Science.gov

Sample records for charpy impact tests

  1. Quality assurance of absorbed energy in Charpy impact test

    NASA Astrophysics Data System (ADS)

    Rocha, C. L. F.; Fabricio, D. A. K.; Costa, V. M.; Reguly, A.

    2016-07-01

    In order to ensure the quality assurance and comply with standard requirements, an intralaboratory study has been performed for impact Charpy tests, involving two operators. The results based on ANOVA (Analysis of Variance) and Normalized Error statistical techniques pointed out that the execution of the tests is appropriate, because the implementation of quality assurance methods showed acceptable results.

  2. Microstructural characterization of Charpy-impact-tested nanostructured bainite

    SciTech Connect

    Tsai, Y.T.; Chang, H.T.; Huang, B.M.; Huang, C.Y.; Yang, J.R.

    2015-09-15

    In this work, a possible cause of the extraordinary low impact toughness of nanostructured bainite has been investigated. The microstructure of nanostructured bainite consisted chiefly of carbide-free bainitic ferrite with retained austenite films. X-ray diffractometry (XRD) measurement indicated that no retained austenite existed in the fractured surface of the Charpy-impact-tested specimens. Fractographs showed that cracks propagated mainly along bainitic ferrite platelet boundaries. The change in microstructure after impact loading was verified by transmission electron microscopy (TEM) observations, confirming that retained austenite was completely transformed to strain-induced martensite during the Charpy impact test. However, the zone affected by strained-induced martensite was found to be extremely shallow, only to a depth of several micrometers from the fracture surface. It is appropriately concluded that upon impact, as the crack forms and propagates, strain-induced martensitic transformation immediately occurs ahead of the advancing crack tip. The successive martensitic transformation profoundly facilitates the crack propagation, resulting in the extremely low impact toughness of nanostructured bainite. Retained austenite, in contrast to its well-known beneficial role, has a deteriorating effect on toughness during the course of Charpy impact. - Highlights: • The microstructure of nanostructured bainite consisted of nano-sized bainitic ferrite subunits with retained austenite films. • Special sample preparations for SEM, XRD and TEM were made, and the strain-affected structures have been explored. • Retained austenite films were found to transform into martensite after impact loading, as evidenced by XRD and TEM results. • The zone of strain-induced martensite was found to extend to only several micrometers from the fracture surface. • The poor Charpy impact toughness is associated with the fracture of martensite at a high strain rate during

  3. Fracture Behavior and Delamination Toughening of Molybdenum in Charpy Impact Tests

    NASA Astrophysics Data System (ADS)

    Babinsky, K.; Primig, S.; Knabl, W.; Lorich, A.; Stickler, R.; Clemens, H.

    2016-09-01

    This study combines advanced characterization techniques with conventional Charpy impact tests to relate the mechanical properties to the microstructure of technically pure molybdenum, especially regarding its toughness. V-notched samples with different orientations were prepared from a rolled molybdenum plate in stress-relieved and recrystallized condition. The ductile-to-brittle transition-temperature was analyzed in terms of the delamination behavior influenced by the microstructure. A pronounced increase of toughness was found for specific oriented samples, which can be explained by macroscopic delamination. Elongated grains led to enhanced delamination in Charpy impact tests with variations for different orientations. In general, delamination occurs as a result of brittle fracture; however, an increase in toughness in the Charpy impact test can be provoked. This mechanism is called thin sheet toughening or delamination toughening. Electron backscatter diffraction measurements were performed to get a deeper knowledge about crack propagation and delamination behavior in the rolled plate. Recrystallization shifts the transition region to significantly higher temperatures, which is explained by the globular grain shape as well as grain boundary segregation. The occurrence of delamination is discussed, taking texture, grain shape and segregation effects into account.

  4. The production of calibration specimens for impact testing of subsize Charpy specimens

    SciTech Connect

    Alexander, D.J.; Corwin, W.R.; Owings, T.D.

    1994-09-01

    Calibration specimens have been manufactured for checking the performance of a pendulum impact testing machine that has been configured for testing subsize specimens, both half-size (5.0 {times} 5.0 {times} 25.4 mm) and third-size (3.33 {times} 3.33 {times} 25.4 mm). Specimens were fabricated from quenched-and-tempered 4340 steel heat treated to produce different microstructures that would result in either high or low absorbed energy levels on testing. A large group of both half- and third-size specimens were tested at {minus}40{degrees}C. The results of the tests were analyzed for average value and standard deviation, and these values were used to establish calibration limits for the Charpy impact machine when testing subsize specimens. These average values plus or minus two standard deviations were set as the acceptable limits for the average of five tests for calibration of the impact testing machine.

  5. On the (in)adequacy of the Charpy impact test to monitor irradiation effects of ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Chaouadi, R.

    2007-02-01

    Irradiation embrittlement studies rely very often on Charpy impact data, in particular the ductile-to-brittle transition temperature (DBTT). However, while the DBTT-shift is equivalent to the increase of the fracture toughness transition temperature of ferritic steels, it is not the case for ferritic/martensitic steels. The aim of this study is to critically assess experimental data obtained on a 9%Cr-ferritic/martensitic steel, Eurofer-97, to better understand the underlying mechanisms involved during the fracture process. More specifically, a dedicated analysis using the load diagram approach allows to unambiguously reveal the actual effects of irradiation on physically rather than empirically based parameters. A comparison is made between a ferritic and ferritic/martensitic steel to better identify the possible similarities and differences. Tensile, Charpy impact and fracture toughness tests data are examined in a global approach to assess the actual rather than apparent irradiation effects. The adequacy or inadequacy of the Charpy impact test to monitor irradiation effects is extensively discussed.

  6. On impact testing of subsize Charpy V-notch type specimens

    SciTech Connect

    Mikhail, A.S.; Nanstad, R.K.

    1994-12-31

    The potential for using subsize specimens to determine the actual properties of reactor pressure vessel steels is receiving increasing attention for improved vessel condition monitoring that could be beneficial for light-water reactor plant-life extension. This potential is made conditional upon, on the one hand, by the possibility of cutting samples of small volume from the internal surface of the pressure vessel for determination of actual properties of the operating pressure vessel. The plant-life extension will require supplemental surveillance data that cannot be provided by the existing surveillance programs. Testing of subsize specimens manufactured from broken halves of previously tested surveillance Charpy V-notch (CVN) specimens offers an attractive means of extending existing surveillance programs. Using subsize CVN type specimens requires the establishment of a specimen geometry that is adequate to obtain a ductile-to-brittle transition curve similar to that obtained from full-size specimens. This requires the development of a correlation of transition temperature and upper-shelf toughness between subsize and full-size specimens. The present study was conducted under the Heavy-Section Steel Irradiation Program. Different published approaches to the use of subsize specimens were analyzed and five different geometries of subsize specimens were selected for testing and evaluation. The specimens were made from several types of pressure vessel steels with a wide range of yield strengths, transition temperatures, and upper-shelf energies (USEs). Effects of specimen dimensions, including depth, angle, and radius of notch have been studied. The correlation of transition temperature determined from different types of subsize specimens and the full-size specimen is presented. A new procedure for transforming data from subsize specimens was developed and is presented.

  7. Charpy impact test results for low activation ferritic alloys irradiated to 30 dpa

    SciTech Connect

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1996-04-01

    Miniature specimens of six low activation ferritic alloys have been impact field tested following irradiation at 370{degrees}C to 30 dpa. Comparison of the results with those of control specimens and specimens irradiated to 10 dpa indicates that degradation in the impact behavior appears to have saturated by {approx}10 dpa in at least four of these alloys. The 7.5Cr-2W alloy referred to as GA3X appears most promising for further consideration as a candidate structural material in fusion reactor applications, although the 9Cr-1V alloy may also warrant further investigation.

  8. Low blow Charpy impact of silicon carbides

    NASA Technical Reports Server (NTRS)

    Abe, H.; Chandan, H. C.; Bradt, R. C.

    1978-01-01

    The room-temperature impact resistance of several commercial silicon carbides was examined using an instrumented pendulum-type machine and Charpy-type specimens. Energy balance compliance methods and fracture toughness approaches, both applicable to other ceramics, were used for analysis. The results illustrate the importance of separating the machine and the specimen energy contributions and confirm the equivalence of KIc and KId. The material's impact energy was simply the specimen's stored elastic strain energy at fracture.

  9. Effect of Local Crystallographic Texture on the Fissure Formation During Charpy Impact Testing of Low-Carbon Steel

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit; Patra, Sudipta; Chatterjee, Arya; Chakrabarti, Debalay

    2016-06-01

    The severity of the formation of fissures (also known as splitting or delamination) on the fracture surface of Charpy impact-tested samples of a low-carbon steel has been found to increase with the decrease in finish rolling temperature [1093 K to 923 K (820 °C to 650 °C)]. Combined scanning electron microscopy and electron back-scattered diffraction study revealed that crystallographic texture was the prime factor responsible for the fissure formation. Through-thickness texture band composed of cube [Normal Direction (ND)║<001>] and gamma [ND║<111>] orientations developed during the inter-critical rolling treatment. Strain incompatibility between these two texture bands causes fissure cracking on the main fracture plane. A new approach based on the angle between {001} planes of neighboring crystals has been employed in order to estimate the `effective grain size,' which is used to determine the cleavage fracture stress on different planes of a sample. The severity of fissure formation was found to be directly related to the difference in cleavage fracture stress between the `main fracture plane' and `fissure plane.' Clustering of ferrite grains having cube texture promoted the fissure crack propagation along the transverse `fissure plane,' by increasing the `effective grain size' and decreasing the cleavage fracture stress on that plane.

  10. Charpy Impact Energy and Microindentation Hardness of 60-NITINOL

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2012-01-01

    60-NITINOL (60 wt.% Ni 40 wt.% Ti) is being studied as a material for advanced aerospace components. The Charpy impact energy and microindentation hardness has been studied for this material, fabricated by vacuum induction skull melting (casting) and by hot isostatic pressing. Test specimens were prepared in various hardened and annealed heat treatment conditions. The average impact energy ranged from 0.33 to 0.49J for the hardened specimens while the annealed specimens had impact energies ranging from 0.89 to 1.18J. The average hardness values of the hardened specimens ranged from 590 to 676 HV while that of the annealed specimens ranged from 298 to 366 HV, suggesting an inverse relationship between impact energy and hardness. These results are expected to provide guidance in the selection of heat treatment processes for the design of mechanical components.

  11. Charpy impact test results of four low activation ferritic alloys irradiated at 370{degrees}C to 15 DPA

    SciTech Connect

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1996-10-01

    Miniature CVN specimens of four low activation ferritic alloys have been impact tested following irradiation at 370{degrees}C to 15 dpa. Comparison of the results with those of control specimens indicates that degradation in the impact behavior occurs in each of these four alloys. The 9Cr-2W alloy referred to as GA3X and the similar alloy F82H with 7.8Cr-2W appear most promising for further consideration as candidate structural materials in fusion energy system applications. These two alloys exhibit a small DBTT shift to higher temperatures but show increased absorbed energy on the upper shelf.

  12. Further Charpy impact test results of low activation ferritic alloys, irradiated at 430{degrees}C to 67 dpa

    SciTech Connect

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1997-04-01

    Miniature CVN specimens of four ferritic alloys, GA3X, F82H, GA4X and HT9, have been impact tested following irradiation at 430{degrees}C to 67 dpa. Comparison of the results with those of the previously tested lower dose irradiation condition indicates that the GA3X and F82H alloys, two primary candidate low activation alloys, exhibit virtually identical behavior following irradiation at 430{degrees}C to {approximately}67 dpa and at 370{degrees}C to {approximately}15 dpa. Very little shift is observed in either DBTT or USE relative to the unirradiated condition. The shifts in DBTT and USE observed in both GA4X and HT9 were smaller after irradiation at 430{degrees}C to {approximately}67 dpa than after irradiation at 370{degrees}C to {approximately}15 dpa.

  13. Preliminary results from Charpy impact testing of irradiated JPDR weld metal and commissioning of a facility for machining of irradiated materials

    SciTech Connect

    Iskander, S.K.; Hutton, J.T.; Creech, L.E.; Nanstad, R.K.; Manneschmidt, E.T.; Rosseel, T.M.; Bishop, P.S.

    1999-09-01

    Forty two full-size Charpy specimens were machined from eight trepans that originated from the Japan Power Demonstration Reactor (JPDR). They were also successfully tested and the preliminary results are presented in this report. The trends appear to be reasonable with respect to the location of the specimens with regards to whether they originated from the beltline or the core regions of the vessel, and also whether they were from the inside or outside regions of the vessel wall. A short synopsis regarding commissioning of the facility to machine irradiated materials is also provided.

  14. Tensile and charpy impact properties of irradiated reduced-activation ferritic steels

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1996-10-01

    Tensile tests were conducted on eight reduced-activation Cr-W steels after irradiation to 15-17 and 26-29 dpa, and Charpy impact tests were conducted on the steels irradiated to 26-29 dpa. Irradiation was in the Fast Flux Test Facility at 365{degrees}C on steels containing 2.25-12% Cr, varying amounts of W, V, and Ta, and 0.1%C. Previously, tensile specimens were irradiated to 6-8 dpa and Charpy specimens to 6-8, 15-17, and 20-24 dpa. Tensile and Charpy specimens were also thermally aged to 20000 h at 365{degrees}C. Thermal aging had little effect on the tensile behavior or the ductile-brittle transition temperature (DBTT), but several steels showed a slight increase in the upper-shelf energy (USE). After {approx}7 dpa, the strength of the steels increased and then remained relatively unchanged through 26-29 dpa (i.e., the strength saturated with fluence). Post-irradiation Charpy impact tests after 26-29 dpa showed that the loss of impact toughness, as measured by an increase in DBTT and a decrease in the USE, remained relatively unchanged from the values after 20-24 dpa, which had been relatively unchanged from the earlier irradiations. As before, the two 9Cr steels were the most irradiation resistant.

  15. Validation Study of Unnotched Charpy and Taylor-Anvil Impact Experiments using Kayenta

    SciTech Connect

    Kamojjala, Krishna; Lacy, Jeffrey; Chu, Henry S.; Brannon, Rebecca

    2015-03-01

    Validation of a single computational model with multiple available strain-to-failure fracture theories is presented through experimental tests and numerical simulations of the standardized unnotched Charpy and Taylor-anvil impact tests, both run using the same material model (Kayenta). Unnotched Charpy tests are performed on rolled homogeneous armor steel. The fracture patterns using Kayenta’s various failure options that include aleatory uncertainty and scale effects are compared against the experiments. Other quantities of interest include the average value of the absorbed energy and bend angle of the specimen. Taylor-anvil impact tests are performed on Ti6Al4V titanium alloy. The impact speeds of the specimen are 321 m/s and 393 m/s. The goal of the numerical work is to reproduce the damage patterns observed in the laboratory. For the numerical study, the Johnson-Cook failure model is used as the ductile fracture criterion, and aleatory uncertainty is applied to rate-dependence parameters to explore its effect on the fracture patterns.

  16. Charpy impact toughness of martensitic steels irradiated in FFTF: Effect of heat treatment

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.; Alexander, D. J.

    Charpy tests were made on plates of 9Cr-1MoVNb and 12Cr-1MoVW steels given four different normalizing-and-tempering treatments. One-third-size Charpy specimens from each steel were irradiated to 7.4 - 8 (times) 10(sup 26) n/m(sup 2) (about 34 - 37 dpa) at 420 C in the Materials Open Test Assembly of the Fast Flux Test Facility. Specimens were also thermally aged to 20000 h at 400 C to determine the effect of aging during irradiation. Previous work on these steels irradiated to 4 - 5 dpa at 365 C in MOTA were reexamined in light of the new results. The tests indicated that prior austenite grain size, which was varied by different normalizing treatments, had an effect on impact behavior of the 9Cr-1MoVNb but not on the 12Cr-1MoVW. Tempering treatment had relatively little effect on the shift in DBTT for both steels. Conclusions are presented on how heat treatment can be used to optimize properties.

  17. Results of charpy V-notch impact testing of structural steel specimens irradiated at {approximately}30{degrees}C to 1 x 10{sup 16} neutrons/cm{sup 2} in a commercial reactor cavity

    SciTech Connect

    Iskander, S.K.; Stoller, R.E.

    1997-04-01

    A capsule containing Charpy V-notch (CVN) and mini-tensile specimens was irradiated at {approximately} 30{degrees}C ({approximately} 85{degrees}F) in the cavity of a commercial nuclear power plant to a fluence of 1 x 10{sup 16} neutrons/cm{sup 2} (> 1MeV). The capsule included six CVN impact specimens of archival High Flux Isotope Reactor A212 grade B ferritic steel and five CVN impact specimens of a well-studied A36 structural steel. This irradiation was part of the ongoing study of neutron-induced damage effects at the low temperature and flux experienced by reactor supports. The plant operators shut down the plant before the planned exposure was reached. The exposure of these specimens produced no significant irradiation-induced embrittlement. Of interest were the data on unirradiated specimens in the L-T orientation machined from a single plate of A36 structural steel, which is the same specification for the structural steel used in some reactor supports. The average CVN energy of five unirradiated specimens obtained from one region of the plate and tested at room temperature was {approximately} 99 J, while the energy of 11 unirradiated specimens from other locations of the same plate was 45 J, a difference of {approximately} 220%. The CVN impact energies for all 18 specimens ranged from a low of 32 J to a high of 111 J. Moreover, it appears that the University of Kansas CVN impact energy data of the unirradiated specimens at the 100-J level are shifted toward higher temperatures by about 20 K. The results were an example of the extent of scatter possible in CVN impact testing. Generic values for the CVN impact energy of A36 should be used with caution in critical applications.

  18. The evaluation of tempered martensite embrittlement in 4130 steel by instrumented charpy V-notch testing

    NASA Astrophysics Data System (ADS)

    Zia-Ebrahimi, F.; Krauss, G.

    1983-06-01

    Tempered martensite embrittlement (TME) was studied in vacuum-melted 4130 steel with either 0.002 or 0.02 wt pct P. TME was observed as a severe decrease in Charpy V-notch impact energy, from 46 ft-lb. at 200 °C to 35 ft-lb. at 300 °C in the low P alloy. The impact energy of the high P alloy was consistently lower than that of the low P alloy in all tempered conditions. Fracture was transgranular for all specimens; therefore, segregation of P to the prior austenitic grain boundaries was not a factor in the o°Currence of TME. Analysis of load-time curves obtained by instrumented Charpy testing revealed that the embrittlement is associated with a drop in the pre-maximum-load and post-unstable-fracture energies. In specimens tempered at 400 °C the deleterious effect of phosphorus on impact energy became pronounced, a result more consistent with classical temper embrittlement rather than TME. A constant decrease in pre-maximum-load energy due to phosphorus content was observed. The pre-maximum-load energy decreases with increasing tempering temperature in the range of 200 °C to 400 °C, a result explained by the change in work hardening rate. Carbon extraction replicas of polished and etched as-quenched specimens revealed the presence of Fe2MoC and/or Fe3C carbides retained after austenitizing. Ductile crack extension close to the notch root was related to the formation of fine micro voids at the retained carbides.

  19. A reassessment of the effects of helium on Charpy impact properties of ferritic/martensitic steels

    SciTech Connect

    Gelles, D.S.; Hamilton, M.L.; Hankin, G.L.

    1998-03-01

    To test the effect of helium on Charpy impact properties of ferritic/martensitic steels, two approaches are reviewed: quantification of results of tests performed on specimens irradiated in reactors with very different neutron spectra, and isotopic tailoring experiments. Data analysis can show that if the differences in reactor response are indeed due to helium effects, then irradiation in a fusion machine at 400 C to 100 dpa and 1000 appm He will result in a ductile to brittle transition temperature shift of over 500 C. However, the response as a function of dose and helium level is unlikely to be simply due to helium based on physical reasoning. Shear punch tests and microstructural examinations also support this conclusion based on irradiated samples of a series of alloys made by adding various isotopes of nickel in order to vary the production of helium during irradiation in HFIR. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys. However, helium itself, up to 75 appm at over 7 dpa appears to have little effect on the mechanical properties of the alloys. This behavior is instead understood to result from complex precipitation response. The database for effects of helium on embrittlement based on nickel additions is therefore probably misleading and experiments should be redesigned to avoid nickel precipitation.

  20. Unnotched Charpy Impact Energy Transition Behavior of Austempered Engineering Grade Ductile Iron Castings

    NASA Astrophysics Data System (ADS)

    Kisakurek, Sukru Ergin; Ozel, Ahmet

    2014-04-01

    Unnotched Charpy impact energy transition behavior of five different engineering grade ductile iron castings, as specified by EN 1563 Standards, were examined in as-cast, as well as in austempered states. ADIs were produced with the maximum impact energy values permissible for the grades. Austempering treatment detrimented the sub-zero impact properties of the ferritic castings, but considerably enhanced those of the pearlitic-ferritic irons. The impact energy transition behavior of the austempered states of all the grades examined were noted to be determined by the progressive transformation of the unavoidable carbon-unsaturated and untransformed regions of the austenite remaining in the matrix of the austempered ductile iron to martensite with decreasing temperature.

  1. Effect of Cadmium Plating Thickness on the Charpy Impact Energy of Hydrogen-Charged 4340 Steel

    NASA Astrophysics Data System (ADS)

    Es-Said, O. S.; Alcisto, J.; Guerra, J.; Jones, E.; Dominguez, A.; Hahn, M.; Ula, N.; Zeng, L.; Ramsey, B.; Mulazimoglu, H.; Li, Yong-Jun; Miller, M.; Alrashid, J.; Papakyriakou, M.; Kalnaus, S.; Lee, E. W.; Frazier, W. E.

    2016-09-01

    Hydrogen was intentionally introduced into ultra-high strength steel by cadmium plating. The purpose was to examine the effect of cadmium plate thickness and hence hydrogen on the impact energy of the steel. The AISI 4340 steel was austenitized at 1000 °C for 1 h, water quenched, and tempered at temperatures between 257 and 593 °C in order to achieve a range of targeted strength levels. The specimens were cadmium plated with 0.00508 mm (0.2 mils), 0.00762 mm (0.3 mils), and 0.0127 mm (0.5 mils). Results demonstrated that the uncharged specimens exhibited higher impact energy values when compared to the plated specimens at all tempering temperatures. The cadmium-plated specimens had very low Charpy impact values irrespective of their ultimate tensile strength values. The model of hydrogen transport by mobile dislocations to the fracture site appears to provide the most suitable explanation of the results.

  2. An improved correlation procedure for subsize and full-size Charpy impact specimen data

    SciTech Connect

    Sokolov, M.A.; Alexander, D.J.

    1997-03-01

    The possibility of using subsize specimens to monitor the properties of reactor pressure vessel steels is receiving increasing attention for light-water reactor plant life extension. This potential results from the possibility of cutting samples of small volume form the internal surface of the pressure vessel for determination of the actual properties of the operating pressure vessel. In addition, plant life extension will require supplemental data that cannot be provided by existing surveillance programs. Testing of subsize specimens manufactured from broken halves of previously tested surveillance Charpy specimens offers an attractive means of extending existing surveillance programs. Using subsize Charpy V-notch-type specimens requires the establishment of a specimen geometry that is adequate to obtain a ductile-to-brittle transition curve similar to that obtained from full-size specimens, and the development of correlations for transition temperature and upper-shelf energy (USE) level between subsize and full-size specimens. Five different geometries of subsize specimens were selected for testing and evaluation. The specimens were made from several types of pressure vessel steels with a wide range of yield strengths, transition temperatures, and USEs. The effects of specimen dimensions, including notch depth, angle, and radius, have been studied. The correlations of transition temperatures determined from different types of subsize specimens and the full-size specimens are presented. A new procedure for transforming data from subsize specimens is developed. The transformed data are in good agreement with data from full-size specimens for materials that have USE levels less than 200 J.

  3. Effects of Oxides on Tensile and Charpy Impact Properties and Fracture Toughness in Heat Affected Zones of Oxide-Containing API X80 Linepipe Steels

    NASA Astrophysics Data System (ADS)

    Sung, Hyo Kyung; Sohn, Seok Su; Shin, Sang Yong; Oh, Kyung Shik; Lee, Sunghak

    2014-06-01

    This study is concerned with effects of complex oxides on acicular ferrite (AF) formation, tensile and Charpy impact properties, and fracture toughness in heat affected zones (HAZs) of oxide-containing API X80 linepipe steels. Three steels were fabricated by adding Mg and O2 to form oxides, and various HAZ microstructures were obtained by conducting HAZ simulation tests under different heat inputs. The no. of oxides increased with increasing amount of Mg and O2, while the volume fraction of AF present in the steel HAZs increased with increasing the no. of oxides. The strengths of the HAZ specimens were generally higher than those of the base metals because of the formation of hard microstructures of bainitic ferrite and granular bainite. When the total Charpy absorbed energy was divided into the fracture initiation and propagation energies, the fracture initiation energy was maintained constant at about 75 J at room temperature, irrespective of volume fraction of AF. The fracture propagation energy rapidly increased from 75 to 150 J and saturated when the volume fraction of AF exceeded 30 pct. At 253 K (-20 °C), the total absorbed energy increased with increasing volume fraction of AF, as the cleavage fracture was changed to the ductile fracture when the volume fraction of AF exceeded 45 pct. Thus, 45 vol pct of AF at least was needed to improve the Charpy impact energy, which could be achieved by forming a no. of oxides. The fracture toughness increased with increasing the no. of oxides because of the increased volume fraction of AF formed around oxides. The fracture toughness did not show a visible correlation with the Charpy absorbed energy at room temperature, because toughness properties obtained from these two toughness testing methods had different significations in view of fracture mechanics.

  4. Impact Tests for Woods

    NASA Technical Reports Server (NTRS)

    1922-01-01

    Although it is well known that the strength of wood depends greatly upon the time the wood is under the load, little consideration has been given to this fact in testing materials for airplanes. Here, results are given of impact tests on clear, straight grained spruce. Transverse tests were conducted for comparison. Both Izod and Charpy impact tests were conducted. Results are given primarily in tabular and graphical form.

  5. Use of forces from instrumented Charpy V-notch testing to determine crack-arrest toughness

    SciTech Connect

    Iskander, S.K.; Nanstad, R.K.; Sokolov, M.A.; McCabe, D.E.; Hutton, J.T.

    1996-06-01

    The objective of this investigation is an estimation of the crack-arrest toughness, particularly of irradiated materials, from voltage versus time output of an instrumented setup during a test on a Charpy V-notch (CVN) specimen. This voltage versus time trace (which can be converted to force versus displacement) displays events during fracture of the specimen. Various stages of the fracture process can be identified on the trace, including an arrest point indicating arrest of brittle fracture. The force at arrest, F{sub a}, versus test temperature, T, relationship is examined to explore possible relationships to other experimental measures of crack-arrest toughness such as the drop-weight nil-ductility temperature (NDT), or crack-arrest toughness, K{sub a}. For a wide range of weld and plate materials, the temperature at which F{sub a} = 2.45 kN correlates with NDT with a standard deviation, sigma, of about 11 K. Excluding the so-called low upper-shelf energy (USE) welds from the analysis resulted in F{sub a} = 4.12 kN and {sigma} = 6.6 K. The estimates of the correlation of the temperature for F{sub a} = 7.4 kN with the temperature at 100-MPa{radical}m level for a mean American Society of Mechanical Engineers (ASME) type K{sub Ia} curve through crack-arrest toughness values show that prediction of conservative values of K{sub a} are possible.

  6. Effects of thermal aging on fracture toughness and Charpy-impact strength of stainless steel pipe welds

    SciTech Connect

    Gavenda, D.J.; Michaud, W.F.; Galvin, T.M.; Burke, W.F.; Chopra, O.K.

    1996-05-01

    Degradation of fracture toughness, tensile, and Charpy-impact properties of Type 304 and 304/308 SS pipe welds due to thermal aging was studied at room temperature and 290 C. Thermal aging of SS welds results in moderate decreases in charpy-impact strength and fracture toughness. Upper-shelf energy decreased by 50-80 J/cm{sup 2}. Decrease in fracture toughness J-R curve or J{sub IC} is relatively small. Thermal aging had no or little effect on tensile strength of the welds. Fracture properties of SS welds are controlled by the distribution and morphology of second-phase particles. Failure occurs by formation and growth of microvoids near hard inclusions; such processes are relatively insensitive to thermal aging. The ferrite phase has little or no effect on fracture properties of the welds. Differences in fracture resistance of the welds arise from differences in the density and size of inclusions. Mechanical-property data from the present study are consistent with results from other investigations. The existing data have been used to establish minimum expected fracture properties for SS welds.

  7. Effects of thermal aging on fracture toughness and charpy-impact strength of stainless steel pipe welds.

    SciTech Connect

    Gavenda, D. J.; Michaud, W. F.; Galvin, T. M.; Burke, W. F.; Chopra, O. K.; Energy Technology

    1996-06-05

    The degradation of fracture toughness, tensile, and Charpy-impact properties of Type 308 stainless steel (SS) pipe welds due to thermal aging has been characterized at room temperature and 290 C. Thermal aging of SS welds results in moderate decreases in Charpy-impact strength and fracture toughness. For the various welds in this study, upper-shelf energy decreased by 50-80 J/cm{sup 2}. The decrease in fracture toughness J-R curve or JIC is relatively small. Thermal aging had little or no effect on the tensile strength of the welds. Fracture properties of SS welds are controlled by the distribution and morphology of second-phase particles. Failure occurs by the formation and growth of microvoids near hard inclusions; such processes are relatively insensitive to thermal aging. The ferrite phase has little or no effect on the fracture properties of the welds. Differences in fracture resistance of the welds arise from differences in the density and size of inclusions. Mechanical-property data from the present study are consistent with results from other investigations. The existing data have been used to establish minimum expected fracture properties for SS welds.

  8. Effect of low temperatures on charpy impact toughness of austempered ductile irons

    NASA Astrophysics Data System (ADS)

    Riabov, Mikhail V.; Lerner, Yury S.; Fahmy, Mohammed F.

    2002-10-01

    Impact properties of standard American Society for Testing Materials (ASTM) grades of austempered ductile iron (ADI) were evaluated at subzero temperatures in unnotched and V-notched conditions and compared with ferritic and pearlitic grades of ductile irons (DIs). It was determined that there is a decrease in impact toughness for all ADI grades when there is a decrease in content of retained austenite and a decrease in test temperature, from room temperature (RT) to -60 °C. However, the difference in impact toughness values was not so noticeable for low retained austenite containing grade 5 ADI at both room and subzero temperatures as it was for ADI grade 1. Furthermore, the difference in impact toughness values of V-notched specimens of ADI grades 1 and 5 tested at -40 °C was minimal. The impact behaviors of ADI grade 5 and ferritic DI were found to be more stable than those of ADI grades 1, 2, 3, and 4 and pearlitic DI when the testing temperature was decreased. The impact toughness of ferritic DI was higher than that of ADI grades 1 and 2 at both -40 °C and -60 °C. The impact properties of ADI grades 4 and 5 were found to be higher than that of pearlitic DI at both -40 °C and -60 °C. The scanning electron microscopy (SEM) study of fracture surfaces revealed mixed ductile and quasicleavage rupture morphology types in all ADI samples tested at both -40 °C and -60 °C. With decreasing content of retained austenite and ductility, the number of quasicleavage facets increased from ADI grade 1-5. It was also found that fracture morphology of ADI did not experience significant changes when the testing temperature decreased. Evaluation of the bending angle was used to support impact-testing data. Designers and users of ADI castings may use the data developed in this research as a reference.

  9. Low-energy charpy impact of interleaved CF/EP laminates

    NASA Astrophysics Data System (ADS)

    Yuan, Q.; Friedrich, K.; Karger-Kocsis, J.

    1995-03-01

    Carbon fiber (CF) reinforced epoxy (CF/EP) laminates laid up in different ways (cross-ply and quasi-isotropic) with and without various adhesive interlayers (A) were studied under three-point bending using instrumented low-energy impact at single and multiple bounces. Interleaves were a modified EP resin on polyester fabric, a modified EP resin, and a polyethersulphone (PES) film. The impact response depends strongly on whether the CFs are oriented longitudinally (L) or transversely (T) to the hammer edge in the outer bounced ply. The threshold incident energy ( E in,th) associated with severe damage to the laminates was much lower with the longitudinal outer ply. The impact fatigue response of the transverse cross-ply (TCP) and quasi-isotropic (TQI) composite beams showed that stiffness degradation starts at a certain a threshold number of impact (NOI) and follows a logarithmic decay as a function of NOI. This is in close analogy to fatigue tests under usual conditions. Deterioration in stiffness can be assigned to the relative change in the secant slope ( E max/ x max) of the load-displacement ( F-x) traces. The related load-time ( F-t) traces flatten due to impact fatigue so that their load maximum ( F max) shifts toward higher contact time. The efficiency of the interleaving was assessed in both single (at E in,th≈3 J) and repeated impact (at E in=1 J). The first technique allowed us to differentiate between the various interleaves, whereas the latter contributed to finding the optimum stacking and position of the interleaves.

  10. 46 CFR 54.05-5 - Toughness test specimens.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Toughness Tests § 54.05-5 Toughness test specimens. (a) Charpy V-notch impact tests. Where required, Charpy... reference, see § 54.01-1), “Notched Bar Impact Testing of Metallic Materials”, using the Type A specimen... used to qualify materials within the scope of this subpart. Each set of Charpy impact tests...

  11. 46 CFR 54.05-5 - Toughness test specimens.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Toughness Tests § 54.05-5 Toughness test specimens. (a) Charpy V-notch impact tests. Where required, Charpy... reference, see § 54.01-1), “Notched Bar Impact Testing of Metallic Materials”, using the Type A specimen... used to qualify materials within the scope of this subpart. Each set of Charpy impact tests...

  12. 46 CFR 54.05-5 - Toughness test specimens.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Toughness Tests § 54.05-5 Toughness test specimens. (a) Charpy V-notch impact tests. Where required, Charpy... reference, see § 54.01-1), “Notched Bar Impact Testing of Metallic Materials”, using the Type A specimen... used to qualify materials within the scope of this subpart. Each set of Charpy impact tests...

  13. Fracture toughness testing of Linde 1092 reactor vessel welds in the transition range using Charpy-sized specimens

    SciTech Connect

    Pavinich, W.A.; Yoon, K.K.; Hour, K.Y.; Hoffman, C.L.

    1999-10-01

    The present reference toughness method for predicting the change in fracture toughness can provide over estimates of these values because of uncertainties in initial RT{sub NDT} and shift correlations. It would be preferable to directly measure fracture toughness. However, until recently, no standard method was available to characterize fracture toughness in the transition range. ASTM E08 has developed a draft standard that shows promise for providing lower bound transition range fracture toughness using the master curve approach. This method has been successfully implemented using 1T compact fracture specimens. Combustion Engineering reactor vessel surveillance programs do not have compact fracture specimens. Therefore, the CE Owners Group developed a program to validate the master curve method for Charpy-sized and reconstituted Charpy-sized specimens for future application on irradiated specimens. This method was validated for Linde 1092 welds using unirradiated Charpy-sized and reconstituted Charpy-sized specimens by comparison of results with those from compact fracture specimens.

  14. Effects of oxidation on the impact energy of Hastelloy S and Hastelloy C-4 Charpy V-notch specimens heated in air at 600 to 800

    SciTech Connect

    Fullam, H.T.

    1981-01-01

    The /sup 90/SrF/sub 2/ heat source being developed at PNL utilizes a Hastelloy S or Hastelloy C-4 outer capsule having a 0.5-in.-thick wall to contain the Hastelloy C-276 inner capsule. The primary objective of the study was to demonstrate that the air oxidation of the outer capsule that could occur during heat-source service would not degrade the ductility and Charpy impact strength of the capsule below the licensing requirements given in Section 1.1. The /sup 90/SrF/sub 2/ heat source under development is intended for general-purpose use. Compatibility considerations limit the interface temperature between the /sup 90/SrF/sub 2/ and Hastelloy C-276 inner capsule to a maximum of 800/sup 0/C. The outer capsule surface temperature will be somewhat less than 800/sup 0/C, and depending on the service, may be substantially lower. The oxidation tests were therefore carried out at 600/sup 0/ to 800/sup 0/C for exposures up to 10,000h to cover the range of temperature the outer capsule might expect to encounter in service. The results showed that the oxidation of Hastelloy S and Hastelloy C-4 in air at 600/sup 0/ to 800/sup 0/C is very slow, and both alloys form adherent oxide layers that serve to protect the underlying metal. Subsurface attack of Hastelloy S and Hastelloy C-4 due to oxidation was greater than expected, considering the slow oxidation rates of the two alloys at 600/sup 0/ to 800/sup 0/C. Estimates of subsurface attack, determined from micrographs of the oxidized specimens, showed erratic results and it was impossible to assign any type of rate equation to the subsurface attack. A conservative estimate of long-term effects can be made using a linear extrapolation of the test results. There were no significant differences between the room-temperature Charpy impact energy of Hastelloy S and Hastelloy C-4 specimens oxidized in air at 600/sup 0/ to 800/sup 0/C and control specimens heated in vacuum.

  15. 46 CFR 54.05-5 - Toughness test specimens.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Toughness Tests § 54.05-5 Toughness test specimens. (a) Charpy V-notch impact tests. Where required, Charpy... used to qualify materials within the scope of this subpart. Each set of Charpy impact tests shall... 46 Shipping 2 2010-10-01 2010-10-01 false Toughness test specimens. 54.05-5 Section...

  16. A Microstructural Study on the Observed Differences in Charpy Impact Behavior Between Hot Isostatically Pressed and Forged 304L and 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Cooper, Adam J.; Cooper, Norman I.; Bell, Andrew; Dhers, Jean; Sherry, Andrew H.

    2015-11-01

    With near-net shape technology becoming a more desirable route toward component manufacture due to its ability to reduce machining time and associated costs, it is important to demonstrate that components fabricated via Hot Isostatic Pressing (HIP) are able to perform to similar standards as those set by equivalent forged materials. This paper describes the results of a series of Charpy tests from HIP'd and forged 304L and 316L austenitic stainless steel, and assesses the differences in toughness values observed. The pre-test and post-test microstructures were examined to develop an understanding of the underlying reasons for the differences observed. The as-received microstructure of HIP'd material was found to contain micro-pores, which was not observed in the forged material. In tested specimens, martensite was detectable within close proximity to the fracture surface of Charpy specimens tested at 77 K (-196 °C), and not detected in locations remote from the fracture surface, nor was martensite observed in specimens tested at ambient temperatures. The results suggest that the observed changes in the Charpy toughness are most likely to arise due to differences in as-received microstructures of HIP'd vs forged stainless steel.

  17. Comparison of microstructural properties and Charpy impact behaviour between different plates of the Eurofer97 steel and effect of isothermal ageing

    NASA Astrophysics Data System (ADS)

    Stratil, Ludek; Hadraba, Hynek; Bursik, Jiri; Dlouhy, Ivo

    2011-09-01

    The microstructure and fracture properties of the Eurofer97 steel plates of thickness 14 mm and 25 mm were investigated in as-received state and in state after long-term thermal ageing (550 °C/5000 h). Detailed microstructure studies were carried out by means of optical light, electron and quantitative electron microscopy. Mechanical properties were evaluated by means of Charpy impact testing and hardness testing and fracture surfaces were fractographically analysed in macro and microscales. The microstructure of the Eurofer97 consisted of tempered martensite with M 23C 6 and MX precipitates. Microstructure of 14 mm plate was more homogenous and fine grained than 25 mm plate. Due to different microstructure the tDBTT of thicker plate was on +10 °C higher than for 14 mm plate for which reached -60 °C. Slight microstructural changes on the level of subgrain consisting of their partial recrystallization and slight carbide coarsening were observed after applied ageing. The isothermal ageing caused evident shift in tDBTT about +5 °C, which was most likely caused by recrystallization of subgrains.

  18. 46 CFR 54.05-10 - Certification of material toughness tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-treatment, by reporting the results of tests of one set of Charpy impact specimens or of two drop weight... pipe or tube may certify such material by reporting the results of tests of one set of Charpy impact... any purpose may certify them by reporting the results of tests of one set of Charpy impact...

  19. Failure mechanics of fiber composite notched charpy specimens. [stress analysis

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1976-01-01

    A finite element stress analysis was performed to determine the stress variation in the vicinity of the notch and far field of fiber composites Charpy specimens (ASTM Standard). NASTRAN was used for the finite element analysis assuming linear behavior and equivalent static load. The unidirectional composites investigated ranged from Thornel 75 Epoxy to S-Glass/Epoxy with the fiber direction parallel to the long dimension of the specimen. The results indicate a biaxial stress state exists in (1) the notch vicinity which is dominated by transverse tensile and interlaminar shear and (2) near the load application point which is dominated by transverse compression and interlaminar shear. The results also lead to the postulation of hypotheses for the predominant failure modes, the fracture initiation, and the fracture process. Finally, the results indicate that the notched Charpy test specimen is not suitable for assessing the impact resistance of nonmetallic fiber composites directly.

  20. 46 CFR 54.05-20 - Impact test properties for service of 0 °F and below.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Impact test properties for service of 0 °F and below... ENGINEERING PRESSURE VESSELS Toughness Tests § 54.05-20 Impact test properties for service of 0 °F and below. (a) Test energy. The impact energies of each set of transverse Charpy specimens may not be less...

  1. 46 CFR 54.05-20 - Impact test properties for service of 0 °F and below.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Impact test properties for service of 0 °F and below... ENGINEERING PRESSURE VESSELS Toughness Tests § 54.05-20 Impact test properties for service of 0 °F and below. (a) Test energy. The impact energies of each set of transverse Charpy specimens may not be less...

  2. 46 CFR 54.05-20 - Impact test properties for service of 0 °F and below.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Impact test properties for service of 0 °F and below... ENGINEERING PRESSURE VESSELS Toughness Tests § 54.05-20 Impact test properties for service of 0 °F and below. (a) Test energy. The impact energies of each set of transverse Charpy specimens may not be less...

  3. 46 CFR 54.05-20 - Impact test properties for service of 0 °F and below.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Impact test properties for service of 0 °F and below... ENGINEERING PRESSURE VESSELS Toughness Tests § 54.05-20 Impact test properties for service of 0 °F and below. (a) Test energy. The impact energies of each set of transverse Charpy specimens may not be less...

  4. 46 CFR 54.05-20 - Impact test properties for service of 0 °F and below.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Impact test properties for service of 0 °F and below... ENGINEERING PRESSURE VESSELS Toughness Tests § 54.05-20 Impact test properties for service of 0 °F and below. (a) Test energy. The impact energies of each set of transverse Charpy specimens may not be less...

  5. Transverse and z-Direction CVN Impact Tests of X65 Line Pipe Steels of Two Centerline Segregation Ratings

    NASA Astrophysics Data System (ADS)

    Su, Lihong; Li, Huijun; Lu, Cheng; Li, Jintao; Fletcher, Leigh; Simpson, Ian; Barbaro, Frank; Zheng, Lei; Bai, Mingzhuo; Shen, Jianlan; Qu, Xianyong

    2016-08-01

    Centerline segregation occurs as a positive concentration of alloying elements in the mid-thickness region of continuously cast slab. Depending upon its severity, it may affect mechanical properties and potentially downstream processing such as weldability, particularly for high-strength line pipe. The segregation fraction in continuously cast slabs and corresponding hot-rolled strips was assessed on API 5L grade X65 line pipe steels with different levels of segregation, rated as Mannesmann 2.0 and 1.4. The results showed that the segregation fraction in hot-rolled strip samples was in accordance with that assessed in the cast slabs, and the segregated regions in hot-rolled strip samples were found to be discontinuous. Transverse and z-direction CVN impact tests were conducted on the two strips and the results showed that centerline segregation does have an influence on the Charpy impact properties of line pipe steel. Specimens located at segregated regions exhibited lower Charpy impact toughness and strips rolled from slabs with higher segregation levels are more likely to exhibit greater variability in Charpy impact toughness. The influence of centerline segregation on z-direction Charpy impact toughness is more severe than on transverse Charpy impact toughness. Lower Charpy impact toughness and brittle fracture surface with cleavage facets along with rod-shaped MnS inclusions were observed for the strip rolled from slab with 2.0 segregation rating if the Charpy specimens were located at segregated regions. The influence on Charpy impact toughness can be associated with the pearlite structure at the centerline and level of MnS inclusions.

  6. Assessment of Ductile-to-Brittle Transition Behavior of Localized Microstructural Regions in a Friction-Stir Welded X80 Pipeline Steel with Miniaturized Charpy V-Notch Testing

    NASA Astrophysics Data System (ADS)

    Avila, Julian A.; Lucon, Enrico; Sowards, Jeffrey; Mei, Paulo Roberto; Ramirez, Antonio J.

    2016-06-01

    Friction-stir welding (FSW) is an alternative welding process for pipelines. This technology offers sound welds, good repeatability, and excellent mechanical properties. However, it is of paramount importance to determine the toughness of the welds at low temperatures in order to establish the limits of this technology. Ductile-to-brittle transition curves were generated in the present study by using a small-scale instrumented Charpy machine and miniaturized V-notch specimens (Kleinstprobe, KLST); notches were located in base metal, heat-affected, stirred, and hard zones within a FSW joint of API-5L X80 Pipeline Steel. Specimens were tested at temperatures between 77 K (-196 °C) and 298 K (25 °C). Based on the results obtained, the transition temperatures for the base material and heat-affected zone were below 173 K (-100 °C); conversely, for the stirred and hard zones, it was located around 213 K (-60 °C). Fracture surfaces were characterized and showed a ductile fracture mechanism at high impact energies and a mixture of ductile and brittle mechanisms at low impact energies.

  7. Certification of NIST Room Temperature Low-Energy and High-Energy Charpy Verification Specimens

    PubMed Central

    Lucon, Enrico; McCowan, Chris N.; Santoyo, Ray L.

    2015-01-01

    The possibility for NIST to certify Charpy reference specimens for testing at room temperature (21 °C ± 1 °C) instead of −40 °C was investigated by performing 130 room-temperature tests from five low-energy and four high-energy lots of steel on the three master Charpy machines located in Boulder, CO. The statistical analyses performed show that in most cases the variability of results (i.e., the experimental scatter) is reduced when testing at room temperature. For eight out of the nine lots considered, the observed variability was lower at 21 °C than at −40 °C. The results of this study will allow NIST to satisfy requests for room-temperature Charpy verification specimens that have been received from customers for several years: testing at 21 °C removes from the verification process the operator’s skill in transferring the specimen in a timely fashion from the cooling bath to the impact position, and puts the focus back on the machine performance. For NIST, it also reduces the time and cost for certifying new verification lots. For one of the low-energy lots tested with a C-shaped hammer, we experienced two specimens jamming, which yielded unusually high values of absorbed energy. For both specimens, the signs of jamming were clearly visible. For all the low-energy lots investigated, jamming is slightly more likely to occur at 21 °C than at −40 °C, since at room temperature low-energy samples tend to remain in the test area after impact rather than exiting in the opposite direction of the pendulum swing. In the evaluation of a verification set, any jammed specimen should be removed from the analyses. PMID:26958453

  8. Fractographic examination of reduced activation ferritic/martensitic steel charpy specimens irradiated to 30 dpa at 370{degrees}C

    SciTech Connect

    Gelles, D.S.; Hamilton, M.L.; Schubert, L.E.

    1996-10-01

    Fractographic examinations are reported for a series of reduced activation ferritic/Martensitic steel Charpy impact specimens tested following irradiation to 30 dpa at 370{degrees}C in FFTF. One-third size specimens of six low activation steels developed for potential application as structural materials in fusion reactors were examined. A shift in brittle fracture appearance from cleavage to grain boundary failure was noted with increasing manganese content. The results are interpreted in light of transmutation induced composition changes in a fusion environment.

  9. Performance Verification of Impact Machines for Testing Plastics

    PubMed Central

    Siewert, T. A.; Vigliotti, D. P.; Dirling, L. B.; McCowan, C. N.

    1999-01-01

    Valid comparison of impact test energies reported by various organizations and over time depends on consistent performance of impact test machines. This paper investigates the influence of various specimen and test parameters on impact energies in the 1 J to 2 J range for both Charpy V-notch and Izod procedures, leading toward the identification of a suitable material for use in a program to verify machine performance. We investigated the influences on the absorbed energy of machine design, test material, specimen cross sectional area, and machine energy range. For comparison to published round robin data on common plastics, this study used some common metallic alloys, including those used in the international verification program for metals impact machines and in informal calibration programs of tensile machines. The alloys that were evaluated include AISI type 4340 steel, and five aluminum alloys: 2014-T6, 2024-T351, 2219-T87, 6061-T6, and 7075-T6. We found that certain metallic alloys have coefficients of variation comparable to those of the best plastics that are reported in the literature. Also, we found that the differences in absorbed energy between two designs of machines are smaller than the differences that can be attributed to the specimens alone.

  10. 46 CFR 54.05-16 - Production toughness testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... stainless steel that is exempted from impact test requirements by this subchapter. In the case of stainless... set of three Charpy impact bars or two drop-weight specimens, as applicable according to the test used... production impact tests will be of weld metal and half of heat affected zone material. For the weld...

  11. 46 CFR 54.05-17 - Weld toughness test acceptance criteria.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PRESSURE VESSELS Toughness Tests § 54.05-17 Weld toughness test acceptance criteria. (a) For Charpy V-notch impact tests the energy absorbed in both the weld metal and heat affected zone impact tests in weld... 46 Shipping 2 2010-10-01 2010-10-01 false Weld toughness test acceptance criteria....

  12. Impact tests of the tungsten coated stainless steels prepared by using magnetron sputtering with ion beam mixing or electron beam alloying treatment

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Zhan, Chang-Yong; Yang, Bin; Wu, Jian-Chun

    2013-05-01

    Tungsten films were deposited on stainless steel (SS) with ion beam mixing (IBM) or electron beam alloying (EBA) treatment. The ductile-brittle transition behaviors of the specimens were investigated by means of instrumented Charpy impact test at a series of temperature, and SEM was used to observe the morphology of the cross section. Impact tests show that different treatment methods with W films do not have much influence on crack initiation, while EBA treatment with W films can more effectively prevent crack propagation, namely improve the impact toughness of SS than using IBM treatment. The reason that caused this difference was discussed.

  13. Effect of angleplying and matrix enhancement on impact-resistant boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Signorelli, R. A.

    1976-01-01

    Efforts to improve the impact resistance of B/Al are reviewed and analyzed. Tensile and dynamic modulus tests, thin sheet Charpy and Izod impact tests, and standard full size Charpy impact tests were conducted on 0.20 mm (8 mil) diameter-B/1100 Al matrix composites. Angleplies ranged from unidirectional to + or - 30 deg. The best compromise between reduced longitudinal properties and increased transverse properties was obtained with + or - 15 deg angleply. The pendulum impact strengths of improved B/Al were higher than that of notched titanium and appear to be enough to warrant consideration of B/Cl for application to fan blades in aircraft gas turbine engines.

  14. Influence of Martensite Volume Fraction on Impact Properties of Triple Phase (TP) Steels

    NASA Astrophysics Data System (ADS)

    Zare, Ahmad; Ekrami, A.

    2013-03-01

    Ferrite-bainite-martensite triple phase (TP) microstructures with different volume fractions of martensite were obtained by changing heat treatment time during austempering at 300 °C. Room temperature impact properties of TP steels with different martensite volume fractions ( V M) were determined by means of Charpy impact testing. The effects of test temperature on impact properties were also investigated for two selected microstructures containing 0 (the DP steel) and 8.5 vol.% martensite. Test results showed reduction in toughness with increasing V M in TP steels. Fracture toughness values for the DP and TP steels with 8.5 vol.% martensite were obtained from correlation between fracture toughness and the Charpy impact energy. Fractography of Charpy specimens confirmed decrease in TP steels' toughness with increasing V M by considering and comparing radial marks and crack initiation regions at the fracture surfaces of the studied steels.

  15. A study of the fracture process and factors that control toughness variability in Charpy V-notch specimens

    NASA Astrophysics Data System (ADS)

    Bouchard, Real

    La presente etude a ete initiee pour developper une comprehension quantitative du processus de rupture avec les facteurs qui controlent la dispersion des mesures de tenacite lorsque des eprouvettes Charpy entaillees en V sont utilisees. Un grand nombre d'essais ont ete realises pour un acier C-Mn: eprouvettes Charpy testees sous impact, eprouvettes Charpy testees en flexion lente, eprouvettes axisymetriques entaillees et sollicitees en traction et essais de tenacite sur eprouvettes prefissurees. Base sur le concept de la statistique de Weibull, l'approche locale developpee par le groupe Beremin a ete utilisee pour decrire la probabilite de rupture par clivage en fonction de la contrainte appliquee aussi bien qu'en fonction de l'energie Charpy obtenue. Le calcul par elements finis a ete realise pour determiner la distribution de la deformation et des contraintes en pointe d'entaille et de fissure. La nouvelle approche introduite decrit bien les resultats experimentaux. Les points d'initiation du clivage ont ete identifies au MEB et par la suite, avec la technique de faisceau d'ions focalise, sectionnes, polis et examines. L'examen de la microstructure sous le point d'initiation revele clairement que le clivage s'initie par un mecanisme d'empilement de dislocations ou les dislocations sont arretees aux joints de grain, aux interfaces de perlite/ferrite ou de perlite qui agissent comme barrieres physiques.

  16. Impacting device for testing insulation

    NASA Technical Reports Server (NTRS)

    Redmon, J. W. (Inventor)

    1984-01-01

    An electro-mechanical impacting device for testing the bonding of foam insulation to metal is descirbed. The device lightly impacts foam insulation attached to metal to determine whether the insulation is properly bonded to the metal and to determine the quality of the bond. A force measuring device, preferably a load cell mounted on the impacting device, measures the force of the impact and the duration of the time the hammer head is actually in contact with the insulation. The impactor is designed in the form of a handgun having a driving spring which can propel a plunger forward to cause a hammer head to impact the insulation. The device utilizes a trigger mechanism which provides precise adjustements, allowing fireproof operation.

  17. 46 CFR 54.05-10 - Certification of material toughness tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PRESSURE VESSELS Toughness Tests § 54.05-10 Certification of material toughness tests. (a) Plate material. The manufacturer of plates may certify such material, provided it has been given an appropriate heat-treatment, by reporting the results of tests of one set of Charpy impact specimens or of two drop...

  18. 46 CFR 54.05-15 - Weldment toughness tests-procedure qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Charpy V-notch impact tests as prescribed in paragraph (a) of this section. (d) Materials which are... 46 Shipping 2 2010-10-01 2010-10-01 false Weldment toughness tests-procedure qualifications. 54.05... ENGINEERING PRESSURE VESSELS Toughness Tests § 54.05-15 Weldment toughness tests—procedure qualifications....

  19. Dynamic impact testing with servohydraulic testing machines

    NASA Astrophysics Data System (ADS)

    Bardenheier, R.; Rogers, G.

    2006-08-01

    The design concept of “Crashworthiness” requires the information on material behaviour under dynamic impact loading in order to describe and predict the crash behaviour of structures. Especially the transport related industries, like car, railway or aircraft industry, pursue the concept of lightweight design for a while now. The materials' maximum constraint during loading is pushed to permanently increasing figures. This means in terms of crashworthiness that the process of energy absorption in structures and the mechanical behaviour of materials must well understood and can be described appropriately by material models. In close cooperation with experts from various industries and research institutes Instron has developed throughout the past years a new family of servohydraulic testing machines specifically designed to cope with the dynamics of high rate testing. Main development steps are reflected versus their experimental necessities.

