Sample records for check ldpc code

  1. Joint design of QC-LDPC codes for coded cooperation system with joint iterative decoding

    NASA Astrophysics Data System (ADS)

    Zhang, Shunwai; Yang, Fengfan; Tang, Lei; Ejaz, Saqib; Luo, Lin; Maharaj, B. T.

    2016-03-01

    In this paper, we investigate joint design of quasi-cyclic low-density-parity-check (QC-LDPC) codes for coded cooperation system with joint iterative decoding in the destination. First, QC-LDPC codes based on the base matrix and exponent matrix are introduced, and then we describe two types of girth-4 cycles in QC-LDPC codes employed by the source and relay. In the equivalent parity-check matrix corresponding to the jointly designed QC-LDPC codes employed by the source and relay, all girth-4 cycles including both type I and type II are cancelled. Theoretical analysis and numerical simulations show that the jointly designed QC-LDPC coded cooperation well combines cooperation gain and channel coding gain, and outperforms the coded non-cooperation under the same conditions. Furthermore, the bit error rate performance of the coded cooperation employing jointly designed QC-LDPC codes is better than those of random LDPC codes and separately designed QC-LDPC codes over AWGN channels.

  2. Low-density parity-check codes for volume holographic memory systems.

    PubMed

    Pishro-Nik, Hossein; Rahnavard, Nazanin; Ha, Jeongseok; Fekri, Faramarz; Adibi, Ali

    2003-02-10

    We investigate the application of low-density parity-check (LDPC) codes in volume holographic memory (VHM) systems. We show that a carefully designed irregular LDPC code has a very good performance in VHM systems. We optimize high-rate LDPC codes for the nonuniform error pattern in holographic memories to reduce the bit error rate extensively. The prior knowledge of noise distribution is used for designing as well as decoding the LDPC codes. We show that these codes have a superior performance to that of Reed-Solomon (RS) codes and regular LDPC counterparts. Our simulation shows that we can increase the maximum storage capacity of holographic memories by more than 50 percent if we use irregular LDPC codes with soft-decision decoding instead of conventionally employed RS codes with hard-decision decoding. The performance of these LDPC codes is close to the information theoretic capacity.

  3. A novel construction scheme of QC-LDPC codes based on the RU algorithm for optical transmission systems

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-guo; Liang, Meng-qi; Wang, Yong; Lin, Jin-zhao; Pang, Yu

    2016-03-01

    A novel lower-complexity construction scheme of quasi-cyclic low-density parity-check (QC-LDPC) codes for optical transmission systems is proposed based on the structure of the parity-check matrix for the Richardson-Urbanke (RU) algorithm. Furthermore, a novel irregular QC-LDPC(4 288, 4 020) code with high code-rate of 0.937 is constructed by this novel construction scheme. The simulation analyses show that the net coding gain ( NCG) of the novel irregular QC-LDPC(4 288,4 020) code is respectively 2.08 dB, 1.25 dB and 0.29 dB more than those of the classic RS(255, 239) code, the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code at the bit error rate ( BER) of 10-6. The irregular QC-LDPC(4 288, 4 020) code has the lower encoding/decoding complexity compared with the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code. The proposed novel QC-LDPC(4 288, 4 020) code can be more suitable for the increasing development requirements of high-speed optical transmission systems.

  4. Throughput Optimization Via Adaptive MIMO Communications

    DTIC Science & Technology

    2006-05-30

    End-to-end matlab packet simulation platform. * Low density parity check code (LDPCC). * Field trials with Silvus DSP MIMO testbed. * High mobility...incorporate advanced LDPC (low density parity check) codes . Realizing that the power of LDPC codes come at the price of decoder complexity, we also...Channel Coding Binary Convolution Code or LDPC Packet Length 0 - 216-1, bytes Coding Rate 1/2, 2/3, 3/4, 5/6 MIMO Channel Training Length 0 - 4, symbols

  5. Low-Density Parity-Check (LDPC) Codes Constructed from Protographs

    NASA Astrophysics Data System (ADS)

    Thorpe, J.

    2003-08-01

    We introduce a new class of low-density parity-check (LDPC) codes constructed from a template called a protograph. The protograph serves as a blueprint for constructing LDPC codes of arbitrary size whose performance can be predicted by analyzing the protograph. We apply standard density evolution techniques to predict the performance of large protograph codes. Finally, we use a randomized search algorithm to find good protographs.

  6. Low complexity Reed-Solomon-based low-density parity-check design for software defined optical transmission system based on adaptive puncturing decoding algorithm

    NASA Astrophysics Data System (ADS)

    Pan, Xiaolong; Liu, Bo; Zheng, Jianglong; Tian, Qinghua

    2016-08-01

    We propose and demonstrate a low complexity Reed-Solomon-based low-density parity-check (RS-LDPC) code with adaptive puncturing decoding algorithm for elastic optical transmission system. Partial received codes and the relevant column in parity-check matrix can be punctured to reduce the calculation complexity by adaptive parity-check matrix during decoding process. The results show that the complexity of the proposed decoding algorithm is reduced by 30% compared with the regular RS-LDPC system. The optimized code rate of the RS-LDPC code can be obtained after five times iteration.

  7. Construction of a new regular LDPC code for optical transmission systems

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-guo; Tong, Qing-zhen; Xu, Liang; Huang, Sheng

    2013-05-01

    A novel construction method of the check matrix for the regular low density parity check (LDPC) code is proposed. The novel regular systematically constructed Gallager (SCG)-LDPC(3969,3720) code with the code rate of 93.7% and the redundancy of 6.69% is constructed. The simulation results show that the net coding gain (NCG) and the distance from the Shannon limit of the novel SCG-LDPC(3969,3720) code can respectively be improved by about 1.93 dB and 0.98 dB at the bit error rate (BER) of 10-8, compared with those of the classic RS(255,239) code in ITU-T G.975 recommendation and the LDPC(32640,30592) code in ITU-T G.975.1 recommendation with the same code rate of 93.7% and the same redundancy of 6.69%. Therefore, the proposed novel regular SCG-LDPC(3969,3720) code has excellent performance, and is more suitable for high-speed long-haul optical transmission systems.

  8. Low Density Parity Check Codes Based on Finite Geometries: A Rediscovery and More

    NASA Technical Reports Server (NTRS)

    Kou, Yu; Lin, Shu; Fossorier, Marc

    1999-01-01

    Low density parity check (LDPC) codes with iterative decoding based on belief propagation achieve astonishing error performance close to Shannon limit. No algebraic or geometric method for constructing these codes has been reported and they are largely generated by computer search. As a result, encoding of long LDPC codes is in general very complex. This paper presents two classes of high rate LDPC codes whose constructions are based on finite Euclidean and projective geometries, respectively. These classes of codes a.re cyclic and have good constraint parameters and minimum distances. Cyclic structure adows the use of linear feedback shift registers for encoding. These finite geometry LDPC codes achieve very good error performance with either soft-decision iterative decoding based on belief propagation or Gallager's hard-decision bit flipping algorithm. These codes can be punctured or extended to obtain other good LDPC codes. A generalization of these codes is also presented.

  9. Crosstalk eliminating and low-density parity-check codes for photochromic dual-wavelength storage

    NASA Astrophysics Data System (ADS)

    Wang, Meicong; Xiong, Jianping; Jian, Jiqi; Jia, Huibo

    2005-01-01

    Multi-wavelength storage is an approach to increase the memory density with the problem of crosstalk to be deal with. We apply Low Density Parity Check (LDPC) codes as error-correcting codes in photochromic dual-wavelength optical storage based on the investigation of LDPC codes in optical data storage. A proper method is applied to reduce the crosstalk and simulation results show that this operation is useful to improve Bit Error Rate (BER) performance. At the same time we can conclude that LDPC codes outperform RS codes in crosstalk channel.

  10. Construction of Protograph LDPC Codes with Linear Minimum Distance

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Jones, Christopher

    2006-01-01

    A construction method for protograph-based LDPC codes that simultaneously achieve low iterative decoding threshold and linear minimum distance is proposed. We start with a high-rate protograph LDPC code with variable node degrees of at least 3. Lower rate codes are obtained by splitting check nodes and connecting them by degree-2 nodes. This guarantees the linear minimum distance property for the lower-rate codes. Excluding checks connected to degree-1 nodes, we show that the number of degree-2 nodes should be at most one less than the number of checks for the protograph LDPC code to have linear minimum distance. Iterative decoding thresholds are obtained by using the reciprocal channel approximation. Thresholds are lowered by using either precoding or at least one very high-degree node in the base protograph. A family of high- to low-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.

  11. A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications.

    PubMed

    Revathy, M; Saravanan, R

    2015-01-01

    Low-density parity-check (LDPC) codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax), and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC) decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures.

  12. Spatially coupled low-density parity-check error correction for holographic data storage

    NASA Astrophysics Data System (ADS)

    Ishii, Norihiko; Katano, Yutaro; Muroi, Tetsuhiko; Kinoshita, Nobuhiro

    2017-09-01

    The spatially coupled low-density parity-check (SC-LDPC) was considered for holographic data storage. The superiority of SC-LDPC was studied by simulation. The simulations show that the performance of SC-LDPC depends on the lifting number, and when the lifting number is over 100, SC-LDPC shows better error correctability compared with irregular LDPC. SC-LDPC is applied to the 5:9 modulation code, which is one of the differential codes. The error-free point is near 2.8 dB and over 10-1 can be corrected in simulation. From these simulation results, this error correction code can be applied to actual holographic data storage test equipment. Results showed that 8 × 10-2 can be corrected, furthermore it works effectively and shows good error correctability.

  13. Construction of type-II QC-LDPC codes with fast encoding based on perfect cyclic difference sets

    NASA Astrophysics Data System (ADS)

    Li, Ling-xiang; Li, Hai-bing; Li, Ji-bi; Jiang, Hua

    2017-09-01

    In view of the problems that the encoding complexity of quasi-cyclic low-density parity-check (QC-LDPC) codes is high and the minimum distance is not large enough which leads to the degradation of the error-correction performance, the new irregular type-II QC-LDPC codes based on perfect cyclic difference sets (CDSs) are constructed. The parity check matrices of these type-II QC-LDPC codes consist of the zero matrices with weight of 0, the circulant permutation matrices (CPMs) with weight of 1 and the circulant matrices with weight of 2 (W2CMs). The introduction of W2CMs in parity check matrices makes it possible to achieve the larger minimum distance which can improve the error- correction performance of the codes. The Tanner graphs of these codes have no girth-4, thus they have the excellent decoding convergence characteristics. In addition, because the parity check matrices have the quasi-dual diagonal structure, the fast encoding algorithm can reduce the encoding complexity effectively. Simulation results show that the new type-II QC-LDPC codes can achieve a more excellent error-correction performance and have no error floor phenomenon over the additive white Gaussian noise (AWGN) channel with sum-product algorithm (SPA) iterative decoding.

  14. A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications

    PubMed Central

    Revathy, M.; Saravanan, R.

    2015-01-01

    Low-density parity-check (LDPC) codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax), and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC) decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures. PMID:26065017

  15. Entanglement-assisted quantum quasicyclic low-density parity-check codes

    NASA Astrophysics Data System (ADS)

    Hsieh, Min-Hsiu; Brun, Todd A.; Devetak, Igor

    2009-03-01

    We investigate the construction of quantum low-density parity-check (LDPC) codes from classical quasicyclic (QC) LDPC codes with girth greater than or equal to 6. We have shown that the classical codes in the generalized Calderbank-Skor-Steane construction do not need to satisfy the dual-containing property as long as preshared entanglement is available to both sender and receiver. We can use this to avoid the many four cycles which typically arise in dual-containing LDPC codes. The advantage of such quantum codes comes from the use of efficient decoding algorithms such as sum-product algorithm (SPA). It is well known that in the SPA, cycles of length 4 make successive decoding iterations highly correlated and hence limit the decoding performance. We show the principle of constructing quantum QC-LDPC codes which require only small amounts of initial shared entanglement.

  16. LDPC coded OFDM over the atmospheric turbulence channel.

    PubMed

    Djordjevic, Ivan B; Vasic, Bane; Neifeld, Mark A

    2007-05-14

    Low-density parity-check (LDPC) coded optical orthogonal frequency division multiplexing (OFDM) is shown to significantly outperform LDPC coded on-off keying (OOK) over the atmospheric turbulence channel in terms of both coding gain and spectral efficiency. In the regime of strong turbulence at a bit-error rate of 10(-5), the coding gain improvement of the LDPC coded single-side band unclipped-OFDM system with 64 sub-carriers is larger than the coding gain of the LDPC coded OOK system by 20.2 dB for quadrature-phase-shift keying (QPSK) and by 23.4 dB for binary-phase-shift keying (BPSK).

