antonio; Marletta, Giovanni
2018-04-26
Experimental and theoretical reports have shown that nanostructured surfaces have a dramatic effect on the amount of protein adsorbed and the conformational state and, in turn, on the performances of the related devices in tissue engineering strategies. Here we report an innovative method to prepare silica-based nanostructured surfaces with a reproducible, well-defined local curvature, consisting of ordered hexagonally packed arrays of curved hemispheres, from nanoparticles of different diameters (respectively 147 nm, 235 nm and 403 nm). The nanostructured surfaces have been made chemically homogeneous by partially embedding silica nanoparticles in poly(hydroxymethylsiloxane) films, further modified by means of UV-O3 treatments. This paper has been focused on the experimental and theoretical study of laminin, taken as a model protein, to study the nanocurvature effects on the protein configuration at nanostructured surfaces. A simple model, based on the interplay of electrostatic interactions between the charged terminal domains of laminin and the nanocurved charged surfaces, closely reproduces the experimental findings. In particular, the model suggests that nanocurvature drives the orientation of rigid proteins by means of a "geometrical resonance" effect, involving the matching of dimensions, charge distribution and spatial arrangement of both adsorbed molecules and adsorbent nanostructures. Overall, the results pave the way to unravel the nanostructured surface effects on the intra- and inter-molecular organization processes of proteins.
NASA Astrophysics Data System (ADS)
Joyce, Hannah J.; Baig, Sarwat A.; Parkinson, Patrick; Davies, Christopher L.; Boland, Jessica L.; Tan, H. Hoe; Jagadish, Chennupati; Herz, Laura M.; Johnston, Michael B.
2017-06-01
Bare unpassivated GaAs nanowires feature relatively high electron mobilities (400-2100 cm2 V-1 s-1) and ultrashort charge carrier lifetimes (1-5 ps) at room temperature. These two properties are highly desirable for high speed optoelectronic devices, including photoreceivers, modulators and switches operating at microwave and terahertz frequencies. When engineering these GaAs nanowire-based devices, it is important to have a quantitative understanding of how the charge carrier mobility and lifetime can be tuned. Here we use optical-pump-terahertz-probe spectroscopy to quantify how mobility and lifetime depend on the nanowire surfaces and on carrier density in unpassivated GaAs nanowires. We also present two alternative frameworks for the analysis of nanowire photoconductivity: one based on plasmon resonance and the other based on Maxwell-Garnett effective medium theory with the nanowires modelled as prolate ellipsoids. We find the electron mobility decreases significantly with decreasing nanowire diameter, as charge carriers experience increased scattering at nanowire surfaces. Reducing the diameter from 50 nm to 30 nm degrades the electron mobility by up to 47%. Photoconductivity dynamics were dominated by trapping at saturable states existing at the nanowire surface, and the trapping rate was highest for the nanowires of narrowest diameter. The maximum surface recombination velocity, which occurs in the limit of all traps being empty, was calculated as 1.3 × 106 cm s-1. We note that when selecting the optimum nanowire diameter for an ultrafast device, there is a trade-off between achieving a short lifetime and a high carrier mobility. To achieve high speed GaAs nanowire devices featuring the highest charge carrier mobilities and shortest lifetimes, we recommend operating the devices at low charge carrier densities.
Effects of Discrete Charge Clustering in Simulations of Charged Interfaces.
Grime, John M A; Khan, Malek O
2010-10-12
A system of counterions between charged surfaces is investigated, with the surfaces represented by uniform charged planes and three different arrangements of discrete surface charges - an equispaced grid and two different clustered arrangements. The behaviors of a series of systems with identical net surface charge density are examined, with particular emphasis placed on the long ranged corrections via the method of "charged slabs" and the effects of the simulation cell size. Marked differences are observed in counterion distributions and the osmotic pressure dependent on the particular representation of the charged surfaces; the uniformly charged surfaces and equispaced grids of discrete charge behave in a broadly similar manner, but the clustered systems display a pronounced decrease in osmotic pressure as the simulation size is increased. The influence of the long ranged correction is shown to be minimal for all but the very smallest of system sizes.
Thellamurege, Nandun M; Cui, Fengchao; Li, Hui
2013-08-28
A combined quantum mechanical/molecular mechanical/continuum (QM/MMpol/C) style method is developed for time-dependent density functional theory (TDDFT, including long-range corrected TDDFT) method, induced dipole polarizable force field, and induced surface charge continuum model. Induced dipoles and induced charges are included in the TDDFT equations to solve for the transition energies, relaxed density, and transition density. Analytic gradient is derived and implemented for geometry optimization and molecular dynamics simulation. QM/MMpol/C style DFT and TDDFT methods are used to study the hydrogen bonding of the photoactive yellow protein chromopore in ground state and excited state.
NASA Technical Reports Server (NTRS)
1976-01-01
The design, fabrication, and tests of a solid state television camera using a new charge-coupled imaging device are reported. An RCA charge-coupled device arranged in a 512 by 320 format and directly compatible with EIA format standards was the sensor selected. This is a three-phase, sealed surface-channel array that has 163,840 sensor elements, which employs a vertical frame transfer system for image readout. Included are test results of the complete camera system, circuit description and changes to such circuits as a result of integration and test, maintenance and operation section, recommendations to improve the camera system, and a complete set of electrical and mechanical drawing sketches.
Using surfaces, ligands, and dimensionality to obtain desired nanostructure properties
NASA Astrophysics Data System (ADS)
Nagpal, Prashant; Singh, Vivek; Ding, Yuchen
2014-03-01
Nanostructured materials are intensively investigated to obtain material properties different from their bulk counterparts. It has been demonstrated that nanoscaled semiconductor can have interesting size, shape and morphology dependent optoelectronic properties. But the effect of surfaces, ligands and dimensionality (0D quantum dots to 2D nanosheets) has been largely unexplored. Here, we will show how tuning the surface and dimensionality can affect the electronic states of the semiconductor, and how these states can play an important role in their fundamental photophysical properties or thermal transport. Using the specific case for silicon, we will show how ``new'' surface states in small uniform can lead to light absorption/emission without phonon assistance, while hindering the phonon-drag of charge carriers leading to low Seebeck coefficient for thermoelectric applications. These measurements will shed light on designing appropriate surface, size, and dimensionality for desired applications of nanostructured films.
Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi; ...
2017-10-02
It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi
It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less
Preserving half-metallic surface states in Cr O2 : Insights into surface reconstruction rules
NASA Astrophysics Data System (ADS)
Deng, Bei; Shi, X. Q.; Chen, L.; Tong, S. Y.
2018-04-01
The issue of whether the half-metallic (HM) nature of Cr O2 could be retained at its surface has been a standing problem under debate for a few decades, but until now is still controversial. Here, based on the density functional theory calculations we show, in startling contrast to the previous theoretical understandings, that the surfaces of Cr O2 favorably exhibit a half-metallic-semiconducting (SmC) transition driven by means of a surface electronic reconstruction largely attributed to the participation of the unexpected local charge carriers (LCCs), which convert the HM double exchange surface state into a SmC superexchange state and in turn, stabilize the surface as well. On the basis of the LCCs model, a new insight into the surface reconstruction rules is attained. Our novel finding not only provided an evident interpretation for the widely observed SmC character of Cr O2 surface, but also offered a novel means to improve the HM surface states for a variety of applications in spintronics and superconductors, and promote the experimental realization of the quantum anomalous Hall effect in half-metal based systems.
Gigantic Surface Lifetime of an Intrinsic Topological Insulator
Neupane, Madhab; Xu, Su-Yang; Ishida, Yukiaki; ...
2015-09-09
We report that the interaction between light and novel two-dimensional electronic states holds promise to realize new fundamental physics and optical devices. Here, we use pump-probe photoemission spectroscopy to study the optically excited Dirac surface states in the bulk-insulating topological insulator Bi 2Te 2Se and reveal optical properties that are in sharp contrast to those of bulk-metallic topological insulators. We observe a gigantic optical lifetime exceeding 4 μs (1 μs=10 more » $${-}$$6 s) for the surface states in Bi 2Te 2Se, whereas the lifetime in most topological insulators, such as Bi2Se3, has been limited to a few picoseconds (1 ps=10 $${-}$$12 s). Moreover, we discover a surface photovoltage, a shift of the chemical potential of the Dirac surface states, as large as 100 mV. Lastly, our results demonstrate a rare platform to study charge excitation and relaxation in energy and momentum space in a two-dimensional system.« less
Electrostatic effects on dust particles in space
NASA Astrophysics Data System (ADS)
Leung, Philip; Wuerker, Ralph
1992-02-01
The star scanner of the Magellan spacecraft experienced operational anomalies continuously during Magellan's journey to Venus. These anomalies were attributed to the presence of dust particles in the vicinity of the spacecraft. The dust particles, which were originated from the surface of thermal blankets, were liberated when the electrostatic force acting on them was of sufficient magnitude. In order to verify this hypothesis, an experimental program was initiated to study the mechanisms responsible for the release of dust particles from a spacecraft surface. In the experiments, dust particles were immersed in a plasma and/or subjected to ultra-violet irradiation. Results showed that the charging state of a dust particle was strongly dependent on the environment, and the charge on a dust particle was approximately 10(exp 3) elementary charges. Consequently, in the space environment, electrostatic force could be the most dominant force acting on a dust particle.
NASA Astrophysics Data System (ADS)
Arregui, C.; Ramiro, J. B.; Alcázar, A.; Méndez, A.; Muñoz-Martínez, J. F.; Carrascosa, M.
2015-05-01
This paper describes the dielectrophoretic potential created by the evanescent electric field acting on a particle near a photovoltaic crystalsurface depending on the crystal cut. This electric field is obtained from the steady state solution of the Kukhtarev equations for thephotovoltaic effect, where the diffusion term has been disregarded. First, the space charge field generated by a small, square, light spotwhere d << l (being d a side of the square and l the crystal thickness) is studied. The surface charge density generated in both geometriesis calculated and compared as their relation determines the different properties of the dielectrophoretic potential for both cuts. The shapeof the dielectrophoretic potential is obtained and compared for several distances to the sample. Afterwards other light patterns are studiedby the superposition of square spots, and the resulting trapping profiles are analysed. Finally the surface charge densities and trappingprofiles for different d/l relations are studied.
Investigating anomalous transport of electrolytes in charged porous media
NASA Astrophysics Data System (ADS)
Skjøde Bolet, Asger Johannes; Mathiesen, Joachim
2017-04-01
Surface charge is know to play an important role in microfluidics devices when dealing with electrolytes and their transport properties. Similarly, surface charge could play a role for transport in porous rock with submicron pore sizes. Estimates of the streaming potentials and electro osmotic are mostly considered in simple geometries both using analytic and numerical tools, however it is unclear at present how realistic complex geometries will modify the dynamics. Our work have focused on doing numerical studies of the full three-dimensional Stokes-Poisson-Nernst-Planck problem for electrolyte transport in porous rock. As the numerical implementation, we have used a finite element solver made using the FEniCS project code base, which can both solve for a steady state configuration and the full transient. In the presentation, we will show our results on anomalous transport due to electro kinetic effects such as the streaming potential or the electro osmotic effect.
The Importance of Accurate Secondary Electron Yields in Modeling Spacecraft Charging
1986-05-01
Release; Distribution Unlimited AIR FORCE GEOPHYSICS LABORATORY AIR FORCE SYSTEMS COMMAND •IDTIC UNITED STATES AIR FORCE FLECTE HANSCOM AIR FORCE BASE...properties are taken to be those of solor cell rover slip model developed for NASCAP (MandeU et at, (1984)) since most of the exterior surface of the...Research 85, 1155, 1980. Garrett, H. B., "Spacecraft Charging: A Review", in Space Systems and Their Interactions with the Earth’. Space Environment, H
Structure and electronic properties of Cu nanoclusters supported on Mo 2C(001) and MoC(001) surfaces
Posada-Pérez, Sergio; Viñes, Francesc; Rodríguez, José A.; ...
2015-09-15
In this study, the atomic structure and electronic properties of Cu n nanoclusters (n = 4, 6, 7, and 10) supported on cubic nonpolar δ-MoC(001) and orthorhombic C- or Mo-terminated polar β-Mo 2C(001) surfaces have been investigated by means of periodic density functional theory based calculations. The electronic properties have been analyzed by means of the density of states, Bader charges, and electron localization function plots. The Cu nanoparticles supported on β-Mo 2C(001), either Mo- or C-terminated, tend to present a two-dimensional structure whereas a three-dimensional geometry is preferred when supported on δ-MoC(001), indicating that the Mo:C ratio and themore » surface polarity play a key role determining the structure of supported clusters. Nevertheless, calculations also reveal important differences between the C- and Mo-terminated β-Mo 2C(001) supports to the point that supported Cu particles exhibit different charge states, which opens a way to control the reactivity of these potential catalysts.« less
NASA Astrophysics Data System (ADS)
Zhuo, Zengqing; Hu, Jiangtao; Duan, Yandong; Yang, Wanli; Pan, Feng
2016-07-01
We performed soft x-ray absorption spectroscopy (sXAS) and a quantitative analysis of the transition metal redox in the LiMn0.5Fe0.5PO4 electrodes upon electrochemical cycling. In order to circumvent the complication of the surface reactions with organic electrolyte at high potential, the LiMn0.5Fe0.5PO4 electrodes are cycled with aqueous electrolyte. The analysis of the transitional metal L-edge spectra allows a quantitative determination of the redox evolution of Mn and Fe during the electrochemical cycling. The sXAS analysis reveals the evolving Mn oxidation states in LiMn0.5Fe0.5PO4. We found that electrochemically inactive Mn2+ is formed on the electrode surface during cycling. Additionally, the signal indicates about 20% concentration of Mn4+ at the charged state, providing a strong experimental evidence of the disproportional reaction of Mn3+ to Mn2+ and Mn4+ on the surface of the charged LiMn0.5Fe0.5PO4 electrodes.
2011-01-01
Supporting functional molecules on crystal facets is an established technique in nanotechnology. To preserve the original activity of ionic metallorganic agents on a supporting template, conservation of the charge and oxidation state of the active center is indispensable. We present a model system of a metallorganic agent that, indeed, fulfills this design criterion on a technologically relevant metal support with potential impact on Au(III)-porphyrin-functionalized nanoparticles for an improved anticancer-drug delivery. Employing scanning tunneling microscopy and -spectroscopy in combination with photoemission spectroscopy, we clarify at the single-molecule level the underlying mechanisms of this exceptional adsorption mode. It is based on the balance between a high-energy oxidation state and an electrostatic screening-response of the surface (image charge). Modeling with first principles methods reveals submolecular details of the metal–ligand bonding interaction and completes the study by providing an illustrative electrostatic model relevant for ionic metalorganic agent molecules, in general. PMID:21736315
Timoshevskii, Vladimir; Feng, Zimin; Bevan, Kirk H; Zaghib, Karim
2015-08-26
The atomic and electronic structures of the LiFePO4 (LFP) surface, both bare and reconstructed upon possible oxygenation, are theoretically studied by ab initio methods. On the basis of total energy calculations, the atomic structure of the oxygenated surface is proposed, and the effect of surface reconstruction on the electronic properties of the surface is clarified. While bare LFP(010) surface is insulating, adsorption of oxygen leads to the emergence of semimetallic behavior by inducing the conducting states in the band gap of the system. The physical origin of these conducting states is investigated. We further demonstrate that deposition of Li2S layers on top of oxygenated LFP(010) surface leads to the formation of additional conducting hole states in the first layer of Li2S surface because of the charge transfer from sulfur p-states to the gap states of LFP surface. This demonstrates that oxygenated LFP surface not only provides conducting layers itself, but also induces conducting channels in the top layer of Li2S. These results help to achieve further understanding of potential role of LFP particles in improving the performance of Li-S batteries through emergent interface conductivity.
Photoelectron spectroscopy study of the electronic structures at CoPc/Bi(111) interface
NASA Astrophysics Data System (ADS)
Sun, Haoliang; Liang, Zhaofeng; Shen, Kongchao; Hu, Jinbang; Ji, Gengwu; Li, Zheshen; Li, Haiyang; Zhu, Zhiyuan; Li, Jiong; Gao, Xingyu; Han, Huang; Jiang, Zheng; Song, Fei
2017-07-01
Self-assembly of functional molecules on solid substrate has been recognized as an appealing approach for the fabrication of diverse nanostructures for nanoelectronics. Herein, we investigate the growth of cobalt phthalocyanine (CoPc) on a Bi(111) surface with focus on the interface electronic structures utilizing photoelectron spectroscopy. While charge transfer from bismuth substrate to the molecule results in the emergence of an interface component in the Co 3p core level at lower binding energy, core-levels associated to the molecular ligand (C 1s and N 1s) are less influenced by the adsorption. In addition, density functional theory (DFT) calculations also support the empirical inference that the molecule-substrate interaction mainly involves the out-of-plane empty Co 3d orbital and bismuth states. Finally, valence band spectra demonstrate the molecule-substrate interaction is induced by interface charge transfer, agreeing well with core level measurements. Charge transfer is shown to be mainly from the underlying bismuth substrate to the empty states located at the central Co atom in the CoPc molecules. This report may provide a fundamental basis to the on-surface engineering of interfaces for molecular devices and spintronics.
Studies of Surface Charging of Polymers by Indirect Triboelectrification
NASA Astrophysics Data System (ADS)
Mantovani, James; Calle, Carlos; Groop, Ellen; Buehler, Martin
2001-03-01
Charge is known to develop on the surface of an insulating polymer by frictional charging through direct physical contact with another material. We will present results of recent triboelectrification studies of polymer surfaces that utilized an indirect method of frictional charging. This method first involves placing a grounded thin metal foil in stationary contact over the polymer surface. The exposed metal foil is then rubbed with the surface of the material that generates the triboelectric charge. Data is presented for five types of polymers: fiberglass/epoxy, polycarbonate (Lexan), polytetraflouroethylene (Teflon), Rulon J, and polymethylmethacrylate (PMMA, Lucite). The amount of charge that develops on an insulator's surface is measured using the MECA Electrometer, which was developed jointly by NASA Kennedy Space Center and the Jet Propulsion Laboratory to study the electrostatic properties of soil on the surface of Mars. Even though the insulator's surface is electrically shielded from the rubbing material by the grounded metal foil, charge measurements obtained by the MECA Electrometer after the metal foil is separated from the insulator's surface reveal that the insulator's surface does accumulate charge by indirect frictional charging. A possible explanation of the observations will be presented based on a simple contact barrier model.
Singh, Kunwar Pal; Guo, Chunlei
2017-06-21
The nanochannel diameter and surface charge density have a significant impact on current-voltage characteristics in a nanofluidic transistor. We have simulated the effect of the channel diameter and surface charge density on current-voltage characteristics of a fluidic nanochannel with positive surface charge on its walls and a gate electrode on its surface. Anion depletion/enrichment leads to a decrease/increase in ion current with gate potential. The ion current tends to increase linearly with gate potential for narrow channels at high surface charge densities and narrow channels are more effective to control the ion current at high surface charge densities. The current-voltage characteristics are highly nonlinear for wide channels at low surface charge densities and they show different regions of current change with gate potential. The ion current decreases with gate potential after attaining a peak value for wide channels at low values of surface charge densities. At low surface charge densities, the ion current can be controlled by a narrow range of gate potentials for wide channels. The current change with source drain voltage shows ohmic, limiting and overlimiting regions.
Electron Emission Properties of Insulator Materials Pertinent to the International Space Station
NASA Technical Reports Server (NTRS)
Thomson, C. D.; Zavyalov, V.; Dennison, J. R.; Corbridge, Jodie
2004-01-01
We present the results of our measurements of the electron emission properties of selected insulating and conducting materials used on the International Space Station (ISS). Utah State University (USU) has performed measurements of the electron-, ion-, and photon-induced electron emission properties of conductors for a few years, and has recently extended our capabilities to measure electron yields of insulators, allowing us to significantly expand current spacecraft material charging databases. These ISS materials data are used here to illustrate our various insulator measurement techniques that include: i) Studies of electron-induced secondary and backscattered electron yield curves using pulsed, low current electron beams to minimize deleterious affects of insulator charging. ii) Comparison of several methods used to determine the insulator 1st and 2nd crossover energies. These incident electron energies induce unity total yield at the transition between yields greater than and less than one with either negative or positive charging, respectively. The crossover energies are very important in determining both the polarity and magnitude of spacecraft surface potentials. iii) Evolution of electron emission energy spectra as a function of insulator charging used to determine the surface potential of insulators. iv) Surface potential evolution as a function of pulsed-electron fluence to determine how quickly insulators charge, and how this can affect subsequent electron yields. v) Critical incident electron energies resulting in electrical breakdown of insulator materials and the effect of breakdown on subsequent emission, charging and conduction. vi) Charge-neutralization techniques such as low-energy electron flooding and UV light irradiation to dissipate both positive and negative surface potentials during yield measurements. Specific ISS materials being tested at USU include chromic and sulfuric anodized aluminum, RTV-silicone solar array adhesives, solar cell cover glasses, Kapton, and gold. Further details of the USU testing facilities, the instrumentation used for insulator measurements, and the NASA/SEE Charge Collector materials database are provided in other Spacecraft Charging Conference presentations (Dennison, 2003b). The work presented was supported in part by the NASA Space Environments and Effects (SEE) Program, the Boeing Corporation, and a NASA Graduate Fellowship. Samples were supplied by Boeing, the Environmental Effects Group at Marshall Space Flight Center, and Sheldahl, Inc.
Zu, Fengshuo; Amsalem, Patrick; Ralaiarisoa, Maryline; Schultz, Thorsten; Schlesinger, Raphael; Koch, Norbert
2017-11-29
Substantial variations in the electronic structure and thus possibly conflicting energetics at interfaces between hybrid perovskites and charge transport layers in solar cells have been reported by the research community. In an attempt to unravel the origin of these variations and enable reliable device design, we demonstrate that donor-like surface states stemming from reduced lead (Pb 0 ) directly impact the energy level alignment at perovskite (CH 3 NH 3 PbI 3-x Cl x ) and molecular electron acceptor layer interfaces using photoelectron spectroscopy. When forming the interfaces, it is found that electron transfer from surface states to acceptor molecules occurs, leading to a strong decrease in the density of ionized surface states. As a consequence, for perovskite samples with low surface state density, the initial band bending at the pristine perovskite surface can be flattened upon interface formation. In contrast, for perovskites with a high surface state density, the Fermi level is strongly pinned at the conduction band edge, and only minor changes in surface band bending are observed upon acceptor deposition. Consequently, depending on the initial perovskite surface state density, very different interface energy level alignment situations (variations over 0.5 eV) are demonstrated and rationalized. Our findings help explain the rather dissimilar reported energy levels at interfaces with perovskites, refining our understanding of the operating principles in devices comprising this material.
NASA Astrophysics Data System (ADS)
Zhou, S.
2017-12-01
Using Monte Carlo results as a reference, a classical density functional theory ( CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson-Boltzmann ( PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force ( EPMF) between two face-face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of the salt ion; whereas if the 1:1 type electrolyte and the symmetrical patterns are considered, then the opposite may be the case. All of these findings can be explained self-consistently from several perspectives: an excess adsorption of the salt ions (induced by the surface charge separation) serving to raise the osmotic pressure between the plates, configuration fine-tuning in the thinner ion adsorption layer driven by the energy decrease principle, direct Coulombic interactions operating between charged objects on the two face-to-face plates involved, and net charge strength in the ion adsorption layer responsible for the net electrostatic repulsion.
Detection of current induced spin polarization in epitaxial Bi2Te3 thin film
NASA Astrophysics Data System (ADS)
Dey, Rik; Roy, Anupam; Pramanik, Tanmoy; Rai, Amritesh; Heon Shin, Seung; Majumder, Sarmita; Register, Leonard F.; Banerjee, Sanjay K.
2017-03-01
We electrically detect charge current induced spin polarization on the surface of a molecular beam epitaxy grown Bi2Te3 thin film in a two-terminal device with a ferromagnetic MgO/Fe contact and a nonmagnetic Ti/Au contact. The two-point resistance, measured in an applied magnetic field, shows a hysteresis tracking the magnetization of Fe. A theoretical estimate is obtained for the change in resistance on reversing the magnetization direction of Fe from coupled spin-charge transport equations based on the quantum kinetic theory. The order of magnitude and the sign of the hysteresis are consistent with the spin-polarized surface state of Bi2Te3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.
The Electron Beam Ion Source (EBIS), developed to breed CARIBU radioactive beams at ATLAS, is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The offline charge breeding tests are being performed using a surface ionization source that produces singly-charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition ratemore » and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20±0.7)% breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less
Symmetry lowering of pentacene molecular states interacting with a Cu surface
NASA Astrophysics Data System (ADS)
Baldacchini, Chiara; Mariani, Carlo; Betti, Maria Grazia; Vobornik, Ivana; Fujii, Jun; Annese, Emilia; Rossi, Giorgio; Ferretti, Andrea; Calzolari, Arrigo; di Felice, Rosa; Ruini, Alice; Molinari, Elisa
2007-12-01
Pentacene adsorbed on the Cu(119) vicinal surface forms long-range ordered chain structures. Photoemission spectroscopy measurements and ab initio density functional theory simulations provide consistent evidences that pentacene molecular orbitals mix with the copper bands, giving rise to interaction states localized at the interface. Angular-resolved and polarization dependent photoemission spectroscopy shows that most of the pentacene derived intensity is strongly dichroic. The symmetry of the molecular states of the free pentacene molecules is reduced upon adsorption on Cu(119), as a consequence of the molecule-metal interaction. Theoretical results show a redistribution of the charge density in π molecular states close to the Fermi level, consistent with the photoemission intensities (density of states) and polarization dependence (orbital symmetry).
Molecular Photovoltaics in Nanoscale Dimension
Burtman, Vladimir; Zelichonok, Alexander; Pakoulev, Andrei V.
2011-01-01
This review focuses on the intrinsic charge transport in organic photovoltaic (PVC) devices and field-effect transistors (SAM-OFETs) fabricated by vapor phase molecular self-assembly (VP-SAM) method. The dynamics of charge transport are determined and used to clarify a transport mechanism. The 1,4,5,8-naphthalene-tetracarboxylic diphenylimide (NTCDI) SAM devices provide a useful tool to study the fundamentals of polaronic transport at organic surfaces and to discuss the performance of organic photovoltaic devices in nanoscale. Time-resolved photovoltaic studies allow us to separate the charge annihilation kinetics in the conductive NTCDI channel from the overall charge kinetic in a SAM-OFET device. It has been demonstrated that tuning of the type of conductivity in NTCDI SAM-OFET devices is possible by changing Si substrate doping. Our study of the polaron charge transfer in organic materials proposes that a cation-radical exchange (redox) mechanism is the major transport mechanism in the studied SAM-PVC devices. The role and contribution of the transport through delocalized states of redox active surface molecular aggregates of NTCDI are exposed and investigated. This example of technological development is used to highlight the significance of future technological development of nanotechnologies and to appreciate a structure-property paradigm in organic nanostructures. PMID:21339983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.
Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conicalmore » intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D{sub 6h} Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D{sub 2} eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D{sub 1}, D{sub 2} (N{sup +}-Phenyl, N-Phenyl{sup +}). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an oscillation of the spin density – charge migration – between the N atom and the phenyl ring with a period of 4 fs. When the nuclear motion becomes coupled, this oscillation persists in a damped form, followed by an effective charge transfer after 30 fs.« less
NASA Astrophysics Data System (ADS)
Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.
2013-07-01
Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D6h Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D2 eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D1, D2 (N+-Phenyl, N-Phenyl+). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an oscillation of the spin density - charge migration - between the N atom and the phenyl ring with a period of 4 fs. When the nuclear motion becomes coupled, this oscillation persists in a damped form, followed by an effective charge transfer after 30 fs.
Automatic charge control system for satellites
NASA Technical Reports Server (NTRS)
Shuman, B. M.; Cohen, H. A.
1985-01-01
The SCATHA and the ATS-5 and 6 spacecraft provided insights to the problem of spacecraft charging at geosychronous altitudes. Reduction of the levels of both absolute and differential charging was indicated, by the emission of low energy neutral plasma. It is appropriate to complete the transition from experimental results to the development of a system that will sense the state-of-charge of a spacecraft, and, when a predetermined threshold is reached, will respond automatically to reduce it. A development program was initiated utilizing sensors comparable to the proton electrostatic analyzer, the surface potential monitor, and the transient pulse monitor that flew in SCATHA, and combine these outputs through a microprocessor controller to operate a rapid-start, low energy plasma source.
Rectification of nanopores at surfaces
Sa, Niya
2011-01-01
At the nanoscale, methods to measure surface charge can prove challenging. Herein we describe a general method to report surface charge through the measurement of ion current rectification of a nanopipette brought in close proximity to a charged substrate. This method is able to discriminate between charged cationic and anionic substrates when the nanopipette is brought within distances from ten to hundreds of nanometers from the surface. Further studies of the pH dependence on the observed rectification support a surface-induced mechanism and demonstrate the ability to further discriminate between cationic and nominally uncharged surfaces. This method could find application in measurement and mapping of heterogeneous surface charges and is particularly attractive for future biological measurements, where noninvasive, noncontact probing of surface charge will prove valuable. PMID:21675734
Electronic structure of BaO/W cathode surfaces
NASA Technical Reports Server (NTRS)
Muller, Wolfgang
1989-01-01
The local electronic structure of the emissive layer of barium dispenser thermionic cathodes is investigated theoretically using the relativistic scattered-wave approach. The interaction of Ba and O with W, Os, and W-Os alloy surfaces is studied with atomic clusters modeling different absorption environments representative of B- and M-type cathodes. Ba is found to be strongly oxidized, while O and the metal substrate are in a reduced chemical state. The presence of O enhances the surface dipole and Ba binding energy relative to Ba on W. Model results for W-Os alloy substrates show only relatively small changes in Ba and O for identical geometries, but very large charge redistributions inside the substrate, which are attributed to the electronegativity difference between Os and W. If Os is present in the surface layer, the charge transfer from Ba to the substrate and the Ba binding energy increase relative to W. Explanations are offered for the improved electron emission from alloy surfaces and the different emission enhancement for different alloy substrates.
Stability and band offsets between c-plane ZnO semiconductor and LaAlO3 gate dielectric
NASA Astrophysics Data System (ADS)
Wang, Jianli; Chen, Xinfeng; Wu, Shuyin; Tang, Gang; Zhang, Junting; Stampfl, C.
2018-03-01
Wurtzite-perovskite heterostructures composed of a high dielectric constant oxide and a wide bandgap semiconductor envision promising applications in field-effect transistors. In the present paper, the structural and electronic properties of LaAlO3/ZnO heterojunctions are investigated by first-principles calculations. We study the initial adsorption of La, Al, and oxygen atoms on ZnO (0001) and (000 1 ¯ ) surfaces and find that La atoms may occupy interstitial sites during the growth of stoichiometric ZnO (0001). The band gap of the stoichiometric ZnO (0001) surface is smaller than that of the stoichiometric ZnO (000 1 ¯ ) surface. The surface formation energy indicates that La or Al atoms may substitute Zn atoms at the nonstoichiometric ZnO (0001) surface. The atomic charges, electronic density of states, and band offsets are analyzed for the optimized LaAlO3/ZnO heterojunctions. There is a band gap for the LaAlO3/ZnO (000 1 ¯ ) heterostructures, and the largest variation in charge occurs at the surface or interface. Our results suggest that the Al-terminated LaAlO3/ZnO (000 1 ¯ ) interfaces are suitable for the design of metal oxide semiconductor devices because the valence and conduction band offsets are both larger than 1 eV and the interface does not produce any in-gap states.
Potential benefits of mileage-based user fees to the freight industry and industry concerns.
DOT National Transportation Integrated Search
2012-08-01
The concept of funding surface transportation infrastructure through fees charged on miles driven has been : receiving growing attention from transportation professionals and researchers in recent years. Highway funding in : the United States has tra...
2014-01-01
Robinson2, Y. Liu3, L. Li3 and B. T. Jonker1* Topological insulators exhibit metallic surface states populated by massless Dirac fermions with spin...classic dichotomy of metals and semi- conductors1–4. Whereas the bulk states form a bandgap, the surface states form a Dirac cone similar to graphene (Fig...magnetoelectric coupling12. Examples of TI materials include Bi1–xSbx (ref. 4), Bi2Se3, Bi2Te3 and Sb2Te3 (refs 13–15). One of the most striking properties is spin
Topological Nodal Cooper Pairing in Doped Weyl Metals
NASA Astrophysics Data System (ADS)
Li, Yi; Haldane, F. D. M.
2018-02-01
We generalize the concept of Berry connection of the single-electron band structure to that of a two-particle Cooper pairing state between two Fermi surfaces with opposite Chern numbers. Because of underlying Fermi surface topology, the pairing Berry phase acquires nontrivial monopole structure. Consequently, pairing gap functions have topologically protected nodal structure as vortices in the momentum space with the total vorticity solely determined by the pair monopole charge qp. The nodes of gap function behave as the Weyl-Majorana points of the Bogoliubov-de Gennes pairing Hamiltonian. Their relation with the connection patterns of the surface modes from the Weyl band structure and the Majorana surface modes inside the pairing gap is also discussed. Under the approximation of spherical Fermi surfaces, the pairing symmetry are represented by monopole harmonic functions. The lowest possible pairing channel carries angular momentum number j =|qp|, and the corresponding gap functions are holomorphic or antiholomorphic functions on Fermi surfaces. After projected on the Fermi surfaces with nontrivial topology, all the partial-wave channels of pairing interactions acquire the monopole charge qp independent of concrete pairing mechanism.
Defining reactive sites on hydrated mineral surfaces: Rhombohedral carbonate minerals
NASA Astrophysics Data System (ADS)
Villegas-Jiménez, Adrián; Mucci, Alfonso; Pokrovsky, Oleg S.; Schott, Jacques
2009-08-01
Despite the success of surface complexation models (SCMs) to interpret the adsorptive properties of mineral surfaces, their construct is sometimes incompatible with fundamental chemical and/or physical constraints, and thus, casts doubts on the physical-chemical significance of the derived model parameters. In this paper, we address the definition of primary surface sites (i.e., adsorption units) at hydrated carbonate mineral surfaces and discuss its implications to the formulation and calibration of surface equilibria for these minerals. Given the abundance of experimental and theoretical information on the structural properties of the hydrated (10.4) cleavage calcite surface, this mineral was chosen for a detailed theoretical analysis of critical issues relevant to the definition of primary surface sites. Accordingly, a single, generic charge-neutral surface site ( tbnd CaCO 3·H 2O 0) is defined for this mineral whereupon mass-action expressions describing adsorption equilibria were formulated. The one-site scheme, analogous to previously postulated descriptions of metal oxide surfaces, allows for a simple, yet realistic, molecular representation of surface reactions and provides a generalized reference state suitable for the calculation of sorption equilibria for rhombohedral carbonate minerals via Law of Mass Action (LMA) and Gibbs Energy Minimization (GEM) approaches. The one-site scheme is extended to other rhombohedral carbonate minerals and tested against published experimental data for magnesite and dolomite in aqueous solutions. A simplified SCM based on this scheme can successfully reproduce surface charge, reasonably simulate the electrokinetic behavior of these minerals, and predict surface speciation agreeing with available spectroscopic data. According to this model, a truly amphoteric behavior is displayed by these surfaces across the pH scale but at circum-neutral pH (5.8-8.2) and relatively high ΣCO 2 (⩾1 mM), proton/bicarbonate co-adsorption becomes important and leads to the formation of a charge-neutral H 2CO 3-like surface species which may largely account for the surface charge-buffering behavior and the relatively wide range of pH values of isoelectric points (pH iep) reported in the literature for these minerals.
The electrokinetic behavior of calcium oxalate monohydrate in macromolecular solutions
NASA Technical Reports Server (NTRS)
Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.
1988-01-01
Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chrondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for chemical adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopopolysacchrides have greater affinity for the COM surface than the proteins. The amount of proteins that can chemically adsorb appears to be limited to approximately one monomolecular layer. When the surface charge is high, an insufficient number of proteins can chemically adsorb to neutralize or reverse the surface charge. The remaining surface charge is balanced by proteins held near the surface by longer range electrostatic forces only. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.
Density of states, optical and thermoelectric properties of perovskite vanadium fluorides Na3VF6
NASA Astrophysics Data System (ADS)
Reshak, A. H.; Azam, Sikander
2014-05-01
The electronic structure, charge density and Fermi surface of Na3VF6 compound have been examined with the support of density functional theory (DFT). Using the full potential linear augmented plane wave method, we employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engel-Vosko GGA (EVGGA) to treat the exchange correlation potential to solve Kohn-Sham equations. The calculation show that Na3VF6 compound has metallic nature and the Fermi energy (EF) is assessed by overlapping of V-d state. The calculated density of states at the EF are about 18.655, 51.932 and 13.235 states/eV, and the bare linear low-temperature electronic specific heat coefficient (γ) is found to be 3.236 mJ/mol-K2, 9.008 mJ/mol-K2 and 2.295 mJ/mol-K2 for LDA, GGA and EVGGA, respectively. The Fermi surface is composed of two sheets. The chemical bonding of Na3VF6 compound is analyzed through the electronic charge density in the (1 1 0) crystallographic plane. The optical constants and thermal properties were also calculated and discussed.
Hartvig, Rune A; van de Weert, Marco; Østergaard, Jesper; Jorgensen, Lene; Jensen, Henrik
2011-03-15
The understanding of protein adsorption at charged surfaces is important for a wide range of scientific disciplines including surface engineering, separation sciences and pharmaceutical sciences. Compared to chemical entities having a permanent charge, the adsorption of small ampholytes and proteins is more complicated as the pH near a charged surface can be significantly different from the value in bulk solution. In this work, we have developed a phenomenological adsorption model which takes into account the combined role of interfacial ion distribution, interfacial charge regulation of amino acids in the proximity of the surface, electroneutrality, and mass balance. The model is straightforward to apply to a given set of experimental conditions as most model parameters are obtained from bulk properties and therefore easy to estimate or are directly measurable. The model provides a detailed understanding of the importance of surface charge on adsorption and in particular of how changes in surface charge, concentration, and surface area may affect adsorption behavior. The model is successfully used to explain the experimental adsorption behavior of the two model proteins lysozyme and α-lactalbumin. It is demonstrated that it is possible to predict the pH and surface charge dependent adsorption behavior from experimental or theoretical estimates of a preferred orientation of a protein at a solid charged interface.
Ultrafast dynamics of differently aligned COOH-DTE-BODIPY conjugates linked to the surface of TiO2
NASA Astrophysics Data System (ADS)
Schweighöfer, Felix; Yüce, Imanuel; Dworak, Lars; Guo, Peng; Zastrow, Marc; Mayer, Kerstin; Barta, Christoph; Liebmann, Diana; Ziebart, Nandor; Rück-Braun, Karola; Wachtveitl, Josef
2018-02-01
The photoinduced dynamics of two DTE-BODIPY conjugates A, B with carboxylic acid anchoring groups coupled to the surface of TiO2 were studied by ultrafast transient absorption spectroscopy. For compound A, with an orthogonal orientation of the BODIPY chromophore and the photoswitchable DTE unit, a charge separated state could not be reliably detected. Nevertheless, besides the energy transfer from the BODIPY to the ring-closed DTE-c, indications for an electron transfer reaction were found by analyzing fluorescence quenching on TiO2 in steady state fluorescence measurements. For compound B with a parallel orientation of chromophore and photoswitch, a charge separated state was conclusively identified for the coupled dyad (TiO2) via the observation of a positive absorption signal (at λ pr > 610 nm) at later delay times. An electron transfer rate of 7 × 1010 s-1 can be extracted, indicating slower processes in the dyads in comparison to previously published electron transfer reactions of DTE compounds coupled to TiO2.
Ultrafast dynamics of differently aligned COOH-DTE-BODIPY conjugates linked to the surface of TiO2.
Schweighöfer, Felix; Yüce, Imanuel; Dworak, Lars; Guo, Peng; Zastrow, Marc; Mayer, Kerstin; Barta, Christoph; Liebmann, Diana; Ziebart, Nandor; Rück-Braun, Karola; Wachtveitl, Josef
2018-01-05
The photoinduced dynamics of two DTE-BODIPY conjugates A, B with carboxylic acid anchoring groups coupled to the surface of TiO 2 were studied by ultrafast transient absorption spectroscopy. For compound A, with an orthogonal orientation of the BODIPY chromophore and the photoswitchable DTE unit, a charge separated state could not be reliably detected. Nevertheless, besides the energy transfer from the BODIPY to the ring-closed DTE-c, indications for an electron transfer reaction were found by analyzing fluorescence quenching on TiO 2 in steady state fluorescence measurements. For compound B with a parallel orientation of chromophore and photoswitch, a charge separated state was conclusively identified for the coupled dyad (TiO 2 ) via the observation of a positive absorption signal (at λ pr > 610 nm) at later delay times. An electron transfer rate of 7 × 10 10 s -1 can be extracted, indicating slower processes in the dyads in comparison to previously published electron transfer reactions of DTE compounds coupled to TiO 2 .
The Charging Events in Contact-Separation Electrification.
Musa, Umar G; Cezan, S Doruk; Baytekin, Bilge; Baytekin, H Tarik
2018-02-06
Contact electrification (CE)-charging of surfaces that are contacted and separated, is a common phenomenon, however it is not completely understood yet. Recent studies using surface imaging techniques and chemical analysis revealed a 'spatial' bipolar distribution of charges at the nano dimension, which made a paradigm shift in the field. However, such analyses can only provide information about the charges that remained on the surface after the separation, providing limited information about the actual course of the CE event. Tapping common polymers and metal surfaces to each other and detecting the electrical potential produced on these surfaces 'in-situ' in individual events of contact and separation, we show that, charges are generated and transferred between the surfaces in both events; the measured potential is bipolar in contact and unipolar in separation. We show, the 'contact-charges' on the surfaces are indeed the net charges that results after the separation process, and a large contribution to tribocharge harvesting comes, in fact, from the electrostatic induction resulting from the generated CE charges. Our results refine the mechanism of CE providing information for rethinking the conventional ranking of materials' charging abilities, charge harvesting, and charge prevention.
Gerts, David W; Bean, Robert S; Metcalf, Richard R
2013-02-19
A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.
Varadwaj, Arpita; Varadwaj, Pradeep R; Yamashita, Koichi
2018-03-15
Coulomb's law states that like charges repel, and unlike charges attract. However, it has recently been theoretically revealed that two similarly charged conducting spheres will almost always attract each other when both are in close proximity. Using multiscale first principles calculations, we illustrate practical examples of several intermolecular complexes that are formed by the consequences of attraction between positive atomic sites of similar or dissimilar electrostatic surface potential on interacting molecules. The results of the quantum theory of atoms in molecules and symmetry adapted perturbation theory support the attraction between the positive sites, characterizing the F•••X (X = F, Cl, Br) intermolecular interactions in a series of 20 binary complexes as closed-shell type, although the molecular electrostatic surface potential approach does not (a failure!). Dispersion that has an r -6 dependence, where r is the equilibrium distance of separation, is found to be the sole driving force pushing the two positive sites to attract. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Eckenrode, Heather M; Jen, Shih-Hui; Han, Jun; Yeh, An-Gong; Dai, Hai-Lung
2005-03-17
Nonlinear optical probe, second harmonic generation (SHG), of the adsorption of the dye molecule malachite green (MG), in cationic form at pH < or = 5, on polystyrene microspheres in aqueous solution is used to study the effect of surface charge and composition on molecular adsorption. Three types of polystyrene microspheres with different surface composition are investigated: (1) a sulfate terminated, anionic surface, (2) a neutral surface without any functional group termination, and (3) an amine terminated, cationic surface. The cationic dye was found to adsorb at all three surfaces, regardless of surface charge. The adsorption free energies, DeltaG's, measured for the three surfaces are -12.67, -12.39, and -10.46 kcal/mol, respectively, with the trend as expected from the charge interactions. The adsorption density on the anionic surface, where attractive charge-charge interaction dominates, is determined by the surface negative charge density. The adsorption densities on the neutral and cationic surfaces are on the other hand higher, perhaps as a result of a balance between minimizing repulsive charge interaction and maximizing attractive molecule-substrate and intermolecular interactions. The relative strength of the SH intensity per molecule, in combination of a model calculation, reveals that the C(2) axis of the MG molecule is nearly perpendicular to the surface on the anionic surface and tilts away from the surface norm when the surface is neutral and further away when cationic. Changing the pH of the solution may alter the surface charge and subsequently affect the adsorption configuration and SH intensity.
State memory in solution gated epitaxial graphene
NASA Astrophysics Data System (ADS)
Butko, A. V.; Butko, V. Y.; Lebedev, S. P.; Lebedev, A. A.; Davydov, V. Y.; Smirnov, A. N.; Eliseyev, I. A.; Dunaevskiy, M. S.; Kumzerov, Y. A.
2018-06-01
We studied electrical transport in transistors fabricated on a surface of high quality epitaxial graphene with density of defects as low as 5·1010 cm-2 and observed quasistatic hysteresis with a time constant in a scale of hours. This constant is in a few orders of magnitude greater than the constant previously reported in CVD graphene. The hysteresis observed here can be described as a shift of ∼+2V of the Dirac point measured during a gate voltage increase from the position of the Dirac point measured during a gate voltage decrease. This hysteresis can be characterized as a nonvolatile quasistatic state memory effect in which the state of the gated graphene is determined by its initial state prior to entering the hysteretic region. Due to this effect the difference in resistance of the gated graphene measured in the hysteretic region at the same applied voltages can be as high as 70%. The observed effect can be explained by assuming that charge carriers in graphene and oppositely charged molecular ions from the solution form quasistable interfacial complexes at the graphene interface. These complexes likely preserve the initial state by preventing charge carriers in graphene from discharging in the hysteretic region.
Charge-state dynamics in electrostatic force spectroscopy
NASA Astrophysics Data System (ADS)
Ondráček, Martin; Hapala, Prokop; Jelínek, Pavel
2016-07-01
We present a numerical model that allows us to study the response of an oscillating probe in electrostatic force spectroscopy to charge switching in quantum dots at various time scales. The model provides more insight into the behavior of frequency shift and dissipated energy under different scanning conditions when measuring a temporarily charged quantum dot on a surface. Namely, we analyze the dependence of the frequency shift, the dissipated energy, and their fluctuations on the resonance frequency of the tip and on the electron tunneling rates across the tip-quantum dot and quantum dot-sample junctions. We discuss two complementary approaches to simulating the charge dynamics, a stochastic and a deterministic one. In addition, we derive analytic formulas valid for small amplitudes, describing relations between the frequency shift, dissipated energy, and the characteristic rates driving the charging and discharging processes.
Using the electrochemical dimension to build water/Ru(0001) phase diagram
NASA Astrophysics Data System (ADS)
Lespes, Nicolas; Filhol, Jean-Sébastien
2015-01-01
The water monolayer/Ru(0001) electrochemical phase diagram as a function of surface potential and temperature is built using a DFT approach. The monolayer structure with temperature is extracted following the zero-charge line in good agreement with experiments. Below 140 K, a mix of oppositely charged hydroxyl/water and hydride/water domains is found stable; above 140 K, water molecules desorb from the hydride phase leading to a mixture of oppositely charged surface hydride and hydroxyl/water phases; above 280 K, all the residual adsorbed water desorbs. For undissociated water, a Chain structure is found stable and desorbs above 150 K. The observed nano-sized domains are suggested to be the balance between hydroxyl/hydride repulsion that tends to create two well separated domains and opposite charging that tends to favor a domain mix. An isotopic effect is computed to reduce by a factor of 160 the kinetic rate of D2O dissociation (compared to H2O) and is linked to the reduction of the ZPE in the transition state caused by a proton transport chain. Water monolayer/Ru(0001) has a specific reactivity and its organization is highly sensitive to the surface potential suggesting that under electrochemical conditions, the potential is not only tuning directly the chemical reactivity but also indirectly through the solvent structure.
NASA Technical Reports Server (NTRS)
Freund, Friedemann; Freund, Minoru M.; Batllo, Francois
1993-01-01
The electrical conductivity sigma of MgO single crystals shows a sharp increase at 500-800 C, in particular of sigma surface, generally attributed to surface contamination. Charge Distribution Analysis (CDA), a new technique providing information on fundamental properties that was previously unavailable, allows for the determination of surface charges, their sign and associated internal electric field. Data on 99.99% purity, arc-fusion grown MgO crystals show that mobile charge carriers start to appear in the bulk of the MgO crystals between 200 and 400 C when sigma (measured by conventional techniques) is in t he 10(exp -14) to 10(exp -16) /omega/cm range. Above 500 C, as sigma increases to 10(exp -6) to 10(exp -7)/omega/cm, more charges appear giving rise to a strong positive surface charge supported by a strong internal field. This indicates that charges are generated in the bulk and diffuse to the surface by an internally controlled process. On the basis of their positive sign they are identified as holes (defect electrons). Because of the low cation content of these very pure MgO crystals, theses holes cannnot be associated with transition metal impurties. Instead, they are associated with the O(2-) sublattice, e.g. consist of O(-) states or positive holes. This conclusion is supported by magnetic susceptibility data showing the appearance of 1000 +/- 500 ppm paramagnetic species between 200-500 C. The magnetic data are consistent with strongly coupled, diamagnetic O(-) pairs below 200-500 C, chemically equivalent to peroxy anions, O2(2-), and probably associated with cation vacancies in the MgO matrix. The formation of O2(2-) in arc-fusion grown MgO crystals is very unexpected because of the highly reducing growth conditions. Their presence implies an internal redox reaction involving dissolved 'water' by which OH(-) pairs convert to O2(2-) plus H2 molecules. This redox conversion is supported by mass spectroscopic measurements of the H2 release from highly OH(-)-doped, finely divided MgO and by wet-chemical analysis of its oxidant concentration.
NASA charging analyzer program: A computer tool that can evaluate electrostatic contamination
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Roche, J. C.; Mandell, M. J.
1978-01-01
A computer code, the NASA Charging Analyzer Program (NASCAP), was developed to study the surface charging of bodies subjected to geomagnetic substorm conditions. This program will treat the material properties of a surface in a self-consistent manner and calculate the electric fields in space due to the surface charge. Trajectories of charged particles in this electric field can be computed to determine if these particles enhance surface contamination. A preliminary model of the Spacecraft Charging At The High Altitudes (SCATHA) satellite was developed in the NASCAP code and subjected to a geomagnetic substorm environment to investigate the possibility of electrostatic contamination. The results indicate that differential voltages will exist between the spacecraft ground surfaces and the insulator surfaces. The electric fields from this differential charging can enhance the contamination of spacecraft surfaces.
NASA Astrophysics Data System (ADS)
Lukyanova, L. N.; Makarenko, I. V.; Usov, O. A.; Dementev, P. A.
2018-05-01
The morphology of the interlayer van der Waals surface and differential tunneling conductance in p-Bi2‑xSbxTe3‑ySey solid solutions were studied by scanning tunneling microscopy and spectroscopy in dependence on compositions. The topological characteristics of the Dirac fermion surface states were determined. It was shown that the thermoelectric power factor and the material parameter enhance with the shift of the Dirac point to the top of the valence band with the increasing of atomic substitution in these thermoelectrics. A correlation between topological characteristics, power factor and material parameters was found. A growth contribution of the surface states is determined by an increase of the Fermi velocity for large atomic substitutions of Bi at x > 1.5 and small substitutions in the Te sublattice (y = 0.06). In compositions with smaller substitutions at x = (1–1.3) and y = (0.06–0.09), similar effect of the surface states is determined by raising the surface concentration of charge carriers.
NASA Astrophysics Data System (ADS)
Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Weiss, A. H.
2011-06-01
Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 °C. The PAES intensity then decreases monotonically as the annealing temperature is increased to ˜550 °C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M2,3VV and O KLL Auger transitions. PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 °C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fazleev, N. G.; Department of Physics, Kazan State University, Kazan 420008; Nadesalingam, M. P.
2011-06-01
Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 deg. C. The PAES intensity then decreases monotonically as the annealing temperature is increased to {approx}550 deg. C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M{sub 2,3}VV and O KLL Auger transitions. PAESmore » results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 deg. C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.« less
Adhesion of osteoblasts to a nanorough titanium implant surface
Gongadze, Ekaterina; Kabaso, Doron; Bauer, Sebastian; Slivnik, Tomaž; Schmuki, Patrik; van Rienen, Ursula; Iglič, Aleš
2011-01-01
This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction between fibronectin molecules and the titanium surface is expected to be more efficient for a high surface charge density, resulting in facilitated integrin mediated osteoblast adhesion. We suggest that osteoblasts are most strongly bound along the sharp convex edges or spikes of nanorough titanium surfaces where the magnitude of the negative surface charge density is the highest. It is therefore plausible that nanorough regions of titanium surfaces with sharp edges and spikes promote the adhesion of osteoblasts. PMID:21931478
Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli
2012-07-21
We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.
On the physics of both surface overcharging and charge reversal at heterophase interfaces.