  20. Charpy toughness and tensile properties of a neutron irradiated stainless steel submerged-arc weld cladding overlay

    SciTech Connect

    Corwin, W.R.; Berggren, R.G.; Nanstad, R.K.

    1984-01-01

    The possibility of stainless steel cladding increasing the resistance of an operating nuclear reactor pressure vessel to extension of surface flaws is highly dependent upon the irradiated properties of the cladding. Therefore, weld overlay cladding irradiated at temperatures and fluences relevant to power reactor operation was examined. The cladding was applied to a pressure vessel steel plate by the submerged-arc, single-wire, oscillating electrode method. Three layers of cladding were applied to provide a cladding thickness adequate for fabrication of test specimens. The first layer was type 309, and the upper two layers were type 308 stainless steel. There was considerable dilution of the type 309 in the first layer of cladding as a result of excessive melting of the base plate. Specimens for the irradiation study were taken from near the base plate/cladding interface and also from the upper layers of cladding. Charpy V-notch and tensile specimens were irradiated at 288/sup 0/C to neutron fluences of 2 x 10/sup 23/ n/m/sup 2/ (E > 1 MeV). When irradiated, both types 308 and 309 cladding showed a 5 to 40% increase in yield strength accompanied by a slight increase in ductility in the temperature range from 25 to 288/sup 0/C. All cladding exhibited ductile-to-brittle transition behavior during impact testing.

  1. Low temperature impact testing of welded structural wrought iron

    NASA Astrophysics Data System (ADS)

    Rogers, Zachary

    During the second half of the 19th century, structural wrought iron was commonly used in construction of bridges and other structures. Today, these remaining structures are still actively in use and may fall under the protection of historic preservation agencies. Continued use and protection leads to the need for inspection, maintenance, and repair of the wrought iron within these structures. Welding can be useful to achieve the appropriate repair, rehabilitation, or replacement of wrought iron members. There is currently very little published on modern welding techniques for historic wrought iron. There is also no pre-qualified method for this welding. The demand for welding in the repair of historic structural wrought iron has led to a line of research investigating shielded metal arc welding (SMAW) of historic wrought iron at the University of Colorado Denver. This prior research selected the weld type and other weld specifications to try and achieve a recognized specific welding procedure using modern SMAW technology and techniques. This thesis continues investigating SMAW of historic wrought iron. Specifically, this thesis addresses the toughness of these welds from analysis of the data collected from performing Charpy V-Notch (CVN) Impact Tests. Temperature was varied to observe the material response of the welds at low temperature. The wrought iron used in testing was from a historic vehicle bridge in Minnesota, USA. This area, and many other areas with wrought iron structures, can experience sustained or fluctuating temperatures far below freezing. Investigating the toughness of welds in historic wrought iron at these temperatures is necessary to fully understand material responses of the existing structures in need of maintenance and repair. It was shown that welded wrought iron is tougher and more ductile than non-welded wrought iron. In regards to toughness, welding is an acceptable repair method. Information on wrought iron, low temperature failure

  2. Design, Fabrication and Test of Multi-Fiber Laminates

    NASA Technical Reports Server (NTRS)

    Pike, R. A.; Novak, R. C.

    1975-01-01

    Unidirectional and angleply multifiber laminates were tested for improved impact strength and other mechanical properties. The effects of several variables on the mechanical properties of epoxy matrix materials were described. These include fiber type (HMS and AS graphites, glass, and Kevlar 49), ratio of primary to hybridizing fiber and hybrid configuration. It is demonstrated that AS graphite/S glass in an intraply configuration results in the best combination of static and Charpy impact properties as well as superior ballistic impact resistance. Pendulum impact tests which were conducted on thin specimens are shown to produce different ranking of materials than tests conducted on standard thickness Charpy specimens. It is shown that the thin specimen results are in better agreement with the ballistic impact data. Additional static test data are reported as a function of temperature for the seven best hybrid configurations having epoxy, polyimide (PMR-15) and polyphenylquinoxaline resins as the matrix.

  3. 46 CFR 54.05-10 - Certification of material toughness tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-treatment, by reporting the results of tests of one set of Charpy impact specimens or of two drop weight... are given a normalizing heat-treatment in a continuous treating furnace in which the temperature is...-treatment as a single charge in a batch-treating furnace equipped with recording pyrometer provided all...

  4. 46 CFR 54.05-10 - Certification of material toughness tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-treatment, by reporting the results of tests of one set of Charpy impact specimens or of two drop weight... are given a normalizing heat-treatment in a continuous treating furnace in which the temperature is...-treatment as a single charge in a batch-treating furnace equipped with recording pyrometer provided all...

  5. High Pressure Quick Disconnect Particle Impact Tests

    NASA Technical Reports Server (NTRS)

    Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    NASA Johnson Space Center White Sands Test Facility (WSTF) performed particle impact testing to determine whether there is a particle impact ignition hazard in the quick disconnects (QDs) in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). Testing included standard supersonic and subsonic particle impact tests on 15-5 PH stainless steel, as well as tests performed on a QD simulator. This paper summarizes the particle impact tests completed at WSTF. Although there was an ignition in Test Series 4, it was determined the ignition was caused by the presence of a machining imperfection. The sum of all the test results indicates that there is no particle impact ignition hazard in the ISS ECLSS QDs. KEYWORDS: quick disconnect, high pressure, particle impact testing, stainless steel

  6. Ares I-X USS Material Testing

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.; Smith, Stephen W.; Raju, Ivatury S.

    2008-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). Material characterization tests were conducted to quantify the material behavior for use in the CIFS analyses. Fatigue crack growth rate, Charpy impact, and fracture tests were conducted on the parent and welded A516 Grade 70 steel. The crack growth rate tests confirmed that the material behaved in agreement with literature data and that a salt water environment would not significantly degrade the fatigue resistance. The Charpy impact tests confirmed that the fracture resistance of the material did not have a significant reduction for the expected operational temperatures of the vehicle.

  7. Supersonic Particle Impact Test Capabilities: Investigative Report

    NASA Technical Reports Server (NTRS)

    Rosales, Keisa

    2007-01-01

    NASA Johnson Space Center White Sands Test Facility (WSTF) performed particle impact flow tests to determine the maximum capabilities of the particle impact test systems in different configurations. Additional flow tests were performed to determine the target pressures at given upstream conditions to supplement the WSTF data located in ASTM Manual 36 (2000).

  8. Improved impact-resistant boron-aluminum composites for use as turbine engine fan blades

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Signorelli, R. A.

    1976-01-01

    Efforts to improve the impact resistance of B/Al are reviewed and analyzed. Thin sheet Charpy and Izod impact tests and standard full size Charpy impact tests were conducted on unidirectional and angleply composites containing 4, 5.6 and 8 mil boron in 1100, 2024, 5052 and 6061 Al matrices. Impact failure modes of B/Al are proposed in an attempt to describe the mechanisms involved and to provide insight for maximizing impact resistance. The impact strength of B/Al was significantly increased by proper selection of materials and processing. The use of more ductile matrices (1100 Al) and larger diameter (8 mil) boron fibers gave the highest impact strengths by allowing matrix shear deformation and multiple fiber breakage.

  9. Effect of fiber diameter and matrix alloys on impact-resistant boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Signorelli, R. A.

    1976-01-01

    Efforts to improve the impact resistance of B/Al are reviewed and analyzed. Nonstandard thin-sheet charpy and Izod impact tests and standard full-size Charpy impact tests were conducted on composites containing unidirectional 0.10mm, 0.14mm, and 0.20mm diameter boron fibers in 1100, 2024, 5052, and 6061 Al matrices. Impact failure modes of B/Al are proposed in an attempt to describe the mechanisms involved and to provide insight for maximizing impact resistance. The impact strength of B/Al was significantly increased by proper selection of materials and processing. The use of a ductile matrix and large diameter boron fibers gave the highest impact strengths. This combination resulted in improved energy absorption through matrix shear deformation and multiple fiber breakage.

  10. High Pressure Quick Disconnect Particle Impact Tests

    NASA Technical Reports Server (NTRS)

    Peralta, Stephen; Rosales, Keisa; Smith, Sarah R.; Stoltzfus, Joel M.

    2007-01-01

    To determine whether there is a particle impact ignition hazard in the quick disconnects (QDs) in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS), NASA Johnson Space Center requested White Sands Test Facility (WSTF) to perform particle impact testing. Testing was performed from November 2006 through May 2007 and included standard supersonic and subsonic particle impact tests on 15-5 PH stainless steel, as well as tests performed on a QD simulator. This report summarizes the particle impact tests completed at WSTF. Although there was an ignition in Test Series 4, it was determined the ignition was caused by the presence of a machining imperfection. The sum of all the test results indicates that there is no particle impact ignition hazard in the ISS ECLSS QDs.

  11. Impact of Test Disclosure Legislation on Test Development.

    ERIC Educational Resources Information Center

    Fremer, John

    Test disclosure legislation in New York State (LaValle Act) has had a major impact on the national testing programs administered by Educational Testing Services (ETS) for various sponsoring organizations. The paper reviews the immediate operational effects of test disclosure in the following areas: (1) increase in number of test forms developed;…

  12. 30 CFR 7.46 - Impact test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Impact test. 7.46 Section 7.46 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.46 Impact test. (a) Test... individual cells. At the test temperature range of 65 °F -80 °F (18.3 °C-26.7 °C), apply a dynamic force...

  13. 30 CFR 7.46 - Impact test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Impact test. 7.46 Section 7.46 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.46 Impact test. (a) Test... individual cells. At the test temperature range of 65 °F -80 °F (18.3 °C-26.7 °C), apply a dynamic force...

  14. 30 CFR 7.46 - Impact test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Impact test. 7.46 Section 7.46 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.46 Impact test. (a) Test... individual cells. At the test temperature range of 65 °F -80 °F (18.3 °C-26.7 °C), apply a dynamic force...

  15. Reproducibility of liquid oxygen impact test results

    NASA Technical Reports Server (NTRS)

    Gayle, J. B.

    1975-01-01

    Results for 12,000 impacts on a wide range of materials were studied to determine the reproducibility of the liquid oxygen impact test method. Standard deviations representing the overall variability of results were in close agreement with the expected values for a binomial process. This indicates that the major source of variability is due to the go - no go nature of the test method and that variations due to sampling and testing operations were not significant.

  16. Light-weight radioisotope heater impact tests

    SciTech Connect

    Reimus, M.A.H.; Rinehart, G.H.; Herrera, A.

    1998-12-31

    The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s.

  17. Clean Cast Steel Technology: Effect of Micro-porosity on Tensile and Charpy Properties of Four Cast Steels

    SciTech Connect

    Griffin, John, A.; Bates, Charles, E.

    2005-09-19

    The effect of these large shrink cavities on mechanical properties could be easily calculated using well established engineering formulas. Over the years, increases in computational and metallurgical resources have allowed the modeler to improve accuracy and increase the complexity of numerical predictors. An accurate prediction of micro-porosity, not observable using conventional radiographic techniques, and an engineering understanding of the effect on mechanical properties would give a designer confidence in using a more efficient casting design and a lower safety factor. This will give castings an additional design advantage. The goal of this project is to provide current and future modelers/designers with a tensile and Charpy property dataset for validation of micro-porosity predictors. The response of ultimate strength, elongation, and reduction in area to micro-porosity was very similar in all four alloys. Ultimate strength was largely unaffected by tensile fracture surface porosity until values of about 25% were reached and decreased linearly with increasing values. Elongation and reduction in area decreased sharply after less than 5% fracture surface porosity. Niyama values of about 0.7 were produced sound material and acceptable tensile properties. Ultrasonic velocities of 0.233 in/usec and higher produced acceptable tensile properties. Metallographic examination revealed a ratio of 4-6 to 1 in fracture surface porosity to metallographic porosity. Charpy impact properties were largely unaffected by the microporosity concentrations examined in this study and did not correlate to either Niyama values, fracture surface porosity, or metallographic porosity.

  18. Impact Testing of Stainless Steel Materials

    SciTech Connect

    R. K. Blandford; D. K. Morton; T. E. Rahl; S. D. Snow

    2005-07-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates (10 to 200 per second) during accidental drop events. Mechanical characteristics of these materials under dynamic (impact) loads in the strain rate range of concern are not well documented. The goal of the work presented in this paper was to improve understanding of moderate strain rate phenomena on these materials. Utilizing a drop-weight impact test machine and relatively large test specimens (1/2-inch thick), initial test efforts focused on the tensile behavior of specific stainless steel materials during impact loading. Impact tests of 304L and 316L stainless steel test specimens at two different strain rates, 25 per second (304L and 316L material) and 50 per second (304L material) were performed for comparison to their quasi-static tensile test properties. Elevated strain rate stress-strain curves for the two materials were determined using the impact test machine and a “total impact energy” approach. This approach considered the deformation energy required to strain the specimens at a given strain rate. The material data developed was then utilized in analytical simulations to validate the final elevated stress-strain curves. The procedures used during testing and the results obtained are described in this paper.

  19. 30 CFR 7.46 - Impact test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.46 Impact test. (a) Test... at 122 °F (50 °C) for a period of 48 hours. (2) Mount the covers on a battery box of the same design with which the covers are to be approved, including any support blocks, with the battery...

  20. Permeability After Impact Testing of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    2003-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  1. Permeability After Impact Testing of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, A.T.; Munafo, Paul (Technical Monitor)

    2002-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  2. Impact testing of textile composite materials

    NASA Technical Reports Server (NTRS)

    Portanova, Marc

    1995-01-01

    The objectives of this report were to evaluate the impact damage resistance and damage tolerance of a variety of textile composite materials. Static indentation and impact tests were performed on the stitched and unstitched uniweave composites constructed from AS4/3501-6 Carbon/Epoxy with a fiberglass yarn woven in to hold the fibers together while being stitched. Compression and tension were measured after the tests to determine the damage resistance, residual strength and the damage tolerance of the specimens.

  3. Tests of the Giant Impact Hypothesis

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    1998-01-01

    The giant impact hypothesis has gained popularity as a means of explaining a volatile-depleted Moon that still has a chemical affinity to the Earth. As Taylor's Axiom decrees, the best models of lunar origin are testable, but this is difficult with the giant impact model. The energy associated with the impact would be sufficient to totally melt and partially vaporize the Earth. And this means that there should he no geological vestige of Barber times. Accordingly, it is important to devise tests that may be used to evaluate the giant impact hypothesis. Three such tests are discussed here. None of these is supportive of the giant impact model, but neither do they disprove it.

  4. FOD impact testing of composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin, and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  5. FOD impact testing of composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  6. Impact testing on composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  7. Mechanical Impact Testing: A Statistical Measurement

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Herald, Stephen D.; Davis, S. Eddie

    2005-01-01

    In the decades since the 1950s, when NASA first developed mechanical impact testing of materials, researchers have continued efforts to gain a better understanding of the chemical, mechanical, and thermodynamic nature of the phenomenon. The impact mechanism is a real combustion ignition mechanism that needs understanding in the design of an oxygen system. The use of test data from this test method has been questioned due to lack of a clear method of application of the data and variability found between tests, material batches, and facilities. This effort explores a large database that has accumulated over a number of years and explores its overall nature. Moreover, testing was performed to determine the statistical nature of the test procedure to help establish sample size guidelines for material characterization. The current method of determining a pass/fail criterion based on either light emission or sound report or material charring is questioned.

  8. Bar Impact Tests on Alumina (AD995)

    NASA Astrophysics Data System (ADS)

    Cazamias, James U.; Reinhart, William D.; Konrad, Carl H.; Chhabildas, Lalit C.; Bless, Stephan J.

    2002-07-01

    Dynamic strength may be inferred from bar impact tests, although interpretation of the data is affected by the time-to-failure of the target bar. To clarify the mechanics, tests with graded density impactors were conducted on bare and confined bars, 12 and 19 mm in diameter, cut from blocks of AD995 alumina. Manganin gauge and VISAR diagnostics were employed. Larger rods displayed higher strength. In some tests the "true" yield stress of ˜4.5 GPa was achieved.

  9. Visualization of impact damaging of carbon/epoxy panels

    NASA Astrophysics Data System (ADS)

    Boccardi, Simone; Boffa, Natalino Daniele; Carlomagno, Giovanni Maria; Meola, Carosena; Ricci, Fabrizio

    2016-05-01

    This work is concerned with impact damaging of carbon/epoxy materials. Specimens of different thickness are herein considered, which involve several fibers orientations and stacking sequences. Impact tests are carried out at different energies with a modified Charpy pendulum. The specimen surface opposite to that struck by the impactor is viewed by an infrared imaging device. Then, a sequence of thermal images is acquired during each impact test. Through the temperature variations experienced by the specimen surface, post-processing of such images supplies the likely occurred damage. In addition, specimens are non-destructively evaluated with lock-in thermography to visualize any manufacturing defects, as well as impact damage.

  10. Design of an impact abrasion testing machine

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Beeley, P. R.; Baker, A. J.

    1994-04-01

    By using a cam-flat follower-impact shaft with a crank-flat rotating anvil system, the machine to be described can create various impact abrasion conditions to simulate a large range of industrial situations encountered in this field. The main features of the machine are the long working life of the flat rotating anvil, which works in the same way as that of the disk in a pin-on-disk wear tester, and the accurate control of both the impact energy delivered to the specimen and the total sliding distance of the specimen on the anvil. Statistical analysis of test results on the machine with EN24 steel and cast high manganese steel shows that the uncertainty of the population mean is within +/- 4.7% of the sample mean under a 95% confidence level of student distribution, which indicates a very good accuracy of test.

  11. A Repeated Impact Method and Instrument to Evaluate the Impact Fatigue Property of Drillpipe

    NASA Astrophysics Data System (ADS)

    Lin, Yuanhua; Li, Qiang; Sun, Yongxing; Zhu, Hongjun; Zhou, Ying; Xie, Juan; Shi, Taihe

    2013-04-01

    It is well known that drillpipe failures are a pendent problem in drilling engineering. Most of drillpipe failures are low amplitude-repeated impact fatigue failures. The traditional method is using Charpy impact test to describe the fracture property of drillpipe, but it cannot veritably characterize the impact fatigue property of drillpipe under low amplitude-repeated impact. Based on the Charpy impact and other methods, a repeated impact method and instrument have been proposed to simulate the low amplitude-repeated impact of downhole conditions for drillpipe. Then, a series of tests have been performed using this instrument. Test results demonstrate the drillpipe upset transition area nonhomogeneity is more severe than drillpipe body, which is the key factor that leads to washout and fracture frequently of it. As the one time impact energy increases, the repeated impact times decrease exponentially, therefore, the rotational speed has a great effect on the fatigue life of drillpipe, and it is vital to select a suitable rotational speed for drilling jobs. In addition, based on SEM fractographs we found that the fracture surface of repeated impact is similar to the fatigue fracture, and there are many low cycle fatigue characteristic features on fracture surface that reveal very good agreement with the features of drillpipe fatigue failures in the field.

  12. Impact sensitivity test of liquid explosives

    NASA Astrophysics Data System (ADS)

    Tiutiaev, Andrei; Trebunskih, Valeri; Dolzhikov, Andrei; Zvereva, Irina

    2015-06-01

    The sensitivity of liquid explosive in the presence of gas bubbles increases many times as compared with the liquid without gas bubbles. If we consider that in the liquid as a result of convection, wave motion, shock, etc. gas bubbles are easily generated, the need to develop a method for determining sensitivity of liquid explosives to impact and a detailed study of the ignition explosives with bubbles is obvious. On a mathematical model of a single steam bubbles in the fluid theoretically considered the process of initiating explosive liquid systems to impact. For the experimental investigation, the well-known K-44 -II and the so-called appliance No. 1 were used. Instead of the metal cap in the standard method in this paper there was polyurethane foam cylindrical container with LHE, which is easily deforms by impact. A large number of tests with different liquid explosives were made. It was found that the test LHE to impact in appliance No. 1 with polyurethane foam to a large extent reflect the real mechanical sensitivity due to the small loss of impact energy on the deformation of the metal cap, as well as the best differentiation LHE sensitivity due to the higher resolution method .

  13. New impact sensitivity test of liquid explosives

    NASA Astrophysics Data System (ADS)

    Tiutiaev, Andrei; Trebunskih, Valeri

    The sensitivity of liquid explosive in the presence of gas bubbles increases many times as compared with the liquid without gas bubbles. Local hot spot in this case formed as a result of compression and heating of the gas inside the bubbles. If we consider that in the liquid as a result of convection, wave motion, shock, etc. gas bubbles are easily generated, the need to develop a method for determining sensitivity of liquid explosives to impact and a detailed study of the ignition explosives with bubbles is obvious. On a mathematical model of a single steam bubbles in the fluid theoretically considered the process of initiating explosive liquid systems to impact. For the experimental investigation, the well-known K-44 -II with the metal cap were used. Instead of the metal cap in the standard method in this paper there was polyurethane foam cylindrical container with LHE, which is easily deforms by impact. A large number of tests with different liquid explosives were made. It was found that the test LHE to impact with polyurethane foam to a large extent reflect the real mechanical sensitivity due to the small loss of impact energy on the deformation of the metal cap, as well as the best differentiation LHE sensitivity due to the higher resolution method . Results obtained in the samara state technical university.

  14. Apollo command module land impact tests

    NASA Technical Reports Server (NTRS)

    Mccullough, J. E.; Lands, J. F., Jr.

    1972-01-01

    Full-scale-model and actual spacecraft were impact tested to define the emergency land-landing capability of the Apollo command module. Structural accelerations and strains were recorded on analog instrumentation, and a summary to these data is included. The landing kinematics were obtained from high-speed photography. Photographs of the structural damage caused during the tests are included. Even though extensive damage can be expected, the crew will receive nothing more than minor injuries during the majority of the probable landing conditions.

  15. 16 CFR 1203.11 - Marking the impact test line.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Marking the impact test line. 1203.11... REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS The Standard § 1203.11 Marking the impact test line. Prior to testing, the impact test line shall be determined for each helmet in the following manner. (a)...

  16. The GISS sounding temperature impact test

    NASA Technical Reports Server (NTRS)

    Halem, M.; Ghil, M.; Atlas, R.; Susskind, J.; Quirk, W. J.

    1978-01-01

    The impact of DST 5 and DST 6 satellite sounding data on mid-range forecasting was studied. The GISS temperature sounding technique, the GISS time-continuous four-dimensional assimilation procedure based on optimal statistical analysis, the GISS forecast model, and the verification techniques developed, including impact on local precipitation forecasts are described. It is found that the impact of sounding data was substantial and beneficial for the winter test period, Jan. 29 - Feb. 21. 1976. Forecasts started from initial state obtained with the aid of satellite data showed a mean improvement of about 4 points in the 48 and 772 hours Sub 1 scores as verified over North America and Europe. This corresponds to an 8 to 12 hour forecast improvement in the forecast range at 48 hours. An automated local precipitation forecast model applied to 128 cities in the United States showed on an average 15% improvement when satellite data was used for numerical forecasts. The improvement was 75% in the midwest.

  17. Factors affecting miniature Izod impact strength of tungsten-fiber-metal-matrix

    NASA Technical Reports Server (NTRS)

    Winsa, E. A.; Petrasek, D. W.

    1973-01-01

    The miniature Izod and Charpy impact strengths of copper, copper-nickel, and nickel-base superalloy uniaxially reinforced with continuous tungsten fibers were studied. In most cases, impact strength was increased by increasing fiber or matrix toughness, decreasing fibermatrix reaction, increasing test temperature, hot working, or heat treating. Notch sensitivity was reduced by increasing fiber content or matrix toughness. An equation relating impact strength to fiber and matrix properties and fiber content was developed. Program results imply that tungsten alloy-fiber/superalloy matrix composites can be made with adequate impact resistance for turbine blade or vane applications.

  18. Elemental Water Impact Test: Phase 1 20-Inch Hemisphere

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.

    2015-01-01

    Spacecraft are being designed based on LS-DYNA simulations of water landing impacts. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. Phase 1 of the EWIT series featured water impact tests of a 20-inch hemisphere dropped from heights of 5 feet and 10 feet. The hemisphere was outfitted with an accelerometer and three pressure gages. The focus of this report is the correlation of analytical models against test data.

  19. Effects of annealing time on the recovery of Charpy V-notch properties of irradiated high-copper weld metal

    SciTech Connect

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1994-12-31

    One of the options to mitigate the effects of irradiation on reactor pressure vessels is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. An important issue to be resolved is the effect on the toughness properties of reirradiating a vessel that has been annealed. This paper describes the annealing response of irradiated high-copper submerged-arc weld HSSI 73W. For this study, the weld has been annealed at 454 C (850 F) for lengths of time varying between 1 and 14 days. The Charpy V-notch 41-J (30-ft-lb) transition temperature (TT{sub 41J}) almost fully recovered for the longest period studied, but recovered to a lesser degree for the shorter periods. No significant recovery of the TT{sub 41J} was observed for a 7-day anneal at 343 C (650 F). At 454 C for the durations studied, the values of the upper-shelf impact energy of irradiated and annealed weld metal exceeded the values in the unirradiated condition. Similar behavior was observed after aging the unirradiated weld metal at 460 and 490 C for 1 week.

  20. Galileo battery testing and the impact of test automation

    NASA Technical Reports Server (NTRS)

    Pertuch, W. T.; Dils, C. T.

    1985-01-01

    Test complexity, changes of test specifications, and the demand for tight control of tests led to the development of automated testing used for Galileo and other projects. The use of standardized interfacing, i.e., IEEE-488, with desktop computers and test instruments, resulted in greater reliability, repeatability, and accuracy of both control and data reporting. Increased flexibility of test programming has reduced costs by permitting a wide spectrum of test requirements at one station rather than many stations.

  1. Instrumented impact testing at high velocities

    SciTech Connect

    Delfosse, D.; Pageau, G.; Bennett, R.; Poursartip, A. Defence Research Establishment Valcartier, Courcelette )

    1993-01-01

    Impact loading of carbon fiber-reinforced plastic (CFRP) aircraft parts is a major concern. Birds or hailstones striking an aircraft generally have a low mass and a high velocity, whereas typically instrumented impact experiments are performed with a high mass and a low velocity. Our aim has been to build an instrumented impact facility with a low-mass projectile capable of simulating these impact events, since there is evidence that a low-velocity impact will not always result in the same amount or even type of damage as a high-velocity impact. This paper provides a detailed description of the instrumented low-mass impact facility at The University of British Columbia (UBC). A gas gun is used to accelerate the instrumented projectile to impact velocities as high as 50 m/s, corresponding to an energy level of 350 J. The contact force during the impact event is measured by an incorporated load cell. The necessary mathematical operations to determine the real load-displacement curves are outlined, and the results of some impact events at different velocities are shown. 23 refs.

  2. Micrometeorite Impact Test of Flex Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Hoang, B.; Wong, F.; Gardiner, G.

    2016-01-01

    Spacecraft with solar arrays operate throughout the near earth environment and are increasingly planned for outer planet missions. An often overlooked test condition for solar arrays that is applicable to these missions is micrometeorite impacts and possibly electrostatic discharge (ESD) events resulting from these impacts. The Marshall Space Flight Center (MSFC) is partnering with Space Systems/Loral, LLC (SSL) to examine the results of simulated micrometeorite impacts on the electrical performance of an advanced, lightweight flexible solar array design. The test is performed at NASA MSFC's Microlight Gas Gun Facility. The SSL-provided coupons consist of three strings, each string with two solar cells in series. Five impacts will be induced at various locations on a powered test coupon under different string voltage (0 volts - 150 volts) and string current (1.1 amperes - 1.65 amperes) conditions. The maximum specified test voltage and current represent margins of 1.5 times for both voltage and current. The test parameters are chosen to demonstrate new array design robustness to any ESD event caused by plasma plumes resulting from a simulated micrometeorite impact. A second unpowered coupon will undergo two impacts: one impact on the front side and one impact on the back side. Following the impact testing, the second coupon will be exposed to a thermal cycle test to determine possible damage propagation and further electrical degradation due to thermally-induced stress. The setup, checkout, and results from the impact testing are discussed. The challenges for impact testing include precise coupon alignment to control impact location; pressure management during the impact process; and measurement of the true transient electrical response during impact on the powered coupon. Results from pre- and post-test visual and electrical functional testing are also discussed.

  3. Impact resistance of fiber composites: Energy absorbing mechanisms and environmental effects

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1983-01-01

    Energy absorbing mechanisms were identified by several approaches. The energy absorbing mechanisms considered are those in unidirectional composite beams subjected to impact. The approaches used include: mechanic models, statistical models, transient finite element analysis, and simple beam theory. Predicted results are correlated with experimental data from Charpy impact tests. The environmental effects on impact resistance are evaluated. Working definitions for energy absorbing and energy releasing mechanisms are proposed and a dynamic fracture progression is outlined. Possible generalizations to angle-plied laminates are described.

  4. Impact resistance of fiber composites - Energy-absorbing mechanisms and environmental effects

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1985-01-01

    Energy absorbing mechanisms were identified by several approaches. The energy absorbing mechanisms considered are those in unidirectional composite beams subjected to impact. The approaches used include: mechanic models, statistical models, transient finite element analysis, and simple beam theory. Predicted results are correlated with experimental data from Charpy impact tests. The environmental effects on impact resistance are evaluated. Working definitions for energy absorbing and energy releasing mechanisms are proposed and a dynamic fracture progression is outlined. Possible generalizations to angle-plied laminates are described.

  5. SMALL-SCALE IMPACT SENSITIVITY TESTING ON EDC37

    SciTech Connect

    HSU, P C; HUST, G; MAIENSCHEIN, J L

    2008-04-28

    EDC37 was tested at LLNL to determine its impact sensitivity in the LLNL's drop hammer system. The results showed that impact sensitivities of the samples were between 86 cm and 156 cm, depending on test methods. EDC37 is a plastic bonded explosive consisting of 90% HMX, 1% nitrocellulose and binder. We recently conducted impact sensitivity testing in our drop hammer system and the results are presented in this report.

  6. Orion MPCV Water Landing Test at Hydro Impact Basin

    NASA Video Gallery

    This is the third Orion Multi-Purpose Crew Vehicle (MPCV) water landing test conducted at the Hydro Impact Basin at NASA Langley Research Center. This test represented the worst-case scenario for l...

  7. Negative Impacts of High-Stakes Testing

    ERIC Educational Resources Information Center

    Minarechová, Michaela

    2012-01-01

    High-stakes testing is not a new phenomenon in education. It has become part of the education system in many countries. These tests affect the school systems, teachers, students, politicians and parents, whether that is in a positive or negative sense. High-stakes testing is associated with concepts such as a school's accountability, funding…

  8. 16 CFR 1203.17 - Impact attenuation test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., Motorcycle Helmets, 49 CFR 571.218 (S7.1.8). The center of gravity of the drop assembly shall lie within the... instruments and equipment—(1) Measurement of impact attenuation. Impact attenuation is determined by measuring the acceleration of the test headform during impact. Acceleration is measured with a...

  9. 16 CFR 1203.17 - Impact attenuation test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., Motorcycle Helmets, 49 CFR 571.218 (S7.1.8). The center of gravity of the drop assembly shall lie within the... instruments and equipment—(1) Measurement of impact attenuation. Impact attenuation is determined by measuring the acceleration of the test headform during impact. Acceleration is measured with a...

  10. 16 CFR 1203.17 - Impact attenuation test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., Motorcycle Helmets, 49 CFR 571.218 (S7.1.8). The center of gravity of the drop assembly shall lie within the... instruments and equipment—(1) Measurement of impact attenuation. Impact attenuation is determined by measuring the acceleration of the test headform during impact. Acceleration is measured with a...

  11. 16 CFR Figure 9 to Part 1203 - Impact Test Apparatus

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Impact Test Apparatus 9 Figure 9 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 9 Figure 9 to Part 1203—Impact Test Apparatus...

  12. 16 CFR Figure 9 to Part 1203 - Impact Test Apparatus

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Impact Test Apparatus 9 Figure 9 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 9 Figure 9 to Part 1203—Impact Test Apparatus...

  13. 16 CFR 1203.11 - Marking the impact test line.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Marking the impact test line. 1203.11 Section 1203.11 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS The Standard § 1203.11 Marking the impact test line. Prior...

  14. 16 CFR Figure 9 to Part 1203 - Impact Test Apparatus

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Impact Test Apparatus 9 Figure 9 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 9 Figure 9 to Part 1203—Impact Test Apparatus...

  15. 16 CFR Figure 9 to Part 1203 - Impact Test Apparatus

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Impact Test Apparatus 9 Figure 9 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 9 Figure 9 to Part 1203—Impact Test Apparatus...

  16. 16 CFR Figure 9 to Part 1203 - Impact Test Apparatus

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Impact Test Apparatus 9 Figure 9 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 9 Figure 9 to Part 1203—Impact Test Apparatus...

  17. Preparation of calibrated test packages for particle impact noise detection

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A standard calibration method for any particle impact noise detection (PIND) test system used to detect loose particles responsible for failures in hybrid circuits was developed along with a procedure for preparing PIND standard test devices. Hybrid packages were seeded with a single gold ball, hermetically sealed, leak tested, and PIND tested. Conclusions are presented.

  18. Impact Testing for Materials Science at NASA - MSFC

    NASA Technical Reports Server (NTRS)

    Sikapizye, Mitch

    2010-01-01

    The Impact Testing Facility (ITF) at NASA - Marshall Space Flight Center is host to different types of guns used to study the effects of high velocity impacts. The testing facility has been and continues to be utilized for all NASA missions where impact testing is essential. The Facility has also performed tests for the Department of Defense, other corporations, as well as universities across the nation. Current capabilities provided by Marshall include ballistic guns, light gas guns, exploding wire gun, and the Hydrometeor Impact Gun. A new plasma gun has also been developed which would be able to propel particles at velocities of 20km/s. This report includes some of the guns used for impact testing at NASA Marshall and their capabilities.

  19. Determining the Debilitative Impact of Test Anxiety.

    ERIC Educational Resources Information Center

    Madsen, Harold S.

    The detrimental effects of anxiety in English as a second language/foreign language (ESL/FL) are investigated. Although empirical research on the subject of ESL/FL test affect is limited, helpful insights on test anxiety exist in the psychological literature. Two constructs in the anxiety literature are considered relevant for this study: trait…

  20. Light-weight radioisotope heater unit (LWRHU) impact tests

    NASA Astrophysics Data System (ADS)

    Reimus, M. A. H.; Rinehart, G. H.; Herrera, A.; Lopez, B.; Lynch, C.; Moniz, P.

    1998-01-01

    The light-weight radioisotope heater unit (LWRHU) is a 238PuO2-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed 238PuO2 fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s.

  1. Light-weight radioisotope heater unit (LWRHU) impact tests

    SciTech Connect

    Reimus, M. A. H.; Rinehart, G. H.; Herrera, A.; Lopez, B.; Lynch, C.; Moniz, P.

    1998-01-15

    The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s.

  2. Live fire testing requirements - Assessing the impact

    SciTech Connect

    O'Bryon, J.F. )

    1992-08-01

    Full-up live-fire testing (LFT) of aircraft configured for combat is evaluated in terms of the practical implications of the technique. LFT legislation requires the testing of tactical fighters, helicopters, and other aircraft when they are loaded with the flammables and explosives associated with combat. LFT permits the study of damage mechanisms and battle-damage repair techniques during the design phase, and probability-of-kill estimates and novel systems designs can be developed based on LFT data.

  3. Impact of uncertainty on modeling and testing

    NASA Technical Reports Server (NTRS)

    Coleman, Hugh W.; Brown, Kendall K.

    1995-01-01

    A thorough understanding of the uncertainties associated with the modeling and testing of the Space Shuttle Main Engine (SSME) Engine will greatly aid decisions concerning hardware performance and future development efforts. This report will describe the determination of the uncertainties in the modeling and testing of the Space Shuttle Main Engine test program at the Technology Test Bed facility at Marshall Space Flight Center. Section 2 will present a summary of the uncertainty analysis methodology used and discuss the specific applications to the TTB SSME test program. Section 3 will discuss the application of the uncertainty analysis to the test program and the results obtained. Section 4 presents the results of the analysis of the SSME modeling effort from an uncertainty analysis point of view. The appendices at the end of the report contain a significant amount of information relative to the analysis, including discussions of venturi flowmeter data reduction and uncertainty propagation, bias uncertainty documentations, technical papers published, the computer code generated to determine the venturi uncertainties, and the venturi data and results used in the analysis.

  4. Micrometeorite Impact Test of Flex Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Hoang, B.; Wong, F.; Gardiner, G.

    2016-01-01

    Spacecraft with solar arrays operate throughout the near earth environment and are planned for outer planet missions. An often overlooked test condition for solar arrays that is applicable to these missions is micrometeoroid impacts and possibly electrostatic discharge (ESD) events resulting from these impacts. NASA Marshall Space Flight Center (MSFC) is partnering with Space Systems/Loral, LLC (SSL) to examine the results of simulated micrometeoroid impacts on the electrical performance of an advanced, lightweight flexible solar array design. The test is performed at MSFC's Micro Light Gas Gun Facility with SSL-provided coupons. Multiple impacts were induced at various locations on a powered test coupon under different string voltage (0V-150V) and string current (1.1A - 1.65A) conditions. The setup, checkout, and results from the impact testing are discussed.

  5. Selecting Erlang Test Cases Using Impact Analysis

    NASA Astrophysics Data System (ADS)

    Bozó, István; Tóth, Melinda

    2011-09-01

    Refactoring is a commonly used technology in the software development and maintenance process. However refactorings preserve the original behaviour of the system, developers want to be convinced about that, thus they retest the software after some modifications. Software testing is said to be the most expensive part of the lifecycle of software systems. Therefore our research focuses on selecting test cases affected by refactorings and have to be retested after the transformation. We describe the used mechanism in case of a dynamically typed functional programming language, Erlang.

  6. Assessing Individual-Level Impact of Interruptions during Online Testing

    ERIC Educational Resources Information Center

    Sinharay, Sandip; Wan, Ping; Choi, Seung W.; Kim, Dong-In

    2015-01-01

    With an increase in the number of online tests, the number of interruptions during testing due to unexpected technical issues seems to be on the rise. For example, interruptions occurred during several recent state tests. When interruptions occur, it is important to determine the extent of their impact on the examinees' scores. Researchers such as…

  7. Determining the Overall Impact of Interruptions during Online Testing

    ERIC Educational Resources Information Center

    Sinharay, Sandip; Wan, Ping; Whitaker, Mike; Kim, Dong-In; Zhang, Litong; Choi, Seung W.

    2014-01-01

    With an increase in the number of online tests, interruptions during testing due to unexpected technical issues seem unavoidable. For example, interruptions occurred during several recent state tests. When interruptions occur, it is important to determine the extent of their impact on the examinees' scores. There is a lack of research on this…

  8. 30 CFR 7.46 - Impact test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tabs which extend from the body of the filler caps. (3) Cracks in the cell cover, cells, or filler... with which the covers are to be approved, including any support blocks, with the battery cells... individual cells. At the test temperature range of 65 °F -80 °F (18.3 °C-26.7 °C), apply a dynamic force...

  9. Shallow seismic test at Marquez impact structure

    NASA Astrophysics Data System (ADS)

    Herrick, R. R.; Sharpton, V. L.

    1997-03-01

    Marquez Dome is the filled and eroded remnant of an about 15-km diameter, 58 Ma impact into unconsolidated sediments in Southeast Texas. The 3-km diameter central peak outcrops as Cretaceous marls and shales at the surface and is flanked by pre- and postimpact tertiary sands and clays. Petroleum exploration data for Marquez include over 160 km of reflection seismic data criss-crossing the site and numerous logged wells. These data have been used to roughly define the extent of the central peak from a zone of no continuous reflectors and the rim from low-angle, modest offset normal faults. A minimum group interval of 33 m and near offset of 100 m cause the industrial seismic data to be of low quality in the upper 250 ms, and consequently these lines do not image the flanks of the central peak and the shallow rim faults. We conducted a shallow seismic investigation to see if engineering seismic equipment could be used to image the flanks of the central peak and fill in the missing 250 ms in the industrial data.

  10. Fixture For Compression-After-Impact Tests Of Thin Specimens

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Hodge, Andrew J.; Lance, David G.

    1994-01-01

    Special fixture holds specimen of laminated composite material in 20-klb (89-kN) or larger load frame for compression-after-impact test. In preparation for test, specimen damaged by dropping weight on it at known kinetic energy. During test, specimen loaded in compression, and load measured, until specimen fails. Measurement data used to characterize compressive strength of specimen after impact important indicator of ability of structural components made of composite material to tolerate damage. Tests give more-realistic measures of tolerance to damage.

  11. Impact Testing of Orbiter Thermal Protection System Materials

    NASA Technical Reports Server (NTRS)

    Kerr, Justin

    2006-01-01

    This viewgraph presentation reviews the impact testing of the materials used in designing the shuttle orbiter thermal protection system (TPS). Pursuant to the Columbia Accident Investigation Board recommendations a testing program of the TPS system was instituted. This involved using various types of impactors in different sizes shot from various sizes and strengths guns to impact the TPS tiles and the Leading Edge Structural Subsystem (LESS). The observed damage is shown, and the resultant lessons learned are reviewed.

  12. Subtask 12F4: Effects of neutron irradiation on the impact properties and fracture behavior of vanadium-base alloys

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1995-03-01

    Up-to-date results on the effects of neutron irradiation on the impact properties and fracture behavior of V, V-Ti, V-Cr-Ti and V-Ti-Si alloys are presented in this paper, with an emphasis on the behavior of the U.S. reference alloys V-4Cr-4Ti containing 500-1000 wppm Si. Database on impact energy and cluctile-brittle transition temperature (DBTT) has been established from Charpy impact tests of one-third-size specimens irradiated at 420{degrees}C-600{degrees}C up to {approx}50 dpa in lithium environment in fast fission reactors. To supplement the Charpy impact tests fracture behavior was also characterized by quantitative SEM fractography on miniature tensile and disk specimens that were irradiated to similar conditions and fractured at -196{degrees}C to 200{degrees}C by multiple bending. For similar irradiation conditions irradiation-induced increase in DBTT was influenced most significantly by Cr content, indicating that irradiation-induced clustering of Cr atoms takes place in high-Cr (Cr {ge} 7 wt.%) alloys. When combined contents of Cr and Ti were {le}10 wt.%, effects of neutron irradiation on impact properties and fracture behavior were negligible. For example, from the Charpy-impact and multiple-bend tests there was no indication of irradiation-induced embrittlement for V-5Ti, V-3Ti-1Si and the U.S. reference alloy V-4Cr-4Ti after irradiation to {approx}34 dpa at 420{degrees}C to 600{degrees}C, and only ductile fracture was observed for temperatures as low as -196{degrees}C. 14 refs., 8 figs., 1 tab.

  13. A Comparison of Quasi-Static Indentation Testing to Low Velocity Impact Testing

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Douglas, Michael J.

    2001-01-01

    The need for a static test method for modeling low-velocity foreign object impact events to composites would prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low velocity impact tests were carried out and compared. Square specimens of many sizes and thickness were utilized to cover the array of types of low velocity impact events. Laminates with a n/4 stacking sequence were employed since this is by the most common type of engineering laminate. Three distinct flexural rigidities under two different boundary conditions were tested in order to obtain damage due to large deflections, contact stresses and both to examine if the static indentation-impact comparisons are valid under the spectrum of damage modes that can be experienced. Comparisons between static indentation and low velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined included dent depth, back surface crack length, delamination area and to a limited extent, load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low velocity impact tests, indicating that static indentation can be used to represent a low velocity impact event.

  14. Light-Weight Radioisotope Heater Unit (LWRHU) sequential impact tests

    SciTech Connect

    Reimus, M.A.H.; Rinehart, G.H.

    1997-08-01

    The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. A series of sequential impacts tests using simulant-fueled LWRHU capsules was recently conducted to determine a failure threshold. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Although the tests were conducted until the aeroshells were sufficiently distorted to be out of dimensional specification, the simulant-fueled capsules used in these tests were not severely deformed. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s. Postimpact examination revealed that the sequentially impacted capsules were slightly more deformed and were outside of dimensional specifications.

  15. Taylor impact tests and simulations of plastic bonded explosives

    NASA Astrophysics Data System (ADS)

    Clements, Brad E.; Thompson, Darla; Luscher, D. J.; DeLuca, Racci; Brown, Geoffrey

    2012-03-01

    Taylor impact tests were conducted on plastic bonded explosives PBX 9501 and PBXN-9 for impact velocities between 80 and 214 m/s. High-speed photography was used to image the impact event at a rate of one frame for every 25 μs. For early times, PBXN-9 showed large-deformation mushrooming of the explosive cylinders, followed by fragmentation by an amount proportional to the impact speed, was observed at all velocities. PBX 9501 appeared to be more brittle than PBXN-9, the latter demonstrated a more viscoelastic response. The post-shot fragments were collected and particle size distributions were obtained. The constitutive model ViscoSCRAM was then used to model the Taylor experiments using the finite element code ABAQUS. Prior to the Taylor simulations, ViscoSCRAM was parameterized for the two explosives using uniaxial stress-strain data. Simulating Taylor impact tests validates the model in situations undergoing extreme damage and fragmentation.

  16. Impact Testing and Simulation of Composite Airframe Structures

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Littell, Justin D.; Horta, Lucas G.; Annett, Martin S.; Fasanella, Edwin L.; Seal, Michael D., II

    2014-01-01

    Dynamic tests were performed at NASA Langley Research Center on composite airframe structural components of increasing complexity to evaluate their energy absorption behavior when subjected to impact loading. A second objective was to assess the capabilities of predicting the dynamic response of composite airframe structures, including damage initiation and progression, using a state-of-the-art nonlinear, explicit transient dynamic finite element code, LS-DYNA. The test specimens were extracted from a previously tested composite prototype fuselage section developed and manufactured by Sikorsky Aircraft Corporation under the US Army's Survivable Affordable Repairable Airframe Program (SARAP). Laminate characterization testing was conducted in tension and compression. In addition, dynamic impact tests were performed on several components, including I-beams, T-sections, and cruciform sections. Finally, tests were conducted on two full-scale components including a subfloor section and a framed fuselage section. These tests included a modal vibration and longitudinal impact test of the subfloor section and a quasi-static, modal vibration, and vertical drop test of the framed fuselage section. Most of the test articles were manufactured of graphite unidirectional tape composite with a thermoplastic resin system. However, the framed fuselage section was constructed primarily of a plain weave graphite fabric material with a thermoset resin system. Test data were collected from instrumentation such as accelerometers and strain gages and from full-field photogrammetry.

  17. Using Baseline Studies in the Investigation of Test Impact

    ERIC Educational Resources Information Center

    Wall, Dianne; Horak, Tania

    2007-01-01

    The purpose of this article is to discuss the role of "baseline studies" in investigations of test impact and to illustrate the type of thinking underlying the design and implementation of such studies by reference to a recent study relating to a high-stakes test of English language proficiency. Baseline studies are used to describe an educational…

  18. Impact Testing of Stainless Steel Material at Cold Temperatures

    SciTech Connect

    Spencer D. Snow; D. Keith Morton; Robert K. Blandford

    2008-07-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, a previous paper [1] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens at room and elevated temperatures. The goal of the work presented herein is to add recently completed impact tensile testing results at -20 degrees F conditions for dual-marked 304/304L and 316/316L stainless steel material specimens (hereafter referred to as 304L and 316L, respectively). Recently completed welded material impact testing at -20 degrees F, room, 300 degrees F, and 600 degrees F is also reported. Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, the impact tests achieved strain rates in the 4 to 40 per second range, depending upon the material temperature. Elevated true stress-strain curves for these materials reflecting varying strain rates and temperatures are presented herein.

  19. An evaluation of the liquid oxygen mechanical impact test

    NASA Technical Reports Server (NTRS)

    Moffett, Gary E.; Schmidt, Naomi E.; Pedley, Michael D.; Linley, Larry J.

    1989-01-01

    This study was conducted to evaluate the repeatability of the ambient LO2 mechanical impact test used by NASA to screen materials for oxygen service (NHB 8060.1B Test 12 Part 1, which is based on the ASTM method). Four materials were tested: Teflon, Vespel SP-21, Viton A, and nylon 6/6. Each test material was subjected to several series of tests that were conducted at different impact energy levels. The results show that the variability from series to series in the reaction threshold energy level is within the precision statement of the ASTM method. However, this precision is considerably broader than the reaction threshold implied by the NHB 8060.1B test criteria.

  20. Taylor Impact Tests on PBX Composites: Imaging and Analysis

    NASA Astrophysics Data System (ADS)

    Thompson, Darla; Deluca, Racci

    2013-06-01

    A series of Taylor impact tests were performed on three plastic bonded explosive (PBX) formulations: PBX 9501, PBXN-9 and HPP (propellant). The first two formulations are HMX-based, and all three have been characterized quasi-statically in tension and compression. The Taylor impact tests use a 500 psi gas gun to launch PBX projectiles (approximately 30 grams, 16 mm diameter, 76 mm long) at velocities as high as 215 m/s. Tests were performed remotely and no sign of ignition/reaction have been observed to date. High-speed imaging was used to capture the impact of the specimen onto the surface of a steel anvil. Side-view contour images have been analyzed using dynamic stress equations from the literature, and additionally, front-view images have been used to estimate a tensile strain failure criterion for initial specimen fracture. Post-test sieve analysis of specimen debris correlates fragmentation with projectile velocity, and these data show interesting differences between composites. Along with other quasi-static and dynamic measurements, these impact images and fragmentation data provide a useful metric for the calibration or evaluation of intermediate-rate model predictions of PBX constituitive response and failure/fragmentation. Intermediate-rate tests involving other impact configurations are being considered.

  1. Impact Testing of Composites for Aircraft Engine Fan Cases

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.

    2001-01-01

    Before composite materials can be considered for use in the fan case of a commercial jet engine, the performance of a composite structure under blade-out loads needs to be demonstrated. The objective of this program is to develop an efficient test and analysis method for evaluating potential composite case concepts. Ballistic impact tests were performed on laminated glass/epoxy composites in order to identify potential failure modes and to provide data for analysis. Flat 7x7 in. panels were impacted with cylindrical titanium projectiles, and 15 in. diameter half-rings were impacted with wedge-shaped titanium projectiles. Composite failure involved local fiber fracture as well as tearing and delamination on a larger scale. A 36 in. diameter full-ring subcomponent was proposed for larger scale testing. Explicit, transient, finite element analyses were used to evaluate impact dynamics and subsequent global deformation for the proposed full-ring subcomponent test. Analyses on half-ring and quarter ring configurations indicated that less expensive smaller scale tests could be used to screen potential composite concepts when evaluation of local impact damage is the primary concern.

  2. Taylor impact tests on PBX composites: imaging and analysis

    NASA Astrophysics Data System (ADS)

    Graff Thompson, Daria; DeLuca, Racci; Archuleta, Jose; Brown, Geoff W.; Koby, Joseph

    2014-05-01

    A series of Taylor impact tests were performed on three plastic bonded explosive (PBX) formulations: PBX 9501, PBXN-9 and HPP (propellant). The first two formulations are HMX-based, and all three have been characterized quasi-statically in tension and compression. The Taylor impact tests use a 500 psi gas gun to launch PBX projectiles (approximately 30 grams, 16 mm diameter, 76 mm long), velocities as high as 215 m/s, at a steel anvil. Tests were performed remotely and no sign of ignition/reaction have been observed to date. Highspeed imaging was used to capture the impact of the specimen onto anvil surface. Side-view contour images have been analyzed using dynamic stress equations from the literature, and additionally, front-view images have been used to estimate a tensile strain failure criterion for initial specimen fracture. Post-test sieve analysis of specimen debris correlates fragmentation with projectile velocity, and these data show interesting differences between composites. Along with other quasi-static and dynamic measurements, Taylor impact images and fragmentation data provide a useful metric for the calibration or evaluation of intermediate-rate model predictions of PBX constituitive response and failure/fragmentation. Intermediate-rate tests involving other impact configurations are being considered.

  3. The Impact of Personality and Test Conditions on Mathematical Test Performance

    ERIC Educational Resources Information Center

    Hayes, Heather; Embretson, Susan E.

    2013-01-01

    Online and on-demand tests are increasingly used in assessment. Although the main focus has been cheating and test security (e.g., Selwyn, 2008) the cross-setting equivalence of scores as a function of contrasting test conditions is also an issue that warrants attention. In this study, the impact of environmental and cognitive distractions, as…

  4. Development of impact resistant boron/aluminum composites for turbojet engine fan blades

    NASA Technical Reports Server (NTRS)

    Melnyk, P.; Toth, I. J.

    1975-01-01

    Composite fabrication was performed by vacuum press diffusion bonding by both the foil-filament array and preconsolidated monotape methods. The effect of matrix material, fiber diameter, matrix enhancement, fiber volume reinforcement, test temperature, angle-plying, notch, impact orientation, processing variables and fabrication methods on tensile strength and Charpy impact resistance are evaluated. Root attachment concepts, were evaluated by room and elevated temperature tensile testing, as well as by pendulum-Izod and ballistic impact testing. Composite resistance to foreign object damage was also evaluated by ballistic impacting of panels using projectiles of gelatin, RTV rubber and steel at various velocities, and impingement angles. A significant improvement in the pendulum impact resistance of B-Al composites was achieved.

  5. Hypervelocity impact testing of Shuttle Orbiter thermal protection system tiles

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Ortega, Javier

    1990-01-01

    Results are presented from a series of 22 hypervelocity impact tests carried out on the thermal protection system (TPS) for the Shuttle Orbiter. Both coated and uncoated low-density (0.14 g/cu cm) LI-900 and high-density (0.35 g/cu cm) LI-2200 tiles were tested. The results are used to develop the penetration and damage correlations which can be used in meteoroid and debris hazard analyses for spacecraft with a ceramic tile TPS. It is shown that tile coatings act as a 'bumper' to fragment the impacting projectile, with thicker coating providing increased protection.

  6. Apparatus for Hot Impact Testing of Material Specimens

    NASA Technical Reports Server (NTRS)

    Pawlik, Ralph J.; Choi, Sung R.

    2006-01-01

    An apparatus for positioning and holding material specimens is a major subsystem of a system for impact testing of the specimens at temperatures up to 1,500 C. This apparatus and the rest of the system are designed especially for hot impact testing of advanced ceramics, composites, and coating materials. The apparatus includes a retaining fixture on a rotating stage on a vertically movable cross support driven by a linear actuator. These components are located below a furnace wherein the hot impact tests are performed (see Figure 1). In preparation for a test, a specimen is mounted on the retaining fixture, then the cross support is moved upward to raise the specimen, through an opening in the bottom of the furnace, to the test position inside the furnace. On one side of the furnace there is another, relatively small opening on a direct line to the specimen. Once the specimen has become heated to the test temperature, the test is performed by using an instrumented external pressurized-gas-driven gun to shoot a projectile through the side opening at the specimen.

  7. Hypervelocity Impact Testing of Nickel Hydrogen Battery Cells

    NASA Technical Reports Server (NTRS)

    Frate, David T.; Nahra, Henry K.