  17. Construction method of QC-LDPC codes based on multiplicative group of finite field in optical communication

    NASA Astrophysics Data System (ADS)

    Huang, Sheng; Ao, Xiang; Li, Yuan-yuan; Zhang, Rui

    2016-09-01

    In order to meet the needs of high-speed development of optical communication system, a construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes based on multiplicative group of finite field is proposed. The Tanner graph of parity check matrix of the code constructed by this method has no cycle of length 4, and it can make sure that the obtained code can get a good distance property. Simulation results show that when the bit error rate ( BER) is 10-6, in the same simulation environment, the net coding gain ( NCG) of the proposed QC-LDPC(3 780, 3 540) code with the code rate of 93.7% in this paper is improved by 2.18 dB and 1.6 dB respectively compared with those of the RS(255, 239) code in ITU-T G.975 and the LDPC(3 2640, 3 0592) code in ITU-T G.975.1. In addition, the NCG of the proposed QC-LDPC(3 780, 3 540) code is respectively 0.2 dB and 0.4 dB higher compared with those of the SG-QC-LDPC(3 780, 3 540) code based on the two different subgroups in finite field and the AS-QC-LDPC(3 780, 3 540) code based on the two arbitrary sets of a finite field. Thus, the proposed QC-LDPC(3 780, 3 540) code in this paper can be well applied in optical communication systems.

  18. A novel concatenated code based on the improved SCG-LDPC code for optical transmission systems

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-guo; Xie, Ya; Wang, Lin; Huang, Sheng; Wang, Yong

    2013-01-01

    Based on the optimization and improvement for the construction method of systematically constructed Gallager (SCG) (4, k) code, a novel SCG low density parity check (SCG-LDPC)(3969, 3720) code to be suitable for optical transmission systems is constructed. The novel SCG-LDPC (6561,6240) code with code rate of 95.1% is constructed by increasing the length of SCG-LDPC (3969,3720) code, and in a way, the code rate of LDPC codes can better meet the high requirements of optical transmission systems. And then the novel concatenated code is constructed by concatenating SCG-LDPC(6561,6240) code and BCH(127,120) code with code rate of 94.5%. The simulation results and analyses show that the net coding gain (NCG) of BCH(127,120)+SCG-LDPC(6561,6240) concatenated code is respectively 2.28 dB and 0.48 dB more than those of the classic RS(255,239) code and SCG-LDPC(6561,6240) code at the bit error rate (BER) of 10-7.

  19. An efficient decoding for low density parity check codes

    NASA Astrophysics Data System (ADS)

    Zhao, Ling; Zhang, Xiaolin; Zhu, Manjie

    2009-12-01

    Low density parity check (LDPC) codes are a class of forward-error-correction codes. They are among the best-known codes capable of achieving low bit error rates (BER) approaching Shannon's capacity limit. Recently, LDPC codes have been adopted by the European Digital Video Broadcasting (DVB-S2) standard, and have also been proposed for the emerging IEEE 802.16 fixed and mobile broadband wireless-access standard. The consultative committee for space data system (CCSDS) has also recommended using LDPC codes in the deep space communications and near-earth communications. It is obvious that LDPC codes will be widely used in wired and wireless communication, magnetic recording, optical networking, DVB, and other fields in the near future. Efficient hardware implementation of LDPC codes is of great interest since LDPC codes are being considered for a wide range of applications. This paper presents an efficient partially parallel decoder architecture suited for quasi-cyclic (QC) LDPC codes using Belief propagation algorithm for decoding. Algorithmic transformation and architectural level optimization are incorporated to reduce the critical path. First, analyze the check matrix of LDPC code, to find out the relationship between the row weight and the column weight. And then, the sharing level of the check node updating units (CNU) and the variable node updating units (VNU) are determined according to the relationship. After that, rearrange the CNU and the VNU, and divide them into several smaller parts, with the help of some assistant logic circuit, these smaller parts can be grouped into CNU during the check node update processing and grouped into VNU during the variable node update processing. These smaller parts are called node update kernel units (NKU) and the assistant logic circuit are called node update auxiliary unit (NAU). With NAUs' help, the two steps of iteration operation are completed by NKUs, which brings in great hardware resource reduction. Meanwhile, efficient techniques have been developed to reduce the computation delay of the node processing units and to minimize hardware overhead for parallel processing. This method may be applied not only to regular LDPC codes, but also to the irregular ones. Based on the proposed architectures, a (7493, 6096) irregular QC-LDPC code decoder is described using verilog hardware design language and implemented on Altera field programmable gate array (FPGA) StratixII EP2S130. The implementation results show that over 20% of logic core size can be saved than conventional partially parallel decoder architectures without any performance degradation. If the decoding clock is 100MHz, the proposed decoder can achieve a maximum (source data) decoding throughput of 133 Mb/s at 18 iterations.

  20. Parallel Subspace Subcodes of Reed-Solomon Codes for Magnetic Recording Channels

    ERIC Educational Resources Information Center

    Wang, Han

    2010-01-01

    Read channel architectures based on a single low-density parity-check (LDPC) code are being considered for the next generation of hard disk drives. However, LDPC-only solutions suffer from the error floor problem, which may compromise reliability, if not handled properly. Concatenated architectures using an LDPC code plus a Reed-Solomon (RS) code…

  1. Efficient Signal, Code, and Receiver Designs for MIMO Communication Systems

    DTIC Science & Technology

    2003-06-01

    167 5-31 Concatenation of a tilted-QAM inner code with an LDPC outer code with a two component iterative soft-decision decoder. . . . . . . . . 168 5...for AWGN channels has long been studied. There are well-known soft-decision codes like the turbo codes and LDPC codes that can approach capacity to...bits) low density parity check ( LDPC ) code 1. 2. The coded bits are randomly interleaved so that bits nearby go through different sub-channels, and are

  2. Structured Low-Density Parity-Check Codes with Bandwidth Efficient Modulation

    NASA Technical Reports Server (NTRS)

    Cheng, Michael K.; Divsalar, Dariush; Duy, Stephanie

    2009-01-01

    In this work, we study the performance of structured Low-Density Parity-Check (LDPC) Codes together with bandwidth efficient modulations. We consider protograph-based LDPC codes that facilitate high-speed hardware implementations and have minimum distances that grow linearly with block sizes. We cover various higher- order modulations such as 8-PSK, 16-APSK, and 16-QAM. During demodulation, a demapper transforms the received in-phase and quadrature samples into reliability information that feeds the binary LDPC decoder. We will compare various low-complexity demappers and provide simulation results for assorted coded-modulation combinations on the additive white Gaussian noise and independent Rayleigh fading channels.

  3. A Simulation Testbed for Adaptive Modulation and Coding in Airborne Telemetry

    DTIC Science & Technology

    2014-05-29

    its modulation waveforms and LDPC for the FEC codes . It also uses several sets of published telemetry channel sounding data as its channel models...waveforms and LDPC for the FEC codes . It also uses several sets of published telemetry channel sounding data as its channel models. Within the context...check ( LDPC ) codes with tunable code rates, and both static and dynamic telemetry channel models are included. In an effort to maximize the

  4. Constructing LDPC Codes from Loop-Free Encoding Modules

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher; Thorpe, Jeremy; Andrews, Kenneth

    2009-01-01

    A method of constructing certain low-density parity-check (LDPC) codes by use of relatively simple loop-free coding modules has been developed. The subclasses of LDPC codes to which the method applies includes accumulate-repeat-accumulate (ARA) codes, accumulate-repeat-check-accumulate codes, and the codes described in Accumulate-Repeat-Accumulate-Accumulate Codes (NPO-41305), NASA Tech Briefs, Vol. 31, No. 9 (September 2007), page 90. All of the affected codes can be characterized as serial/parallel (hybrid) concatenations of such relatively simple modules as accumulators, repetition codes, differentiators, and punctured single-parity check codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. These codes can also be characterized as hybrid turbolike codes that have projected graph or protograph representations (for example see figure); these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The present method comprises two related submethods for constructing LDPC codes from simple loop-free modules with circulant permutations. The first submethod is an iterative encoding method based on the erasure-decoding algorithm. The computations required by this method are well organized because they involve a parity-check matrix having a block-circulant structure. The second submethod involves the use of block-circulant generator matrices. The encoders of this method are very similar to those of recursive convolutional codes. Some encoders according to this second submethod have been implemented in a small field-programmable gate array that operates at a speed of 100 megasymbols per second. By use of density evolution (a computational- simulation technique for analyzing performances of LDPC codes), it has been shown through some examples that as the block size goes to infinity, low iterative decoding thresholds close to channel capacity limits can be achieved for the codes of the type in question having low maximum variable node degrees. The decoding thresholds in these examples are lower than those of the best-known unstructured irregular LDPC codes constrained to have the same maximum node degrees. Furthermore, the present method enables the construction of codes of any desired rate with thresholds that stay uniformly close to their respective channel capacity thresholds.

  5. FPGA implementation of low complexity LDPC iterative decoder

    NASA Astrophysics Data System (ADS)

    Verma, Shivani; Sharma, Sanjay

    2016-07-01

    Low-density parity-check (LDPC) codes, proposed by Gallager, emerged as a class of codes which can yield very good performance on the additive white Gaussian noise channel as well as on the binary symmetric channel. LDPC codes have gained lots of importance due to their capacity achieving property and excellent performance in the noisy channel. Belief propagation (BP) algorithm and its approximations, most notably min-sum, are popular iterative decoding algorithms used for LDPC and turbo codes. The trade-off between the hardware complexity and the decoding throughput is a critical factor in the implementation of the practical decoder. This article presents introduction to LDPC codes and its various decoding algorithms followed by realisation of LDPC decoder by using simplified message passing algorithm and partially parallel decoder architecture. Simplified message passing algorithm has been proposed for trade-off between low decoding complexity and decoder performance. It greatly reduces the routing and check node complexity of the decoder. Partially parallel decoder architecture possesses high speed and reduced complexity. The improved design of the decoder possesses a maximum symbol throughput of 92.95 Mbps and a maximum of 18 decoding iterations. The article presents implementation of 9216 bits, rate-1/2, (3, 6) LDPC decoder on Xilinx XC3D3400A device from Spartan-3A DSP family.

  6. Experimental research and comparison of LDPC and RS channel coding in ultraviolet communication systems.

    PubMed

    Wu, Menglong; Han, Dahai; Zhang, Xiang; Zhang, Feng; Zhang, Min; Yue, Guangxin

    2014-03-10

    We have implemented a modified Low-Density Parity-Check (LDPC) codec algorithm in ultraviolet (UV) communication system. Simulations are conducted with measured parameters to evaluate the LDPC-based UV system performance. Moreover, LDPC (960, 480) and RS (18, 10) are implemented and experimented via a non-line-of-sight (NLOS) UV test bed. The experimental results are in agreement with the simulation and suggest that based on the given power and 10(-3)bit error rate (BER), in comparison with an uncoded system, average communication distance increases 32% with RS code, while 78% with LDPC code.

  7. Self-Configuration and Localization in Ad Hoc Wireless Sensor Networks

    DTIC Science & Technology

    2010-08-31

    Goddard I. SUMMARY OF CONTRIBUTIONS We explored the error mechanisms of iterative decoding of low-density parity-check ( LDPC ) codes . This work has resulted...important problems in the area of channel coding , as their unpredictable behavior has impeded the deployment of LDPC codes in many real-world applications. We...tree-based decoders of LDPC codes , including the extrinsic tree decoder, and an investigation into their performance and bounding capabilities [5], [6

  8. Discussion on LDPC Codes and Uplink Coding

    NASA Technical Reports Server (NTRS)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.

  9. A novel QC-LDPC code based on the finite field multiplicative group for optical communications

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-guo; Xu, Liang; Tong, Qing-zhen

    2013-09-01

    A novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) code is proposed based on the finite field multiplicative group, which has easier construction, more flexible code-length code-rate adjustment and lower encoding/decoding complexity. Moreover, a regular QC-LDPC(5334,4962) code is constructed. The simulation results show that the constructed QC-LDPC(5334,4962) code can gain better error correction performance under the condition of the additive white Gaussian noise (AWGN) channel with iterative decoding sum-product algorithm (SPA). At the bit error rate (BER) of 10-6, the net coding gain (NCG) of the constructed QC-LDPC(5334,4962) code is 1.8 dB, 0.9 dB and 0.2 dB more than that of the classic RS(255,239) code in ITU-T G.975, the LDPC(32640,30592) code in ITU-T G.975.1 and the SCG-LDPC(3969,3720) code constructed by the random method, respectively. So it is more suitable for optical communication systems.