Wang, Zhi-Yong; Zhang, Pengli; Ma, Zengwei
2018-02-07
The conventional paradigm for characterizing surface overcharging and charge reversal is based on the so-called Stern layer, in which surface dissociation reaction and specific chemical adsorption are assumed to take place. In this article, a series of Monte Carlo simulations have been applied to obtain useful insights into the underlying physics responsible for these two kinds of anomalous phenomena at the interface of two dielectrics, with special emphasis on the case of divalent counterions that are more relevant in natural and biological environments. At a weakly charged surface, it is found that independent of the type of surface charge distribution and the dielectric response of the solution, the overcharging event is universally driven by the ion size-asymmetric effect. Exceptionally, the overcharging still persists when the surface is highly charged but is only restricted to the case of discrete surface charge in a relatively low dielectric medium. As compared to the adsorption onto the homogeneously smeared charge surface that has the same average affinity for counterions, on the other hand, charge reversal under the action of a dielectric response can be substantially enhanced in the discrete surface charge representation due to strong association of counterions with interfacial groups, and the degree of enhancement depends in a nontrivial way on the reduction of the medium dielectric constant and the steric effects of finite ion size. Rather interestingly, the charge reversal is of high relevance to the overcharging of interfaces because the overwhelming interfacial association forces the coions closer to the surface due to their smaller size than the counterions. Upon the addition of a monovalent salt to the solution, the interfacial association with divalent counterions makes surface overcharging and charge reversal widely unaffected, in contrast to the prevailing notion that screening of surface charge of a homogeneous nature is determined by the competitive effects between size-exclusion effects and energetic contributions. Overall, the present work highlights that the complex interplay between the electrostatic and steric interactions should be coupled to the realistic character of surface charge to establish a faithful description of the overcharging and charge reversal at heterophase interfaces.
Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; ...
2015-08-27
In this study, the swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion–surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for amore » montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion–surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.« less
Probing anode degradation in automotive Li-ion batteries
NASA Astrophysics Data System (ADS)
Kwon, Ou Jung
The lithium-ion battery is drawing attention as a power source for future clean and fuel-efficient vehicles. Although the Li-ion battery presently shows best performance for energy density and power density compared to other rechargeable batteries, some degradation problems still remain as key challenges for long-term durability in automotive applications. Among those problems, Li deposition is well known for causing permanent capacity loss. Fundamental mechanisms of Li deposition in the carbon anode are, however, not fully understood, especially at subzero temperature and/or under high rate charge. This dissertation introduces comprehensive study of Li deposition using automotive 18650 Li-ion cells. The mechanism and relevant diagnostic methods as well as preventive charging protocol are discussed. In part one, a new diagnostic tool is introduced utilizing 3-electrode cell system, which measures thermodynamic and kinetic parameters of cathode and anode, respectively, as a function of temperature and SOC (state of charge): open circuit potential (OCP); Li diffusion coefficient in active particles; and internal resistance. These data are employed to understand electrochemical reaction and its thermal interaction under charging conditions that result in Li deposition. Part two provides a threshold parameter for the onset of Li deposition, which is not commonly used anode potential but charge capacity, or more specifically the amount of Li+ ions participating in intercalation reaction without Li deposition at given charging circumstances. This is called the critical charge capacity in this thesis, beyond which capacity loss at normal operating condition is observed, which becomes more serious as temperature is lowered and/or charge C-rate increases. Based on these experimental results, the mechanism of Li deposition is proposed as the concept of anode particle surface saturation, meaning that once the anode particle surface is saturated with Li in any charging circumstances, no more Li+ ions can be intercalated but should be reduced to metallic form on the anode particle surface. This is validated by calculating the distribution of Li concentration inside the anode particle with electrochemical modeling. In part three, a novel pulse charge protocol is developed, which consists of two steps. First high current charge/discharge pulses increase the cell temperature from a subzero temperature up to above room temperature in a short time, and next, high current charge provides the net charge capacity. Sluggish Li diffusion at low temperature becomes fast thanks to cell temperature elevation by high current pulses (1st step), which plays a role of preventing surface saturation during high current charge (2nd step). Thus, this charge protocol is not only Li deposition-free but also leads to rapid charge at subzero temperatures.
Unmanned Surface Sea Vehicle Power System Design and Modeling
2005-11-29
Singh, C.J. Fennie , Jr., A.J. Salkind, and D.E. Reisner, "A Fuzzy Logic Methodology to Determine State-of-Charge (SOC) in Electric and Hybrid Vehicle...Systems", 16th IEEE Photovoltaic same length of 10 meters. Specialists Conference, pp. 513-518, 1982. [5] Pritpal Singh, Craig J. Fennie , Jr., Alvin J...34Estimation of Battery Charge in Photovoltaic Systems", 16th IEEE Photovoltaic Specialists Conference, pp. 513-518, 1982. [5] Pritpal Singh, Craig J. Fennie , Jr
Single-atom detection of isotopes
Meyer, Fred W.
2002-01-01
A method for performing accelerator mass spectrometry, includes producing a beam of positive ions having different multiple charges from a multicharged ion source; selecting positive ions having a charge state of from +2 to +4 to define a portion of the beam of positive ions; and scattering at least a portion of the portion of the beam of positive ions off a surface of a target to directly convert a portion of the positive ions in the portion of the beam of positive ions to negative ions.
Controlling electrostatic charging of nanocrystalline diamond at nanoscale.
Verveniotis, Elisseos; Kromka, Alexander; Rezek, Bohuslav
2013-06-11
Constant electrical current in the range of -1 to -200 pA is applied by an atomic force microscope (AFM) in contact mode regime to induce and study local electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD) thin films. The NCD films are deposited on silicon in 70 nm thickness and with 60% relative sp(2) phase content. Charging current is monitored by conductive AFM. Electric potential contrast induced by the current is evaluated by Kelvin force microscopy (KFM). KFM shows well-defined, homogeneous, and reproducible microscopic patterns that are not influenced by inherent tip-surface junction fluctuations during the charging process. The charged patterns are persistent for at least 72 h due to charge trapping inside the NCD film. The current-induced charging also clearly reveals field-induced detrapping at current amplitudes >-50 pA and tip instability at >-150 pA, both of which limit the achievable potential contrast. In addition, we show that the field also determines the range of electronic states that can trap the charge. We present a model and discuss implications for control of the nanoscale charging process.
Singh, Vivek; Yu, Yixuan; Sun, Qi-C; Korgel, Brian; Nagpal, Prashant
2014-12-21
While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in nanoscaled silicon semiconductors. Therefore, these results can have important implications for the design of optoelectronics and thermoelectric devices based on nanostructured silicon.
The plasma environment, charge state, and currents of Saturn's C and D rings
NASA Technical Reports Server (NTRS)
Wilson, G. R.
1991-01-01
The charge state and associated currents of Saturn's C an D rings are studied by modeling the flow of ionospheric plasma from the mid- to low-latitude ionosphere to the vicinity of the rings. It is found that the plasma density near the C and D rings, at a given radial location, will experience a one to two order of magnitude diurnal variation. The surface charge density (SCD) of these rings can show significant radial and azimuthal variations due mainly to variation in the plasma density. The SCD also depends on structural features of the rings such as thickness and the nature of the particle size distribution. The associated azimuthal currents carried by these rings also show large diurnal variations resulting in field-aligned currents which close in the ionosphere. The resulting ionospheric electric field will probably not produce a significant amount of plasma convection in the topside ionosphere and inner plasmasphere.
NASA Technical Reports Server (NTRS)
Schutt, J. B.; Gilchrist, W. H.; Paczkowski, F. N.
1972-01-01
Details are given for the deposition of silver onto FEP for a batch coater capable of handling 864 square inches at a time. The effectiveness of the glow discharge is shown to be optimum when the FEP faces the anode. Using solid state theory based upon the work function difference, and the heuristic assumption that the surface of FEP is populated with fluoride ions, it is argued that an anode sensitized surface develops states receptive to electron transfer from silver, whereas a cathode sensitized surface is polarized only, and as a result cannot permanently trap charge. Thermodynamic arguments given show that an order of magnitude of 10 to the 9th power electrons are transferred into states to a depth of 10 nm.
Sun, Tao; Wang, Yun; Zhang, Haimin; Liu, Porun; Zhao, Huijun
2015-09-15
Anatase TiO2 (001) surfaces have attracted great interest for photo-degradation of organic species recently due to their high reactivity. In this work, adsorption properties and oxidation mechanisms of oxalic acid on the anatase TiO2 (001) surface have been theoretically investigated using the first-principles density functional theory. Various possible adsorption configurations are considered by diversifying the connectivity of carboxylic groups with the surface. It is found that the adsorption of oxalic acid on the anatase (001) surface prefer the dissociative states. A novel double-bidentate configuration has been found due to the structural match between oxalic acid and the (001) surface. More charge is transferred from the adsorbed oxalic acid to the surface with the double-bidentate configuration when comparing with other adsorption structures. Thus, there is a positive correlation relationship between the transferred charge amount and the interfacial bond numbers when oxalic acid adsorbs on the anatase TiO2 (001) surface. The adsorption energies with dispersion corrections have demonstrated that the van der Waals interactions play an important role in the adsorption, especially when adsorbates are close to the surface. Copyright © 2015 Elsevier Inc. All rights reserved.
Nanopipette delivery: influence of surface charge.
Shi, Wenqing; Sa, Niya; Thakar, Rahul; Baker, Lane A
2015-07-21
In this report, transport through a nanopipette is studied and the interplay between current rectification and ion delivery for small pipettes is examined. First, surface charge dependence of concentration polarization effects in a quartz nanopipette was investigated. Electrical characterization was performed through current-potential (I-V) measurements. In addition, fluorescein (an anionic fluorescent probe) was utilized to optically map ion enrichment and ion depletion in the nanopipette tip. Bare nanopipettes and polyethylenimine (PEI)-modified nanopipettes were examined. Results confirm that concentration polarization is a surface charge dependent phenomenon and delivery can be controlled through modification of surface charge. The relationship between concentration polarization effects and voltage-driven delivery of charged electroactive species was investigated with a carbon ring/nanopore electrode fabricated from pyrolyzed parylene C (PPC). Factors such as surface charge polarity of the nanopipette, electrolyte pH, and electrolyte concentration were investigated. Results indicate that with modification of surface charge, additional control over delivery of charged species can be achieved.
Polarization-induced surface charges in hydroxyapatite ceramics
NASA Astrophysics Data System (ADS)
Horiuchi, N.; Nakaguki, S.; Wada, N.; Nozaki, K.; Nakamura, M.; Nagai, A.; Katayama, K.; Yamashita, K.
2014-07-01
Calcium hydroxyapatite (HAp; Ca10(PO4)6(OH)2) is a well-known biomaterial that is the main inorganic component of bones and teeth. Control over the surface charge on HAp would be a key advance in the development of the material for tissue engineering. We demonstrate here that surface charge can be induced by an electrical poling process using the Kelvin method. Positive and negative charges were induced on the HAp surface in response to the applied electric field in the poling process. The surface charging is attributed to dipole polarization that is homogeneously distributed in HAp. Additionally, the surface charging is considered to originate from the organization of OH- ions into a polar phase in the structure.
NASA Astrophysics Data System (ADS)
Jung, J. E.; Wilcox, J.
2016-12-01
Hematite (α-Fe2O3) is a common mineral found in Earth's near-surface environment. Due to its nontoxicity, corrosion-resistance, and high thermal stability, α-Fe2O3 has attracted attentions as materials for various applications such as photocatalysts, gas sensors, as well as for the removal of heavy metals. In this study, α-Fe2O3 is chosen for potential mercury (Hg) sorbent in order to remove Hg from coal-fired power plants. Specifically, theoretical approaches using density functional theory (DFT) is used to understand surface reactivity of Hg on oxygen (O) terminated α-Fe2O3(0001) surface. The most probable adsorption sites of Hg, chlorine (Cl), and mercury chloride (HgCl) on the α-Fe2O3 surface are found based on adsorption energy calculations, and the oxidation states of the adsorbates are determined by Bader charge analysis. Additionally, projected density of states (PDOS) analysis characterizes the surface-adsorbate bonding mechanism. The results of adsorption energy calculation proposes that Hg physisorbs to the α-Fe2O3(0001) surface with adsorption energy of -0.278 eV, and the subsequent Bader charge analysis confirms that Hg is slightly oxidized. In addition, Cl introduced to the Hg-adsorbed surface strengthens Hg stability on the α-Fe2O3(0001) surface as evidenced by a shortened Hg-surface equilibrium distance. The PDOS analysis also suggests that Cl enhances the chemical bonding between the surface and the adsorbate, thereby increasing adsorption strength. In summary, α-Fe2O3 has ability to adsorb and oxidize Hg, and this reactivity is enhanced in the presence of Cl.
Gaps, Pseudogaps, and the Nature of Charge in Holographic Fermion Models
NASA Astrophysics Data System (ADS)
Vanacore, Garrett; Phillips, Philip
Building on prior holographic constructions of Fermi arcs and Mott physics, we investigate the landscape of gapped and gapless strongly-correlated phases resulting from bulk fermion interactions in gauge/gravity duality. We test a proposed connection between bulk chiral symmetry and gapless boundary states, and discuss implications for discrete symmetry breaking in pseudogapped systems like the cuprate superconductors. Numerical methods are used to treat gravitational backreaction of bulk fermions, allowing more rigorous investigation of the existence of holographic Fermi surfaces and their adherence to Luttinger's rule. We use these techniques to study deviations from Luttinger's rule in holography, testing a recent claim that momentum-deconfined charges are at the heart of the Mott state.
2012-11-08
change of O2 spin, at the barrier [Fig. 3]; i.e., the corresponding diabatic surfaces cross. Far from the Al surface, the triplet state is...previous theoretical models, in particular nonadiabatic [17] or diabatic [16] approaches, which also find an energy barrier consistent with experiment...crossings of different diabatic O2 spin configuration sur- faces are accommodated by small spin fluctuations within the metal surface. For parallel
Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.
Ubbink, Job; Khokhlov, Alexei R
2004-03-15
A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)]. (c) 2004 American Institute of Physics.
Role of ion hydration for the differential capacitance of an electric double layer.
Caetano, Daniel L Z; Bossa, Guilherme V; de Oliveira, Vinicius M; Brown, Matthew A; de Carvalho, Sidney J; May, Sylvio
2016-10-12
The influence of soft, hydration-mediated ion-ion and ion-surface interactions on the differential capacitance of an electric double layer is investigated using Monte Carlo simulations and compared to various mean-field models. We focus on a planar electrode surface at physiological concentration of monovalent ions in a uniform dielectric background. Hydration-mediated interactions are modeled on the basis of Yukawa potentials that add to the Coulomb and excluded volume interactions between ions. We present a mean-field model that includes hydration-mediated anion-anion, anion-cation, and cation-cation interactions of arbitrary strengths. In addition, finite ion sizes are accounted for through excluded volume interactions, described either on the basis of the Carnahan-Starling equation of state or using a lattice gas model. Both our Monte Carlo simulations and mean-field approaches predict a characteristic double-peak (the so-called camel shape) of the differential capacitance; its decrease reflects the packing of the counterions near the electrode surface. The presence of hydration-mediated ion-surface repulsion causes a thin charge-depleted region close to the surface, which is reminiscent of a Stern layer. We analyze the interplay between excluded volume and hydration-mediated interactions on the differential capacitance and demonstrate that for small surface charge density our mean-field model based on the Carnahan-Starling equation is able to capture the Monte Carlo simulation results. In contrast, for large surface charge density the mean-field approach based on the lattice gas model is preferable.
Method for Estimating the Charge Density Distribution on a Dielectric Surface.
Nakashima, Takuya; Suhara, Hiroyuki; Murata, Hidekazu; Shimoyama, Hiroshi
2017-06-01
High-quality color output from digital photocopiers and laser printers is in strong demand, motivating attempts to achieve fine dot reproducibility and stability. The resolution of a digital photocopier depends on the charge density distribution on the organic photoconductor surface; however, directly measuring the charge density distribution is impossible. In this study, we propose a new electron optical instrument that can rapidly measure the electrostatic latent image on an organic photoconductor surface, which is a dielectric surface, as well as a novel method to quantitatively estimate the charge density distribution on a dielectric surface by combining experimental data obtained from the apparatus via a computer simulation. In the computer simulation, an improved three-dimensional boundary charge density method (BCM) is used for electric field analysis in the vicinity of the dielectric material with a charge density distribution. This method enables us to estimate the profile and quantity of the charge density distribution on a dielectric surface with a resolution of the order of microns. Furthermore, the surface potential on the dielectric surface can be immediately calculated using the obtained charge density. This method enables the relation between the charge pattern on the organic photoconductor surface and toner particle behavior to be studied; an understanding regarding the same may lead to the development of a new generation of higher resolution photocopiers.
NASA Astrophysics Data System (ADS)
Yang, Yonggang; Li, Donglin; Li, Chaozheng; Liu, YuFang; Jiang, Kai
2017-12-01
Researchers have proposed different effective mechanisms of hydrogen bonding (HB) on the fluorescence of 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and its derivatives. Herein, excited state transition and dynamics analysis confirm that the fluorescence of PD (a derivative of PRODAN with ethyl replaced by 3-hydroxy-2,2-dimethylpropan) emits from the planar intramolecular charge transfer (PICT) state rather than twist ICT (TICT) state, because the fluorescence emission and surface hopping from the TICT state to the twist ground (T-S0) state is energy forbidden. Nevertheless, the strengthening of intramolecular-HB (intra-HB) and intermolecular-HB (inter-HB) of PD-(methanol)2 smooth the pathway of surface hopping from TICT to T-S0 state and the external conversion going to planar ground state by decreasing the energy difference of the two states. This smoothing changes the fluorescence state of PD-(methanol)2 to the TICT state in which fluorescence emission does not occur but surface hopping, leading to the partial fluorescence quenching of PD in methanol solvent. This conclusion is different from previous related reports. Moreover, the inter-HB strengthening of PD-methanol in PICT state induces the cleavage of intra-HB and a fluorescence red-shift of 54 nm compared to PD. This red-shift increases to 66 nm for PD-(methanol)2 for the strengthening of the one intra-HB and two inter-HBs. The dipole moments of PD-methanol and PD-(methanol)2 respectively increase about 10.3D and 8.1D in PICT state compared to PD. The synergistic effect of intra-HB and inter-HB induces partial quenching of PD in methanol solvent by turning on the TICT state and fluorescence red-shift. This work gives a reasonable description on the fluorescence red-shift and partial quenching of PD in methanol solvent, which will bring insight into the study of spectroscopic properties of molecules owning better spectral characteristics.
Yang, Yonggang; Li, Donglin; Li, Chaozheng; Liu, YuFang; Jiang, Kai
2017-12-05
Researchers have proposed different effective mechanisms of hydrogen bonding (HB) on the fluorescence of 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and its derivatives. Herein, excited state transition and dynamics analysis confirm that the fluorescence of PD (a derivative of PRODAN with ethyl replaced by 3-hydroxy-2,2-dimethylpropan) emits from the planar intramolecular charge transfer (PICT) state rather than twist ICT (TICT) state, because the fluorescence emission and surface hopping from the TICT state to the twist ground (T-S 0 ) state is energy forbidden. Nevertheless, the strengthening of intramolecular-HB (intra-HB) and intermolecular-HB (inter-HB) of PD-(methanol) 2 smooth the pathway of surface hopping from TICT to T-S 0 state and the external conversion going to planar ground state by decreasing the energy difference of the two states. This smoothing changes the fluorescence state of PD-(methanol) 2 to the TICT state in which fluorescence emission does not occur but surface hopping, leading to the partial fluorescence quenching of PD in methanol solvent. This conclusion is different from previous related reports. Moreover, the inter-HB strengthening of PD-methanol in PICT state induces the cleavage of intra-HB and a fluorescence red-shift of 54nm compared to PD. This red-shift increases to 66nm for PD-(methanol) 2 for the strengthening of the one intra-HB and two inter-HBs. The dipole moments of PD-methanol and PD-(methanol) 2 respectively increase about 10.3D and 8.1D in PICT state compared to PD. The synergistic effect of intra-HB and inter-HB induces partial quenching of PD in methanol solvent by turning on the TICT state and fluorescence red-shift. This work gives a reasonable description on the fluorescence red-shift and partial quenching of PD in methanol solvent, which will bring insight into the study of spectroscopic properties of molecules owning better spectral characteristics. Copyright © 2017 Elsevier B.V. All rights reserved.
Excess lithium storage and charge compensation in nanoscale Li4+xTi5O12
NASA Astrophysics Data System (ADS)
Wang, Feng; Wu, Lijun; Ma, Chao; Su, Dong; Zhu, Yimei; Graetz, Jason
2013-10-01
Lithium titanate spinel (Li4Ti5O12; LTO) is a promising candidate for anodes in lithium-ion batteries due to its excellent cyclability and safety performance, and has been known as a ‘zero-strain’ material that allows reversible lithium insertion-deinsertion with little change in the lattice parameters. For a better understanding of lithium reaction mechanisms in this material, it has been of great interest to identify where lithium is inserted and how it migrates during charge and discharge, which is often difficult with x-ray and electron scattering techniques due to the low scattering power of lithium. In this study, we employed atomic-resolution annular bright-field imaging to directly image the lithium on interstitial sites in nanoscale LTO, and electron energy-loss spectroscopy to measure local lithium occupancy and electronic structure at different states of charge. During lithiation, charge compensation occurs primarily at O sites, rather than at Ti sites, and no significant change was found in the projected density of states (Ti 3d) until the voltage was lowered to ˜50 mV or below. The Li K-edge spectra were simulated via ab initio calculations, providing a direct correlation between the near-edge fine structure and the local lithium coordination. During the initial states of discharge, lithium ions on 8a sites migrate to 16c sites (above 740 mV). Further lithiation causes the partial re-occupation of 8a sites, initially in the near-surface region at ˜600 mV, and then in the bulk at lower voltages (˜50 mV). We attribute the enhanced capacity in nanostructured LTO to extra storage of lithium in the near-surface region, primarily at {111} facets.
Lunar Surface Charging during Solar Energetic Particle Events
NASA Astrophysics Data System (ADS)
Halekas, Jasper S.; Delory, G. T.; Mewaldt, R. A.; Lin, R. P.; Fillingim, M. O.; Brain, D. A.; Lee, C. O.; Stubbs, T. J.; Farrell, W. M.; Hudson, M. K.
2006-09-01
The surface of the Moon, not protected by any substantial atmosphere, is directly exposed to the impact of both solar UV and solar wind plasma and energetic particles. This creates a complex lunar electrostatic environment, with the surface typically charging slightly positive in sunlight, and negative in shadow. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging leads to dust electrification and transport, posing a potentially significant hazard for exploration. The most significant charging effects should occur when the Moon is exposed to high-temperature plasmas like those encountered in the terrestrial plasmasheet or in solar storms. We now present evidence for kilovolt-scale negative charging of the shadowed lunar surface during solar energetic particle (SEP) events, utilizing data from the Lunar Prospector Electron Reflectometer (LP ER). We find that SEP events are associated with the most extreme lunar surface charging observed during the LP mission - rivaled only by previously reported charging during traversals of the terrestrial plasmasheet. The largest charging event observed by LP is a 4 kV negative surface potential (as compared to typical values of V) during a SEP event in May 1998. We characterize lunar surface charging during several SEP events, and compare to energetic particle measurements from ACE, Wind, and SOHO in order to determine the relationship between SEP events and extreme lunar surface charging. Space weather events are already considered by NASA to be a significant hazard to lunar exploration, due to high-energy ionizing radiation. Our observations demonstrate that plasma interactions with the lunar surface during SEP events, causing extreme surface charging and potentially significant dust electrification and transport, represent an additional hazard associated with space weather.
Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates
NASA Technical Reports Server (NTRS)
Walton, Otis R.; Johnson, Scott M.
2010-01-01
The charge-spot technique for modeling the static electric forces acting between charged fine particles entails treating electric charges on individual particles as small sets of discrete point charges, located near their surfaces. This is in contrast to existing models, which assume a single charge per particle. The charge-spot technique more accurately describes the forces, torques, and moments that act on triboelectrically charged particles, especially image-charge forces acting near conducting surfaces. The discrete element method (DEM) simulation uses a truncation range to limit the number of near-neighbor charge spots via a shifted and truncated potential Coulomb interaction. The model can be readily adapted to account for induced dipoles in uncharged particles (and thus dielectrophoretic forces) by allowing two charge spots of opposite signs to be created in response to an external electric field. To account for virtual overlap during contacts, the model can be set to automatically scale down the effective charge in proportion to the amount of virtual overlap of the charge spots. This can be accomplished by mimicking the behavior of two real overlapping spherical charge clouds, or with other approximate forms. The charge-spot method much more closely resembles real non-uniform surface charge distributions that result from tribocharging than simpler approaches, which just assign a single total charge to a particle. With the charge-spot model, a single particle may have a zero net charge, but still have both positive and negative charge spots, which could produce substantial forces on the particle when it is close to other charges, when it is in an external electric field, or when near a conducting surface. Since the charge-spot model can contain any number of charges per particle, can be used with only one or two charge spots per particle for simulating charging from solar wind bombardment, or with several charge spots for simulating triboelectric charging. Adhesive image-charge forces acting on charged particles touching conducting surfaces can be up to 50 times stronger if the charge is located in discrete spots on the particle surface instead of being distributed uniformly over the surface of the particle, as is assumed by most other models. Besides being useful in modeling particulates in space and distant objects, this modeling technique is useful for electrophotography (used in copiers) and in simulating the effects of static charge in the pulmonary delivery of fine dry powders.
Atomistic and molecular effects in electric double layers at high surface charges
Templeton, Jeremy Alan; Lee, Jonathan; Mani, Ali
2015-06-16
Here, the Poisson–Boltzmann theory for electrolytes near a charged surface is known to be invalid due to unaccounted physics associated with high ion concentration regimes. In order to investigate this regime, fluids density functional theory (f-DFT) and molecular dynamics (MD) simulations were used to determine electric surface potential as a function of surface charge. Based on these detailed computations, for electrolytes with nonpolar solvent, the surface potential is shown to depend quadratically on the surface charge in the high charge limit. We demonstrate that modified Poisson–Boltzmann theories can model this limit if they are augmented with atomic packing densities providedmore » by MD. However, when the solvent is a highly polar molecule water an intermediate regime is identified in which a constant capacitance is realized. Simulation results demonstrate the mechanism underlying this regime, and for the salt water system studied here, it persists throughout the range of physically realistic surface charge densities so the potential’s quadratic surface charge dependence is not obtained.« less
Exploring routes to tailor the physical and chemical properties of oxides via doping: an STM study
NASA Astrophysics Data System (ADS)
Nilius, Niklas
2015-08-01
Doping opens fascinating possibilities for tailoring the electronic, optical, magnetic, and chemical properties of oxides. The dopants perturb the intrinsic behavior of the material by generating charge centers for electron transfer into adsorbates, by inducing new energy levels for electronic and optical excitations, and by altering the surface morphology and hence the adsorption and reactivity pattern. Despite a vivid scientific interest, knowledge on doped oxides is limited when compared to semiconductors, which reflects the higher complexity and the insulating nature of many oxides. In fact, atomic-scale studies, aiming at a mechanistic understanding of dopant-related processes, are still scarce. In this article, we review our scanning tunneling microscopy (STM) experiments on thin, crystalline oxide films with a defined doping level. We demonstrate how the impurities alter the surface morphology and produce cationic/anionic vacancies in order to keep the system charge neutral. We discuss how individual dopants can be visualized in the lattice, even if they reside in subsurface layers. By means of STM-conductance and x-ray photoelectron spectroscopy, we determine the electronic impact of dopants, including the energies of their eigen states and local band-bending effects in the host oxide. Electronic transitions between dopant-induced gap states give rise to new optical modes, as detected with STM luminescence spectroscopy. From a chemical perspective, dopants are introduced to improve the redox potential of oxide materials. Electron transfer from Mo-donors, for example, alters the growth behavior of gold and activates O2 molecules on a wide-gap CaO surface. Such results demonstrate the enormous potential of doped oxides in heterogeneous catalysis. Our experiments address the issue of doping from a fundamental viewpoint, posing questions on the lattice position, charge state, and electron-transfer potential of the impurity ions. Whether doped oxides are suitable to catalyze surface reactions needs to be explored in more applied studies in the future.