    1996-01-01

    Nickel-Hydrogen (Ni/H2) battery cells have been used on several satellites and are planned for use on the International Space Station. In January 1992, the NASA Lewis Research Center (LeRC) conducted hypervelocity impact testing on Ni/H2 cells to characterize their failure modes. The cell's outer construction was a 24 mil-thick Inconel 718 pressure vessel. A sheet of 1.27 cm thick honeycomb was placed in front of the battery cells during testing to simulate the on-orbit box enclosure. Testing was conducted at the NASA White Sands Test Facility (WSTF). The hypervelocity gun used was a 7.6 mm (0.30 caliber) two-stage light gas gun. Test were performed at speeds of 3, 6, and 7 km/sec using aluminum 2017 spherical particles of either 4.8 or 6.4 mm diameter as the projectile. The battery cells were electrically charged to about 75 percent of capacity, then back-filled with hydrogen gas to 900 psi simulating the full charge condition. High speed film at 10,000 frames/sec was taken of the impacts. Impacts in the dome area (top) and the electrode area (middle) of the battery cells were investigated. Five tests on battery cells were performed. The results revealed that in all of the test conditions investigated, the battery cells simply vented their hydrogen gas and some electrolyte, but did not burst or generate any large debris fragments.

  8. Hypervelocity Impact Test Results for a Metallic Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Karr, Katherine L.; Poteet, Carl C.; Blosser, Max L.

    2003-01-01

    Hypervelocity impact tests have been performed on specimens representing metallic thermal protection systems (TPS) developed at NASA Langley Research Center for use on next-generation reusable launch vehicles (RLV). The majority of the specimens tested consists of a foil gauge exterior honeycomb panel, composed of either Inconel 617 or Ti-6Al-4V, backed with 2.0 in. of fibrous insulation and a final Ti-6Al-4V foil layer. Other tested specimens include titanium multi-wall sandwich coupons as well as TPS using a second honeycomb sandwich in place of the foil backing. Hypervelocity impact tests were performed at the NASA Marshall Space Flight Center Orbital Debris Simulation Facility. An improved test fixture was designed and fabricated to hold specimens firmly in place during impact. Projectile diameter, honeycomb sandwich material, honeycomb sandwich facesheet thickness, and honeycomb core cell size were examined to determine the influence of TPS configuration on the level of protection provided to the substructure (crew, cabin, fuel tank, etc.) against micrometeoroid or orbit debris impacts. Pictures and descriptions of the damage to each specimen are included.

  9. Impact Testing of a Stirling Converter's Linear Alternator

    NASA Technical Reports Server (NTRS)

    Suarez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey

    2002-01-01

    The U.S. Department of Energy (DOE), in conjunction with the NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic impact tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of this test was to identify dynamic structural characteristics of the Stirling Technology Demonstration Convertor (TDC). This paper addresses the test setup, procedure, and results of the impact testing conducted on the Stirling TDC in May 2001.

  10. Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2010-01-01

    The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.

  11. Impact limiter tests of four commonly used materials and establishment of an impact limiter data base

    SciTech Connect

    McMurtry, W.M.; Hohnstreiter, G.F.

    1995-12-31

    In designing a package for transporting hazardous or radioactive materials, there are a number of components whose design can lead to the success or failure to meet regulatory requirements for Type B packages. One of these components is the impact limiter. The primary purpose of the impact limiter is to protect the package and its contents from sudden deceleration. It can also act as a thermal barrier. The package is protected by the impact limiter`s ability to act as an energy absorber. The crush strength of most impact limiting materials is determined by a standard quasistatic (QS) method. However it has been observed that there are a number of factors that affect crush strength. The material being used as an impact limiter may appear incompressible because of one or more of these factors. Factors that determine compressive strength of impact limiter materials are; the material density; the thickness of the impact limiter material. There must be adequate material to absorb the impact and not go into lockup, lockup up occurs when the free volume of the material is eliminated and the crush strength sharply increases; the angle of impact; and the loading rate and operating temperature. All of these are interactive and therefore difficult to model. It is the intent of tests discussed in this paper to determine the dependency of crush strength to loading rate and angle of impact to the basic grain direction of two different densities of four impact limiting materials.

  12. End-on radioisotope thermoelectric generator impact tests

    NASA Astrophysics Data System (ADS)

    Reimus, M. A. H.; Hinckley, J. E.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  13. End-on radioisotope thermoelectric generator impact tests

    SciTech Connect

    Reimus, M.A.H.; Hhinckley, J.E.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of [sup 238]Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  14. End-on radioisotope thermoelectric generator impact tests

    SciTech Connect

    Reimus, M.A.; Hinckley, J.E.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure. {copyright} {ital 1997 American Institute of Physics.}

  15. Low velocity impact testing and nondestructive evaluation of transparent materials

    SciTech Connect

    Brennan, R. E.; Green, W. H.

    2011-06-23

    Advanced transparent materials are used in protective systems for enhancing the survivability of ground vehicles, air vehicles, and personnel in applications such as face shields, riot gear, and vehicle windows. Low velocity impact damage can limit visibility and compromise the structural integrity of a transparent system, increasing the likelihood of further damage or penetration from a high velocity impact strike. For this reason, it is critical to determine damage tolerance levels of transparent systems to indicate whether or not a component should be replaced. In this study, transparent laminate systems will be tested by comparing baseline conditions to experimentally controlled damage states. Destructive testing including air gun and sphere impact testing will be used to replicate low velocity impacts in the field. Characterization of the damaged state will include basic visual inspection as well as nondestructive techniques including cross-polarization, x-ray, and ultrasound. The combination of destructive testing and characterization of the resulting damage can help to establish a damage acceptance criterion for materials used in protective systems.

  16. Taylor Impact Tests and Simulations on PBX 9501

    NASA Astrophysics Data System (ADS)

    Clements, Brad; Thompson, Darla G.; Luscher, D. J.; Deluca, Racci

    2011-06-01

    Taylor impact tests have been conducted previously on plastic bonded explosives (PBXs) to characterize the stress state of these materials as they impact smooth and flat steel anvil surfaces at speeds of ~100m/s (i.e. Christopher, et al, 11th Detonation Symposium). In 2003, C. Liu and R. Ellis (unpublished, Los Alamos National Laboratory) performed Taylor tests on PBX 9501 up to speeds of 115 m/s, capturing impact images. In the work presented here, we have extended these tests to velocities of 200 m/s using a composite-lined gun barrel and no specimen sabot. Specimen images are used to validate the thermo-mechanical constitutive model ViscoSCRAM. ViscoSCRAM has been parameterized for PBX 9501 in uniaxial stress configurations. Simulating Taylor impact experiments tests the model in situations undergoing extreme damage. In addition, experimental variations to specimen confinement and friction are introduced in an attempt to establish ignition thresholds in this velocity regime.

  17. Analysis-test correlation of airbag impact for Mars landing

    SciTech Connect

    Salama, M.; Davis, G.; Kuo, C.P.

    1994-12-31

    The NASA Mars Pathfinder mission is intended to demonstrate key low cost technologies for use in future science missions to Mars. Among these technologies is the landing system. Upon entering in Martian atmosphere at about 7000 m/sec., the spacecraft will deploy a series of breaking devices (parachute and solid rockets) to slow down its speed to less than 20 m/sec. as it impacts with the Martian ground. To cushion science instruments form the landing impact, an airbag system is inflated to surround the lander approximately five seconds before impact. After multiple bounces, the lander/airbags comes to rest, the airbags are deflated and retracted, and the lander opens up its petals to allow a microrover to begin exploration. Of interest here, is the final landing phase. Specifically, this paper will focus on the methodology used to simulate the nonlinear dynamics of lander/airbags landing impact, and how this simulation correlates with initial tests.

  18. Sloshing roof impact tests of a rectangular tank

    SciTech Connect

    Minowa, C.; Ogawa, N.; Harada, I.; Ma, D.C.

    1994-06-01

    Some tanks have been damaged at the roofs due to sloshing impact caused by strong earthquakes. It is, therefore, necessary to consider the impact force in the aseismic design code for tank roofs. However, there are few studies on the earthquake responses of storage and process tank roofs. As a first step to investigate the effects of sloshing impact a series of the shaking table tests of a rectangular tank have been conducted at the National Research Institute for Earth Science and Disaster Prevention (NIED). The results of these shaking table tests are presented in the paper. The test tank is rectangular in shape having dimensions of 5 m {times} 3 m {times} 2 m length {times} width {times} height). The tank was constructed of glass-fiber reinforced plastic panels. Every panel had a flange on four edges, and each panel was connected by bolts along the flange. The test tank was set on the NIED shaking table (15 m by 15 m). Two types of liquid were used, water and a viscous liquid (water mixed with polymeric powders). The roof impact pressures and other quantities were measured. During the tests using the 400 pi El-Centro excitation, the roof deformation sensor steel beam was damaged. The response of side walls with different rigidity were measured in the wall bulging tests. The measured vibrations within the panel plates were larger than those in the panel flanges. The viscous liquid of 100 cp had little influence on wall bulging responses. However, the viscous effects on sloshing responses were observed in the sloshing tests. Approximate analyses of rectangular tanks, considering the influence of static water pressure, are also presented in this paper.

  19. Impact Tensile Testing of Stainless Steels at Various Temperatures

    SciTech Connect

    D. K. Morton

    2008-03-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern (1 to 300 per second) are not well documented. However, research is being performed at the Idaho National Laboratory to quantify these characteristics. The work presented herein discusses tensile impact testing of dual-marked 304/304L and 316/316L stainless steel material specimens. Both base material and welded material specimens were tested at -20 oF, room temperature, 300 oF, and 600 oF conditions. Utilizing a drop weight impact test machine and 1/4-inch and 1/2-inch thick dog bone-shaped test specimens, a strain rate range of approximately 4 to 40 per second (depending on initial temperature conditions) was achieved. Factors were determined that reflect the amount of increased strain energy the material can absorb due to strain rate effects. Using the factors, elevated true stress-strain curves for these materials at various strain rates and temperatures were generated. By incorporating the strain rate elevated true stress-strain material curves into an inelastic finite element computer program as the defined material input, significant improvement in the accuracy of the computer analyses was attained. However, additional impact testing is necessary to achieve higher strain rates (up to 300 per second) before complete definition of strain rate effects can be made for accidental drop events and other similar energy-limited impulsive loads. This research approach, using impact testing and a total energy analysis methodology to quantify strain rate effects, can be applied to many other materials used in government and industry.

  20. Hydrodynamic impact analysis and testing of an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Bird, Isabel

    Analysis and testing have been conducted to assess the feasibility of a small UAV that can be landed in the water and recovered for continued use. Water landings may be desirable in a number of situations, for example when testing UAVs outside of the territorial waters of the US to avoid violating FAA regulations. Water landings may also be desirable when conducting surveillance missions in marine environments. Although the goal in landing is to have the UAV lightly set down on the water, rough seas or gusty winds may result in a nose-in landing where the UAV essentially impacts the surface of the water. The tested UAV is a flying wing design constructed of expanded polypropylene foam wings with a hollowed out center-section for the avionics. Acceleration data was collected by means of LIS331 3-axis accelerometers positioned at five locations, including the wingtips. This allowed conclusions to be drawn with respect to the loads experienced on impact throughout the airframe. This data was also used to find loads corresponding to the maximum decelerations experienced during impact. These loads were input into a finite element analysis model of the wing spars to determine stress in the wing spars. Upon impact, the airframe experienced high-frequency oscillation. Surprisingly, peak accelerations at the wingtips were observed at up to 15g greater than corresponding accelerations at the center of the fuselage.

  1. Program for impact testing of spar-shell fan blades, test report

    NASA Technical Reports Server (NTRS)

    Ravenhall, R.; Salemme, C. T.

    1978-01-01

    Six filament-wound, composite spar-shell fan blades were impact tested in a whirligig relative to foreign object damage resulting from ingestion of birds into the fan blades of a QCSEE-type engine. Four of the blades were tested by injecting a simulated two pound bird into the path of the rotating blade and two were tested by injecting a starling into the path of the blade.

  2. Hypervelocity Impact Test Facility: A gun for hire

    NASA Technical Reports Server (NTRS)

    Johnson, Calvin R.; Rose, M. F.; Hill, D. C.; Best, S.; Chaloupka, T.; Crawford, G.; Crumpler, M.; Stephens, B.

    1994-01-01

    An affordable technique has been developed to duplicate the types of impacts observed on spacecraft, including the Shuttle, by use of a certified Hypervelocity Impact Facility (HIF) which propels particulates using capacitor driven electric gun techniques. The fully operational facility provides a flux of particles in the 10-100 micron diameter range with a velocity distribution covering the space debris and interplanetary dust particle environment. HIF measurements of particle size, composition, impact angle and velocity distribution indicate that such parameters can be controlled in a specified, tailored test designed for or by the user. Unique diagnostics enable researchers to fully describe the impact for evaluating the 'targets' under full power or load. Users regularly evaluate space hardware, including solar cells, coatings, and materials, exposing selected portions of space-qualified items to a wide range of impact events and environmental conditions. Benefits include corroboration of data obtained from impact events, flight simulation of designs, accelerated aging of systems, and development of manufacturing techniques.

  3. High-pressure oxygen test evaluations. [impact tests/metals - space shuttles

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.; Key, C. F.

    1974-01-01

    The relevance of impact sensitivity testing to the development of the space shuttle main engine is discussed in the light of the special requirements for the engine. The background and history of the evolution of liquid and gaseous oxygen testing techniques and philosophy is discussed also. The parameters critical to reliable testing are treated in considerable detail, and test apparatus and procedures are described and discussed. Materials threshold sensitivity determination procedures are considered and a decision logic diagram for sensitivity threshold determination was plotted. Finally, high-pressure materials sensitivity test data are given for selected metallic and nonmetallic materials.

  4. The ethics of testing a test: randomized trials of the health impact of diagnostic tests for infectious diseases.

    PubMed

    Dowdy, David W; Gounder, Celine R; Corbett, Elizabeth L; Ngwira, Lucky G; Chaisson, Richard E; Merritt, Maria W

    2012-12-01

    In the last decade, many new rapid diagnostic tests for infectious diseases have been developed. In general, these new tests are developed with the intent to optimize feasibility and population health, not accuracy alone. However, unlike drugs or vaccines, diagnostic tests are evaluated and licensed on the basis of accuracy, not health impact (eg, reduced morbidity or mortality). Thus, these tests are sometimes recommended or scaled up for purposes of improving population health without randomized evidence that they do so. We highlight the importance of randomized trials to evaluate the health impact of novel diagnostics and note that such trials raise distinctive ethical challenges of equipoise, equity, and informed consent. We discuss the distinction between equipoise for patient-important outcomes versus diagnostic accuracy, the equity implications of evaluating health impact of diagnostics under routine conditions, and the importance of offering reasonable choices for informed consent in diagnostic trials.

  5. Can clinical tests help monitor human papillomavirus vaccine impact?

    PubMed

    Meites, Elissa; Lin, Carol; Unger, Elizabeth R; Steinau, Martin; Patel, Sonya; Markowitz, Lauri E; Hariri, Susan

    2013-09-01

    As immunization programs for human papillomavirus (HPV) are implemented more widely around the world, interest is increasing in measuring their impact. One early measurable impact of HPV vaccine is on the prevalence of specific HPV types in a population. In low-resource settings, a potentially attractive strategy would be to monitor HPV prevalence using clinical cervical cancer screening test results to triage specimens for HPV typing. We assessed this approach in a nationally representative population of U.S. females aged 14-59 years. Using self-collected cervico-vaginal swab specimens from 4,150 women participating in the National Health and Nutrition Examination Survey during 2003-2006, we evaluated type-specific HPV prevalence detected by the Roche linear array (LA) research test on all specimens, compared with type-specific HPV prevalence detected by LA conducted only on specimens positive by the digene hybrid capture 2 (HC-2) clinical test. We calculated weighted prevalence estimates and their 95% confidence intervals (CIs), and examined relative type-specific HPV prevalence according to the two testing approaches. The population prevalence of oncogenic HPV vaccine types 16/18 was 6.2% (CI:5.4-7.1) by LA if all specimens were tested, and 2.4% (CI:1.9-3.0) if restricted to positive HC-2. Relative prevalence of individual HPV types was similar for both approaches. Compared with typing all specimens, a triage approach would require testing fewer specimens, but a greater reduction in HPV prevalence or a larger group of specimens would be needed to detect vaccine impact. Further investigation is warranted to inform type-specific HPV monitoring approaches around the world.

  6. Radioisotope thermoelectric generator/thin fragment impact test

    NASA Astrophysics Data System (ADS)

    Reimus, M. A. H.; Hinckley, J. E.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  7. Simulated hail impact testing of photovoltaic solar panels

    NASA Technical Reports Server (NTRS)

    Moore, D.; Wilson, A.; Ross, R.

    1978-01-01

    Techniques used to simulate and study the effect of hail on photovoltaic solar panels are described. Simulated hail stones (frozen ice spheres projected at terminal velocity) or steel balls were applied by air guns, gravity drop, or static loading. Tests with simulated hail and steel balls yielded different results. The impact strength of 10 commercially available flat-plate photovoltaic modules was tested. It was found that none of the six panel designs incorporating clear potting silicone material as the outermost layer remained undamaged by 1-in. simulated hailstones, while a photovoltaic module equipped with a 0.188-in.-thick acrylic cover sheet would be able to withstand the impact of a 2-in.-diameter hailstone.

  8. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect

    Reimus, M.A.H.; Hinckley, J.E.

    1998-12-31

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the convertor housing, failure of one fueled clad, and release of a small quantity of fuel.

  9. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect

    Reimus, M. A. H.; Hinckley, J. E.

    1998-01-15

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  10. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect

    Reimus, M.A.; Hinckley, J.E.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel. {copyright} {ital 1998 American Institute of Physics.}

  11. Data Reduction and Its Impact on Test-Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Bark, Lindley W.

    2001-01-01

    A research project has been initiated to improve crash test and analysis correlation. The research has focused on two specimen types: simple metallic beams and plates; and a representative composite fuselage section. Impact tests were performed under carefully controlled conditions. In addition, the specimens were densely instrumented to enable not only correlation with finite element simulations, but to also assess the repeatability of the data. Simulations utilizing a detailed finite element model were executed in a nonlinear transient dynamic code. The results presented in this paper concentrate on the effect of several data reduction processes, to include filtering frequency and sampling rate, on the correlation accuracy.

  12. Arcjet Testing of Micro-Meteoroid Impacted Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Munk, Michelle M.; Glaab, Louis J.

    2013-01-01

    There are several harsh space environments that could affect thermal protection systems and in turn pose risks to the atmospheric entry vehicles. These environments include micrometeoroid impact, extreme cold temperatures, and ionizing radiation during deep space cruise, all followed by atmospheric entry heating. To mitigate these risks, different thermal protection material samples were subjected to multiple tests, including hyper velocity impact, cold soak, irradiation, and arcjet testing, at various NASA facilities that simulated these environments. The materials included a variety of honeycomb packed ablative materials as well as carbon-based non-ablative thermal protection systems. The present paper describes the results of the multiple test campaign with a focus on arcjet testing of thermal protection materials. The tests showed promising results for ablative materials. However, the carbon-based non-ablative system presented some concerns regarding the potential risks to an entry vehicle. This study provides valuable information regarding the capability of various thermal protection materials to withstand harsh space environments, which is critical to sample return and planetary entry missions.

  13. West Valley Demonstration Project full-scale canister impact tests

    SciTech Connect

    Whittington, K.F.; Alzheimer, J.M.; Lutz, C.E.

    1995-09-01

    Five West Valley Nuclear Services (WVNS) high-level waste (HLW) canisters were impact tested during 1994 to demonstrate compliance with the drop test requirements of the Waste Acceptance Product Specifications. The specifications state that the canistered waste form must be able to survive a 7{minus}m (23 ft) drop unbreached. The 10-gauge (0.125 in. wall thickness) stainless steel canisters were approximately 85% filled with simulated vitrified waste and weighed about 2100 kg (4600 lb). Each canister was dropped vertically from a height of 7 m (23 ft) onto an essentially unyielding surface. The integrity of the canister was determined by the application and analysis of strain circles, dimensional measurements, and helium leak testing. The canisters were also visually inspected before and after the drop for physical damage. The results of the impact test verify that the canisters survived the 7{minus}m drops unbreached. Therefore, these results demonstrate that the reference canister meets the drop test specification of the Waste Acceptance Product Specification.

  14. Sand Impact Tests of a Half-Scale Crew Module Boilerplate Test Article

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.; Hardy, Robin C.

    2012-01-01

    Although the Orion Multi-Purpose Crew Vehicle (MPCV) is being designed primarily for water landings, a further investigation of launch abort scenarios reveals the possibility of an onshore landing at Kennedy Space Center (KSC). To gather data for correlation against simulations of beach landing impacts, a series of sand impact tests were conducted at NASA Langley Research Center (LaRC). Both vertical drop tests and swing tests with combined vertical and horizontal velocity were performed onto beds of common construction-grade sand using a geometrically scaled crew module boilerplate test article. The tests were simulated using the explicit, nonlinear, transient dynamic finite element code LS-DYNA. The material models for the sand utilized in the simulations were based on tests of sand specimens. Although the LSDYNA models provided reasonable predictions for peak accelerations, they were not always able to track the response through the duration of the impact. Further improvements to the material model used for the sand were identified based on results from the sand specimen tests.

  15. Compression-after-impact testing of thin composite materials

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Hodge, Andrew J.

    1991-01-01

    A new method has been devised to test composite specimens as thin as 8 plies and up to 7.6 cm in width for compression strength. This method utilizes a fixture incorporating the best features of the Celanese and IITRI fixtures combined with an antibuckling jig developed at the University of Dayton Research Institute. This new method uses up to 83 percent less material than the most commonly used compression-after-impact technique (which calls for a 48 ply test specimen) and can also be performed on smaller loading frames since a much smaller force is needed to fail the specimen. The thickness of the test specimen can be fabricated to exactly match production part thickness, thus yielding more meaningful results. CAI tests were performed on IM6/3501 carbon/epoxy utilizing this new method. To verify the design, a series of tests were performed in which undamaged specimens were tested using the new fixture and ASTM D 3410-87 (Celanese compression test) and the results compared. The new fixture works well and will be a valuable asset to MSFC's damage tolerance program.

  16. Shape Distribution of Fragments from Microsatellite Impact Tests

    NASA Technical Reports Server (NTRS)

    Liou, J.C.; Hanada, T.

    2009-01-01

    Fragment shape is an important factor for conducting reliable orbital debris damage assessments for critical space assets, such as the International Space Station. To date, seven microsatellite impact tests have been completed as part of an ongoing collaboration between Kyushu University and the NASA Orbital Debris Program Office. The target satellites ranged in size from 15 cm 15 cm 15 cm to 20 cm 20 cm 20 cm. Each target satellite was equipped with fully functional electronics, including circuits, battery, and transmitter. Solar panels and multi-layer insulation (MLI) were added to the target satellites of the last two tests. The impact tests were carried out with projectiles of different sizes and impact speeds. All fragments down to about 2 mm in size were collected and analyzed based on their three orthogonal dimensions, x, y, and z, where x is the longest dimension, y is the longest dimension in the plane perpendicular to x, and z is the longest dimension perpendicular to both x and y. Each fragment was also photographed and classified by shape and material composition. This data set serves as the basis of our effort to develop a fragment shape distribution. Two distinct groups can be observed in the x/y versus y/z distribution of the fragments. Objects in the first group typically have large x/y values. Many of them are needle-like objects originating from the fragmentation of carbon fiber reinforced plastic materials used to construct the satellites. Objects in the second group tend to have small x/y values, and many of them are box-like or plate-like objects, depending on their y/z values. Each group forms the corresponding peak in the x/y distribution. However, only one peak can be observed in the y/z distribution. These distributions and how they vary with size, material type, and impact parameters will be described in detail within the paper.

  17. Machine for development impact tests in sports seats and similar

    NASA Astrophysics Data System (ADS)

    Gonçalves, R. M.

    2015-10-01

    This paper describes the stages of development of a machine to perform impact tests in sport seats, seats for spectators and multiple seats. This includes reviews and recommendations for testing laboratories that have needs similar to the laboratory where unfolded this process.The machine was originally developed seeking to meet certain impact tests in accordance with the NBR15925 standards; 15878 and 16031. The process initially included the study of the rules and the election of the tests for which the machine could be developed and yet all reports and outcome of interaction with service providers and raw materials.For operating facility, it was necessary to set entirely the machine control, which included the concept of dialogue with operator, the design of the menu screens and the procedures for submission and registration of results. To ensure reliability in the process, the machine has been successfully calibrated according to the requirements of the Brazilian network of calibration.The criticism to this enterprise covers the technical and economic aspects involved and points out the main obstacles that were needed to overcome.

  18. Effect of aging on impact properties of ASTM A890 Grade 1C super duplex stainless steel

    SciTech Connect

    Martins, Marcelo Forti, Leonardo Rodrigues Nogueira

    2008-02-15

    Super duplex stainless steels in the solution annealed condition are thermodynamically metastable systems which, when exposed to heat, present a strong tendency to 'seek' the most favorable thermodynamic condition. The main purpose of this study was to characterize the microstructure of a super duplex stainless steel in the as cast and solution annealed conditions, and to determine the influence of aging heat treatments on its impact strength, based on Charpy impact tests applied to V-notched test specimens. The sigma phase was found to begin precipitating at heat treatment temperatures above 760 deg. C and to dissolve completely only above 1040 deg. C, with the highest peak concentration of this phase appearing at close to 850 deg. C. Heat treatments conducted at temperatures of 580 deg. C to 740 deg. C led to a reduction of the energy absorbed in the Charpy impact test in response to the precipitation of a particulate phase with particle sizes ranging from 0.5 {mu}m to 1.0 {mu}m, with a chromium and iron-rich chemical composition.

  19. Testing and simulation of composite laminates under impact loading

    NASA Astrophysics Data System (ADS)

    Dang, Xinglai

    Owing to their high stiffness-to-weight and high strength-to-weight ratios, fiber-reinforced polymer-matrix composite laminates are excellent materials for high-performance structures. However, their properties in the thickness direction are very poor as they are weakly bonded by polymeric matrices through laminate interfaces. Accordingly, when a composite laminate is subjected to impact loading, high interlaminar stresses along with the low interlaminar strengths could easily result in interlaminar damage such as delamination. This thesis investigated the response of composite laminates under low-velocity impact and presented numerical techniques for impact simulation. To begin with, instrumented drop-weight impacts ranging from subperforation to perforation levels were introduced to composite laminates having various dimensions and thicknesses. Damaged composite laminates were then subjected to compression-after-impact tests for evaluations of residual properties. Experimental results revealed that perforation was an important damage milestone since impact parameters such as peak force, contact duration, maximum deflection and energy absorption, and residual properties such as compressive stiffness, strength and energy absorption all reached critical levels as perforation took place. It was also found that thickness played a more important role than in-plane dimensions in perforation process. In order to understand more about the relationship between laminate thickness and perforation resistance and to present an economical method to improve perforation resistance, thick laminated composite plates and their assembled counterparts were investigated and compared. An energy profile correlating the impact energy and absorbed energy at all energy levels for each type of composite plates investigated was established and found to be able to address the relationship between energy and damage. Experimental results concluded that increasing thickness was more efficient

  20. Single and multiple impact ignition of new and aged high explosives in the Steven Impact Test

    SciTech Connect

    Chidester, S K; DePiero, A H; Garza, R G; Tarver, C M

    1999-06-01

    Threshold impact velocities for ignition of exothermic reaction were determined for several new and aged HMX-based solid high explosives using three types of projectiles in the Steven Test. Multiple impact threshold velocities were found to be approximately 10% lower in damaged charges that did not react in one or more prior impacts. Projectiles with protrusions that concentrate the friction work in a small volume of explosive reduced the threshold velocities by approximately 30%. Flat projectiles required nearly twice as high velocities for ignition as rounded projectiles. Blast overpressure gauges were used for both pristine and damaged charges to quantitatively measure reaction violence. Reactive flow calculations of single and multiple impacts with various projectiles suggest that the ignition rates double in damaged charges.

  1. Estimating the Impacts of Educational Interventions Using State Tests or Study-Administered Tests. NCEE 2012-4016

    ERIC Educational Resources Information Center

    Olsen, Robert B.; Unlu, Fatih; Price, Cristofer; Jaciw, Andrew P.

    2011-01-01

    This report examines the differences in impact estimates and standard errors that arise when these are derived using state achievement tests only (as pre-tests and post-tests), study-administered tests only, or some combination of state- and study-administered tests. State tests may yield different evaluation results relative to a test that is…

  2. Cycom 977-2 Composite Material: Impact Test Results

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Herald, Stephen; Watkins, Casey

    2005-01-01

    The reaction frequency data from 13A testing by MSFC and WSTF appear well behaved for the sample number used by each and exhibit the same type of energy level dependency. The reaction frequency shift in energy level is unexplained at this time. All the 13A data suggest that only a small amount of material is consumed when reactions take place. At ambient pressure, most of not all reactions are quenched as indicated by the small mass loss. As test pressure is increased in LOX using 13B results. Cycom does not support initiation of reactions or propagations of reactions in GOX at 100 psis based on tests at MSFC and WSTF at 72 ft-lb impact energy. No batch effect was identified in LOX or GOX.

  3. An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design

    SciTech Connect

    Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

    1993-10-25

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed.

  4. A Blind Test of the Younger Dryas Impact Hypothesis

    PubMed Central

    Holliday, Vance

    2016-01-01

    The Younger Dryas Impact Hypothesis (YDIH) states that North America was devastated by some sort of extraterrestrial event ~12,800 calendar years before present. Two fundamental questions persist in the debate over the YDIH: Can the results of analyses for purported impact indicators be reproduced? And are the indicators unique to the lower YD boundary (YDB), i.e., ~12.8k cal yrs BP? A test reported here presents the results of analyses that address these questions. Two different labs analyzed identical splits of samples collected at, above, and below the ~12.8ka zone at the Lubbock Lake archaeological site (LL) in northwest Texas. Both labs reported similar variation in levels of magnetic micrograins (>300 mg/kg >12.8ka and <11.5ka, but <150 mg/kg 12.8ka to 11.5ka). Analysis for magnetic microspheres in one split, reported elsewhere, produced very low to nonexistent levels throughout the section. In the other split, reported here, the levels of magnetic microspherules and nanodiamonds are low or nonexistent at, below, and above the YDB with the notable exception of a sample <11,500 cal years old. In that sample the claimed impact proxies were recovered at abundances two to four orders of magnitude above that from the other samples. Reproducibility of at least some analyses are problematic. In particular, no standard criteria exist for identification of magnetic spheres. Moreover, the purported impact proxies are not unique to the YDB. PMID:27391147

  5. A Blind Test of the Younger Dryas Impact Hypothesis.

    PubMed

    Holliday, Vance; Surovell, Todd; Johnson, Eileen

    2016-01-01

    The Younger Dryas Impact Hypothesis (YDIH) states that North America was devastated by some sort of extraterrestrial event ~12,800 calendar years before present. Two fundamental questions persist in the debate over the YDIH: Can the results of analyses for purported impact indicators be reproduced? And are the indicators unique to the lower YD boundary (YDB), i.e., ~12.8k cal yrs BP? A test reported here presents the results of analyses that address these questions. Two different labs analyzed identical splits of samples collected at, above, and below the ~12.8ka zone at the Lubbock Lake archaeological site (LL) in northwest Texas. Both labs reported similar variation in levels of magnetic micrograins (>300 mg/kg >12.8ka and <11.5ka, but <150 mg/kg 12.8ka to 11.5ka). Analysis for magnetic microspheres in one split, reported elsewhere, produced very low to nonexistent levels throughout the section. In the other split, reported here, the levels of magnetic microspherules and nanodiamonds are low or nonexistent at, below, and above the YDB with the notable exception of a sample <11,500 cal years old. In that sample the claimed impact proxies were recovered at abundances two to four orders of magnitude above that from the other samples. Reproducibility of at least some analyses are problematic. In particular, no standard criteria exist for identification of magnetic spheres. Moreover, the purported impact proxies are not unique to the YDB. PMID:27391147

  6. Impact of Laboratory Test Use Strategies in a Turkish Hospital

    PubMed Central

    Yılmaz, Fatma Meriç; Kahveci, Rabia; Aksoy, Altan; Özer Kucuk, Emine; Akın, Tezcan; Mathew, Joseph Lazar; Meads, Catherine; Zengin, Nurullah

    2016-01-01

    Objectives Eliminating unnecessary laboratory tests is a good way to reduce costs while maintain patient safety. The aim of this study was to define and process strategies to rationalize laboratory use in Ankara Numune Training and Research Hospital (ANH) and calculate potential savings in costs. Methods A collaborative plan was defined by hospital managers; joint meetings with ANHTA and laboratory professors were set; the joint committee invited relevant staff for input, and a laboratory efficiency committee was created. Literature was reviewed systematically to identify strategies used to improve laboratory efficiency. Strategies that would be applicable in local settings were identified for implementation, processed, and the impact on clinical use and costs assessed for 12 months. Results Laboratory use in ANH differed enormously among clinics. Major use was identified in internal medicine. The mean number of tests per patient was 15.8. Unnecessary testing for chloride, folic acid, free prostate specific antigen, hepatitis and HIV testing were observed. Test panel use was pinpointed as the main cause of overuse of the laboratory and the Hospital Information System test ordering page was reorganized. A significant decrease (between 12.6–85.0%) was observed for the tests that were taken to an alternative page on the computer screen. The one year study saving was equivalent to 371,183 US dollars. Conclusion Hospital-based committees including laboratory professionals and clinicians can define hospital based problems and led to a standardized approach to test use that can help clinicians reduce laboratory costs through appropriate use of laboratory tests. PMID:27077653

  7. How Close Is Close Enough? Testing Nonexperimental Estimates of Impact against Experimental Estimates of Impact with Education Test Scores as Outcomes. Discussion Paper No. 1242-02

    ERIC Educational Resources Information Center

    Wilde, Elizabeth Ty; Hollister, Robinson

    2002-01-01

    In this study we test the performance of some nonexperimental estimators of impacts applied to an educational intervention--reduction in class size--where achievement test scores were the outcome. We compare the nonexperimental estimates of the impacts to "true impact" estimates provided by a random-assignment design used to assess the…

  8. How Close Is Close Enough? Testing Nonexperimental Estimates of Impact against Experimental Estimates of Impact with Education Test Scores as Outcomes. Discussion Paper.

    ERIC Educational Resources Information Center

    Wilde, Elizabeth Ty; Hollister, Robinson

    This study tested the performance of nonexperimental estimators of impacts applied to a class size reduction intervention with achievement test scores as the outcome. Nonexperimental estimates of impacts were compared to "true impact" estimates provided by a random-assignment design that assessed intervention effects. Data came from Project STAR,…

  9. Dynamic Open-Rotor Composite Shield Impact Test Report

    NASA Technical Reports Server (NTRS)

    Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Carney, Kelly S.; Emmerling, William C.

    2015-01-01

    The Federal Aviation Administration (FAA) is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the aircraft. NASA Glenn and Naval Air Warfare Center (NAWC) China Lake collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test a shield that would protect the aircraft passengers and critical systems from a released blade that could impact the fuselage. This report documents the live-fire test from a full-scale rig at NAWC China Lake. NASA provided manpower and photogrammetry expertise to document the impact and damage to the shields. The test was successful: the blade was stopped from penetrating the shield, which validates the design analysis method and the parameters used in the analysis. Additional work is required to implement the shielding into the aircraft.

  10. The DT-19 container: Design, impact testing and analysis

    SciTech Connect

    Aramayo, G.A.; Goins, M.L.

    1996-07-01

    Containers used by the Department of Energy (DOE) for the transport of radioactive material components, including components and special assemblies, are required to meet certain impact and thermal requirements that are demonstrated by performance or compliance testing, analytical procedures or a combination of both. The Code of Federal Regulations (CFR) Part 49, Section 173.7(d) stipulates that, `Packages (containers) made by or under direction of the U.S. DOE may be used for the transportation of radioactive materials when evaluated, approved, and certified by the DOE against packaging standards equivalent to those specified in 10 CFR Part 71.` This paper describes the details of the design, analysis and testing efforts undertaken to improve the overall structural and thermal integrity of the DC-19 shipping container.

  11. The DT-19 container design, impact testing and analysis

    SciTech Connect

    Aramayo, G.A.; Goins, M.L.

    1995-12-01

    Containers used by the Department of Energy (DOE) for the transport of radioactive material components, including components and special assemblies, are required to meet certain impact and thermal requirements that are demonstrated by performance or compliance testing, analytical procedures or a combination of both. The Code of Federal Regulations (CFR) Part 49, Section 173.7(d) stipulates that, {prime}Packages (containers) made by or under direction of the US DOE may be used for the transportation of radioactive materials when evaluated, approved, and certified by the DOE against packaging standards equivalent to those specified in 10 CFR Part 71. This paper describes the details of the design, analysis and testing efforts undertaken to improve the overall structural and thermal integrity of the DC-19 shipping container.

  12. Dynamic Impact Analyses and Tests of Concrete Overpacks - 13638

    SciTech Connect

    Lee, Sanghoon; Cho, Sang-Soon; Kim, Ki-Young; Jeon, Je-Eon; Seo, Ki-Seog

    2013-07-01

    Concrete cask is an option for spent nuclear fuel interim storage which is prevailingly used in US. A concrete cask usually consists of metallic canister which confines the spent nuclear fuel and concrete overpack. When the overpack undergoes a severe missile impact which might be caused by a tornado or an aircraft crash, it should sustain acceptable level of structural integrity so that its radiation shielding capability and the retrievability of canister are maintained. Missile impact against a concrete overpack involves two damage modes, local damage and global damage. Local damage of concrete is usually evaluated by empirical formulas while the global damage is evaluated by finite element analysis. In many cases, those two damage modes are evaluated separately. In this research, a series of numerical simulations are performed using finite element analysis to evaluate the global damage of concrete overpack as well as its local damage under high speed missile impact. We consider two types of concrete overpack, one with steel in-cased concrete without reinforcement and the other with partially-confined reinforced concrete. The numerical simulation results are compared with test results and it is shown that appropriate modeling of material failure is crucial in this analysis and the results are highly dependent on the choice of failure parameters. (authors)

  13. Excerpts from Test Films: Langley Impacting Structures Facility, Lunar Module

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Excerpts from Test Films: Langley Impacting Structures Facility, Lunar Module. The film includes excerpts from three studies: (1) Landing characteristics of a dynamic model of the HL-10 manned lifting entry vehicle, conducted by Sandy M. Stubbs, in which the vehicle landed on water at horizontal velocities of 240- and 250-feet per second (ft/sec). (2) Dynamic model investigation of water pressures and accelerations encountered during landings of the Apollo spacecraft conducted by Sandy M. Stubbs, in which horizontal velocity was 50 ft/sec. and pitch attitude was -12 and -28 degrees. (3) Comparative landing impact tests of a 1/6-scale model as a free body under earth gravity and a tethered full-scale lunar module on the Lunar Gravity Simulator. Landing 8 is shown, with a vertical velocity of 10 ft/sec. and a horizontal velocity of 8 ft/sec. Motion pictures were taken at 400 and 64 pps. [Entire movie available on DVD from CASI as Doc ID 20070030993. Contact help@sti.nasa.gov

  14. Controlled Impact Demonstration instrumented test dummies installed in plane

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In this photograph are seen some of dummies in the passenger cabin of the B-720 aircraft. NASA Langley Research Center instrumented a large portion of the aircraft and the dummies for loads in a crashworthiness research program. In 1984 NASA Dryden Flight Research Facility and the Federal Aviation Adimistration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID). The test involved crashing a Boeing 720 aircraft with four JT3C-7 engines burning a mixture of standard fuel with an additive called Anti-misting Kerosene (AMK) designed to supress fire. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the

  15. Evaluating the initial impact of eliminating the retirement earnings test.

    PubMed

    Song, Jae G

    people who had already retired, its full effect may not be apparent for several years. Second, the analysis applies only to workers aged 65-69. Eliminating the earnings test for people above the full retirement age may also encourage younger workers to delay retirement and therefore increase their labor supply. Further analysis will therefore be required to determine the longer-run impact of eliminating the retirement earnings test.

  16. Comparison of Autogenous and Alloplastic Cranioplasty Materials Following Impact Testing.

    PubMed

    Wallace, Robert D; Salt, Craig; Konofaos, Petros

    2015-07-01

    Alloplastic materials are often used when significant defects exist. Benefits include no donor site morbidity, relative ease of use, limitless supply, and predictable durability. Depending on the type of alloplast, limitations include a persistent risk of extrusion and infection. Of particular interest in relation to cranioplasties is the ability of the material to provide neuroprotection. The integrity and neuroprotective properties of autologous bone flaps, polymethylmethacrylate (PMMA), and high-density porous polyethylene (PP) were evaluated following impact testing. Three groups of New Zealand white rabbits (N = 4) underwent a cranioplasty with either a bone flap, PMMA, or PP. In the control group (N = 4), the animals had no cranioplasty. At the end of the eighth week, an impact was delivered to the center of each cranioplasty. At necropsy each cranium and brain was evaluated grossly and histologically. There was a statistical significant difference among groups for the severity of the hemorrhage (P = 0.022) and the grade of cranioplasty disruption (P = 0.0045). Autologous bone was found to be the weakest of the materials tested. In this group severe injury resulted at much lower energy levels than was observed in the control, PMMA, or PP groups. Both PMMA and PP were resistant to fracture and disruption. PMMA provided the greatest neuroprotection, followed by PP. Autologous bone provided the least protection with cranioplasty disruption and severe brain injury occurring in every patient. Brain injury patterns correlated with the degree of cranioplasty disruption regardless of the cranioplasty material. Regardless of the energy of impact, lack of dislodgement generally resulted in no obvious brain injury.

  17. The Impact Hydrocode Benchmark and Validation Project: Results of Validation Tests

    NASA Astrophysics Data System (ADS)

    Pierazzo, E.; Artemieva, N. A.; Baldwin, E. C.; Cazamias, J.; Coker, R. F.; Collins, G. S.; Crawford, D. A.; Davison, T.; Holsapple, K. A.; Housen, K. R.; Korycansky, D. G.; Wünnemann, K.

    2008-03-01

    We present our first validation tests of a glass sphere impacting water and an aluminum sphere impacting aluminum as part of the collective validation and benchmarking effort from the impact cratering and explosion community.

  18. Compression After Impact Testing of Sandwich Structures Using the Four Point Bend Test

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Gregory, Elizabeth; Jackson, Justin; Kenworthy, Devon

    2008-01-01

    For many composite laminated structures, the design is driven by data obtained from Compression after Impact (CAI) testing. There currently is no standard for CAI testing of sandwich structures although there is one for solid laminates of a certain thickness and lay-up configuration. Most sandwich CAI testing has followed the basic technique of this standard where the loaded ends are precision machined and placed between two platens and compressed until failure. If little or no damage is present during the compression tests, the loaded ends may need to be potted to prevent end brooming. By putting a sandwich beam in a four point bend configuration, the region between the inner supports is put under a compressive load and a sandwich laminate with damage can be tested in this manner without the need for precision machining. Also, specimens with no damage can be taken to failure so direct comparisons between damaged and undamaged strength can be made. Data is presented that demonstrates the four point bend CAI test and is compared with end loaded compression tests of the same sandwich structure.

  19. RTM370 Polyimide Braided Composites: Characterization and Impact Testing

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Revilock, Duane M.; Ruggeri, Charles R.; Criss, Jim M., Jr.; Mintz, Eric A.

    2013-01-01

    RTM370 imide oligomer based on 2,3,3',4'-biphenyl dianhydride (a-BPDA), 3,4'-oxydianiline (3,4'-ODA) and terminated with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h and a high cured glass transition temperature (Tg) of 370 C. RTM370 resin has been successfully fabricated into composites reinforced with T650-35 carbon fabrics by resin transfer molding (RTM). RTM370 composites display excellent mechanical properties up to 327 C (620 F), and outstanding property retention after aging at 288degC (550 F) for 1000 h, and under hot-wet conditions. In ballistic impact testing, RTM370 triaxial braided T650-35 carbon fiber composites exhibited enhanced energy absorption at 288 C (550 F) compared to ambient temperature.

  20. Method of testing gear wheels in impact bending

    SciTech Connect

    Tikhonov, A.K.; Palagin, Y.M.

    1995-05-01

    Chemicothermal treatment processes are widely used in engineering to improve the working lives of important components, of which the most common is nitrocementation. That process has been applied at the Volga Automobile Plant mainly to sprockets in gear transmissions, which need high hardness and wear resistance in the surfaces with relatively ductile cores. Although various forms of chemicothermal treatment are widely used, there has been no universal method of evaluating the strengths of gear wheels. Standard methods of estimating strength ({sigma}{sub u}, {sigma}{sub t}, {sigma}{sub b}, and hardness) have a major shortcoming: They can determine only the characteristics of the cores for case-hardened materials. Here we consider a method of impact bending test, which enables one to evaluate the actual strength of gear teeth.

  1. IMPROVED BAR IMPACT TESTS USING A PHOTONIC DOPPLER VELOCIMETER

    SciTech Connect

    Bless, S J; Tolman, J; Levinson, S; Nguyen, J

    2009-08-24

    Bar impact tests, using the techniques described elsewhere in this symposium, were used to measure compressive and tensile strengths of borosilicate glass, soda lime glass, and a glass ceramic. The glass ceramic was 25% crystalline spinel, furnished by Corning Inc. There are two measures of compressive strength: the peak stress that can be transmitted in unconfined compression, and the 'steady state' strength. For borosilicate glass and soda lime glass, these values were similar, being about 1.8 and 1.5 GPa, respectively. The glass ceramic (25% spinel) was almost 50% stronger. Tensile failure in the glass and glass ceramic takes places via surface flaws, and thus tensile strength is an extrinsic, as opposed to intrinsic property.

  2. IMPROVED BAR IMPACT TESTS USING A PHOTONIC DOPPLER VELOCIMETER

    SciTech Connect

    Bless, S. J.; Tolman, J.; Levinson, S.; Nguyen, J.

    2009-12-28

    Bar impact tests, using the techniques described elsewhere in this symposium, were used to measure compressive and tensile strengths of borosilicate glass, soda lime glass, and a glass ceramic. The glass ceramic was 25% crystalline spinel, furnished by Corning Inc. There are two measures of compressive strength: the peak stress that can be transmitted in unconfined compression, and the 'steady state' strength. For borosilicate glass and soda lime glass, these values were similar, being about 1.8 and 1.5 GPa, respectively. The glass ceramic (25% spinel) was almost 50% stronger. Tensile failure in the glass and glass ceramic takes places via surface flaws, and thus tensile strength is an extrinsic, as opposed to intrinsic property.

  3. Improved Bar Impact Tests Using a Photonic Doppler Velocimeter

    NASA Astrophysics Data System (ADS)

    Bless, S. J.; Tolman, J.; Levinson, S.; Nguyen, J.

    2009-12-01

    Bar impact tests, using the techniques described elsewhere in this symposium, were used to measure compressive and tensile strengths of borosilicate glass, soda lime glass, and a glass ceramic. The glass ceramic was 25% crystalline spinel, furnished by Corning Inc. There are two measures of compressive strength: the peak stress that can be transmitted in unconfined compression, and the "steady state" strength. For borosilicate glass and soda lime glass, these values were similar, being about 1.8 and 1.5 GPa, respectively. The glass ceramic (25% spinel) was almost 50% stronger. Tensile failure in the glass and glass ceramic takes places via surface flaws, and thus tensile strength is an extrinsic, as opposed to intrinsic property.

  4. Effects of Notch Location on Heat-affected Zone Impact Properties of SA-516 Steels

    NASA Astrophysics Data System (ADS)

    Hong, Jaekeun; Park, Jihong; Kang, Chungyun

    In case of welding for pressure retaining parts on nuclear components, the verifications of heat affected zone (HAZ) impact properties are required according to application codes such as ASME Sec. III, RCC-M, KEPIC (Korea Electric Power Industry Code) MN, and JEA (Japan Electric Association) Code. Especially in case of Charpy V-notch tests of HAZ, the requirements of notch location and specimen direction have greatly impact on the reliability and consistency of the test results. For the establishment of newly adequate impact test requirements, the requirements about the HAZ impact tests of ASME Section III, RCC-M, KEPIC MN and JEA code were researched in this study. And also the HAZ impact test requirements about surveillance tests in nuclear reactor vessels were compared and investigated. For the effects of the notch location and specimen direction on the impact properties, SA-516 Gr.70 materials were investigated. The specimens were fabricated with using shielded metal-arc welding, and maximum heat inputs were controlled within the range of 16˜27 kJ/cm. Especially, this research showed the lateral expansion values and absorbed energies were not compatible and the impact test results were varied depending on notch location and specimen direction. Based on this study, newly adequate impact test requirements of HAZ were proposed.

  5. Microstructural Features Controlling Mechanical Properties in Nb-Mo Microalloyed Steels. Part II: Impact Toughness

    NASA Astrophysics Data System (ADS)

    Isasti, Nerea; Jorge-Badiola, Denis; Taheri, Mitra L.; Uranga, Pello

    2014-10-01

    The present paper is the final part of a two-part paper where the influence of coiling temperature on the final microstructure and mechanical properties of Nb-Mo microalloyed steels is described. More specifically, this second paper deals with the different mechanisms affecting impact toughness. A detailed microstructural characterization and the relations linking the microstructural parameters and the tensile properties have already been discussed in Part I. Using these results as a starting point, the present work takes a step forward and develops a methodology for consistently incorporating the effect of the microstructural heterogeneity into the existing relations that link the Charpy impact toughness to the microstructure. In conventional heat treatments or rolling schedules, the microstructure can be properly described by its mean attributes, and the ductile-brittle transition temperatures measured by Charpy tests can be properly predicted. However, when different microalloying elements are added and multiphase microstructures are formed, the influences of microstructural heterogeneity and secondary hard phases have to be included in a modified equation in order to accurately predict the DB transition temperature in Nb and Nb-Mo microalloyed steels.

  6. Wavelet analysis in ecology and epidemiology: impact of statistical tests.

    PubMed

    Cazelles, Bernard; Cazelles, Kévin; Chavez, Mario

    2014-02-01

    Wavelet analysis is now frequently used to extract information from ecological and epidemiological time series. Statistical hypothesis tests are conducted on associated wavelet quantities to assess the likelihood that they are due to a random process. Such random processes represent null models and are generally based on synthetic data that share some statistical characteristics with the original time series. This allows the comparison of null statistics with those obtained from original time series. When creating synthetic datasets, different techniques of resampling result in different characteristics shared by the synthetic time series. Therefore, it becomes crucial to consider the impact of the resampling method on the results. We have addressed this point by comparing seven different statistical testing methods applied with different real and simulated data. Our results show that statistical assessment of periodic patterns is strongly affected by the choice of the resampling method, so two different resampling techniques could lead to two different conclusions about the same time series. Moreover, our results clearly show the inadequacy of resampling series generated by white noise and red noise that are nevertheless the methods currently used in the wide majority of wavelets applications. Our results highlight that the characteristics of a time series, namely its Fourier spectrum and autocorrelation, are important to consider when choosing the resampling technique. Results suggest that data-driven resampling methods should be used such as the hidden Markov model algorithm and the 'beta-surrogate' method.

  7. 49 CFR 572.166 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Knees and knee impact test procedure. 572.166... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.166 Knees and knee impact test procedure....

  8. 49 CFR 572.136 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Knees and knee impact test procedure. 572.136... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Hybrid III 5th Percentile Female Test Dummy, Alpha Version § 572.136 Knees and knee impact test...

  9. 49 CFR 572.126 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Knees and knee impact test procedure. 572.126... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Six-year-old Child Test Dummy, Beta Version § 572.126 Knees and knee impact test procedure. (a)...

  10. 49 CFR 572.166 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.166 Knees and knee impact test procedure. The knee assembly is assembled and tested as specified in 49 CFR 572.126 (Subpart N). ... 49 Transportation 7 2011-10-01 2011-10-01 false Knees and knee impact test procedure....

  11. 49 CFR 572.176 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Knees and knee impact test procedure. 572.176... Hybrid III 10-Year-Old Child Test Dummy (HIII-10C) § 572.176 Knees and knee impact test procedure. (a) The knee assembly for the purpose of this test is the part of the leg assembly shown in drawing...

  12. 49 CFR 572.166 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.166 Knees and knee impact test procedure. The knee assembly is assembled and tested as specified in 49 CFR 572.126 (Subpart N). ... 49 Transportation 7 2013-10-01 2013-10-01 false Knees and knee impact test procedure....

  13. 49 CFR 572.166 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.166 Knees and knee impact test procedure. The knee assembly is assembled and tested as specified in 49 CFR 572.126 (Subpart N). ... 49 Transportation 7 2012-10-01 2012-10-01 false Knees and knee impact test procedure....

  14. 49 CFR 572.166 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.166 Knees and knee impact test procedure. The knee assembly is assembled and tested as specified in 49 CFR 572.126 (Subpart N). ... 49 Transportation 7 2014-10-01 2014-10-01 false Knees and knee impact test procedure....

  15. Test Directions as a Critical Component of Test Design: Best Practices and the Impact of Examinee Characteristics

    ERIC Educational Resources Information Center

    Lakin, Joni M.

    2014-01-01

    The purpose of test directions is to familiarize examinees with a test so that they respond to items in the manner intended. However, changes in educational measurement as well as the U.S. student population present new challenges to test directions and increase the impact that differential familiarity could have on the validity of test score…

  16. Measurement of Satellite Impact Test Fragments for Modeling Orbital Debris

    NASA Technical Reports Server (NTRS)

    Hill, Nicole M.

    2009-01-01

    There are over 13,000 pieces of catalogued objects 10cm and larger in orbit around Earth [ODQN, January 2009, p12]. More than 6000 of these objects are fragments from explosions and collisions. As the earth-orbiting object count increases, debris-generating collisions in the future become a statistical inevitability. To aid in understanding this collision risk, the NASA Orbital Debris Program Office has developed computer models that calculate quantity and orbits of debris both currently in orbit and in future epochs. In order to create a reasonable computer model of the orbital debris environment, it is important to understand the mechanics of creation of debris as a result of a collision. The measurement of the physical characteristics of debris resulting from ground-based, hypervelocity impact testing aids in understanding the sizes and shapes of debris produced from potential impacts in orbit. To advance the accuracy of fragment shape/size determination, the NASA Orbital Debris Program Office recently implemented a computerized measurement system. The goal of this system is to improve knowledge and understanding of the relation between commonly used dimensions and overall shape. The technique developed involves scanning a single fragment with a hand-held laser device, measuring its size properties using a sophisticated software tool, and creating a three-dimensional computer model to demonstrate how the object might appear in orbit. This information is used to aid optical techniques in shape determination. This more automated and repeatable method provides higher accuracy in the size and shape determination of debris.

  17. High-Stakes Standardized Testing & Marginalized Youth: An Examination of the Impact on Those Who Fail

    ERIC Educational Resources Information Center

    Kearns, Laura-Lee

    2011-01-01

    This study examines the impact of high-stakes, large-scale, standardized literacy testing on youth who have failed the Ontario Secondary School Literacy Test. Interviews with youth indicate that the unintended impact of high-stakes testing is more problematic than policy makers and educators may realize. In contrast to literacy policy's aims to…

  18. 49 CFR 572.126 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Knees and knee impact test procedure. 572.126...-year-old Child Test Dummy, Beta Version § 572.126 Knees and knee impact test procedure. (a) Knee assembly. The knee assembly is part of the leg assembly (drawing 127-4000-1 and -2). (b) When the...

  19. 49 CFR 572.136 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Knees and knee impact test procedure. 572.136... Hybrid III 5th Percentile Female Test Dummy, Alpha Version § 572.136 Knees and knee impact test procedure. (a) Knee assembly. The knee assembly (refer to §§ 572.130(a)(1)(v) and (vi)) for the purpose of...