  10. Scalable video transmission over Rayleigh fading channels using LDPC codes

    NASA Astrophysics Data System (ADS)

    Bansal, Manu; Kondi, Lisimachos P.

    2005-03-01

    In this paper, we investigate an important problem of efficiently utilizing the available resources for video transmission over wireless channels while maintaining a good decoded video quality and resilience to channel impairments. Our system consists of the video codec based on 3-D set partitioning in hierarchical trees (3-D SPIHT) algorithm and employs two different schemes using low-density parity check (LDPC) codes for channel error protection. The first method uses the serial concatenation of the constant-rate LDPC code and rate-compatible punctured convolutional (RCPC) codes. Cyclic redundancy check (CRC) is used to detect transmission errors. In the other scheme, we use the product code structure consisting of a constant rate LDPC/CRC code across the rows of the `blocks' of source data and an erasure-correction systematic Reed-Solomon (RS) code as the column code. In both the schemes introduced here, we use fixed-length source packets protected with unequal forward error correction coding ensuring a strictly decreasing protection across the bitstream. A Rayleigh flat-fading channel with additive white Gaussian noise (AWGN) is modeled for the transmission. The rate-distortion optimization algorithm is developed and carried out for the selection of source coding and channel coding rates using Lagrangian optimization. The experimental results demonstrate the effectiveness of this system under different wireless channel conditions and both the proposed methods (LDPC+RCPC/CRC and RS+LDPC/CRC) outperform the more conventional schemes such as those employing RCPC/CRC.

  11. PSEUDO-CODEWORD LANDSCAPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CHERTKOV, MICHAEL; STEPANOV, MIKHAIL

    2007-01-10

    The authors discuss performance of Low-Density-Parity-Check (LDPC) codes decoded by Linear Programming (LP) decoding at moderate and large Signal-to-Noise-Ratios (SNR). Frame-Error-Rate (FER) dependence on SNR and the noise space landscape of the coding/decoding scheme are analyzed by a combination of the previously introduced instanton/pseudo-codeword-search method and a new 'dendro' trick. To reduce complexity of the LP decoding for a code with high-degree checks, {ge} 5, they introduce its dendro-LDPC counterpart, that is the code performing identifically to the original one under Maximum-A-Posteriori (MAP) decoding but having reduced (down to three) check connectivity degree. Analyzing number of popular LDPC codes andmore » their dendro versions performing over the Additive-White-Gaussian-Noise (AWGN) channel, they observed two qualitatively different regimes: (i) error-floor sets early, at relatively low SNR, and (ii) FER decays with SNR increase faster at moderate SNR than at the largest SNR. They explain these regimes in terms of the pseudo-codeword spectra of the codes.« less

  12. Rate-Compatible Protograph LDPC Codes

    NASA Technical Reports Server (NTRS)

    Nguyen, Thuy V. (Inventor); Nosratinia, Aria (Inventor); Divsalar, Dariush (Inventor)

    2014-01-01

    Digital communication coding methods resulting in rate-compatible low density parity-check (LDPC) codes built from protographs. Described digital coding methods start with a desired code rate and a selection of the numbers of variable nodes and check nodes to be used in the protograph. Constraints are set to satisfy a linear minimum distance growth property for the protograph. All possible edges in the graph are searched for the minimum iterative decoding threshold and the protograph with the lowest iterative decoding threshold is selected. Protographs designed in this manner are used in decode and forward relay channels.

  13. FPGA implementation of high-performance QC-LDPC decoder for optical communications

    NASA Astrophysics Data System (ADS)

    Zou, Ding; Djordjevic, Ivan B.

    2015-01-01

    Forward error correction is as one of the key technologies enabling the next-generation high-speed fiber optical communications. Quasi-cyclic (QC) low-density parity-check (LDPC) codes have been considered as one of the promising candidates due to their large coding gain performance and low implementation complexity. In this paper, we present our designed QC-LDPC code with girth 10 and 25% overhead based on pairwise balanced design. By FPGAbased emulation, we demonstrate that the 5-bit soft-decision LDPC decoder can achieve 11.8dB net coding gain with no error floor at BER of 10-15 avoiding using any outer code or post-processing method. We believe that the proposed single QC-LDPC code is a promising solution for 400Gb/s optical communication systems and beyond.

  14. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Brun, Todd; Quantum Research Team

    Quasi-cyclic LDPC codes can approach the Shannon capacity and have efficient decoders. Manabu Hagiwara et al., 2007 presented a method to calculate parity check matrices with high girth. Two distinct, orthogonal matrices Hc and Hd are used. Using submatrices obtained from Hc and Hd by deleting rows, we can alter the code rate. The submatrix of Hc is used to correct Pauli X errors, and the submatrix of Hd to correct Pauli Z errors. We simulated this system for depolarizing noise on USC's High Performance Computing Cluster, and obtained the block error rate (BER) as a function of the error weight and code rate. From the rates of uncorrectable errors under different error weights we can extrapolate the BER to any small error probability. Our results show that this code family can perform reasonably well even at high code rates, thus considerably reducing the overhead compared to concatenated and surface codes. This makes these codes promising as storage blocks in fault-tolerant quantum computation. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes.

  15. Error floor behavior study of LDPC codes for concatenated codes design

    NASA Astrophysics Data System (ADS)

    Chen, Weigang; Yin, Liuguo; Lu, Jianhua

    2007-11-01

    Error floor behavior of low-density parity-check (LDPC) codes using quantized decoding algorithms is statistically studied with experimental results on a hardware evaluation platform. The results present the distribution of the residual errors after decoding failure and reveal that the number of residual error bits in a codeword is usually very small using quantized sum-product (SP) algorithm. Therefore, LDPC code may serve as the inner code in a concatenated coding system with a high code rate outer code and thus an ultra low error floor can be achieved. This conclusion is also verified by the experimental results.

  16. Product code optimization for determinate state LDPC decoding in robust image transmission.

    PubMed

    Thomos, Nikolaos; Boulgouris, Nikolaos V; Strintzis, Michael G

    2006-08-01

    We propose a novel scheme for error-resilient image transmission. The proposed scheme employs a product coder consisting of low-density parity check (LDPC) codes and Reed-Solomon codes in order to deal effectively with bit errors. The efficiency of the proposed scheme is based on the exploitation of determinate symbols in Tanner graph decoding of LDPC codes and a novel product code optimization technique based on error estimation. Experimental evaluation demonstrates the superiority of the proposed system in comparison to recent state-of-the-art techniques for image transmission.

  17. Optical LDPC decoders for beyond 100 Gbits/s optical transmission.

    PubMed

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2009-05-01

    We present an optical low-density parity-check (LDPC) decoder suitable for implementation above 100 Gbits/s, which provides large coding gains when based on large-girth LDPC codes. We show that a basic building block, the probabilities multiplier circuit, can be implemented using a Mach-Zehnder interferometer, and we propose corresponding probabilistic-domain sum-product algorithm (SPA). We perform simulations of a fully parallel implementation employing girth-10 LDPC codes and proposed SPA. The girth-10 LDPC(24015,19212) code of the rate of 0.8 outperforms the BCH(128,113)xBCH(256,239) turbo-product code of the rate of 0.82 by 0.91 dB (for binary phase-shift keying at 100 Gbits/s and a bit error rate of 10(-9)), and provides a net effective coding gain of 10.09 dB.

  18. Protograph LDPC Codes for the Erasure Channel

    NASA Technical Reports Server (NTRS)

    Pollara, Fabrizio; Dolinar, Samuel J.; Divsalar, Dariush

    2006-01-01

    This viewgraph presentation reviews the use of protograph Low Density Parity Check (LDPC) codes for erasure channels. A protograph is a Tanner graph with a relatively small number of nodes. A "copy-and-permute" operation can be applied to the protograph to obtain larger derived graphs of various sizes. For very high code rates and short block sizes, a low asymptotic threshold criterion is not the best approach to designing LDPC codes. Simple protographs with much regularity and low maximum node degrees appear to be the best choices Quantized-rateless protograph LDPC codes can be built by careful design of the protograph such that multiple puncturing patterns will still permit message passing decoding to proceed

  19. RETRACTED — PMD mitigation through interleaving LDPC codes with polarization scramblers

    NASA Astrophysics Data System (ADS)

    Han, Dahai; Chen, Haoran; Xi, Lixia

    2012-11-01

    The combination of forward error correction (FEC) and distributed fast polarization scramblers (D-FPSs) is approved as an effective method to mitigate polarization mode dispersion (PMD) in high-speed optical fiber communication system. The low-density parity-check (LDPC) codes are newly introduced into the PMD mitigation scheme with D-FPSs in this paper as one of the promising FEC codes to achieve better performance. The scrambling speed of FPS for LDPC (2040, 1903) codes system is discussed, and the reasonable speed 10 MHz is obtained from the simulation results. For easy application in practical large scale integrated (LSI) circuit, the number of iterations in decoding LDPC codes is also investigated. The PMD tolerance and cut-off optical signal-to-noise ratio (OSNR) of LDPC codes are compared with Reed-Solomon (RS) codes in different conditions. In the simulation, the interleaving LDPC codes brings incremental performance of error correction, and the PMD tolerance is 10 ps at OSNR=11.4 dB. The results show that the meaning of the work is that LDPC codes are a substitute for traditional RS codes with D-FPSs and all of the executable code files are open for researchers who have practical LSI platform for PMD mitigation.

  20. PMD mitigation through interleaving LDPC codes with polarization scramblers

    NASA Astrophysics Data System (ADS)

    Han, Dahai; Chen, Haoran; Xi, Lixia

    2013-09-01

    The combination of forward error correction (FEC) and distributed fast polarization scramblers (D-FPSs) is approved an effective method to mitigate polarization mode dispersion (PMD) in high-speed optical fiber communication system. The low-density parity-check (LDPC) codes are newly introduced into the PMD mitigation scheme with D-FPSs in this article as one of the promising FEC codes to achieve better performance. The scrambling speed of FPS for LDPC (2040, 1903) codes system is discussed, and the reasonable speed 10MHz is obtained from the simulation results. For easy application in practical large scale integrated (LSI) circuit, the number of iterations in decoding LDPC codes is also investigated. The PMD tolerance and cut-off optical signal-to-noise ratio (OSNR) of LDPC codes are compared with Reed-Solomon (RS) codes in different conditions. In the simulation, the interleaving LDPC codes bring incremental performance of error correction, and the PMD tolerance is 10ps at OSNR=11.4dB. The results show the meaning of the work is that LDPC codes are a substitute for traditional RS codes with D-FPSs and all of the executable code files are open for researchers who have practical LSI platform for PMD mitigation.

  1. Soft-Decision-Data Reshuffle to Mitigate Pulsed Radio Frequency Interference Impact on Low-Density-Parity-Check Code Performance

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David

    2011-01-01

    This presentation briefly discusses a research effort on mitigation techniques of pulsed radio frequency interference (RFI) on a Low-Density-Parity-Check (LDPC) code. This problem is of considerable interest in the context of providing reliable communications to the space vehicle which might suffer severe degradation due to pulsed RFI sources such as large radars. The LDPC code is one of modern forward-error-correction (FEC) codes which have the decoding performance to approach the Shannon Limit. The LDPC code studied here is the AR4JA (2048, 1024) code recommended by the Consultative Committee for Space Data Systems (CCSDS) and it has been chosen for some spacecraft design. Even though this code is designed as a powerful FEC code in the additive white Gaussian noise channel, simulation data and test results show that the performance of this LDPC decoder is severely degraded when exposed to the pulsed RFI specified in the spacecraft s transponder specifications. An analysis work (through modeling and simulation) has been conducted to evaluate the impact of the pulsed RFI and a few implemental techniques have been investigated to mitigate the pulsed RFI impact by reshuffling the soft-decision-data available at the input of the LDPC decoder. The simulation results show that the LDPC decoding performance of codeword error rate (CWER) under pulsed RFI can be improved up to four orders of magnitude through a simple soft-decision-data reshuffle scheme. This study reveals that an error floor of LDPC decoding performance appears around CWER=1E-4 when the proposed technique is applied to mitigate the pulsed RFI impact. The mechanism causing this error floor remains unknown, further investigation is necessary.