Reinvestigating the surface and bulk electronic properties of Cd3As2
NASA Astrophysics Data System (ADS)
Roth, S.; Lee, H.; Sterzi, A.; Zacchigna, M.; Politano, A.; Sankar, R.; Chou, F. C.; Di Santo, G.; Petaccia, L.; Yazyev, O. V.; Crepaldi, A.
2018-04-01
Cd3As2 is widely considered among the few materials realizing the three-dimensional (3D) Dirac semimetal phase. Linearly dispersing states, responsible for the ultrahigh charge mobility, have been reported by several angle-resolved photoelectron spectroscopy (ARPES) investigations. However, in spite of the general agreement between these studies, some details are at odds. From scanning tunneling microscopy and optical experiments under magnetic field, a puzzling scenario emerges in which multiple states show linear dispersion at different energy scales. Here, we solve this apparent controversy by reinvestigating the electronic properties of the (112) surface of Cd3As2 by combining ARPES and theoretical calculations. We disentangle the presence of massive and massless metallic bulk and surface states, characterized by different symmetries. Our systematic experimental and theoretical study clarifies the complex band dispersion of Cd3As2 by extending the simplistic 3D Dirac semimetal model to account for multiple bulk and surface states crossing the Fermi level, and thus contributing to the unique material transport properties.
NASA Astrophysics Data System (ADS)
Kislitsyn, Dmitry A.; Mills, Jon M.; Kocevski, Vancho; Chiu, Sheng-Kuei; DeBenedetti, William J. I.; Gervasi, Christian F.; Taber, Benjamen N.; Rosenfield, Ariel E.; Eriksson, Olle; Rusz, Ján; Goforth, Andrea M.; Nazin, George V.
2016-06-01
We present results of a scanning tunneling spectroscopy (STS) study of the impact of dehydrogenation on the electronic structures of hydrogen-passivated silicon nanocrystals (SiNCs) supported on the Au(111) surface. Gradual dehydrogenation is achieved by injecting high-energy electrons into individual SiNCs, which results, initially, in reduction of the electronic bandgap, and eventually produces midgap electronic states. We use theoretical calculations to show that the STS spectra of midgap states are consistent with the presence of silicon dangling bonds, which are found in different charge states. Our calculations also suggest that the observed initial reduction of the electronic bandgap is attributable to the SiNC surface reconstruction induced by conversion of surface dihydrides to monohydrides due to hydrogen desorption. Our results thus provide the first visualization of the SiNC electronic structure evolution induced by dehydrogenation and provide direct evidence for the existence of diverse dangling bond states on the SiNC surfaces.
Surface charge mapping with a nanopipette.
McKelvey, Kim; Kinnear, Sophie L; Perry, David; Momotenko, Dmitry; Unwin, Patrick R
2014-10-01
Nanopipettes are emerging as simple but powerful tools for probing chemistry at the nanoscale. In this contribution the use of nanopipettes for simultaneous surface charge mapping and topographical imaging is demonstrated, using a scanning ion conductance microscopy (SICM) format. When a nanopipette is positioned close to a surface in electrolyte solution, the direct ion current (DC), driven by an applied bias between a quasi-reference counter electrode (QRCE) in the nanopipette and a second QRCE in the bulk solution, is sensitive to surface charge. The charge sensitivity arises because the diffuse double layers at the nanopipette and the surface interact, creating a perm-selective region which becomes increasingly significant at low ionic strengths (10 mM 1:1 aqueous electrolyte herein). This leads to a polarity-dependent ion current and surface-induced rectification as the bias is varied. Using distance-modulated SICM, which induces an alternating ion current component (AC) by periodically modulating the distance between the nanopipette and the surface, the effect of surface charge on the DC and AC is explored and rationalized. The impact of surface charge on the AC phase (with respect to the driving sinusoidal signal) is highlighted in particular; this quantity shows a shift that is highly sensitive to interfacial charge and provides the basis for visualizing charge simultaneously with topography. The studies herein highlight the use of nanopipettes for functional imaging with applications from cell biology to materials characterization where understanding surface charge is of key importance. They also provide a framework for the design of SICM experiments, which may be convoluted by topographical and surface charge effects, especially for small nanopipettes.
High resolution printing of charge
Rogers, John; Park, Jang-Ung
2015-06-16
Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.
Tailoring topological states in silicene using different halogen-passivated Si(111) substrates
NASA Astrophysics Data System (ADS)
Derakhshan, Vahid; Moghaddam, Ali G.; Ceresoli, Davide
2018-03-01
We investigate the band structure and topological phases of silicene embedded on halogenated Si(111) surface using density functional theory calculations. Our results show that the Dirac character of low-energy excitations in silicene is almost preserved in the presence of a silicon substrate passivated by various halogens. Nevertheless, the combined effects of symmetry breaking due to both direct and van der Waals interactions between silicene and the substrate, charge transfer from suspended silicene into the substrate, and, finally, the hybridization which leads to the charge redistribution result in a gap in the spectrum of the embedded silicene. We further take the spin-orbit interaction into account and obtain the resulting modification in the gap. The energy gaps with and without spin-orbit coupling vary significantly when different halogen atoms are used for the passivation of the Si surface, and for the case of iodine, they become on the order of 100 meV. To examine the topological properties, we calculate the projected band structure of silicene from which the Berry curvature and Z2 invariant based on the evolution of Wannier charge centers are obtained. As a key finding, it is shown that silicene on halogenated Si substrates has a topological insulating state which can survive even at room temperature for the substrates with iodine and bromine at the surface. Therefore, these results suggest that we can have a reliable, stable, and robust silicene-based two-dimensional topological insulator using the considered substrates.
BRST symmetry for a torus knot
NASA Astrophysics Data System (ADS)
Pandey, Vipul Kumar; Prasad Mandal, Bhabani
2017-08-01
We develop BRST symmetry for the first time for a particle on the surface of a torus knot by analyzing the constraints of the system. The theory contains 2nd-class constraints and has been extended by introducing the Wess-Zumino term to convert it into a theory with first-class constraints. BFV analysis of the extended theory is performed to construct BRST/anti-BRST symmetries for the particle on a torus knot. The nilpotent BRST/anti-BRST charges which generate such symmetries are constructed explicitly. The states annihilated by these nilpotent charges consist of the physical Hilbert space. We indicate how various effective theories on the surface of the torus knot are related through the generalized version of the BRST transformation with finite-field-dependent parameters.
Ionizing radiation fluxes and dose measurements during the Kosmos 1887 satellite flight.
Charvat, J; Spurny, F; Kopecka, B; Votockova, I
1990-01-01
The results of dosimetric experiments performed during the flight of Kosmos 1887 biosatellite are presented. Two kinds of measurements were performed on the external surface of the satellite. First, the fluences and spectra of low energy charged particles were established. It was found that most of the particles registered by means of solid state nuclear track detectors are helium nuclei. Tracks of oxygen nuclei and some heavier charged particles were also observed. Thermoluminescent detectors were used to establish absorbed doses in open space on the satellite's surface and behind thin shielding. It was found that these doses were rather high; nevertheless, their decrease with shielding thickness is very rapid. Dosimetric and other consequences of the results obtained are analyzed and discussed.
NASA Astrophysics Data System (ADS)
Mao, Zirui; Liu, G. R.
2018-02-01
The behavior of lunar dust on the Moon surface is quite complicated compared to that on the Earth surface due to the small lunar gravity and the significant influence of the complicated electrostatic filed in the Universe. Understanding such behavior is critical for the exploration of the Moon. This work develops a smoothed particle hydrodynamics (SPH) model with the elastic-perfectly plastic constitutive equation and Drucker-Prager yield criterion to simulate the electrostatic transporting of multiple charged lunar dust particles. The initial electric field is generated based on the particle-in-cell method and then is superposed with the additional electric field from the charged dust particles to obtain the resultant electric field in the following process. Simulations of cohesive soil's natural failure and electrostatic transport of charged soil under the given electric force and gravity were carried out using the SPH model. Results obtained in this paper show that the negatively charged dust particles levitate and transport to the shadow area with a higher potential from the light area with a lower potential. The motion of soil particles finally comes to a stable state. The numerical result for final distribution of soil particles and potential profile above planar surface by the SPH method matches well with the experimental result, and the SPH solution looks sound in the maximum levitation height prediction of lunar dust under an uniform electric field compared to theoretical solution, which prove that SPH is a reliable method in describing the behavior of soil particles under a complicated electric field and small gravity field with the consideration of interactions among soil particles.
Equation of State of Structured Matter at Finite Temperature
NASA Astrophysics Data System (ADS)
Maruyama, T.; Yasutake, N.; Tatsumi, T.
We investigate the properties of nuclear matter at the first-order phase transitions such as liquid-gas phase transition and hadron-quark phase transition. As a general feature of the first-order phase transitions of matter consisting of many species of charged particles, there appears a mixed phases with geometrical structures called ``pasta'' due to the balance of the Coulomb repulsion and the surface tension between two phases [G.~D.~Ravenhall, C.~J.~Pethick and J.~R.~Wilson, Phys. Rev. Lett. 50 (1983), 2066. M.~Hashimoto, H.~Seki and M.~Yamada, Prog. Theor. Phys. 71 (1984), 320.] The equation of state (EOS) of mixed phase is different from the one obtained by a bulk application of the Gibbs conditions or by the Maxwell construction due to the effects of the non-uniform structure. We show that the charge screening and strong surface tension make the EOS close to that of the Maxwell construction. The thermal effects are elucidated as well as the above finite-size effects.
NASA Astrophysics Data System (ADS)
Ireland, R. M.; Wu, Liang; Salehi, M.; Oh, S.; Armitage, N. P.; Katz, H. E.
2018-04-01
We demonstrate the ability to reduce the carrier concentration of thin films of the topological insulator (TI) Bi2 Se3 by utilizing a nonvolatile electrostatic gating via corona charging of electret polymers. Sufficient electric field can be imparted to a polymer-TI bilayer to result in significant electron density depletion, even without the continuous connection of a gate electrode or the chemical modification of the TI. We show that the Fermi level of Bi2 Se3 is shifted toward the Dirac point with this method. Using terahertz spectroscopy, we find that the surface chemical potential is lowered into the bulk band gap (approximately 50 meV above the Dirac point and 170 meV below the conduction-band minimum), and it is stabilized in the intrinsic regime while enhancing electron mobility. The mobility of surface state electrons is enhanced to a value as high as approximately 1600 cm2/V s at 5 K.
Mapping the Coulomb Environment in Interference-Quenched Ballistic Nanowires.
Gutstein, D; Lynall, D; Nair, S V; Savelyev, I; Blumin, M; Ercolani, D; Ruda, H E
2018-01-10
The conductance of semiconductor nanowires is strongly dependent on their electrostatic history because of the overwhelming influence of charged surface and interface states on electron confinement and scattering. We show that InAs nanowire field-effect transistor devices can be conditioned to suppress resonances that obscure quantized conduction thereby revealing as many as six sub-bands in the conductance spectra as the Fermi-level is swept across the sub-band energies. The energy level spectra extracted from conductance, coupled with detailed modeling shows the significance of the interface state charge distribution revealing the Coulomb landscape of the nanowire device. Inclusion of self-consistent Coulomb potentials, the measured geometrical shape of the nanowire, the gate geometry and nonparabolicity of the conduction band provide a quantitative and accurate description of the confinement potential and resulting energy level structure. Surfaces of the nanowire terminated by HfO 2 are shown to have their interface donor density reduced by a factor of 30 signifying the passivating role played by HfO 2 .
Photoelectric charging of partially sunlit dielectric surfaces in space
NASA Technical Reports Server (NTRS)
De, B. R.; Criswell, D. R.
1977-01-01
Sunlight-shadow effects may substantially alter the charging situation for a dielectric surface. The sunlight-shadow boundary tends to be the site of intense multipole electric fields. Charges on a sunlit dielectric surface have a finite effective mobility. The charge distribution tends to resemble that on a conducting surface. A boundary between a conducting and a dielectric surface may not represent a conductivity discontinuity when this boundary is sunlit; charges may migrate at a nontrivial rate across the boundary. A contracting or expanding sunlit area may experience a supercharging.
Madurga, Sergio; Martín-Molina, Alberto; Vilaseca, Eudald; Mas, Francesc; Quesada-Pérez, Manuel
2007-06-21
The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups, a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.
Ivanov, Ilia N.; Puretzky, Alexander A.; Zhao, Bin; Geohegan, David B.; Styers-Barnett, David J.; Hu, Hui
2014-07-15
A photoluminescent or electroluminescent system and method of making a non-luminescent nanostructured material into such a luminescent system is presented. The method of preparing the luminescent system, generally, comprises the steps of modifying the surface of a nanostructured material to create isolated regions to act as luminescent centers and to create a charge imbalance on the surface; applying more than one polar molecule to the charged surface of the nanostructured material; and orienting the polar molecules to compensate for the charge imbalance on the surface of the nanostructured material. The compensation of the surface charge imbalance by the polar molecules allows the isolated regions to exhibit luminescence.
Development of Tailorable Electrically Conductive Thermal Control Material Systems
NASA Technical Reports Server (NTRS)
Deshpande, M. S.; Harada, Y.
1997-01-01
The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and have been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties as well as mechanical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has added to already existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The objective of this program was to develop two types of passive electrically conductive TCMS. The first was a highly absorbing/emitting black surface and the second was a low (alpha(sub s)/epsilon(sub N)) type white surface. The surface resistance goals for the black absorber was 10(exp 4) to 10(exp 9) Omega/square, and for the white surfaces it was 10(exp 6) to 10(exp 10) Omega/square. Several material system concepts were suggested and evaluated for space environment stability and electrical performance characterization. Our efforts in designing and evaluating these material systems have resulted in several developments. New concepts, pigments and binders have been developed to provide new engineering quality TCMS. Some of these have already found application on space hardware, some are waiting to be recognized by thermal designers, and some require further detailed studies to become state-of-the-art for future space hardware and space structures. Our studies on baseline state-of-the-art materials and conductive concepts have resulted in several important findings that are of interest to all thermal designers and systems integrators.
NASA Astrophysics Data System (ADS)
Kumar, Naveen; Zhao, Cunlu; Klaassen, Aram; van den Ende, Dirk; Mugele, Frieder; Siretanu, Igor
2016-02-01
Most solid surfaces, in particular clay minerals and rock surfaces, acquire a surface charge upon exposure to an aqueous environment due to adsorption and/or desorption of ionic species. Macroscopic techniques such as titration and electrokinetic measurements are commonly used to determine the surface charge and ζ -potential of these surfaces. However, because of the macroscopic averaging character these techniques cannot do justice to the role of local heterogeneities on the surfaces. In this work, we use dynamic atomic force microscopy (AFM) to determine the distribution of surface charge on the two (gibbsite-like and silica-like) basal planes of kaolinite nanoparticles immersed in aqueous electrolyte with a lateral resolution of approximately 30 nm. The surface charge density is extracted from force-distance curves using DLVO theory in combination with surface complexation modeling. While the gibbsite-like and the silica-like facet display on average positive and negative surface charge values as expected, our measurements reveal lateral variations of more than a factor of two on seemingly atomically smooth terraces, even if high resolution AFM images clearly reveal the atomic lattice on the surface. These results suggest that simple surface complexation models of clays that attribute a unique surface chemistry and hence homogeneous surface charge densities to basal planes may miss important aspects of real clay surfaces.
Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; ...
2015-08-28
The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstratemore » stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.
The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstratemore » stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostroumov, P. N., E-mail: ostroumov@anl.gov; Barcikowski, A.; Dickerson, C. A.
The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstratemore » stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less
Proximity charge sensing for semiconductor detectors
Luke, Paul N; Tindall, Craig S; Amman, Mark
2013-10-08
A non-contact charge sensor includes a semiconductor detector having a first surface and an opposing second surface. The detector includes a high resistivity electrode layer on the first surface and a low resistivity electrode on the high resistivity electrode layer. A portion of the low resistivity first surface electrode is deleted to expose the high resistivity electrode layer in a portion of the area. A low resistivity electrode layer is disposed on the second surface of the semiconductor detector. A voltage applied between the first surface low resistivity electrode and the second surface low resistivity electrode causes a free charge to drift toward the first or second surface according to a polarity of the free charge and the voltage. A charge sensitive preamplifier coupled to a non-contact electrode disposed at a distance from the exposed high resistivity electrode layer outputs a signal in response to movement of free charge within the detector.
Charging and Release Mechanisms of Flexible Macromolecules in Droplets
NASA Astrophysics Data System (ADS)
Oh, Myong In; Consta, Styliani
2017-08-01
We study systematically the charging and release mechanisms of a flexible macromolecule, modeled by poly(ethylene glycol) (PEG), in a droplet by using molecular dynamics simulations. We compare how PEG is solvated and charged by sodium Na+ ions in a droplet of water (H2O), acetonitrile (MeCN), and their mixtures. Initially, we examine the location and the conformation of the macromolecule in a droplet bearing no net charge. It is revealed that the presence of charge carriers do not affect the location of PEG in aqueous and MeCN droplets compared with that in the neutral droplets, but the location of the macromolecule and the droplet size do affect the PEG conformation. PEG is charged on the surface of a sodiated aqueous droplet that is found close to the Rayleigh limit. Its charging is coupled to the extrusion mechanism, where PEG segments leave the droplet once they coordinate a Na+ ion or in a correlated motion with Na+ ions. In contrast, as PEG resides in the interior of a MeCN droplet, it is sodiated inside the droplet. The compact macro-ion transitions through partially unwound states to an extended conformation, a process occurring during the final stage of desolvation and in the presence of only a handful of MeCN molecules. For charged H2O/MeCN droplets, the sodiation of PEG is determined by the H2O component, reflecting its slower evaporation and preference over MeCN for solvating Na+ ions. We use the simulation data to construct an analytical model that suggests that the droplet surface electric field may play a role in the macro-ion-droplet interactions that lead to the extrusion of the macro-ion. This study provides the first evidence of the effect of the surface electric field by using atomistic simulations. [Figure not available: see fulltext.
2017-01-01
High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl2 concentration. Using DLVO theory with charge regulation, we determine from the measured force–distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca2+ ion adsorption, while Cl– adsorption at higher CaCl2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl– ions will co-adsorb, thereby changing the observed ordered surface structure. PMID:29140711
Kumar, N; Andersson, M P; van den Ende, D; Mugele, F; Siretanu, I
2017-12-19
High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl 2 concentration. Using DLVO theory with charge regulation, we determine from the measured force-distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl 2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl 2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca 2+ ion adsorption, while Cl - adsorption at higher CaCl 2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca 2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl - ions will co-adsorb, thereby changing the observed ordered surface structure.
Scattered Ion Energetics for H atoms Impinging a Copper Surface
NASA Astrophysics Data System (ADS)
Defazio, J. N.; Stephen, T. M.; Peko, B. L.
2002-05-01
The energy loss and charge state of atomic hydrogen scattered from surfaces is important in a broad range of scientific endeavors. These include the charging of spacecraft, the detection of low energy neutrals in the space environment, energy transfer from magnetically confined plasmas and the modeling of low energy electric discharges. Measurements of scattered ions resulting from low energy (20 - 1000 eV) atomic hydrogen impacting a copper surface have been accomplished. Differential energy distributions and yields for H- and H+ resulting from these collisions are presented. The data show that the energy distributions develop a universal dependence, when scaled by the incident energy. These results are compared with studies involving incident hydrogen ions. For incident energies less than 100eV, there are obvious differences in the scattered ion energy distributions resulting from impacting atoms when compared to those resulting from ions.
Adsorption and Conformation Change of Helical Peptides on Colloidal Silica
NASA Astrophysics Data System (ADS)
Read, Michael; Zhang, Shuguang; Mayes, Anne; Burkett, Sandra
2001-03-01
Helical conformations of short peptides in solution are partly stabilized by the pattern of electrostatic charge formed by the amino acid sequence. We have studied the role of electrostatics in the adsorption and helix-coil transition of peptides on oxide surfaces. Adsorption isotherms, along with a combination of spectroscopic techniques, show that this is a reversible equilibrium process. Strong electrostatic forces between ionic side chains and charged surface sites increase the adsorbed amount, and promote a loss of helicity in the adsorbed state qualitatively different from that observed upon thermal or chemical perturbation. The electrical dipole of the peptide, arising from the amino acid side chains, serves to orient the molecules on the surface. Effects of adsorption, orientation, and conformation change on the activity of peptides in model biological reactions, as well as the relevance of this simplified system to protein adsorption, are considered.
Turning bubbles on and off during boiling using charged surfactants
Cho, H. Jeremy; Mizerak, Jordan P.; Wang, Evelyn N.
2015-01-01
Boiling—a process that has powered industries since the steam age—is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles ‘on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications. PMID:26486275
Characterizing the surface charge of synthetic nanomembranes by the streaming potential method
Datta, Subhra; Conlisk, A. T.; Kanani, Dharmesh M.; Zydney, Andrew L.; Fissell, William H.; Roy, Shuvo
2010-01-01
The inference of the surface charge of polyethylene glycol (PEG)-coated and uncoated silicon membranes with nanoscale pore sizes from streaming potential measurements in the presence of finite electric double layer (EDL) effects is studied theoretically and experimentally. The developed theoretical model for inferring the pore wall surface charge density from streaming potential measurements is applicable to arbitrary pore cross-sectional shapes and accounts for the effect of finite salt concentration on the ionic mobilities and the thickness of the deposited layer of PEG. Theoretical interpretation of the streaming potential data collected from silicon membranes having nanoscale pore sizes, with/without pore wall surface modification with PEG, indicates that finite electric double layer (EDL) effects in the pore-confined electrolyte significantly affect the interpretation of the membrane charge and that surface modification with PEG leads to a reduction in the pore wall surface charge density. The theoretical model is also used to study the relative significance of the following uniquely nanoscale factors affecting the interpretation of streaming potential in moderate to strongly charged pores: altered net charge convection by applied pressure differentials, surface-charge effects on ionic conduction, and electroosmotic convection of charges. PMID:20462592
Solute location in a nanoconfined liquid depends on charge distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Jacob A.; Thompson, Ward H., E-mail: wthompson@ku.edu
2015-07-28
Nanostructured materials that can confine liquids have attracted increasing attention for their diverse properties and potential applications. Yet, significant gaps remain in our fundamental understanding of such nanoconfined liquids. Using replica exchange molecular dynamics simulations of a nanoscale, hydroxyl-terminated silica pore system, we determine how the locations explored by a coumarin 153 (C153) solute in ethanol depend on its charge distribution, which can be changed through a charge transfer electronic excitation. The solute position change is driven by the internal energy, which favors C153 at the pore surface compared to the pore interior, but less so for the more polar,more » excited-state molecule. This is attributed to more favorable non-specific solvation of the large dipole moment excited-state C153 by ethanol at the expense of hydrogen-bonding with the pore. It is shown that a change in molecule location resulting from shifts in the charge distribution is a general result, though how the solute position changes will depend upon the specific system. This has important implications for interpreting measurements and designing applications of mesoporous materials.« less
NASA Astrophysics Data System (ADS)
Chen, Xiaomin; Gu, Huaimin; Shen, Gaoshan; Dong, Xiao; Kang, Jian
2010-06-01
The surface enhanced Raman scattering (SERS) of caffeine on borohydride-reduced silver colloids system under different aqueous solution environment has been studied in this paper. The relative intensity of SERS of caffeine significantly varies with different concentrations of sodium chloride and silver particles. However, at too high or too low concentration of sodium chloride and silver particle, the enhancement of SERS spectra is not evident. The SERS spectra of caffeine suggest that the contribution of the charge transfer mechanism to SERS may be dominant. The chloride ions can significantly enhance the efficiency of SERS, while the enhancement is selective, as the efficiency in charge transfer enhancement is higher than in electromagnetic enhancement. Therefore, it can be concluded that the active site of chloride ion locates on the bond between the caffeine and the silver surface. In addition, the SERS spectra of caffeine on borohydride-reduced and citrate-reduced silver colloids are different, which may be due to different states caffeine adsorbed on silver surface under different silver colloids.
Direct k-space mapping of the electronic structure in an oxide-oxide interface.
Berner, G; Sing, M; Fujiwara, H; Yasui, A; Saitoh, Y; Yamasaki, A; Nishitani, Y; Sekiyama, A; Pavlenko, N; Kopp, T; Richter, C; Mannhart, J; Suga, S; Claessen, R
2013-06-14
The interface between LaAlO(3) and SrTiO(3) hosts a two-dimensional electron system of itinerant carriers, although both oxides are band insulators. Interface ferromagnetism coexisting with superconductivity has been found and attributed to local moments. Experimentally, it has been established that Ti 3d electrons are confined to the interface. Using soft x-ray angle-resolved resonant photoelectron spectroscopy we have directly mapped the interface states in k space. Our data demonstrate a charge dichotomy. A mobile fraction contributes to Fermi surface sheets, whereas a localized portion at higher binding energies is tentatively attributed to electrons trapped by O vacancies in the SrTiO(3). While photovoltage effects in the polar LaAlO(3) layers cannot be excluded, the apparent absence of surface-related Fermi surface sheets could also be fully reconciled in a recently proposed electronic reconstruction picture where the built-in potential in the LaAlO(3) is compensated by surface O vacancies serving also as a charge reservoir.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebedinskii, Yu. Yu.; National Research Nuclear University MEPhI; Chernikova, A. G.