  20. 49 CFR 572.126 - Knees and knee impact test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Knees and knee impact test procedure. 572.126...-year-old Child Test Dummy, Beta Version § 572.126 Knees and knee impact test procedure. (a) Knee assembly. The knee assembly is part of the leg assembly (drawing 127-4000-1 and -2). (b) When the...

  1. Instrumented impact and residual tensile strength testing of eight-ply carbon eopoxy specimens

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    1990-01-01

    Instrumented drop weight impact testing was utilized to examine a puncture-type impact on thin carbon-epoxy coupons. Four different material systems with various eight-ply lay-up configurations were tested. Specimens were placed over a 10.3-mm diameter hole and impacted with a smaller tup (4.2-mm diameter) than those used in previous studies. Force-time plots as well as data on absorbed energy and residual tensile strength were gathered and examined. It was found that a critical impact energy level existed for each material tested, at which point tensile strength began to rapidly decrease with increasing impact energy.

  2. Generic analyses for evaluation of low Charpy upper-shelf energy effects on safety margins against fracture of reactor pressure vessel materials

    SciTech Connect

    Dickson, T.L.

    1993-07-01

    Appendix G to 10 CFR Part 50 requires that reactor pressure vessel beltline material maintain Charpy upper-shelf energies of no less than 50 ft-lb during the plant operating life, unless it is demonstrated in a manner approved by the Nuclear Regulatory Commission (NRC), that lower values of Charpy upper-shelf energy provide margins of safety against fracture equivalent to those in Appendix G to Section XI of the ASME Code. Analyses based on acceptance criteria and analysis methods adopted in the ASME Code Case N-512 are described herein. Additional information on material properties was provided by the NRC, Office of Nuclear Regulatory Research, Materials Engineering Branch. These cases, specified by the NRC, represent generic applications to boiling water reactor and pressurized water reactor vessels. This report is designated as HSST Report No. 140.

  3. Tensile and impact properties of General Atomics 832864 heat of V-4Cr-4Ti alloy

    SciTech Connect

    Tsai, H.; Nowicki, L.J.; Gazda, J.; Billone, M.C.; Smith, D.L.; Johnson, W.R.; Trester, P.

    1998-09-01

    A 1300-kg heat of V-4Cr-4Ti alloy was procured by General Atomics (GA) for the DIII-D radiative divertor program. To determine the mechanical properties of this alloy, tensile and Charpy tests were conducted on specimens prepared from pieces of 4.8-mm-thick as-rolled plates, a major product form for the DIII-D application. The tensile tests were conducted at three temperatures, 26, 280 and 380 C, the last two being the anticipated peak temperatures during DIII-D boronization and postvent bake-out, respectively. Results from these tests show that the tensile and impact properties of the 832864 heat are comparable to those of the other smaller V-(4-5)Cr-(4-5)Ti alloy heats previously developed by the US Fusion Materials Program and that scale-up of vanadium alloy production can be successfully achieved as long as reasonable process control is implemented.

  4. The Impact of Socioeconomic Status on High Stakes Testing Reexamined

    ERIC Educational Resources Information Center

    Baker, Melissa; Johnston, Pattie

    2010-01-01

    High-stakes testing plays a critical role in education today in the United States. Every state uses a high-stakes test to comply with the No Child Left Behind (NCLB) mandate. While many believe high-stakes testing is an acceptable and accurate way to measure students' learning, one has to ask whether high stakes testing is an effective measurement…

  5. Hypervelocity Impact Testing of Space Station Freedom Solar Cells

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Best, Steve R.; Myhre, Craig A.

    1994-01-01

    Solar array coupons designed for the Space Station Freedom electrical power system were subjected to hypervelocity impacts using the HYPER facility in the Space Power Institute at Auburn University and the Meteoroid/Orbital Debris Simulation Facility in the Materials and Processes Laboratory at the NASA Marshall Space Flight Center. At Auburn, the solar cells and array blanket materials received several hundred impacts from particles in the micron to 100 micron range with velocities typically ranging from 4.5 to 10.5 km/s. This fluence of particles greatly exceeds what the actual components will experience in low earth orbit. These impacts damaged less than one percent of total area of the solar cells and most of the damage was limited to the cover glass. There was no measurable loss of electrical performance. Impacts on the array blanket materials produced even less damage and the blanket materials proved to be an effective shield for the back surface of the solar cells. Using the light gas gun at MSFC, one cell of a four cell coupon was impacted by a 1/4 inch spherical aluminum projectile with a velocity of about 7 km/s. The impact created a neat hole about 3/8 inch in diameter. The cell and coupon were still functional after impact.

  6. A biomechanical impact test system for head and facial injury assessment and model development.

    PubMed

    Harris, G F; Yoganandan, N; Schmaltz, D; Reinartz, J; Pintar, F; Sances, A

    1993-01-01

    A biomechanical test system has been developed and validated to conduct controlled uniaxial impact experiments of head and facial trauma. The design reduces off-axis accelerations which are not in the direction of impact and allows accurate positioning of test specimens. Impact forces, displacement histories, impulses at impact and spectral responses are compared to free-fall test results at contact velocities representative of facial injuries (2.5, 3.1 and 3.8 m s-1). Models based on the experimental results are developed to reveal stiffness and inertial properties of impact for use in the design of biomechanically protective steering wheels, air bags and other potential impact structures. The results indicate that the system provides a flexible yet controllable method for positioning and testing impact structures reliably.

  7. Ignition of nonmetallic materials by impact of high-pressure oxygen. II - Evaluation of repeatability of pneumatic impact test

    NASA Technical Reports Server (NTRS)

    Schmidt, Naomi; Moffett, Gary E.; Pedley, Michael D.; Linley, Larry J.

    1989-01-01

    The gaseous oxygen pneumatic impact test is used to evaluate the suitability of nonmetallic materials for use in high-pressure oxygen systems. The test was evaluated by testing the reactivity of four materials over a range of impact pressures. The evaluation also investigated the effect of valve opening time and other test variables on the frequency of reaction. The variability of the data obtained for each test material was too large for the test method to be capable of distinguishing other than gross differences in the reactivity of materials. No relation was found between this variability and changes in valve opening time and other test variables. The materials studied were found to be unacceptable for use as reference standards. Because of the high variability of the test data, it is recommended that new methods be developed for evaluating the suitability of materials for use in high-pressure oxygen systems.

  8. A Study of the "toss Factor" in the Impact Testing of Cermets by the Izod Pendulum Test

    NASA Technical Reports Server (NTRS)

    Probst, H B; Mchenry, Howard T

    1957-01-01

    The test method presented shows that the "toss energy" contributed by the apparatus for brittle materials is negligible. The total toss energy is considered to consist of two components. (a) recovered stored elastic energy and (b) kinetic energy contributed directly by the apparatus. The results were verified by high-speed motion pictures of the test in operation. From these photographs, velocities of tossed specimens were obtained and toss energy computed. In addition, impact energies of some titanium carbide base cermets and high-temperature alloys, as measured by the low-capacity Izod pendulum test, compare well with impact energies measured by the NACA drop test.

  9. 16 CFR 1203.11 - Marking the impact test line.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (HPI), with the brow parallel to the basic plane. Place a 5-kg (11-lb) preload ballast on top of the... helmet coinciding with the intersection of the surface of the helmet with the impact line planes...

  10. 16 CFR 1203.17 - Impact attenuation test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., Motorcycle Helmets, 49 CFR 571.218 (S7.1.8). The center of gravity of the drop assembly shall lie within the... velocity of 5.44 m/s±2%. (Typically, this requires a minimum drop height of 1.50 meters (4.9 ft) plus a... sites. (3) Impact velocity. The helmet shall be dropped onto the flat anvil with an impact velocity of...

  11. Hybrid III anthropomorphic test device (ATD) response to head impacts and potential implications for athletic headgear testing.

    PubMed

    Bartsch, Adam; Benzel, Edward; Miele, Vincent; Morr, Douglas; Prakash, Vikas

    2012-09-01

    The Hybrid III 50th percentile male anthropomorphic test device (ATD) is the most widely used human impact testing surrogate and has historically been used in automotive or military testing. More recently, this ATD is finding use in applications evaluating athletic helmet protectivity, quantifying head impact dosage and estimating injury risk. But ATD head-neck response has not been quantified in omnidirectional athletic-type head impacts absent axial preload. It is probable that headgear injury reduction that can be quantified in a laboratory, including in American football, boxing, hockey, lacrosse and soccer, is related to a number of interrelated kinetic and kinematic factors, such as head center of gravity linear acceleration, head angular acceleration, head angular velocity, occipito-cervical mechanics and neck stiffness. Therefore, we characterized ATD head-neck dynamic response to direct head impacts in a series of front, oblique front and lateral head impacts. Key findings were: (1) impacts producing highest ATD resultant center of gravity linear acceleration resulted in the lowest resultant occipito-cervical spine bending moment/force. (2) Resultant ATD head angular velocity and angular acceleration did not appear coupled to impact direction at lower impact energy levels; these parameters were coupled at higher energy levels. (3) The ATD had progressively increasing occipito-cervical stiffness in extension, torsion and lateral bending, respectively. Because the ATD neck influenced head and neck impact dosage parameters, testing agencies, manufacturers and researchers should consider using the Hybrid III head form attached to a neck as a means to quantify head and neck injury risks as opposed to systems that do not utilize a neck. This heightened understanding of Hybrid III ATD head-neck response, and consideration of order of stiffest axes in the lateral, oblique and extension directions, respectively, should aid in the development of head and neck injury

  12. Structural identification of short/middle span bridges by rapid impact testing: theory and verification

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Zhang, Q. Q.; Guo, S. L.; Xu, D. W.; Wu, Z. S.

    2015-06-01

    A structural strain flexibility identification method by processing the multiple-reference impact testing data is proposed. First, a kind of novel long-gauge fiber optic sensor is developed for structural macro-strain monitoring. Second, the multiple-reference impact testing technology is employed, during which both the impacting force and structural strain responses are measured. The impact testing technology has unique merit because it is able to extract exact structural frequency response functions (FRFs), while other test methods, for instance ambient tests, can only output the FRFs with scaled magnitudes. Most importantly, the originality of the article is that a method of identifying the structural strain flexibility characteristic from the impact test data has been proposed, which is useful for structural static strain prediction and capacity evaluation. Examples of a six meter simple supported beam and a multiple-span continuous beam bridge have successfully verified the effectiveness of the proposed method.

  13. The Impact of Gender in Oral Proficiency Testing.

    ERIC Educational Resources Information Center

    O'Loughlin, Kieran

    2002-01-01

    Discusses the role of gender in speaking tests and suggests that in oral interviews it is possible that both interviewing and rating may be highly gendered processes. Audiotaped female and male test-takers who undertook practice IELTS interviews, one with a female interviewer and once with a male interviewer. Results from discourse and test score…

  14. Experimental and numerical analysis of Al6063 duralumin using Taylor impact test

    NASA Astrophysics Data System (ADS)

    Kruszka, L.; Anaszewicz, Ł.; Janiszewski, J.; Grązka, M.

    2012-08-01

    The paper presents results of experimental and numerical analysis of dynamic behaviour Al6063 duralumin. Dynamical experiments were made using Taylor impact test. Experimental results at next step of study were used in numerical analyses of dynamic yield stress of tested material and model parameters of the Johnson-Cook constitutive equation. The main aim of this analysis is to find out dynamical properties of Al6063 duralumin tested in Taylor impact test.

  15. Soft Soil Impact Testing and Simulation of Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Kellas, Sotiris

    2008-01-01

    In June 2007, a 38-ft/s vertical drop test of a 5-ft-diameter, 5-ft-long composite fuselage section that was retrofitted with a novel composite honeycomb Deployable Energy Absorber (DEA) was conducted onto unpacked sand. This test was one of a series of tests to evaluate the multi-terrain capabilities of the DEA and to generate test data for model validation. During the test, the DEA crushed approximately 6-in. and left craters in the sand of depths ranging from 7.5- to 9-in. A finite element model of the fuselage section with DEA was developed for execution in LS-DYNA, a commercial nonlinear explicit transient dynamic code. Pre-test predictions were generated in which the sand was represented initially as a crushable foam material MAT_CRUSHABLE_FOAM (Mat 63). Following the drop test, a series of hemispherical penetrometer tests were conducted to assist in soil characterization. The penetrometer weighed 20-lb and was instrumented with a tri-axial accelerometer. Drop tests were performed at 16-ft/s and crater depths were measured. The penetrometer drop tests were simulated as a means for developing a more representative soil model based on a soil and foam material definition MAT_SOIL_AND FOAM (Mat 5) in LS-DYNA. The model of the fuselage with DEA was reexecuted using the updated soil model and test-analysis correlations are presented.

  16. Reinforced Carbon-Carbon Subcomponent Flat Plate Impact Testing for Space Shuttle Orbiter Return to Flight

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Brand, Jeremy H.; Pereira, J. Michael; Revilock, Duane M.

    2007-01-01

    Following the tragedy of the Space Shuttle Columbia on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the Space Shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize Reinforced Carbon-Carbon (RCC) and various debris materials which could potentially shed on ascent and impact the Orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS DYNA to predict damage by potential and actual impact events on the Orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: fundamental tests to obtain independent static and dynamic material model properties of materials of interest, sub-component impact tests to provide highly controlled impact test data for the correlation and validation of the models, and full-scale impact tests to establish the final level of confidence for the analysis methodology. This paper discusses the second level subcomponent test program in detail and its application to the LS DYNA model validation process. The level two testing consisted of over one hundred impact tests in the NASA Glenn Research Center Ballistic Impact Lab on 6 by 6 in. and 6 by 12 in. flat plates of RCC and evaluated three types of debris projectiles: BX 265 External Tank foam, ice, and PDL 1034 External Tank foam. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile. The information obtained from this testing validated the LS DYNA damage prediction models and provided a certain level of confidence to begin performing analysis for full-size RCC test articles for returning NASA to flight with STS 114 and beyond.

  17. Materials Characterization Center meeting on impact testing of waste forms. Summary report

    SciTech Connect

    Merz, M.D.; Atteridge, D.; Dudder, G.

    1981-10-01

    A meeting was held on March 25-26, 1981 to discuss impact test methods for waste form materials to be used in nuclear waste repositories. The purpose of the meeting was to obtain guidance for the Materials Characterization Center (MCC) in preparing the MCC-10 Impact Test Method to be approved by the Materials Review Board. The meeting focused on two essential aspects of the test method, namely the mechanical process, or impact, used to effect rapid fracture of a waste form and the analysis technique(s) used to characterize particulates generated by the impact.

  18. Low velocity instrumented impact testing of four new damage tolerant carbon/epoxy composite systems

    NASA Technical Reports Server (NTRS)

    Lance, D. G.; Nettles, A. T.

    1990-01-01

    Low velocity drop weight instrumented impact testing was utilized to examine the damage resistance of four recently developed carbon fiber/epoxy resin systems. A fifth material, T300/934, for which a large data base exists, was also tested for comparison purposes. A 16-ply quasi-isotropic lay-up configuration was used for all the specimens. Force/absorbed energy-time plots were generated for each impact test. The specimens were cross-sectionally analyzed to record the damage corresponding to each impact energy level. Maximum force of impact versus impact energy plots were constructed to compare the various systems for impact damage resistance. Results show that the four new damage tolerant fiber/resin systems far outclassed the T300/934 material. The most damage tolerant material tested was the IM7/1962 fiber/resin system.

  19. 16 CFR Figure 1 to Subpart A of... - Glass Impact Test Structure

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Glass Impact Test Structure 1 Figure 1 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... 1 to Subpart A of Part 1201—Glass Impact Test Structure EC03OC91.004...

  20. 16 CFR Figure 1 to Subpart A of... - Glass Impact Test Structure

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Glass Impact Test Structure 1 Figure 1 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... 1 to Subpart A of Part 1201—Glass Impact Test Structure EC03OC91.004...

  1. 16 CFR Figure 1 to Subpart A of... - Glass Impact Test Structure

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Glass Impact Test Structure 1 Figure 1 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... 1 to Subpart A of Part 1201—Glass Impact Test Structure EC03OC91.004...

  2. 16 CFR Figure 1 to Subpart A of... - Glass Impact Test Structure

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Glass Impact Test Structure 1 Figure 1 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... 1 to Subpart A of Part 1201—Glass Impact Test Structure EC03OC91.004...

  3. 16 CFR Figure 1 to Subpart A of... - Glass Impact Test Structure

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Glass Impact Test Structure 1 Figure 1 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... 1 to Subpart A of Part 1201—Glass Impact Test Structure EC03OC91.004...

  4. Satellite Test of Radiation Impact on Ramtron 512K FRAM

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Sayyah, Rana; Sims, W. Herb; Varnavas, Kosta A.; Ho, Fat D.

    2009-01-01

    The Memory Test Experiment is a space test of a ferroelectric memory device on a low Earth orbit satellite. The test consists of writing and reading data with a ferroelectric based memory device. Any errors are detected and are stored on board the satellite. The data is send to the ground through telemetry once a day. Analysis of the data can determine the kind of error that was found and will lead to a better understanding of the effects of space radiation on memory systems. The test will be one of the first flight demonstrations of ferroelectric memory in a near polar orbit which allows testing in a varied radiation environment. The memory devices being tested is a Ramtron Inc. 512K memory device. This paper details the goals and purpose of this experiment as well as the development process. The process for analyzing the data to gain the maximum understanding of the performance of the ferroelectric memory device is detailed.

  5. Is the psychological impact of genetic testing moderated by support and sharing of test results to family and friends?

    PubMed

    Lapointe, Julie; Dorval, Michel; Noguès, Catherine; Fabre, Roxane; Julian-Reynier, Claire

    2013-12-01

    Receiving the results of genetic tests for a breast and ovarian cancer susceptibility can be a stressful experience. Here we studied the effects of social support (SS) and the sharing of test results on the psychological impact of BRCA1/2 test result disclosure. We also compared carriers and non-carriers on sharing, SS and psychological impact. Five-hundred and twenty-two unaffected women were followed prospectively for 2 years after receiving their test results. Psychological impact was measured on the impact of event scale. Multivariate multi-level models were used, and all the analyses were stratified depending on mutation status (carriers vs non-carriers). Two weeks after receiving their BRCA1/2 results, carriers had shared their test results less frequently than non-carriers (p < 0.01). Sharing test results was not significantly associated with psychological impact. Availability of SS was significantly associated with better psychological adjustment across time among carriers (p < 0.01), but not among non-carriers. For female BRCA1/2 mutation carriers, the importance of SS should be stressed, and possible ways of enlisting people in their entourage for this purpose should be discussed in the context of clinical encounters.

  6. Motivations and psychosocial impact of genetic testing for HNPCC.

    PubMed

    Esplen, M J; Madlensky, L; Butler, K; McKinnon, W; Bapat, B; Wong, J; Aronson, M; Gallinger, S

    2001-09-15

    A type of hereditary colorectal cancer (CRC) known as hereditary nonpolyposis colorectal cancer (HNPCC) is associated with MLHI and MSH2 gene mutations. This study consists of a pilot, cross-sectional study of 50 individuals who were engaged in the genetic testing process for HNPCC. The study investigated the motivations and attitudes around genetic testing and current psychosocial functioning through the use of standardized measures, as well as obtained information on disclosure patterns associated with test results. The mean age of the sample was 44.3 years. (SD = 15.0). Twenty-three individuals were identified as "carriers" (13 had a previous history of CRC), seven were "non-carriers" and 20 individuals were still awaiting test results. The primary motivations for participating in genetic testing were similar to previous reports and included: wanting to know if more screening tests were needed, obtaining information about the risk for offspring and increasing certainty around their own risk. The psychosocial scores demonstrated that a subgroup of individuals exhibited distress, with greater distress for those individuals awaiting results or testing positive. There was a high level of satisfaction associated with the experience of testing. Individuals in this study tended to disclose their test results to a variety of family and non-family members. Disclosure was primarily associated with positive experiences however, some individuals reported regret around disclosure of their results. These preliminary findings should be further explored in a larger prospective study design over multiple time points. PMID:11562928

  7. Hypervelocity Impact Testing of IM7/977-3 with Micro-Sized Particles

    NASA Technical Reports Server (NTRS)

    Smith, J. G.; Jegley, D. C.; Siochi, E. J.; Wells, B. K.

    2010-01-01

    Ground-based hypervelocity imapct testing was conducted on IM7/977-3 quasi-isotropic flat panels at normal incidence using micron-sized particles (i.e. less than or equal to 100 microns) of soda lime glass and olivine. Testing was performed at room temperature (RT) and 175 C with results from the 175 C test compared to those obtained at RT. Between 10 and 30 particles with velocities ranging from 5 to 13 km/s impacted each panel surface for each test temperature. Panels were ultrasonically scanned prior to and after impact testing to assess internal damage. Post-impact analysis included microscopic examination of the surface, determination of particle speed and location, and photomicroscopy for microcrack assessment. Internal damage was observed by ultrasonic inspection on panels impacted at 175 C, whereas damage for the RT impacted panels was confined to surface divets/craters as determined by microscopic analysis.

  8. Impact of Accommodation Strategies on English Language Learners' Test Performance.

    ERIC Educational Resources Information Center

    Abedi, Jamal; Lord, Carol; Hofstetter, Carolyn; Baker, Eva

    2000-01-01

    Examined the performance of English language learners (ELLs) on mathematics word problems, the effect of accommodation strategies, and the impact of students' background characteristics on accommodation effectiveness. Results for 946 eighth graders show that ELL students were helped by modified English, extra time, and use of a glossary plus extra…

  9. Impact as a general cause of extinction: A feasibility test

    NASA Technical Reports Server (NTRS)

    Raup, David M.

    1988-01-01

    Large body impact has been implicated as the possible cause of several extinction events. This is entirely plausible if one accepts two propositions: (1) that impacts of large comets and asteroids produce environmental effects severe enough to cause significant species extinctions and (2) that the estimates of comet and asteroid flux for the Phanerozoic are approximately correct. A resonable next step is to investigate the possibility that impact could be a significant factor in the broader Phanerozoic extinction record, not limited merely to a few events of mass extinction. Monte Carlo simulation experiments based on existing flux estimates and reasonable predictions of the relationship between bolide diameter and extinction are discussed. The simulation results raise the serious possibility that large body impact may be a more pervasive factor in extinction than has been assumed heretofore. At the very least, the experiments show that the comet and asteroid flux estimates combined with a reasonable kill curve produces a reasonable extinction record, complete with occasional mass extinctions and the irregular, lower intensity extinctions commonly called background extinction.

  10. 16 CFR 1203.17 - Impact attenuation test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., Motorcycle Helmets, 49 CFR 571.218 (S7.1.8). The center of gravity of the drop assembly shall lie within the... height adjustment to account for friction losses.) Six impacts, at intervals of 75±15 seconds, shall be...), plus a height adjustment to account for friction losses.) The helmet shall be dropped onto...

  11. Rationale for and dimensions of impact surfaces for biofidelity tests of different sizes of frontal and side impact dummies.

    PubMed

    Irwin, Annette L; Mertz, Harold J

    2010-11-01

    The biofidelity impact response corridors that were used to develop the Hybrid III family of dummies were established by scaling the various biofidelity corridors that were defined for the Hybrid III mid-size, adult male dummy. Scaling ratios for the responses of force, moment, acceleration, velocity, deflection, angle, stiffness and time were developed using dimensions and masses that were prescribed for the dummies. In addition, an elastic modulus ratio for bone was used to account for the differences between child and adult bone elastic properties. A similar method is being used by ISO/TC22/SC12/WG 5 to develop biofidelity guidelines for a family of side impact dummies based on scaling the biofidelity impact response corridors that are prescribed for WorldSID, a mid-size, adult male dummy. While the various biomechanical impact response requirements for the Hybrid III family of dummies and the WorldSID are documented in the literature, the scaling used to prescribe the dimensions of the impact surfaces that are used for the various biofidelity tests for various sizes of dummies are not documented. This paper describes the rationale for how these impact surfaces should be scaled, gives the scaling equations, and gives the dimensions of the impact surfaces that should be used for the various biofidelity tests of the different sizes of adult and child dummies. For future PMHS and human volunteer tests that are conducted to define impact biofidelity guidelines, it is recommended that the impact surfaces be scaled for the test subject size so that the data can be appropriately normalized to any size subject.

  12. Impact of Educational Level on Performance on Auditory Processing Tests.

    PubMed

    Murphy, Cristina F B; Rabelo, Camila M; Silagi, Marcela L; Mansur, Letícia L; Schochat, Eliane

    2016-01-01

    Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor "years of schooling" was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills.

  13. Impact of Educational Level on Performance on Auditory Processing Tests

    PubMed Central

    Murphy, Cristina F. B.; Rabelo, Camila M.; Silagi, Marcela L.; Mansur, Letícia L.; Schochat, Eliane

    2016-01-01

    Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor “years of schooling” was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills. PMID:27013958

  14. Impact of Inclusion or Exclusion of Repeaters on Test Equating

    ERIC Educational Resources Information Center

    Puhan, Gautam

    2011-01-01

    This study examined the effect of including or excluding repeaters on the equating process and results. New forms of two tests were equated to their respective old forms using either all examinees or only the first timer examinees in the new form sample. Results showed that for both tests used in this study, including or excluding repeaters in the…

  15. Testing and Resilience of the Impact Origin of the Moon

    NASA Technical Reports Server (NTRS)

    Righter, K.; Canup, R. M.

    2016-01-01

    The leading hypothesis for the origin of the Moon is the giant impact model, which grew out of the post-Apollo science community. The hypothesis was able to explain the high E-M system angular momentum, the small lunar core, and consistent with the idea that the early Moon melted substantially. The standard hypothesis requires that the Moon be made entirely from the impactor, strangely at odds with the nearly identical oxygen isotopic composition of the Earth and Moon, compositions that might be expected to be different if Moon came from a distinct impactor. Subsequent geochemical research has highlighted the similarity of both geochemical and isotopic composition of the Earth and Moon, and measured small but significant amounts of volatiles in lunar glassy materials, both of which are seemingly at odds with the standard giant impact model. Here we focus on key geochemical measurements and spacecraft observations that have prompted a healthy re-evaluation of the giant impact model, provide an overview of physical models that are either newly proposed or slightly revised from previous ideas, to explain the new datasets.

  16. Impact test characterization of carbon-carbon composites for the thermoelectric space power system

    SciTech Connect

    Romanoski, G.R.; Pih, Hui

    1995-12-31

    Thirty-eight unique carbon-carbon composite materials of cylindrical architecture were fabricated by commercial vendors for evaluation as alternative impact shell materials for the modular heat source of the thermoelectric space power system. Characterization of these materials included gas gun impact tests where cylindrical specimens containing a mass simulant were fired at 55 m/s to impact a target instrumented to measure force. The force versus time output was analyzed to determine: peak force, acceleration, velocity, and displacement. All impact tests exhibited an equivalence between preimpact momentum and measured impulse. In addition, energy was conserved based on a comparison of preimpact kinetic energy and measured work. Impact test results showed that the currently specified material provided impact energy absorption comparable to the best alternatives considered to date.

  17. On the modeling of the Taylor cylinder impact test for orthotropic textured materials: Calculations and experiments

    SciTech Connect

    Maudlin, P.J.; Bingert, J.F.; House, J.W.

    1997-04-01

    Taylor impact tests using specimens cut from a rolled plate of Ta were conducted. The Ta was well-characterized in terms of flow stress and crystallographic texture. A piece-wise yield surface was interrogated from this orthotropic texture, and used in EPIC-95 3D simulations of the Taylor test. Good agreement was realized between the calculations and the post-test geometries in terms of major and minor side profiles and impact-interface footprints.

  18. IMPACT_S: integrated multiprogram platform to analyze and combine tests of selection.

    PubMed

    Maldonado, Emanuel; Sunagar, Kartik; Almeida, Daniela; Vasconcelos, Vitor; Antunes, Agostinho

    2014-01-01

    Among the major goals of research in evolutionary biology are the identification of genes targeted by natural selection and understanding how various regimes of evolution affect the fitness of an organism. In particular, adaptive evolution enables organisms to adapt to changing ecological factors such as diet, temperature, habitat, predatory pressures and prey abundance. An integrative approach is crucial for the identification of non-synonymous mutations that introduce radical changes in protein biochemistry and thus in turn influence the structure and function of proteins. Performing such analyses manually is often a time-consuming process, due to the large number of statistical files generated from multiple approaches, especially when assessing numerous taxa and/or large datasets. We present IMPACT_S, an easy-to-use Graphical User Interface (GUI) software, which rapidly and effectively integrates, filters and combines results from three widely used programs for assessing the influence of selection: Codeml (PAML package), Datamonkey and TreeSAAP. It enables the identification and tabulation of sites detected by these programs as evolving under the influence of positive, neutral and/or negative selection in protein-coding genes. IMPACT_S further facilitates the automatic mapping of these sites onto the three-dimensional structures of proteins. Other useful tools incorporated in IMPACT_S include Jmol, Archaeopteryx, Gnuplot, PhyML, a built-in Swiss-Model interface and a PDB downloader. The relevance and functionality of IMPACT_S is shown through a case study on the toxicoferan-reptilian Cysteine-rich Secretory Proteins (CRiSPs). IMPACT_S is a platform-independent software released under GPLv3 license, freely available online from http://impact-s.sourceforge.net.

  19. Prognostic impact of stress testing in coronary artery disease

    SciTech Connect

    Severi, S.; Michelassi, C. )

    1991-05-01

    Observational data prospectively collected permit the examination of a complex set of decisions, including the decision not to perform any stress testing. Patients with or without previous myocardial infarction admitted for coronary evaluation and not submitted to any stress testing because of clinical reasons are at a higher risk for subsequent death. For prognostication, no test has been better validated than exercise electrocardiography: it can identify patients at low and high risk for future cardiac events among those without symptoms, with typical chest pain, and with previous myocardial infarction. In patients with triple-vessel disease, the results of exercise also allow those at low and high risk to be recognized. Both exercise radionuclide angiography and {sup 201}Tl scintigraphy (the latter in larger patient populations) have also demonstrated significant prognostic value on patients with or without previous myocardial infarction. Neither one has shown superiority to the other in prognostication. So far, they have been considered the only viable alternatives to exercise electrocardiography stress testing for diagnosis and prognostication. However, their costs limit their extensive application. Preliminary data suggest that intravenous dipyridamole echocardiography can be used for both diagnosis and prognostication of coronary artery disease; moreover, the prognostic information derived from dipyridamole echocardiography testing seems independent of and additive to that provided by exercise electrocardiography. Further prospective studies on larger patient populations are needed to better define the prognostic value of dipyridamole echocardiography testing.47 references.

  20. Failure Behavior Characterization of Mo-Modified Ti Surface by Impact Test and Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Qin, Jianfeng; Zhang, Xiangyu; Lin, Naiming; Huang, Xiaobo; Tang, Bin

    2015-07-01

    Using the impact test and finite element simulation, the failure behavior of the Mo-modified layer on pure Ti was investigated. In the impact test, four loads of 100, 300, 500, and 700 N and 104 impacts were adopted. The three-dimensional residual impact dents were examined using an optical microscope (Olympus-DSX500i), indicating that the impact resistance of the Ti surface was improved. Two failure modes cohesive and wearing were elucidated by electron backscatter diffraction and energy-dispersive spectrometer performed in a field-emission scanning electron microscope. Through finite element forward analysis performed at a typical impact load of 300 N, stress-strain distributions in the Mo-modified Ti were quantitatively determined. In addition, the failure behavior of the Mo-modified layer was determined and an ideal failure model was proposed for high-load impact, based on the experimental and finite element forward analysis results.

  1. Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Lerch, Bradley A.; Ruggeri, Charles R.

    2013-01-01

    One of the difficulties with developing and verifying accurate impact models is that parameters such as high strain rate material properties, failure modes, static properties, and impact test measurements are often obtained from a variety of different sources using different materials, with little control over consistency among the different sources. In addition there is often a lack of quantitative measurements in impact tests to which the models can be compared. To alleviate some of these problems, a project is underway to develop a consistent set of material property, impact test data and failure analysis for a variety of aircraft materials that can be used to develop improved impact failure and deformation models. This project is jointly funded by the NASA Glenn Research Center and the FAA William J. Hughes Technical Center. Unique features of this set of data are that all material property data and impact test data are obtained using identical material, the test methods and procedures are extensively documented and all of the raw data is available. Four parallel efforts are currently underway: Measurement of material deformation and failure response over a wide range of strain rates and temperatures and failure analysis of material property specimens and impact test articles conducted by The Ohio State University; development of improved numerical modeling techniques for deformation and failure conducted by The George Washington University; impact testing of flat panels and substructures conducted by NASA Glenn Research Center. This report describes impact testing which has been done on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade. Data from this testing will be used in validating material models developed under this program. The material

  2. Subtask 12D2: Baseline impact properties of vanadium alloys

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1995-03-01

    The objective of this work is to determine the baseline impact properties of vanadium-base alloys as a function of compositional variables. Up-to-date results on impact properties of unirradiated V, V-Ti, V-Cr-Ti and V-Ti-Si alloys are presented and reviewed in this paper, with an emphasis on the most promising class of alloys, i.e., V-(4-5)Cr-(3-5)Ti containing 400-1000 wppm Si. Database on impact energy and ductile-brittle transition temperature (DBTT) has been established from Charpy impact tests on small laboratory as well as production-scale heats. DBTT is influenced most significantly by Cr contents and, to a lesser extent, by Ti contents of the alloys. When combined contents of Cr and Ti were {le}10 wt.%, V-Cr-Ti alloys exhibit excellent impact properties, i.e., DBTT<-200{degrees}C and upper shelf energies of {approx}120-140 J/cm{sup 2}. Impact properties of the production-scale heat of the U.S. reference alloy V-4Cr- 4Ti were as good as those of the laboratory-scale heats. Optimal impact properties of the reference alloy were obtained after annealing the as-rolled products at 1000{degrees}C-1050{degrees}C for 1-2 h in high-quality vacuum. 17 refs., 6 figs., 2 tabs.

  3. Evaluation of the recovery annealing of the reactor pressure vessel of NPP Nord (Greifswald) Units 1 and 2 by means of subsize impact specimens

    SciTech Connect

    Ahlstrand, R.; Klausnitzer, E.N.; Leitz, C.; Lange, D.; Pastor, D.; Valo, M.

    1993-12-01

    In 1988 and 1990, the reactor pressure vessels of Units 1 and 2, respectively, of the Greifswald nuclear power station were subjected to heat treatment at 475 C for annealing of irradiation effects. To demonstrate the effect of annealing and to evaluate a new postannealing transition temperature of vessel base metal and weld metal, boat samples were removed by means of electric discharge machining (EDM) from the (unclad) inner surface of the vessel. From these samples, micronotched bar impact test specimens were fabricated and tested at different temperature. Transition curves were evaluated from the results. By means of correlation tests, the transition temperatures evaluated from the micro-specimen tests are converted to standard Charpy-5 transition temperatures. Results are available for the weld metal of Unit 1 after annealing. The transition temperature T{sub k} is lower than the value calculated by the designer of the plant. Specimens removed from Unit 2 before and after annealing are in preparation.

  4. The role of the modified taylor impact test in dynamic material research

    NASA Astrophysics Data System (ADS)

    Bagusat, Frank; Rohr, Ingmar

    2015-09-01

    Dynamic material research with strain rates of more than 1000 1/s is experimentally very often done with a Split-Hopkinson Bar, Taylor impact tests or planar plate impact test investigations. At the Ernst-Mach-Institut (EMI), a variant of an inverted classical Taylor impact test is used by application of velocity interferometers of the VISAR type ("Modified Taylor Impact Test", MTT). The conduction of the experiments is similar to that of planar plate impact tests. The data reduction and derivation of dynamic material data can also be restricted to an analysis of the VISAR signal. Due to these properties, nearly each highly dynamic material characterization in our institute done by planar plate investigations is usually accompanied by MTT experiments. The extended possibilities and usefulness of a combined usage of these two highly dynamic characterization methods are explained. Recently, further developed MTT experiments with very small specimen sizes are presented. For the first time, Taylor impact and planar impact specimen can be used for which the load directions even in case of thin plate test material are identical and not perpendicular to each other. Consequences for testing construction elements are discussed.

  5. Impact resistance of current design composite fan blades tested under short-haul operating conditions

    NASA Technical Reports Server (NTRS)

    Steinhagen, C. A.; Salemme, C. T.

    1973-01-01

    Boron/epoxy and graphite/epoxy composite blades were impacted in a rotating whirligig facility with conditions closely simulating those which might be experienced by a STOL engine impacted with various foreign objects. The tip speed of the rotating blades was 800 feet per second. The blades were impacted with simulated birds, real birds, ice balls, and gravel. The results of composite blade impact tests were compared with a titanium blade tested under similar conditions. Neither composite material indicated a clear superiority over the other. Blades made from both composite materials showed more damage than the titanium blades.

  6. Full-scale impact tests of simulated high-level waste canisters

    SciTech Connect

    Slate, S.C.

    1982-02-01

    Full-scale impact tests of simulated high-level waste canisters at PNL were carried out in 1977 and 1981. In the first series of tests, cannisters were dropped from heights ranging from 6m to 32m from a crane onto a specially constructed test pad of steel plate set into a reinforced concrete mass. The canister impacts were recorded with both video and a high speed camera. The purpose of the tests was to determine the post-impact integrity of various canister designs. In the second series of tests, 6 canisters were dropped from a 9m height to determine the performance of the PNL Twist-Lock fill closure design and SRL fill/closure design. Five of the canisters were glass filled while the sixth contained glass marbles in a lead matrix. Impacted-glass data has led to empirical correlations useful in predicting glass fragmentation for evaluating the consequences of possible accidents.

  7. Normalization of Impact Energy by Laminate Thickness for Compression After Impact Testing

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Hromisin, S. M.

    2013-01-01

    The amount of impact energy used to damage a composite laminate is a critical parameter when assessing residual strength properties. The compression after impact (CAI) strength of impacted laminates is dependent upon how thick the laminate is and this has traditionally been accounted for by normalizing (dividing) the impact energy by the laminate's thickness. However, when comparing CAI strength values for a given lay-up sequence and fiber/resin system, dividing the impact energy by the specimen thickness has been noted by the author to give higher CAI strength values for thicker laminates. A study was thus undertaken to assess the comparability of CAI strength data by normalizing the impact energy by the specimen thickness raised to a power to account for the higher strength of thicker laminates. One set of data from the literature and two generated in this study were analyzed by dividing the impact energy by the specimen thickness to the 1, 1.5, 2, and 2.5 powers. Results show that as laminate thickness and damage severity decreased, the value which the laminate thickness needs to be raised to in order to yield more comparable CAI data increases.

  8. Determination of anisotropy in impact toughness of aluminium alloy 2024 T3 plate

    NASA Astrophysics Data System (ADS)

    Siddiqui, M. H.; Hashmi, F.; Junaid, A.

    The research was aimed to quantify the existence of anisotropy in fracture toughness of aluminium alloy 2024 T3 plate (used in aircraft structural members). It was further needed to establish the direction in which the fracture toughness of aluminium alloy 2024 T3 plate is maximum and minimum. This could help ascertain the structural integrity of aircraft structural components; also while designing new components, the knowledge of variation in toughness with respect to direction helps in economizing dead weight of the aircraft. In this research, pursued at the College of Aeronautical Engineering, the anisotropy in toughness of aluminium alloy 2024 T3 plate was analysed using the Charpy V-notch impact toughness test. The effect of specimen orientation on the impact toughness values of the alloy was investigated and compared with known results to verify the reliability of the work and to ascertain the extent of anisotropy in fracture toughness of the said alloy. Charpy impact tests were carried out on ASTM E 23 standard specimens machined at a reference laboratory at room temperature (23° C +/- 2° C). Four different specimen orientations analysed for the purpose of this study were L-S, L-T, T-S and T-L directions. Subsequently, the results obtained at the research centre were then analysed and correlated with morphology of microstructure of the material to establish the reliability of the experimental results. Moreover, an analysis was also done to cater for the possible errors that could affect the fracture toughness values obtained from experimental results. It was concluded that the T-S orientation of the plate had maximum toughness, whereas, minimum toughness was observed in L-T direction.

  9. Capabilities of the Impact Testing Facility at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Finchum, Andy; Nehls, Mary; Young, Whitney; Gray, Perry; Suggs, Bart; Lowrey, Nikki M.

    2011-01-01

    The test and analysis capabilities of the Impact Testing Facility at NASA's Marshall Space Flight Center are described. Nine different gun systems accommodate a wide range of projectile and target sizes and shapes at velocities from subsonic through hypersonic, to accomplish a broad range of ballistic and hypervelocity impact tests. These gun systems include ballistic and microballistic gas and powder guns, a two-stage light gas gun, and specialty guns for weather encounter studies. The ITF "rain gun" is the only hydrometeor impact gun known to be in existence in the United States that can provide single impact performance data with known raindrop sizes. Simulation of high velocity impact is available using the Smooth Particle Hydrodynamic Code. The Impact Testing Facility provides testing, custom test configuration design and fabrication, and analytical services for NASA, the Department of Defense, academic institutions, international space agencies, and private industry in a secure facility located at Marshall Space Flight Center, on the US Army's Redstone Arsenal in Huntsville, Alabama. This facility performs tests that are subject to International Traffic in Arms Regulations (ITAR) and DoD secret classified restrictions as well as proprietary and unrestricted tests for civil space agencies, academic institutions, and commercial aerospace and defense companies and their suppliers.

  10. Elemental Water Impact Test: Phase 2 36-Inch Aluminum Tank Head

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA simulations of water landing impacts. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. EWIT Phase 2 featured a 36-inch aluminum tank head. The tank head was outfitted with one accelerometer, twelve pressure transducers, three string potentiometers, and four strain gages. The tank head was dropped from heights of 1 foot and 2 feet. The focus of this report is the correlation of analytical models against test data. As a measure of prediction accuracy, peak responses from the baseline LS-DYNA model were compared to peak responses from the tests.

  11. SRB/FWC water impact: Flexible body loads test

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Two technical areas were examined: evaluation of potential correction methods for spurious case strain outputs from the pressure transducers during the NSWC tests; and assessing procedures for modifying either the excitation function or the response function to account for hydroelastic effects.

  12. Light airplane crash tests at impact velocities of 13 and 27 m/sec

    NASA Technical Reports Server (NTRS)

    Alfaro-Bou, E.; Vaughan, V. L., Jr.

    1977-01-01

    Two similar general aviation airplanes were crash tested at the Langley impact dynamics research facility at velocities of 13 and 27 m/sec. Other flight parameters were held constant. The facility, instrumentation, tests specimens, and test method are briefly described. Structural damage and accelerometer data are discussed.

  13. The Impact of Variability of Item Parameter Estimators on Test Information Function

    ERIC Educational Resources Information Center

    Zhang, Jinming

    2012-01-01

    The impact of uncertainty about item parameters on test information functions is investigated. The information function of a test is one of the most important tools in item response theory (IRT). Inaccuracy in the estimation of test information can have substantial consequences on data analyses based on IRT. In this article, the major part (called…

  14. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, Armin; Bergey, Daniel

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  15. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  16. Measurement of Low Level Explosives Reaction in Gauged Multi-Dimensional Steven Impact Tests

    SciTech Connect

    Niles, A M; Garcia, F; Greenwood, D W; Forbes, J W; Tarver, C M; Chidester, S K; Garza, R G; Swizter, L L

    2001-05-31

    The Steven Test was developed to determine relative impact sensitivity of metal encased solid high explosives and also be amenable to two-dimensional modeling. Low level reaction thresholds occur at impact velocities below those required for shock initiation. To assist in understanding this test, multi-dimensional gauge techniques utilizing carbon foil and carbon resistor gauges were used to measure pressure and event times. Carbon resistor gauges indicated late time low level reactions 200-540 {micro}s after projectile impact, creating 0.39-2.00 kb peak shocks centered in PBX 9501 explosives discs and a 0.60 kb peak shock in a LX-04 disk. Steven Test modeling results, based on ignition and growth criteria, are presented for two PBX 9501 scenarios: one with projectile impact velocity just under threshold (51 m/s) and one with projectile impact velocity just over threshold (55 m/s). Modeling results are presented and compared to experimental data.

  17. Permeability Testing of Impacted Composite Laminates for Use on Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Munafo, Paul (Technical Monitor)

    2001-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite, and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented, and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a nonlinear fashion for almost all the specimens tested.

  18. Impact of testing styles and testing methods on achievement in general chemistry

    NASA Astrophysics Data System (ADS)

    Howell, Byron Edward

    2001-12-01

    This research conducted at a community college located in Northeast Texas studied testing style and testing methods in relation to achievement in general chemistry. Data was collected and examined from 212 participants. Of these, 143 completed both the MBTI and PEPS surveys. This provided 71 subjects designated as Sensor (S) types for the final phase of the study. The subjects were divided into two groups by performance on the PEPS. One group consisted of subjects that indicated a preference to communicate (test) using a formal/pencil-paper test format (linguistic testing style) and the other subjects indicated a preference to communicate (test) using a hands-on/movement test format (tactile testing style). All subjects were administered both a linguistic and tactile pretest prior to treatment and both a linguistic and tactile posttest after treatment. The data was analyzed using a 2 x 2 ANOVA for significant effects at the p < 0.05 level of confidence. The results indicated a significant interaction effect between the student testing style and test methods. While not conclusive, this study does indicate that the type of testing done in general chemistry may be favoring students with certain types of communication preferences (testing styles). Therefore students with many of the worker characteristics desired by the chemical industry may not be successful in general chemistry and choose a different career path.

  19. Ballistic Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Ruggeri, Charles R.; Emmerling, William C.; Altobelli, Donald J.

    2012-01-01

    An experimental program is underway to develop a consistent set of material property and impact test data, and failure analysis, for a variety of materials that can be used to develop improved impact failure and deformation models. Unique features of this set of data are that all material property information and impact test results are obtained using identical materials, the test methods and procedures are extensively documented and all of the raw data is available. This report describes ballistic impact testing which has been conducted on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade.

  20. Cycom 977-2 Composite Material: Impact Test Results (workshop presentation)

    NASA Technical Reports Server (NTRS)

    Engle, Carl; Herald, Stephen; Watkins, Casey

    2005-01-01

    Contents include the following: Ambient (13A) tests of Cycom 977-2 impact characteristics by the Brucenton and statistical method at MSFC and WSTF. Repeat (13A) tests of tested Cycom from phase I at MSFC to expended testing statistical database. Conduct high-pressure tests (13B) in liquid oxygen (LOX) and GOX at MSFC and WSTF to determine Cycom reaction characteristics and batch effect. Conduct expended ambient (13A) LOX test at MSFC and high-pressure (13B) testing to determine pressure effects in LOX. Expend 13B GOX database.

  1. Technical Methods Report: Guidelines for Multiple Testing in Impact Evaluations. NCEE 2008-4018

    ERIC Educational Resources Information Center

    Schochet, Peter Z.

    2008-01-01

    This report presents guidelines for addressing the multiple comparisons problem in impact evaluations in the education area. The problem occurs due to the large number of hypothesis tests that are typically conducted across outcomes and subgroups in these studies, which can lead to spurious statistically significant impact findings. The…

  2. The Impact of Test Dimensionality, Common-Item Set Format, and Scale Linking Methods on Mixed-Format Test Equating

    ERIC Educational Resources Information Center

    Öztürk-Gübes, Nese; Kelecioglu, Hülya

    2016-01-01

    The purpose of this study was to examine the impact of dimensionality, common-item set format, and different scale linking methods on preserving equity property with mixed-format test equating. Item response theory (IRT) true-score equating (TSE) and IRT observed-score equating (OSE) methods were used under common-item nonequivalent groups design.…

  3. Particle Impact Ignition Test Data on a Stainless Steel Hand Valve

    NASA Technical Reports Server (NTRS)

    Peralta, Stephen

    2010-01-01

    This slide presentation reviews the particle impact ignition test of a stainless steel hand valve. The impact of particles is a real fire hazard with stainless steel hand valves, however 100 mg of particulate can be tolerated. Since it is unlikely that 100 mg of stainless steel contaminant particles can be simultaneously released into this type of valve in the WSTF configuration, this is acceptable and within statistical confidence as demonstrated by testing.

  4. Impact of corrosion test container material in molten fluorides

    SciTech Connect

    Olson, Luke C.; Fuentes, Roderick E.; Martinez-Rodriguez, Michael J.; Ambrosek, James W.; Sridharan, Kumar; Anderson, Mark H.; Garcia-Diaz, Brenda L.; Gray, Joshua; Allen, Todd R.

    2015-10-15

    The effects of crucible material choice on alloy corrosion rates in immersion tests in molten LiF–NaF–KF (46.5–11.5-42 mol. %) salt held at 850 °C for 500 hrs are described. Four crucible materials were studied. Molten salt exposures of Incoloy-800H in graphite, Ni, Incoloy-800H, and pyrolytic boron nitride (PyBN) crucibles all led to weight-loss in the Incoloy-800H coupons. Alloy weight loss was ~30 times higher in the graphite and Ni crucibles in comparison to the Incoloy-800H and PyBN crucibles. It is hypothesized galvanic coupling between the alloy coupons and crucible materials contributed to the higher corrosion rates. Alloy salt immersion in graphite and Ni crucibles had similar weight-loss hypothesized to occur due to the rate limiting out diffusion of Cr in the alloys to the surface where it reacts with and dissolves into the molten salt, followed by the reduction of Cr from solution at the molten salt and graphite/Ni interfaces. As a result, both the graphite and the Ni crucibles provided sinks for the Cr, in the formation of a Ni–Cr alloy in the case of the Ni crucible, and Cr carbide in the case of the graphite crucible.

  5. Impact of corrosion test container material in molten fluorides

    DOE PAGESBeta

    Olson, Luke C.; Fuentes, Roderick E.; Martinez-Rodriguez, Michael J.; Ambrosek, James W.; Sridharan, Kumar; Anderson, Mark H.; Garcia-Diaz, Brenda L.; Gray, Joshua; Allen, Todd R.

    2015-10-15

    The effects of crucible material choice on alloy corrosion rates in immersion tests in molten LiF–NaF–KF (46.5–11.5-42 mol. %) salt held at 850 °C for 500 hrs are described. Four crucible materials were studied. Molten salt exposures of Incoloy-800H in graphite, Ni, Incoloy-800H, and pyrolytic boron nitride (PyBN) crucibles all led to weight-loss in the Incoloy-800H coupons. Alloy weight loss was ~30 times higher in the graphite and Ni crucibles in comparison to the Incoloy-800H and PyBN crucibles. It is hypothesized galvanic coupling between the alloy coupons and crucible materials contributed to the higher corrosion rates. Alloy salt immersion inmore » graphite and Ni crucibles had similar weight-loss hypothesized to occur due to the rate limiting out diffusion of Cr in the alloys to the surface where it reacts with and dissolves into the molten salt, followed by the reduction of Cr from solution at the molten salt and graphite/Ni interfaces. As a result, both the graphite and the Ni crucibles provided sinks for the Cr, in the formation of a Ni–Cr alloy in the case of the Ni crucible, and Cr carbide in the case of the graphite crucible.« less

  6. Multi-Terrain Impact Testing and Simulation of a Composite Energy Absorbing Fuselage Section

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Lyle, Karen H.; Sparks, Chad E.; Sareen, Ashish K.

    2004-01-01

    Comparisons of the impact performance of a 5-ft diameter crashworthy composite fuselage section were investigated for hard surface, soft soil, and water impacts. The fuselage concept, which was originally designed for impacts onto a hard surface only, consisted of a stiff upper cabin, load bearing floor, and an energy absorbing subfloor. Vertical drop tests were performed at 25-ft/s onto concrete, soft-soil, and water at NASA Langley Research Center. Comparisons of the peak acceleration values, pulse durations, and onset rates were evaluated for each test at specific locations on the fuselage. In addition to comparisons of the experimental results, dynamic finite element models were developed to simulate each impact condition. Once validated, these models can be used to evaluate the dynamic behavior of subfloor components for improved crash protection for hard surface, soft soil, and water impacts.

  7. Multi-Terrain Impact Testing and Simulation of a Composite Energy Absorbing Fuselage Section

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Sparks, Chad E.; Sareen, Ashish K.

    2007-01-01

    Comparisons of the impact performance of a 5-ft diameter crashworthy composite fuselage section were investigated for hard surface, soft soil, and water impacts. The fuselage concept, which was originally designed for impacts onto a hard surface only, consisted of a stiff upper cabin, load bearing floor, and an energy absorbing subfloor. Vertical drop tests were performed at 25-ft/s onto concrete, soft-soil, and water at NASA Langley Research Center. Comparisons of the peak acceleration values, pulse durations, and onset rates were evaluated for each test at specific locations on the fuselage. In addition to comparisons of the experimental results, dynamic finite element models were developed to simulate each impact condition. Once validated, these models can be used to evaluate the dynamic behavior of subfloor components for improved crash protection for hard surface, soft soil, and water impacts.

  8. Contact and artificial soil tests using earthworms to evaluate the impact of wastes in soil

    SciTech Connect

    Neuhauser, E.F.; Loehr, R.C.; Malecki, M.R.

    1986-01-01

    The study was designed to evaluate two methods using earthworms that can be used to estimate the biological impact of organic and inorganic compounds that may be in wastes applied to land for treatment and disposal. The two methods were the contact test and the artificial soil test. The contact test is 48-h test using an adult worm, a small glass vial, and filter paper to which the test chemical or waste is applied. The test is designed to provide close contact between the worm and a chemical, similar to the situation in soils. The method provides a rapid estimate of the relative toxicity of chemicals and industrial wastes.

  9. Emotional pictures impact repetitive sprint ability test on cycle ergometre.

    PubMed

    Coudrat, Laure; Rouis, Majdi; Jaafar, Hamdi; Attiogbé, Elvis; Gélat, Thierry; Driss, Tarak

    2014-01-01

    This study investigated the interaction between emotion-eliciting pictures and power output during a repetitive supra-maximal task on a cycle ergometre. Twelve male participants (mean (±SD) age, height and weight: 28.58 ± 3.23 years, 1.78 ± 0.05 m and 82.41 ± 13.29 kg) performed 5 repeated sprint tests on a cycle ergometre in front of neutral, pleasant or unpleasant pictures. For each sprint, mechanical (peak power and work), physiological (heart rate) and perceptual (affective load) indices were analysed. Affective load was calculated from the ratings of perceived exertion, which reflected the amount of pleasant and unpleasant responses experienced during exercise. The results showed that peak power, work and heart rate values were significantly lower (P < 0.05) for unpleasant pictures (9.18 ± 0.20 W ∙ kg(-1); 47.69 ± 1.08 J ∙ kg(-1); 152 ± 4 bpm) when compared with pleasant ones (9.50 ± 0.20 W ∙ kg(-1); 50.11 ± 0.11 J ∙ kg(-1); 156 ± 3 bpm). Furthermore, the affective load was found to be similar for the pleasant and unpleasant sessions. All together, these results suggested that the ability to produce maximal power output depended on whether the emotional context was pleasant or unpleasant. The fact that the power output was lower in the unpleasant versus pleasant session could reflect a regulatory process aimed at maintaining a similar level of affective load for both sessions.