  2. A novel construction method of QC-LDPC codes based on CRT for optical communications

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-guo; Liang, Meng-qi; Wang, Yong; Lin, Jin-zhao; Pang, Yu

    2016-05-01

    A novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed based on Chinese remainder theory (CRT). The method can not only increase the code length without reducing the girth, but also greatly enhance the code rate, so it is easy to construct a high-rate code. The simulation results show that at the bit error rate ( BER) of 10-7, the net coding gain ( NCG) of the regular QC-LDPC(4 851, 4 546) code is respectively 2.06 dB, 1.36 dB, 0.53 dB and 0.31 dB more than those of the classic RS(255, 239) code in ITU-T G.975, the LDPC(32 640, 30 592) code in ITU-T G.975.1, the QC-LDPC(3 664, 3 436) code constructed by the improved combining construction method based on CRT and the irregular QC-LDPC(3 843, 3 603) code constructed by the construction method based on the Galois field ( GF( q)) multiplicative group. Furthermore, all these five codes have the same code rate of 0.937. Therefore, the regular QC-LDPC(4 851, 4 546) code constructed by the proposed construction method has excellent error-correction performance, and can be more suitable for optical transmission systems.

  3. High-throughput GPU-based LDPC decoding

    NASA Astrophysics Data System (ADS)

    Chang, Yang-Lang; Chang, Cheng-Chun; Huang, Min-Yu; Huang, Bormin

    2010-08-01

    Low-density parity-check (LDPC) code is a linear block code known to approach the Shannon limit via the iterative sum-product algorithm. LDPC codes have been adopted in most current communication systems such as DVB-S2, WiMAX, WI-FI and 10GBASE-T. LDPC for the needs of reliable and flexible communication links for a wide variety of communication standards and configurations have inspired the demand for high-performance and flexibility computing. Accordingly, finding a fast and reconfigurable developing platform for designing the high-throughput LDPC decoder has become important especially for rapidly changing communication standards and configurations. In this paper, a new graphic-processing-unit (GPU) LDPC decoding platform with the asynchronous data transfer is proposed to realize this practical implementation. Experimental results showed that the proposed GPU-based decoder achieved 271x speedup compared to its CPU-based counterpart. It can serve as a high-throughput LDPC decoder.

  4. The application of LDPC code in MIMO-OFDM system

    NASA Astrophysics Data System (ADS)

    Liu, Ruian; Zeng, Beibei; Chen, Tingting; Liu, Nan; Yin, Ninghao

    2018-03-01

    The combination of MIMO and OFDM technology has become one of the key technologies of the fourth generation mobile communication., which can overcome the frequency selective fading of wireless channel, increase the system capacity and improve the frequency utilization. Error correcting coding introduced into the system can further improve its performance. LDPC (low density parity check) code is a kind of error correcting code which can improve system reliability and anti-interference ability, and the decoding is simple and easy to operate. This paper mainly discusses the application of LDPC code in MIMO-OFDM system.

  5. Simultaneous chromatic dispersion and PMD compensation by using coded-OFDM and girth-10 LDPC codes.

    PubMed

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2008-07-07

    Low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) is studied as an efficient coded modulation scheme suitable for simultaneous chromatic dispersion and polarization mode dispersion (PMD) compensation. We show that, for aggregate rate of 10 Gb/s, accumulated dispersion over 6500 km of SMF and differential group delay of 100 ps can be simultaneously compensated with penalty within 1.5 dB (with respect to the back-to-back configuration) when training sequence based channel estimation and girth-10 LDPC codes of rate 0.8 are employed.

  6. Short-Block Protograph-Based LDPC Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher

    2010-01-01

    Short-block low-density parity-check (LDPC) codes of a special type are intended to be especially well suited for potential applications that include transmission of command and control data, cellular telephony, data communications in wireless local area networks, and satellite data communications. [In general, LDPC codes belong to a class of error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels.] The codes of the present special type exhibit low error floors, low bit and frame error rates, and low latency (in comparison with related prior codes). These codes also achieve low maximum rate of undetected errors over all signal-to-noise ratios, without requiring the use of cyclic redundancy checks, which would significantly increase the overhead for short blocks. These codes have protograph representations; this is advantageous in that, for reasons that exceed the scope of this article, the applicability of protograph representations makes it possible to design highspeed iterative decoders that utilize belief- propagation algorithms.

  7. Non-binary LDPC-coded modulation for high-speed optical metro networks with backpropagation

    NASA Astrophysics Data System (ADS)

    Arabaci, Murat; Djordjevic, Ivan B.; Saunders, Ross; Marcoccia, Roberto M.

    2010-01-01

    To simultaneously mitigate the linear and nonlinear channel impairments in high-speed optical communications, we propose the use of non-binary low-density-parity-check-coded modulation in combination with a coarse backpropagation method. By employing backpropagation, we reduce the memory in the channel and in return obtain significant reductions in the complexity of the channel equalizer which is exponentially proportional to the channel memory. We then compensate for the remaining channel distortions using forward error correction based on non-binary LDPC codes. We propose non-binary-LDPC-coded modulation scheme because, compared to bit-interleaved binary-LDPC-coded modulation scheme employing turbo equalization, the proposed scheme lowers the computational complexity and latency of the overall system while providing impressively larger coding gains.

  8. Statistical mechanics of broadcast channels using low-density parity-check codes.

    PubMed

    Nakamura, Kazutaka; Kabashima, Yoshiyuki; Morelos-Zaragoza, Robert; Saad, David

    2003-03-01

    We investigate the use of Gallager's low-density parity-check (LDPC) codes in a degraded broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple time sharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based time sharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the time sharing limit.

  9. A Golay complementary TS-based symbol synchronization scheme in variable rate LDPC-coded MB-OFDM UWBoF system

    NASA Astrophysics Data System (ADS)

    He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin

    2015-09-01

    In this paper, a Golay complementary training sequence (TS)-based symbol synchronization scheme is proposed and experimentally demonstrated in multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system with a variable rate low-density parity-check (LDPC) code. Meanwhile, the coding gain and spectral efficiency in the variable rate LDPC-coded MB-OFDM UWBoF system are investigated. By utilizing the non-periodic auto-correlation property of the Golay complementary pair, the start point of LDPC-coded MB-OFDM UWB signal can be estimated accurately. After 100 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1×10-3, the experimental results show that the short block length 64QAM-LDPC coding provides a coding gain of 4.5 dB, 3.8 dB and 2.9 dB for a code rate of 62.5%, 75% and 87.5%, respectively.

  10. Cooperative MIMO communication at wireless sensor network: an error correcting code approach.

    PubMed

    Islam, Mohammad Rakibul; Han, Young Shin

    2011-01-01

    Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error p(b). It is observed that C-MIMO performs more efficiently when the targeted p(b) is smaller. Also the lower encoding rate for LDPC code offers better error characteristics.

  11. Cooperative MIMO Communication at Wireless Sensor Network: An Error Correcting Code Approach

    PubMed Central

    Islam, Mohammad Rakibul; Han, Young Shin

    2011-01-01

    Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error pb. It is observed that C-MIMO performs more efficiently when the targeted pb is smaller. Also the lower encoding rate for LDPC code offers better error characteristics. PMID:22163732

  12. Photonic entanglement-assisted quantum low-density parity-check encoders and decoders.

    PubMed

    Djordjevic, Ivan B

    2010-05-01

    I propose encoder and decoder architectures for entanglement-assisted (EA) quantum low-density parity-check (LDPC) codes suitable for all-optical implementation. I show that two basic gates needed for EA quantum error correction, namely, controlled-NOT (CNOT) and Hadamard gates can be implemented based on Mach-Zehnder interferometer. In addition, I show that EA quantum LDPC codes from balanced incomplete block designs of unitary index require only one entanglement qubit to be shared between source and destination.

  13. Low Density Parity Check Codes: Bandwidth Efficient Channel Coding

    NASA Technical Reports Server (NTRS)

    Fong, Wai; Lin, Shu; Maki, Gary; Yeh, Pen-Shu

    2003-01-01

    Low Density Parity Check (LDPC) Codes provide near-Shannon Capacity performance for NASA Missions. These codes have high coding rates R=0.82 and 0.875 with moderate code lengths, n=4096 and 8176. Their decoders have inherently parallel structures which allows for high-speed implementation. Two codes based on Euclidean Geometry (EG) were selected for flight ASIC implementation. These codes are cyclic and quasi-cyclic in nature and therefore have a simple encoder structure. This results in power and size benefits. These codes also have a large minimum distance as much as d,,, = 65 giving them powerful error correcting capabilities and error floors less than lo- BER. This paper will present development of the LDPC flight encoder and decoder, its applications and status.

  14. Unitals and ovals of symmetric block designs in LDPC and space-time coding

    NASA Astrophysics Data System (ADS)

    Andriamanalimanana, Bruno R.

    2004-08-01

    An approach to the design of LDPC (low density parity check) error-correction and space-time modulation codes involves starting with known mathematical and combinatorial structures, and deriving code properties from structure properties. This paper reports on an investigation of unital and oval configurations within generic symmetric combinatorial designs, not just classical projective planes, as the underlying structure for classes of space-time LDPC outer codes. Of particular interest are the encoding and iterative (sum-product) decoding gains that these codes may provide. Various small-length cases have been numerically implemented in Java and Matlab for a number of channel models.

  15. High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bai, ZengLiang; Wang, XuYang; Yang, ShenShen; Li, YongMin

    2016-01-01

    Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.

  16. Fast QC-LDPC code for free space optical communication

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Zhang, Qi; Udeh, Chinonso Paschal; Wu, Rangzhong

    2017-02-01

    Free Space Optical (FSO) Communication systems use the atmosphere as a propagation medium. Hence the atmospheric turbulence effects lead to multiplicative noise related with signal intensity. In order to suppress the signal fading induced by multiplicative noise, we propose a fast Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) code for FSO Communication systems. As a linear block code based on sparse matrix, the performances of QC-LDPC is extremely near to the Shannon limit. Currently, the studies on LDPC code in FSO Communications is mainly focused on Gauss-channel and Rayleigh-channel, respectively. In this study, the LDPC code design over atmospheric turbulence channel which is nether Gauss-channel nor Rayleigh-channel is closer to the practical situation. Based on the characteristics of atmospheric channel, which is modeled as logarithmic-normal distribution and K-distribution, we designed a special QC-LDPC code, and deduced the log-likelihood ratio (LLR). An irregular QC-LDPC code for fast coding, of which the rates are variable, is proposed in this paper. The proposed code achieves excellent performance of LDPC codes and can present the characteristics of high efficiency in low rate, stable in high rate and less number of iteration. The result of belief propagation (BP) decoding shows that the bit error rate (BER) obviously reduced as the Signal-to-Noise Ratio (SNR) increased. Therefore, the LDPC channel coding technology can effectively improve the performance of FSO. At the same time, the BER, after decoding reduces with the increase of SNR arbitrarily, and not having error limitation platform phenomenon with error rate slowing down.

  17. Received response based heuristic LDPC code for short-range non-line-of-sight ultraviolet communication.

    PubMed

    Qin, Heng; Zuo, Yong; Zhang, Dong; Li, Yinghui; Wu, Jian

    2017-03-06

    Through slight modification on typical photon multiplier tube (PMT) receiver output statistics, a generalized received response model considering both scattered propagation and random detection is presented to investigate the impact of inter-symbol interference (ISI) on link data rate of short-range non-line-of-sight (NLOS) ultraviolet communication. Good agreement with the experimental results by numerical simulation is shown. Based on the received response characteristics, a heuristic check matrix construction algorithm of low-density-parity-check (LDPC) code is further proposed to approach the data rate bound derived in a delayed sampling (DS) binary pulse position modulation (PPM) system. Compared to conventional LDPC coding methods, better bit error ratio (BER) below 1E-05 is achieved for short-range NLOS UVC systems operating at data rate of 2Mbps.