2015-10-05
The tantalum oxide–platinum interface electronic properties determined by X-ray photoelectron spectroscopy are found to depend on the dielectric stoichiometry and platinum chemical state. We demonstrate the slow charging of the tantalum oxide in cases of Ta{sub 2}O{sub 5}/Pt and Ta{sub 2}O{sub 5−y}/Pt interfaces under the X-ray irradiation. This behavior is proposed to be related to the charge accumulation at oxygen vacancies induced traps. Based on the proposed methodology, we define the intrinsic conductive band offset (CBO) ∼1.3 eV (both for Ta{sub 2}O{sub 5}/Pt and Ta{sub 2}O{sub 5−y}/Pt) and CBO after the full saturation of the traps charging ∼0.5 eV, while the lastmore » one defines the energy position of charged traps below the bottom of conduction band. We demonstrate also the pining at the both Ta{sub 2}O{sub 5}/Pt and Ta{sub 2}O{sub 5−y}/Pt interfaces even in the “intrinsic” state, apparently induced by the presence of additional interfacial states. No shifts of Ta4f line and band alignment in over stoichiometric Ta{sub 2}O{sub 5+x}/Pt structure during X-ray irradiation, as well as the absence of pinning, resulting in increase of CBO up to 2.3 eV are found. This behavior is related to the PtO{sub 2} interfacing layer formation at Ta{sub 2}O{sub 5+x}/Pt, blocking the charging of the surface states and associated dipole formation.« less
Band-Bending of Ga-Polar GaN Interfaced with Al2O3 through Ultraviolet/Ozone Treatment.
Kim, Kwangeun; Ryu, Jae Ha; Kim, Jisoo; Cho, Sang June; Liu, Dong; Park, Jeongpil; Lee, In-Kyu; Moody, Baxter; Zhou, Weidong; Albrecht, John; Ma, Zhenqiang
2017-05-24
Understanding the band bending at the interface of GaN/dielectric under different surface treatment conditions is critically important for device design, device performance, and device reliability. The effects of ultraviolet/ozone (UV/O 3 ) treatment of the GaN surface on the energy band bending of atomic-layer-deposition (ALD) Al 2 O 3 coated Ga-polar GaN were studied. The UV/O 3 treatment and post-ALD anneal can be used to effectively vary the band bending, the valence band offset, conduction band offset, and the interface dipole at the Al 2 O 3 /GaN interfaces. The UV/O 3 treatment increases the surface energy of the Ga-polar GaN, improves the uniformity of Al 2 O 3 deposition, and changes the amount of trapped charges in the ALD layer. The positively charged surface states formed by the UV/O 3 treatment-induced surface factors externally screen the effect of polarization charges in the GaN, in effect, determining the eventual energy band bending at the Al 2 O 3 /GaN interfaces. An optimal UV/O 3 treatment condition also exists for realizing the "best" interface conditions. The study of UV/O 3 treatment effect on the band alignments at the dielectric/III-nitride interfaces will be valuable for applications of transistors, light-emitting diodes, and photovoltaics.
Effect of surface material on electrostatic charging of houseflies (Musca domestica L).
McGonigle, Daniel F; Jackson, Chris W
2002-04-01
Houseflies (Musca domestica L) accumulated electrostatic charges when walking over clean, uncharged dielectric surfaces. The charges elicited on a walking housefly by a range of materials were quantified, allowing a triboelectric series to be determined relative to M domestica. This ranged from surfaces that charged individuals positively, e.g. Correx (corrugated polypropylene) [.1 (+/- 4.2)pC], to those that applied a negative charge, e.g. clear cast acrylic [-14.9 (+/- 2.9)pC]. Maximum positive and negative charges accumulated by individual M domestica were +73 and -27 pC. Replicate measurements on the same fly and surface showed little variation. Variation between individuals was not related to sex and was not consistent between surfaces. Different materials charged M domestica significantly differently and individual flies had significantly different charging properties. Variation in temperature between 21.3 degrees C and 24.7 degrees C and humidity between 24% and 41% RH significantly affected charge accumulated by M domestica on some surfaces, although further experimentation is needed to confirm this. The implications of this work are discussed in relation to insect trap design and pollination biology.
Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field
NASA Astrophysics Data System (ADS)
Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao
2017-03-01
External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.
Electron mobility in the inversion layers of fully depleted SOI films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaitseva, E. G., E-mail: ZaytsevaElza@yandex.ru; Naumova, O. V.; Fomin, B. I.
The dependences of the electron mobility μ{sub eff} in the inversion layers of fully depleted double–gate silicon-on-insulator (SOI) metal–oxide–semiconductor (MOS) transistors on the density N{sub e} of induced charge carriers and temperature T are investigated at different states of the SOI film (inversion–accumulation) from the side of one of the gates. It is shown that at a high density of induced charge carriers of N{sub e} > 6 × 10{sup 12} cm{sup –2} the μeff(T) dependences allow the components of mobility μ{sub eff} that are related to scattering at surface phonons and from the film/insulator surface roughness to be distinguished.more » The μ{sub eff}(N{sub e}) dependences can be approximated by the power functions μ{sub eff}(N{sub e}) ∝ N{sub e}{sup −n}. The exponents n in the dependences and the dominant mechanisms of scattering of electrons induced near the interface between the SOI film and buried oxide are determined for different N{sub e} ranges and film states from the surface side.« less
NASA Astrophysics Data System (ADS)
Schut, David M.; Williams, George M., Jr.; Arteaga, Stefan; Allen, Thomas L.; Novet, Thomas
2011-06-01
Nanocrystal quantum dot photovoltaics and photodetectors with performance optimized by engineering the nanocrystals size and the optoelectronic properties of the nanocrystal's chemical coating are reported. Due to the large surface-to-volume ratio inherent to nanocrystals, the surface effects of ligands used to chemically coat and passivate nanocrystals play a significant role in device performance. However, the optoelectronic properties of ligands are difficult to ascertain, as the band structure of the ligand-capped nanoparticle system is complex and difficult to model. Using density-of-states measurements, we demonstrate that modeling of electropositive and electronegative substituents and use of the Hammett equation, are useful tools in optimizing nanocrystal detector performance. A new particle, the Janus-II nanoparticles, developed using 'charge-donating' and 'charge-withdrawing' ligands distributed over opposite surfaces of the nanocrystal, is described. The polarizing ligands of the Janus-II nanoparticle form a degeneracy-splitting dipole, which reduces the overlap integral between excitonic states, and thus reduces the probability of carrier recombination, allowing carrier extraction to take place more efficiently. This is shown to allow increased photodetection efficiencies and to allow the capture of multiple exciton events in working photodetectors.
Coexistent three-component and two-component Weyl phonons in TiS, ZrSe, and HfTe
NASA Astrophysics Data System (ADS)
Li, Jiangxu; Xie, Qing; Ullah, Sami; Li, Ronghan; Ma, Hui; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu
2018-02-01
In analogy to various fermions of electrons in topological semimetals, topological mechanical states with two types of bosons, Dirac and Weyl bosons, were reported in some macroscopic systems of kHz frequency, and those with a type of doubly-Weyl phonons in atomic vibrational framework of THz frequency of solid crystals were recently predicted. Here, through first-principles calculations, we have reported that the phonon spectra of the WC-type TiS, ZrSe, and HfTe commonly host the unique triply degenerate nodal points (TDNPs) and single two-component Weyl points (WPs) in THz frequency. Quasiparticle excitations near TDNPs of phonons are three-component bosons, beyond the conventional and known classifications of Dirac, Weyl, and doubly-Weyl phonons. Moreover, we have found that both TiS and ZrSe have five pairs of type-I Weyl phonons and a pair of type-II Weyl phonons, whereas HfTe only has four pairs of type-I Weyl phonons. They carry nonzero topological charges. On the (10 1 ¯0 ) crystal surfaces, we observe topological protected surface arc states connecting two WPs with opposite charges, which host modes that propagate nearly in one direction on the surface.
SPM observation of slow highly charged ion induced nanodots on highly orientated pyrolytic graphite
NASA Astrophysics Data System (ADS)
Mitsuda, Y.; Nakamura, B. E. O'Rourke1 N.; Kanai, Y.; Ohtani, S.; Yamazaki, Y.
2007-03-01
We have observed nanodots on a highly orientated pyrolytic graphite (HOPG) surface produced by highly charged ion impacts using a scanning tunneling microscope. Previous measurements have con.rmed the dominant role of the potential energy or the incident ion charge state on the size and height of the observed nanodots. The present results extend these previous measurements to much lower kinetic energy. It appears that there is no observable influence on the lateral size of the nanodots due to the incident ion kinetic energy down to approximately 200 eV. In contrast some slight reduction in the nanodot height was observed as the kinetic energy was reduced.
Focal-surface detector for heavy ions
Erskine, John R.; Braid, Thomas H.; Stoltzfus, Joseph C.
1979-01-01
A detector of the properties of individual charged particles in a beam includes a gridded ionization chamber, a cathode, a plurality of resistive-wire proportional counters, a plurality of anode sections, and means for controlling the composition and pressure of gas in the chamber. Signals generated in response to the passage of charged particles can be processed to identify the energy of the particles, their loss of energy per unit distance in an absorber, and their angle of incidence. In conjunction with a magnetic spectrograph, the signals can be used to identify particles and their state of charge. The detector is especially useful for analyzing beams of heavy ions, defined as ions of atomic mass greater than 10 atomic mass units.
NASA Astrophysics Data System (ADS)
Berland, Kristian; Hyldgaard, Per; Einstein, T. L.
2011-03-01
We study the response of the Cu(111) Shockley surface state to an external electrical field E by combining a density-functional theory calculation for a finite slab geometry with an analysis of the Kohn-Sham wavefunctions to obtain a well-converged characterization. We find that the surface state displays isotropic dispersion, quadratic until the Fermi wave vector but with a significant quartic contribution beyond. We find that the shift in band minimum and effective mass depend linearly on E. Most change in electrostatic potential profile, and charge transfer occurs outside the outermost copper atoms, and most of the screening is due to bulk electrons. Our analysis is facilitated by a method used to decouple the Kohn-Sham states due to the finite slab geometry, using a rotation in Hilbert space. We discuss applications to tuning the Fermi wavelength and so the many patterns attributed to metallic surface states. Supported by (KB and PH) Swedish Vetenskapsrådet VR 621-2008-4346 and (TLE) NSF CHE 07-50334 & UMD MRSEC DMR 05-20471.
NASA Astrophysics Data System (ADS)
Morozovska, Anna N.; Eliseev, Eugene A.; Kurchak, Anatolii I.; Morozovsky, Nicholas V.; Vasudevan, Rama K.; Strikha, Maksym V.; Kalinin, Sergei V.
2017-12-01
Nonlinear electrostatic interaction between the surface ions of electrochemical nature and ferroelectric dipoles gives rise to the coupled ferroionic states in nanoscale ferroelectrics. Here, we investigate the role of the surface ion formation energy on the polarization states and its reversal mechanisms, domain structure, and corresponding phase diagrams of ferroelectric thin films. Using 3D finite element modeling, we analyze the distribution and hysteresis loops of ferroelectric polarization and ionic charge, and the dynamics of the domain states. These calculations performed over large parameter space delineate the regions of single- and polydomain ferroelectric, ferroionic, antiferroionic, and nonferroelectric states as a function of surface ion formation energy, film thickness, applied voltage, and temperature. We further map the analytical theory for 1D systems onto an effective Landau-Ginzburg free energy and establish the correspondence between the 3D numerical and 1D analytical results. This approach allows us to perform an overview of the ferroionic system phase diagrams and explore the specifics of polarization reversal and domain evolution phenomena.
Morozovska, Anna N.; Eliseev, Eugene A.; Kurchak, Anatolii I.; ...
2017-12-08
Nonlinear electrostatic interaction between the surface ions of electrochemical nature and ferroelectric dipoles gives rise to the coupled ferroionic states in nanoscale ferroelectrics. Here, we investigated the role of the surface ions formation energy value on the polarization states and polarization reversal mechanisms, domain structure and corresponding phase diagrams of ferroelectric thin films. Using 3D finite elements modeling we analyze the distribution and hysteresis loops of ferroelectric polarization and ionic charge, and dynamics of the domain states. These calculations performed over large parameter space delineate the regions of single- and poly- domain ferroelectric, ferroionic, antiferroionic and non-ferroelectric states as amore » function of surface ions formation energy, film thickness, applied voltage and temperature. We further map the analytical theory for 1D system onto effective Landau-Ginzburg free energy and establish the correspondence between the 3D numerical and 1D analytical results. In conclusion, this approach allows performing the overview of the ferroionic system phase diagrams and exploring the specifics of switching and domain evolution phenomena.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozovska, Anna N.; Eliseev, Eugene A.; Kurchak, Anatolii I.
Nonlinear electrostatic interaction between the surface ions of electrochemical nature and ferroelectric dipoles gives rise to the coupled ferroionic states in nanoscale ferroelectrics. Here, we investigated the role of the surface ions formation energy value on the polarization states and polarization reversal mechanisms, domain structure and corresponding phase diagrams of ferroelectric thin films. Using 3D finite elements modeling we analyze the distribution and hysteresis loops of ferroelectric polarization and ionic charge, and dynamics of the domain states. These calculations performed over large parameter space delineate the regions of single- and poly- domain ferroelectric, ferroionic, antiferroionic and non-ferroelectric states as amore » function of surface ions formation energy, film thickness, applied voltage and temperature. We further map the analytical theory for 1D system onto effective Landau-Ginzburg free energy and establish the correspondence between the 3D numerical and 1D analytical results. In conclusion, this approach allows performing the overview of the ferroionic system phase diagrams and exploring the specifics of switching and domain evolution phenomena.« less
Resonant coherent excitation of 390 MeV/u Ar ions planar channeled in Si crystals
NASA Astrophysics Data System (ADS)
Komaki, K.; Azuma, T.; Ito, T.; Takabayashi, Y.; Yamazaki, Y.; Sano, M.; Torikoshi, M.; Kitagawa, A.; Takada, E.; Murakami, T.
1998-12-01
Resonant coherent excitation of the 1s electron to n=2 states in a hydrogen-like ion was studied through measurements of the survived fraction of 390 MeV/u Ar17+ planar channeled in a Si crystal. Adopting a totally depleted Si surface barrier detector as a target crystal, the charge state of the individual emerged ion was measured in coincidence with the energy deposition in the target. By changing the incident direction along the (2 overline2 0), (0 0 4), and (1 overline1 1) planes, a series of clear resonances were observed as the decrease in the survived charge fraction due to higher electron loss probability for the excited state. Each resonance profile reflects energy splitting of the n=2 manifold originated from l-s interaction and Stark effect due to the crystal field. From the correlation between the energy loss and survived charge fraction, transition energy as a function of the ion trajectory amplitude is deduced which is in good agreement with calculated results.
Critical Dipole Length for the Wetting Transition Due to Collective Water-dipoles Interactions
Wang, Chunlei; Zhou, Bo; Tu, Yusong; Duan, Manyi; Xiu, Peng; Li, Jingye; Fang, Haiping
2012-01-01
The wetting behavior of water on the solid surfaces is fundamental to various physical, chemical and biological processes. Conventionally, the surface with charges or charge dipoles is hydrophilic, whereas the non-polar surface is hydrophobic though some exceptions were recently reported. Using molecular dynamics simulations, we show that there is a critical length of the charge dipoles on the solid surface. The solid surface still exhibited hydrophobic behavior when the dipole length was less than the critical value, indicating that the water molecules on the solid surface seemed not “feel” attractive interactions from the charge dipoles on the solid surface. Those unexpected observations result from the collective interactions between the water molecules and charge dipoles on the solid surface, where the steric exclusion effect between water molecules greatly reduces the water-dipole interactions. Remarkably, the steric exclusion effect is also important for surfaces with charge dipole lengths greater than this critical length. PMID:22496954
Electrokinetic Properties of Fullerene nC60 Nanoparticles: Role of Co-ions and pH
Environmental exposure, bioavailability, and mobility of nanoparticles (NPs) in part depend on their aggregated state and their surface charge. These fundamental characteristics are functions of the aqueous media in which the particles are suspended. For example, inorganic ions p...
NASA Astrophysics Data System (ADS)
Luque-Caballero, Germán; Martín-Molina, Alberto; Quesada-Pérez, Manuel
2014-05-01
Both experiments and theory have evidenced that multivalent cations can mediate the interaction between negatively charged polyelectrolytes and like-charged objects, such as anionic lipoplexes (DNA-cation-anionic liposome complexes). In this paper, we use Monte Carlo simulations to study the electrostatic interaction responsible for the trivalent-counterion-mediated adsorption of polyelectrolytes onto a like-charged planar surface. The evaluation of the Helmholtz free energy allows us to characterize both the magnitude and the range of the interaction as a function of the polyelectrolyte charge, surface charge density, [3:1] electrolyte concentration, and cation size. Both polyelectrolyte and surface charge favor the adsorption. It should be stressed, however, that the adsorption will be negligible if the surface charge density does not exceed a threshold value. The effect of the [3:1] electrolyte concentration has also been analyzed. In certain range of concentrations, the counterion-mediated attraction seems to be independent of this parameter, whereas very high concentrations of salt weaken the adsorption. If the trivalent cation diameter is doubled the adsorption moderates due to the excluded volume effects. The analysis of the integrated charge density and ionic distributions suggests that a delicate balance between charge inversion and screening effects governs the polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent cations.
Taheri-Araghi, Sattar; Ha, Bae-Yeun
2005-08-01
We reexamine the problem of charge renormalization and inversion of a highly charged surface of a low dielectric constant immersed in ionic solutions. To be specific, we consider an asymmetrically charged lipid bilayer, in which only one layer is negatively charged. In particular, we study how dielectric discontinuities and charge correlations (among lipid charges and condensed counterions) influence the effective charge of the surface. When counterions are monovalent (e.g., Na+), our mean-field approach implies that dielectric discontinuities can enhance counterion condensation. A simple scaling picture shows how the effects of dielectric discontinuities and surface-charge distributions are intertwined: Dielectric discontinuities diminish condensation if the backbone charge is uniformly smeared out while counterions are localized in space; they can, however, enhance condensation when the backbone charge is discrete. In the presence of asymmetric salts such as CaCl2 , we find that the correlation effect, treated at the Gaussian level, is more pronounced when the surface has a lower dielectric constant, inverting the sign of the charge at a smaller value of Ca2+ concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feliz, M.; Ferraudi, G.
1992-04-02
Photochemical reactions of fac-ClRe(CO){sub 3}L{sub 2} (L=4-phenylpyridine or 4-cyanopyridine), were investigated by sequential biphotonic excitations: one laser flash was used for the preparation of the compounds in the lowest lying MLCT (Re{r_arrow}) state and another flash for the irradiation of the compounds in such excited states. These photolyses led to photodecompostions into CIRe(CO){sub 3}L{sup +} and L{sup .} in a charge transfer state placed 40 Kk above ground state. Quantum yields determined or various excitation energies show that not all the excited state populated in monophotonic excitations can be reached under the sequential biphotonic regime. Therefore, photogeneration of the biradicalmore » intermediate, ClRe(CO){sub 3}L{sup +} and L{sup .}, from ligand-centered states has not been detected in these experiments. Results from monophotonic and biphotonic excitations have been used for a semiquantitative mapping of the excited-state potential surfaces. 41 refs., 6 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhi -Yong; Wu, Jianzhong
2017-07-11
Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmedmore » with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Lastly, our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.« less
Triboelectric, Corona, and Induction Charging of Insulators as a Function of Pressure
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Mucciolo, Eduardo R.; Calle, Carlos I.
2006-01-01
Theoretical and experimental research has been performed that shows that the surface charge on an insulator after triboelectric charging with another insulator is rapidly dissipated with lowered atmospheric pressure. This pressure discharge is consistent with surface ions being evaporated off the surface once their vapor pressure is attained. In this paper we will report on the results of three different charging techniques (triboelectric, corona, and induction) performed on selected polymers with varying atmospheric pressure. This data will show that ion exchange between the polymer samples is the mechanism responsible for most of the surface charge on the polymer surfaces.
Charge Transfer and Support Effects in Heterogeneous Catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hervier, Antoine
The kinetic, electronic and spectroscopic properties of two-dimensional oxide-supported catalysts were investigated in order to understand the role of charge transfer in catalysis. Pt/TiO 2 nanodiodes were fabricated and used as catalysts for hydrogen oxidation. During the reaction, the current through the diode, as well as its I-V curve, were monitored, while gas chromatography was used to measure the reaction rate. The current and the turnover rate were found to have the same temperature dependence, indicating that hydrogen oxidation leads to the non-adiabatic excitation of electrons in Pt. A fraction of these electrons have enough energy to ballistically transport throughmore » Pt and overcome the Schottky barrier at the interface with TiO 2. The yield for this phenomenon is on the order of 10 -4 electrons per product molecule formed, similar to what has been observed for CO oxidation and for the adsorption of many different molecules. The same Pt/TiO 2 system was used to compare currents in hydrogen oxidation and deuterium oxidation. The current through the diode under deuterium oxidation was found to be greater than under hydrogen oxidation by a factor of three. Weighted by the difference in turnover frequencies for the two isotopes, this would imply a chemicurrent yield 5 times greater for D 2 compared to H 2, contrary to what is expected given the higher mass of D 2. Reversible changes in the rectification factor of the diode are observed when switching between D 2 and H 2. These changes are a likely cause for the differences in current between the two isotopes. In the nanodiode experiments, surface chemistry leads to charge flow, suggesting the possibility of creating charge flow to tune surface chemistry. This was done first by exposing a Pt/Si diode to visible light while using it as a catalyst for H 2 oxidation. Absorption of the light in the Si, combined with the band bending at the interface, gives rise to a steady-state flow of hot holes to the surface. This leads to a decrease in turnover on the surface, an effect which is enhanced when a reverse bias is applied to the diode. Similar experiments were carried out for CO oxidation. On Pt/Si diodes, the reaction rate was found to increase when a forward bias was applied. When the diode was exposed to visible light and a reverse bias was applied, the rate was instead decreased. This implies that a flow of negative charges to the surface increases turnover, while positive charges decrease it. Charge flow in an oxide supported metal catalyst can be modified even without designing the catalyst as a solid state electronic device. This was done by doping stoichiometric and nonstoichiometric TiO 2 films with F, and using the resulting oxides as supports for Pt films. In the case of stoichiometric TiO 2, F was found to act as an n-type dopant, creating a population of filled electronic states just below the conduction band, and dramatically increasing the conductivity of the oxide film. The electrons in those states can transfer to surface O, activating it for reaction with CO, and leading to increased turnover for CO oxidation. This reinforces the hypothesis that CO oxidation is activated by a flow of negative charges to the surface. The same set of catalysts was used for methanol oxidation. The electronic properties of the TiO 2 films again correlated with the turnover rates, but also with selectivity. With stoichiometric TiO 2 as the support, F-doping caused an increase in selectivity toward the formation of partial oxidation products, formaldehyde and methyl formate, versus the total oxidation product, CO 2. With non-stoichiometric TiO 2, F-doping had the reverse effect. Ambient Pressure X-Ray Photoelectron Spectroscopy was used to investigate this F-doping effect in reaction conditions. In O 2 alone, and in CO oxidation conditions, the O1s spectrum showed a high binding energy peak that correlated in intensity with the activity of the different films: for stoichiometric films, the peak decreased in intensity with F-doping, while for nonstoichiometric films, the opposite was observed. No such changes were visible in the C1s spectrum, confirming the role of O activation in the reaction. This thesis adds to the body of knowledge on the importance of charge transfer at the metal-oxide interface in shaping the reactivity of heterogeneous catalysts, and provides examples of how this can be the basis for new methods to tune reactivity.« less
Electro-osmosis of nematic liquid crystals under weak anchoring and second-order surface effects
NASA Astrophysics Data System (ADS)
Poddar, Antarip; Dhar, Jayabrata; Chakraborty, Suman
2017-07-01
Advent of nematic liquid crystal flows has attracted renewed attention in view of microfluidic transport phenomena. Among various transport processes, electro-osmosis stands as one of the efficient flow actuation mechanisms through narrow confinements. In the present study, we explore the electrically actuated flow of an ordered nematic fluid with ionic inclusions, taking into account the influences from surface-induced elasticity and electrical double layer (EDL) phenomena. Toward this, we devise the coupled flow governing equations from fundamental free-energy analysis, considering the contributions from first- and second-order elastic, dielectric, flexoelectric, charged surface polarization, ionic and entropic energies. The present study focuses on the influence of surface charge and elasticity effects in the resulting linear electro-osmosis through a slit-type microchannel whose surfaces are chemically treated to display a homeotropic-type weak anchoring state. An optical periodic stripe configuration of the nematic director has been observed, especially for higher electric fields, wherein the Ericksen number for the dynamic study is restricted to the order of unity. Contrary to the isotropic electrolytes, the EDL potential in this case was found to be dependent on the external field strength. Through a systematic investigation, we brought out the fact that the wavelength of the oscillating patterns is dictated mainly by the external field, while the amplitude depends on most of the physical variables ranging from the anchoring strength and the flexoelectric coefficients to the surface charge density and electrical double layer thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shaohong L.; Truhlar, Donald G., E-mail: truhlar@umn.edu
2014-09-14
Kohn-Sham (KS) time-dependent density functional theory (TDDFT) with most exchange-correlation functionals is well known to systematically underestimate the excitation energies of Rydberg and charge-transfer excited states of atomic and molecular systems. To improve the description of Rydberg states within the KS TDDFT framework, Gaiduk et al. [Phys. Rev. Lett. 108, 253005 (2012)] proposed a scheme that may be called HOMO depopulation. In this study, we tested this scheme on an extensive dataset of valence and Rydberg excitation energies of various atoms, ions, and molecules. It is also tested on a charge-transfer excitation of NH{sub 3}-F{sub 2} and on the potentialmore » energy curves of NH{sub 3} near a conical intersection. We found that the method can indeed significantly improve the accuracy of predicted Rydberg excitation energies while preserving reasonable accuracy for valence excitation energies. However, it does not appear to improve the description of charge-transfer excitations that are severely underestimated by standard KS TDDFT with conventional exchange-correlation functionals, nor does it perform appreciably better than standard TDDFT for the calculation of potential energy surfaces.« less
Spectroscopic fingerprints for charge localization in the organic semiconductor (DOEO)4[HgBr4]·TCE
NASA Astrophysics Data System (ADS)
Koplak, Oksana V.; Chernenkaya, Alisa; Medjanik, Katerina; Brambilla, Alberto; Gloskovskii, Andrei; Calloni, Alberto; Elmers, Hans-Joachim; Schönhense, Gerd; Ciccacci, Franco; Morgunov, Roman B.
2015-05-01
Changes of the electronic structure accompanied by charge localization and a transition to an antiferromagnetic ground state were observed in the organic semiconductor (DOEO)4[HgBr4]·TCE. Localization starts in the temperature region of about 150 K and the antiferromagnetic state occurs below 60 K. The magnetic moment of the crystal contains contributions of inclusions (droplets), and individual paramagnetic centers formed by localized holes and free charge carriers at 2 K. Two types of inclusions of 100-400 nm and 2-5 nm sizes were revealed by transmission electron microscopy. Studying the temperature- and angular dependence of electron spin resonance (ESR) spectra revealed fingerprints of antiferromagnetic contributions as well as paramagnetic resonance spectra of individual localized charge carriers. The results point on coexistence of antiferromagnetic long and short range order as evident from a second ESR line. Photoelectron spectroscopy in the VUV, soft and hard X-ray range shows temperature-dependent effects upon crossing the critical temperatures around 60 K and 150 K. The substantially different probing depths of soft and hard X-ray photoelectron spectroscopy yield information on the surface termination. The combined investigation using complementary methods at the same sample reveals the close relation of changes in the transport properties and in the energy distribution of electronic states.