  10. Testing nanoeffect onto model bacteria: Impact of speciation and genotypes.

    PubMed

    Gelabert, Alexandre; Sivry, Yann; Gobbi, Paola; Mansouri-Guilani, Nina; Menguy, Nicolas; Brayner, Roberta; Siron, Valerie; Benedetti, Marc Fabien; Ferrari, Roselyne

    2016-01-01

    The gram-negative bacteria Escherichia coli (E. coli) is a very useful prokaryotic model for testing the toxicity of ZnO nanoparticles (nano-ZnO). This toxicity is often linked to Zn(2+) released from nanoparticles in the culture medium, and nano-ZnO dissolution in different media is clearly established. Here, two model E. coli strains MG1655 and W3110 both descendant from the original K-12 showing slight differences in their genome were submitted to nano-ZnO or Zn(2+) in order 1 > to refine the nano-ZnO toxicity mechanisms to E. coli, and 2 > to investigate whether toxicity resulted from a real "nanoparticle" effect or from the release of Zn(2+) in solution. To do so, both strains were submitted to various concentrations (i.e., 0.1-1 mM) of nano-ZnO or Zn(2+) in Luria Bertani (LB) medium. These toxicity studies take into account the nano-ZnO solubility in the culture medium by specifically monitoring the Zn(2+) release in our experimental systems. In our experimental conditions, differences in tolerance to nano-ZnO or Zn(2+) between both strains were clearly evidenced. W3110 is generally more tolerant to metal than MG1655, the latter showing no real difference in its sensitivity to the two zinc added forms unlike W3110. The differences in behavior between both strains could be attributed to differences in the two genomes as a mutation named "amber" in W3110. Moreover, by using these two closely E. coli strains, a real "nano" effect is here clearly demonstrated providing a model to study the toxicity of ZnO nanoparticles. PMID:26593393

  11. Hybrid composite laminates reinforced with Kevlar/carbon/glass woven fabrics for ballistic impact testing.

    PubMed

    Randjbaran, Elias; Zahari, Rizal; Jalil, Nawal Aswan Abdul; Majid, Dayang Laila Abang Abdul

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  12. Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing

    PubMed Central

    Randjbaran, Elias; Zahari, Rizal; Abdul Jalil, Nawal Aswan; Abang Abdul Majid, Dayang Laila

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers. PMID:24955400

  13. Fluid composition impacts standardized testing protocols in ultrahigh molecular weight polyethylene knee wear testing.

    PubMed

    Schwenke, T; Kaddick, C; Schneider, E; Wimmer, M A

    2005-11-01

    Wear of total knee replacements is determined gravimetrically in simulator studies. A mix of bovine serum, distilled water, and additives is intended to replicate the lubrication conditions in vivo. Weight gain due to fluid absorption during testing is corrected using a load soak station. In this study, three sets of ultrahigh molecular weight polyethylene tibial plateau were tested against highly polished titanium condyles. Test 1 was performed in two different institutions on the same simulator according to the standard ISO 14243-1, using two testing lubricants. Test 2 and test 3 repeated both previous test sections. The wear and load soak rates changed significantly with the lubricant. The wear rate decreased from 16.9 to 7.9 mg weight loss per million cycles when switching from fluid A to fluid B. The weight gain of the load soak specimen submersed in fluid A was 6.1 mg after 5 x 10(6) cycles, compared with 31.6 mg for the implant in fluid B after the same time period. Both lubricants were mixed in accordance with ISO 14243 (Implants for surgery - wear of total knee-joint prostheses), suggesting that calf serum should be diluted to 25 +/- 2 per cent with deionized water and a protein mass concentration of not less than 17 g/l. The main differences were the type and amount of additives that chemically stabilize the lubricant throughout the test. The results suggest that wear rates can only be compared if exactly the same testing conditions are applied. An agreement on detailed lubricant specifications is desirable.

  14. The TOEFL Trump Card: An Investigation of Test Impact in an ESL Classroom

    ERIC Educational Resources Information Center

    Johnson, Karen E.; Jordan, Stefanie Rehn; Poehner, Matthew E.

    2005-01-01

    Much of the research on the effects of tests on foreign and second-language classrooms has examined the impact or washback effect that commercial/institutional language tests, such as the TOEFL, have on teachers' instructional practices (Hughes, 1998; Wall & Alderson, 1993). Using a case study methodology, this study uncovered the ways in which…

  15. An Approach for Addressing the Multiple Testing Problem in Social Policy Impact Evaluations

    ERIC Educational Resources Information Center

    Schochet, Peter Z.

    2009-01-01

    In social policy evaluations, the multiple testing problem occurs due to the many hypothesis tests that are typically conducted across multiple outcomes and subgroups, which can lead to spurious impact findings. This article discusses a framework for addressing this problem that balances Types I and II errors. The framework involves specifying…

  16. The Impact of Mandated Statewide Testing on Teachers' Classroom Assessment and Instructional Practices.

    ERIC Educational Resources Information Center

    McMillan, James H.; Myran, Steve; Workman, Daryl

    The impact of the new Virginia statewide Standards of Learning (SOL) testing program on classroom instructional and assessment practices was studied through surveys before and after implementation of the testing program. The sample represented responses from 570 secondary school teachers (of mathematics, social studies, English, and science) and…

  17. An Exploration of the Impact of Accountability Testing on Teaching in Urban Elementary Classrooms

    ERIC Educational Resources Information Center

    Bisland, Beverly Milner

    2015-01-01

    This study explores accountability testing in the elementary schools of New York City with particular emphasis on the impact of a statewide social studies test on the value given to social studies instruction in comparison to other subjects. The attitudes of a group of elementary teachers are examined. Some of the teachers taught all subjects in…

  18. The Impact of Linking Distinct Achievement Test Scores on the Interpretation of Student Growth in Achievement

    ERIC Educational Resources Information Center

    Airola, Denise Tobin

    2011-01-01

    Changes to state tests impact the ability of State Education Agencies (SEAs) to monitor change in performance over time. The purpose of this study was to evaluate the Standardized Performance Growth Index (PGIz), a proposed statistical model for measuring change in student and school performance, across transitions in tests. The PGIz is a…

  19. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  20. Nondestructive Evaluation Tests Performed on Space Shuttle Leading- Edge Materials Subjected to Impact

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Martin, Richard E.; Bodis, James R.

    2005-01-01

    In support of the space shuttle Return To Flight efforts at the NASA Glenn Research Center, a series of nondestructive evaluation (NDE) tests were performed on reinforced carbon/carbon (RCC) composite panels subjected to ballistic foam impact. The impact tests were conducted to refine and verify analytical models of an external tank foam strike on the space shuttle leading edge. The NDE tests were conducted to quantify the size and location of the resulting damage zone as well as to identify hidden damage.

  1. Design of Spacecraft Missions to Test Kinetic Impact for Asteroid Deflection

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Hernandez, Sonia

    2012-01-01

    Earth has previously been struck with devastating force by near-Earth asteroids (NEAs) and will be struck again. Telescopic search programs aim to provide advance warning of such an impact, but no techniques or systems have yet been tested for deflecting an incoming NEA. To begin addressing this problem, we have analyzed the more than 8000 currently known NEAs to identify those that offer opportunities for safe and meaningful near-term tests of the proposed kinetic impact asteroid deflection technique. In this paper we present our methodology and results, including complete mission designs for the best kinetic impactor test mission opportunities.

  2. Evaluation of seismic spatial interaction effects through an impact testing program

    SciTech Connect

    Thomas, B.D.; Driesen, G.E.

    1993-04-01

    The consequences of non-seismically qualified objects falling and striking essential, seismically qualified objects is an analytically difficult problem to assess. Analytical solutions to impact problems are conservative and only available for simple situations. In a nuclear facility, the numerous ``sources`` and ``targets`` requiring evaluation often have complex geometric configurations, which makes calculations and computer modeling difficult. Few industry or regulatory rules are available for this specialized assessment. A drop test program was recently conducted to ``calibrate`` the judgment of seismic qualification engineers who perform interaction evaluations and to further develop seismic interaction criteria. Impact tests on varying combinations of sources and targets were performed by dropping the sources from various heights onto targets that were connected to instruments. This paper summarizes the scope, test configurations, and some results of the drop test program. Force and acceleration time history data and general observations are presented on the ruggedness of various targets when subjected to impacts from different types of sources.

  3. Evaluation of seismic spatial interaction effects through an impact testing program

    SciTech Connect

    Thomas, B.D.; Driesen, G.E.

    1993-01-01

    The consequences of non-seismically qualified objects falling and striking essential, seismically qualified objects is an analytically difficult problem to assess. Analytical solutions to impact problems are conservative and only available for simple situations. In a nuclear facility, the numerous sources'' and targets'' requiring evaluation often have complex geometric configurations, which makes calculations and computer modeling difficult. Few industry or regulatory rules are available for this specialized assessment. A drop test program was recently conducted to calibrate'' the judgment of seismic qualification engineers who perform interaction evaluations and to further develop seismic interaction criteria. Impact tests on varying combinations of sources and targets were performed by dropping the sources from various heights onto targets that were connected to instruments. This paper summarizes the scope, test configurations, and some results of the drop test program. Force and acceleration time history data and general observations are presented on the ruggedness of various targets when subjected to impacts from different types of sources.

  4. High-silicon 238PuO2 fuel characterization study: Half module impact tests

    NASA Astrophysics Data System (ADS)

    Reimus, Mary Ann H.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238Pu decay to an array of thermoelectric elements. The modular GPHS design was developed to address both survivability during launch abort and return from orbit. Previous testing conducted in support of the Galileo and Ulysses missions documented the response of GPHSs to a variety of fragment-impact, aging, atmospheric reentry, and Earth-impact conditions. The evaluations documented in this report are part of an ongoing program to determine the effect of fuel impurities on the response of the heat source to conditions baselined during the Galileo/Ulysses test program. In the first two tests in this series, encapsulated GPHS fuel pellets containing high levels of silicon were aged, loaded into GPHS module halves, and impacted against steel plates. The results show no significant differences between the response of these capsules and the behavior of relatively low-silicon fuel pellets tested previously.

  5. Tethered rocket as a vehicle for penetration and impact testing: Development report

    SciTech Connect

    Hansen, N.R.

    1990-06-01

    A new technique, called tethered rocket, has been developed for testing in the penetration and/or impact modes. The technique involves tethering a rocket-motor assembly to an earth-fixed pivot so that the resulting semicircular arc delivers a payload to a precise impact point. Discussions are presented which describe the analytical and experimental activities of the tethered rocket technique. A series of analytical models has been integral to the success of the tethered rocket development. The analytic results were verified by testing. The tests demonstrated the viability of the technique for penetration and/or impact testing. Also included is a discussion of potential applications of the method. 18 refs., 53 figs., 17 tabs.

  6. Adult headform impact tests of three Japanese child bicycle helmets into a vehicle.

    PubMed

    Mizuno, Koji; Ito, Daisuke; Yoshida, Ryoichi; Masuda, Hiroyuki; Okada, Hiroshi; Nomura, Mitsunori; Fujii, Chikayo

    2014-12-01

    The head is the body region that most frequently incurs fatal and serious injuries of cyclists in collisions against vehicles. Many research studies investigated helmet effectiveness in preventing head injuries using accident data. In this study, the impact attenuation characteristics of three Japanese child bicycle helmets were examined experimentally in impact tests into a concrete surface and a vehicle. A pedestrian adult headform with and without a Japanese child bicycle helmet was dropped onto a concrete surface and then propelled into a vehicle at 35 km/h in various locations such as the bonnet, roof header, windshield and A-pillar. Accelerations were measured and head injury criterion (HIC) calculated. In the drop tests using the adult headform onto a concrete surface from the height of 1.5m, the HIC for a headform without a child helmet was 6325, and was reduced by around 80% when a child helmet was fitted to the headform. In the impact tests, where the headform was fired into the vehicle at 35 km/h at various locations on a car, the computed acceleration based HIC varied depending on the vehicle impact locations. The HIC was reduced by 10-38% for impacts headforms with a child helmet when the impact was onto a bonnet-top and roof header although the HIC was already less than 1000 in impacts with the headform without a child helmet. Similarly, for impacts into the windshield (where a cyclist's head is most frequently impacted), the HIC using the adult headform without a child helmet was 122; whereas when the adult headform was used with a child helmet, a higher HIC value of more than 850 was recorded. But again, the HIC values are below 1000. In impacts into the A-pillar, the HIC was 4816 for a headform without a child helmet and was reduced by 18-38% for a headform with a child helmet depending on the type of Japanese child helmet used. The tests demonstrated that Japanese child helmets are effective in reducing accelerations and HIC in a drop test using

  7. Adult headform impact tests of three Japanese child bicycle helmets into a vehicle.

    PubMed

    Mizuno, Koji; Ito, Daisuke; Yoshida, Ryoichi; Masuda, Hiroyuki; Okada, Hiroshi; Nomura, Mitsunori; Fujii, Chikayo

    2014-12-01

    The head is the body region that most frequently incurs fatal and serious injuries of cyclists in collisions against vehicles. Many research studies investigated helmet effectiveness in preventing head injuries using accident data. In this study, the impact attenuation characteristics of three Japanese child bicycle helmets were examined experimentally in impact tests into a concrete surface and a vehicle. A pedestrian adult headform with and without a Japanese child bicycle helmet was dropped onto a concrete surface and then propelled into a vehicle at 35 km/h in various locations such as the bonnet, roof header, windshield and A-pillar. Accelerations were measured and head injury criterion (HIC) calculated. In the drop tests using the adult headform onto a concrete surface from the height of 1.5m, the HIC for a headform without a child helmet was 6325, and was reduced by around 80% when a child helmet was fitted to the headform. In the impact tests, where the headform was fired into the vehicle at 35 km/h at various locations on a car, the computed acceleration based HIC varied depending on the vehicle impact locations. The HIC was reduced by 10-38% for impacts headforms with a child helmet when the impact was onto a bonnet-top and roof header although the HIC was already less than 1000 in impacts with the headform without a child helmet. Similarly, for impacts into the windshield (where a cyclist's head is most frequently impacted), the HIC using the adult headform without a child helmet was 122; whereas when the adult headform was used with a child helmet, a higher HIC value of more than 850 was recorded. But again, the HIC values are below 1000. In impacts into the A-pillar, the HIC was 4816 for a headform without a child helmet and was reduced by 18-38% for a headform with a child helmet depending on the type of Japanese child helmet used. The tests demonstrated that Japanese child helmets are effective in reducing accelerations and HIC in a drop test using

  8. Impact testing of the H1224A shipping/storage container

    SciTech Connect

    Harding, D.C.; Bobbe, J.G.; Stenberg, D.R.; Arviso, M.

    1994-05-01

    H1224A weapons containers have been used for years by the Department of Energy and Department of Defense to transport and store W78 warhead midsections. Although designed to protect these midsections only in low-energy handling drop and impact accidents, a recent transportation risk assessment effort has identified a need to evaluate the container`s ability to protect weapons in higher-energy environments. Four impact tests were performed on H1224A containers with W78 Mod 6c mass mockup midsections inside, onto an essentially unyielding target. Dynamic acceleration and strain levels were recorded during the side-on and end-on impacts, each at 12.2 m/s (40 ft/s) and 38.1 m/s (125 ft/s). Measured peak accelerations experienced by the midsections during lower velocity impacts ranged from 250 to 600 Gs for the end-on impact and 350 to 600 Gs for the side-on impact. Measured peak accelerations of the midsections during the higher velocity impacts ranged from 3,000 to 10,000 Gs for the end-on impact and 8,000 to 10,000 Gs for the side-on impact. Deformations in the H1224A container ranged from minimal to severe buckling and weld tearing. At higher impact velocities, the H1224A container may not provide significant energy absorption for the re-entry vehicle midsection but can provide some confinement of potentially damaged components.

  9. Methods for testing theory and evaluating impact in randomized field trials

    PubMed Central

    Brown, C. Hendricks; Wang, Wei; Kellam, Sheppard G.; Muthén, Bengt O.; Petras, Hanno; Toyinbo, Peter; Poduska, Jeanne; Ialongo, Nicholas; Wyman, Peter A.; Chamberlain, Patricia; Sloboda, Zili; MacKinnon, David P.; Windham, Amy

    2008-01-01

    Randomized field trials provide unique opportunities to examine the effectiveness of an intervention in real world settings and to test and extend both theory of etiology and theory of intervention. These trials are designed not only to test for overall intervention impact but also to examine how impact varies as a function of individual level characteristics, context, and across time. Examination of such variation in impact requires analytical methods that take into account the trial’s multiple nested structure and the evolving changes in outcomes over time. The models that we describe here merge multilevel modeling with growth modeling, allowing for variation in impact to be represented through discrete mixtures—growth mixture models—and nonparametric smooth functions—generalized additive mixed models. These methods are part of an emerging class of multilevel growth mixture models, and we illustrate these with models that examine overall impact and variation in impact. In this paper, we define intent-to-treat analyses in group-randomized multilevel field trials and discuss appropriate ways to identify, examine, and test for variation in impact without inflating the Type I error rate. We describe how to make causal inferences more robust to misspecification of covariates in such analyses and how to summarize and present these interactive intervention effects clearly. Practical strategies for reducing model complexity, checking model fit, and handling missing data are discussed using six randomized field trials to show how these methods may be used across trials randomized at different levels. PMID:18215473

  10. Methodology for mapping football head impact exposure to helmet pads for repeated loading testing.

    PubMed

    MacAlister, Anna; Young, Tyler; Daniel, Ray W; Rowson, Steven; Duma, Stefan M

    2014-01-01

    Football helmets have a lifespan of 10 years; however, no work has investigated how helmet padding properties change over time with use. The purpose of this study is to develop a methodology to control repeated pad loading and quantify changes in energy management. Head impact exposure data for 7-8 year old football players were used to find an average impact magnitude. NOCSAE-style drop tests were performed using an instrumented headform fitted with the same style helmet (Helmet A) used to collect population data to determine the compression depth and rate of the helmet padding during an average impact. Drops from the same height were then conducted for two other helmet types (Helmet B and Helmet C). For the average impact of ~15 g, the compression depth and rate of the pads from Helmet A were found to be 9.8 mm and 0.72 m/s respectively. The compression depths and rates for Helmets B and C were found to be 6.1 mm and 0.71 m/s and 10.7 mm and 0.69 m/s respectively. These parameters were utilized by a material testing system program to impact helmet padding. Repeated helmet pad loading can be tested using a material testing system for populations with known head impact exposure. The energy absorbing characteristics of the padding can be used to develop new safety regulations regarding the lifetime of helmets, affording better protection to athletes.

  11. Test study on the performance of shielding configuration with stuffed layer under hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Ke, Fa-wei; Huang, Jie; Wen, Xue-zhong; Ma, Zhao-xia; Liu, Sen

    2016-10-01

    In order to study the cracking and intercepting mechanism of stuffed layer configuration on the debris cloud and to develop stuffed layer configuration with better performance, the hypervelocity impact tests on shielding configurations with stuffed layer were carried out. Firstly, the hypervelocity impact tests on the shielding configuration with stuffed layer of 3 layer ceramic fibre and 3 layer aramid fibre were finished, the study results showed that the debris cloud generated by the aluminum sphere impacting bumper at the velocity of about 6.2 km/s would be racked and intercepted by the stuffed layer configuration efficiently when the ceramic fibre layers and aramid fibre layers were jointed together, however, the shielding performance would be declined when the ceramic fibre layers and aramid fibre layers were divided by some distance. The mechanism of stuffed layer racking and intercepting the debris cloud was analyzed according to the above test results. Secondly, based on the mechanism of the stuffed layer cracking and intercepint debirs cloud the hypervelocity impact tests on the following three stuffed layer structures with the equivalent areal density to the 1 mm-thick aluminum plate were also carried out to compare their performance of cracking and intercepting debris cloud. The mechanisms of stuffed layer racking and intercepting the debris cloud were validated by the test result. Thirdly, the influence of the stuffed layer position on the shielding performance was studied by the test, too. The test results would provide reference for the design of better performance shielding configuration with stuffed layer.

  12. Impact Testing and Analysis of Composites for Aircraft Engine Fan Cases

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.

    2002-01-01

    The fan case in a jet engine is a heavy structure because of its size and because of the requirement that it contain a blade released during engine operation. Composite materials offer the potential for reducing the weight of the case. Efficient design, test, and analysis methods are needed to efficiently evaluate the large number of potential composite materials and design concepts. The type of damage expected in a composite case under blade-out conditions was evaluated using a subscale test in which a glass/epoxy composite half-ring target was impacted with a wedge-shaped titanium projectile. Fiber shearing occurred near points of contact between the projectile and target. Delamination and tearing occurred on a larger scale. These damage modes were reproduced in a simpler test in which flat glass/epoxy composites were impacted with a blunt cylindrical projectile. A surface layer of ceramic eliminated fiber shear fracture but did not reduce delamination. Tests on 3D woven carbon/epoxy composites indicated that transverse reinforcement is effective in reducing delamination. A 91 cm (36 in.) diameter full-ring sub-component was proposed for larger scale testing of these and other composite concepts. Explicit, transient, finite element analyses indicated that a full-ring test is needed to simulate complete impact dynamics, but simpler tests using smaller ring sections are adequate when evaluation of initial impact damage is the primary concern.

  13. Psychological impact of genetic testing for adult-onset disorders. An update for clinicians.

    PubMed

    Meiser, B; Gleeson, M A; Tucker, K M

    2000-02-01

    Testing for gene mutations that confer susceptibility to adult-onset disorders has potential benefits, but these must be balanced against the psychological harms, if any. We review published findings on the psychological effects of such testing, focusing on Huntington's disease, which has the most available data, and the hereditary cancer syndromes. Most of the evidence suggests that non-carriers and carriers differ significantly in terms of short-term, but not long-term, psychological adjustment to test results. The psychological impact of genetic testing depends more on pretest psychological distress than the test result itself. PMID:10735024

  14. Crash Testing and Simulation of a Cessna 172 Aircraft: Pitch Down Impact Onto Soft Soil

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.

    2016-01-01

    During the summer of 2015, NASA Langley Research Center conducted three full-scale crash tests of Cessna 172 (C-172) aircraft at the NASA Langley Landing and Impact Research (LandIR) Facility. The first test represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test, which is the focus of this paper, represented a controlled-flight-into-terrain (CFIT) with a nose-down pitch attitude of the aircraft, which impacted onto soft soil. The third test, also conducted onto soil, represented a CFIT with a nose-up pitch attitude of the aircraft, which resulted in a tail strike condition. These three crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters (ELTs) and to generate impact test data for model validation. LS-DYNA finite element models were generated to simulate the three test conditions. This paper describes the model development and presents test-analysis comparisons of acceleration and velocity time-histories, as well as a comparison of the time sequence of events for Test 2 onto soft soil.

  15. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing

    NASA Technical Reports Server (NTRS)

    Lyons, Frankel

    2013-01-01

    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  16. Supplemental final environmental impact statement for advanced solid rocket motor testing at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Since the Final Environmental Impact Statement (FEIS) and Record of Decision on the FEIS describing the potential impacts to human health and the environment associated with the program, three factors have caused NASA to initiate additional studies regarding these issues. These factors are: (1) The U.S. Army Corps of Engineers and the Environmental Protection Agency (EPA) agreed to use the same comprehensive procedures to identify and delineate wetlands; (2) EPA has given NASA further guidance on how best to simulate the exhaust plume from the Advanced Solid Rocket Motor (ASRM) testing through computer modeling, enabling more realistic analysis of emission impacts; and (3) public concerns have been raised concerning short and long term impacts on human health and the environment from ASRM testing.

  17. Simulated Waste Testing Of Glycolate Impacts On The 2H-Evaporator System

    SciTech Connect

    Martino, C. J.

    2013-08-13

    Glycolic acid is being studied as a total or partial replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste tank farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the tank farm were addressed via a literature review, but several outstanding issues remained. This report documents the non-radioactive simulant tests impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The testing for which non-radioactive simulants could be used involved the following: the partitioning of glycolate into the evaporator condensate, the impacts of glycolate on metal solubility, and the impacts of glycolate on the formation and dissolution of sodium aluminosilicate scale within the evaporator. The following are among the conclusions from this work: Evaporator condensate did not contain appreciable amounts of glycolate anion. Of all tests, the highest glycolate concentration in the evaporator condensate was 0.38 mg/L. A significant portion of the tests had glycolate concentration in the condensate at less than the limit of quantification (0.1 mg/L). At ambient conditions, evaporator testing did not show significant effects of glycolate on the soluble components in the evaporator concentrates. Testing with sodalite solids and silicon containing solutions did not show significant effects of glycolate on sodium aluminosilicate formation or dissolution.

  18. An impact excitation system for repeatable, high-bandwidth modal testing of miniature structures

    NASA Astrophysics Data System (ADS)

    Bediz, Bekir; Korkmaz, Emrullah; Burak Ozdoganlar, O.

    2014-06-01

    Miniature components and devices are increasingly seen in a myriad of applications. In general, the dynamic behavior of miniature devices is critical to their functionality and performance. However, modal testing of miniature structures poses many challenges. This paper presents a design and evaluation of an impact excitation system (IES) for repeatable, high-bandwidth, controlled-force modal testing of miniature structures. Furthermore, a dynamic model of the system is derived and experimentally validated to enable the identification of the system parameters that yield single-hit impacts with desired bandwidth and force magnitude. The system includes a small instrumented impact tip attached to a custom designed flexure-based body, an automated electromagnetic release mechanism, and various precision positioners. The excitation bandwidth and the impact force magnitude can be controlled by selecting the system parameters. The dynamic model of the system includes the structural dynamics of the flexure-based body, the electromagnetic force and the associated eddy-current damping, and the impact event. A validation study showed an excellent match between the model simulations and experiments in terms of impact force and bandwidth. The model is then used to create process maps that relate the system parameters to the number of hits (single vs. multiple), the impact force magnitudes and the excitation bandwidths. These process maps can be used to select system parameters or predict system response for a given set of parameters. A set of experiments is conducted to compare the performances of the IES and a (manual) miniature impact hammer. It is concluded that the IES significantly improves repeatability in terms of the impact bandwidth, location, and force magnitude, while providing a high excitation-bandwidth and excellent coherence values. The application of the IES is demonstrated through modal testing of a miniature contact-probe system.

  19. FTIR study of hydrogen bonds in coal under drop weight impact testing.

    PubMed

    Li, Cheng-Wu; Wang, Jin-Gui; Xie, Bei-Jing; Dong, Li-Hui; Sun, Ying-Feng; Cao, Xu

    2014-11-01

    There are many hydrogen bonds in coal, which affect the chemical structure and properties of coal. FTIR has been applied to the characterization study of the hydrogen bonds of Dongpang coals, which were under drop weight impact. There exists five kinds of hydrogen bonds in the coal: free OH groups, OH...π, OH...OH, cyclic OH tetramers and OH...N. Absorption strength of intermolecular hydrogen bonds markedly declined after impact. Free OH groups mechanical-power chemical reacted in drop weight impact testing. The infrared spectrum were curve-resolved into their component bands. The absorption strength of various hydrogen bonds decreased with the increase of impact energy, but the trend was slowing. By statistical relationship between then, we find then complying with power function relationship. By comparing the exponents of fitted equations, we concluded that failure sensitivity sequence of hydrogen bonds to the impact: free OH groups > cyclic OH tetramers > OH...N > OH...π > OH...OH.

  20. Railgun Application for High Energy Impact Testing of Nano-Reinforced Kevlar-Based Composite Materials

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Vricella, A.; Pastore, R.; Morles, R. B.; Marchetti, M.

    2013-08-01

    An advanced electromagnetic accelerator, called railgun, has been assembled and tuned in order to perform high energy impact test on layered structures. Different types of layered composite materials have been manufactured and characterized in terms of energy absorbing capability upon impact of metallic bullets fired at high velocity. The composite materials under testing are manufactured by integrating several layers of Kevlar fabric and carbon fiber ply within a polymeric matrix reinforced by carbon nanotubes at 1% of weight percentage. The experimental results show that the railgun-device is a good candidate to perform impact testing of materials in the space debris energy range, and that carbon nanotubes may enhance, when suitably coupled to the composite's matrix, the excellent antiballistic properties of the Kevlar fabrics.

  1. Mechanical impact tests of materials in oxygen effects of contamination. [Teflon, stainless steel, and aluminum

    NASA Technical Reports Server (NTRS)

    Ordin, P. M.

    1980-01-01

    The effect of contaminants on the mechanical impact sensitivity of Teflon, stainless steel, and aluminum in a high-pressure oxygen environment was investigated. Uncontaminated Teflon did not ignite under the test conditions. The liquid contaminants - cutting oil, motor lubricating oil, and toolmaker dye - caused Teflon to ignite. Raising the temperature lowered the impact energy required for ignition. Stainless steel was insensitive to ignition under the test conditions with the contaminants used. Aluminum appeared to react without contaminants under certain test conditions; however, contamination with cutting oil, motor lubricating oil, and toolmakers dye increased the sensitivity of aluminum to mechanical impact. The grit contaminants silicon dioxide and copper powder did not conclusively affect the sensitivity of aluminum.

  2. NASA Marshall Impact Testing Facility Capabilities Applicable to Lunar Dust Work

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.; Finchum, Andy; Hubbs, Whitney; Eskridge, Richard; Martin, Jim

    2008-01-01

    The Impact Testing Facility at Marshall Space Flight Center has several guns that would be of use in studying impact phenomena with respect to lunar dust. These include both ballistic guns, using compressed gas and powder charges, and hypervelocity guns, either light gas guns or an exploding wire gun. In addition, a plasma drag accelerator expected to reach 20 km/s for small particles is under development. Velocity determination and impact event recording are done using ultra-high-speed cameras. Simulation analysis is also available using the SPHC hydrocode.

  3. Safety assessment characteristics of pedestrian legform impactors in vehicle-front impact tests.

    PubMed

    Matsui, Yasuhiro

    2014-12-01

    This study investigated the characteristics of safety assessment results of front-area vehicle impact tests carried out using the Transport Research Laboratory (TRL) legform impactor and a flexible legform impactor (FLEX legform impactor). Different types of vehicles (sedan, sport utility vehicle, high-roof K-car, and light cargo van) were examined. The impact locations in the study were the center of the bumper and an extremely stiff structure of the bumper (i.e., in front of the side member) of each tested vehicle. The measured injury criteria were normalized by injury assessment reference values of each legform impactor. The test results for center and side-member impacts indicated that there were no significant differences in ligament injury assessments derived from the normalized knee ligament injury measures between the TRL legform impactor and the FLEX legform impactor. Evaluations made using the TRL legform impactor and the FLEX legform impactor are thus similar in the vehicle safety investigation for knee ligament injury. Vehicle-center impact test results revealed that the tibia fracture assessments derived from the normalized tibia fracture measures did not significantly differ between the TRL legform impactor and the FLEX legform impactor. However, for an impact against an extremely stiff structure, there was a difference in the tibia fracture assessment between the FLEX legform impactor and the TRL legform impactor owing to their different sensor types.

  4. Test-retest, retest, and retest: Growth curve models of repeat testing with Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT).

    PubMed

    Maerlender, Arthur C; Masterson, Caitlin J; James, Tiffany D; Beckwith, Jonathan; Brolinson, Per Gunner; Crisco, Joe; Duma, Stefan; Flashman, Laura A; Greenwald, Rick; Rowson, Steven; Wilcox, Beth; McAllister, Tom W

    2016-10-01

    Computerized neuropsychological testing has become an important tool in the identification and management of sports-related concussions; however, the psychometric effect of repeat testing has not been studied extensively beyond test-retest statistics. The current study analyzed data from Division I collegiate athletes who completed Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) baseline assessments at four sequential time points that varied over the course of their athletic careers. Administrations were part of a larger National Institutes of Health (NIH) study. Growth curve modeling showed that the two memory composite scores increased significantly with successive administrations: Change in Verbal Memory was best represented with a quadratic model, while a linear model best fit Visual Memory. Visual Motor Speed and Reaction Time composites showed no significant linear or quadratic growth. The results demonstrate the effect of repeated test administrations for memory composite scores, while speed composites were not significantly impacted by repeat testing. Acceptable test-retest reliability was demonstrated for all four composites as well.

  5. Test-retest, retest, and retest: Growth curve models of repeat testing with Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT).

    PubMed

    Maerlender, Arthur C; Masterson, Caitlin J; James, Tiffany D; Beckwith, Jonathan; Brolinson, Per Gunner; Crisco, Joe; Duma, Stefan; Flashman, Laura A; Greenwald, Rick; Rowson, Steven; Wilcox, Beth; McAllister, Tom W

    2016-10-01

    Computerized neuropsychological testing has become an important tool in the identification and management of sports-related concussions; however, the psychometric effect of repeat testing has not been studied extensively beyond test-retest statistics. The current study analyzed data from Division I collegiate athletes who completed Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) baseline assessments at four sequential time points that varied over the course of their athletic careers. Administrations were part of a larger National Institutes of Health (NIH) study. Growth curve modeling showed that the two memory composite scores increased significantly with successive administrations: Change in Verbal Memory was best represented with a quadratic model, while a linear model best fit Visual Memory. Visual Motor Speed and Reaction Time composites showed no significant linear or quadratic growth. The results demonstrate the effect of repeated test administrations for memory composite scores, while speed composites were not significantly impacted by repeat testing. Acceptable test-retest reliability was demonstrated for all four composites as well. PMID:27266563

  6. 1 year test-retest reliability of ImPACT in professional ice hockey players.

    PubMed

    Bruce, Jared; Echemendia, Ruben; Meeuwisse, Willem; Comper, Paul; Sisco, Amber

    2014-01-01

    The Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) battery is widely used to assess neurocognitive outcomes following sports-related concussion. The purpose of this study was to examine the 1 year test-retest reliability of ImPACT in a multilingual sample of professional hockey players. A total of 305 professional hockey players were tested 1 year apart using ImPACT. Reliable change confidence intervals were calculated and test-retest reliability was measured using Pearson and Intraclass correlation coefficients. Results indicated that the 1-year test-retest reliabilities for the Visual Motor and Reaction Time Composites ranged from low to high (.52 to .81). In contrast, 1-year test-retest reliabilities for the Verbal and Visual Memory Composites were low (.22 to .58). The 1-year test-retest results provided mixed support for the use of Visual Motor and Reaction Time Composites in select samples; in contrast, the Verbal and Visual Memory Composites may not be sensitive to clinical change.

  7. Impact Analyses and Tests of Metal Cask Considering Aircraft Engine Crash - 12308

    SciTech Connect

    Lee, Sanghoon; Choi, Woo-Seok; Kim, Ki-Young; Jeon, Je-Eon; Seo, Ki-Seog

    2012-07-01

    The structural integrity of a dual purpose metal cask currently under development by the Korea Radioactive Waste Management Cooperation (KRMC) is evaluated through analyses and tests under a high-speed missile impact considering the targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from the literature. The missile impact velocity was set at 150 m/s, and two impact orientations were considered. A simplified missile simulating a commercial aircraft engine is designed from an impact load history curve provided in the literature. In the analyses, the focus is on the evaluation of the containment boundary integrity of the metal cask. The analyses results are compared with the results of tests using a 1/3 scale model. The results show very good agreements, and the procedure and methodology adopted in the structural analyses are validated. While the integrity of the cask is maintained in one evaluation where the missile impacts the top side of the free standing cask, the containment boundary is breached in another case in which the missile impacts the center of the cask lid in a perpendicular orientation. A safety assessment using a numerical simulation of an aircraft engine crash into spent nuclear fuel storage systems is performed. A commercially available explicit finite element code is utilized for the dynamic simulation, and the strain rate effect is included in the modeling of the materials used in the target system and missile. The simulation results show very good agreement with the test results. It is noted that this is the first test considering an aircraft crash in Korea. (authors)

  8. What's the Point? How Point-of-Care STI Tests Can Impact Infected Patients.

    PubMed

    Huppert, Jill; Hesse, Elizabeth; Gaydos, Charlotte A

    2010-03-01

    Point-of-care (POC) tests are an important strategy to address the epidemic of sexually transmitted infections (STIs) among both adolescents and young adults. While access to care and confidentiality are major barriers to STI care, POC tests allow the clinician to provide immediate and confidential test results and treatment. In addition, POC test results constitute a "teachable moment"; that is, an opportunity to provide immediate feedback to the patient that may impact his/her risk behaviors. This paper reviews published data and manufacturer's product literature describing current point-of-care STI tests, including studies of test performance as well as impact on treatment intervals and disease spread. It presents theoretical and proposed pitfalls and solutions of implementing POC tests in clinical settings, non-traditional settings, and home care venues. We reviewed the available STI tests according to the World Health Organization (WHO) criteria for judging POC tests: the "ASSURRED" criteria (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, Delivered).

  9. What’s the Point? How Point-of-Care STI Tests Can Impact Infected Patients

    PubMed Central

    Huppert, Jill; Hesse, Elizabeth; Gaydos, Charlotte A.

    2010-01-01

    Point-of-care (POC) tests are an important strategy to address the epidemic of sexually transmitted infections (STIs) among both adolescents and young adults. While access to care and confidentiality are major barriers to STI care, POC tests allow the clinician to provide immediate and confidential test results and treatment. In addition, POC test results constitute a “teachable moment”; that is, an opportunity to provide immediate feedback to the patient that may impact his/her risk behaviors. This paper reviews published data and manufacturer’s product literature describing current point-of-care STI tests, including studies of test performance as well as impact on treatment intervals and disease spread. It presents theoretical and proposed pitfalls and solutions of implementing POC tests in clinical settings, non-traditional settings, and home care venues. We reviewed the available STI tests according to the World Health Organization (WHO) criteria for judging POC tests: the “ASSURRED” criteria (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, Delivered). PMID:20401167

  10. A small-scale test for fiber release from carbon composites. [pyrolysis and impact

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J., Jr.; Fish, R. H.

    1980-01-01

    A test method was developed to determine relative fiber loss from pyrolyzed composites with different resins and fiber construction. Eleven composites consisting of woven and unwoven carbon fiber reinforcement and different resins were subjected to the burn and impact test device. The composites made with undirectional tape had higher fiber loss than those with woven fabric. Also, the fiber loss was inversely proportional to the char yield of the resin.

  11. Integrated assessment of pedestrian head impact protection in testing secondary safety and autonomous emergency braking.

    PubMed

    Searson, D J; Anderson, R W G; Hutchinson, T P

    2014-02-01

    Pedestrian impact testing is used to provide information to the public about the relative level of protection provided by different vehicles to a struck pedestrian. Autonomous Emergency Braking (AEB) is a relatively new technology that aims to reduce the impact speed of such crashes. It is expected that vehicles with AEB will pose less harm to pedestrians, and that the benefit will come about through reductions in the number of collisions and a change in the severity of impacts that will still occur. In this paper, an integration of the assessment of AEB performance and impact performance is proposed based on average injury risk. Average injury risk is calculated using the result of an impact test and a previously published distribution of real world crash speeds. A second published speed distribution is used that accounts for the effects of AEB, and reduced average risks are implied. This principle allows the effects of AEB systems and secondary safety performance to be integrated into a single measure of safety. The results are used to examine the effect of AEB on Euro NCAP and ANCAP assessments using previously published results on the likely effect of AEB. The results show that, given certain assumptions about AEB performance, the addition of AEB is approximately the equivalent of increasing Euro NCAP test performance by one band, which corresponds to an increase in the score of 25% of the maximum. PMID:24246294

  12. Integrated assessment of pedestrian head impact protection in testing secondary safety and autonomous emergency braking.

    PubMed

    Searson, D J; Anderson, R W G; Hutchinson, T P

    2014-02-01

    Pedestrian impact testing is used to provide information to the public about the relative level of protection provided by different vehicles to a struck pedestrian. Autonomous Emergency Braking (AEB) is a relatively new technology that aims to reduce the impact speed of such crashes. It is expected that vehicles with AEB will pose less harm to pedestrians, and that the benefit will come about through reductions in the number of collisions and a change in the severity of impacts that will still occur. In this paper, an integration of the assessment of AEB performance and impact performance is proposed based on average injury risk. Average injury risk is calculated using the result of an impact test and a previously published distribution of real world crash speeds. A second published speed distribution is used that accounts for the effects of AEB, and reduced average risks are implied. This principle allows the effects of AEB systems and secondary safety performance to be integrated into a single measure of safety. The results are used to examine the effect of AEB on Euro NCAP and ANCAP assessments using previously published results on the likely effect of AEB. The results show that, given certain assumptions about AEB performance, the addition of AEB is approximately the equivalent of increasing Euro NCAP test performance by one band, which corresponds to an increase in the score of 25% of the maximum.

  13. Impact Test and Simulation of Energy Absorbing Concepts for Earth Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Billings, Marcus D.; Fasanella, Edwin L.; Kellas, Sotiris

    2001-01-01

    Nonlinear dynamic finite element simulations have been performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite- epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEV's cellular structure. Comparisons of analytical predictions using MSC,Dytran with test results obtained from impact tests performed at NASA Langley Research Center were made for three impact velocities ranging from 32 to 40 m/s. Acceleration and deformation results compared well with the test results. These finite element models will be useful for parametric studies of off-nominal impact conditions.

  14. Test and Modelling of Impact on Pre-Loaded Composite Panels

    NASA Astrophysics Data System (ADS)

    Pickett, A. K.; Fouinneteau, M. R. C.; Middendorf, P.

    2009-08-01

    Currently test and simulation of low and high speed impact of Aerospace composite structures is undertaken in an unloaded state. In reality this may not be the case and significant internal stresses could be present during an impact event such as bird strike during landing, or takeoff. In order to investigate the effects of internal loading on damage and failure of composite materials a series of experimental and simulation studies have been undertaken on three composite types having different fibres, resins and lay-ups. For each composite type panels have been manufactured and transversely impacted under the condition of ‘unloading’ or ‘pre-loading’. For preloading a rig has been constructed that can impose a constant in plane strain of up to 0.25% prior to impact. Results have clearly shown that preloading does lower the composite impact tolerance and change the observed failure modes. Simulation of experiments have also been conducted and have provided an encouraging agreement with test results in terms of both impact force time histories and prediction of the observed failure mechanisms.

  15. Putting social impact assessment to the test as a method for implementing responsible tourism practice

    SciTech Connect

    McCombes, Lucy; Vanclay, Frank; Evers, Yvette

    2015-11-15

    The discourse on the social impacts of tourism needs to shift from the current descriptive critique of tourism to considering what can be done in actual practice to embed the management of tourism's social impacts into the existing planning, product development and operational processes of tourism businesses. A pragmatic approach for designing research methodologies, social management systems and initial actions, which is shaped by the real world operational constraints and existing systems used in the tourism industry, is needed. Our pilot study with a small Bulgarian travel company put social impact assessment (SIA) to the test to see if it could provide this desired approach and assist in implementing responsible tourism development practice, especially in small tourism businesses. Our findings showed that our adapted SIA method has value as a practical method for embedding a responsible tourism approach. While there were some challenges, SIA proved to be effective in assisting the staff of our test case tourism business to better understand their social impacts on their local communities and to identify actions to take. - Highlights: • Pragmatic approach is needed for the responsible management of social impacts of tourism. • Our adapted Social impact Assessment (SIA) method has value as a practical method. • SIA can be embedded into tourism businesses existing ‘ways of doing things’. • We identified challenges and ways to improve our method to better suit small tourism business context.

  16. Investigation and Comparison between New Satellite Impact Test Results and NASA Standard Breakup Model

    NASA Technical Reports Server (NTRS)

    Sakuraba, K.; Tsuruda, Y.; Hanada, T.; Liou, J.-C.; Akahoshi, Y.

    2007-01-01

    This paper summarizes two new satellite impact tests conducted in order to investigate on the outcome of low- and hyper-velocity impacts on two identical target satellites. The first experiment was performed at a low velocity of 1.5 km/s using a 40-gram aluminum alloy sphere, whereas the second experiment was performed at a hyper-velocity of 4.4 km/s using a 4-gram aluminum alloy sphere by two-stage light gas gun in Kyushu Institute of Technology. To date, approximately 1,500 fragments from each impact test have been collected for detailed analysis. Each piece was analyzed based on the method used in the NASA Standard Breakup Model 2000 revision. The detailed analysis will conclude: 1) the similarity in mass distribution of fragments between low and hyper-velocity impacts encourages the development of a general-purpose distribution model applicable for a wide impact velocity range, and 2) the difference in area-to-mass ratio distribution between the impact experiments and the NASA standard breakup model suggests to describe the area-to-mass ratio by a bi-normal distribution.

  17. Dynamic impact testing of hedgehog spines using a dual-arm crash pendulum.

    PubMed

    Swift, Nathan B; Hsiung, Bor-Kai; Kennedy, Emily B; Tan, Kwek-Tze

    2016-08-01

    Hedgehog spines are a potential model for impact resistant structures and material. While previous studies have examined static mechanical properties of individual spines, actual collision tests on spines analogous to those observed in the wild have not previously been investigated. In this study, samples of roughly 130 keratin spines were mounted vertically in thin substrates to mimic the natural spine layout on hedgehogs. A weighted crash pendulum was employed to induce and measure the effects of repeated collisions against samples, with the aim to evaluate the influence of various parameters including humidity effect, impact energy, and substrate hardness. Results reveal that softer samples-due to humidity conditioning and/or substrate material used-exhibit greater durability over multiple impacts, while the more rigid samples exhibit greater energy absorption performance at the expense of durability. This trend is exaggerated during high-energy collisions. Comparison of the results to baseline tests with industry standard impact absorbing foam, wherein the spines exhibit similar energy absorption, verifies the dynamic impact absorption capabilities of hedgehog spines and their candidacy as a structural model for engineered impact technology.

  18. Impact Foam Testing for Multi-Mission Earth Entry Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Agrawal, Paul; Hawbaker, James

    2013-01-01

    Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes and retro-rockets, instead using built-in impact attenuators to absorb energy remaining at impact to meet landing loads requirements. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs and develop the trade space. Testing was conducted to characterize the material properties of several candidate impact foam attenuators to enhance M-SAPE analysis. In the current effort, two different Rohacell foams were tested to determine their thermal conductivity in support of MMEEV design applications. These applications include thermal insulation during atmospheric entry, impact attenuation, and post-impact thermal insulation in support of thermal soak analysis. Results indicate that for these closed-cell foams, the effect of impact is limited on thermal conductivity due to the venting of the virgin material gas and subsequent ambient air replacement. Results also indicate that the effect of foam temperature is significant compared to data suggested by manufacturer's specifications.

  19. Dynamic impact testing of hedgehog spines using a dual-arm crash pendulum.

    PubMed

    Swift, Nathan B; Hsiung, Bor-Kai; Kennedy, Emily B; Tan, Kwek-Tze

    2016-08-01

    Hedgehog spines are a potential model for impact resistant structures and material. While previous studies have examined static mechanical properties of individual spines, actual collision tests on spines analogous to those observed in the wild have not previously been investigated. In this study, samples of roughly 130 keratin spines were mounted vertically in thin substrates to mimic the natural spine layout on hedgehogs. A weighted crash pendulum was employed to induce and measure the effects of repeated collisions against samples, with the aim to evaluate the influence of various parameters including humidity effect, impact energy, and substrate hardness. Results reveal that softer samples-due to humidity conditioning and/or substrate material used-exhibit greater durability over multiple impacts, while the more rigid samples exhibit greater energy absorption performance at the expense of durability. This trend is exaggerated during high-energy collisions. Comparison of the results to baseline tests with industry standard impact absorbing foam, wherein the spines exhibit similar energy absorption, verifies the dynamic impact absorption capabilities of hedgehog spines and their candidacy as a structural model for engineered impact technology. PMID:27082130

  20. The impact of cognitive testing on the welfare of group housed primates.

    PubMed

    Whitehouse, Jamie; Micheletta, Jérôme; Powell, Lauren E; Bordier, Celia; Waller, Bridget M

    2013-01-01

    Providing cognitive challenges to zoo-housed animals may provide enriching effects and subsequently enhance their welfare. Primates may benefit most from such challenges as they often face complex problems in their natural environment and can be observed to seek problem solving opportunities in captivity. However, the extent to which welfare benefits can be achieved through programmes developed primarily for cognitive research is unknown. We tested the impact of voluntary participation cognitive testing on the welfare of a socially housed group of crested macaques (Macaca nigra) at the Macaque Study Centre (Marwell Zoo). First, we compared the rate of self-directed and social behaviours on testing and non-testing days, and between conditions within testing days. Minimal differences in behaviour were found when comparing testing and non-testing days, suggesting that there was no negative impact on welfare as a result of cognitive testing. Lipsmacking behaviours were found to increase and aggressive interaction was found to decrease in the group as a result of testing. Second, social network analysis was used to assess the effect of testing on associations and interactions between individuals. The social networks showed that testing subjects increased their association with others during testing days. One interpretation of this finding could be that providing socially housed primates with an opportunity for individuals to separate from the group for short periods could help mimic natural patterns of sub-group formation and reunion in captivity. The findings suggest, therefore, that the welfare of captive primates can be improved through the use of cognitive testing in zoo environments. PMID:24223146

  1. The impact of cognitive testing on the welfare of group housed primates.

    PubMed

    Whitehouse, Jamie; Micheletta, Jérôme; Powell, Lauren E; Bordier, Celia; Waller, Bridget M

    2013-01-01

    Providing cognitive challenges to zoo-housed animals may provide enriching effects and subsequently enhance their welfare. Primates may benefit most from such challenges as they often face complex problems in their natural environment and can be observed to seek problem solving opportunities in captivity. However, the extent to which welfare benefits can be achieved through programmes developed primarily for cognitive research is unknown. We tested the impact of voluntary participation cognitive testing on the welfare of a socially housed group of crested macaques (Macaca nigra) at the Macaque Study Centre (Marwell Zoo). First, we compared the rate of self-directed and social behaviours on testing and non-testing days, and between conditions within testing days. Minimal differences in behaviour were found when comparing testing and non-testing days, suggesting that there was no negative impact on welfare as a result of cognitive testing. Lipsmacking behaviours were found to increase and aggressive interaction was found to decrease in the group as a result of testing. Second, social network analysis was used to assess the effect of testing on associations and interactions between individuals. The social networks showed that testing subjects increased their association with others during testing days. One interpretation of this finding could be that providing socially housed primates with an opportunity for individuals to separate from the group for short periods could help mimic natural patterns of sub-group formation and reunion in captivity. The findings suggest, therefore, that the welfare of captive primates can be improved through the use of cognitive testing in zoo environments.

  2. High-speed impact test using an inertial mass and an optical interferometer.

    PubMed

    Jin, T; Watanabe, K; Prayogi, I A; Takita, A; Mitatha, S; Djamal, M; Jia, H Z; Hou, W M; Fujii, Y

    2013-07-01

    A high-speed impact testing method for evaluating mechanical properties of materials is proposed using an inertial mass and a dual beat-frequencies laser Doppler interferometer (DB-LDI). In this method, an inertial mass levitated using an aerostatic linear bearing is made to collide with the material being tested at a high initial velocity. During the collision, the velocity of the mass, which is even higher than the critical velocity (±0.56 m/s) defined by the frequency difference of the Zeeman laser, is accurately measured using the DB-LDI. The position, acceleration, and impact force of the mass are calculated from the measured velocity. Using the proposed method, the mechanical properties of a visco-elastic material under a high-speed impact loading condition can be accurately evaluated.

  3. UTILIZATION OF ImPACT TESTING TO MEASURE INJURY RISK IN ALPINE SKI AND SNOWBOARD ATHLETES

    PubMed Central

    Huntimer, Brittney; Kernozek, Thomas; Cole, John

    2016-01-01

    ABSTRACT Background While studies that have examined the prevalence of musculoskeletal injuries in alpine skiing and snowboarding exist, there has been no discussion of how neurocognitive deficits may influence such injuries. Recent authors have identified a possible link between Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) testing results and the prevalence of musculoskeletal injury in athletic populations. However, no study has specifically examined this in the alpine skiing and snowboard athletes who sustain injury and those that do not. Hypothesis/Purpose The purpose was to review injury data and ImPACT test results within the local ski/snowboard population to determine if there was a difference in components of ImPACT test scores between injured and non-injured athletes. It was hypothesized that differences would exist in component scores on ImPACT testing between injured and non-injured athletes. Study design Retrospective cohort study Methods Injury records and baseline ImPACT testing scores for 93 athletes aged 14-17 participating in a local ski and snowboard club during the 2009-2012 seasons were gathered retrospectively. Injuries documented for the lower and upper extremity included ligament sprains, muscle strains, contusions, dislocation/subluxation, fractures and concussions. Athletes who sustained any of these listed injuries were categorized within the injured athlete group. Each component of ImPACT test scores was compared between gender and for injury status within skiing and snowboarding disciplines using a series of two-way analysis of variance tests. Results There was no difference between non-injured and injured females as well as non-injured and injured males in reaction time and visual motor speed (VMS), however there was an interaction between gender and injury status on composite reaction time and visual motor speed, or VMS. The composite reaction time for females was 4.7% faster with injury while males without injury

  4. A Comparison of Quasi-Static Indentation and Drop-Weight Impact Testing on Carbon/Epoxy Laminates

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.; Douglas, Michael J.

    2000-01-01

    This project was initiated to investigate the damage tolerance of polymer matrix composites (PMC). After a low velocity impact-such as the ones that can occur during manufacturing or service there is usually very little visual damage. There are two possible methods to simulate foreign object impact on PMC: static indentation and drop weight impact. A static method for modeling low velocity foreign object impact events for composites can prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low velocity impact tests were performed and compared. Square specimens of different sizes and thicknesses were tested to cover a wide array of low velocity impact events. Laminates with a 45 degree stacking sequence were used since this is a common type of engineering laminate. Three distinct flexural rigidities under two different boundary conditions were tested in order to obtain damage due to large deflections. Comparisons between static indentation and low velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined were dent depth, back surface crack length, delamination area, and load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low velocity impact tests, indicating that static indentation tests can be used to simulate low velocity impact events.

  5. Measuring the Impact of Language-Learning Software on Test Performance of Chinese Learners of English

    ERIC Educational Resources Information Center

    Nicholes, Justin

    2016-01-01

    This classroom quasi-experiment aimed to learn if and to what degree supplementing classroom instruction with Rosetta Stone (RS), Tell Me More (TMM), Memrise (MEM), or ESL WOW (WOW) impacted high-stakes English test performance in areas of university-level writing, reading, speaking, listening, and grammar. Seventy-eight (N = 78) Chinese learners…

  6. A unique facility for V/STOL aircraft hover testing. [Langley Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Culpepper, R. G.; Murphy, R. D.; Gillespie, E. A.; Lane, A. G.

    1979-01-01

    The Langley Impact Dynamics Research Facility (IDRF) was modified to obtain static force and moment data and to allow assessment of aircraft handling qualities during dynamic tethered hover flight. Test probe procedures were also established. Static lift and control measurements obtained are presented along with results of limited dynamic tethered hover flight.

  7. The Overall Impact of Testing on Medical Student Learning: Quantitative Estimation of Consequential Validity

    ERIC Educational Resources Information Center

    Kreiter, Clarence D.; Green, Joseph; Lenoch, Susan; Saiki, Takuya

    2013-01-01

    Given medical education's longstanding emphasis on assessment, it seems prudent to evaluate whether our current research and development focus on testing makes sense. Since any intervention within medical education must ultimately be evaluated based upon its impact on student learning, this report seeks to provide a quantitative accounting of…

  8. Laboratory wind tunnel testing of three commonly used saltation impact sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electronic sensors that record individual impacts from saltating particles are used with increasing frequency in wind erosion field studies. Little is known about the limitations of these instruments or comparability of data collected with them. We tested the three most commonly used Saltation Imp...

  9. The Impact of the 2004 Hurricanes on Florida Comprehensive Assessment Test Scores: Implications for School Counselors

    ERIC Educational Resources Information Center

    Baggerly, Jennifer; Ferretti, Larissa K.