  18. LDPC Codes--Structural Analysis and Decoding Techniques

    ERIC Educational Resources Information Center

    Zhang, Xiaojie

    2012-01-01

    Low-density parity-check (LDPC) codes have been the focus of much research over the past decade thanks to their near Shannon limit performance and to their efficient message-passing (MP) decoding algorithms. However, the error floor phenomenon observed in MP decoding, which manifests itself as an abrupt change in the slope of the error-rate curve,…

  19. Experimental demonstration of the transmission performance for LDPC-coded multiband OFDM ultra-wideband over fiber system

    NASA Astrophysics Data System (ADS)

    He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin; Su, Jinshu

    2015-01-01

    To improve the transmission performance of multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) over optical fiber, a pre-coding scheme based on low-density parity-check (LDPC) is adopted and experimentally demonstrated in the intensity-modulation and direct-detection MB-OFDM UWB over fiber system. Meanwhile, a symbol synchronization and pilot-aided channel estimation scheme is implemented on the receiver of the MB-OFDM UWB over fiber system. The experimental results show that the LDPC pre-coding scheme can work effectively in the MB-OFDM UWB over fiber system. After 70 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1 × 10-3, the receiver sensitivities are improved about 4 dB when the LDPC code rate is 75%.

  20. PMD compensation in fiber-optic communication systems with direct detection using LDPC-coded OFDM.

    PubMed

    Djordjevic, Ivan B

    2007-04-02

    The possibility of polarization-mode dispersion (PMD) compensation in fiber-optic communication systems with direct detection using a simple channel estimation technique and low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) is demonstrated. It is shown that even for differential group delay (DGD) of 4/BW (BW is the OFDM signal bandwidth), the degradation due to the first-order PMD can be completely compensated for. Two classes of LDPC codes designed based on two different combinatorial objects (difference systems and product of combinatorial designs) suitable for use in PMD compensation are introduced.

  1. A modified non-binary LDPC scheme based on watermark symbols in high speed optical transmission systems

    NASA Astrophysics Data System (ADS)

    Wang, Liming; Qiao, Yaojun; Yu, Qian; Zhang, Wenbo

    2016-04-01

    We introduce a watermark non-binary low-density parity check code (NB-LDPC) scheme, which can estimate the time-varying noise variance by using prior information of watermark symbols, to improve the performance of NB-LDPC codes. And compared with the prior-art counterpart, the watermark scheme can bring about 0.25 dB improvement in net coding gain (NCG) at bit error rate (BER) of 1e-6 and 36.8-81% reduction of the iteration numbers. Obviously, the proposed scheme shows great potential in terms of error correction performance and decoding efficiency.

  2. Performance Evaluation of LDPC Coding and Iterative Decoding System in BPM R/W Channel Affected by Head Field Gradient, Media SFD and Demagnetization Field

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasuaki; Okamoto, Yoshihiro; Osawa, Hisashi; Aoi, Hajime; Muraoka, Hiroaki

    We evaluate the performance of the write-margin for the low-density parity-check (LDPC) coding and iterative decoding system in the bit-patterned media (BPM) R/W channel affected by the write-head field gradient, the media switching field distribution (SFD), the demagnetization field from adjacent islands and the island position deviation. It is clarified that the LDPC coding and iterative decoding system in R/W channel using BPM at 3 Tbit/inch2 has a write-margin of about 20%.

  3. Iterative decoding of SOVA and LDPC product code for bit-patterned media recoding

    NASA Astrophysics Data System (ADS)

    Jeong, Seongkwon; Lee, Jaejin

    2018-05-01

    The demand for high-density storage systems has increased due to the exponential growth of data. Bit-patterned media recording (BPMR) is one of the promising technologies to achieve the density of 1Tbit/in2 and higher. To increase the areal density in BPMR, the spacing between islands needs to be reduced, yet this aggravates inter-symbol interference and inter-track interference and degrades the bit error rate performance. In this paper, we propose a decision feedback scheme using low-density parity check (LDPC) product code for BPMR. This scheme can improve the decoding performance using an iterative approach with extrinsic information and log-likelihood ratio value between iterative soft output Viterbi algorithm and LDPC product code. Simulation results show that the proposed LDPC product code can offer 1.8dB and 2.3dB gains over the one LDPC code at the density of 2.5 and 3 Tb/in2, respectively, when bit error rate is 10-6.

  4. A novel construction method of QC-LDPC codes based on the subgroup of the finite field multiplicative group for optical transmission systems

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-guo; Zhou, Guang-xiang; Gao, Wen-chun; Wang, Yong; Lin, Jin-zhao; Pang, Yu

    2016-01-01

    According to the requirements of the increasing development for optical transmission systems, a novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes based on the subgroup of the finite field multiplicative group is proposed. Furthermore, this construction method can effectively avoid the girth-4 phenomena and has the advantages such as simpler construction, easier implementation, lower encoding/decoding complexity, better girth properties and more flexible adjustment for the code length and code rate. The simulation results show that the error correction performance of the QC-LDPC(3 780,3 540) code with the code rate of 93.7% constructed by this proposed method is excellent, its net coding gain is respectively 0.3 dB, 0.55 dB, 1.4 dB and 1.98 dB higher than those of the QC-LDPC(5 334,4 962) code constructed by the method based on the inverse element characteristics in the finite field multiplicative group, the SCG-LDPC(3 969,3 720) code constructed by the systematically constructed Gallager (SCG) random construction method, the LDPC(32 640,30 592) code in ITU-T G.975.1 and the classic RS(255,239) code which is widely used in optical transmission systems in ITU-T G.975 at the bit error rate ( BER) of 10-7. Therefore, the constructed QC-LDPC(3 780,3 540) code is more suitable for optical transmission systems.

  5. Bounded-Angle Iterative Decoding of LDPC Codes

    NASA Technical Reports Server (NTRS)

    Dolinar, Samuel; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2009-01-01

    Bounded-angle iterative decoding is a modified version of conventional iterative decoding, conceived as a means of reducing undetected-error rates for short low-density parity-check (LDPC) codes. For a given code, bounded-angle iterative decoding can be implemented by means of a simple modification of the decoder algorithm, without redesigning the code. Bounded-angle iterative decoding is based on a representation of received words and code words as vectors in an n-dimensional Euclidean space (where n is an integer).

  6. A code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check codes

    NASA Astrophysics Data System (ADS)

    Bai, Cheng-lin; Cheng, Zhi-hui

    2016-09-01

    In order to further improve the carrier synchronization estimation range and accuracy at low signal-to-noise ratio ( SNR), this paper proposes a code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check (NB-LDPC) codes to study the polarization-division-multiplexing coherent optical orthogonal frequency division multiplexing (PDM-CO-OFDM) system performance in the cases of quadrature phase shift keying (QPSK) and 16 quadrature amplitude modulation (16-QAM) modes. The simulation results indicate that this algorithm can enlarge frequency and phase offset estimation ranges and enhance accuracy of the system greatly, and the bit error rate ( BER) performance of the system is improved effectively compared with that of the system employing traditional NB-LDPC code-aided carrier synchronization algorithm.

  7. LDPC-coded MIMO optical communication over the atmospheric turbulence channel using Q-ary pulse-position modulation.

    PubMed

    Djordjevic, Ivan B

    2007-08-06

    We describe a coded power-efficient transmission scheme based on repetition MIMO principle suitable for communication over the atmospheric turbulence channel, and determine its channel capacity. The proposed scheme employs the Q-ary pulse-position modulation. We further study how to approach the channel capacity limits using low-density parity-check (LDPC) codes. Component LDPC codes are designed using the concept of pairwise-balanced designs. Contrary to the several recent publications, bit-error rates and channel capacities are reported assuming non-ideal photodetection. The atmospheric turbulence channel is modeled using the Gamma-Gamma distribution function due to Al-Habash et al. Excellent bit-error rate performance improvement, over uncoded case, is found.

  8. Using LDPC Code Constraints to Aid Recovery of Symbol Timing

    NASA Technical Reports Server (NTRS)

    Jones, Christopher; Villasnor, John; Lee, Dong-U; Vales, Esteban

    2008-01-01

    A method of utilizing information available in the constraints imposed by a low-density parity-check (LDPC) code has been proposed as a means of aiding the recovery of symbol timing in the reception of a binary-phase-shift-keying (BPSK) signal representing such a code in the presence of noise, timing error, and/or Doppler shift between the transmitter and the receiver. This method and the receiver architecture in which it would be implemented belong to a class of timing-recovery methods and corresponding receiver architectures characterized as pilotless in that they do not require transmission and reception of pilot signals. Acquisition and tracking of a signal of the type described above have traditionally been performed upstream of, and independently of, decoding and have typically involved utilization of a phase-locked loop (PLL). However, the LDPC decoding process, which is iterative, provides information that can be fed back to the timing-recovery receiver circuits to improve performance significantly over that attainable in the absence of such feedback. Prior methods of coupling LDPC decoding with timing recovery had focused on the use of output code words produced as the iterations progress. In contrast, in the present method, one exploits the information available from the metrics computed for the constraint nodes of an LDPC code during the decoding process. In addition, the method involves the use of a waveform model that captures, better than do the waveform models of the prior methods, distortions introduced by receiver timing errors and transmitter/ receiver motions. An LDPC code is commonly represented by use of a bipartite graph containing two sets of nodes. In the graph corresponding to an (n,k) code, the n variable nodes correspond to the code word symbols and the n-k constraint nodes represent the constraints that the code places on the variable nodes in order for them to form a valid code word. The decoding procedure involves iterative computation of values associated with these nodes. A constraint node represents a parity-check equation using a set of variable nodes as inputs. A valid decoded code word is obtained if all parity-check equations are satisfied. After each iteration, the metrics associated with each constraint node can be evaluated to determine the status of the associated parity check. Heretofore, normally, these metrics would be utilized only within the LDPC decoding process to assess whether or not variable nodes had converged to a codeword. In the present method, it is recognized that these metrics can be used to determine accuracy of the timing estimates used in acquiring the sampled data that constitute the input to the LDPC decoder. In fact, the number of constraints that are satisfied exhibits a peak near the optimal timing estimate. Coarse timing estimation (or first-stage estimation as described below) is found via a parametric search for this peak. The present method calls for a two-stage receiver architecture illustrated in the figure. The first stage would correct large time delays and frequency offsets; the second stage would track random walks and correct residual time and frequency offsets. In the first stage, constraint-node feedback from the LDPC decoder would be employed in a search algorithm in which the searches would be performed in successively narrower windows to find the correct time delay and/or frequency offset. The second stage would include a conventional first-order PLL with a decision-aided timing-error detector that would utilize, as its decision aid, decoded symbols from the LDPC decoder. The method has been tested by means of computational simulations in cases involving various timing and frequency errors. The results of the simulations ined in the ideal case of perfect timing in the receiver.

  9. Encoders for block-circulant LDPC codes

    NASA Technical Reports Server (NTRS)

    Andrews, Kenneth; Dolinar, Sam; Thorpe, Jeremy

    2005-01-01

    In this paper, we present two encoding methods for block-circulant LDPC codes. The first is an iterative encoding method based on the erasure decoding algorithm, and the computations required are well organized due to the block-circulant structure of the parity check matrix. The second method uses block-circulant generator matrices, and the encoders are very similar to those for recursive convolutional codes. Some encoders of the second type have been implemented in a small Field Programmable Gate Array (FPGA) and operate at 100 Msymbols/second.

  10. Strategic and Tactical Decision-Making Under Uncertainty

    DTIC Science & Technology

    2006-01-03

    message passing algorithms. In recent work we applied this method to the problem of joint decoding of a low-density parity-check ( LDPC ) code and a partial...Joint Decoding of LDPC Codes and Partial-Response Channels." IEEE Transactions on Communications. Vol. 54, No. 7, 1149-1153, 2006. P. Pakzad and V...Michael I. Jordan PAGES U U U SAPR 20 19b. TELEPHONE NUMBER (Include area code ) 510/642-3806 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18

  11. Pilotless Frame Synchronization Using LDPC Code Constraints

    NASA Technical Reports Server (NTRS)

    Jones, Christopher; Vissasenor, John

    2009-01-01

    A method of pilotless frame synchronization has been devised for low- density parity-check (LDPC) codes. In pilotless frame synchronization , there are no pilot symbols; instead, the offset is estimated by ex ploiting selected aspects of the structure of the code. The advantag e of pilotless frame synchronization is that the bandwidth of the sig nal is reduced by an amount associated with elimination of the pilot symbols. The disadvantage is an increase in the amount of receiver data processing needed for frame synchronization.