Blue Light Emitting Polyphenylene Dendrimers with Bipolar Charge Transport Moieties.
Zhang, Guang; Auer-Berger, Manuel; Gehrig, Dominik W; Blom, Paul W M; Baumgarten, Martin; Schollmeyer, Dieter; List-Kratochvil, E J W; Müllen, Klaus
2016-10-20
Two light-emitting polyphenylene dendrimers with both hole and electron transporting moieties were synthesized and characterized. Both molecules exhibited pure blue emission solely from the pyrene core and efficient surface-to-core energy transfers when characterized in a nonpolar environment. In particular, the carbazole- and oxadiazole-functionalized dendrimer ( D1 ) manifested a pure blue emission from the pyrene core without showing intramolecular charge transfer (ICT) in environments with increasing polarity. On the other hand, the triphenylamine- and oxadiazole-functionalized one ( D2 ) displayed notable ICT with dual emission from both the core and an ICT state in highly polar solvents. D1 , in a three-layer organic light emitting diode (OLED) by solution processing gave a pure blue emission with Commission Internationale de l'Éclairage 1931 CIE xy = (0.16, 0.12), a peak current efficiency of 0.21 cd/A and a peak luminance of 2700 cd/m². This represents the first reported pure blue dendrimer emitter with bipolar charge transport and surface-to-core energy transfer in OLEDs.
Plasmon tsunamis on metallic nanoclusters.
Lucas, A A; Sunjic, M
2012-03-14
A model is constructed to describe inelastic scattering events accompanying electron capture by a highly charged ion flying by a metallic nanosphere. The electronic energy liberated by an electron leaving the Fermi level of the metal and dropping into a deep Rydberg state of the ion is used to increase the ion kinetic energy and, simultaneously, to excite multiple surface plasmons around the positively charged hole left behind on the metal sphere. This tsunami-like phenomenon manifests itself as periodic oscillations in the kinetic energy gain spectrum of the ion. The theory developed here extends our previous treatment (Lucas et al 2011 New J. Phys. 13 013034) of the Ar(q+)/C(60) charge exchange system. We provide an analysis of how the individual multipolar surface plasmons of the metallic sphere contribute to the formation of the oscillatory gain spectrum. Gain spectra showing characteristic, tsunami-like oscillations are simulated for Ar(15+) ions capturing one electron in distant collisions with Al and Na nanoclusters.
Structure of the charge density wave in cuprate superconductors: Lessons from NMR
NASA Astrophysics Data System (ADS)
Atkinson, W. A.; Ufkes, S.; Kampf, A. P.
2018-03-01
Using a mix of numerical and analytic methods, we show that recent NMR 17O measurements provide detailed information about the structure of the charge-density wave (CDW) phase in underdoped YBa2Cu3O6 +x . We perform Bogoliubov-de Gennes (BdG) calculations of both the local density of states and the orbitally resolved charge density, which are closely related to the magnetic and electric quadrupole contributions to the NMR spectrum, using a microscopic model that was shown previously to agree closely with x-ray experiments. The BdG results reproduce qualitative features of the experimental spectrum extremely well. These results are interpreted in terms of a generic "hot-spot" model that allows one to trace the origins of the NMR line shapes. We find that four quantities—the orbital character of the Fermi surface at the hot spots, the Fermi surface curvature at the hot spots, the CDW correlation length, and the magnitude of the subdominant CDW component—are key in determining the line shapes.
NASA Astrophysics Data System (ADS)
Bazilchuk, Molly; Haug, Halvard; Marstein, Erik Stensrud
2015-04-01
Several important semiconductor devices such as solar cells and photodetectors may be fabricated based on surface inversion layer junctions induced by fixed charge in a dielectric layer. Inversion layer junctions can easily be fabricated by depositing layers with a high density of fixed charge on a semiconducting substrate. Increasing the fixed charge improves such devices; for instance, the efficiency of a solar cell can be substantially increased by reducing the surface recombination velocity, which is a function of the fixed charge density. Methods for increasing the charge density are therefore of interest. In this work, the fixed charge density in silicon nitride layers deposited by plasma enhanced chemical vapor deposition is increased to very high values above 1 × 1013 cm-2 after the application of an external voltage to a gate electrode. The effect of the fixed charge density on the surface recombination velocity was experimentally observed using the combination of capacitance-voltage characterization and photoluminescence imaging, showing a significant reduction in the surface recombination velocity for increasing charge density. The surface recombination velocity vs. charge density data was analyzed using a numerical device model, which indicated the presence of a sub-surface damage region formed during deposition of the layers. Finally, we have demonstrated that the aluminum electrodes used for charge injection may be chemically removed in phosphoric acid without loss of the underlying charge. The injected charge was shown to be stable for a prolonged time period, leading us to propose charge injection in silicon nitride films by application of soaking voltage as a viable method for fabricating inversion layer devices.
NASA Astrophysics Data System (ADS)
Gowda, Srivardhan Shivappa
Molecular electronics has recently spawned a considerable amount of interest with several molecules possessing charge-conduction and charge-storage properties proposed for use in electronic devices. Hybrid silicon-molecular technology has the promise of augmenting the current silicon technology and provide for a transitional path to future molecule-only technology. The focus of this dissertation work has been on developing a class of hybrid silicon-molecular electronic devices for DRAM and Flash memory applications utilizing redox-active molecules. This work exploits the ability of molecules to store charges with single-electron precision at room temperature. The hybrid devices are fabricated by forming self-assembled monolayers of redox-active molecules on Si and oxide (SiO2 and HfO2) surfaces via formation of covalent linkages. The molecules possess discrete quantum states from which electrons can tunnel to the Si substrate at discrete applied voltages (oxidation process, cell write), leaving behind a positively charged layer of molecules. The reduction (erase) process, which is the process of electrons tunneling back from Si to the molecules, neutralizes the positively charged molecular monolayer. Hybrid silicon-molecular capacitor test structures were electrically characterized with an electrolyte gate using cyclic voltammetry (CyV) and impedance spectroscopy (CV) techniques. The redox voltages, kinetics (write/erase speeds) and charge-retention characteristics were found to be strongly dependent on the Si doping type and densities, and ambient light. It was also determined that the redox energy states in the molecules communicate with the valence band of the Si substrate. This allows tuning of write and read states by modulating minority carriers in n- and p-Si substrates. Ultra-thin dielectric tunnel barriers (SiO2, HfO2) were placed between the molecules and the Si substrate to augment charge-retention for Flash memory applications. The redox response was studied as a function of tunnel oxide thickness, dielectric permittivity and energy barrier, and modified Butler-Volmer expressions were postulated to describe the redox kinetics. The speed vs. retention performance of the devices was improved via asymmetric layered tunnel barriers. The properties of molecules can be tailored by molecular design and synthetic chemistry. In this work, it was demonstrated that an alternate route to tune/enhance the properties of the hybrid device is to engineer the substrate (silicon) component. The molecules were attached to diode surfaces to tune redox voltages and improve charge-retention characteristics. N+ pockets embedded in P-Si well were utilized to obtain multiple states from a two-state molecule. The structure was also employed as a characterization tool in investigating the intrinsic properties of the molecules such as lateral conductivity within the monolayer. Redox molecules were also incorporated on an ultra thin gate-oxide of Si MOSFETs with the intent of studying the interaction of redox states with Si MOSFETs. The discrete molecular states were manifested in the drain current and threshold voltage characteristics of the device. This work demonstrates the multi-state modulation of Si-MOSFETs' drain current via redox-active molecular monolayers. Polymeric films of redox-active molecules were incorporated to improve the charge-density (ON/OFF ratio) and these structures may be employed for multi-state, low-voltage Flash memory applications. The most critical aspect of this research effort is to build a reliable and high density solid state memory technology. To this end, efforts were directed towards replacement of the electrolytic gate, which forms an extremely thin insulating double layer (˜10 nm) at the electrolyte-molecule interface, with a combination of an ultra-thin high-K dielectric layer and a metal gate. Several interesting observations were made in the research approaches towards integration and provided valuable insights into the electrolyte-redox systems. In summary, this work provides fundamental insights into the interaction of redox-energy states with silicon substrate and realistic approaches for exploiting the unique properties of the molecules that may enable solutions for nanoscale high density, low-voltage, long retention and multiple bit memory applications.
Naik, Shivangi; Hancock, Bruno; Abramov, Yuriy; Yu, Weili; Rowland, Martin; Huang, Zhonghui; Chaudhuri, Bodhisattwa
2016-04-01
Pharmaceutical powders are very prone to electrostatic charging by colliding and sliding contacts. In pharmaceutical formulation processes, particle charging is often a nuisance and can cause problems in the manufacture of products, such as affecting powder flow, fill, and dose uniformity. For a fundamental understanding of the powder triboelectrification, it is essential to study charge transfer under well-defined conditions. Hence, all experiments in the present study were conducted in a V-blender located inside a glove box with a controlled humidity of 20%. To understand tribocharging, different contact surfaces, namely aluminum, Teflon, poly methyl methacrylate, and nylon were used along with 2 pharmaceutical excipients and 2 drug substances. For the pharmaceutical materials, the work function values were estimated using MOPAC, a semiempirical molecular orbital package which has been previously used for the solid-state studies and molecular structure predictions. For a mechanistic understanding of tribocharging, a discrete element model incorporating charge transfer and electrostatic forces was developed. An effort was made to correlate tribocharging of pharmaceutical powders to properties such as cohesive energy density and surface energy. The multiscale model used is restricted as it considers only spherical particles with smooth surfaces. It should be used judiciously for other experimental assemblies because it does not represent a full validation of a tightly integrated model. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Exploration of charge states of balanol analogues acting as ATP-competitive inhibitors in kinases.
Hardianto, Ari; Yusuf, Muhammad; Liu, Fei; Ranganathan, Shoba
2017-12-28
(-)-Balanol is an ATP mimic that inhibits protein kinase C (PKC) isozymes and cAMP-dependent protein kinase (PKA) with limited selectivity. While PKA is a tumour promoter, PKC isozymes act as tumour promoters or suppressors, depending on the cancer type. In particular, PKCε is frequently implicated in cancer promotion, making it a potential target for anticancer drugs. To improve isozyme selectivity of balanol, exhaustive structural and activity relationship (SAR) studies have been performed in the last two decades, but with limited success. More recently, fluorination on balanol has shown improved selectivity for PKCε, although the fluorine effect is not yet clearly understood. Understanding the origin to this fluorine-based selectivity will be valuable for designing better balanol-based ATP mimicking inhibitors. Computational approaches such as molecular dynamics (MD) simulations can decipher the fluorine effect, provided that correct charges have been assigned to a ligand. Balanol analogues have multiple ionisable functional groups and the effect of fluorine substitutions on the exact charge state of each analogue bound to PKA and to PKCε needs to be thoroughly investigated in order to design highly selective inhibitors for therapeutic applications. We explored the charge states of novel fluorinated balanol analogues using MD simulations. For different potential charge states of these analogues, Molecular Mechanics Generalized Born Surface Area (MMGBSA) binding energy values were computed. This study suggests that balanol and the most potent fluorinated analogue (5S fluorine substitution on the azepane ring), have charges on the azepane ring (N1), and the phenolic (C6''OH) and the carboxylate (C15''O 2 H) groups on the benzophenone moiety, when bound to PKCε as well as PKA. To the best our knowledge, this is the first study showing that the phenolate group is charged in balanol and its analogues binding to the ATP site of PKCε. Correct charge assignments of ligands are important to obtain predicted binding energy values from MD simulations that reflect experimental values. Both fluorination and the local enzymatic environment of the ATP site can influence the exact charge states of balanol analogues. Overall, this study is highly valuable for further rational design of potent balanol analogues selective to PKCε.
The Effects of Iron Oxidation State on Clay Swelling,
1983-03-07
swelling, montmorillonite , nontronite, smectite, water, DLVO theory, surface charge, dissolution, methods, aluminum, silicon, inert atmosphere. 2G...that many physical properties of bulk water are changed when it is adsorbed between layers of Na4- montmorillonite (e.g., Oster and Low, 1964; Kolaian...Na+- montmorillonite accounted for about 13% of the total water content in the free-swelling state. We can therefore express the total water content
Fernández, Cynthia C; Pensa, Evangelina; Carro, Pilar; Salvarezza, Roberto; Williams, Federico J
2018-05-22
The electronic structure of aromatic and aliphatic thiols on Au(111) has been extensively studied in relation to possible applications in molecular electronics. In this work, the effect on the electronic structure of an additional anchor to the S-Au bond using 6-mercaptopurine as a model system has been investigated. Results from X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and density functional theory (DFT) confirm that this molecule adsorbs on Au(111) with S-Au and iminic N-Au bonds. Combined ultraviolet photoelectron spectroscopy and DFT data reveal that formation of the 6MP self-assembled monolayer generates a molecular dipole perpendicular to the surface, with negative charges residing at the metal/monolayer interface and positive charges at the monolayer/vacuum interface, which lowers the substrate work function. Scanning tunneling microscopy shows two surface molecular domains: a well-ordered rectangular lattice where molecules are tilted on average 30° with respect to the substrate and aligned 6MP islands where molecules are standing upright. Finally, we found a new electronic state located at -1.7 eV with respect to the Fermi level that corresponds to a localized π molecular state, while the state corresponding to the N-Au bond is hybridized with Au d electrons and stabilized at much lower energies (-3 eV).
Electric Double-Layer Interaction between Dissimilar Charge-Conserved Conducting Plates.
Chan, Derek Y C
2015-09-15
Small metallic particles used in forming nanostructured to impart novel optical, catalytic, or tribo-rheological can be modeled as conducting particles with equipotential surfaces that carry a net surface charge. The value of the surface potential will vary with the separation between interacting particles, and in the absence of charge-transfer or electrochemical reactions across the particle surface, the total charge of each particle must also remain constant. These two physical conditions require the electrostatic boundary condition for metallic nanoparticles to satisfy an equipotential whole-of-particle charge conservation constraint that has not been studied previously. This constraint gives rise to a global charge conserved constant potential boundary condition that results in multibody effects in the electric double-layer interaction that are either absent or are very small in the familiar constant potential or constant charge or surface electrochemical equilibrium condition.
Bernstein, Roy; Belfer, Sofia; Freger, Viatcheslav
2011-07-15
Concentration polarization-enhanced radical graft polymerization, a facile surface modification technique, was examined as an approach to reduce bacterial deposition onto RO membranes and thus contribute to mitigation of biofouling. For this purpose an RO membrane ESPA-1 was surface-grafted with a zwitterionic and negatively and positively charged monomers. The low monomer concentrations and low degrees of grafting employed in modifications moderately reduced flux (by 20-40%) and did not affect salt rejection, yet produced substantial changes in surface chemistry, charge and hydrophilicity. The propensity to bacterial attachment of original and modified membranes was assessed using bacterial deposition tests carried out in a parallel plate flow setup using a fluorescent strain of Pseudomonas fluorescens. Compared to unmodified ESPA-1 the deposition (mass transfer) coefficient was significantly increased for modification with the positively charged monomer. On the other hand, a substantial reduction in bacterial deposition rates was observed for membranes modified with zwitterionic monomer and, still more, with very hydrophilic negatively charged monomers. This trend is well explained by the effects of surface charge (as measured by ζ-potential) and hydrophilicity (contact angle). It also well correlated with force distance measurements by AFM using surrogate spherical probes with a negative surface charge mimicking the bacterial surface. The positively charged surface showed a strong hysteresis with a large adhesion force, which was weaker for unmodified ESPA-1 and still weaker for zwitterionic surface, while negatively charged surface showed a long-range repulsion and negligible hysteresis. These results demonstrate the potential of using the proposed surface- modification approach for varying surface characteristics, charge and hydrophilicity, and thus minimizing bacterial deposition and potentially reducing propensity biofouling.
Pyrgiotakis, Georgios; Vedantam, Pallavi; Cirenza, Caroline; McDevitt, James; Eleftheriadou, Mary; Leonard, Stephen S.; Demokritou, Philip
2016-01-01
A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm3. PMID:26875817
NASA Astrophysics Data System (ADS)
Pyrgiotakis, Georgios; Vedantam, Pallavi; Cirenza, Caroline; McDevitt, James; Eleftheriadou, Mary; Leonard, Stephen S.; Demokritou, Philip
2016-02-01
A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm3.
Pyrgiotakis, Georgios; Vedantam, Pallavi; Cirenza, Caroline; McDevitt, James; Eleftheriadou, Mary; Leonard, Stephen S; Demokritou, Philip
2016-02-15
A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm(3).
On the c-Si/SiO2 interface recombination parameters from photo-conductance decay measurements
NASA Astrophysics Data System (ADS)
Bonilla, Ruy S.; Wilshaw, Peter R.
2017-04-01
The recombination of electric charge carriers at semiconductor surfaces continues to be a limiting factor in achieving high performance optoelectronic devices, including solar cells, laser diodes, and photodetectors. The theoretical model and a solution algorithm for surface recombination have been previously reported. However, their successful application to experimental data for a wide range of both minority excess carrier concentrations and dielectric fixed charge densities has not previously been shown. Here, a parametrisation for the semiconductor-dielectric interface charge Q i t is used in a Shockley-Read-Hall extended formalism to describe recombination at the c-Si/SiO2 interface, and estimate the physical parameters relating to the interface trap density D i t , and the electron and hole capture cross-sections σ n and σ p . This approach gives an excellent description of the experimental data without the need to invoke a surface damage region in the c-Si/SiO2 system. Band-gap tail states have been observed to limit strongly the effectiveness of field effect passivation. This approach provides a methodology to determine interface recombination parameters in any semiconductor-insulator system using macro scale measuring techniques.
Habib, K M Masum; Sajjad, Redwan N; Ghosh, Avik W
2015-05-01
We show that the interplay between chiral tunneling and spin-momentum locking of helical surface states leads to spin amplification and filtering in a 3D topological insulator (TI). Our calculations show that the chiral tunneling across a TI pn junction allows normally incident electrons to transmit, while the rest are reflected with their spins flipped due to spin-momentum locking. The net result is that the spin current is enhanced while the dissipative charge current is simultaneously suppressed, leading to an extremely large, gate-tunable spin-to-charge current ratio (∼20) at the reflected end. At the transmitted end, the ratio stays close to 1 and the electrons are completely spin polarized.
Electronic structure of hydrogenated diamond: Microscopical insight into surface conductivity
NASA Astrophysics Data System (ADS)
Iacobucci, S.; Alippi, Paola; Calvani, P.; Girolami, M.; Offi, F.; Petaccia, L.; Trucchi, D. M.
2016-07-01
We have correlated the surface conductivity of hydrogen-terminated diamond to the electronic structure in the Fermi region. Significant density of electronic states (DOS) in proximity of the Fermi edge has been measured by photoelectron spectroscopy (PES) on surfaces exposed to air, corresponding to a p -type electric conductive regime, while upon annealing a depletion of the DOS has been achieved, resembling the diamond insulating state. The surface and subsurface electronic structure has been determined, exploiting the different probing depths of PES applied in a photon energy range between 7 and 31 eV. Ab initio density functional calculations including surface charge depletion and band-bending effects favorably compare with electronic states measured by angular-resolved photoelectron spectroscopy. Such states are organized in the energy-momentum space in a twofold structure: one, bulk-derived, band disperses in the Γ -X direction with an average hole effective mass of (0.43 ±0.02 ) m0 , where m0 is the bare electron mass; a second flatter band, with an effective mass of (2.2 ±0.9 ) m0 , proves that a hole gas confined in the topmost layers is responsible for the conductivity of the (2 ×1 ) hydrogen-terminated diamond (100 ) surface.
Chandni, U; Watanabe, K; Taniguchi, T; Eisenstein, J P
2016-12-14
Electron tunneling spectroscopy measurements on van der Waals heterostructures consisting of metal and graphene (or graphite) electrodes separated by atomically thin hexagonal boron nitride tunnel barriers are reported. The tunneling conductance, dI/dV, at low voltages is relatively weak, with a strong enhancement reproducibly observed to occur at around |V| ≈ 50 mV. While the weak tunneling at low energies is attributed to the absence of substantial overlap, in momentum space, of the metal and graphene Fermi surfaces, the enhancement at higher energies signals the onset of inelastic processes in which phonons in the heterostructure provide the momentum necessary to link the Fermi surfaces. Pronounced peaks in the second derivative of the tunnel current, d 2 I/dV 2 , are observed at voltages where known phonon modes in the tunnel junction have a high density of states. In addition, features in the tunneling conductance attributed to single electron charging of nanometer-scale defects in the boron nitride are also observed in these devices. The small electronic density of states of graphene allows the charging spectra of these defect states to be electrostatically tuned, leading to "Coulomb diamonds" in the tunneling conductance.
Charging of moving surfaces by corona discharges sustained in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun-Chieh, E-mail: junchwan@umich.edu; Kushner, Mark J., E-mail: mjkush@umich.edu; Zhang, Daihua, E-mail: dhzhang@tju.edu.cn
Atmospheric pressure corona discharges are used in electrophotographic (EP) printing technologies for charging imaging surfaces such as photoconductors. A typical corona discharge consists of a wire (or wire array) biased with a few hundred volts of dc plus a few kV of ac voltage. An electric discharge is produced around the corona wire from which electrons drift towards and charge the underlying dielectric surface. The surface charging reduces the voltage drop across the gap between the corona wire and the dielectric surface, which then terminates the discharge, as in a dielectric barrier discharge. In printing applications, this underlying surface ismore » continuously moving throughout the charging process. For example, previously charged surfaces, which had reduced the local electric field and terminated the local discharge, are translated out of the field of view and are replaced with uncharged surface. The uncharged surface produces a rebound in the electric field in the vicinity of the corona wire which in turn results in re-ignition of the discharge. The discharge, so reignited, is then asymmetric. We found that in the idealized corona charging system we investigated, a negatively dc biased corona blade with a dielectric covered ground electrode, the discharge is initially sustained by electron impact ionization from the bulk plasma and then dominated by ionization from sheath accelerated secondary electrons. Depending on the speed of the underlying surface, the periodic re-ignition of the discharge can produce an oscillatory charging pattern on the moving surface.« less
Shen, Jia-Wei; Wu, Tao; Wang, Qi; Kang, Yu; Chen, Xin
2009-06-02
Ordered hydration shells: The more ordered hydration shells outside the charged CNT surfaces prevent more compact adsorption of the peptide in the charged CNT systems [picture: see text], but peptide binding strengths on the charged CNT surfaces are stronger due to the electrostatic interaction.Studies of adsorption dynamics and stability for peptides/proteins on single-walled carbon nanotubes (SWNTs) are of great importance for a better understanding of the properties and nature of nanotube-based biosystems. Herein, the dynamics and mechanism of the adsorption of the insulin chain B peptide on different charged SWNTs are investigated by explicit solvent molecular dynamics simulations. The results show that all types of surfaces effectively attract the model peptide. Water molecules play a significant role in peptide adsorption on the surfaces of charged carbon nanotubes (CNTs). Compared to peptide adsorption on neutral CNT surfaces, the more ordered hydration shells outside the tube prevent more compact adsorption of the peptide in charged CNT systems. This shield effect leads to a smaller conformational change and van der Waals interaction between the peptide and surfaces, but peptide binding strengths on charged CNT surfaces are stronger than those on the neutral CNT surface due to the strong electrostatic interaction. The result of these simulations implies the possibility of improving the binding strength of peptides/proteins on CNT surfaces, as well as keeping the integrity of the peptide/protein conformation in peptide/protein-CNT complexes by charging the CNTs.
Brown, Matthew A; Duyckaerts, Nicolas; Redondo, Amaia Beloqui; Jordan, Inga; Nolting, Frithjof; Kleibert, Armin; Ammann, Markus; Wörner, Hans Jakob; van Bokhoven, Jeroen A; Abbas, Zareen
2013-04-23
Using in-situ X-ray photoelectron spectroscopy at the vapor-water interface, the affinity of nanometer-sized silica colloids to adsorb at the interface is shown to depend on colloid surface charge density. In aqueous suspensions at pH 10 corrected Debye-Hückel theory for surface complexation calculations predict that smaller silica colloids have increased negative surface charge density that originates from enhanced screening of deprotonated silanol groups (≡Si-O(-)) by counterions in the condensed ion layer. The increased negative surface charge density results in an electrostatic repulsion from the vapor-water interface that is seen to a lesser extent for larger particles that have a reduced charge density in the XPS measurements. We compare the results and interpretation of the in-situ XPS and corrected Debye-Hückel theory for surface complexation calculations with traditional surface tension measurements. Our results show that controlling the surface charge density of colloid particles can regulate their adsorption to the interface between two dielectrics.
NASA Astrophysics Data System (ADS)
Searcy, K. E.; Packman, A. I.; Atwill, E. R.; Harter, T.
2003-12-01
Understanding the transport and fate of microorganisms in surface waters is of vital concern in protecting the integrity and safety of municipal water supply systems. The human pathogen Cryptosporidium parvum is a particular public health interest, as it is ubiquitous in the surface waters of the United States, it can persist for long periods in the environment, and it is difficult to disinfect in water treatment plants. Due to its small size (5 um), low specific gravity (1.05 g/cm3), and negative surface charge, C. parvum oocysts are generally considered to move through watersheds from their source to drinking water reservoirs with little attenuation. However, the transport of the oocysts in surface waters may be mediated by interactions with suspended sediments. Batch experiments were conducted to determine the extent of C. parvum oocyst attachment to several inorganic and organic sediments under varying water chemical conditions, and settling column experiments were performed to demonstrate how these associations influence the effective settling velocity of C. parvum oocysts. Results from these experiments showed that C. parvum oocysts do associate with inorganic and organic sediments and often settle at the rate of the suspended sediment. The size and surface charge of the host suspended sediment influenced the extent of oocyst attachment as oocysts preferentially associated with particles greater than 3 um, and fewer oocysts associated with particles having a highly negative surface charge. Background water chemical conditions including ionic strength, ion composition, and pH did not have a significant effect on oocyst attachment to suspended sediments.
Meschke, S; Smith, B D; Yost, M; Miksch, R R; Gefter, P; Gehlke, S; Halpin, H A
2009-04-01
A series of experiments were conducted to evaluate the effect of surface charge and air ionization on the deposition of airborne bacteria. The interaction between surface electrostatic potential and the deposition of airborne bacteria in an indoor environment was investigated using settle plates charged with electric potentials of 0, +/-2.5kV and +/-5kV. Results showed that bacterial deposition on the plates increased proportionally with increased potential to over twice the gravitational sedimentation rate at +5kV. Experiments were repeated under similar conditions in the presence of either negative or bipolar air ionization. Bipolar air ionization resulted in reduction of bacterial deposition onto the charged surfaces to levels nearly equal to gravitational sedimentation. In contrast, diffusion charging appears to have occurred during negative air ionization, resulting in an even greater deposition onto the oppositely charged surface than observed without ionization. Static charges on fomitic surfaces may attract bacteria resulting in deposition in excess of that expected by gravitational sedimentation or simple diffusion. Implementation of bipolar ionization may result in reduction of bacterial deposition. Fomitic surfaces are important vehicles for the transmission of infectious organisms. This study has demonstrated a simple strategy for minimizing charge related deposition of bacteria on surfaces.