    2008-01-01

    What is the impact of natural disasters on students' statewide assessment scores? To answer this question, Florida Comprehensive Assessment Test (FCAT) scores of 55,881 students in grades 4 through 10 were analyzed to determine if there were significant decreases after the 2004 hurricanes. Results reveal that there was statistical but no practical…

  10. Using Tests To Evaluate the Impact of Curricular Reform on Higher Order Thinking.

    ERIC Educational Resources Information Center

    Davis, Alan

    The dominant issues in considering the use of tests developed outside the classroom to measure the impact of curriculum reform on higher order thinking are reviewed by a panel interviewed for this discussion. Panel members are: (1) Stuart Kahl, (2) Robert Linn, (3) Senta A. Raizen, (4) Lauren Resnick, and (5) Thomas A. Romberg. It is conceded…

  11. Head impact mechanisms of a child occupant seated in a child restraint system as determined by impact testing.

    PubMed

    Yoshida, Ryoichi; Okada, Hiroshi; Nomura, Mitsunori; Mizuno, Koji; Tanaka, Yoshinori; Hosokawa, Naruyuki

    2011-11-01

    In side collision accidents, the head is the most frequently injured body region for child occupants seated in a child restraint system (CRS). Accident analyses show that a child's head can move out of the CRS shell, make hard contact with the vehicle interior, and thus sustain serious injuries. In order to improve child head protection in side collisions, it is necessary to understand the injury mechanism of a child in the CRS whose head makes contact with the vehicle interior. In this research, an SUV-to-car oblique side crash test was conducted to reconstruct such head contacts. A Q3s child dummy was seated in a CRS in the rear seat of the target car. The Q3s child dummy's head moved out beyond the CRS side wing, moved laterally, and made contact with the side window glass and the doorsill. It was demonstrated that the hard head contact, which produced a high HIC value, could occur in side collisions. A series of sled tests was carried out to reproduce the dummy kinematic behavior observed in the SUV-to-car crash test, and the sled test conditions such as sled angle, ECE seat slant angle and velocity-time history that duplicated the kinematic behavior were determined. A parametric study also was conducted with the sled tests; and it was found that the impact angle, harness slack, chest clip, and the CRS side wing shape affected the torso motion and head contact with the vehicle interior. PMID:22869307

  12. Use of parabolic reflector to amplify in-air signals generated during impact-echo testing.

    PubMed

    Dai, Xiaowei; Zhu, Jinying; Tsai, Yi-Te; Haberman, Michael R

    2011-10-01

    The impact-echo method is a commonly used nondestructive testing technique for elastic plates in civil engineering. The impact-echo mode corresponds to the frequency at zero group velocity of S(1) Lamb mode. Recent development of the air-coupled impact-echo (ACIE) method introduces the possibility for rapid scanning of large structures and increases the practicality of in situ measurements. However, sensors used in ACIE are susceptible to ambient noise, which complicates in situ ACIE measurements. This letter presents the results of ACIE measurements taken using a parabolic reflector together with standard measurement microphones to increase the signal to noise ratio for ACIE measurements. The signal gain and effects of sensor location with respect to impact location are discussed.

  13. A low cost method of testing compression-after-impact strength of composite laminates

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    1991-01-01

    A method was devised to test the compression strength of composite laminate specimens that are much thinner and wider than other tests require. The specimen can be up to 7.62 cm (3 in) wide and as thin as 1.02 mm (.04 in). The best features of the Illinois Institute of Technology Research Institute (IITRI) fixture are combined with an antibuckling jig developed and used at the University of Dayton Research Institute to obtain a method of compression testing thin, wide test coupons on any 20 kip (or larger) loading frame. Up to 83 pct. less composite material is needed for the test coupons compared to the most commonly used compression-after-impact (CAI) tests, which calls for 48 ply thick (approx. 6.12 mm) test coupons. Another advantage of the new method is that composite coupons of the exact lay-up and thickness of production parts can be tested for CAI strength, thus yielding more meaningful results. This new method was used to compression test 8 and 16 ply laminates of T300/934 carbon/epoxy. These results were compared to those obtained using ASTM standard D 3410-87 (Celanese compression test). CAI testing was performed on IM6/3501-6, IM7/SP500 and IM7/F3900. The new test method and associated fixture work well and is a valuable asset to MSFC's damage tolerance program.

  14. Low amplitude impact testing and analysis of pristine and aged solid high explosives

    SciTech Connect

    Chidester, S K; Garza, R; Tarver, C M

    1998-08-17

    The critical impact velocities of 60.1 mm diameter blunt steel projectiles required for ignition of exothermic chemical reaction were determined for heavily confined charges of new and aged (15-30 years) solid HMX-based high explosives. The explosives in order of decreasing impact sensitivity were: PBX 9404; LX-lo; LX-14; PBX 9501; and LX-04. Embedded pressure gauges measured the interior pressure histories. Stockpile aged LX-04 and PBX 9501 from dismantled units were tested and compared to freshly pressed charges. The understanding of explosive aging on impact ignition and other hazards must improve as systems are being deployed longer than their initial estimated lifetimes. The charges that did not react on the first impact were subjected to multiple impacts. While the violence of reaction increased with impact velocity, it remained much lower than that produced by an intentional detonation. Ignition and Growth reactive flow models were developed to predict HMX-based explosive impact sensitivity in other geometries and scenarios.

  15. A Unified Theory of Impact Crises and Mass Extinctions: Quantitative Tests

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Haggerty, Bruce M.; Pagano, Thomas C.

    1997-01-01

    Several quantitative tests of a general hypothesis linking impacts of large asteroids and comets with mass extinctions of life are possible based on astronomical data, impact dynamics, and geological information. The waiting of large-body impacts on the Earth derive from the flux of Earth-crossing asteroids and comets, and the estimated size of impacts capable of causing large-scale environmental disasters, predict that impacts of objects greater than or equal to 5 km in diameter (greater than or equal to 10 (exp 7) Mt TNT equivalent) could be sufficient to explain the record of approximately 25 extinction pulses in the last 540 Myr, with the 5 recorded major mass extinctions related to impacts of the largest objects of greater than or equal to 10 km in diameter (greater than or equal to 10(exp 8) Mt Events). Smaller impacts (approximately 10 (exp 6) Mt), with significant regional environmental effects, could be responsible for the lesser boundaries in the geologic record.

  16. Impact Testing of Stainless Steel Material at Room and Elevated Temperatures

    SciTech Connect

    Dana K. Morton; Spencer D. Snow; Tom E. Rahl; Robert K. Blandford

    2007-07-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, three previous papers [1, 2, 3] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens that began the investigation of these characteristics. The goal of the work presented herein is to add the results of additional tensile impact testing for 304/304L and 316/316L stainless steel material specimens. Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, additional tests achieved target strain rates of 5, 10, and 22 per second at room temperature, 300, and 600 degrees Fahrenheit. Elevated true stress-strain curves for these materials at each designated strain rate and temperature are presented herein.

  17. Elemental Water Impact Test: Phase 3 Plunge Depth of a 36-Inch Aluminum Tank Head

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA water landing simulations. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. Phase 3 featured a composite tank head that was tested at a range of heights to verify the ability to predict structural failure of composites. To support planning for Phase 3, a test series was conducted with an aluminum tank head dropped from heights of 2, 6, 10, and 12 feet to verify that the test article would not impact the bottom of the test pool. This report focuses on the comparisons of the measured plunge depths to LS-DYNA predictions. The results for the tank head model demonstrated the following. 1. LS-DYNA provides accurate predictions for peak accelerations. 2. LS-DYNA consistently under-predicts plunge depth. An allowance of at least 20% should be added to the LS-DYNA predictions. 3. The LS-DYNA predictions for plunge depth are relatively insensitive to the fluid-structure coupling stiffness.

  18. Simulation of an Impact Test of the All-Composite Lear Fan Aircraft

    NASA Technical Reports Server (NTRS)

    Stockwell, Alan E.; Jones, Lisa E. (Technical Monitor)

    2002-01-01

    An MSC.Dytran model of an all-composite Lear Fan aircraft fuselage was developed to simulate an impact test conducted at the NASA Langley Research Center Impact Dynamics Research Facility (IDRF). The test was the second of two Lear Fan impact tests. The purpose of the second test was to evaluate the performance of retrofitted composite energy-absorbing floor beams. A computerized photogrammetric survey was performed to provide airframe geometric coordinates, and over 5000 points were processed and imported into MSC.Patran via an IGES file. MSC.Patran was then used to develop the curves and surfaces and to mesh the finite element model. A model of the energy-absorbing floor beams was developed separately and then integrated into the Lear Fan model. Structural responses of components such as the wings were compared with experimental data or previously published analytical data wherever possible. Comparisons with experimental results were used to guide structural model modifications to improve the simulation performance. This process was based largely on qualitative (video and still camera images and post-test inspections) rather than quantitative results due to the relatively few accelerometers attached to the structure.

  19. Use of Factor V Leiden genetic testing in practice and impact on management

    PubMed Central

    Laberge, Anne-Marie; Psaty, Bruce M.; Hindorff, Lucia A.; Burke, Wylie

    2011-01-01

    Purpose To assess the use of the genetic test for Factor V Leiden in clinical practice, physician adherence to national and local guidelines, and impacts of test results on patient management. Methods Chart review of all patients tested for Factor V Leiden during a 1-year period (2003) in a large nonprofit health care system (group health) (n = 272). Results The test for Factor V Leiden was most often used in nonacute outpatient settings by primary care practitioners, in combination with other tests for procoagulant disorders. Testing was performed more broadly than recommended: 61% of tests met American College of Medical Genetics guidelines, 46% of tests met CAP guidelines, and 37% of tests met group health internal guidelines. The most common rationale for testing was to explain a clinical event (58%). Patient management was modified more often in heterozygotes (54%) than in those with normal results (13%) (P < 0.0001). Conclusions The uptake of the test for Factor V Leiden has not followed existing recommendations. Genetic risk information was used to influence patient management in the absence of supporting evidence related to health outcomes. These results underscore the importance of further research concerning effective prevention and treatment strategies for patients with genetic risk to help translate genetic risk information into improved health outcomes. PMID:19668081

  20. LX-04 VIOLENCE MEASUREMENTS- STEVEN TESTS IMPACTED BY PROJECTILES SHOT FROM A HOWITZER GUN

    SciTech Connect

    Chidester, S K; Vandersall, K S; Switzer, L L; Tarver, C M

    2005-07-18

    Characterization of the reaction violence of LX-04 explosive (85% HMX and 15% Viton A by weight) was obtained from Steven Impact Tests performed above the reaction initiation threshold. A 155 mm Howitzer propellant driven gas gun was used to accelerate the Steven Test projectiles in the range of approximately 170-300 m/s to react (ignite) the LX-04 explosive. Blast overpressure gauges, acoustic microphones, and high-speed photography characterized the level of high explosive reaction violence. A detonation in this velocity range was not observed and when comparing these results (and the Susan test results) with that of other HMX based explosives, LX-04 has a more gradual reaction violence slope as the impact velocity increases. The high binder content (15%) of the LX-04 explosive is believed to be the key factor to the lower level of violence.

  1. Test and Analysis of Foam Impacting a 6x6 Inch RCC Flat Panel

    NASA Technical Reports Server (NTRS)

    Lessard, Wendy B.

    2006-01-01

    This report presents the testing and analyses of a foam projectile impacting onto thirteen 6x6 inch flat panels at a 90 degrees incidence angle. The panels tested in this investigation were fabricated of Reinforced-Carbon-Carbon material and were used to aid in the validation of an existing material model, MAT58. The computational analyses were performed using LS-DYNA, which is a physics-based, nonlinear, transient, finite element code used for analyzing material responses subjected to high impact forces and other dynamic conditions. The test results were used to validate LS-DYNA predictions and to determine the threshold of damage generated by the MAT58 cumulative damage material model. The threshold of damage parameter represents any external or internal visible RCC damage detectable by nondestructive evaluation techniques.

  2. High-speed impact test of an air-transportable plutonium nitrate shipping container

    SciTech Connect

    Yoshimura, H.R.; Pope, R.B.; Leisher, W.B.; Joseph, B.J.

    1980-04-01

    To obtain information on package response for comparison with other test environments, a high-speed impact test was performed on a modified Federal Republic of Germany 18B plutonium nitrate air-transportable container. The container, modified with reinforcing rings for improved crush resistance around the inner tube assembly, was impacted at a velocity of 137 m/s onto an unyielding surface. Substantial crushing of the foam overpack and extensive deformation of the container cavity occurred, causing release of the liquid surrogate contents from the titanium shipping container. The container damage resulting from the high-speed pulldown test was more severe than that from a 185-m free fall onto a semirigid surface by a similar container or the crush environment produced by a 9-m drop of a 2-Mg block onto the container resting on an unyielding surface.

  3. The cryogenic bonding evaluation at the metallic-composite interface of a composite overwrapped pressure vessel with additional impact investigation

    NASA Astrophysics Data System (ADS)

    Clark, Eric A.

    A bonding evaluation that investigated the cryogenic tensile strength of several different adhesives/resins was performed. The test materials consisted of 606 aluminum test pieces adhered to a wet-wound graphite laminate in order to simulate the bond created at the liner-composite interface of an aluminum-lined composite overwrapped pressure vessel. It was found that for cryogenic applications, a flexible, low modulus resin system must be used. Additionally, the samples prepared with a thin layer of cured resin -- or prebond -- performed significantly better than those without. It was found that it is critical that the prebond surface must have sufficient surface roughness prior to the bonding application. Also, the aluminum test pieces that were prepared using a surface etchant slightly outperformed those that were prepared with a grit blast surface finish and performed significantly better than those that had been scored using sand paper to achieve the desired surface finish. An additional impact investigation studied the post impact tensile strength of composite rings in a cryogenic environment. The composite rings were filament wound with several combinations of graphite and aramid fibers and were prepared with different resin systems. The rings were subjected to varying levels of Charpy impact damage and then pulled to failure in tension. It was found that the addition of elastic aramid fibers with the carbon fibers mitigates the overall impact damage and drastically improves the post-impact strength of the structure in a cryogenic environment.

  4. Screening Tests for Enhanced Shielding Against Hypervelocity Particle Impacts for Future Unmanned Spacecraft

    NASA Astrophysics Data System (ADS)

    Putzar, Robin; Hupfer, Jan; Aridon, Gwenaelle; Gergonne, Bernard; David, Matthieu; Bourke, Paul; Cougnet, Claude

    2013-08-01

    Protection of components of unmanned spacecraft against particle impacts is typically provided by the spacecraft's structure together with the intrinsic protection capabilities of the components themselves. Thus to increase the survivability of future spacecraft, one option is to enhance the protection already provided using enhanced materials and additional shielding. As part of the EU funded FP7 research project ReVuS ("Reducing the Vulnerability of Space systems"), the configurations of equipment typically found on board unmanned spacecraft were identified. For each of those configurations, potential solutions have been identified which enhance the robustness against particle impacts. The solutions are broken down into a number of shielding components that include e.g. additional protective layers made from aluminum, Kevlar, Nextel, stainless steel mesh and ceramics. To evaluate the characteristics and performances of these shielding components, a number of screening hypervelocity impact tests were performed. During these tests, representative configurations have been subjected to impacts of aluminum spheres of 3 mm and 5 mm diameter at a nominal impact velocity of 7 km/s. This paper describes the targets and presents and compares the results.

  5. ACTUAL WASTE TESTING OF GYCOLATE IMPACTS ON THE SRS TANK FARM

    SciTech Connect

    Martino, C.

    2014-05-28

    Glycolic acid is being studied as a replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste Tank Farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the Tank Farm were addressed via a literature review and simulant testing, but several outstanding issues remained. This report documents the actual-waste tests to determine the impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The objectives of this study are to address the following: Determine the extent to which sludge constituents (Pu, U, Fe, etc.) dissolve (the solubility of sludge constituents) in the glycolate-containing 2H-evaporator feed. Determine the impact of glycolate on the sorption of fissile (Pu, U, etc.) components onto sodium aluminosilicate solids. The first objective was accomplished through actual-waste testing using Tank 43H and 38H supernatant and Tank 51H sludge at Tank Farm storage conditions. The second objective was accomplished by contacting actual 2H-evaporator scale with the products from the testing for the first objective. There is no anticipated impact of up to 10 g/L of glycolate in DWPF recycle to the Tank Farm on tank waste component solubilities as investigated in this test. Most components were not influenced by glycolate during solubility tests, including major components such as aluminum, sodium, and most salt anions. There was potentially a slight increase in soluble iron with added glycolate, but the soluble iron concentration remained so low (on the order of 10 mg/L) as to not impact the iron to fissile ratio in sludge. Uranium and plutonium appear to have been supersaturated in 2H-evaporator feed solution mixture used for this testing. As a result, there was a reduction of soluble uranium and plutonium as a function of time. The change in soluble uranium concentration was

  6. Assessing transportation infrastructure impacts on rangelands: test of a standard rangeland assessment protocol

    USGS Publications Warehouse

    Duniway, Michael C.; Herrick, Jeffrey E.; Pyke, David A.; Toledo, David

    2010-01-01

    Linear disturbances associated with on- and off-road vehicle use on rangelands has increased dramatically throughout the world in recent decades. This increase is due to a variety of factors including increased availability of all-terrain vehicles, infrastructure development (oil, gas, renewable energy, and ex-urban), and recreational activities. In addition to the direct impacts of road development, the presence and use of roads may alter resilience of adjoining areas through indirect effects such as altered site hydrologic and eolian processes, invasive seed dispersal, and sediment transport. There are few standardized methods for assessing impacts of transportation-related land-use activities on soils and vegetation in arid and semi-arid rangelands. Interpreting Indicators of Rangeland Health (IIRH) is an internationally accepted qualitative assessment that is applied widely to rangelands. We tested the sensitivity of IIRH to impacts of roads, trails, and pipelines on adjacent lands by surveying plots at three distances from these linear disturbances. We performed tests at 16 randomly selected sites in each of three ecosystems (Northern High Plains, Colorado Plateau, and Chihuahuan Desert) for a total of 208 evaluation plots. We also evaluated the repeatability of IIRH when applied to road-related disturbance gradients. Finally, we tested extent of correlations between IIRH plot attribute departure classes and trends in a suite of quantitative indicators. Results indicated that the IIRH technique is sensitive to direct and indirect impacts of transportation activities with greater departure from reference condition near disturbances than far from disturbances. Trends in degradation of ecological processes detected with qualitative assessments were highly correlated with quantitative data. Qualitative and quantitative assessments employed in this study can be used to assess impacts of transportation features at the plot scale. Through integration with remote

  7. Impact of introducing near patient testing for standard investigations in general practice.

    PubMed Central

    Rink, E; Hilton, S; Szczepura, A; Fletcher, J; Sibbald, B; Davies, C; Freeling, P; Stilwell, J

    1993-01-01

    OBJECTIVE--To assess the clinical and economic impact of surgery based near patient testing in general practice for six commonly used biochemical and bacteriological tests. DESIGN--After four months' monitoring, equipment for two bacteriological and four biochemical tests was introduced without cost into 12 practices using a crossover design. Structured request forms were used to monitor laboratory investigations. SETTING--12 general practices in west midlands and south west Thames with list sizes above 9000. MAIN OUTCOME MEASURES--Investigation rates per 1000 consultations. Changes from baseline rates. Reasons for requesting investigations and provisional diagnoses. Cost per test and sensitivity of costs to rate of use. RESULTS--Investigation rates for the six tests rose by 16.5% (from 78.6/1000 consultations to 91.6/1000) when equipment was available in the surgery and reverted to baseline rates when it was withdrawn. The average weekly number of tests when equipment was available ranged from 0.5 to 10.5 (mean 9.0). Cholesterol tests were used as an addition to laboratory testing, usually for screening. Midstream urine analysis was often done in the surgery instead of in the laboratory, although 30% of samples were tested by both methods. Doctors' reasons for investigation and conditions tested were largely unaffected by availability of surgery tests. Costs for surgery tests were higher for all tests except midstream urine. CONCLUSIONS--Availability of surgery based testing increased the number of tests performed. It was cost effective only for midstream urine analysis. PMID:8219952

  8. Alaskan frozen soil impact tests of the B83-C/S and Strategic Earth Penetrator

    SciTech Connect

    Dockery, H.A.; Clarke, J.B.; Stull, S.P.; Cain, S.G.; Everett, R.N.; Flower, E.C.; Huntting, J.D.; Spencer, C.R.; Todaro, A.F.; Vidlak, A.J.

    1987-10-01

    To assess the penetrability of the B83 strategic bomb and a Strategic Earth Penetrator design into frozen soil and ice, Lawrence Livermore National Laboratory and Sandia National Laboratories, assisted by the US Air Force and US Army, conducted a series of tests in 1987. In April, Strategic Earth Penetrator units were dropped into multi-year sea ice and frozen tundra near Prudhoe Bay, Alaska. Calculated impact velocity ranged from 200 to 308 ft/s into ice and from 200 to 444 ft/s into frozen tundra. Tests in May include drops of a B83 design with specially designed ogive nose shape, a B83 with a cap over the production ''cookie cutter'' nose, and a Strategic Earth Penetrator. The May tests were conducted near Fairbanks, Alaska, at Eielson Air Force Base and at Donnelly Flats on the Fort Greely Military Reservation. The type of frozen soil encountered at Eielson was very homogeneous in composition; however. Two drops impacted areas with very thin frozen soil layers at depths of about 24 in. below the surface. Velocities of these drops prior to impact ranged from 256 to 308 ft/s, and peak axial deceleration ranged from 160 to 490 g. The units penetrated to depths of 7.5-12 ft. Three other events impacted in a target area where frozen soil averaging 35 in. thick extended essentially to the surface. We calculated velocities prior to impact at 200-256 ft/s; and penetration depths of 3.2-9.6 ft. The geologic material at Donnelly Flats was primarily a very hard, rocky glacial deposit with a variable degree of ice bonding. Here, the test units dropped from 10,000 ft above ground level and achieved an average calculated velocity of 802 ft/s. Depth of penetration ranged from 7.6 to 13.5 ft.

  9. Low amplitude impact of PBX 9501: Modified Steven spigot gun tests

    SciTech Connect

    Idar, D.J.; Lucht, R.A.; Straight, J.W.

    1998-12-01

    Low-velocity mechanical impact and subsequent high explosive (HE) reaction are of concern in credible accident scenarios involving the handling, transport, and storage of nuclear weapons. Using modified Steven spigot gun tests, the authors have investigated the high-explosive violent-reaction (HEVR) potential of PBX 9501 to low-amplitude insult. Reliable modeling predictions require that one identify the relevant parameters and behavioral responses that are key to the reaction mechanism(s) in PBX 9501. Additional efforts have been targeted at identifying relevant differences in the response between baseline and stockpile-aged PBX 9501 to low-velocity impacts.

  10. Impact Testing on Reinforced Carbon-Carbon Flat Panels with Ice Projectiles for the Space Shuttle Return to Flight Program

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Revilock, Duane M.; Pereira, Michael J.; Lyle, Karen H.

    2009-01-01

    Following the tragedy of the Orbiter Columbia (STS-107) on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the space shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize reinforced carbon-carbon (RCC) along with ice and foam debris materials, which could shed on ascent and impact the orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS-DYNA (Livermore Software Technology Corp.) to predict damage by potential and actual impact events on the orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: Level 1--fundamental tests to obtain independent static and dynamic constitutive model properties of materials of interest, Level 2--subcomponent impact tests to provide highly controlled impact test data for the correlation and validation of the models, and Level 3--full-scale orbiter leading-edge impact tests to establish the final level of confidence for the analysis methodology. This report discusses the Level 2 test program conducted in the NASA Glenn Research Center (GRC) Ballistic Impact Laboratory with ice projectile impact tests on flat RCC panels, and presents the data observed. The Level 2 testing consisted of 54 impact tests in the NASA GRC Ballistic Impact Laboratory on 6- by 6-in. and 6- by 12-in. flat plates of RCC and evaluated three types of debris projectiles: Single-crystal, polycrystal, and "soft" ice. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile and validated the use of the ice and RCC models for use in LS-DYNA.

  11. Testing and injury potential analysis of rollovers with narrow object impacts.

    PubMed

    Meyer, Steven E; Forrest, Stephen; Herbst, Brian; Hayden, Joshua; Orton, Tia; Sances, Anthony; Kumaresan, Srirangam

    2004-01-01

    Recent statistics highlight the significant risk of serious and fatal injuries to occupants involved in rollover collisions due to excessive roof crush. The government has reported that in 2002. Sports Utility Vehicle rollover related fatalities increased by 14% to more than 2400 annually. 61% of all SUV fatalities included rollovers [1]. Rollover crashes rely primarily upon the roof structures to maintain occupant survival space. Frequently these crashes occur off the travel lanes of the roadway and, therefore, can include impacts with various types of narrow objects such as light poles, utility poles and/or trees. A test device and methodology is presented which facilitates dynamic, repeatable rollover impact evaluation of complete vehicle roof structures with such narrow objects. These tests allow for the incorporation of Anthropomorphic Test Dummies (ATDs) which can be instrumented to measure accelerations, forces and moments to evaluate injury potential. High-speed video permits for detailed analysis of occupant kinematics and evaluation of injury causation. Criteria such as restraint performance, injury potential, survival space and the effect of roof crush associated with various types of design alternatives, countermeasures and impact circumstances can also be evaluated. In addition to presentation of the methodology, two representative vehicle crash tests are also reported. Results indicated that the reinforced roof structure significantly reduced the roof deformation compared to the production roof structure.

  12. Sport helmet design and virtual impact test by image-based finite element modeling.

    PubMed

    Luo, Yunhua; Liang, Zhaoyang

    2013-01-01

    Head injury has been a major concern in various sports, especially in contact sports such as football and ice hockey. Helmet has been adopted as a protective device in such sports, aiming at preventing or at least alleviating head injuries. However, there exist two challenges in current helmet design and test. One is that the helmet does not fit the subject's head well; the other is that current helmet testing methods are not able to provide accurate information about intracranial pressure and stress/strain level in brain tissues during impact. To meet the challenges, an image-based finite element modeling procedure was proposed to design subject-specific helmet and to conduct virtual impact test. In the procedure, a set of medical images such as computed tomography (CT) and magnetic resonance image (MRI) of the subject's head was used to construct geometric shape of the helmet and to develop a helmet-head finite element model that can be used in the virtual impact test.

  13. HIV tests and new diagnoses declined after california budget cuts, but reallocating funds helped reduce impact.

    PubMed

    Leibowitz, Arleen A; Byrnes, Karen; Wynn, Adriane; Farrell, Kevin

    2014-03-01

    Historically, California supplemented federal funding of HIV prevention and testing so that Californians with HIV could become aware of their infection and obtain lifesaving treatment. However, budget deficits in 2009 led the state to eliminate its supplemental funding for HIV prevention. We analyzed the impact of California's HIV resource allocation change between state fiscal years 2009 and 2011. We found that the number of HIV tests declined 19 percent, from 66,629 to 53,760, in local health jurisdictions with high HIV burden. In low-burden jurisdictions, the number of HIV tests declined 90 percent, from 20,302 to 2,116. New diagnoses fell from 2,434 in 2009 to 2,235 in 2011 (calendar years) in high-burden jurisdictions and from 346 to 327 in low-burden ones. California's budget crunch prompted state and local programs to redirect remaining HIV funds from risk reduction education to testing activities. Thus, the impact of the budget cuts on HIV tests and new HIV diagnoses was smaller than might have been expected given the size of the cuts. As California's fiscal outlook improves, we recommend that the state restore supplemental funding for HIV prevention and testing.

  14. Hypervelocity impact testing of the Space Station utility distribution system carrier

    NASA Technical Reports Server (NTRS)

    Lazaroff, Scott

    1993-01-01

    A two-phase, joint JSC and McDonnell Douglas Aerospace-Huntington Beach hypervelocity impact (HVI) test program was initiated to develop an improved understanding of how meteoroid and orbital debris (M/OD) impacts affect the Space Station Freedom (SSF) avionic and fluid lines routed in the Utility Distribution System (UDS) carrier. This report documents the first phase of the test program which covers nonpowered avionic line segment and pressurized fluid line segment HVI testing. From these tests, a better estimation of avionic line failures is approximately 15 failures per year and could very well drop to around 1 or 2 avionic line failures per year (depending upon the results of the second phase testing of the powered avionic line at White Sands). For the fluid lines, the initial McDonnell Douglas analysis calculated 1 to 2 line failures over a 30 year period. The data obtained from these tests indicate the number of predicted fluid line failures increased slightly to as many as 3 in the first 10 years and up to 15 for the entire 30 year life of SSF.

  15. HIV tests and new diagnoses declined after california budget cuts, but reallocating funds helped reduce impact.

    PubMed

    Leibowitz, Arleen A; Byrnes, Karen; Wynn, Adriane; Farrell, Kevin

    2014-03-01

    Historically, California supplemented federal funding of HIV prevention and testing so that Californians with HIV could become aware of their infection and obtain lifesaving treatment. However, budget deficits in 2009 led the state to eliminate its supplemental funding for HIV prevention. We analyzed the impact of California's HIV resource allocation change between state fiscal years 2009 and 2011. We found that the number of HIV tests declined 19 percent, from 66,629 to 53,760, in local health jurisdictions with high HIV burden. In low-burden jurisdictions, the number of HIV tests declined 90 percent, from 20,302 to 2,116. New diagnoses fell from 2,434 in 2009 to 2,235 in 2011 (calendar years) in high-burden jurisdictions and from 346 to 327 in low-burden ones. California's budget crunch prompted state and local programs to redirect remaining HIV funds from risk reduction education to testing activities. Thus, the impact of the budget cuts on HIV tests and new HIV diagnoses was smaller than might have been expected given the size of the cuts. As California's fiscal outlook improves, we recommend that the state restore supplemental funding for HIV prevention and testing. PMID:24590939

  16. HIV Tests And New Diagnoses Declined After California Budget Cuts, But Reallocating Funds Helped Reduce Impact

    PubMed Central

    Leibowitz, Arleen A.; Brynes, Karen; Wynn, Adriane; Farrell, Kevin

    2014-01-01

    Historically, California supplemented federal funding of HIV prevention and testing so that Californians with HIV could become aware of their infection and access lifesaving treatment. However, budget deficits in 2009 led the state to eliminate its supplemental funding for HIV prevention. We analyzed the impact of California’s HIV resource allocation change between 2009 and 2011 (state fiscal years). We found that HIV tests declined from 66,629 to 53,760 (19 percent) in local health jurisdictions with high HIV burden. In low-burden jurisdictions, HIV tests declined from 20,302 to 2,116 (90 percent). New HIV/AIDS diagnoses fell from 2,434 in 2009 to 2,235 in 2011 (calendar years) in high-burden jurisdictions and from 346 to 327 in low-burden ones. California’s budget crunch prompted state and local programs to redirect remaining HIV funds from risk reduction education to testing activities. Thus, the impact of the budget cuts on HIV tests and new HIV diagnoses was smaller than might have been expected given the size of the cuts. As California’s fiscal outlook improves, we recommend that the state restore supplemental funding for HIV prevention and testing. PMID:24590939

  17. Evaluating the impact of genotype errors on rare variant tests of association.

    PubMed

    Cook, Kaitlyn; Benitez, Alejandra; Fu, Casey; Tintle, Nathan

    2014-01-01

    The new class of rare variant tests has usually been evaluated assuming perfect genotype information. In reality, rare variant genotypes may be incorrect, and so rare variant tests should be robust to imperfect data. Errors and uncertainty in SNP genotyping are already known to dramatically impact statistical power for single marker tests on common variants and, in some cases, inflate the type I error rate. Recent results show that uncertainty in genotype calls derived from sequencing reads are dependent on several factors, including read depth, calling algorithm, number of alleles present in the sample, and the frequency at which an allele segregates in the population. We have recently proposed a general framework for the evaluation and investigation of rare variant tests of association, classifying most rare variant tests into one of two broad categories (length or joint tests). We use this framework to relate factors affecting genotype uncertainty to the power and type I error rate of rare variant tests. We find that non-differential genotype errors (an error process that occurs independent of phenotype) decrease power, with larger decreases for extremely rare variants, and for the common homozygote to heterozygote error. Differential genotype errors (an error process that is associated with phenotype status), lead to inflated type I error rates which are more likely to occur at sites with more common homozygote to heterozygote errors than vice versa. Finally, our work suggests that certain rare variant tests and study designs may be more robust to the inclusion of genotype errors. Further work is needed to directly integrate genotype calling algorithm decisions, study costs and test statistic choices to provide comprehensive design and analysis advice which appropriately accounts for the impact of genotype errors.

  18. Test and Treat DC: Forecasting the Impact of a Comprehensive HIV Strategy in Washington DC

    PubMed Central

    Walensky, Rochelle P.; Paltiel, A. David; Losina, Elena; Morris, Bethany L.; Scott, Callie A.; Rhode, Erin R.; Seage, George R.; Freedberg, Kenneth A.

    2010-01-01

    Background US and international agencies have signaled their commitment to containing the HIV epidemic via early case identification and linkage to antiretroviral therapy (ART) immediately upon diagnosis. We forecast outcomes of this approach if implemented in Washington DC. Methods Using a mathematical model of HIV case detection and treatment, we evaluate combinations of HIV screening and ART initiation strategies. We define current practice as no regular screening program and ART at ≤350/μl, and test and treat as annual screening and ART upon diagnosis. Outcomes include life expectancy of HIV-infected persons and changes in the population time with transmissible HIV RNA. Data, largely from DC, include undiagnosed HIV prevalence 0.6%, annual incidence 0.13%, 31% test offer, 60% acceptance, and 50% linkage to care. Input parameters, including optimized ART efficacy, are varied in sensitivity analyses. Results Projected life expectancies, from an initial mean age 41 years, for current practice, test and treat, and test and treat with optimized ART are 23.9, 25.0, and 25.6 years. Compared to current practice, test and treat leads to a 14.7% reduction in time spent with transmissible HIV RNA in the next 5 years; test and treat with optimized ART results in a 27.2% reduction. Conclusions An expanded HIV test and treat program in Washington DC will increase life expectancy of HIV-infected patients but will have a modest impact on HIV transmission over the next five years and is unlikely to halt the HIV epidemic. Summary The CEPAC model shows a test and treat strategy in Washington DC would result in a substantial clinical impact to HIV-infected individuals. Results suggest a need to temper expectations regarding the extent to which test and treat will control the epidemic. PMID:20617921

  19. Impact and hardness optimisation of composite materials inspired by the babassu nut (Orbignya speciosa).

    PubMed

    Staufenberg, Gerrit; Graupner, Nina; Müssig, Jörg

    2015-10-01

    The babassu nut is the fruit of the babassu palm Orbignya speciosa. The combination of hardness and impact strength is difficult to acquire for artificial materials, making the babassu nut a promising source for biomimetic inspiration. Unnotched Charpy impact tests, Shore D hardness tests and scanning electron microscopy were used for mechanical and microscopical analysis of the pericarp. Four major principles were found for a biomimetic approach: a hard core ((1); endocarp) is embedded in a soft outer layer of high impact strength ((2); epicarp) and is reinforced with fibres of variable fineness (3), some of which are oriented radial to the core (4). Biomimetic fibre-reinforced composites were produced using abstracted mechanisms of the babassu nut based on regenerated cellulose fibres (lyocell, L) with two different fineness values as reinforcement embedded in a polylactide (PLA) core matrix and polypropylene (PP) based outer layers. The biomimetic fibre composite reaches a significantly higher impact strength that is 1.6 times higher than the reference sample produced from a PLA/PP/L-blend. At the same time the hardness is slightly increased compared to PP/L. PMID:26291183

  20. Impact and hardness optimisation of composite materials inspired by the babassu nut (Orbignya speciosa).

    PubMed

    Staufenberg, Gerrit; Graupner, Nina; Müssig, Jörg

    2015-08-20

    The babassu nut is the fruit of the babassu palm Orbignya speciosa. The combination of hardness and impact strength is difficult to acquire for artificial materials, making the babassu nut a promising source for biomimetic inspiration. Unnotched Charpy impact tests, Shore D hardness tests and scanning electron microscopy were used for mechanical and microscopical analysis of the pericarp. Four major principles were found for a biomimetic approach: a hard core ((1); endocarp) is embedded in a soft outer layer of high impact strength ((2); epicarp) and is reinforced with fibres of variable fineness (3), some of which are oriented radial to the core (4). Biomimetic fibre-reinforced composites were produced using abstracted mechanisms of the babassu nut based on regenerated cellulose fibres (lyocell, L) with two different fineness values as reinforcement embedded in a polylactide (PLA) core matrix and polypropylene (PP) based outer layers. The biomimetic fibre composite reaches a significantly higher impact strength that is 1.6 times higher than the reference sample produced from a PLA/PP/L-blend. At the same time the hardness is slightly increased compared to PP/L.

  1. Threshold Studies on TNT, Composition B, and C-4 Explosives Using the Steven Impact Test

    SciTech Connect

    Vandersall, K S; Switzer, L L; Garcia, F

    2005-09-26

    Steven Impact Tests were performed at low velocity on the explosives TNT, Comp B, and C-4 in attempts to obtain a threshold for reaction. A 76 mm helium driven gas gun was used to accelerate the Steven Test projectiles up to approximately 200 m/s in attempts to react (ignite) the explosive samples. Blast overpressure gauges, acoustic microphones, standard video and high-speed photography were used to characterize the level of any high explosive reaction violence. No bulk reactions were observed in the TNT, Composition B, or C-4 explosive samples impacted up to velocities in the range of 190-200 m/s. This work will outline the experimental details and discuss the lack of reaction when compared to the reaction thresholds of other common explosives.

  2. Preliminary burn and impact tests of hybrid polymeric composites. [preventing graphite fiber release

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Brewer, W. D.

    1978-01-01

    Free graphite fibers released into the environment from resin matrix composite components, as a result of fire and/or explosion, pose a potential hazard to electrical equipment. An approach to prevent the fibers from becoming airborne is to use hybrid composite materials which retain the fibers at the burn site. Test results are presented for three hybrid composites that were exposed to a simulation of an aircraft fire and explosion. The hybrid systems consisted of 16 plies of graphite-epoxy with two plies of Kevlar-, S-glass-, or boron-epoxy on each face. Two different test environments were used. In one environment, specimens were heated by convection only, and then impacted by a falling mass. In the other environment, specimens were heated by convection and by radiation, but were not impacted. The convective heat flux was about 100-120 kW/m in both environments and the radiative flux was about 110 kW/sq m.

  3. Environmental impact assessment of tailings dispersal from a uranium mine using toxicity testing protocols

    SciTech Connect

    Rippon, G.D.; Riley, S.J.

    1996-12-01

    Toxicity testing is a means of establishing the environmental risk of uranium tailings release. It is valuable in designing tailings containment structures because it assists in setting acceptable levels of risk of the design. This paper presents details of toxicity tests of the tailings from Ranger Uranium Mine, Northern Territory, Australia. The results suggest that the non-radiological toxicity of the tailings is low. The environmental risk of a tailings release is more likely to be related to the physical impacts of the tailings, including infilling of billabongs and changes in the sedimentology of riparian ecosystems rather than their biogeochemical impact. Two major results were: (1) water from treatment with washed tailing fines was not toxic to Hydra viridissima, and (2) mixtures of washed tailings fines and natural floodplain sediment (overlying water or elutriates) were not toxic to Hydra viridissima or Moinodaphnia macleayi. 33 refs., 4 figs., 3 tabs.

  4. Experimental and Modeling Studies of Crush, Puncture, and Perforation Scenarios in the Steven Impact Test

    SciTech Connect

    Vandersall, K S; Chidester, S K; Forbes, J W; Garcia, F; Greenwood, D W; Switzer, L L; Tarver, C M

    2002-06-28

    The Steven test and associated modeling has greatly increased the fundamental knowledge of practical predictions of impact safety hazards for confined and unconfined explosive charges. Building on a database of initial work, experimental and modeling studies of crush, puncture, and perforation scenarios were investigated using the Steven impact test. The descriptions of crush, puncture, and perforation arose from safety scenarios represented by projectile designs that ''crush'' the energetic material or either ''puncture'' with a pinpoint nose or ''perforate'' the front cover with a transportation hook. As desired, these scenarios offer different aspects of the known mechanisms that control ignition: friction, shear and strain. Studies of aged and previously damaged HMX-based high explosives included the use of embedded carbon foil and carbon resistor gauges, high-speed cameras, and blast wave gauges to determine the pressure histories, time required for an explosive reaction, and the relative violence of those reactions, respectively. Various ignition processes were modeled as the initial reaction rate expression in the Ignition and Growth reaction rate equations. Good agreement with measured threshold velocities, pressure histories, and times to reaction was calculated for LX-04 impacted by several projectile geometries using a compression dependent ignition term and an elastic-plastic model with a reasonable yield strength for impact strain rates.

  5. Accountability and Teacher Practice: Investigating the Impact of a New State Test and the Timing of State Test Adoption on Teacher Time Use

    ERIC Educational Resources Information Center

    Cocke, Erin F.; Buckley, Jack; Scott, Marc A.

    2011-01-01

    There is much debate over the impact of high stakes testing as well as a growing body of research focused on both the intended and unintended consequences of these tests. One claim of both the popular media and education researchers is that high stakes tests have led to curricular narrowing--the idea that school time is increasingly allocated to…

  6. Normalizing and scaling of data to derive human response corridors from impact tests.

    PubMed

    Yoganandan, Narayan; Arun, Mike W J; Pintar, Frank A

    2014-06-01

    It is well known that variability is inherent in any biological experiment. Human cadavers (Post-Mortem Human Subjects, PMHS) are routinely used to determine responses to impact loading for crashworthiness applications including civilian (motor vehicle) and military environments. It is important to transform measured variables from PMHS tests (accelerations, forces and deflections) to a standard or reference population, termed normalization. The transformation process should account for inter-specimen variations with some underlying assumptions used during normalization. Scaling is a process by which normalized responses are converted from one standard to another (example, mid-size adult male to large-male and small-size female adults, and to pediatric populations). These responses are used to derive corridors to assess the biofidelity of anthropomorphic test devices (crash dummies) used to predict injury in impact environments and design injury mitigating devices. This survey examines the pros and cons of different approaches for obtaining normalized and scaled responses and corridors used in biomechanical studies for over four decades. Specifically, the equal-stress equal-velocity and impulse-momentum methods along with their variations are discussed in this review. Methods ranging from subjective to quasi-static loading to different approaches are discussed for deriving temporal mean and plus minus one standard deviation human corridors of time-varying fundamental responses and cross variables (e.g., force-deflection). The survey offers some insights into the potential efficacy of these approaches with examples from recent impact tests and concludes with recommendations for future studies. The importance of considering various parameters during the experimental design of human impact tests is stressed.

  7. Normalizing and scaling of data to derive human response corridors from impact tests.

    PubMed

    Yoganandan, Narayan; Arun, Mike W J; Pintar, Frank A

    2014-06-01

    It is well known that variability is inherent in any biological experiment. Human cadavers (Post-Mortem Human Subjects, PMHS) are routinely used to determine responses to impact loading for crashworthiness applications including civilian (motor vehicle) and military environments. It is important to transform measured variables from PMHS tests (accelerations, forces and deflections) to a standard or reference population, termed normalization. The transformation process should account for inter-specimen variations with some underlying assumptions used during normalization. Scaling is a process by which normalized responses are converted from one standard to another (example, mid-size adult male to large-male and small-size female adults, and to pediatric populations). These responses are used to derive corridors to assess the biofidelity of anthropomorphic test devices (crash dummies) used to predict injury in impact environments and design injury mitigating devices. This survey examines the pros and cons of different approaches for obtaining normalized and scaled responses and corridors used in biomechanical studies for over four decades. Specifically, the equal-stress equal-velocity and impulse-momentum methods along with their variations are discussed in this review. Methods ranging from subjective to quasi-static loading to different approaches are discussed for deriving temporal mean and plus minus one standard deviation human corridors of time-varying fundamental responses and cross variables (e.g., force-deflection). The survey offers some insights into the potential efficacy of these approaches with examples from recent impact tests and concludes with recommendations for future studies. The importance of considering various parameters during the experimental design of human impact tests is stressed. PMID:24726322

  8. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives.

    PubMed

    Kozowyk, P R B; Langejans, G H J; Poulis, J A

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives.

  9. THRESHOLD STUDIES ON TNT, COMPOSITION B, C-4, AND ANFO EXPLOSIVES USING THE STEVEN IMPACT TEST

    SciTech Connect

    Vandersall, K S; Switzer, L L; Garcia, F

    2006-06-20

    Steven Impact Tests were performed at low velocity on the explosives TNT (trinitrotolulene), Composition B (63% RDX, 36% TNT, and 1% wax by weight), C-4 (91% RDX, 5.3% Di (2-ethylhexyl) sebacate, 2.1% Polyisobutylene, and 1.6% motor oil by weight) and ANFO (94% ammonium Nitrate with 6% Fuel Oil) in attempts to obtain a threshold for reaction. A 76 mm helium driven gas gun was used to accelerate the Steven Test projectiles up to approximately 200 m/s in attempts to react (ignite) the explosive samples. Blast overpressure gauges, acoustic microphones, standard video and high-speed photography were used to characterize the level of any high explosive reaction violence. No bulk reactions were observed in the TNT, Composition B, C-4 or ANFO explosive samples impacted up to velocities in the range of 190-200 m/s. This work will outline the experimental details and discuss the lack of reaction when compared to the reaction thresholds of other common explosives. These results will also be compared to that of the Susan Test and reaction thresholds observed in the common small-scale safety tests such as the drop hammer and friction tests in hopes of drawing a correlation.

  10. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives

    PubMed Central

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives. PMID:26983080

  11. DWPF (Defense Waste Processing Facility) canister impact testing and analyses for the Transportation Technology Center

    SciTech Connect

    Farnsworth, R.K.; Mishima, J.

    1988-12-01

    A legal weight truck cask design has been developed for the US Department of Energy by GA Technologies, Inc. The cask will be used to transport defense high-level waste canisters produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The development of the cask required the collection of impact data for the DWPF canisters. The Materials Characterization Center (MCC) performed this work under the guidance of the Transportation Technology Center (TTC) at Sandia National Laboratories. Two full-scale DWPF canisters filled with nonradioactive borosilicate glass were impacted under ''normal'' and ''hypothetical'' accident conditions. Two canisters, supplied by the DWPF, were tested. Each canister was vertically dropped on the bottom end from a height of either 0.3 m or 9.1 m (for normal or hypothetical accident conditions, respectively). The structural integrity of each canister was then examined using helium leak and dye penetrant testing. The canisters' diameters and heights, which had been previously measured, were then remeasured to determine how the canister dimensions had changed. Following structural integrity testing, the canisters were flaw leak tested. For transportation flaw leak testing, four holes were fabricated into the shell of canister A-27 (0.3 m drop height). The canister was then transported a total distance of 2069 miles. During transport, the waste form material that fell from each flaw was collected to determine the amount of size distribution of each flaw release. 2 refs., 8 figs., 12 tabs.

  12. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives.

    PubMed

    Kozowyk, P R B; Langejans, G H J; Poulis, J A

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives. PMID:26983080

  13. Design and Analysis of Tooth Impact Test Rig for Spur Gear

    NASA Astrophysics Data System (ADS)

    Ghazali, Wafiuddin Bin Md; Aziz, Ismail Ali Bin Abdul; Daing Idris, Daing Mohamad Nafiz Bin; Ismail, Nurazima Binti; Sofian, Azizul Helmi Bin

    2016-02-01

    This paper is about the design and analysis of a prototype of tooth impact test rig for spur gear. The test rig was fabricated and analysis was conducted to study its’ limitation and capabilities. The design of the rig is analysed to ensure that there will be no problem occurring during the test and reliable data can be obtained. From the result of the analysis, the maximum amount of load that can be applied, the factor of safety of the machine, the stresses on the test rig parts were determined. This is important in the design consideration of the test rig. The materials used for the fabrication of the test rig were also discussed and analysed. MSC Nastran Patran software was used to analyse the model, which was designed by using SolidWorks 2014 software. Based from the results, there were limitations found from the initial design and the test rig design needs to be improved in order for the test rig to operate properly.

  14. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.

    PubMed

    Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin

    2016-01-01

    The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground. PMID:27652146

  15. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.

    PubMed

    Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin

    2016-01-01

    The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground.

  16. An investigation on impacts of scheduling configurations on Mississippi biology subject area testing

    NASA Astrophysics Data System (ADS)

    Marchette, Frances Lenora

    The purpose of this mixed modal study was to compare the results of Biology Subject Area mean scores of students on a 4 x 4 block schedule, A/B block schedule, and traditional year-long schedule for 1A to 5A size schools. This study also reviewed the data to determine if minority or gender issues might influence the test results. Interviews with administrators and teachers were conducted about the type of schedule configuration they use and the influence that the schedule has on student academic performance on the Biology Subject Area Test. Additionally, this research further explored whether schedule configurations allow sufficient time for students to construct knowledge. This study is important to schools, teachers, and administrators because it can assist them in considering the impacts that different types of class schedules have on student performance and if ethnic or gender issues are influencing testing results. This study used the causal-comparative method for the quantitative portion of the study and constant comparative method for the qualitative portion to explore the relationship of school schedules on student academic achievement on the Mississippi Biology Subject Area Test. The aggregate means of selected student scores indicate that the Mississippi Biology Subject Area Test as a measure of student performance reveals no significant difference on student achievement for the three school schedule configurations. The data were adjusted for initial differences of gender, minority, and school size on the three schedule configurations. The results suggest that schools may employ various schedule configurations and expect student performance on the Mississippi Biology Subject Area Test to be unaffected. However, many areas of concern were identified in the interviews that might impact on school learning environments. These concerns relate to effective classroom management, the active involvement of students in learning, the adequacy of teacher education

  17. Explaining the black-white gap in cognitive test scores: Toward a theory of adverse impact.

    PubMed

    Cottrell, Jonathan M; Newman, Daniel A; Roisman, Glenn I

    2015-11-01

    In understanding the causes of adverse impact, a key parameter is the Black-White difference in cognitive test scores. To advance theory on why Black-White cognitive ability/knowledge test score gaps exist, and on how these gaps develop over time, the current article proposes an inductive explanatory model derived from past empirical findings. According to this theoretical model, Black-White group mean differences in cognitive test scores arise from the following racially disparate conditions: family income, maternal education, maternal verbal ability/knowledge, learning materials in the home, parenting factors (maternal sensitivity, maternal warmth and acceptance, and safe physical environment), child birth order, and child birth weight. Results from a 5-wave longitudinal growth model estimated on children in the NICHD Study of Early Child Care and Youth Development from ages 4 through 15 years show significant Black-White cognitive test score gaps throughout early development that did not grow significantly over time (i.e., significant intercept differences, but not slope differences). Importantly, the racially disparate conditions listed above can account for the relation between race and cognitive test scores. We propose a parsimonious 3-Step Model that explains how cognitive test score gaps arise, in which race relates to maternal disadvantage, which in turn relates to parenting factors, which in turn relate to cognitive test scores. This model and results offer to fill a need for theory on the etiology of the Black-White ethnic group gap in cognitive test scores, and attempt to address a missing link in the theory of adverse impact. PMID:25867168

  18. Water Impact Test and Simulation of a Composite Energy Absorbing Fuselage Section

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Sparks, Chad; Sareen, Ashish

    2003-01-01

    In March 2002, a 25-ft/s vertical drop test of a composite fuselage section was conducted onto water. The purpose of the test was to obtain experimental data characterizing the structural response of the fuselage section during water impact for comparison with two previous drop tests that were performed onto a rigid surface and soft soil. For the drop test, the fuselage section was configured with ten 100-lb. lead masses, five per side, that were attached to seat rails mounted to the floor. The fuselage section was raised to a height of 10-ft. and dropped vertically into a 15-ft. diameter pool filled to a depth of 3.5-ft. with water. Approximately 70 channels of data were collected during the drop test at a 10-kHz sampling rate. The test data were used to validate crash simulations of the water impact that were developed using the nonlinear, explicit transient dynamic codes, MSC.Dytran and LS-DYNA. The fuselage structure was modeled using shell and solid elements with a Lagrangian mesh, and the water was modeled with both Eulerian and Lagrangian techniques. The fluid-structure interactions were executed using the fast general coupling in MSC.Dytran and the Arbitrary Lagrange-Euler (ALE) coupling in LS-DYNA. Additionally, the smooth particle hydrodynamics (SPH) meshless Lagrangian technique was used in LS-DYNA to represent the fluid. The simulation results were correlated with the test data to validate the modeling approach. Additional simulation studies were performed to determine how changes in mesh density, mesh uniformity, fluid viscosity, and failure strain influence the test-analysis correlation.

  19. Uniform Foam Crush Testing for Multi-Mission Earth Entry Vehicle Impact Attenuation

    NASA Technical Reports Server (NTRS)

    Patterson, Byron W.; Glaab, Louis J.

    2012-01-01

    Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes and retro-rockets, instead using built-in impact attenuators to absorb energy remaining at impact to meet landing loads requirements. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs and develop the trade space. Testing was conducted to characterize the material properties of several candidate impact foam attenuators to enhance M-SAPE analysis. In the current effort, four different Rohacell foams are tested at three different, uniform, strain rates (approximately 0.17, approximately 100, approximately 13,600%/s). The primary data analysis method uses a global data smoothing technique in the frequency domain to remove noise and system natural frequencies. The results from the data indicate that the filter and smoothing technique are successful in identifying the foam crush event and removing aberrations. The effect of strain rate increases with increasing foam density. The 71-WF-HT foam may support Mars Sample Return requirements. Several recommendations to improve the drop tower test technique are identified.

  20. The overall impact of testing on medical student learning: quantitative estimation of consequential validity.

    PubMed

    Kreiter, Clarence D; Green, Joseph; Lenoch, Susan; Saiki, Takuya

    2013-10-01

    Given medical education's longstanding emphasis on assessment, it seems prudent to evaluate whether our current research and development focus on testing makes sense. Since any intervention within medical education must ultimately be evaluated based upon its impact on student learning, this report seeks to provide a quantitative accounting of the learning gains attained through educational assessments. To approach this question, we estimate achieved learning within a medical school environment that optimally utilizes educational assessments. We compare this estimate to learning that might be expected in a medical school that employs no educational assessments. Effect sizes are used to estimate testing's total impact on learning by summarizing three effects; the direct effect, the indirect effect, and the selection effect. The literature is far from complete, but the available evidence strongly suggests that each of these effects is large and the net cumulative impact on learning in medical education is over two standard deviations. While additional evidence is required, the current literature shows that testing within medical education makes a strong positive contribution to learning. PMID:22886140

  1. Hypervelocity impact testing above 10 km/s of advanced orbital debris shields

    SciTech Connect

    Christiansen, E.L.; Crews, J.L.; Kerr, J.H.; Chhabildas, L.C.