  12. Optimal Codes for the Burst Erasure Channel

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2010-01-01

    Deep space communications over noisy channels lead to certain packets that are not decodable. These packets leave gaps, or bursts of erasures, in the data stream. Burst erasure correcting codes overcome this problem. These are forward erasure correcting codes that allow one to recover the missing gaps of data. Much of the recent work on this topic concentrated on Low-Density Parity-Check (LDPC) codes. These are more complicated to encode and decode than Single Parity Check (SPC) codes or Reed-Solomon (RS) codes, and so far have not been able to achieve the theoretical limit for burst erasure protection. A block interleaved maximum distance separable (MDS) code (e.g., an SPC or RS code) offers near-optimal burst erasure protection, in the sense that no other scheme of equal total transmission length and code rate could improve the guaranteed correctible burst erasure length by more than one symbol. The optimality does not depend on the length of the code, i.e., a short MDS code block interleaved to a given length would perform as well as a longer MDS code interleaved to the same overall length. As a result, this approach offers lower decoding complexity with better burst erasure protection compared to other recent designs for the burst erasure channel (e.g., LDPC codes). A limitation of the design is its lack of robustness to channels that have impairments other than burst erasures (e.g., additive white Gaussian noise), making its application best suited for correcting data erasures in layers above the physical layer. The efficiency of a burst erasure code is the length of its burst erasure correction capability divided by the theoretical upper limit on this length. The inefficiency is one minus the efficiency. The illustration compares the inefficiency of interleaved RS codes to Quasi-Cyclic (QC) LDPC codes, Euclidean Geometry (EG) LDPC codes, extended Irregular Repeat Accumulate (eIRA) codes, array codes, and random LDPC codes previously proposed for burst erasure protection. As can be seen, the simple interleaved RS codes have substantially lower inefficiency over a wide range of transmission lengths.

  13. Rate-compatible protograph LDPC code families with linear minimum distance

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Dolinar, Jr., Samuel J. (Inventor); Jones, Christopher R. (Inventor)

    2012-01-01

    Digital communication coding methods are shown, which generate certain types of low-density parity-check (LDPC) codes built from protographs. A first method creates protographs having the linear minimum distance property and comprising at least one variable node with degree less than 3. A second method creates families of protographs of different rates, all structurally identical for all rates except for a rate-dependent designation of certain variable nodes as transmitted or non-transmitted. A third method creates families of protographs of different rates, all structurally identical for all rates except for a rate-dependent designation of the status of certain variable nodes as non-transmitted or set to zero. LDPC codes built from the protographs created by these methods can simultaneously have low error floors and low iterative decoding thresholds.

  14. Integrated Performance of Next Generation High Data Rate Receiver and AR4JA LDPC Codec for Space Communications

    NASA Technical Reports Server (NTRS)

    Cheng, Michael K.; Lyubarev, Mark; Nakashima, Michael A.; Andrews, Kenneth S.; Lee, Dennis

    2008-01-01

    Low-density parity-check (LDPC) codes are the state-of-the-art in forward error correction (FEC) technology that exhibits capacity approaching performance. The Jet Propulsion Laboratory (JPL) has designed a family of LDPC codes that are similar in structure and therefore, leads to a single decoder implementation. The Accumulate-Repeat-by-4-Jagged- Accumulate (AR4JA) code design offers a family of codes with rates 1/2, 2/3, 4/5 and lengths 1024, 4096, 16384 information bits. Performance is less than one dB from capacity for all combinations.Integrating a stand-alone LDPC decoder with a commercial-off-the-shelf (COTS) receiver faces additional challenges than building a single receiver-decoder unit from scratch. In this work, we outline the issues and show that these additional challenges can be over-come by simple solutions. To demonstrate that an LDPC decoder can be made to work seamlessly with a COTS receiver, we interface an AR4JA LDPC decoder developed on a field-programmable gate array (FPGA) with a modern high data rate receiver and mea- sure the combined receiver-decoder performance. Through optimizations that include an improved frame synchronizer and different soft-symbol scaling algorithms, we show that a combined implementation loss of less than one dB is possible and therefore, most of the coding gain evidence in theory can also be obtained in practice. Our techniques can benefit any modem that utilizes an advanced FEC code.

  15. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  16. DNA Barcoding through Quaternary LDPC Codes

    PubMed Central

    Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar

    2015-01-01

    For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10−2 per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10−9 at the expense of a rate of read losses just in the order of 10−6. PMID:26492348

  17. DNA Barcoding through Quaternary LDPC Codes.

    PubMed

    Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar

    2015-01-01

    For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10(-2) per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10(-9) at the expense of a rate of read losses just in the order of 10(-6).

  18. Statistical physics inspired energy-efficient coded-modulation for optical communications.

    PubMed

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2012-04-15

    Because Shannon's entropy can be obtained by Stirling's approximation of thermodynamics entropy, the statistical physics energy minimization methods are directly applicable to the signal constellation design. We demonstrate that statistical physics inspired energy-efficient (EE) signal constellation designs, in combination with large-girth low-density parity-check (LDPC) codes, significantly outperform conventional LDPC-coded polarization-division multiplexed quadrature amplitude modulation schemes. We also describe an EE signal constellation design algorithm. Finally, we propose the discrete-time implementation of D-dimensional transceiver and corresponding EE polarization-division multiplexed system. © 2012 Optical Society of America

  19. High-efficiency reconciliation for continuous variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bai, Zengliang; Yang, Shenshen; Li, Yongmin

    2017-04-01

    Quantum key distribution (QKD) is the most mature application of quantum information technology. Information reconciliation is a crucial step in QKD and significantly affects the final secret key rates shared between two legitimate parties. We analyze and compare various construction methods of low-density parity-check (LDPC) codes and design high-performance irregular LDPC codes with a block length of 106. Starting from these good codes and exploiting the slice reconciliation technique based on multilevel coding and multistage decoding, we realize high-efficiency Gaussian key reconciliation with efficiency higher than 95% for signal-to-noise ratios above 1. Our demonstrated method can be readily applied in continuous variable QKD.

  20. LDPC-PPM Coding Scheme for Optical Communication

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged; Moision, Bruce; Divsalar, Dariush; Fitz, Michael

    2009-01-01

    In a proposed coding-and-modulation/demodulation-and-decoding scheme for a free-space optical communication system, an error-correcting code of the low-density parity-check (LDPC) type would be concatenated with a modulation code that consists of a mapping of bits to pulse-position-modulation (PPM) symbols. Hence, the scheme is denoted LDPC-PPM. This scheme could be considered a competitor of a related prior scheme in which an outer convolutional error-correcting code is concatenated with an interleaving operation, a bit-accumulation operation, and a PPM inner code. Both the prior and present schemes can be characterized as serially concatenated pulse-position modulation (SCPPM) coding schemes. Figure 1 represents a free-space optical communication system based on either the present LDPC-PPM scheme or the prior SCPPM scheme. At the transmitting terminal, the original data (u) are processed by an encoder into blocks of bits (a), and the encoded data are mapped to PPM of an optical signal (c). For the purpose of design and analysis, the optical channel in which the PPM signal propagates is modeled as a Poisson point process. At the receiving terminal, the arriving optical signal (y) is demodulated to obtain an estimate (a^) of the coded data, which is then processed by a decoder to obtain an estimate (u^) of the original data.

  1. Transmission over UWB channels with OFDM system using LDPC coding

    NASA Astrophysics Data System (ADS)

    Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech

    2009-06-01

    Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.

  2. Rate-compatible protograph LDPC code families with linear minimum distance

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Dolinar, Jr., Samuel J (Inventor); Jones, Christopher R. (Inventor)

    2012-01-01

    Digital communication coding methods are shown, which generate certain types of low-density parity-check (LDPC) codes built from protographs. A first method creates protographs having the linear minimum distance property and comprising at least one variable node with degree less than 3. A second method creates families of protographs of different rates, all having the linear minimum distance property, and structurally identical for all rates except for a rate-dependent designation of certain variable nodes as transmitted or non-transmitted. A third method creates families of protographs of different rates, all having the linear minimum distance property, and structurally identical for all rates except for a rate-dependent designation of the status of certain variable nodes as non-transmitted or set to zero. LDPC codes built from the protographs created by these methods can simultaneously have low error floors and low iterative decoding thresholds, and families of such codes of different rates can be decoded efficiently using a common decoding architecture.

  3. Secret information reconciliation based on punctured low-density parity-check codes for continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Jiang, Xue-Qin; Huang, Peng; Huang, Duan; Lin, Dakai; Zeng, Guihua

    2017-02-01

    Achieving information theoretic security with practical complexity is of great interest to continuous-variable quantum key distribution in the postprocessing procedure. In this paper, we propose a reconciliation scheme based on the punctured low-density parity-check (LDPC) codes. Compared to the well-known multidimensional reconciliation scheme, the present scheme has lower time complexity. Especially when the chosen punctured LDPC code achieves the Shannon capacity, the proposed reconciliation scheme can remove the information that has been leaked to an eavesdropper in the quantum transmission phase. Therefore, there is no information leaked to the eavesdropper after the reconciliation stage. This indicates that the privacy amplification algorithm of the postprocessing procedure is no more needed after the reconciliation process. These features lead to a higher secret key rate, optimal performance, and availability for the involved quantum key distribution scheme.

  4. Capacity Maximizing Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged; Jones, Christopher

    2010-01-01

    Some non-traditional signal constellations have been proposed for transmission of data over the Additive White Gaussian Noise (AWGN) channel using such channel-capacity-approaching codes as low-density parity-check (LDPC) or turbo codes. Computational simulations have shown performance gains of more than 1 dB over traditional constellations. These gains could be translated to bandwidth- efficient communications, variously, over longer distances, using less power, or using smaller antennas. The proposed constellations have been used in a bit-interleaved coded modulation system employing state-ofthe-art LDPC codes. In computational simulations, these constellations were shown to afford performance gains over traditional constellations as predicted by the gap between the parallel decoding capacity of the constellations and the Gaussian capacity

  5. LDPC product coding scheme with extrinsic information for bit patterned media recoding

    NASA Astrophysics Data System (ADS)

    Jeong, Seongkwon; Lee, Jaejin

    2017-05-01

    Since the density limit of the current perpendicular magnetic storage system will soon be reached, bit patterned media recording (BPMR) is a promising candidate for the next generation storage system to achieve an areal density beyond 1 Tb/in2. Each recording bit is stored in a fabricated magnetic island and the space between the magnetic islands is nonmagnetic in BPMR. To approach recording densities of 1 Tb/in2, the spacing of the magnetic islands must be less than 25 nm. Consequently, severe inter-symbol interference (ISI) and inter-track interference (ITI) occur. ITI and ISI degrade the performance of BPMR. In this paper, we propose a low-density parity check (LDPC) product coding scheme that exploits extrinsic information for BPMR. This scheme shows an improved bit error rate performance compared to that in which one LDPC code is used.

  6. A Low-Complexity and High-Performance 2D Look-Up Table for LDPC Hardware Implementation

    NASA Astrophysics Data System (ADS)

    Chen, Jung-Chieh; Yang, Po-Hui; Lain, Jenn-Kaie; Chung, Tzu-Wen

    In this paper, we propose a low-complexity, high-efficiency two-dimensional look-up table (2D LUT) for carrying out the sum-product algorithm in the decoding of low-density parity-check (LDPC) codes. Instead of employing adders for the core operation when updating check node messages, in the proposed scheme, the main term and correction factor of the core operation are successfully merged into a compact 2D LUT. Simulation results indicate that the proposed 2D LUT not only attains close-to-optimal bit error rate performance but also enjoys a low complexity advantage that is suitable for hardware implementation.

  7. Protograph LDPC Codes with Node Degrees at Least 3

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Jones, Christopher

    2006-01-01

    In this paper we present protograph codes with a small number of degree-3 nodes and one high degree node. The iterative decoding threshold for proposed rate 1/2 codes are lower, by about 0.2 dB, than the best known irregular LDPC codes with degree at least 3. The main motivation is to gain linear minimum distance to achieve low error floor. Also to construct rate-compatible protograph-based LDPC codes for fixed block length that simultaneously achieves low iterative decoding threshold and linear minimum distance. We start with a rate 1/2 protograph LDPC code with degree-3 nodes and one high degree node. Higher rate codes are obtained by connecting check nodes with degree-2 non-transmitted nodes. This is equivalent to constraint combining in the protograph. The condition where all constraints are combined corresponds to the highest rate code. This constraint must be connected to nodes of degree at least three for the graph to have linear minimum distance. Thus having node degree at least 3 for rate 1/2 guarantees linear minimum distance property to be preserved for higher rates. Through examples we show that the iterative decoding threshold as low as 0.544 dB can be achieved for small protographs with node degrees at least three. A family of low- to high-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.