Kweon, Hyojin; Yiacoumi, Sotira Z.; Tsouris, Costas
2015-06-19
In this study, the influence of electrostatic charge on the adhesive force between spherical particles and planar surfaces in atmospheric systems was studied using atomic force microscopy. Electrical bias was applied to modify the surface charge, and it was found that application of a stronger positive bias to a particle induces a stronger total adhesive force. The sensitivity of the system to changes in the bias depended on the surface charge density. For larger-size particles, the contribution of the electrostatic force decreased, and the capillary force became the major contributor to the total adhesive force. The influence of water adsorptionmore » on the total adhesive force and, specifically, on the contribution of the electrostatic force depended on the hydrophobicity of interacting surfaces. For a hydrophilic surface, water adsorption either attenuated the surface charge or screened the effect of surface potential. An excessive amount of adsorbed water provided a path to surface charge leakage, which might cancel out the electrostatic force, leading to a reduction in the adhesive force. Theoretically calculated forces were comparable with measured adhesive forces except for mica which has a highly localized surface potential. The results of this study provide information on the behavior of charged colloidal particles in atmospheric systems.« less
High field charge order across the phase diagram of YBa2Cu3Oy
NASA Astrophysics Data System (ADS)
Laliberté, Francis; Frachet, Mehdi; Benhabib, Siham; Borgnic, Benjamin; Loew, Toshinao; Porras, Juan; Le Tacon, Mathieu; Keimer, Bernhard; Wiedmann, Steffen; Proust, Cyril; LeBoeuf, David
2018-03-01
In hole-doped cuprates there is now compelling evidence that inside the pseudogap phase, charge order breaks translational symmetry. In YBa2Cu3Oy charge order emerges in two steps: a 2D order found at zero field and at high temperature inside the pseudogap phase, and a 3D order that is superimposed below the superconducting transition Tc when superconductivity is weakened by a magnetic field. Several issues still need to be addressed such as the effect of disorder, the relationship between those charge orders and their respective impact on the Fermi surface. Here, we report high magnetic field sound velocity measurements of the 3D charge order in underdoped YBa2Cu3Oy in a large doping range. We found that the 3D charge order exists over the same doping range as its 2D counterpart, indicating an intimate connection between the two distinct orders. Moreover, our data suggest that 3D charge order has only a limited impact on low-lying electronic states of YBa2Cu3Oy.
Kinetics of laser irradiated nanoparticles cloud
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Upadhyay Kahaly, M.; Misra, Shikha
2018-02-01
A comprehensive kinetic model describing the complex kinetics of a laser irradiated nanoparticle ensemble has been developed. The absorbed laser radiation here serves dual purpose, viz., photoenhanced thermionic emission via rise in its temperature and direct photoemission of electrons. On the basis of mean charge theory along with the equations for particle (electron) and energy flux balance over the nanoparticles, the transient processes of charge/temperature evolution over its surface and mass diminution on account of the sublimation (phase change) process have been elucidated. Using this formulation phenomenon of nanoparticle charging, its temperature rise to the sublimation point, mass ablation, and cloud disintegration have been investigated; afterwards, typical timescales of disintegration, sublimation and complete evaporation in reference to a graphite nanoparticle cloud (as an illustrative case) have been parametrically investigated. Based on a numerical analysis, an adequate parameter space describing the nanoparticle operation below the sublimation temperature, in terms of laser intensity, wavelength and nanoparticle material work function, has been identified. The cloud disintegration is found to be sensitive to the nanoparticle charging through photoemission; as a consequence, it illustrates that radiation operating below the photoemission threshold causes disintegration in the phase change state, while above the threshold, it occurs with the onset of surface heating.
Assessment of capacitor electrodes for intracortical neural stimulation.
Rose, T L; Kelliher, E M; Robblee, L S
1985-01-01
Capacitor electrodes offer the potential for the safest method of stimulation of neural tissue because they operate without any faradaic process occurring at the electrode-electrolyte interface. Their use eliminates problems associated with metal dissolution or water electrolysis which may occur with electrodes of noble metals. This paper reviews recent work aimed at increasing the charge storage density of capacitor electrodes to allow their application with the small areas of 10(-4) mm2 required for intracortical stimulation of single neurons. Increased charge storage with electrodes using anodic films such as TiO2 and Ta2O5 has been obtained by increasing the real surface area of microelectrodes. Experiments have also been done with BaTiO3 films which have a much higher dielectric constant than the anodic film dielectrics. State-of-the-art electrodes made with these materials, however, have a charge storage density which at best is comparable to that obtained with Pt and is considerably lower than electrochemically safe charge densities that have been reported for activated Ir. It is concluded that for very small intracortical electrodes, capacitor electrodes will not be competitive with electrodes which operate using surface localized faradaic reactions.
Ion-ion correlations across and between electrified graphene layers
NASA Astrophysics Data System (ADS)
Mendez-Morales, Trinidad; Burbano, Mario; Haefele, Matthieu; Rotenberg, Benjamin; Salanne, Mathieu
2018-05-01
When an ionic liquid adsorbs onto a porous electrode, its ionic arrangement is deeply modified due to a screening of the Coulombic interactions by the metallic surface and by the confinement imposed upon it by the electrode's morphology. In particular, ions of the same charge can approach at close contact, leading to the formation of a superionic state. The impact of an electrified surface placed between two liquid phases is much less understood. Here we simulate a full supercapacitor made of the 1-butyl-3-methylimidazolium hexafluorophosphate and nanoporous graphene electrodes, with varying distances between the graphene sheets. The electrodes are held at constant potential by allowing the carbon charges to fluctuate. Under strong confinement conditions, we show that ions of the same charge tend to adsorb in front of each other across the graphene plane. These correlations are allowed by the formation of a highly localized image charge on the carbon atoms between the ions. They are suppressed in larger pores, when the liquid adopts a bilayer structure between the graphene sheets. These effects are qualitatively similar to the recent templating effects which have been reported during the growth of nanocrystals on a graphene substrate.
Probing spin helical surface states in topological HgTe nanowires
NASA Astrophysics Data System (ADS)
Ziegler, J.; Kozlovsky, R.; Gorini, C.; Liu, M.-H.; Weishäupl, S.; Maier, H.; Fischer, R.; Kozlov, D. A.; Kvon, Z. D.; Mikhailov, N.; Dvoretsky, S. A.; Richter, K.; Weiss, D.
2018-01-01
Nanowires with helical surface states represent key prerequisites for observing and exploiting phase-coherent topological conductance phenomena, such as spin-momentum locked quantum transport or topological superconductivity. We demonstrate in a joint experimental and theoretical study that gated nanowires fabricated from high-mobility strained HgTe, known as a bulk topological insulator, indeed preserve the topological nature of the surface states, that moreover extend phase-coherently across the entire wire geometry. The phase-coherence lengths are enhanced up to 5 μ m when tuning the wires into the bulk gap, so as to single out topological transport. The nanowires exhibit distinct conductance oscillations, both as a function of the flux due to an axial magnetic field and of a gate voltage. The observed h /e -periodic Aharonov-Bohm-type modulations indicate surface-mediated quasiballistic transport. Furthermore, an in-depth analysis of the scaling of the observed gate-dependent conductance oscillations reveals the topological nature of these surface states. To this end we combined numerical tight-binding calculations of the quantum magnetoconductance with simulations of the electrostatics, accounting for the gate-induced inhomogeneous charge carrier densities around the wires. We find that helical transport prevails even for strongly inhomogeneous gating and is governed by flux-sensitive high-angular momentum surface states that extend around the entire wire circumference.
Altering surface charge nonuniformity on individual colloidal particles.
Feick, Jason D; Chukwumah, Nkiru; Noel, Alexandra E; Velegol, Darrell
2004-04-13
Charge nonuniformity (sigmazeta) was altered on individual polystyrene latex particles and measured using the novel experimental technique of rotational electrophoresis. It has recently been shown that unaltered sulfated latices often have significant charge nonuniformity (sigmazeta = 100 mV) on individual particles. Here it is shown that anionic polyelectrolytes and surfactants reduce the native charge nonuniformity on negatively charged particles by 80% (sigmazeta = 20 mV), even while leaving the average surface charge density almost unchanged. Reduction of charge uniformity occurs as large domains of nonuniformity are minimized, giving a more random distribution of charge on individual particle surfaces. Targeted reduction of charge nonuniformity opens new opportunities for the dispersion of nanoparticles and the oriented assembly of particles.
Highly mobile oxygen holes in magnesium oxide
NASA Technical Reports Server (NTRS)
Freund, Minoru M.; Freund, Friedemann; Batllo, Francois
1989-01-01
High-purity MgO exhibits an unexpected giant anomaly of the apparent static dielectric constant and a positive surface charge of the order of 5 x 10 to the 21st/cu cm in the top 15 nm. It is postulated that the MgO matrix contains traces of peroxy defects, O2(2-), associated with Mg(2+) vacancies. Above approximately 400 C the O2(2-) dissociates to vacancy bound O(-) and highly mobile O(-) states, which diffuse to the surface, giving rise to a high surface conductivity.
Low energy positrons as probes of reconstructed semiconductor surfaces.
NASA Astrophysics Data System (ADS)
Fazleev, Nail G.; Weiss, Alex H.
2007-03-01
Positron probes of semiconductor surfaces that play a fundamental role in modern science and technology are capable to non-destructively provide information that is both unique to the probe and complimentary to that extracted using other more standard techniques. We discuss recent progress in studies of the reconstructed Si(100), Si(111), Ge(100), and Ge(111) surfaces, clean and exposed to hydrogen and oxygen, using a surface characterization technique, Positron-Annihilation-Induced Auger-Electron Spectroscopy (PAES). Experimental PAES results are analyzed by performing first-principles calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons for the reconstructed surfaces, taking into account discrete lattice effects, the electronic reorganization due to bonding, and charge redistribution effects at the surface. Effects of the hydrogen and oxygen adsorption on semiconductor surfaces on localization of positron surface state wave functions and annihilation characteristics are also analyzed. Theoretical calculations confirm that PAES intensities, which are proportional to annihilation probabilities of the surface trapped positrons that results in a core hole, are sensitive to the crystal face, surface structure and elemental content of the semiconductors.
Mechanism of the free charge carrier generation in the dielectric breakdown
NASA Astrophysics Data System (ADS)
Rahim, N. A. A.; Ranom, R.; Zainuddin, H.
2017-12-01
Many studies have been conducted to investigate the effect of environmental, mechanical and electrical stresses on insulator. However, studies on physical process of discharge phenomenon, leading to the breakdown of the insulator surface are lacking and difficult to comprehend. Therefore, this paper analysed charge carrier generation mechanism that can cause free charge carrier generation, leading toward surface discharge development. Besides, this paper developed a model of surface discharge based on the charge generation mechanism on the outdoor insulator. Nernst’s Planck theory was used in order to model the behaviour of the charge carriers while Poisson’s equation was used to determine the distribution of electric field on insulator surface. In the modelling of surface discharge on the outdoor insulator, electric field dependent molecular ionization was used as the charge generation mechanism. A mathematical model of the surface discharge was solved using method of line technique (MOL). The result from the mathematical model showed that the behaviour of net space charge density was correlated with the electric field distribution.
NASA Astrophysics Data System (ADS)
Lee, Victor; James, Nicole M.; Waitukaitis, Scott R.; Jaeger, Heinrich M.
2018-03-01
Electrostatic charging of insulating fine particles can be responsible for numerous phenomena ranging from lightning in volcanic plumes to dust explosions. However, even basic aspects of how fine particles become charged are still unclear. Studying particle charging is challenging because it usually involves the complexities associated with many-particle collisions. To address these issues, we introduce a method based on acoustic levitation, which makes it possible to initiate sequences of repeated collisions of a single submillimeter particle with a flat plate, and to precisely measure the particle charge in situ after each collision. We show that collisional charge transfer between insulators is dependent on the hydrophobicity of the contacting surfaces. We use glass, which we modify by attaching nonpolar molecules to the particle, the plate, or both. We find that hydrophilic surfaces develop significant positive charges after contacting hydrophobic surfaces. Moreover, we demonstrate that charging between a hydrophilic and a hydrophobic surface is suppressed in an acidic environment and enhanced in a basic one. Application of an electric field during each collision is found to modify the charge transfer, again depending on surface hydrophobicity. We discuss these results within the context of contact charging due to ion transfer, and we show that they lend strong support to O H- ions as the charge carriers.
Two-dimensional Fermi surfaces in Kondo insulating SmB6
NASA Astrophysics Data System (ADS)
Li, Gang
There has been renewed interest in Samarium Hexaboride, which is a strongly correlated heavy Fermion material. Hybridization between itinerant electrons and localized orbitals lead to an opening of charge gap at low temperature. However, the resistivity of SmB6 does not diverge at low temperature. Former studies suggested that this residual conductance is contributed by various origins. Recent theoretical developments suggest that the particular symmetry of energy bands of SmB6 may host a topologically non-trivial surface state, i.e., a topological Kondo insulator. To probe the Fermiology of the possible metallic surface state, we use sensitive torque magnetometry to detect the de Haas van Alphen (dHvA) effect due to Landau level quantization on flux-grown crystals, down to He-3 temperature and up to 45 Tesla. Our angular and temperature dependent data suggest two-dimensional Fermi Surfaces lie in both crystalline (001) and (101) surface planes of SmB6.
Water Plasma Functionalized CNTs/MnO2 Composites for Supercapacitors
Hussain, Shahzad; Jover, Eric; Bertran, Enric
2013-01-01
A water plasma treatment applied to vertically-aligned multiwall carbon nanotubes (CNTs) synthesized by plasma enhanced chemical vapour deposition gives rise to surface functionalization and purification of the CNTs, along with an improvement of their electrochemical properties. Additional increase of their charge storage capability is achieved by anodic deposition of manganese dioxide lining the surface of plasma-treated nanotubes. The morphology (nanoflower, layer, or needle-like structure) and oxidation state of manganese oxide depend on the voltage window applied during charge-discharge measurements and are found to be key points for improved efficiency of capacitor devices. MnO2/CNTs nanocomposites exhibit an increase in their specific capacitance from 678 Fg−1, for untreated CNTs, up to 750 Fg−1, for water plasma-treated CNTs. PMID:24348189
Water plasma functionalized CNTs/MnO2 composites for supercapacitors.
Hussain, Shahzad; Amade, Roger; Jover, Eric; Bertran, Enric
2013-01-01
A water plasma treatment applied to vertically-aligned multiwall carbon nanotubes (CNTs) synthesized by plasma enhanced chemical vapour deposition gives rise to surface functionalization and purification of the CNTs, along with an improvement of their electrochemical properties. Additional increase of their charge storage capability is achieved by anodic deposition of manganese dioxide lining the surface of plasma-treated nanotubes. The morphology (nanoflower, layer, or needle-like structure) and oxidation state of manganese oxide depend on the voltage window applied during charge-discharge measurements and are found to be key points for improved efficiency of capacitor devices. MnO2/CNTs nanocomposites exhibit an increase in their specific capacitance from 678 Fg(-1), for untreated CNTs, up to 750 Fg(-1), for water plasma-treated CNTs.
Chen, Kaixiang; Zhao, Xiaolong; Mesli, Abdelmadjid; He, Yongning; Dan, Yaping
2018-04-24
Photoconductors have extraordinarily high gain in quantum efficiency, but the origin of the gain has remained in dispute for decades. In this work, we employ photo Hall effect to reveal the gain mechanisms by probing the dynamics of photogenerated charge carriers in silicon nanowire photoconductors. The results reveal that a large number of photogenerated minority electrons are localized in the surface depletion region and surface trap states. The same number of excess hole counterparts is left in the nanowire conduction channel, resulting in the fact that excess holes outnumber the excess electrons in the nanowire conduction channel by orders of magnitude. The accumulation of the excess holes broadens the conduction channel by narrowing down the depletion region, which leads to the experimentally observed high photo gain.
NASA Astrophysics Data System (ADS)
Zykov, V. M.; Neiman, D. A.
2018-04-01
A physico-mathematical model of the processes of radiation-induced charging of dielectric materials with open surfaces, irradiated with monoenergetic electrons in the energy range 10-30 keV, is described. The model takes into account the relationship between the processes of surface and bulk charging for the given conditions of the experimental design, which accounts for the effect of anomalously long charging of dielectrics after the incident energy of primary electrons during charging is reduced to below the second critical energy for the secondary electronic emission coefficient. The initial fast phase of charging a high-resistivity dielectric material (Al2O3) is investigated. It is shown that as the incident electron energy is approaching the second critical energy during charging, the secondary electronic emission is partially suppressed due to negative charging of the open surface of the dielectric and formation of a near-surface inversion electrical field retarding the electronic emission yield.
Grenoble, Zlata; Baldelli, Steven
2013-08-29
The adsorption of the cationic surfactant benzyldimethylhexadecylammonium (BDMHA(+)) chloride was studied at an octadecyltrichlorosilane (OTS)-monolayer-modified silica-water interface by Raman spectroscopy in total internal reflection (TIR) geometry. The present study demonstrates the capabilities of this spectroscopic technique to evaluate thermodynamic and kinetic BDMHA(+)Cl(-) adsorption properties at the hydrophobic silica surface. The surface coverage of BDMHA(+) decreased by 50% at the hydrophobic OTS-silica surface relative to the surface coverage on bare silica; the dominating driving mechanisms for surfactant adsorption were identified as hydrophobic effects and head group charge screening by the electrolyte counterions. Addition of magnesium metal salt (MgCl2) to the aqueous solution (∼ neutral pH) lowered the surface coverage and moderately increased the Langmuir adsorption constants relative to those of the pure surfactant. These trends were previously observed at the hydrophilic, negatively charged silica surface but with a smaller change in the Gibbs free energy of adsorption at the hydrophobic silica surface. The hydrophobic OTS-silica surface properties resulted in shorter times for the surfactant to reach steady-state adsorption conditions compared to the slow adsorption kinetics previously seen with the surfactant at the hydrophilic surface. Adsorption isotherms, based on Raman signal intensities from spectral analysis, were developed according to the Langmuir adsorption model for the pure surfactant at the OTS-silica-water interface; the modified Langmuir model was applied to the surfactant adsorption in the presence of 5, 10, 50, and 100 mM magnesium chloride. Spectral analysis of the Raman scattering intensities and geometric considerations suggests a hemimicelle-type surface aggregate as the most likely surfactant structure at the OTS-silica surface. The different kinetics observed at the hydrophilic versus the hydrophobic silica surface further indicate that the surface charge and potential influence the surfactant diffusion and kinetic rates of adsorption at the silica-water interface.
Ion association at discretely-charged dielectric interfaces: Giant charge inversion
NASA Astrophysics Data System (ADS)
Wang, Zhi-Yong; Wu, Jianzhong
2017-07-01
Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmed with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.
VARIABLE CHARGE SOILS: MINERALOGY AND CHEMISTRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Ranst, Eric; Qafoku, Nikolla; Noble, Andrew
2016-09-19
Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered to be variable charge soils (2) (Table 1). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH and ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate mineralsmore » such as kaolinite, mica, and hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid phase. Highly weathered soils and subsoils (e.g., Oxisols and some Ultisols, Alfisols and Andisols) may undergo isoelectric weathering and reach a “zero net charge” stage during their development. They usually have a slightly acidic to acidic soil solution pH, which is close to either the point of zero net charge (PZNC) (3) or the point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems.« less
NASA Astrophysics Data System (ADS)
Marcovitz, Amir; Naftaly, Aviv; Levy, Yaakov
2015-02-01
Water molecules are abundant in protein-DNA interfaces, especially in their nonspecific complexes. In this study, we investigated the organization and energetics of the interfacial water by simplifying the geometries of the proteins and the DNA to represent them as two equally and oppositely charged planar surfaces immersed in water. We found that the potential of mean force for bringing the two parallel surfaces into close proximity comprises energetic barriers whose properties strongly depend on the charge density of the surfaces. We demonstrated how the organization of the water molecules into discretized layers and the corresponding energetic barriers to dehydration can be modulated by the charge density on the surfaces, salt, and the structure of the surfaces. The 1-2 layers of ordered water are tightly bound to the charged surfaces representing the nonspecific protein-DNA complex. This suggests that water might mediate one-dimensional diffusion of proteins along DNA (sliding) by screening attractive electrostatic interactions between the positively charged molecular surface on the protein and the negatively charged DNA backbone and, in doing so, reduce intermolecular friction in a manner that smoothens the energetic landscape for sliding, and facilitates the 1D diffusion of the protein.
Characterizing the effects of regolith surface roughness on photoemission from surfaces in space
NASA Astrophysics Data System (ADS)
Dove, A.; Horanyi, M.; Wang, X.
2017-12-01
Surfaces of airless bodies and spacecraft in space are exposed to a variety of charging environments. A balance of currents due to plasma bombardment, photoemission, electron and ion emission and collection, and secondary electron emission determines the surface's charge. Photoelectron emission is the dominant charging process on sunlit surfaces in the inner solar system due to the intense solar UV radiation. This can result in a net positive surface potential, with a cloud of photoelectrons immediately above the surface, called the photoelectron sheath. Conversely, the unlit side of the body will charge negatively due the collection of the fast-moving solar wind electrons. The interaction of charged dust grains with these positively and negatively charged surfaces, and within the photoelectron and plasma sheaths may explain the occurrence of dust lofting, levitation and transport above the lunar surface. The surface potential of exposed objects is also dependent on the material properties of their surfaces. Composition and particle size primarily affect the quantum efficiency of photoelectron generation; however, surface roughness can also control the charging process. In order to characterize these effects, we have conducted laboratory experiments to examine the role of surface roughness in generating photoelectrons in dedicated laboratory experiments using solid and dusty surfaces of the same composition (CeO2), and initial comparisons with JSC-1 lunar simulant. Using Langmuir probe measurements, we explore the measured potentials above insulating surfaces exposed to UV and an electric field, and we show that the photoemission current from a dusty surface is largely reduced due to its higher surface roughness, which causes a significant fraction of the emitted photoelectrons to be re-absorbed within the surface. We will discuss these results in context of similar situations on planetary surfaces.
Space and surface charge behavior analysis of charge-eliminated polymer films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oda, Tetsuji; Takashima, Kazunori; Ichiyama, Shinichiro
1995-12-31
Charge behavior of corona-charged or charge eliminated polymer films being dipped in the city water were studied. They were polytetrafluoroethylene (PTFE teflon{trademark}), polypropylene (PP), low density or high density polyethylene (LDPE or HDPE) thin films which are as grown (native) or plasma-processed. The plasma processing at low pressure was tested as antistatic processing. Charge elimination was done by being dipped in alcohol or city water. TSDC analysis and surface charge profile measurement were done for both charged and charge eliminated polymer films. Surface charge density of plasma processed polymer films just after corona charging is roughly the same as thatmore » of an original film. There is little difference between surface charge density profile of a native film and that of a plasma processed film. A large hetero current peak of TSDC was observed at room temperature for a processed film. It was found that the hetero peak disappears after charge elimination process. A pressure pulse wave method by using a pulse-driven piezoelectric PVDF polymer film as a piezoelectric actuator was newly developed to observe real space charge distribution. A little difference of internal space charge distribution between the plasma processed film and the native one after corona charging is found.« less
NASA Astrophysics Data System (ADS)
Katsuno, Takashi; Manaka, Takaaki; Soejima, Narumasa; Iwamoto, Mitsumasa
2017-02-01
Trapped charges underneath the field-plate (FP) in a p-gallium nitride (GaN) gate AlGaN/ GaN high electron mobility transistor device were visualized by using electric field-induced optical second-harmonic generation imaging. Second-harmonic (SH) signals in the off-state of the device with FP indicated that the electric field decreased at the p-GaN gate edge and concentrated at the FP edge. Nevertheless, SH signals originating from trapped charges were slightly observed at the p-GaN gate edge and were not observed at the FP edge in the on-state. Compared with the device without FP, reduction of trapped charges at the p-GaN gate edge of the device with FP is attributed to attenuation of the electric field with the aid of the FP. Negligible trapped charges at the FP edge is owing to lower trap density of the SiO2/AlGaN interface at the FP edge compared with that of the SiO2/p-GaN sidewall interface at the p-GaN gate edge and attenuated electric field by the thickness of the SiO2 passivation layer on the AlGaN surface.
Effective Charge Carrier Utilization in Photocatalytic Conversions.
Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong
2016-05-17
Continuous efforts have been devoted to searching for sustainable energy resources to alleviate the upcoming energy crises. Among various types of new energy resources, solar energy has been considered as one of the most promising choices, since it is clean, sustainable, and safe. Moreover, solar energy is the most abundant renewable energy, with a total power of 173 000 terawatts striking Earth continuously. Conversion of solar energy into chemical energy, which could potentially provide continuous and flexible energy supplies, has been investigated extensively. However, the conversion efficiency is still relatively low since complicated physical, electrical, and chemical processes are involved. Therefore, carefully designed photocatalysts with a wide absorption range of solar illumination, a high conductivity for charge carriers, a small number of recombination centers, and fast surface reaction kinetics are required to achieve a high activity. This Account describes our recent efforts to enhance the utilization of charge carriers for semiconductor photocatalysts toward efficient solar-to-chemical energy conversion. During photocatalytic reactions, photogenerated electrons and holes are involved in complex processes to convert solar energy into chemical energy. The initial step is the generation of charge carriers in semiconductor photocatalysts, which could be enhanced by extending the light absorption range. Integration of plasmonic materials and introduction of self-dopants have been proved to be effective methods to improve the light absorption ability of photocatalysts to produce larger amounts of photogenerated charge carriers. Subsequently, the photogenerated electrons and holes migrate to the surface. Therefore, acceleration of the transport process can result in enhanced solar energy conversion efficiency. Different strategies such as morphology control and conductivity improvement have been demonstrated to achieve this goal. Fine-tuning of the morphology of nanostructured photocatalysts can reduce the migration distance of charge carriers. Improving the conductivity of photocatalysts by using graphitic materials can also improve the transport of charge carriers. Upon charge carrier migration, electrons and holes also tend to recombine. The suppression of recombination can be achieved by constructing heterojunctions that enhance charge separation in the photocatalysts. Surface states acting as recombination centers should also be removed to improve the photocatalytic efficiency. Moreover, surface reactions, which are the core chemical processes during the solar energy conversion, can be enhanced by applying cocatalysts as well as suppressing side reactions. All of these strategies have been proved to be essential for enhancing the activities of semiconductor photocatalysts. It is hoped that delicate manipulation of photogenerated charge carriers in semiconductor photocatalysts will hold the key to effective solar-to-chemical energy conversion.