    1996-05-01

    NASA has developed enhanced performance shields to improve the protection of spacecraft from orbital debris and meteoroid impacts. One of these enhanced shields includes a blanket of Nextel{trademark} ceramic fabric and Kevlar{trademark} high strength fabric that is positioned midway between an aluminum bumper and the spacecraft pressure wall. As part of the evaluation of this new shielding technology, impact data above 10 km/sec has been obtained by NASA Johnson Space Center (JSC) from the Sandia National Laboratories HVL ({open_quotes}hypervelocity launcher{close_quotes}) and the Southwest Research Institute inhibited shaped charge launcher (ISCL). The HVL launches flyer-plates in the velocity range of 10 to 15 km/s while the ISCL launches hollow cylinders at {approximately}11.5km/s. The {gt}10km/s experiments are complemented by hydrocode analysis and light-gas gun testing at the JSC Hypervelocity Impact Test Facility (HIT-F) to assess the effects of projectile shape on shield performance. Results from the testing and analysis indicate that the Nextel{trademark}/Kevlar{trademark} shield provides superior protection performance compared to an all-aluminum shield alternative. {copyright} {ital 1996 American Institute of Physics.}

  2. The overall impact of testing on medical student learning: quantitative estimation of consequential validity.

    PubMed

    Kreiter, Clarence D; Green, Joseph; Lenoch, Susan; Saiki, Takuya

    2013-10-01

    Given medical education's longstanding emphasis on assessment, it seems prudent to evaluate whether our current research and development focus on testing makes sense. Since any intervention within medical education must ultimately be evaluated based upon its impact on student learning, this report seeks to provide a quantitative accounting of the learning gains attained through educational assessments. To approach this question, we estimate achieved learning within a medical school environment that optimally utilizes educational assessments. We compare this estimate to learning that might be expected in a medical school that employs no educational assessments. Effect sizes are used to estimate testing's total impact on learning by summarizing three effects; the direct effect, the indirect effect, and the selection effect. The literature is far from complete, but the available evidence strongly suggests that each of these effects is large and the net cumulative impact on learning in medical education is over two standard deviations. While additional evidence is required, the current literature shows that testing within medical education makes a strong positive contribution to learning.

  3. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    NASA Astrophysics Data System (ADS)

    Kiefel, Denis; Stoessel, Rainer; Grosse, Christian

    2015-03-01

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  4. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    SciTech Connect

    Kiefel, Denis E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer E-mail: Rainer.Stoessel@airbus.com; Grosse, Christian

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  5. Risk assessment test for lead bioaccessibility to waterfowl in mine-impacted soils

    USGS Publications Warehouse

    Furman, O.; Strawn, D.G.; Heinz, G.H.; Williams, B.

    2006-01-01

    Due to variations in soil physicochemical properties, species physiology, and contaminant speciation, Pb toxicity is difficult to evaluate without conducting in vivo dose-response studies. Such tests, however, are expensive and time consuming, making them impractical to use in assessment and management of contaminated environments. One possible alternative is to develop a physiologically based extraction test (PBET) that can be used to measure relative bioaccessibility. We developed and correlated a PBET designed to measure the bioaccessibility of Pb to waterfowl (W-PBET) in mine-impacted soils located in the Coeur d'Alene River Basin, Idaho. The W-PBET was also used to evaluate the impact of P amendments on Pb bioavailability. The W-PBET results were correlated to waterfowl-tissue Pb levels from a mallard duck [Anas platyrhynchos (L.)] feeding study. The W-PBET Pb concentrations were significantly less in the P-amended soils than in the unamended soils. Results from this study show that the W-PBET can be used to assess relative changes in Pb bioaccessibility to waterfowl in these mine-impacted soils, and therefore will be a valuable test to help manage and remediate contaminated soils.

  6. An 810 ft/sec soil impact test of a 2-foot diameter model nuclear reactor containment system

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1972-01-01

    A soil impact test was conducted on a 880-pound 2-foot diameter sphere model. The impact area consisted of back filled desert earth and rock. The impact generated a crater 5 feet in diameter by 5 feet deep. It buried itself a total of 15 feet - as measured to the bottom of the model. After impact the containment vessel was pressure checked. No leaks were detected nor cracks observed.

  7. Transient forces generated by projectiles on variable quality mouthguards monitored by instrumented impact testing

    PubMed Central

    Warnet, L; Greasley, A

    2001-01-01

    Objectives—(a) To determine the force-time trace that occurs when a spring mounted simulated upper jaw is impacted; (b) to examine if mouthguards of variable quality have significant influence on such force-time traces; (c) to attempt to relate physical events to the profile of the force-time traces recorded. Methods—A simulated jaw, consisting of ceramic teeth inserted into a hard rubber arch reinforced with a composite jawbone, was fitted with various mouthguards as part of a previous round robin study. A clinical assessment distinguished good, bad, and poor mouthguards, and these were each fitted to the jaw, which was then submitted to instrumental impact tests under conditions expected to produce tooth fractures. The force-time trace was recorded for such impact events. Results—The spring mounting method caused two distinct peaks in the force-time trace. The initial one was related to inertia effects and showed an increase in magnitude with impactor velocity as expected. The second peak showed features that were related to the differences in the mouthguards selected. Conclusions—The use of a force washer within a conical ended impactor enabled force-time traces to be recorded during the impact of a spring mounted simulated jaw fitted with mouthguards of variable quality. The spring mounting system causes an initial inertial peak followed by a second peak once the spring mount has fully compressed. Good fitting guards, which keep most teeth intact, result in high stiffness targets that in turn generate high reaction forces in the impactor. If the spring mounting is omitted, the two peaks are combined to give even higher reaction forces. The force-time trace offers some potential for assessing both overall mouthguard performance and individual events during the impact sequence. Mouthguards with good retention to the jaw remained attached during the impact event and helped to preserve the structural integrity of the target. This in turn developed high

  8. Determination of peak deflections from human surrogates using chestbands in side impact tests.

    PubMed

    Yoganandan, Narayan; Humm, John R; Pintar, Frank A; Maiman, Dennis J

    2013-08-01

    To understand the biomechanics of the human body in motor vehicle environments, physical models including anthropomorphic test devices (ATD) and biological models (postmortem human surrogates) are used, and sled tests are conducted. Deflection is often used as a biomechanical variable to characterize the effects of impact loading and derive injury criteria. The objective of the present study was to evaluate different techniques and recommend a methodology to determine the peak thorax and abdominal deflections from temporal contours using chestbands in oblique lateral impacts. The side impact ATD WorldSID representing human surrogates was positioned on a seat. The seat was rigidly fixed to the platform of an acceleration sled. The oblique load-wall fixed to the sled consisted of separate and adjustable plates to contact the shoulder, thorax, abdomen, and pelvis. Two 59-gage chestbands were wrapped on the thorax and abdomen. Tests were conducted at low, medium, and high velocities (3.4, 6.7, and 7.5m/s) and three methods, termed the spine-sternum, bilateral, and spine-box, were used to determine the global peak deflection and its angulation. Results indicated that all three methods produced very similar angulations, for all velocity tests, and at both thorax and abdominal regions. However, maximum deflections were the lowest in the spine-sternum, followed by bilateral and spine-box methods, with one exception. Based on the development of deflection contours, locations used in the definitions of the origin, and accuracy in identifying critical locations/points in time-varying contours, results of the present study indicate that the bilateral method is the optimum procedure to determine the oblique peak deflection vector in biomechanical tests.

  9. Evaluation of the Impact of National HIV Testing Day - United States, 2011-2014.

    PubMed

    Lecher, Shirley Lee; Hollis, NaTasha; Lehmann, Christopher; Hoover, Karen W; Jones, Avatar; Belcher, Lisa

    2016-01-01

    Human immunodeficiency virus (HIV) testing is the first step in the continuum of HIV prevention, care, and treatment services, without which, gaps in HIV diagnosis cannot be addressed. National HIV testing campaigns are useful for promoting HIV testing among large numbers of persons. However, the impact of such campaigns on identification of new HIV-positive diagnoses is unclear. To assess whether National HIV Testing Day (NHTD, June 27) was effective in identifying new HIV-positive diagnoses, National HIV Prevention Program Monitoring and Evaluation (NHM&E) data for CDC-funded testing events conducted during 2011-2014 were analyzed. The number of HIV testing events and new HIV-positive diagnoses during June of each year were compared with those in other months by demographics and target populations. The number of HIV testing events and new HIV-positive diagnoses were also compared for each day leading up to and after NHTD in June and July of each year. New HIV-positive diagnoses peaked in June relative to other months and specifically on NHTD. During 2011-2014, NHTD had a substantial impact on increasing the number of persons who knew their HIV status and in diagnosing new HIV infections. NHTD also proved effective in reaching persons at high risk disproportionately affected by HIV, including African American (black) men, men who have sex with men (MSM), and transgender persons. Promoting NHTD can successfully increase the number of new HIV-positive diagnoses, including HIV infections among target populations at high risk for HIV infection. PMID:27336946

  10. Quantifying the impact of future Sandage-Loeb test data on dark energy constraints

    SciTech Connect

    Geng, Jia-Jia; Zhang, Jing-Fei; Zhang, Xin E-mail: jfzhang@mail.neu.edu.cn

    2014-07-01

    The Sandage-Loeb (SL) test is a unique method to probe dark energy in the ''redshift desert'' of 2∼test data impact on the dark energy constraints. To avoid the potential inconsistency in data, we use the best-fitting model based on the other geometric measurements as the fiducial model to produce 30 mock SL test data. The 10-yr, 20-yr, and 30-yr observations of SL test are analyzed and compared in detail. We show that compared to the current combined data of type Ia supernovae, baryon acoustic oscillation, cosmic microwave background, and Hubble constant, the 30-yr observation of SL test could improve the constraint on Ω{sub m} by about 80% and the constraint on w by about 25%. Furthermore, the SL test can also improve the measurement of the possible direct interaction between dark energy and dark matter. We show that the SL test 30-yr data could improve the constraint on γ by about 30% and 10% for the Q = γHρ{sub c} and Q = γHρ{sub de} models, respectively.

  11. Evaluating cover depth of steel fiber reinforced concrete using impact-echo testing

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Feng

    2014-04-01

    The purpose of this research is to estimate of the cover depth of steel fiber reinforced concrete using the impact-echo testing. In order to evaluate the security of the construction, usually need to estimate the cover depth of the reinforced concrete. At present, the examination technique of the cover depth of the reinforced concrete without the steel fiber is mainly applied in the magnetic and electrical methods, its rapid detection and good results. But the research of the reactive powder concrete be gradually progress, with the steel fiber concrete structure will be increased, if should still operate the examination with the magnetic and electrical methods, theoretically the steel fiber will have the interference to its electromagnetism field. Therefore, this research designs four kinds of reinforced concrete plate that include different steel fiber contents, to evaluate test results of estimate of the cover depth of the reinforcing bar. The results showed that: estimate of the cover depth of steel fiber reinforced concrete reinforcing bar using the impact-echo testing, the variety of the steel fiber content does not have much influence, the test measurement error within ± 10%, and the most important source of uncertainty is the velocity of concrete.

  12. Suited and Unsuited Hybrid III Impact Testing and Finite Element Model Characterization

    NASA Technical Reports Server (NTRS)

    Lawrence, C.; Somers, J. T.; Baldwin, M. A.; Wells, J. A.; Newby, N.; Currie, N. J.

    2016-01-01

    NASA spacecraft design requirements for occupant protection are a combination of the Brinkley Dynamic Response Criteria and injury assessment reference values (IARV) extracted from anthropomorphic test devices (ATD). For the ATD IARVs, the requirements specify the use of the 5th percentile female Hybrid III and the 95th percentile male Hybrid III. Each of these ATDs is required to be fitted with an articulating pelvis (also known as the aerospace pelvis) and a straight spine. The articulating pelvis is necessary for the ATD to fit into spacecraft seats, while the straight spine is required as injury metrics for vertical accelerations are better defined for this configuration. Sled testing of the Hybrid III 5th Percentile Female Anthropomorphic Test Device (ATD) was performed at Wright-Patterson Air Force Base (WAPFB). Two 5th Percentile ATDs were tested, the Air Force Research Lab (AFRL) and NASA owned Hybrid III ATDs with aerospace pelvises. Testing was also conducted with a NASA-owned 95th Percentile Male Hybrid III with aerospace pelvis at WPAFB. Testing was performed using an Orion seat prototype provided by Johnson Space Center (JSC). A 5-point harness comprised of 2 inch webbing was also provided by JSC. For suited runs, a small and extra-large Advanced Crew Escape System (ACES) suit and helmet were also provided by JSC. Impact vectors were combined frontal/spinal and rear/lateral. Some pure spinal and rear axis testing was also performed for model validation. Peak accelerations ranged between 15 and 20-g. This range was targeted because the ATD responses fell close to the IARV defined in the Human-Systems Integration Requirements (HSIR) document. Rise times varied between 70 and 110 ms to assess differences in ATD responses and model correlation for different impact energies. The purpose of the test series was to evaluate the Hybrid III ATD models in Orion-specific landing orientations both with and without a spacesuit. The results of these tests were used

  13. Testing, Modeling and System Impact of Metabolic Heat Regenerated Temperature Swing Adsorption

    NASA Technical Reports Server (NTRS)

    Lacomini, Christine S.; Powers, Aaron; Lewis, Matthew; Linrud, Christopher; Waguespack, Glenn; Conger, Bruce; Paul, Heather L.

    2008-01-01

    Metabolic heat regenerated temperature swing adsorption (MTSA) technology is being developed for removal and rejection of carbon dioxide (CO2) and heat from a portable life support system (PLSS) to the Martian environment. Previously, hardware was built and tested to demonstrate using heat from simulated, dry ventilation loop gas to affect the temperature swing required to regenerate an adsorbent used for CO2 removal. New testing has been performed using a moist, simulated ventilation loop gas to demonstrate the effects of water condensing and freezing in the heat exchanger during adsorbent regeneration. In addition, thermal models of the adsorbent during regeneration were modified and calibrated with test data to capture the effect of the CO2 heat of desorption. Finally, MTSA impact on PLSS design was evaluated by performing thermal balances assuming a specific PLSS architecture. Results using NASA s Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT), a PLSS system evaluation tool, are presented.

  14. Crushable structure performance determined from reconstructed dynamic forces during impact tests

    SciTech Connect

    Bateman, V.I.

    1995-01-01

    A force reconstruction technique has been used to assess the dynamic performance of a crushable structure (a bomb nose) in both the axial (90{degrees}) and slapdown (30{degrees}) impact conditions. The dynamic force characteristics for the nose design, determined from these test results, have been used to write a dynamic force specification for a new nose design that will replace the old nose. The dynamic forces are reconstructed from measured acceleration responses with the Sum of Weighted Accelerations Technique (SWAT) developed at Sandia National Laboratories. Axial characterizations for the old nose are presented from tests at two SNL facilities: a rocket rail launcher facility and an 18-Inch horizontal actuator facility. The characterizations for the old nose are compared to the characterizations for two new nose designs. Slapdown characterizations for the old nose are presented. Incorporation of the test results into a dynamic force specification is discussed.

  15. Force reconstruction for impact tests of an energy-absorbing nose

    SciTech Connect

    Bateman, V.I.; Garne, T.G.; McCall, D.M.

    1990-01-01

    Delivery of a bomb into hard targets at speeds of up to 120 fps required the design of an energy-absorbing nose. The purpose of the nose is to decelerate the projectile and, by absorbing the kinetic energy with deformation, protect the projectile's internal components from high-level (shock) decelerations. A structural simulation of the projectile was designed to test the dynamic deformation characteristics of the energy-absorbing nose. The simulated projectile was instrumented with eight accelerometers mounted with a shock isolation technique. The dynamic force as a function of nose deformation was the desired result from the impact tests because it provides the designer with a performance criterion for the nose design. The dynamic force was obtained by combining the accelerations using the Sum of Weighted Accelerations Technique (SWAT). Results from two field tests are presented. 12 refs., 8 figs.

  16. Implications and impact of the new US Centers for Disease Control and prevention HIV testing guidelines.

    PubMed

    Millen, Jennifer C; Arbelaez, Christian; Walensky, Rochelle P

    2008-05-01

    Of the 1.2 million Americans estimated to be living with HIV in the United States, approximately 250,000 are unaware of their diagnosis and therefore unable to access clinical care and life-sustaining treatment. The revised 2006 US Centers for Disease Control and Prevention's guidelines for HIV testing recommend universal, routine, and voluntary HIV screening in public and private health care settings for all adults and adolescents between 13 and 64 years old. These major revisions present new challenges for health care providers, hospitals, government agencies, and community advocacy groups. In this review, we discuss the important issues in diverse care venues such as opt-out testing, consent and confidentiality, barriers to treatment, and financial impact. The implications of the revised recommendations for HIV testing are addressed in the context of a fragmented, overstressed, underfunded US health care system.

  17. Scheduling scaffolding: the extent and arrangement of assistance during training impacts test performance.

    PubMed

    Tullis, Jonathan G; Goldstone, Robert L; Hanson, Andrew J

    2015-01-01

    Various kinds of assistance, including prompts, worked examples, direct instruction, and modeling, are widely provided to learners across educational and training programs. Yet, the effectiveness of assistance during training on long-term learning is widely debated. The authors examined how the extent and schedule of assistance during training on a novel mouse movement task impacted unassisted test performance. Learners received different schedules of assistance during training, including constant assistance, no assistance, probabilistic assistance, alternating assistance, and faded assistance. Constant assistance led to better performance during training than no assistance. However, constant assistance during training resulted in the worst unassisted test performance. Faded assistance during training resulted in the best test performance. This suggests that fading may allow learners to create an internal model of the assistance without depending on the assistance in a manner that impedes successful transfer to unassisted circumstances.

  18. Threshold Studies of Heated HMX-Based Energetic Material Targets Using the Steven Impact Test

    SciTech Connect

    Switzer, L L; Vandersall, K S; Chidester, S K; Greenwood, D W; Tarver, C M

    2003-07-01

    Impact tests performed at low velocity on heated energetic material samples are of interest when considering the situation of energetic materials involved in a fire. To determine heated reaction thresholds, Steven Test targets containing PBX 9404 or LX-04 samples heated to the range of 150-170 C were impacted at velocities up to 150 m/s by two different projectile head geometries. Comparing these measured thresholds to ambient temperature thresholds revealed that the heated LX-04 thresholds were considerably higher than ambient, whereas the heated PBX 9404 thresholds were only slightly higher than the ambient temperature thresholds. The violence of reaction level of the PBX 9404 was considerably higher than that of the LX-04 as measured with four overpressure gauges. The varying results in these samples with different HMX/binder configurations indicate that friction plays a dominant role in reaction ignition during impact. This work outlines the experimental details, compares the thresholds and violence levels of the heated and ambient temperature experiments, and discusses the dominant mechanisms of the measured thresholds.

  19. Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding

    NASA Astrophysics Data System (ADS)

    Ryan, Shannon; Christiansen, Eric L.

    2013-02-01

    A series of 66 hypervelocity impact experiments have been performed to assess the potential of various materials (aluminium, titanium, copper, stainless steel, nickel, nickel/chromium, reticulated vitreous carbon, silver, ceramic, aramid, ceramic glass, and carbon fibre) and structures (monolithic plates, open-cell foam, flexible fabrics, rigid meshes) for micrometeoroid and orbital debris (MMOD) shielding. Arranged in various single-, double-, and triple-bumper configurations, screening tests were performed with 0.3175 cm diameter Al2017-T4 spherical projectiles at nominally 6.8 km/s and normal incidence. The top performing shields were identified through target damage assessments and their respective weight. The top performing candidate shield at the screening test condition was found to be a double-bumper configuration with a 0.25 mm thick Al3003 outer bumper, 6.35 mm thick 40 PPI aluminium foam inner bumper, and 1.016 mm thick Al2024-T3 rear wall (equal spacing between bumpers and rear wall). In general, double-bumper candidates with aluminium plate outer bumpers and foam inner bumpers were consistently found to be amongst the top performers. For this impact condition, potential weight savings of at least 47% over conventional all-aluminium Whipple shields are possible by utilizing the investigated materials and structures. The results of this study identify materials and structures of interest for further, more in-depth, impact investigations.

  20. Laminated Windshield Breakage Modelling in the Context of Headform Impact Homologation Tests

    NASA Astrophysics Data System (ADS)

    Kosiński, P.; Osiński, J.

    2015-02-01

    The purpose of modelling a laminated windshield using the FEM is to provide a critical look on the way the adult headform impact tests are conducted in the process of motor vehicle certification. The main aim of the study is to modify the design of a laminated windshield in the context of a vehicle collision with vulnerable road users. The initial phase of the work was to develop a model of the adult headform impactor. The validation consisted in conducting a series of FEM analyses of the impactor certification testing according to the Regulation (EC) 631/2009. Next, the impact of the headform model on a windshield was analysed. The FEM model of laminated glass is composed of two outer layers of glass and an inner layer of polyvinyl butyral. FEM analyses of the impaction were performed at five points of the windshield characterised by various dynamic responses of the impactor and various patterns of glass cracking. In modelling the layers of glass, the Abaqus environment "brittle cracking" model was used. The following material models of PVB resin were considered: elastic, elastic-plastic, hyperelastic, and low-density foam. Furthermore, the influence of the mesh type on the process of glass cracking in a laminated windshield was analysed.

  1. Experimental and numerical analysis of Izod impact test of cortical bone tissue

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, A. A.; Silberschmidt, V. V.

    2012-05-01

    Bones can only sustain loads until a certain limit, beyond which they fail. Usually, the reasons for bone fracture are traumatic falls, sports injuries, and engagement in transport or industrial accidents. A proper treatment of bones and prevention of their fracture can be supported by in-depth understanding of deformation and fracture behavior of this tissue in such dynamic events. In this paper, a combination of experimental and numerical analysis was carried out in order to comprehend the fracture behavior of cortical bone tissue. Experimental tests were performed to study the transient dynamic behavior of cortical bone tissue under impact bending loading. The variability of absorbed energy for different cortex positions and notch depths was studied using Izod impact tests. Also, Extended Finite-Element Method implemented into the commercial finite-element software Abaqus was used to simulate the crack initiation and growth processes in a cantilever beam of cortical bone exposed to impact loading using the Izod loading scheme. The simulation results show a good agreement with the experimental data.

  2. Tests to evaluate the ecological impact of treated ballast water on three Chinese marine species

    NASA Astrophysics Data System (ADS)

    Zhang, Yanan; Wang, Zixi; Cai, Leiming; Cai, Xiang; Sun, Wenjun; Ma, Liqing

    2014-09-01

    Ballast water has been a topic of concern for some time because of its potential to introduce invasive species to new habitats. To comply with the International Convention for the Control and Management of Ships' Ballast Water and Sediments, members of the International Maritime Organization (IMO) must equip their ships with on-board treatment systems to eliminate organism release with ballast water. There are many challenges associated with the implementation of this IMO guideline, one of which is the selection of species for testing the ecological impacts of the treated ballast water. In the United States, ballast water toxicity test methods have been defined by the United States Environmental Protection Agency. However, the test methods had not been finalized in China until the toxicity test methods for ballast water were established in 2008. The Chinese methods have been based on species from three trophic levels: Skeletonema costatum, Neomysis awatschensis, and Ctenogobius gymnauchen. All three species live in broad estuarine and open sea areas of China; they are sensitive to reference toxicants and acclimatize easily to different conditions. In this paper, the biological characteristics, test processes and statistical analysis methods are presented for the three species. Results indicate that the methods for evaluating these three organisms can be included in the ecological toxicity tests for treated ballast water in China.

  3. Impact of gene patents on diagnostic testing: a new patent landscaping method applied to spinocerebellar ataxia

    PubMed Central

    Berthels, Nele; Matthijs, Gert; Van Overwalle, Geertrui

    2011-01-01

    Recent reports in Europe and the United States raise concern about the potential negative impact of gene patents on the freedom to operate of diagnosticians and on the access of patients to genetic diagnostic services. Patents, historically seen as legal instruments to trigger innovation, could cause undesired side effects in the public health domain. Clear empirical evidence on the alleged hindering effect of gene patents is still scarce. We therefore developed a patent categorization method to determine which gene patents could indeed be problematic. The method is applied to patents relevant for genetic testing of spinocerebellar ataxia (SCA). The SCA test is probably the most widely used DNA test in (adult) neurology, as well as one of the most challenging due to the heterogeneity of the disease. Typically tested as a gene panel covering the five common SCA subtypes, we show that the patenting of SCA genes and testing methods and the associated licensing conditions could have far-reaching consequences on legitimate access to this gene panel. Moreover, with genetic testing being increasingly standardized, simply ignoring patents is unlikely to hold out indefinitely. This paper aims to differentiate among so-called ‘gene patents' by lifting out the truly problematic ones. In doing so, awareness is raised among all stakeholders in the genetic diagnostics field who are not necessarily familiar with the ins and outs of patenting and licensing. PMID:21811306

  4. Ubiquitous testing using tablets: its impact on medical student perceptions of and engagement in learning

    PubMed Central

    Kim, Kyong-Jee; Hwang, Jee-Young

    2016-01-01

    Purpose: Ubiquitous testing has the potential to affect medical education by enhancing the authenticity of the assessment using multimedia items. This study explored medical students’ experience with ubiquitous testing and its impact on student learning. Methods: A cohort (n=48) of third-year students at a medical school in South Korea participated in this study. The students were divided into two groups and were given different versions of 10 content-matched items: one in text version (the text group) and the other in multimedia version (the multimedia group). Multimedia items were delivered using tablets. Item response analyses were performed to compare item characteristics between the two versions. Additionally, focus group interviews were held to investigate the students’ experiences of ubiquitous testing. Results: The mean test score was significantly higher in the text group. Item difficulty and discrimination did not differ between text and multimedia items. The participants generally showed positive responses on ubiquitous testing. Still, they felt that the lectures that they had taken in preclinical years did not prepare them enough for this type of assessment and clinical encounters during clerkships were more helpful. To be better prepared, the participants felt that they needed to engage more actively in learning in clinical clerkships and have more access to multimedia learning resources. Conclusion: Ubiquitous testing can positively affect student learning by reinforcing the importance of being able to understand and apply knowledge in clinical contexts, which drives students to engage more actively in learning in clinical settings. PMID:26838569

  5. A Gas-Actuated Projectile Launcher for High-Energy Impact Testing of Structures

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin; Lawson, Robin E.; Knight, Norman F., Jr.; Lyle, Karen H.

    1999-01-01

    A gas-act,uated penetration device has been developed for high-energy impact testing of structures. The high-energy impact. t,estiiig is for experimental simulation of uncontained engine failures. The non-linear transient finite element, code LS-DYNA3D has been used in the numerical simula.tions of a titanium rectangular blade with a.n aluminum target, plate. Threshold velocities for different combinations of pitch and yaw angles of the impactor were obtained for the impactor-target, t8est configuration in the numerica.1 simulations. Complet,e penet,ration of the target plate was also simulat,ed numerically. Finally, limited comparison of analytical and experimental results is presented for complete penetration of the target by the impactor.

  6. Verification of maximum impact force for interim storage cask for the Fast Flux Testing Facility

    SciTech Connect

    Chen, W.W.; Chang, S.J.

    1996-06-01

    The objective of this paper is to perform an impact analysis of the Interim Storage Cask (ISC) of the Fast Flux Test Facility (FFTF) for a 4-ft end drop. The ISC is a concrete cask used to store spent nuclear fuels. The analysis is to justify the impact force calculated by General Atomics (General Atomics, 1994) using the ILMOD computer code. ILMOD determines the maximum force developed by the concrete crushing which occurs when the drop energy has been absorbed. The maximum force, multiplied by the dynamic load factor (DLF), was used to determine the maximum g-level on the cask during a 4-ft end drop accident onto the heavily reinforced FFTF Reactor Service Building`s concrete surface. For the analysis, this surface was assumed to be unyielding and the cask absorbed all the drop energy. This conservative assumption simplified the modeling used to qualify the cask`s structural integrity for this accident condition.

  7. Test and Analysis Correlation of Form Impact onto Space Shuttle Wing Leading Edge RCC Panel 8

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan; Melis, Matthew; Carney, Kelly

    2004-01-01

    Soon after the Columbia Accident Investigation Board (CAIB) began their study of the space shuttle Columbia accident, "physics-based" analyses using LS-DYNA were applied to characterize the expected damage to the Reinforced Carbon-Carbon (RCC) leading edge from high-speed foam impacts. Forensic evidence quickly led CAIB investigators to concentrate on the left wing leading edge RCC panels. This paper will concentrate on the test of the left-wing RCC panel 8 conducted at Southwest Research Institute (SwRI) and the correlation with an LS-DYNA analysis. The successful correlation of the LS-DYNA model has resulted in the use of LS-DYNA as a predictive tool for characterizing the threshold of damage for impacts of various debris such as foam, ice, and ablators onto the RCC leading edge for shuttle return-to-flight.

  8. A 640 foot per second impact test of a two foot diameter model nuclear reactor containment system without fracture

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1971-01-01

    An impact test was conducted on an 1142 pound 2 foot diameter sphere model. The purpose of this test was to determine the feasibility of containing the fission products of a mobile reactor in an impact. The model simulated the reactor core, energy absorbing gamma shielding, neutron shielding and the containment vessel. It was impacted against an 18,000 pound reinforced concrete block. The model was significantly deformed and the concrete block demolished. No leaks were detected nor cracks observed in the model after impact.

  9. Damage Detection and Impact Testing on Laminated and Sandwich Composite Panels

    NASA Technical Reports Server (NTRS)

    Hughes, Derke R.; Craft, William J.; Schulz, Mark J.; Naser, Ahmad S.; Martin, William N.

    1998-01-01

    This research investigates health monitoring of sandwich shell composites to determine if the Transmittance Functions (TF) are effective in determining the present of damage. The health monitoring test was conducted on the sandwich plates before and after low velocity impacts using the health monitoring technique given in TFs are a NDE (Nondestructive Evaluation) technique that utilizes the ratios of cross-spectrums to auto-spectrums between two response points on the sandwich composites. The test for transmittance was conducted on the same density foam core throughout the experiment. The test specimens were 17.8 cm by 25.4 cm in dimension. The external sheets (face sheets) were created from graphite/epoxy laminate with dimension of 1.58 mm thick. The polymethacrylide (Rohacell) foam core was 12.7 mm thick. These samples experienced a transformation in the TF that was considered the low velocity impact damage. The low velocity damage was observed in the TFs for the sandwich composites.

  10. Model Investigation of Technique for Full Scale Landing Impact Tests at Simulated Lunar Gravity

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Model Investigation of Technique for Full Scale Landing Impact Tests at Simulated Lunar Gravity. An investigation of a 1/6-scale dynamic model has been made to develop and evaluate a technique for conducting full-scale landing-impact tests at simulated lunar gravity. Landings were made at touchdown pitch attitudes of -15 degrees, 0 degrees, and 15 degrees. All landings were made with two gear pads forward and at a roll attitude of 0 degrees. Both roll and yaw attitudes were constrained. Vertical landing speed was varied from 5 to 15 feet per second (1.5 to 4.6 m/s) and horizontal speed was varied from 0 to 10 feet per second (0 to 3.0 m/s). Most of the landings were made at a vertical and horizontal speed of 10 feet per second or 3.0 m/s (45 degree flight-path angle) while pitch attitude and surface characteristics, friction and topography, were varied. These parameters were investigated with the free-body earth-gravity and the simulated lunar-gravity test techniques. The landings were made at a model mass corresponding to a full-scale lunar weight (force due to gravity) of 1,440 pounds (6.41 kN) or an earth weight of 8,640 pounds (38.4 kN). [Entire movie available on DVD from CASI as Doc ID 20070030977. Contact help@sti.nasa.gov

  11. High-Rate Material Modeling and Validation Using the Taylor Cylinder Impact Test

    SciTech Connect

    Maudlin, P.J.; Gray, G.T. III; Cady, C.M.; Kaschner, G.C.

    1998-10-21

    Taylor Cylinder impact testing is used to validate anisotropic elastoplastic constitutive modeling by comparing polycrystal simulated yield surface shapes (topography) to measured shapes from post-test Taylor impact specimens and quasistatic compression specimens. Measured yield surface shapes are extracted from the experimental post-test geometries using classical r-value definitions modified for arbitrary stress state and specimen orientation. Rolled tantalum (body-centered-cubic metal) plate and clock-rolled zirconium (hexagonal-close-packed metal) plate are both investigated. The results indicate that an assumption of topography invariance with respect to strain-rate is justifiable for tantalum. However, a strong sensitivity of topography with respect to strain-rate for zirconium was observed, implying that some accounting for a deformation mechanism rate-dependence associated with lower-symmetry materials should be included in the constitutive modeling. Discussion of the importance of this topography rate-dependence and texture evolution in formulating constitutive models appropriate for FEM applications is provided.

  12. Hybrid III Lower Leg Injury Assessment Reference Curves Under Axial Impacts Using Matched-Pair Tests.

    PubMed

    Yoganandan, Narayan; Pintar, Frank; Banerjee, Anjishnu; Schlick, Michael; Chirvi, Sajal; Uppal, Hermeeth; Merkle, Andrew; Voo, Liming; Kleinberg, Michael

    2015-01-01

    The objective of the present study was to derive injury probability curves applicable to the Hybrid III dummy (also termed the Anthropomorphic Test Device, ATD) lower leg under axial impacts for military applications. A matched-pair approach was used. Axial impacts were delivered to below knee foot-ankle complex preparations of the lower leg of the ATD using pendulum and custom vertical accelerator devices. Military boot was used in some tests. Post mortem human surrogate (PMHS) preparations were used as matched-pair tests for injury outcomes. The alignment was such that the foot-ankle complex was orthogonal to the leg (below knee tibia-fibula complex), termed as the normal 90-90 posture. Injury outcomes from the biological surrogate focused on calcaneus and or distal tibia fractures with or without the involvement of articular surfaces. Peak lower tibia load cell forces were obtained from matched-pair dummy tests. Injury and force data were paired, censoring was assigned based on injury outcomes and survival analysis was done using the Weibull distribution to derive dummy-based probability curves. Mean peak forces were extracted at 5, 10, 20 and 50% probability levels. Normalized confidence interval sizes (NCIS) at ± 95% level were computed to determine the tightness-of-fit of the confidence bands. The NCIS data ranged from 0.34 to 0.78 and a peak force of 8.2 kN was associated at the ten percent injury probability level. Other data and curves are given in the body of the paper. The present Injury Assessment Reference Curves and Values (IARC and IARV) may be used in future tests for advancing safety in military environments. These survival analysis processes and IARC and IARV data may also be used in other applications. PMID:25996722

  13. Design of Spacecraft Missions to Test Kinetic Impact for Asteroid Deflection

    NASA Technical Reports Server (NTRS)

    Hernandez, Sonia; Barbee, Brent W.

    2011-01-01

    There are currently over 8,000 known near-Earth asteroids (NEAs), and more are being discovered on a continual basis. More than 1,200 of these are classified as Potentially Hazardous Asteroids (PHAs) because their Minimum Orbit Intersection Distance (MOID) with Earth's orbit is <= 0.05 AU and their estimated diameters are >= 150 m. To date, 178 Earth impact structures have been discovered, indicating that our planet has previously been struck with devastating force by NEAs and will be struck again. Such collisions are aperiodic events and can occur at any time. A variety of techniques have been proposed to defend our planet from NEA impacts by deflecting the incoming asteroid. However, none of these techniques have been tested. Unless rigorous testing is conducted to produce reliable asteroid deflection systems, we will be forced to deploy completely untested -- and therefore unreliable -- deflection missions when a sizable asteroid on a collision course with Earth is discovered. Such missions will have a high probability of failure. We propose to address this problem with a campaign of deflection technology test missions deployed to harmless NEAs. The objective of these missions is to safely evaluate and refine the mission concepts and asteroid deflection system designs. Our current research focuses on the kinetic impactor, one of the simplest proposed asteroid deflection techniques in which a spacecraft is sent to collide with an asteroid at high relative velocity. By deploying test missions in the near future, we can characterize the performance of this deflection technique and resolve any problems inherent to its execution before needing to rely upon it during a true emergency. In this paper we present the methodology and results of our survey, including lists of NEAs for which safe and effective kinetic impactor test missions may be conducted within the next decade. Full mission designs are also presented for the NEAs which offer the best mission opportunities.

  14. Pressure scaled water impact test of a 12.5 inch diameter model of the Space Shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A total of 59 tail first drops were made. Model entry conditions simulated full scale vertical velocities of approximately 75 to 110 ft/sec with horizontal velocities up to 45 ft/sec and impact angles to + or - 10 deg. These tests were conducted at scaled atmospheric pressures (1.26 psia or 65 mm.Hg). The model, test program, test facility, test equipment, instrumentation system, data reduction procedures, and test results are described.

  15. The effect of esthetic fibers on impact resistance of a conventional heat-cured denture base resin.

    PubMed

    Doğan, Orhan Murat; Bolayir, Giray; Keskin, Selda; Doğan, Arife; Bek, Bülent; Boztuğ, Ali

    2007-03-01

    This study was conducted to observe the changes in impact resistance of a denture base resin reinforced with five types of fiber. E-glass, polyester, rayon, nylon 6, and nylon 6/6 fibers were cut into 2, 4, and 6 mm lengths and added into the resin at a concentration of 3% by weight. Five test specimens for each formulation, as well as control specimens without fiber, were prepared using a mold including a V-shaped notch with 55 x 10 x10 mm dimensions. Impact tests were carried out using a Charpy-type tester. Additionally, surfaces of the impact sections were observed under a scanning electron microscope (SEM). Results indicated that impact energy tended to increase with fiber length, and that the highest value was recorded for rayon fiber-reinforced specimens of 6 mm length. E-glass fiber reinforcement produced relatively stable, high values for each length, whereby good interfacial strength between polymer matrix and glass fibers was confirmed by SEM analysis. PMID:17621939

  16. Testing the impact on natural risks' awareness of visual communication through an exhibition

    NASA Astrophysics Data System (ADS)

    Charrière, Marie; Bogaard, Thom; Junier, Sandra; Malet, Jean-Philippe; Mostert, Erik

    2014-05-01

    The need to communicate about natural disasters in order to improve the awareness of communities at risk is not a matter for debate anymore. However, communication can be implemented using different media and tools, and their effectiveness may be difficult to grasp. Current research on the topic is usually focused on assessing whether communication practices meet users' needs, whereas impact assessment is mostly left out. It can be explained by difficulties arising from (1) the definition of the impact to measure, i.e. awareness, and the appropriate indicators to measure it and its variations, and (2) the implementation of a research design that allows assessing these impacts without bias. This research aims at both developing a methodology to measure risk awareness and to use it for testing the effectiveness of visual communication. The testing was conducted in the Ubaye Valley in France, an alpine area affected by multiple hazards, from December 2013 to mid-February 2014. The setting consisted of an exhibition in the public library of the main town, Barcelonnette. The main natural hazards of the study case (i.e. landslides, avalanches, flooding, debris flows and earthquakes), as well as structural and non-structural measures were presented to the general public using local examples of hazards events and mitigation. Various visualization tools were used: videos, Google earth map, interactive timeline, objects, mock-ups, technical devices as well as posters with pictures, drawings and graphs. In order to assess the effects of the exhibition on risk awareness, several groups of children and adults were submitted to a research design, consisting of 1) a pre-test, 2) the visit of the exhibition and 3) a post-test similar to the pre-test. Close-ended questions addressed the awareness indicators according to the literature, i.e. worry level, previous experiences with natural hazards events, exposure to awareness raising, ability to mitigate/respond/prepare, attitude to

  17. Analytical impact models and experimental test validation for the Columbia shuttle wing leading edge panels.

    SciTech Connect

    Lu, Wei-Yang; Metzinger, Kurt Evan; Gwinn, Kenneth West; Antoun, Bonnie R.; Korellis, John S.

    2004-10-01

    This paper describes the analyses and the experimental mechanics program to support the National Aeronautics and Space Administration (NASA) investigation of the Shuttle Columbia accident. A synergism of the analysis and experimental effort is required to insure that the final analysis is valid - the experimental program provides both the material behavior and a basis for validation, while the analysis is required to insure the experimental effort provides behavior in the correct loading regime. Preliminary scoping calculations of foam impact onto the Shuttle Columbia's wing leading edge determined if enough energy was available to damage the leading edge panel. These analyses also determined the strain-rate regimes for various materials to provide the material test conditions. Experimental testing of the reinforced carbon-carbon wing panels then proceeded to provide the material behavior in a variety of configurations and strain-rates for flown or conditioned samples of the material. After determination of the important failure mechanisms of the material, validation experiments were designed to provide a basis of comparison for the analytical effort. Using this basis, the final analyses were used for test configuration, instrumentation location, and calibration definition in support of full-scale testing of the panels in June 2003. These tests subsequently confirmed the accident cause.

  18. HIV testing and counselling in Estonian prisons, 2012 to 2013: aims, processes and impacts.

    PubMed

    Kivimets, K; Uuskula, A

    2014-11-27

    We present data from an observational cohort study on human immunodeficiency virus (HIV) prevention and control measures in prisons in Estonia to assess the potential for HIV transmission in this setting. HIV testing and retesting data from the Estonian prison health department were used to estimate HIV prevalence and incidence in prison. Since 2002, voluntary HIV counselling and testing has routinely been offered to all prisoners and has been part of the new prisoners health check. At the end of 2012, there were 3,289 prisoners in Estonia, including 170 women: 28.5% were drug users and 15.6% were infected with HIV. Of the HIV-positive inmates, 8.3% were newly diagnosed on prison entry. In 2012, 4,387 HIV tests (including retests) were performed in Estonian prisons. Among 1,756 initially HIV-negative prisoners who were in prison for more than one year and therefore tested for HIV twice within 12 months (at entry and annual testing), one new HIV infection was detected, an incidence of 0.067 per 100 person-years (95% confidence interval (CI): 0.025–5.572). This analysis indicates low risk of HIV transmission in Estonian prisons. Implementation of HIV management interventions could impact positively on the health of prisoners and the communities to which they return.

  19. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2009-06-01

    Corrective Action Unit (CAU) 107 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Low Impact Soil Sites' and consists of the following 15 Corrective Action Sites (CASs), located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site: CAS 01-23-02, Atmospheric Test Site - High Alt; CAS 02-23-02, Contaminated Areas (2); CAS 02-23-03, Contaminated Berm; CAS 02-23-10, Gourd-Amber Contamination Area; CAS 02-23-11, Sappho Contamination Area; CAS 02-23-12, Scuttle Contamination Area; CAS 03-23-24, Seaweed B Contamination Area; CAS 03-23-27, Adze Contamination Area; CAS 03-23-28, Manzanas Contamination Area; CAS 03-23-29, Truchas-Chamisal Contamination Area; CAS 04-23-02, Atmospheric Test Site T4-a; CAS 05-23-06, Atmospheric Test Site; CAS 09-23-06, Mound of Contaminated Soil; CAS 10-23-04, Atmospheric Test Site M-10; and CAS 18-23-02, U-18d Crater (Sulky). Closure activities were conducted from February through April 2009 according to the FFACO (1996; as amended February 2008) and Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 107 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2009). The corrective action alternatives included No Further Action and Closure in Place with Administrative Controls. Closure activities are summarized.

  20. Oblique Loading in Post Mortem Human Surrogates from Vehicle Lateral Impact Tests using Chestbands.

    PubMed

    Yoganandan, Narayan; Humm, John R; Pintar, Frank A; Arun, Mike W J; Rhule, Heather; Rudd, Rodney; Craig, Matthew

    2015-11-01

    While numerous studies have been conducted to determine side impact responses of Post Mortem Human Surrogates (PMHS) using sled and other equipment, experiments using the biological surrogate in modern full-scale vehicles are not available. The present study investigated the presence of oblique loading in moving deformable barrier and pole tests. Threepoint belt restrained PMHS were positioned in the left front and left rear seats in the former and left front seat in the latter condition and tested according to consumer testing protocols. Three chestbands were used in each specimen (upper, middle and lower thorax). Accelerometers were secured to the skull, shoulder, upper, middle and lower thoracic vertebrae, sternum, and sacrum. Chestband signals were processed to determine magnitudes and angulations of peak deflections. The magnitude and timing of various signal peaks are given. Vehicle accelerations, door velocities, and seat belt loads are also given. Analysis of deformation contours, peak deflections, and angulations indicated that the left rear seated specimen were exposed to anterior oblique loading while left front specimens in both tests sustained essentially pure lateral loading to the torso. These data can be used to validate human body computational models. The occurrence of oblique loading in full-scale testing, hitherto unrecognized, may serve to stimulate the exploration of its role in injuries to the thorax and lower extremities in modern vehicles. It may be important to continue research in this area because injury metrics have a lower threshold for angled loading.

  1. Oblique Loading in Post Mortem Human Surrogates from Vehicle Lateral Impact Tests using Chestbands.

    PubMed

    Yoganandan, Narayan; Humm, John R; Pintar, Frank A; Arun, Mike W J; Rhule, Heather; Rudd, Rodney; Craig, Matthew

    2015-11-01

    While numerous studies have been conducted to determine side impact responses of Post Mortem Human Surrogates (PMHS) using sled and other equipment, experiments using the biological surrogate in modern full-scale vehicles are not available. The present study investigated the presence of oblique loading in moving deformable barrier and pole tests. Threepoint belt restrained PMHS were positioned in the left front and left rear seats in the former and left front seat in the latter condition and tested according to consumer testing protocols. Three chestbands were used in each specimen (upper, middle and lower thorax). Accelerometers were secured to the skull, shoulder, upper, middle and lower thoracic vertebrae, sternum, and sacrum. Chestband signals were processed to determine magnitudes and angulations of peak deflections. The magnitude and timing of various signal peaks are given. Vehicle accelerations, door velocities, and seat belt loads are also given. Analysis of deformation contours, peak deflections, and angulations indicated that the left rear seated specimen were exposed to anterior oblique loading while left front specimens in both tests sustained essentially pure lateral loading to the torso. These data can be used to validate human body computational models. The occurrence of oblique loading in full-scale testing, hitherto unrecognized, may serve to stimulate the exploration of its role in injuries to the thorax and lower extremities in modern vehicles. It may be important to continue research in this area because injury metrics have a lower threshold for angled loading. PMID:26660738

  2. The Impact of Escape Alternative Position Change in Multiple-Choice Test on the Psychometric Properties of a Test and Its Items Parameters

    ERIC Educational Resources Information Center

    Hamadneh, Iyad Mohammed

    2015-01-01

    This study aimed at investigating the impact changing of escape alternative position in multiple-choice test on the psychometric properties of a test and it's items parameters (difficulty, discrimination & guessing), and estimation of examinee ability. To achieve the study objectives, a 4-alternative multiple choice type achievement test…

  3. The Impact of Practice Test-Taking on NJ ASK 3, 4, and 5 Language Arts Scores

    ERIC Educational Resources Information Center

    Rohrman, Susan T.

    2011-01-01

    This study examined the effectiveness of a pilot program utilizing practice standardized test questions for 3rd, 4th, and 5th graders in an economically disadvantaged school and evaluated the impact of the pilot program on pre- and post-test practice tests in language arts literacy and on the 2009 New Jersey Assessment of Skills and Knowledge…

  4. Assessing the Impact of Testing Aids on Post-Secondary Student Performance: A Meta-Analytic Investigation

    ERIC Educational Resources Information Center

    Larwin, Karen H.; Gorman, Jennifer; Larwin, David A.

    2013-01-01

    Testing aids, including student-prepared testing aids (a.k.a., cheat sheets or crib notes) and open-textbook exams, are common practice in post-secondary assessment. There is a considerable amount of published research that discusses and investigates the impact of these testing aids. However, the findings of this research are contradictory and…

  5. What's in a Name? The Impact of Accurate Staphylococcus pseudintermedius Identification on Appropriate Antimicrobial Susceptibility Testing

    PubMed Central

    2016-01-01

    Bacteria in the Staphylococcus intermedius group, including Staphylococcus pseudintermedius, often encode mecA-mediated methicillin resistance. Reliable detection of this phenotype for proper treatment and infection control decisions requires that these coagulase-positive staphylococci are accurately identified and specifically that they are not misidentified as S. aureus. As correct species level bacterial identification becomes more commonplace in clinical laboratories, one can expect to see changes in guidance for antimicrobial susceptibility testing and interpretation. The study by Wu et al. in this issue (M. T. Wu, C.-A. D. Burnham, L. F. Westblade, J. Dien Bard, S. D. Lawhon, M. A. Wallace, T. Stanley, E. Burd, J. Hindler, R. M. Humphries, J Clin Microbiol 54:535–542, 2016, http://dx.doi.org/10.1128/JCM.02864-15) highlights the impact of robust identification of S. intermedius group organisms on the selection of appropriate antimicrobial susceptibility testing methods and interpretation. PMID:26763965

  6. Gas Gun Impact Testing of PZT 95/5, Part 1: Unpoled State

    SciTech Connect

    FURNISH,MICHAEL D.; SETCHELL,ROBERT E.; CHHABILDAS,LALIT C.; MONTGOMERY,STEPHEN T.

    2000-01-01

    In the present study, 10 impact tests were conducted on unpoled PZT 95/5, with 9% porosity and 2 at% Nb doping. These tests were instrumented to obtain time-resolved loading, unloading and span signatures. As well, PVDF gauges allowed shock timing to be established explicitly. The ferroelectric/antiferroelectric phases transition was manifested as a ramp to 0.4 GPa. The onset of crushup produced the most visible signature: a clear wave separation at 2.2 GPa followed by a highly dispersive wave. The end states also reflected crushup, and are consistent with earlier data and with related poled experiments. A span strength value of 0.17 GPa was measured for a shock stress of 0.5 GPa, this decreased to a very small value (no visible pullback signature) for a shock strength of 1.85 GPa.

  7. What's in a Name? The Impact of Accurate Staphylococcus pseudintermedius Identification on Appropriate Antimicrobial Susceptibility Testing.

    PubMed

    Limbago, Brandi M

    2016-03-01

    Bacteria in the Staphylococcus intermedius group, including Staphylococcus pseudintermedius, often encode mecA-mediated methicillin resistance. Reliable detection of this phenotype for proper treatment and infection control decisions requires that these coagulase-positive staphylococci are accurately identified and specifically that they are not misidentified as S. aureus. As correct species level bacterial identification becomes more commonplace in clinical laboratories, one can expect to see changes in guidance for antimicrobial susceptibility testing and interpretation. The study by Wu et al. in this issue (M. T. Wu, C.-A. D. Burnham, L. F. Westblade, J. Dien Bard, S. D. Lawhon, M. A. Wallace, T. Stanley, E. Burd, J. Hindler, R. M. Humphries, J Clin Microbiol 54:535-542, 2016, http://dx.doi.org/10.1128/JCM.02864-15) highlights the impact of robust identification of S. intermedius group organisms on the selection of appropriate antimicrobial susceptibility testing methods and interpretation.

  8. Validating Material Modelling of OFHC Copper Using Dynamic Tensile Extrusion (DTE) Test at Different Impact Velocity

    NASA Astrophysics Data System (ADS)

    Bonora, Nicola; Testa, Gabriel; Ruggiero, Andrew; Iannitti, Gianluca; Hörnqvist, Magnus; Mortazavi, Nooshin

    2015-06-01

    In the Dynamic Tensile Extrusion (DTE) test, the material is subjected to very large strain, high strain rate and elevated temperature. Numerical simulation, validated comparing with measurements obtained on soft-recovered extruded fragments, can be used to probe material response under such extreme conditions and to assess constitutive models. In this work, the results of a parametric investigation on the simulation of DTE test of annealed OFHC copper - at impact velocity ranging from 350 up to 420 m/s - using phenomenological and physically based models (Johnson-Cook, Zerilli-Armstrong and Rusinek-Klepaczko), are presented. Preliminary simulation of microstructure evolution was performed using crystal plasticity package CPFEM, providing, as input, the strain history obtained with FEM at selected locations along the extruded fragments. Results were compared with EBSD investigation.

  9. Impact of time-dependency on long-term material testing and modeling of polyethylene

    NASA Astrophysics Data System (ADS)

    Bischoff, Jeffrey E.

    2008-09-01

    Ultra-high molecular weight polyethylene (UHMWPE) has an important role in orthopaedic implants because of its favorable properties as an articulating surface. UHMWPE component testing often focuses on measuring the long-term fatigue or wear response of the material that could be realized during many years of use. However, the impact of time-dependent properties of UHMWPE on such tests is not well characterized. In particular, altering the frequency of loading and allowing for material creep or relaxation can significantly alter the stress/strain state of the material, and therefore affect long-term mechanical properties (e.g. wear, fatigue) that are dependent on the constitutive state. The goal of this work is to use advanced, validated material modeling of UHMPWE that incorporates time-dependent properties to explore the effects of frequency and rest time on the mechanical response of UHMWPE.

  10. Assessing the impact of differential genotyping errors on rare variant tests of association.

    PubMed

    Mayer-Jochimsen, Morgan; Fast, Shannon; Tintle, Nathan L

    2013-01-01

    Genotyping errors are well-known to impact the power and type I error rate in single marker tests of association. Genotyping errors that happen according to the same process in cases and controls are known as non-differential genotyping errors, whereas genotyping errors that occur with different processes in the cases and controls are known as differential genotype errors. For single marker tests, non-differential genotyping errors reduce power, while differential genotyping errors increase the type I error rate. However, little is known about the behavior of the new generation of rare variant tests of association in the presence of genotyping errors. In this manuscript we use a comprehensive simulation study to explore the effects of numerous factors on the type I error rate of rare variant tests of association in the presence of differential genotyping error. We find that increased sample size, decreased minor allele frequency, and an increased number of single nucleotide variants (SNVs) included in the test all increase the type I error rate in the presence of differential genotyping errors. We also find that the greater the relative difference in case-control genotyping error rates the larger the type I error rate. Lastly, as is the case for single marker tests, genotyping errors classifying the common homozygote as the heterozygote inflate the type I error rate significantly more than errors classifying the heterozygote as the common homozygote. In general, our findings are in line with results from single marker tests. To ensure that type I error inflation does not occur when analyzing next-generation sequencing data careful consideration of study design (e.g. use of randomization), caution in meta-analysis and using publicly available controls, and the use of standard quality control metrics is critical.

  11. HE friction sensitivity oblique impact sensitivity of explosives the skid test & half-inch gap sensitivity test. Quarterly report, April 1970--June 1970

    SciTech Connect

    Van Velkinburgh, J.H.

    1997-09-01

    Oblique impact tests were performed on RX-04-DS and on the extrusion cast explosive RX-08-AZ. Partial reactions were observed on RX-04-DS at 5.0{prime}, 45{degrees} and at 1.25{prime}, 14{degrees}; no reactions were observed with RX-08-AZ in the severest of tests. Vertical drop tests were performed on 6 inch-diameter hemispheres of LX-04-1. Results are tabulated. A series of accelerometer instrumented oblique impact tests were performed to obtain normal and rotational acceleration versus time. Half-inch gap test series were performed on RX-08-AZ. No experimental work with the friction test apparatus was done this period.

  12. Characterization of impact damage resistance of CF/PEEK and CF/toughened epoxy laminates under low and high velocity impact tests

    SciTech Connect

    Morita, Hideo; Adachi, Tadaharu; Tateishi, Yasuhiro; Matsumoto, Hiroyuki

    1995-12-31

    In order to use composite materials in aeronautical turbo engines, their resistance to impact damage must be understood. In this work the subperforation flat-wise impact resistance of three kinds of high resistance material systems were evaluated under low and high velocity impact tests. Tested systems were AS4/PEEK (APC-2/AS4, ICI-Fiberite), AS4/PEEK+IL, which consists of APC-2 prepreg and PEEK film inserted between layers as an interleave, and toughened epoxy system T800/{number_sign}3900 (Toray). To investigate the effects of stacking sequence on resistance, three lay-ups -- (0/+30/0/{minus}30)s, (0/+60/0/{minus}60)s, and (0/+45/90/{minus}45)s -- were tested. A drop weight system was used for the low velocity tests, where the velocity ranged from 1.5 to 3.1 m/s. An air gun system was used for the high velocity tests, where the velocity range was between 50 and 100 m/s. The relation between damage area (DA) and impact energy (IE) was linear, and the ratio of the DA/IE quantified the impact resistance of each specimen. The value of DA/IE for the high velocity tests was larger than the value for low velocity tests. To estimate the lay-up effect, a stacking parameter {beta}, which indicates the difference of the inplane stiffness between the adjacent laminae, was proposed. A proportional relation between the DA/IE and the {beta} was obtained. The value of (DA/IE)/{beta}, which was independent of stacking sequence, indicated the impact resistance of the tested material systems for both velocity levels. The ratio of (DA/IE)/{beta} for the high velocity to the value for the low velocity changed with material systems.