  8. Low-Density Parity-Check Code Design Techniques to Simplify Encoding

    NASA Astrophysics Data System (ADS)

    Perez, J. M.; Andrews, K.

    2007-11-01

    This work describes a method for encoding low-density parity-check (LDPC) codes based on the accumulate-repeat-4-jagged-accumulate (AR4JA) scheme, using the low-density parity-check matrix H instead of the dense generator matrix G. The use of the H matrix to encode allows a significant reduction in memory consumption and provides the encoder design a great flexibility. Also described are new hardware-efficient codes, based on the same kind of protographs, which require less memory storage and area, allowing at the same time a reduction in the encoding delay.

  9. Quantum Kronecker sum-product low-density parity-check codes with finite rate

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Pryadko, Leonid P.

    2013-07-01

    We introduce an ansatz for quantum codes which gives the hypergraph-product (generalized toric) codes by Tillich and Zémor and generalized bicycle codes by MacKay as limiting cases. The construction allows for both the lower and the upper bounds on the minimum distance; they scale as a square root of the block length. Many thus defined codes have a finite rate and limited-weight stabilizer generators, an analog of classical low-density parity-check (LDPC) codes. Compared to the hypergraph-product codes, hyperbicycle codes generally have a wider range of parameters; in particular, they can have a higher rate while preserving the estimated error threshold.

  10. 45 Gb/s low complexity optical front-end for soft-decision LDPC decoders.

    PubMed

    Sakib, Meer Nazmus; Moayedi, Monireh; Gross, Warren J; Liboiron-Ladouceur, Odile

    2012-07-30

    In this paper a low complexity and energy efficient 45 Gb/s soft-decision optical front-end to be used with soft-decision low-density parity-check (LDPC) decoders is demonstrated. The results show that the optical front-end exhibits a net coding gain of 7.06 and 9.62 dB for post forward error correction bit error rate of 10(-7) and 10(-12) for long block length LDPC(32768,26803) code. The performance over a hard decision front-end is 1.9 dB for this code. It is shown that the soft-decision circuit can also be used as a 2-bit flash type analog-to-digital converter (ADC), in conjunction with equalization schemes. At bit rate of 15 Gb/s using RS(255,239), LDPC(672,336), (672, 504), (672, 588), and (1440, 1344) used with a 6-tap finite impulse response (FIR) equalizer will result in optical power savings of 3, 5, 7, 9.5 and 10.5 dB, respectively. The 2-bit flash ADC consumes only 2.71 W at 32 GSamples/s. At 45 GSamples/s the power consumption is estimated to be 4.95 W.

  11. An LDPC Decoder Architecture for Wireless Sensor Network Applications

    PubMed Central

    Giancarlo Biroli, Andrea Dario; Martina, Maurizio; Masera, Guido

    2012-01-01

    The pervasive use of wireless sensors in a growing spectrum of human activities reinforces the need for devices with low energy dissipation. In this work, coded communication between a couple of wireless sensor devices is considered as a method to reduce the dissipated energy per transmitted bit with respect to uncoded communication. Different Low Density Parity Check (LDPC) codes are considered to this purpose and post layout results are shown for a low-area low-energy decoder, which offers percentage energy savings with respect to the uncoded solution in the range of 40%–80%, depending on considered environment, distance and bit error rate. PMID:22438724

  12. An LDPC decoder architecture for wireless sensor network applications.

    PubMed

    Biroli, Andrea Dario Giancarlo; Martina, Maurizio; Masera, Guido

    2012-01-01

    The pervasive use of wireless sensors in a growing spectrum of human activities reinforces the need for devices with low energy dissipation. In this work, coded communication between a couple of wireless sensor devices is considered as a method to reduce the dissipated energy per transmitted bit with respect to uncoded communication. Different Low Density Parity Check (LDPC) codes are considered to this purpose and post layout results are shown for a low-area low-energy decoder, which offers percentage energy savings with respect to the uncoded solution in the range of 40%-80%, depending on considered environment, distance and bit error rate.

  13. FPGA implementation of advanced FEC schemes for intelligent aggregation networks

    NASA Astrophysics Data System (ADS)

    Zou, Ding; Djordjevic, Ivan B.

    2016-02-01

    In state-of-the-art fiber-optics communication systems the fixed forward error correction (FEC) and constellation size are employed. While it is important to closely approach the Shannon limit by using turbo product codes (TPC) and low-density parity-check (LDPC) codes with soft-decision decoding (SDD) algorithm; rate-adaptive techniques, which enable increased information rates over short links and reliable transmission over long links, are likely to become more important with ever-increasing network traffic demands. In this invited paper, we describe a rate adaptive non-binary LDPC coding technique, and demonstrate its flexibility and good performance exhibiting no error floor at BER down to 10-15 in entire code rate range, by FPGA-based emulation, making it a viable solution in the next-generation high-speed intelligent aggregation networks.

  14. Encoders for block-circulant LDPC codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2009-01-01

    Methods and apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three or four are disclosed. Block circulant matrices are used. A first method and apparatus make use of the block-circulant structure of the parity check matrix. A second method and apparatus use block-circulant generator matrices.

  15. LDPC Codes with Minimum Distance Proportional to Block Size

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Jones, Christopher; Dolinar, Samuel; Thorpe, Jeremy

    2009-01-01

    Low-density parity-check (LDPC) codes characterized by minimum Hamming distances proportional to block sizes have been demonstrated. Like the codes mentioned in the immediately preceding article, the present codes are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. The previously mentioned codes have low decoding thresholds and reasonably low error floors. However, the minimum Hamming distances of those codes do not grow linearly with code-block sizes. Codes that have this minimum-distance property exhibit very low error floors. Examples of such codes include regular LDPC codes with variable degrees of at least 3. Unfortunately, the decoding thresholds of regular LDPC codes are high. Hence, there is a need for LDPC codes characterized by both low decoding thresholds and, in order to obtain acceptably low error floors, minimum Hamming distances that are proportional to code-block sizes. The present codes were developed to satisfy this need. The minimum Hamming distances of the present codes have been shown, through consideration of ensemble-average weight enumerators, to be proportional to code block sizes. As in the cases of irregular ensembles, the properties of these codes are sensitive to the proportion of degree-2 variable nodes. A code having too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code having too many such nodes tends not to exhibit a minimum distance that is proportional to block size. Results of computational simulations have shown that the decoding thresholds of codes of the present type are lower than those of regular LDPC codes. Included in the simulations were a few examples from a family of codes characterized by rates ranging from low to high and by thresholds that adhere closely to their respective channel capacity thresholds; the simulation results from these examples showed that the codes in question have low error floors as well as low decoding thresholds. As an example, the illustration shows the protograph (which represents the blueprint for overall construction) of one proposed code family for code rates greater than or equal to 1.2. Any size LDPC code can be obtained by copying the protograph structure N times, then permuting the edges. The illustration also provides Field Programmable Gate Array (FPGA) hardware performance simulations for this code family. In addition, the illustration provides minimum signal-to-noise ratios (Eb/No) in decibels (decoding thresholds) to achieve zero error rates as the code block size goes to infinity for various code rates. In comparison with the codes mentioned in the preceding article, these codes have slightly higher decoding thresholds.

  16. Multiple component codes based generalized LDPC codes for high-speed optical transport.

    PubMed

    Djordjevic, Ivan B; Wang, Ting

    2014-07-14

    A class of generalized low-density parity-check (GLDPC) codes suitable for optical communications is proposed, which consists of multiple local codes. It is shown that Hamming, BCH, and Reed-Muller codes can be used as local codes, and that the maximum a posteriori probability (MAP) decoding of these local codes by Ashikhmin-Lytsin algorithm is feasible in terms of complexity and performance. We demonstrate that record coding gains can be obtained from properly designed GLDPC codes, derived from multiple component codes. We then show that several recently proposed classes of LDPC codes such as convolutional and spatially-coupled codes can be described using the concept of GLDPC coding, which indicates that the GLDPC coding can be used as a unified platform for advanced FEC enabling ultra-high speed optical transport. The proposed class of GLDPC codes is also suitable for code-rate adaption, to adjust the error correction strength depending on the optical channel conditions.

  17. Performance optimization of PM-16QAM transmission system enabled by real-time self-adaptive coding.

    PubMed

    Qu, Zhen; Li, Yao; Mo, Weiyang; Yang, Mingwei; Zhu, Shengxiang; Kilper, Daniel C; Djordjevic, Ivan B

    2017-10-15

    We experimentally demonstrate self-adaptive coded 5×100  Gb/s WDM polarization multiplexed 16 quadrature amplitude modulation transmission over a 100 km fiber link, which is enabled by a real-time control plane. The real-time optical signal-to-noise ratio (OSNR) is measured using an optical performance monitoring device. The OSNR measurement is processed and fed back using control plane logic and messaging to the transmitter side for code adaptation, where the binary data are adaptively encoded with three types of low-density parity-check (LDPC) codes with code rates of 0.8, 0.75, and 0.7 of large girth. The total code-adaptation latency is measured to be 2273 ms. Compared with transmission without adaptation, average net capacity improvements of 102%, 36%, and 7.5% are obtained, respectively, by adaptive LDPC coding.

  18. Design and implementation of a channel decoder with LDPC code

    NASA Astrophysics Data System (ADS)

    Hu, Diqing; Wang, Peng; Wang, Jianzong; Li, Tianquan

    2008-12-01

    Because Toshiba quit the competition, there is only one standard of blue-ray disc: BLU-RAY DISC, which satisfies the demands of high-density video programs. But almost all the patents are gotten by big companies such as Sony, Philips. As a result we must pay much for these patents when our productions use BD. As our own high-density optical disk storage system, Next-Generation Versatile Disc(NVD) which proposes a new data format and error correction code with independent intellectual property rights and high cost performance owns higher coding efficiency than DVD and 12GB which could meet the demands of playing the high-density video programs. In this paper, we develop Low-Density Parity-Check Codes (LDPC): a new channel encoding process and application scheme using Q-matrix based on LDPC encoding has application in NVD's channel decoder. And combined with the embedded system portable feature of SOPC system, we have completed all the decoding modules by FPGA. In the NVD experiment environment, tests are done. Though there are collisions between LDPC and Run-Length-Limited modulation codes (RLL) which are used in optical storage system frequently, the system is provided as a suitable solution. At the same time, it overcomes the defects of the instability and inextensibility, which occurred in the former decoding system of NVD--it was implemented by hardware.

  19. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber.

    PubMed

    Wang, Andong; Zhu, Long; Chen, Shi; Du, Cheng; Mo, Qi; Wang, Jian

    2016-05-30

    Mode-division multiplexing over fibers has attracted increasing attention over the last few years as a potential solution to further increase fiber transmission capacity. In this paper, we demonstrate the viability of orbital angular momentum (OAM) modes transmission over a 50-km few-mode fiber (FMF). By analyzing mode properties of eigen modes in an FMF, we study the inner mode group differential modal delay (DMD) in FMF, which may influence the transmission capacity in long-distance OAM modes transmission and multiplexing. To mitigate the impact of large inner mode group DMD in long-distance fiber-based OAM modes transmission, we use low-density parity-check (LDPC) codes to increase the system reliability. By evaluating the performance of LDPC-coded single OAM mode transmission over 50-km fiber, significant coding gains of >4 dB, 8 dB and 14 dB are demonstrated for 1-Gbaud, 2-Gbaud and 5-Gbaud quadrature phase-shift keying (QPSK) signals, respectively. Furthermore, in order to verify and compare the influence of DMD in long-distance fiber transmission, single OAM mode transmission over 10-km FMF is also demonstrated in the experiment. Finally, we experimentally demonstrate OAM multiplexing and transmission over a 50-km FMF using LDPC-coded 1-Gbaud QPSK signals to compensate the influence of mode crosstalk and DMD in the 50 km FMF.

  20. Maximum likelihood decoding analysis of Accumulate-Repeat-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    Repeat-Accumulate (RA) codes are the simplest turbo-like codes that achieve good performance. However, they cannot compete with Turbo codes or low-density parity check codes (LDPC) as far as performance is concerned. The Accumulate Repeat Accumulate (ARA) codes, as a subclass of LDPC codes, are obtained by adding a pre-coder in front of RA codes with puncturing where an accumulator is chosen as a precoder. These codes not only are very simple, but also achieve excellent performance with iterative decoding. In this paper, the performance of these codes with (ML) decoding are analyzed and compared to random codes by very tight bounds. The weight distribution of some simple ARA codes is obtained, and through existing tightest bounds we have shown the ML SNR threshold of ARA codes approaches very closely to the performance of random codes. We have shown that the use of precoder improves the SNR threshold but interleaving gain remains unchanged with respect to RA code with puncturing.