Chen, Xiaoyun; Wang, Jie; Paszti, Zoltan; Wang, Fulin; Schrauben, Joel N; Tarabara, Volodymyr V; Schmaier, Alvin H; Chen, Zhan
2007-05-01
Electrostatic interactions between negatively charged polymer surfaces and factor XII (FXII), a blood coagulation factor, were investigated by sum frequency generation (SFG) vibrational spectroscopy, supplemented by several analytical techniques including attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), quartz crystal microbalance (QCM), zeta-potential measurement, and chromogenic assay. A series of sulfonated polystyrenes (sPS) with different sulfonation levels were synthesized as model surfaces with different surface charge densities. SFG spectra collected from FXII adsorbed onto PS and sPS surfaces with different surface charge densities showed remarkable differences in spectral features and especially in spectral intensity. Chromogenic assay experiments showed that highly charged sPS surfaces induced FXII autoactivation. ATR-FTIR and QCM results indicated that adsorption amounts on the PS and sPS surfaces were similar even though the surface charge densities were different. No significant conformational change was observed from FXII adsorbed onto surfaces studied. Using theoretical calculations, the possible contribution from the third-order nonlinear optical effect induced by the surface electric field was evaluated, and it was found to be unable to yield the SFG signal enhancement observed. Therefore it was concluded that the adsorbed FXII orientation and ordering were the main reasons for the remarkable SFG amide I signal increase on sPS surfaces. These investigations indicate that negatively charged surfaces facilitate or induce FXII autoactivation on the molecular level by imposing specific orientation and ordering on the adsorbed protein molecules.
Hard X-ray photoemission study of the Fabre salts (TMTTF)2X (X = SbF6 and PF6)
NASA Astrophysics Data System (ADS)
Medjanik, Katerina; de Souza, Mariano; Kutnyakhov, Dmytro; Gloskovskii, Andrei; Müller, Jens; Lang, Michael; Pouget, Jean-Paul; Foury-Leylekian, Pascale; Moradpour, Alec; Elmers, Hans-Joachim; Schönhense, Gerd
2014-11-01
Core-level photoemission spectra of the Fabre salts with X = SbF6 and PF6 were taken using hard X-rays from PETRA III, Hamburg. In these salts TMTTF layers show a significant stack dimerization with a charge transfer of 1 e per dimer to the anion SbF6 or PF6. At room temperature and slightly below the core-level spectra exhibit single lines, characteristic for a well-screened metallic state. At reduced temperatures progressive charge localization sets in, followed by a 2nd order phase transition into a charge-ordered ground state. In both salts groups of new core-level signals occur, shifted towards lower kinetic energies. This is indicative of a reduced transverse-conductivity across the anion layers, visible as layer-dependent charge depletion for both samples. The surface potential was traced via shifts of core-level signals of an adsorbate. A well-defined potential could be established by a conducting cap layer of 5 nm aluminum which appears "transparent" due to the large probing depth of HAXPES (8-10 nm). At the transition into the charge-ordered phase the fluorine 1 s line of (TMTTF)2SbF6 shifts by 2.8 eV to higher binding energy. This is a spectroscopic fingerprint of the loss of inversion symmetry accompanied by a cooperative shift of the SbF6 anions towards the more positively charged TMTTF donors. This shift does not occur for the X = PF6 compound, most likely due to smaller charge disproportion or due to the presence of charge disorder.
Experimental and Theoretical Investigations of Glass Surface Charging Phenomena
NASA Astrophysics Data System (ADS)
Agnello, Gabriel
Charging behavior of multi-component display-type (i.e. low alkali) glass surfaces has been studied using a combination of experimental and theoretical methods. Data obtained by way of a Rolling Sphere Test (RST), streaming/zeta potential and surface energy measurements from commercially available display glass surfaces (Corning EAGLE XGRTM and Lotus(TM) XT) suggest that charge accumulation is highly dependent on surface treatment (chemical and/or physical modification) and measurement environment, presumably through reactionary mechanisms at the surface with atmospheric moisture. It has been hypothesized that water dissociation, along with the corresponding hydroxylation of the glass surface, are important processes related to charging in glass-metal contact systems. Classical Molecular Dynamics (MD) simulations, in conjunction with various laboratory based measurements (RST, a newly developed ElectroStatic Gauge (ESG) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS)) on simpler Calcium AluminoSilicate (CAS) glass surfaces were used to further explore these phenomena. Analysis of simulated high-silica content (≥50%) (CAS) glass structures suggest that controlled variation of bulk chemistry can directly affect surface defect concentrations, such as non-bridging oxygen (NBO), which can be suitable high-energy sites for hydrolysis-type reactions to occur. Calculated NBO surface concentrations correlate well with charge based measurements on laboratory fabricated CAS surfaces. The data suggest that a directional/polar shift in contact-charge transfer occurs at low silica content (≤50%) where the highest concentrations of NBOs are observed. Surface charging sensitivity with respect to NBO concentration decreases as the relative humidity of the measurement environment increases; which should be expected as the highly reactive sites are progressively covered by liquid water layers. DRIFTS analysis of CAS powders expand on this analysis showing a gradual increase in molecular water absorption at the surface in samples containing ≥60% silica, and an abrupt decrease in those with ≤60% silica. This behavior is very likely related to the aforementioned charge polarity shift (negative (-) to positive (+)) in low silica containing glasses, leading to the conclusion that structural defect mediated charge accumulation and/or transfer are likely to be important mechanisms related to the contact charging of glass surfaces.
Lateral Charge Transport in Silicon Nanomembranes
NASA Astrophysics Data System (ADS)
Hu, Weiwei
Silicon nanomembranes, also called SiNMs, Si thin sheets or films, are a great platform to study surface sciences, since the bulk is diminished and the surface-to-volume ratio is large. In a single crystalline material, atoms on the surface experience different forces, electric fields, thermodynamic surroundings, etc., than those within the bulk. Therefore, unique structural, mechanical, electronic, optical, and many other properties associated with surfaces overweigh bulk effects; novel phenomena emerge. In particular, electronic features of Si are of significance due to the extensive use of Si in integrated circuit devices and biochemical sensor technologies. As a result, especially with the size of transistors quickly decreasing nowadays, the exploration of electronic characteristics of Si surfaces become much more significant. This is also interesting as a topic within the area of fundamental surface science. Silicon-on-insulator (SOI) provides a new structure for studying charge transport in the SiNM, which is monocrystalline and sits on top of the SOI wafer. I use SOI based SiNMs with two surface orientations: Si (001) and Si (111). The former is pervasive in industrial applications while the latter has interesting metallic surface states when 7x7 reconstruction occurs on a clean surface. My goal is to measure/infer the sheet conductance in the true surface layer with different surface situations, and to further investigate the surface band structure and how carriers distribute and move accordingly. The biggest challenge is to eliminate interferences, e.g., bulk effects. The following are two solutions. 1) The thickness of the used SiNMs spans 40 nm to 500 nm, with a nominal doping level of 1015 cm -3 in our experiment. A straightforward calculation of areal dopant density indicates that charge carriers from the extrinsic doping are 1˜2 orders of magnitude fewer than the trap states at the interface between the buried oxide in SOI and the top SiNM, meaning that moderate doping is irrelevant and the SiNM acts like an intrinsic one. 2) The back gate that is applied to the measured sample is an innovative design among myriad analogous studies. It enables the tuning of the Fermi level (EF) throughout the SiNMs and makes it possible for a membrane to reach its most depleted status, thus efficiently removing the bulk conduction path. The four-probe van der Pauw measurements of film conductance are taken inside an ultrahigh vacuum chamber, where the surface condition remains stable and controllable. On Si (111) 7x7 surfaces, we find from the independence of conductance on membrane thickness that we are measuring the surface transport only. The sheet conductance is high, as it is on the microS/□scale, which supports the 7x7 surface having metallicity in lateral charge transport, a point which has been debated extensively. Nevertheless, weak semiconductor behavior is still present. For hydrogenated Si (001), which is obtained after hydrogen fluoric acid (HF) treatment, surface Fermi level is found around mid-bandgap based on temperature dependent measurements. No surface Fermi level pinning to closely below the conduction band minimum exists in my HF treated Si (001) NMs.
Ultrafast surface carrier dynamics in the topological insulator Bi₂Te₃.
Hajlaoui, M; Papalazarou, E; Mauchain, J; Lantz, G; Moisan, N; Boschetto, D; Jiang, Z; Miotkowski, I; Chen, Y P; Taleb-Ibrahimi, A; Perfetti, L; Marsi, M
2012-07-11
We discuss the ultrafast evolution of the surface electronic structure of the topological insulator Bi(2)Te(3) following a femtosecond laser excitation. Using time and angle-resolved photoelectron spectroscopy, we provide a direct real-time visualization of the transient carrier population of both the surface states and the bulk conduction band. We find that the thermalization of the surface states is initially determined by interband scattering from the bulk conduction band, lasting for about 0.5 ps; subsequently, few picoseconds are necessary for the Dirac cone nonequilibrium electrons to recover a Fermi-Dirac distribution, while their relaxation extends over more than 10 ps. The surface sensitivity of our measurements makes it possible to estimate the range of the bulk-surface interband scattering channel, indicating that the process is effective over a distance of 5 nm or less. This establishes a correlation between the nanoscale thickness of the bulk charge reservoir and the evolution of the ultrafast carrier dynamics in the surface Dirac cone.
Direct measurement of sub-Debye-length attraction between oppositely charged surfaces.
Kampf, Nir; Ben-Yaakov, Dan; Andelman, David; Safran, S A; Klein, Jacob
2009-09-11
Using a surface force balance with fast video analysis, we have measured directly the attractive forces between oppositely charged solid surfaces (charge densities sigma(+), sigma(-)) across water over the entire range of interaction, in particular, at surface separations D below the Debye screening length lambda(S). At very low salt concentration we find a long-ranged attraction between the surfaces (onset ca. 100 nm), whose variation at D
Times and locations of explosions; U.S. Geological Survey 1962 field season
Roller, John C.
1962-01-01
The U.S. Geological Survey detonated 86 large charges of chemical explosives in the western United States from 6 June to 9 August 1962, in a study of crustal structure in the western United States. This Technical Letter consists of two tables containing information about these explosions. Table I gives a brief geographical description of the shotpoints, and Table II gives the date, time, location, charge size, surface elevation, and some general information about the shots. In the Remarks column (Table II), the configuration and depth of most of the charges are given. This part of the table is not complete, as some of this information has not yet been compiled. Three types of explosives were used in the program. These were: Nitramon WW, a carbo-nitrate blasting agent; Composition B, a mixture of RDX and TNT; and Tovex-Gel, a non-nitroglycerin blasting slurry. The loading, firing, and surveying was done by United ElectroDynamics, Inc., of Pasadena, California. The timing was done by the U.S. Geological Survey.
Systematics of nuclear ground state properties in 78-100Sr by laser spectroscopy
NASA Astrophysics Data System (ADS)
Buchinger, F.; Ramsay, E. B.; Arnold, E.; Neu, W.; Neugart, R.; Wendt, K.; Silverans, R. E.; Lievens, P.; Vermeeren, L.; Berdichevsky, D.; Fleming, R.; Sprung, D. W. L.; Ulm, G.
1990-06-01
Hyperfine structures and isotope shifts of strontium isotopes with A=78 to A=98 and A=100 were measured by collinear fast beam laser spectroscopy. Nuclear spins, moments and changes in mean square charge radii are extracted from the data. The spins and moments of most of the odd isotopes are explained in the framework of the single particle model. The changes in mean square charge radii are compared with predictions of the droplet model and of Hartree-Fock-plus-BCS calculations. For the isotopes in the transitional regions below and above the N=50 shell closure, the inclusion of quadrupole zero point motion in the Droplet model describes part of the observed shell effect. An additional change in the surface region of the charge distribution at spherical shape is suggested by the microscopic model. Furthermore, we propose that the isotopes 78Sr and 80Sr may show an unusual shape-sharing structure, with different mean deformations in the ground and 2+1 excited states.
Double matrix effect in Low Energy Ion Scattering from La surfaces
NASA Astrophysics Data System (ADS)
Zameshin, Andrey A.; Yakshin, Andrey E.; Sturm, Jacobus M.; Brongerma, Hidde H.; Bijkerk, Fred
2018-05-01
Low Energy Ion Scattering (LEIS) has been performed on several lanthanum-based surfaces. Strong subsurface matrix effects - dependence of surface scattered He+ ion yield on the composition of subsurface layer - have been observed. The ion yield of He+ scattered by La differed by a factor of up to 2.5 for different surfaces, while only the La peak was visible in the spectra. To study these effects and enable surface quantification, He+ ion yields have been measured in a range of incident He+ energies from 1000 to 7500 eV for LaB6, La2O3, oxidized La and pure La surfaces. The investigation showed that as many as two simultaneous matrix effects are present, each one driven by a separate charge exchange mechanism. The first one is a resonant neutralization from the conduction band of La to an excited state of the He+ ion. It depends on the work function of the surface, which is lowered significantly when La interacts with O or B. The second mechanism is quasiresonant charge transfer between bound La levels and He 1s, which creates characteristic oscillations in the energy dependence of ion yields. The exact structure of the oscillations depends on small changes in binding energies of interacting La levels. This is the first time quasiresonant charge transfer is proven to be present in La. It is likely that La 5p orbitals participate in this resonance, which can be the first clear observation of a resonance between p and s orbitals in LEIS. This type of resonance was previously believed to be absent because of strong damping. We also demonstrated that despite the complex matrix effect precise measurements over a wide energy range allow quantification of the atomic composition of La-based surfaces.
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy
Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong
2016-01-01
Local surface charge density of lipid membranes influences membrane–protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values. PMID:27561322
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy
NASA Astrophysics Data System (ADS)
Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong
2016-08-01
Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy.
Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong
2016-08-26
Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.
Surface charges for gravity and electromagnetism in the first order formalism
NASA Astrophysics Data System (ADS)
Frodden, Ernesto; Hidalgo, Diego
2018-02-01
A new derivation of surface charges for 3 + 1 gravity coupled to electromagnetism is obtained. Gravity theory is written in the tetrad-connection variables. The general derivation starts from the Lagrangian, and uses the covariant symplectic formalism in the language of forms. For gauge theories, surface charges disentangle physical from gauge symmetries through the use of Noether identities and the exactness symmetry condition. The surface charges are quasilocal, explicitly coordinate independent, gauge invariant and background independent. For a black hole family solution, the surface charge conservation implies the first law of black hole mechanics. As a check, we show the first law for an electrically charged, rotating black hole with an asymptotically constant curvature (the Kerr–Newman (anti-)de Sitter family). The charges, including the would-be mass term appearing in the first law, are quasilocal. No reference to the asymptotic structure of the spacetime nor the boundary conditions is required and therefore topological terms do not play a rôle. Finally, surface charge formulae for Lovelock gravity coupled to electromagnetism are exhibited, generalizing the one derived in a recent work by Barnich et al Proc. Workshop ‘ About Various Kinds of Interactions’ in honour of Philippe Spindel (4–5 June 2015, Mons, Belgium) C15-06-04 (2016 (arXiv:1611.01777 [gr-qc])). The two different symplectic methods to define surface charges are compared and shown equivalent.
NASA Astrophysics Data System (ADS)
Bryce, Richard A.; Vincent, Mark A.; Malcolm, Nathaniel O. J.; Hillier, Ian H.; Burton, Neil A.
1998-08-01
A new hybrid quantum mechanical/molecular mechanical model of solvation is developed and used to describe the structure and dynamics of small fluoride/water clusters, using an ab initio wave function to model the ion and a fluctuating charge potential to model the waters. Appropriate parameters for the water-water and fluoride-water interactions are derived, with the fluoride anion being described by density functional theory and a large Gaussian basis. The role of solvent polarization in determining the structure and energetics of F(H2O)4- clusters is investigated, predicting a slightly greater stability of the interior compared to the surface structure, in agreement with ab initio studies. An extended Lagrangian treatment of the polarizable water, in which the water atomic charges fluctuate dynamically, is used to study the dynamics of F(H2O)4- cluster. A simulation using a fixed solvent charge distribution indicates principally interior, solvated states for the cluster. However, a preponderance of trisolvated configurations is observed using the polarizable model at 300 K, which involves only three direct fluoride-water hydrogen bonds. Ab initio calculations confirm this trisolvated species as a thermally accessible state at room temperature, in addition to the tetrasolvated interior and surface structures. Extension of this polarizable water model to fluoride clusters with five and six waters gave less satisfactory agreement with experimental energies and with ab initio geometries. However, our results do suggest that a quantitative model of solvent polarization is fundamental for an accurate understanding of the properties of anionic water clusters.
NASA Astrophysics Data System (ADS)
Arbañil, José D. V.; Zanchin, Vilson T.
2018-05-01
We study the static equilibrium configurations of uncharged and charged spheres composed by a relativistic polytropic fluid, and we compare with those of spheres composed by a nonrelativistic polytropic fluid, the later case being already studied in a previous work [J. D. Arbañil, P. S. Lemos, and V. T. Zanchin, Phys. Rev. D 88, 084023 (2013), 10.1103/PhysRevD.88.084023]. An equation of state connecting the pressure p and the energy density ρ is assumed. In the nonrelativistic fluid case, the connection is through a nonrelativistic polytropic equation of state, p =ω ργ , with ω and γ being respectively the polytropic constant and the polytropic exponent. In the relativistic fluid case, the connection is through a relativistic polytropic equation of state, p =ω δγ, with δ =ρ -p /(γ -1 ), and δ being the rest-mass density of the fluid. For the electric charge distribution, we assume that the charge density ρe is proportional to the energy density ρ , ρe=α ρ , with α being a constant such that 0 ≤|α |≤1 . The study is developed by integrating numerically the hydrostatic equilibrium equation. Some properties of the charged spheres such as the gravitational mass, the total electric charge, the radius, the surface redshift, and the speed of sound are analyzed by varying the central rest-mass density, the charge fraction, and the polytropic exponent. In addition, some limits that arise in general relativity, such as the Chandrasekhar limit, the Oppenheimer-Volkoff limit, the Buchdahl bound, and the Buchdahl-Andréasson bound are studied. It is confirmed that charged relativistic polytropic spheres with γ →∞ and α →1 saturate the Buchdahl-Andréasson bound, thus indicating that it reaches the quasiblack hole configuration. We show by means of numerical analysis that, as expected, the major differences between the two cases appear in the high energy density region.
Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface
NASA Astrophysics Data System (ADS)
Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.; Rathje, Christopher; Hornig, Graham J.; Sharum, Haille M.; Hoffman, James R.; Freeman, Mark R.; Hegmann, Frank A.
2017-06-01
Ultrafast control of current on the atomic scale is essential for future innovations in nanoelectronics. Extremely localized transient electric fields on the nanoscale can be achieved by coupling picosecond duration terahertz pulses to metallic nanostructures. Here, we demonstrate terahertz scanning tunnelling microscopy (THz-STM) in ultrahigh vacuum as a new platform for exploring ultrafast non-equilibrium tunnelling dynamics with atomic precision. Extreme terahertz-pulse-driven tunnel currents up to 107 times larger than steady-state currents in conventional STM are used to image individual atoms on a silicon surface with 0.3 nm spatial resolution. At terahertz frequencies, the metallic-like Si(111)-(7 × 7) surface is unable to screen the electric field from the bulk, resulting in a terahertz tunnel conductance that is fundamentally different than that of the steady state. Ultrafast terahertz-induced band bending and non-equilibrium charging of surface states opens new conduction pathways to the bulk, enabling extreme transient tunnel currents to flow between the tip and sample.
Fullerene ion chemistry: a journey of discovery and achievement
Böhme, Diethard K.
2016-01-01
An account is provided of the extraordinary features of buckminster fullerene cations and their chemistry that we discovered in our Ion Chemistry Laboratory at York University (Canada) during a ‘golden’ period of research in the early 1990s, just after C60 powder became available. We identified new chemical ways of C60 ionization and tracked novel chemistry of C60n+ as a function of charge state (n=1–3) with some 50 different reagent molecules. We found that multiple charges enhance reaction rates and diversify reaction products and mechanisms. Strong electrostatic interactions with reagent molecules were seen to reduce barriers to carbon surface bonding and charge-separation reactions, while intramolecular Coulomb repulsion appeared to localize charge on the surface or the substituent and so influence higher order chemistry, including ‘spindle’, ‘star’, ‘fuzzy ball’, ‘ball-and-chain’ and dimer ion formation. We introduced the notion of ‘apparent’ gas-phase acidity with measurements of proton-transfer reactions of multiply charged fullerene cations. We also explored the attachment of atomic metal cations to C60 and their subsequent reactions. All these findings were applied to the possible chemistry of fullerene cations in the interstellar medium with a focus on multiply charged fullerene ion formation and the intervention of fullerene cations in fullerene derivatization and molecular synthesis, with a view to their possible future detection. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’. PMID:27501972
Direct Observation of Charge Transfer at a MgO(111) Surface
NASA Astrophysics Data System (ADS)
Subramanian, A.; Marks, L. D.; Warschkow, O.; Ellis, D. E.
2004-01-01
Transmission electron diffraction (TED) combined with direct methods have been used to study the √(3)×√(3)R30° reconstruction on the polar (111) surface of MgO and refine the valence charge distribution. The surface is nonstoichiometric and is terminated by a single magnesium atom. A charge-compensating electron hole is localized in the next oxygen layer and there is a nominal charge transfer from the oxygen atoms to the top magnesium atom. The partial charges that we obtain for the surface atoms are in reasonable agreement with empirical bond-valence estimations.
NASA Astrophysics Data System (ADS)
Khamari, Bramhachari; Kashikar, Ravi; Nanda, B. R. K.
2018-01-01
Density functional calculations and model tight-binding Hamiltonian studies are carried out to examine the bulk and surface electronic structure of the largely unexplored perovskite family of A BiO3 , where A is a group I-II element. From the study, we reveal the existence of two TI states, one in valence band (V-TI) and the other in conduction band (C-TI), as the universal feature of A BiO3 . The V-TI and C-TI are, respectively, born out of bonding and antibonding states caused by Bi-{s ,p } -O-{p } coordinated covalent interactions. Further, we outline a classification scheme in this family where one class follows spin orbit coupling and the other follows the second neighbor Bi-Bi hybridization to induce s-p band inversion for the realization of C-TI states. Below a certain critical thickness of the film, which varies with A , TI states of top and bottom surfaces couple to destroy the Dirac type linear dispersion and consequently to open narrow surface energy gaps.
The surface charge of trypanosomatids.
Souto-Padrón, Thaïs
2002-12-01
The surface charge of trypanosomatids was evaluated by means of the binding of cationic particles, as visualized by electron microscopy and by direct measurements of the electrophoretic mobility of cells. The results obtained indicate that most of the trypanosomatids exhibit a negatively charged surface whose value is species specific and varies according to the developmental stages. Sialic acids associated with glycoproteins, glycolipids and phosphate groups are the major components responsible for the net negative surface charge of the trypanosomatids.
Miniaturized ultrafine particle sizer and monitor
NASA Technical Reports Server (NTRS)
Qi, Chaolong (Inventor); Chen, Da-Ren (Inventor)
2011-01-01
An apparatus for measuring particle size distribution includes a charging device and a precipitator. The charging device includes a corona that generates charged ions in response to a first applied voltage, and a charger body that generates a low energy electrical field in response to a second applied voltage in order to channel the charged ions out of the charging device. The corona tip and the charger body are arranged relative to each other to direct a flow of particles through the low energy electrical field in a direction parallel to a direction in which the charged ions are channeled out of the charging device. The precipitator receives the plurality of particles from the charging device, and includes a disk having a top surface and an opposite bottom surface, wherein a predetermined voltage is applied to the top surface and the bottom surface to precipitate the plurality of particles.
Della-Longa, Stefano; Arcovito, Alessandro
2015-01-01
Folate receptor α (FRα) is a cell surface, glycophosphatidylinositol-anchored protein which has focussed attention as a therapeutic target and as a marker for the diagnosis of cancer. It has a high affinity for the dietary supplemented folic acid (FOL), carrying out endocytic transport across the cell membrane and delivering the folate at the acidic pH of the endosome. Starting from the recently reported X-ray structure at pH 7, 100 ns classical molecular dynamics simulations have been carried out on the FRα-FOL complex; moreover, the ligand dissociation process has been studied by metadynamics, a recently reported method for the analysis of free-energy surfaces (FES), providing clues on the intermediate states and their energy terms. Multiple dissociation runs were considered to enhance the configurational sampling; a final clustering of conformations within the averaged FES provides the representative structures of several intermediate states, within an overall barrier for ligand escape of about 75 kJ/mol. Escaping of FOL to solvent occurs while only minor changes affect the FRα conformation of the binding pocket. During dissociation, the FOL molecule translates and rotates around a turning point located in proximity of the receptor surface. FOL at this transition state assumes an "L" shaped conformation, with the pteridin ring oriented to optimize stacking within W102 and W140 residues, and the negatively charged glutamate tail, outside the receptor, interacting with the positively charged R103 and R106 residues, that contrary to the bound state, are solvent exposed. We show that metadynamics method can provide useful insights at the atomistic level on the effects of point-mutations affecting functionality, thus being a very promising tool for any study related to folate-targeted drug delivery or cancer therapies involving folate uptake.
NASA Astrophysics Data System (ADS)
Della-Longa, Stefano; Arcovito, Alessandro
2015-01-01
Folate receptor α (FRα) is a cell surface, glycophosphatidylinositol-anchored protein which has focussed attention as a therapeutic target and as a marker for the diagnosis of cancer. It has a high affinity for the dietary supplemented folic acid (FOL), carrying out endocytic transport across the cell membrane and delivering the folate at the acidic pH of the endosome. Starting from the recently reported X-ray structure at pH 7, 100 ns classical molecular dynamics simulations have been carried out on the FRα-FOL complex; moreover, the ligand dissociation process has been studied by metadynamics, a recently reported method for the analysis of free-energy surfaces (FES), providing clues on the intermediate states and their energy terms. Multiple dissociation runs were considered to enhance the configurational sampling; a final clustering of conformations within the averaged FES provides the representative structures of several intermediate states, within an overall barrier for ligand escape of about 75 kJ/mol. Escaping of FOL to solvent occurs while only minor changes affect the FRα conformation of the binding pocket. During dissociation, the FOL molecule translates and rotates around a turning point located in proximity of the receptor surface. FOL at this transition state assumes an "L" shaped conformation, with the pteridin ring oriented to optimize stacking within W102 and W140 residues, and the negatively charged glutamate tail, outside the receptor, interacting with the positively charged R103 and R106 residues, that contrary to the bound state, are solvent exposed. We show that metadynamics method can provide useful insights at the atomistic level on the effects of point-mutations affecting functionality, thus being a very promising tool for any study related to folate-targeted drug delivery or cancer therapies involving folate uptake.