  13. Impact of body composition on performance in fitness tests among personnel of the Croatian navy.

    PubMed

    Sporis, Goran; Jukić, Igor; Bok, Daniel; Vuleta, Dinko; Harasin, Drazen

    2011-06-01

    The purpose of this study was to determine the impact of body weight on fitness tests among the personnel of the Croatian navy. Forty two naval personnel (age 27 +/- 4.1 years; body mass 86.2 +/- 4.9 kg; height 184.6 +/- 7.4 cm; body fat percentage 17.3 +/- 5.2) participated in this study. In order to evaluate the fitness of the naval servicemen, we applied a testing procedure that included measurements of 7 fitness tests and 15 body anthropometric tests. A negative correlation was found between the body fat percentage and all the analyzed sprint tests and three anaerobic power tests (r), SP5 (r = -0.42), SP10 (r = -0.51), SP20 (r = -0.53), SJ (r = -0.45), CM (r = -0.57), SLJ (r = -0.67). Also a negative correlation was found between the body fat percentage and VO2(max) (r = -0.44). A positive correlation was found between the sprint test and the power performance test and thigh and calf girth. Spiriting ability is influenced by the strength of a person. This is one of the reasons why we found a positive correlation between the sprint test (SP5, SP10 and SP20) and thigh and calf girth. In this study we found a negative correlation between body fat percentages and all the sprint tests and three anaerobic power tests and VO2(max). The ectomorph somatotypes have positive correlations with all variables. The mesomorph somatotypes have the greatest positive correlations with all variables. The endomorph somatotypes have negative correlations with all variables. According to the body composition of Croatian naval servicemen we can conclude that they need a sufficient level of strength and endurance for everyday tasks. The effectiveness of a weight-management program is determined by the success of the participants in losing the necessary amount of weight and being able to maintain that weight loss. This requires long-term tracking of these individuals in a naval environment.

  14. Impact of body composition on performance in fitness tests among personnel of the Croatian navy.

    PubMed

    Sporis, Goran; Jukić, Igor; Bok, Daniel; Vuleta, Dinko; Harasin, Drazen

    2011-06-01

    The purpose of this study was to determine the impact of body weight on fitness tests among the personnel of the Croatian navy. Forty two naval personnel (age 27 +/- 4.1 years; body mass 86.2 +/- 4.9 kg; height 184.6 +/- 7.4 cm; body fat percentage 17.3 +/- 5.2) participated in this study. In order to evaluate the fitness of the naval servicemen, we applied a testing procedure that included measurements of 7 fitness tests and 15 body anthropometric tests. A negative correlation was found between the body fat percentage and all the analyzed sprint tests and three anaerobic power tests (r), SP5 (r = -0.42), SP10 (r = -0.51), SP20 (r = -0.53), SJ (r = -0.45), CM (r = -0.57), SLJ (r = -0.67). Also a negative correlation was found between the body fat percentage and VO2(max) (r = -0.44). A positive correlation was found between the sprint test and the power performance test and thigh and calf girth. Spiriting ability is influenced by the strength of a person. This is one of the reasons why we found a positive correlation between the sprint test (SP5, SP10 and SP20) and thigh and calf girth. In this study we found a negative correlation between body fat percentages and all the sprint tests and three anaerobic power tests and VO2(max). The ectomorph somatotypes have positive correlations with all variables. The mesomorph somatotypes have the greatest positive correlations with all variables. The endomorph somatotypes have negative correlations with all variables. According to the body composition of Croatian naval servicemen we can conclude that they need a sufficient level of strength and endurance for everyday tasks. The effectiveness of a weight-management program is determined by the success of the participants in losing the necessary amount of weight and being able to maintain that weight loss. This requires long-term tracking of these individuals in a naval environment. PMID:21755699

  15. The Development of a Screening Test to Determine the Impact Sound Insulation of Floors.

    NASA Astrophysics Data System (ADS)

    McKell (McGregor), Bernadette

    Available from UMI in association with The British Library. The present situation with regard to the field testing of the impact sound insulation of floors is not satisfactory. Routine testing requires a specialised knowledge of acoustics and is very time consuming in its execution. A simple screening test has been developed which can be used on site by non-specialised personnel with a minimum of training. The ability of the reference curve in ISO 717 -2 to objectively rank order in a manner similar to subjective ratings when the floors are subjected to footstep impacts has been investigated and an alternative shape of reference curve suggested. The choice of the subjective parameter for evaluation has been given consideration and it has been found that although the loudness and annoyance evaluations are interdependent it has not been possible to clearly define the relationship. In developing a measurement technique the effects of measurement parameter, different operators and the position of tapping machine have been quantified. The effect of introducing absorption into the receiving room has also been examined and this has resulted in the standardisation of the correction values for the effect of receiving room conditions. The prediction of the Ln_{ rm T,w} and L_{rm nT,w}^' values is based on regression equations and the limitations of the accuracy of these predictions has been examined for different floor construction. The screening test procedure and method of evaluation for overall denormalised linear and A-weighted levels is given. The evaluation of the corrected level permits the prediction of L_{rm nT,w} and L_{rm nT,w} ^' ratings.

  16. Exploratory behaviour in the open field test adapted for larval zebrafish: impact of environmental complexity.

    PubMed

    Ahmad, Farooq; Richardson, Michael K

    2013-01-01

    This study aimed to develop and characterize a novel (standard) open field test adapted for larval zebrafish. We also developed and characterized a variant of the same assay consisting of a colour-enriched open field; this was used to assess the impact of environmental complexity on patterns of exploratory behaviours as well to determine natural colour preference/avoidance. We report the following main findings: (1) zebrafish larvae display characteristic patterns of exploratory behaviours in the standard open field, such as thigmotaxis/centre avoidance; (2) environmental complexity (i.e. presence of colours) differentially affects patterns of exploratory behaviours and greatly attenuates natural zone preference; (3) larvae displayed the ability to discriminate colours. As reported previously in adult zebrafish, larvae showed avoidance towards blue and black; however, in contrast to the reported adult behaviour, larvae displayed avoidance towards red. Avoidance towards yellow and preference for green and orange are shown for the first time, (4) compared to standard open field tests, exposure to the colour-enriched open field resulted in an enhanced expression of anxiety-like behaviours. To conclude, we not only developed and adapted a traditional rodent behavioural assay that serves as a gold standard in preclinical drug screening, but we also provide a version of the same test that affords the possibility to investigate the impact of environmental stress on behaviour in larval zebrafish while representing the first test for assessment of natural colour preference/avoidance in larval zebrafish. In the future, these assays will improve preclinical drug screening methodologies towards the goal to uncover novel drugs. This article is part of a Special Issue entitled: insert SI title.

  17. Summary and evaluation of low-velocity impact tests of solid steel billet onto concrete pads

    SciTech Connect

    Witte, M.C.; Hovingh, W.J.; Mok, G.C.; Murty, S.S.; Chen, T.F.; Fischer, L.E.

    1998-02-01

    Spent fuel storage casks intended for use at independent spent fuel storage installations are evaluated during the application and review process for low-velocity impacts representative of possible handling accidents. In the past, the analyses involved in these evaluations have assumed that the casks dropped or tipped onto an unyielding surface - a conservative and simplifying assumption. Since 10 CFR Part 72, the regulation imposed by the Nuclear Regulatory Commission (NRC), does not require this assumption, applicants are currently seeking a more realistic model for the analyses to predict the effect of a cask dropping onto a reinforced concrete pad, including energy absorbing aspects such as cracking and flexure. To develop data suitable for benchmarking these analyses, the NRC has conducted several series of drop-test studies of a solid steel billet and of a near-full-scale empty cask. This report contains a summary and evaluation of all steel billet testing conducted by Sandia National Laboratories and Lawrence Livermore National Laboratory. A series of finite element analyses of the billet testing is described and benchmarked against the test data. A method to apply the benchmarked finite element model of the soil and concrete pad to an analysis of a full-size storage cask is provided. In addition, an application to a {open_quotes}generic{close_quotes} full-size cask is presented for side and end drops, and tipover events. The primary purpose of this report is to provide applicants for an NRC license under 10 CFR Part 72 with a method for evaluating storage casks for low-velocity impact conditions.

  18. Assessment of the TASER XREP blunt impact and penetration injury potential using cadaveric testing.

    PubMed

    Lucas, Scott R; McGowan, Joseph C; Lam, Tack C; Yamaguchi, Gary T; Carver, Matthew; Hinz, Andrew

    2013-01-01

    TASER International's extended range electronic projectile (XREP) is intended to be fired from a shotgun, impact a threat, and apply remote neuromuscular incapacitation. This study investigated the corresponding potential of blunt impact injury and penetration. Forty-three XREP rounds were deployed onto two male human cadaver torsos at impact velocities between 70.6 and 95.9 m/sec (232 and 315 ft/sec). In 42 of the 43 shots fired, the XREP did not penetrate the abdominal wall, resulting in superficial wounds only. On one shot, the XREP's nose section separated prematurely in flight, resulting in penetration. No bony fractures were observed with any of the shots. The viscous criterion (VC), blunt criterion (BC), and energy density (E/A) were calculated (all nonpenetrating tests, average ± 1 standard deviation: VC: 1.14 ± 0.94 m/sec, BC: 0.77 ± 0.15, E/A: 22.6 ± 4.15 J/cm(2)) and, despite the lack of injuries, were generally found to be greater than published tolerance values.

  19. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas.

    PubMed

    Goel, A; Tarantino, P M; Lauben, D S; Close, S

    2015-04-01

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments.

  20. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas.

    PubMed

    Goel, A; Tarantino, P M; Lauben, D S; Close, S

    2015-04-01

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments. PMID:25933852

  1. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas

    SciTech Connect

    Goel, A. Tarantino, P. M.; Lauben, D. S.; Close, S.

    2015-04-15

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments.

  2. How Well Does the Latest Anthropomorphic Test Device Mimic Human Impact Responses?

    NASA Technical Reports Server (NTRS)

    Newby, N.; Somers, J. T.; Caldwell, E.; Gernhardt, M.

    2014-01-01

    One of the goals of the NASA Occupant Protection Group is to understand the human tolerance to dynamic loading. This knowledge has to come through indirect approaches such as existing human response databases, anthropometric test devices (ATD), animal testing, post-mortem human subjects, and models. This study investigated the biofidelity of the National Highway Traffic Safety Administration's ATD named the THOR (test device for human occupant restraint). If THOR responds comparably to humans, then it could potentially be used as a human surrogate to help validate space vehicle requirements for occupant protection. The THOR responses to frontal and spinal impacts (ranging from 8 to 12 G with rise times of 40, 70, and 100 ms) were measured and compared to human volunteer responses (95 trials in frontal and 58 in spinal) previously collected by the U. S. Air Force on the same horizontal impact accelerator. The impact acceleration profiles tested are within the expected range of multi-purpose crew vehicle (MPCV) landing dynamics. A correlation score was calculated for each THOR to human comparison using CORA (CORrelation and Analysis) software. A two-parameter beta distribution model fit was obtained for each dependent variable using maximum likelihood estimation. For frontal impacts, the THOR head x-acceleration peak response correlated with the human response at 8 and 10-G 100 ms but not 10-G 70 ms. The phase lagged the human response. Head z-acceleration was not correlated. Chest x-acceleration was in phase, had a higher peak response, and was well correlated with lighter subjects (Cora = 0.8 for 46 kg vs. Cora = 0.4 for 126 kg). Head x-displacement had a leading phase. Several subjects responded with the same peak displacement but the mean of the group was lower. The shoulder x-displacement was in phase but had higher peaks than the human response. For spinal impacts, the THOR head x-acceleration was not well correlated. Head and chest z-acceleration was in phase

  3. Quasi-static characterisation and impact testing of auxetic foam for sports safety applications

    NASA Astrophysics Data System (ADS)

    Duncan, Olly; Foster, Leon; Senior, Terry; Alderson, Andrew; Allen, Tom

    2016-05-01

    This study compared low strain rate material properties and impact force attenuation of auxetic foam and the conventional open-cell polyurethane counterpart. This furthers our knowledge with regards to how best to apply these highly conformable and breathable auxetic foams to protective sports equipment. Cubes of auxetic foam measuring 150 × 150 × 150 mm were fabricated using a thermo–mechanical conversion process. Quasi-static compression confirmed the converted foam to be auxetic, prior to being sliced into 20 mm thick cuboid samples for further testing. Density, Poisson’s ratio and the stress–strain curve were all found to be dependent on the position of each cuboid from within the cube. Impact tests with a hemispherical drop hammer were performed for energies up to 6 J, on foams covered with a polypropylene sheet between 1 and 2 mm thick. Auxetic samples reduced peak force by ∼10 times in comparison to the conventional foam. This work has shown further potential for auxetic foam to be applied to protective equipment, while identifying that improved fabrication methods are required.

  4. Impact of genomic testing and patient-reported outcomes on receipt of adjuvant chemotherapy.

    PubMed

    Evans, Chalanda N; Brewer, Noel T; Vadaparampil, Susan T; Boisvert, Marc; Ottaviano, Yvonne; Lee, M Catherine; Isaacs, Claudine; Schwartz, Marc D; O'Neill, Suzanne C

    2016-04-01

    Practice guidelines incorporate genomic tumor profiling, using results such as the Oncotype DX Recurrence Score (RS), to refine recurrence risk estimates for the large proportion of breast cancer patients with early-stage, estrogen receptor-positive disease. We sought to understand the impact of receiving genomic recurrence risk estimates on breast cancer patients' well-being and the impact of these patient-reported outcomes on receipt of adjuvant chemotherapy. Participants were 193 women (mean age 57) newly diagnosed with early-stage breast cancer. Women were interviewed before and 2-3 weeks after receiving the RS result between 2011 and 2015. We assessed subsequent receipt of chemotherapy from chart review. After receiving their RS, perceived pros (t = 4.27, P < .001) and cons (t = 8.54, P < .001) of chemotherapy increased from pre-test to post-test, while perceived risk of breast cancer recurrence decreased (t = 2.90, P = .004). Women with high RS tumors were more likely to receive chemotherapy than women with low RS tumors (88 vs. 5 %, OR 0.01, 0.00-0.02, P < .001). Higher distress (OR 2.19, 95 % CI 1.05-4.57, P < .05) and lower perceived cons of chemotherapy (OR 0.50, 95 % CI 0.26-0.97, P < .05) also predicted receipt of chemotherapy. Distressed patients who saw few downsides of chemotherapy received this treatment. Clinicians should consider these factors when discussing chemotherapy with breast cancer patients. PMID:27059031

  5. Internally damped, self-arresting vertical drop-weight impact test apparatus

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R. (Inventor); Prasad, Chunchu B. (Inventor); Waters, Jr., William A. (Inventor); Stockum, Robert W. (Inventor); Water, Manfred A. (Inventor)

    1995-01-01

    A vertical dropped-weight impact test machine has a dropped-weight barrel vertically supported on upper and lower support brackets. The dropped-weight barrel is chambered to receive a dropped-weight assembly having a latch pin at its upper end, a damping unit in the middle, and a tup at its lower end. The tup is adapted for gathering data during impact testing. The latch pin releasably engages a latch pin coupling assembly. The latch pin coupling assembly is attached to a winch via a halyard for raising and lowering the dropped-weight assembly. The lower end of the dropped-weight barrel is provided with a bounce-back arresting mechanism which is activated by the descending passage of the dropped-weight assembly. After striking the specimen, the dropped-weight assembly rebounds vertically and is caught by the bounce-back arresting mechanism. The damping unit of the dropped-weight assembly serves to dissipate energy from the rebounding dropped-weight assembly and prevents the dropped-weight assembly from rebounding from the self-arresting mechanism.

  6. Internally damped, self-arresting vertical drop-weight impact test apparatus

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R. (Inventor); Prasad, Chunchu B. (Inventor); Waters, Jr., William A. (Inventor); Stockum, Robert W. (Inventor); Walter, Manfred A. (Inventor)

    1996-01-01

    A vertical dropped-weight impact test machine has a dropped-weight barrel vertically supported on upper and lower support brackets. The dropped-weight barrel is chambered to receive a dropped-weight assembly having a latch pin at its upper end, a damping unit in the middle, and a tup at its lower end. The tup is adapted for gathering data during impact testing. The latch pin releasably engages a latch pin coupling assembly. The latch pin coupling assembly is attached to a winch via a halyard for raising and lowering the dropped-weight assembly. The lower end of the dropped-weight barrel is provided with a bounce-back arresting mechanism which is activated by the descending passage of the dropped-weight assembly. After striking the specimen, the dropped-weight assembly rebounds vertically and is caught by the bounce-back arresting mechanism. The damping unit of the dropped-weight assembly serves to dissipate energy from the rebounding dropped-weight assembly and prevents the dropped-weight assembly from rebounding from the self-arresting mechanism.

  7. Quasi-static characterisation and impact testing of auxetic foam for sports safety applications

    NASA Astrophysics Data System (ADS)

    Duncan, Olly; Foster, Leon; Senior, Terry; Alderson, Andrew; Allen, Tom

    2016-05-01

    This study compared low strain rate material properties and impact force attenuation of auxetic foam and the conventional open-cell polyurethane counterpart. This furthers our knowledge with regards to how best to apply these highly conformable and breathable auxetic foams to protective sports equipment. Cubes of auxetic foam measuring 150 × 150 × 150 mm were fabricated using a thermo-mechanical conversion process. Quasi-static compression confirmed the converted foam to be auxetic, prior to being sliced into 20 mm thick cuboid samples for further testing. Density, Poisson’s ratio and the stress-strain curve were all found to be dependent on the position of each cuboid from within the cube. Impact tests with a hemispherical drop hammer were performed for energies up to 6 J, on foams covered with a polypropylene sheet between 1 and 2 mm thick. Auxetic samples reduced peak force by ˜10 times in comparison to the conventional foam. This work has shown further potential for auxetic foam to be applied to protective equipment, while identifying that improved fabrication methods are required.

  8. A new method for testing pile by single-impact energy and P-S curve

    NASA Astrophysics Data System (ADS)

    Xu, Zhao-Yong; Duan, Yong-Kang; Wang, Bin; Hu, Yi-Li; Yang, Run-Hai; Xu, Jun; Zhao, Jin-Ming

    2004-11-01

    By studying the pile-formula and stress-wave methods ( e.g., CASE method), the authors propose a new method for testing piles using the single-impact energy and P-S curves. The vibration and wave figures are recorded, and the dynamic and static displacements are measured by different transducers near the top of piles when the pile is impacted by a heavy hammer or micro-rocket. By observing the transformation coefficient of driving energy (total energy), the consumed energy of wave motion and vibration and so on, the vertical bearing capacity for single pile is measured and calculated. Then, using the vibration wave diagram, the dynamic relation curves between the force ( P) and the displacement ( S) is calculated and the yield points are determined. Using the static-loading test, the dynamic results are checked and the relative constants of dynamic-static P-S curves are determined. Then the subsidence quantity corresponding to the bearing capacity is determined. Moreover, the shaped quality of the pile body can be judged from the formation of P-S curves.

  9. Simulating the Response of a Composite Honeycomb Energy Absorber. Part 2; Full-Scale Impact Testing

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Annett, Martin S.; Jackson, Karen E.; Polanco, Michael A.

    2012-01-01

    NASA has sponsored research to evaluate an externally deployable composite honeycomb designed to attenuate loads in the event of a helicopter crash. The concept, designated the Deployable Energy Absorber (DEA), is an expandable Kevlar(Registered TradeMark) honeycomb. The DEA has a flexible hinge that allows the honeycomb to be stowed collapsed until needed during an emergency. Evaluation of the DEA began with material characterization of the Kevlar(Registered TradeMark)-129 fabric/epoxy, and ended with a full-scale crash test of a retrofitted MD-500 helicopter. During each evaluation phase, finite element models of the test articles were developed and simulations were performed using the dynamic finite element code, LS-DYNA(Registered TradeMark). The paper will focus on simulations of two full-scale impact tests involving the DEA, a mass-simulator and a full-scale crash of an instrumented MD-500 helicopter. Isotropic (MAT24) and composite (MAT58) material models, which were assigned to DEA shell elements, were compared. Based on simulations results, the MAT58 model showed better agreement with test.

  10. Evaluating the Impact of Guessing and Its Interactions with Other Test Characteristics on Confidence Interval Procedures for Coefficient Alpha

    ERIC Educational Resources Information Center

    Paek, Insu

    2016-01-01

    The effect of guessing on the point estimate of coefficient alpha has been studied in the literature, but the impact of guessing and its interactions with other test characteristics on the interval estimators for coefficient alpha has not been fully investigated. This study examined the impact of guessing and its interactions with other test…

  11. Water impact test of aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of water impact loads tests using aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster (SRB) are examined. Dynamic structural response data is developed and an evaluation of the model in various configurations is presented. Impact velocities are determined for the SRB with the larger main chute system. Various failure modes are also investigated.

  12. Testing the Impact of a Pre-Instructional Digital Game on Middle-Grade Students' Understanding of Photosynthesis

    ERIC Educational Resources Information Center

    Culp, Katherine McMillan; Martin, Wendy; Clements, Margaret; Lewis Presser, Ashley

    2015-01-01

    Rigorous studies of the impact of digital games on student learning remain relatively rare, as do studies of games as supports for learning difficult, core curricular concepts in the context of normal classroom practices. This study uses a blocked, cluster randomized controlled trial design to test the impact of a digital game, played as homework…

  13. Predictive genetic testing in children and adults: a study of emotional impact

    PubMed Central

    Michie, S; Bobrow, M; Marteau, T

    2001-01-01

    -esteem, with interacting effects. The association between anxiety, self-esteem, and optimism suggests that counselling should be targeted, not only at those with positive test results, but also at those low in psychological resources.


Keywords: genetic testing; children; familial adenomatous polyposis; emotional impact PMID:11483640

  14. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems. Part 2; Ballistic Impact Testing

    NASA Technical Reports Server (NTRS)

    Pereira, J. M.; Revilock, D. M.

    2004-01-01

    Under the Federal Aviation Administration's Airworthiness Assurance Center of Excellence and the Aircraft Catastrophic Failure Prevention Program, National Aeronautics and Space Administration Glenn Research Center collaborated with Arizona State University, Honeywell Engines, Systems and Services, and SRI International to develop improved computational models for designing fabric-based engine containment systems. In the study described in this report, ballistic impact tests were conducted on layered dry fabric rings to provide impact response data for calibrating and verifying the improved numerical models. This report provides data on projectile velocity, impact and residual energy, and fabric deformation for a number of different test conditions.

  15. Impact Toughness Properties of Nickel- and Manganese-Free High Nitrogen Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Roghayeh; Akbari, Alireza; Mohammadzadeh, Mina

    2016-10-01

    A large amount of manganese (>10 wt pct) in nickel-free high nitrogen austenitic stainless steels (Ni-free HNASSs) can induce toxicity. In order to develop Ni-free HNASSs with low or no manganese, it is necessary to investigate their mechanical properties for biomedical applications. This work aims to study the Charpy V-notch (CVN) impact toughness properties of a Ni- and Mn-free Fe-22.7Cr-2.4Mo-1.2N HNASS plate in the temperature range of 103 K to 423 K (-170 °C to 150 °C). The results show that unlike conventional AISI 316L austenitic stainless steel, the Ni- and Mn-free HNASS exhibits a sharp ductile-to-brittle transition (DBT). The intergranular brittle fracture associated with some plasticity and deformation bands is observed on the fracture surface at 298 K (25 °C). Electron backscattered diffraction (EBSD) analysis of the impact-tested sample in the longitudinal direction indicates that deformation bands are parallel to {111} slip planes. By decreasing the temperature to 273 K, 263 K, and 103 K (0 °C, -10 °C, and -70 °C), entirely intergranular brittle fracture occurs on the fracture surface. The fracture mode changes from brittle fracture to ductile as the temperature increases to 423 K (150 °C). The decrease in impact toughness is discussed on the basis of temperature sensitivity of plastic flow and planarity of deformation mechanism.

  16. Instrumented impact properties of zircaloy-oxygen and zircaloy-hydrogen alloys

    SciTech Connect

    Garde, A.M.; Kassner, T.F.

    1980-04-01

    Instrumented-impact tests were performed on subsize Charpy speciments of Zircaloy-2 and -4 with up to approx. 1.3 wt % oxygen and approx. 2500 wt ppM hydrogen at temperatures between 373 and 823/sup 0/K. Self-consistent criteria for the ductile-to-brittle transition, based upon a total absorbed energy of approx. 1.3 x 10/sup 4/ J/m/sup 2/, a dynamic fracture toughness of approx. 10 MPa.m/sup 1/2/, and a ductility index of approx. 0, were established relative to the temperature and oxygen concentration of the transformed BETA-phase material. The effect of hydrogen concentration and hydride morphology, produced by cooling Zircaloy-2 specimens through the temperature range of the BETA ..-->.. ..cap alpha..' = hydride phase transformation at approx. 0.3 and 3 K/s, on the impact properties was determined at temperatures between 373 and 673 K. On an atom fraction basis, oxygen has a greater effect than hydrogen on the impact properties of Zircaloy at temperatures between approx. 400 and 600 K. 34 figures.

  17. Hypervelocity Impact Test Fragment Modeling: Modifications to the Fragment Rotation Analysis and Lightcurve Code

    NASA Technical Reports Server (NTRS)

    Gouge, Michael F.

    2011-01-01

    Hypervelocity impact tests on test satellites are performed by members of the orbital debris scientific community in order to understand and typify the on-orbit collision breakup process. By analysis of these test satellite fragments, the fragment size and mass distributions are derived and incorporated into various orbital debris models. These same fragments are currently being put to new use using emerging technologies. Digital models of these fragments are created using a laser scanner. A group of computer programs referred to as the Fragment Rotation Analysis and Lightcurve code uses these digital representations in a multitude of ways that describe, measure, and model on-orbit fragments and fragment behavior. The Dynamic Rotation subroutine generates all of the possible reflected intensities from a scanned fragment as if it were observed to rotate dynamically while in orbit about the Earth. This calls an additional subroutine that graphically displays the intensities and the resulting frequency of those intensities as a range of solar phase angles in a Probability Density Function plot. This document reports the additions and modifications to the subset of the Fragment Rotation Analysis and Lightcurve concerned with the Dynamic Rotation and Probability Density Function plotting subroutines.

  18. Reconstruction of dynamic forces during impact tests of a crushable structure

    SciTech Connect

    Bateman, V.I.; Carne, T.G.; Mayes, R.L.; Davie, N.T.

    1993-12-31

    A force reconstruction technique is being used to assess the dynamic performance of a crushable structure (a bomb nose) in both the axial (90{degree}) and slapdown (30{degree}) impact conditions. The dynamic force characteristics for the current nose design, determined from these tests, will be used to write a dynamic force specification for a new nose design that will replace the current nose. Two structures for experimentally determining the dynamic force -- deflection characteristics of the old and new noses have been designed and constructed. One structure has the same dynamic characteristics as the bomb and is being used for axial and slapdown orientations with rocket-propelled testing. The second structure has the same mass as the bomb and is being used for iterative axial testing of candidate designs with a pneumatic ram. The structural characteristics of these two structures have been determined and are presented. A force reconstruction algorithm using the Sum of Weighted Accelerations Technique (SWAT) has been developed for each of the two structures. The force reconstruction algorithms have been verified for both structures using laboratory data. The force reconstruction process and the resulting algorithms are described. Data verifying the force reconstruction algorithms is presented.

  19. Situation and context impacts the expression of personality: the influence of breeding season and test context.

    PubMed

    Haage, Marianne; Bergvall, Ulrika A; Maran, Tiit; Kiik, Kairi; Angerbjörn, Anders

    2013-11-01

    Non-human animal personality is defined as consistent behavioural differences across time and situations/contexts. Behaviours are, however, often plastic and to explain how plasticity and personality may coexist an adaptive framework has been developed. Still, there is little information on how personality is impacted by situations and contexts on an individual level. We investigated this in the European mink (Mustela lutreola) by performing a set of five experiments in two situations consisting of non-breeding and breeding season, and by using different test contexts. Three personality trait domains were identified; boldness, exploration and sociability. The levels of boldness and exploration changed between seasons but remained repeatable, which implies behavioural reaction norms and supports that the concept of personality remained applicable despite plasticity. Whilst males became bolder and more explorative in the breeding season females became shyer, which reflects European mink breeding behaviour. Furthermore, behaviours performed in mirror stimulus tests fell into different domains depending on whether, the test was conducted in the own territory or not, suggesting plasticity in the response towards conspecifics. To conclude, our results highlight the importance of situation and context for the expression of personality, and the significance of measuring multiple personality trait domains with several methods. PMID:23988476

  20. Evaluation of the hazardous impact of landfill leachates by toxicity and biodegradability tests.

    PubMed

    Kalcíková, G; Vávrová, M; Zagorc-Koncan, J; Gotvajn, A Zgajnar

    2011-01-01

    The aim of our research was to assess the ecotoxicity and biodegradability of leachates originating from two parts of a municipal landfill before and after biological treatment in the existing treatment plant. Biotests represent important tools for adequate environmental characterization of landfill leachates and could be helpful in reliable assessment and monitoring of the treatment plant efficiency. For ecotoxicity testing of landfill leachate before and after biological treatment, different organisms were chosen: the bacteria Vibrio fischeri, a mixed culture of activated sludge, duckweed Lemna minor, white mustard Sinapis alba, brine shrimp Artemia salina, and water flea Daphnia magna. For assessment of biodegradability, the method for determination of oxygen demand in a closed respirometer was used. The investigated leachates were heavily polluted, and in some cases, effluent limits were exceeded even after treatment. Results indicated that toxicity tests and physico-chemical parameters determined before and after treatment equivalently assess the efficiency of the existing treatment plant. However, the investigated leachates showed higher toxicity to Daphnia magna and especially to Lemna minor in contrast to Vibrio fischeri and Artemia salina (neither was sensitive to any of the leachates). No leachates were readily biodegradable. Experiments confirmed that the battery of toxicity tests should be applied for more comprehensive assessment of landfill leachate treatment and for reliable assessment of the treated leachate's subsequent environmental impact. It was confirmed that treated leachate, in spite of its better physico-chemical characteristics, still represents a potential environmental risk and thus should not be released into the environment. PMID:21970176

  1. Situation and context impacts the expression of personality: the influence of breeding season and test context.

    PubMed

    Haage, Marianne; Bergvall, Ulrika A; Maran, Tiit; Kiik, Kairi; Angerbjörn, Anders

    2013-11-01

    Non-human animal personality is defined as consistent behavioural differences across time and situations/contexts. Behaviours are, however, often plastic and to explain how plasticity and personality may coexist an adaptive framework has been developed. Still, there is little information on how personality is impacted by situations and contexts on an individual level. We investigated this in the European mink (Mustela lutreola) by performing a set of five experiments in two situations consisting of non-breeding and breeding season, and by using different test contexts. Three personality trait domains were identified; boldness, exploration and sociability. The levels of boldness and exploration changed between seasons but remained repeatable, which implies behavioural reaction norms and supports that the concept of personality remained applicable despite plasticity. Whilst males became bolder and more explorative in the breeding season females became shyer, which reflects European mink breeding behaviour. Furthermore, behaviours performed in mirror stimulus tests fell into different domains depending on whether, the test was conducted in the own territory or not, suggesting plasticity in the response towards conspecifics. To conclude, our results highlight the importance of situation and context for the expression of personality, and the significance of measuring multiple personality trait domains with several methods.

  2. Flight test experience and controlled impact of a remotely piloted jet transport aircraft

    NASA Technical Reports Server (NTRS)

    Horton, Timothy W.; Kempel, Robert W.

    1988-01-01

    The Dryden Flight Research Center Facility of NASA Ames Research Center (Ames-Dryden) and the FAA conducted the controlled impact demonstration (CID) program using a large, four-engine, remotely piloted jet transport airplane. Closed-loop primary flight was controlled through the existing onboard PB-20D autopilot which had been modified for the CID program. Uplink commands were sent from a ground-based cockpit and digital computer in conjunction with an up-down telemetry link. These uplink commands were received aboard the airplane and transferred through uplink interface systems to the modified PB-20D autopilot. Both proportional and discrete commands were produced by the ground system. Prior to flight tests, extensive simulation was conducted during the development of ground-based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems; however, piloted flight tests were the primary method and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and systems required to accomplish the remotely piloted mission are discussed.

  3. Impact of a Routine, Opt-Out HIV Testing Program on HIV Testing and Case Detection in North Carolina Sexually-Transmitted Disease Clinics

    PubMed Central

    Klein, Pamela W.; Messer, Lynne C.; Myers, Evan R.; Weber, David J.; Leone, Peter A.; Miller, William C.

    2016-01-01

    The impact of routine, opt-out HIV testing programs in clinical settings is inconclusive. The objective of this study was to estimate the impact of an expanded, routine HIV testing program in North Carolina sexually transmitted disease (STD) clinics on HIV testing and case detection. Adults aged 18–64 who received an HIV test in a North Carolina STD clinic July 1, 2005 through June 30, 2011 were included in this analysis, dichotomized at the date of implementation on November 1, 2007. HIV testing and case detection counts and rates were analyzed using interrupted time series analysis, and Poisson and multilevel logistic regression. Pre-intervention, 426 new HIV-infected cases were identified from 128,029 tests (0.33%), whereas 816 new HIV-infected cases were found from 274,745 tests post-intervention (0.30%). Pre-intervention, HIV testing increased by 55 tests per month (95% confidence interval [CI]: 41, 72), but only 34 tests per month (95% CI: 26, 42) post-intervention. Increases in HIV testing rates were most pronounced in females and non-Hispanic whites. A slight pre-intervention decline in case detection was mitigated by the intervention (mean difference [MD]=0.01; 95% CI: −0.02, 0.05). Increases in case detection rates were observed among females and non-Hispanic blacks. The impact of a routine HIV screening in North Carolina STD clinics was marginal, with the greatest benefit among persons not traditionally targeted for HIV testing. The use of a pre-intervention comparison period identified important temporal trends that otherwise would have been ignored. PMID:24825338

  4. Neurocognitive performance and symptom profiles of Spanish-speaking Hispanic athletes on the ImPACT test.

    PubMed

    Ott, Summer; Schatz, Philip; Solomon, Gary; Ryan, Joseph J

    2014-03-01

    This study documented baseline neurocognitive performance of 23,815 athletes on the Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) test. Specifically, 9,733 Hispanic, Spanish-speaking athletes who completed the ImPACT test in English and 2,087 Hispanic, Spanish-speaking athletes who completed the test in Spanish were compared with 11,955 English-speaking athletes who completed the test in English. Athletes were assigned to age groups (13-15, 16-18). Results revealed a significant effect of language group (p < .001; partial η(2) = 0.06) and age (p < .001; partial η(2) = 0.01) on test performance. Younger athletes performed more poorly than older athletes, and Spanish-speaking athletes completing the test in Spanish scored more poorly than Spanish-speaking and English-speaking athletes completing the test in English, on all Composite scores and Total Symptom scores. Spanish-speaking athletes completing the test in English also performed more poorly than English-speaking athletes completing the test in English on three Composite scores. These differences in performance and reported symptoms highlight the need for caution in interpreting ImPACT test data for Hispanic Americans.

  5. Enhancement of Impact Toughness by Delamination Fracture in a Low-Alloy High-Strength Steel with Al Alloying

    NASA Astrophysics Data System (ADS)

    Sun, Junjie; Jiang, Tao; Liu, Hongji; Guo, Shengwu; Liu, Yongning

    2016-09-01

    The effect of delamination toughening of martensitic steel was investigated both at room and low temperatures [253 K and 233 K (-20 °C and -40 °C)]. Two low-alloy martensitic steels with and without Al alloying were both prepared. Layered structure with white band and black matrix was observed in Al alloyed steel, while a homogeneous microstructure was displayed in the steel without Al. Both steels achieved high strength (tensile strength over 1600 MPa) and good ductility (elongation over 11 pct), but they displayed stark contrasts on impact fracture mode and Charpy impact energy. Delamination fracture occurred in Al alloyed steel and the impact energies were significantly increased both at room temperature (from 75 to 138 J, i.e., nearly improved up to 2 times) and low temperatures [from 47.9 to 71.3 J at 233 K (-40 °C)] compared with the one without Al. Alloying with Al promotes the segregation of Cr, Mn, Si and C elements to form a network structure, which is martensite with higher carbon content and higher hardness than that of the matrix. And this network structure evolved into a band structure during the hot rolling process. The difference of yield stress between the band structure and the matrix gives rise to a delamination fracture during the impact test, which increases the toughness greatly.

  6. Client-nurse interaction: testing for its impact in preoperative instruction.

    PubMed

    Schwartz-Barcott, D; Fortin, J D; Kim, H S

    1994-02-01

    This study tests for the impact of client-nurse interaction, an essential element lacking in earlier research on preoperative instruction. An experimental design compared the effects of three models of intervention: Facilitator, Informational and Routine Treatment on postoperative pain and anxiety in 91 cholecystectomy patients. Planned comparisons showed that subjects in both experimental conditions reported significantly less postoperative anxiety than subjects who received the routine treatment. There were no differences in anxiety levels between the two experimental groups or in pain scores among the three groups. Refinements in the facilitator model are recommended to enhance the problem-solving nature of the interaction and to strengthen future research. The findings support the importance of providing the patient with sensation information and postoperative exercise instruction.

  7. Procedure Developed for Ballistic Impact Testing of Composite Fan Containment Concepts

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Melis, Matthew E.

    1998-01-01

    The fan-containment system in a jet engine is designed to prevent a fan blade from penetrating the engine case in the event that the blade or a portion of the blade separates from the rotor during operation. Usually, these systems consist of a thick metal case that is strong enough to survive such an impact. Other systems consist of a dry aramid fabric wrapped around a relatively thin metal case. In large turbofan engines, metal-containment systems can weigh well over 300 kg, and there is a strong impetus to reduce their weight. As a result, the NASA Lewis Research Center is involved in an effort to develop polymer matrix composite (PMC) fan-containment systems to reduce the weight and cost while maintaining the high levels of safety associated with current systems. Under a Space Act Agreement with AlliedSignal Aircraft Engines, a new ballistic impact test procedure has been developed to quantitatively evaluate the performance of polymer matrix composite systems.

  8. Cannabinoids & Stress: impact of HU-210 on behavioral tests of anxiety in acutely stressed mice.

    PubMed

    Kinden, Renee; Zhang, Xia

    2015-05-01

    Anxiety disorders are one of the most prevalent classes of mental disorders affecting the general population, but current treatment strategies are restricted by their limited efficacy and side effect profiles. Although the cannabinoid system is speculated to be a key player in the modulation of stress responses and emotionality, the vast majority of current research initiatives had not incorporated stress exposure into their experimental designs. This study was the first to investigate the impact of exogenous cannabinoid administration in an acutely stressed mouse model, where CD1 mice were pre-treated with HU-210, a potent CB1R agonist, prior to acute stress exposure and subsequent behavioral testing. Exogenous cannabinoid administration induced distinct behavioral phenotypes in stressed and unstressed mice. While low doses of HU-210 were anxiolytic in unstressed subjects, this effect was abolished when mice were exposed to an acute stressor. The administration of higher HU-210 doses in combination with acute stress exposure led to severe locomotor deficits that were not previously observed at the same dose in unstressed subjects. These findings suggest that exogenous cannabinoids and acute stress act synergistically in an anxiogenic manner. This study underlies the importance of including stress exposure into future anxiety-cannabinoid research due to the differential impact of cannabinoid administration on stressed and unstressed subjects.

  9. Impact testing of the residual limb: System response to changes in prosthetic stiffness.

    PubMed

    Boutwell, Erin; Stine, Rebecca; Gard, Steven

    2016-01-01

    Currently, it is unknown whether changing prosthetic limb stiffness affects the total limb stiffness and influences the shock absorption of an individual with transtibial amputation. The hypotheses tested within this study are that a decrease in longitudinal prosthetic stiffness will produce (1) a reduced total limb stiffness, and (2) reduced magnitude of peak impact forces and increased time delay to peak force. Fourteen subjects with a transtibial amputation participated in this study. Prosthetic stiffness was modified by means of a shock-absorbing pylon that provides reduced longitudinal stiffness through compression of a helical spring within the pylon. A sudden loading evaluation device was built to examine changes in limb loading mechanics during a sudden impact event. No significant change was found in the peak force magnitude or timing of the peak force between prosthetic limb stiffness conditions. Total limb stiffness estimates ranged from 14.9 to 17.9 kN/m but were not significantly different between conditions. Thus, the prosthetic-side total limb stiffness was unaffected by changes in prosthetic limb stiffness. The insensitivity of the total limb stiffness to prosthetic stiffness may be explained by the mechanical characteristics (i.e., stiffness and damping) of the anatomical tissue within the residual limb. PMID:27272982

  10. The Impact of Cooperative Learning on Critical Thinking Test Scores of Associate's Degree Graduates in Southwest Virginia

    ERIC Educational Resources Information Center

    Hodges, James Gregory

    2013-01-01

    This study examined the impact that the teaching technique known as cooperative learning had on the changes between pre- and post-test scores on all sub-categories ("induction, deduction, analysis, evaluation, inference", and "total composite") associated with the "California Critical Thinking Skills Test" (CCTST) for…

  11. Urineschool: A Study of the Impact of the Earls Decision on High School Random Drug Testing Policies.

    ERIC Educational Resources Information Center

    Conlon, Cynthia Kelly

    2003-01-01

    Examines impact of Supreme Court's 2002 decision in "Board of Education v. Earls" on high school random drug-testing policies and practices. Court held that random drug-testing policy at Tecumseh, Oklahoma, school district did not violate students' Fourth Amendment right against unreasonable searches. (Contains 46 references.) (PKP)

  12. Optimized lower leg injury probability curves from post-mortem human subject tests under axial impacts

    PubMed Central

    Yoganandan, Narayan; Arun, Mike W.J.; Pintar, Frank A.; Szabo, Aniko

    2015-01-01

    Objective Derive optimum injury probability curves to describe human tolerance of the lower leg using parametric survival analysis. Methods The study re-examined lower leg PMHS data from a large group of specimens. Briefly, axial loading experiments were conducted by impacting the plantar surface of the foot. Both injury and non-injury tests were included in the testing process. They were identified by pre- and posttest radiographic images and detailed dissection following the impact test. Fractures included injuries to the calcaneus and distal tibia-fibula complex (including pylon), representing severities at the Abbreviated Injury Score (AIS) level 2+. For the statistical analysis, peak force was chosen as the main explanatory variable and the age was chosen as the co-variable. Censoring statuses depended on experimental outcomes. Parameters from the parametric survival analysis were estimated using the maximum likelihood approach and the dfbetas statistic was used to identify overly influential samples. The best fit from the Weibull, log-normal and log-logistic distributions was based on the Akaike Information Criterion. Plus and minus 95% confidence intervals were obtained for the optimum injury probability distribution. The relative sizes of the interval were determined at predetermined risk levels. Quality indices were described at each of the selected probability levels. Results The mean age, stature and weight: 58.2 ± 15.1 years, 1.74 ± 0.08 m and 74.9 ± 13.8 kg. Excluding all overly influential tests resulted in the tightest confidence intervals. The Weibull distribution was the most optimum function compared to the other two distributions. A majority of quality indices were in the good category for this optimum distribution when results were extracted for 25-, 45- and 65-year-old at five, 25 and 50% risk levels age groups for lower leg fracture. For 25, 45 and 65 years, peak forces were 8.1, 6.5, and 5.1 kN at 5% risk; 9.6, 7.7, and 6.1 kN at 25% risk

  13. The Impact of Data-Based Science Instruction on Standardized Test Performance

    NASA Astrophysics Data System (ADS)

    Herrington, Tia W.

    Increased teacher accountability efforts have resulted in the use of data to improve student achievement. This study addressed teachers' inconsistent use of data-driven instruction in middle school science. Evidence of the impact of data-based instruction on student achievement and school and district practices has been well documented by researchers. In science, less information has been available on teachers' use of data for classroom instruction. Drawing on data-driven decision making theory, the purpose of this study was to examine whether data-based instruction impacted performance on the science Criterion Referenced Competency Test (CRCT) and to explore the factors that impeded its use by a purposeful sample of 12 science teachers at a data-driven school. The research questions addressed in this study included understanding: (a) the association between student performance on the science portion of the CRCT and data-driven instruction professional development, (b) middle school science teachers' perception of the usefulness of data, and (c) the factors that hindered the use of data for science instruction. This study employed a mixed methods sequential explanatory design. Data collected included 8th grade CRCT data, survey responses, and individual teacher interviews. A chi-square test revealed no improvement in the CRCT scores following the implementation of professional development on data-driven instruction (chi 2 (1) = .183, p = .67). Results from surveys and interviews revealed that teachers used data to inform their instruction, indicating time as the major hindrance to their use. Implications for social change include the development of lesson plans that will empower science teachers to deliver data-based instruction and students to achieve identified academic goals.

  14. Hydraulic impact end effector final test report. Automation and robotics section, ER/WM-AT Program

    SciTech Connect

    Couture, S.

    1994-02-18

    One tool being developed for dislodging and fragmenting the hard salt cake waste in the single-shell nuclear waste tanks at the Hanford Reservation near Richland, Washington, is the hydraulic impact end effector (HIEE). This total operates by discharging 11-in. slugs of water at ultrahigh pressures. The HIEE was designed, built, and initially tested in 1992. Work in 1993 included advanced developments of the HIEE to further investigate its fragmentation abilities and to determine more effective operating procedures. These tests showed that more fragmentation can be achieved by increasing the charge pressure of 40 kpsi to 55 kpsi and by the use of different operating procedures. The size of the material and the impact energy of the water slug fired from the HIEE are believed to be major factors in material fragmentation. The material`s ability to fracture also appears to depend on the distance a fracture or crack line must travel to a free surface. Thus, larger material is more difficult to fracture than smaller material. Discharge pressures of 40 kpsi resulted in little penetration or fracturing of the material. At 55 kpsi, however, the size and depth of the fractures increased. Nozzle geometry had a significant effect on fragment size and quantity. Fragmentation was about an order of magnitude greater when the HIEE was discharged into drilled holes rather than onto the material surface. Since surface shots tend to create craters, a multi-shot procedure, coupled with an advanced nozzle design, was used to drill (crater) deep holes into large material. With this procedure, a 600-lb block was reduced to smaller pieces without the use of any additional equipment. Through this advanced development program, the HIEE has demonstrated that it can quickly fragment salt cake material into small, easily removable fragments. The HIEE`s material fragmentation ability can be substantially increased through the use of different nozzle geometries and operating procedures.

  15. Impact of clinical awareness and diagnostic tests on the underdiagnosis of Clostridium difficile infection.

    PubMed

    Alcalá, L; Reigadas, E; Marín, M; Martín, A; Catalán, P; Bouza, E

    2015-08-01

    A multicenter study of Clostridium difficile infection (CDI) performed during 2008 in Spain revealed that two of every three episodes went undiagnosed or were misdiagnosed owing to nonsensitive diagnostic tests or lack of clinical suspicion and request. Since then, efforts have been made to improve the diagnostic tests used by laboratories and to increase the awareness of this disease among both clinicians and microbiologists. Our objective was to evaluate the impact of these efforts by assessing the current magnitude of underdiagnosis of CDI in Spain using two point-prevalence studies performed on one day each in January and July of 2013. A total of 111 Spanish laboratories selected all unformed stool specimens received for microbiological diagnosis on these days, and toxigenic culture was performed at a central reference laboratory. Toxigenic isolates were characterized both pheno- and genotypically. The reference laboratory detected 103 episodes of CDI in patients aged 2 years or more. Half (50.5 %) of the episodes were not diagnosed in the participating laboratories, owing to insensitive diagnostic tests (15.5 %) or the lack of clinical suspicion and request (35.0 %). The main ribotypes were 014, 078/126, 001/072, and 106. Ribotype 027 caused 2.9 % of all cases. Despite all the interventions undertaken, CDI remains a highly neglected disease because of the lack of sensitive diagnostic tests in some institutions and, especially, the absence of clinical suspicion, mainly in patients with community-associated CDI. Toxigenic C. difficile should be routinely sought in unformed stools sent for microbiological diagnosis, regardless of their origin.

  16. Impact of clinical awareness and diagnostic tests on the underdiagnosis of Clostridium difficile infection.

    PubMed

    Alcalá, L; Reigadas, E; Marín, M; Martín, A; Catalán, P; Bouza, E

    2015-08-01

    A multicenter study of Clostridium difficile infection (CDI) performed during 2008 in Spain revealed that two of every three episodes went undiagnosed or were misdiagnosed owing to nonsensitive diagnostic tests or lack of clinical suspicion and request. Since then, efforts have been made to improve the diagnostic tests used by laboratories and to increase the awareness of this disease among both clinicians and microbiologists. Our objective was to evaluate the impact of these efforts by assessing the current magnitude of underdiagnosis of CDI in Spain using two point-prevalence studies performed on one day each in January and July of 2013. A total of 111 Spanish laboratories selected all unformed stool specimens received for microbiological diagnosis on these days, and toxigenic culture was performed at a central reference laboratory. Toxigenic isolates were characterized both pheno- and genotypically. The reference laboratory detected 103 episodes of CDI in patients aged 2 years or more. Half (50.5 %) of the episodes were not diagnosed in the participating laboratories, owing to insensitive diagnostic tests (15.5 %) or the lack of clinical suspicion and request (35.0 %). The main ribotypes were 014, 078/126, 001/072, and 106. Ribotype 027 caused 2.9 % of all cases. Despite all the interventions undertaken, CDI remains a highly neglected disease because of the lack of sensitive diagnostic tests in some institutions and, especially, the absence of clinical suspicion, mainly in patients with community-associated CDI. Toxigenic C. difficile should be routinely sought in unformed stools sent for microbiological diagnosis, regardless of their origin. PMID:25904126

  17. Prediction of psychological functioning one year after the predictive test for Huntington's disease and impact of the test result on reproductive decision making.

    PubMed

    Decruyenaere, M; Evers-Kiebooms, G; Boogaerts, A; Cassiman, J J; Cloostermans, T; Demyttenaere, K; Dom, R; Fryns, J P; Van den Berghe, H

    1996-09-01

    For people at risk for Huntington's disease, the anxiety and uncertainty about the future may be very burdensome and may be an obstacle to personal decision making about important life issues, for example, procreation. For some at risk persons, this situation is the reason for requesting predictive DNA testing. The aim of this paper is two-fold. First, we want to evaluate whether knowing one's carrier status reduces anxiety and uncertainty and whether it facilitates decision making about procreation. Second, we endeavour to identify pretest predictors of psychological adaptation one year after the predictive test (psychometric evaluation of general anxiety, depression level, and ego strength). The impact of the predictive test result was assessed in 53 subjects tested, using pre- and post-test psychometric measurement and self-report data of follow up interviews. Mean anxiety and depression levels were significantly decreased one year after a good test result; there was no significant change in the case of a bad test result. The mean personality profile, including ego strength, remained unchanged one year after the test. The study further shows that the test result had a definite impact on reproductive decision making. Stepwise multiple regression analyses were used to select the best predictors of the subject's post-test reactions. The results indicate that a careful evaluation of pretest ego strength, depression level, and coping strategies may be helpful in predicting post-test reactions, independently of the carrier status. Test result (carrier/ non-carrier), gender, and age did not significantly contribute to the prediction. About one third of the variance of post-test anxiety and depression level and more than half of the variance of ego strength was explained, implying that other psychological or social aspects should also be taken into account when predicting individual post-test reactions.

  18. High-silicon {sup 238}PuO{sub 2} fuel characterization study: Half module impact tests

    SciTech Connect

    Reimus, M.A.H.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of [sup 238]Pu decay to an array of thermoelectric elements. The modular GPHS design was developed to address both survivability during launch abort and return from orbit. Previous testing conducted in support of the Galileo and Ulysses missions documented the response of GPHSs to a variety of fragment- impact, aging, atmospheric reentry, and Earth-impact conditions. The evaluations documented in this report are part of an ongoing program to determine the effect of fuel impurities on the response of the heat source to conditions baselined during the Galileo/Ulysses test program. In the first two tests in this series, encapsulated GPHS fuel pellets containing high levels of silicon were aged, loaded into GPHS module halves, and impacted against steel plates. The results show no significant differences between the response of these capsules and the behavior of relatively low-silicon fuel pellets tested previously.

  19. Preparing Climate Engineering Responses to Climate Emergencies II: Impact Detection/Attribution and Field Testing

    NASA Astrophysics Data System (ADS)

    Blackstock, J. J.; Battisti, D.; Caldeira, K.; Eardley, D. M.; Katz, J. I.; Keith, D. W.; Koonin, S. E.; Patrinos, A. A.; Schrag, D. P.; Socolow, R. H.

    2008-12-01

    Through a one-week intensive study, the authors of this abstract explored the question: What program of comprehensive technical research over the next decade would maximally reduce the uncertainties associated with climate engineering responses to climate emergencies? The motivations underlying this question, our group's focus on climate engineering concepts for manipulating incident short-wave solar radiation, and our in-depth consideration of stratospheric aerosol interventions as a case example are all described in a previous presentation (Keith et al. in this session). This second of two presentations on our study group's findings concentrates specifically on our technical evaluation of the issues associated with climate impact detection and attribution. Our analyses begin by examining the natural variability (noise) and equilibration timescales (temporal response) of a number of specific climate parameters (e.g. surface radiative flux, surface temperature, atmospheric ozone concentrations, etc.) at both the global and regional scales. First, using the assumption of immediate response for all climate parameters, order-of-magnitude signal-to-noise ratio calculations are used to estimate the minimum intervention durations and amplitudes needed for climate impacts of predicted magnitude to be attributably detected. Next, a number of relevant processes (physical, chemical and biological) within the climate system are evaluated to provide order-of-magnitude estimates for the actual temporal response of these climate parameters (e.g. delay in global temperature response due to ocean heat capacity). Cumulatively, these first-order quantitative estimates reveal a number of basic limits to the timescale over which equilibrium climatic parameter impacts of a climate engineering intervention could be detected. Building from these basic results, we examine current climate monitoring capabilities across four broad categories of climate parameters: (1) radiative; (2

  20. An experimental test of the impact of drug-testing programs on potential job applicants' attitudes and intentions.

    PubMed

    Crant, J M; Bateman, T S

    1990-04-01

    The effect of the presence of a drug-testing program and perceived need for the program (operationalized through accident rates, absenteeism, and theft) on potential job applicants' attitudes toward a company and intention to apply to that company was tested. Descriptions of a potential employer containing manipulations of drug-testing program (present or absent) and need for testing (high or low) were read by 163 undergraduate Ss. Participants had more positive attitudes and intentions toward companies that did not have drug-testing programs and toward companies that did not need a testing program. An interactive effect between drug testing and subjective norms on attitudes toward a company was also significant. These results suggest that organizations should consider the effect of drug-testing programs on potential job applicants and that further research about potential applicants' responses is needed. PMID:2335489