  1. On the optimum signal constellation design for high-speed optical transport networks.

    PubMed

    Liu, Tao; Djordjevic, Ivan B

    2012-08-27

    In this paper, we first describe an optimum signal constellation design algorithm, which is optimum in MMSE-sense, called MMSE-OSCD, for channel capacity achieving source distribution. Secondly, we introduce a feedback channel capacity inspired optimum signal constellation design (FCC-OSCD) to further improve the performance of MMSE-OSCD, inspired by the fact that feedback channel capacity is higher than that of systems without feedback. The constellations obtained by FCC-OSCD are, however, OSNR dependent. The optimization is jointly performed together with regular quasi-cyclic low-density parity-check (LDPC) code design. Such obtained coded-modulation scheme, in combination with polarization-multiplexing, is suitable as both 400 Gb/s and multi-Tb/s optical transport enabling technology. Using large girth LDPC code, we demonstrate by Monte Carlo simulations that a 32-ary signal constellation, obtained by FCC-OSCD, outperforms previously proposed optimized 32-ary CIPQ signal constellation by 0.8 dB at BER of 10(-7). On the other hand, the LDPC-coded 16-ary FCC-OSCD outperforms 16-QAM by 1.15 dB at the same BER.

  2. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  3. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  4. An Efficient Downlink Scheduling Strategy Using Normal Graphs for Multiuser MIMO Wireless Systems

    NASA Astrophysics Data System (ADS)

    Chen, Jung-Chieh; Wu, Cheng-Hsuan; Lee, Yao-Nan; Wen, Chao-Kai

    Inspired by the success of the low-density parity-check (LDPC) codes in the field of error-control coding, in this paper we propose transforming the downlink multiuser multiple-input multiple-output scheduling problem into an LDPC-like problem using the normal graph. Based on the normal graph framework, soft information, which indicates the probability that each user will be scheduled to transmit packets at the access point through a specified angle-frequency sub-channel, is exchanged among the local processors to iteratively optimize the multiuser transmission schedule. Computer simulations show that the proposed algorithm can efficiently schedule simultaneous multiuser transmission which then increases the overall channel utilization and reduces the average packet delay.

  5. Percolation bounds for decoding thresholds with correlated erasures in quantum LDPC codes

    NASA Astrophysics Data System (ADS)

    Hamilton, Kathleen; Pryadko, Leonid

    Correlations between errors can dramatically affect decoding thresholds, in some cases eliminating the threshold altogether. We analyze the existence of a threshold for quantum low-density parity-check (LDPC) codes in the case of correlated erasures. When erasures are positively correlated, the corresponding multi-variate Bernoulli distribution can be modeled in terms of cluster errors, where qubits in clusters of various size can be marked all at once. In a code family with distance scaling as a power law of the code length, erasures can be always corrected below percolation on a qubit adjacency graph associated with the code. We bound this correlated percolation transition by weighted (uncorrelated) percolation on a specially constructed cluster connectivity graph, and apply our recent results to construct several bounds for the latter. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-14-1-0272.

  6. A rate-compatible family of protograph-based LDPC codes built by expurgation and lengthening

    NASA Technical Reports Server (NTRS)

    Dolinar, Sam

    2005-01-01

    We construct a protograph-based rate-compatible family of low-density parity-check codes that cover a very wide range of rates from 1/2 to 16/17, perform within about 0.5 dB of their capacity limits for all rates, and can be decoded conveniently and efficiently with a common hardware implementation.

  7. Performance analysis of LDPC codes on OOK terahertz wireless channels

    NASA Astrophysics Data System (ADS)

    Chun, Liu; Chang, Wang; Jun-Cheng, Cao

    2016-02-01

    Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz (THz) wireless communications. An error control coding scheme based on low density parity check (LDPC) codes with soft decision decoding algorithm is proposed to improve the bit-error-rate (BER) performance of an on-off keying (OOK) modulated THz signal through atmospheric channel. The THz wave propagation characteristics and channel model in atmosphere is set up. Numerical simulations validate the great performance of LDPC codes against the atmospheric fading and demonstrate the huge potential in future ultra-high speed beyond Gbps THz communications. Project supported by the National Key Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, and 61204135), the Major National Development Project of Scientific Instrument and Equipment (Grant No. 2011YQ150021), the National Science and Technology Major Project (Grant No. 2011ZX02707), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology (Grant No. 14530711300).

  8. Comparison of soft-input-soft-output detection methods for dual-polarized quadrature duobinary system

    NASA Astrophysics Data System (ADS)

    Chang, Chun; Huang, Benxiong; Xu, Zhengguang; Li, Bin; Zhao, Nan

    2018-02-01

    Three soft-input-soft-output (SISO) detection methods for dual-polarized quadrature duobinary (DP-QDB), including maximum-logarithmic-maximum-a-posteriori-probability-algorithm (Max-log-MAP)-based detection, soft-output-Viterbi-algorithm (SOVA)-based detection, and a proposed SISO detection, which can all be combined with SISO decoding, are presented. The three detection methods are investigated at 128 Gb/s in five-channel wavelength-division-multiplexing uncoded and low-density-parity-check (LDPC) coded DP-QDB systems by simulations. Max-log-MAP-based detection needs the returning-to-initial-states (RTIS) process despite having the best performance. When the LDPC code with a code rate of 0.83 is used, the detecting-and-decoding scheme with the SISO detection does not need RTIS and has better bit error rate (BER) performance than the scheme with SOVA-based detection. The former can reduce the optical signal-to-noise ratio (OSNR) requirement (at BER=10-5) by 2.56 dB relative to the latter. The application of the SISO iterative detection in LDPC-coded DP-QDB systems makes a good trade-off between requirements on transmission efficiency, OSNR requirement, and transmission distance, compared with the other two SISO methods.

  9. Fixed-point Design of the Lattice-reduction-aided Iterative Detection and Decoding Receiver for Coded MIMO Systems

    DTIC Science & Technology

    2011-01-01

    reliability, e.g., Turbo Codes [2] and Low Density Parity Check ( LDPC ) codes [3]. The challenge to apply both MIMO and ECC into wireless systems is on...REPORT Fixed-point Design of theLattice-reduction-aided Iterative Detection andDecoding Receiver for Coded MIMO Systems 14. ABSTRACT 16. SECURITY...illustrates the performance of coded LR aided detectors. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES The views, opinions

  10. Adaptive transmission based on multi-relay selection and rate-compatible LDPC codes

    NASA Astrophysics Data System (ADS)

    Su, Hualing; He, Yucheng; Zhou, Lin

    2017-08-01

    In order to adapt to the dynamical changeable channel condition and improve the transmissive reliability of the system, a cooperation system of rate-compatible low density parity check (RC-LDPC) codes combining with multi-relay selection protocol is proposed. In traditional relay selection protocol, only the channel state information (CSI) of source-relay and the CSI of relay-destination has been considered. The multi-relay selection protocol proposed by this paper takes the CSI between relays into extra account in order to obtain more chances of collabration. Additionally, the idea of hybrid automatic request retransmission (HARQ) and rate-compatible are introduced. Simulation results show that the transmissive reliability of the system can be significantly improved by the proposed protocol.

  11. Rate-Compatible LDPC Codes with Linear Minimum Distance

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Jones, Christopher; Dolinar, Samuel

    2009-01-01

    A recently developed method of constructing protograph-based low-density parity-check (LDPC) codes provides for low iterative decoding thresholds and minimum distances proportional to block sizes, and can be used for various code rates. A code constructed by this method can have either fixed input block size or fixed output block size and, in either case, provides rate compatibility. The method comprises two submethods: one for fixed input block size and one for fixed output block size. The first mentioned submethod is useful for applications in which there are requirements for rate-compatible codes that have fixed input block sizes. These are codes in which only the numbers of parity bits are allowed to vary. The fixed-output-blocksize submethod is useful for applications in which framing constraints are imposed on the physical layers of affected communication systems. An example of such a system is one that conforms to one of many new wireless-communication standards that involve the use of orthogonal frequency-division modulation

  12. A new LDPC decoding scheme for PDM-8QAM BICM coherent optical communication system

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhang, Wen-bo; Xi, Li-xia; Tang, Xian-feng; Zhang, Xiao-guang

    2015-11-01

    A new log-likelihood ratio (LLR) message estimation method is proposed for polarization-division multiplexing eight quadrature amplitude modulation (PDM-8QAM) bit-interleaved coded modulation (BICM) optical communication system. The formulation of the posterior probability is theoretically analyzed, and the way to reduce the pre-decoding bit error rate ( BER) of the low density parity check (LDPC) decoder for PDM-8QAM constellations is presented. Simulation results show that it outperforms the traditional scheme, i.e., the new post-decoding BER is decreased down to 50% of that of the traditional post-decoding algorithm.

  13. Capacity achieving nonbinary LDPC coded non-uniform shaping modulation for adaptive optical communications.

    PubMed

    Lin, Changyu; Zou, Ding; Liu, Tao; Djordjevic, Ivan B

    2016-08-08

    A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values. The matched nonbinary (NB) LDPC code is used for this scheme, which further improves the coding gain and the overall performance. We analyze both coding performance and system SNR performance. We show that the proposed NB LDPC-coded 9-QAM has more than 2dB gain in symbol SNR compared to traditional LDPC-coded star-8-QAM. On the other hand, the proposed NB LDPC-coded 5-QAM and 7-QAM have even better performance than LDPC-coded QPSK.

  14. Evaluation of four-dimensional nonbinary LDPC-coded modulation for next-generation long-haul optical transport networks.

    PubMed

    Zhang, Yequn; Arabaci, Murat; Djordjevic, Ivan B

    2012-04-09

    Leveraging the advanced coherent optical communication technologies, this paper explores the feasibility of using four-dimensional (4D) nonbinary LDPC-coded modulation (4D-NB-LDPC-CM) schemes for long-haul transmission in future optical transport networks. In contrast to our previous works on 4D-NB-LDPC-CM which considered amplified spontaneous emission (ASE) noise as the dominant impairment, this paper undertakes transmission in a more realistic optical fiber transmission environment, taking into account impairments due to dispersion effects, nonlinear phase noise, Kerr nonlinearities, and stimulated Raman scattering in addition to ASE noise. We first reveal the advantages of using 4D modulation formats in LDPC-coded modulation instead of conventional two-dimensional (2D) modulation formats used with polarization-division multiplexing (PDM). Then we demonstrate that 4D LDPC-coded modulation schemes with nonbinary LDPC component codes significantly outperform not only their conventional PDM-2D counterparts but also the corresponding 4D bit-interleaved LDPC-coded modulation (4D-BI-LDPC-CM) schemes, which employ binary LDPC codes as component codes. We also show that the transmission reach improvement offered by the 4D-NB-LDPC-CM over 4D-BI-LDPC-CM increases as the underlying constellation size and hence the spectral efficiency of transmission increases. Our results suggest that 4D-NB-LDPC-CM can be an excellent candidate for long-haul transmission in next-generation optical networks.

  15. Measurement Techniques for Clock Jitter

    NASA Technical Reports Server (NTRS)

    Lansdowne, Chatwin; Schlesinger, Adam

    2012-01-01

    NASA is in the process of modernizing its communications infrastructure to accompany the development of a Crew Exploration Vehicle (CEV) to replace the shuttle. With this effort comes the opportunity to infuse more advanced coded modulation techniques, including low-density parity-check (LDPC) codes that offer greater coding gains than the current capability. However, in order to take full advantage of these codes, the ground segment receiver synchronization loops must be able to operate at a lower signal-to-noise ratio (SNR) than supported by equipment currently in use.

  16. Coded Modulation in C and MATLAB

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon; Andrews, Kenneth S.

    2011-01-01

    This software, written separately in C and MATLAB as stand-alone packages with equivalent functionality, implements encoders and decoders for a set of nine error-correcting codes and modulators and demodulators for five modulation types. The software can be used as a single program to simulate the performance of such coded modulation. The error-correcting codes implemented are the nine accumulate repeat-4 jagged accumulate (AR4JA) low-density parity-check (LDPC) codes, which have been approved for international standardization by the Consultative Committee for Space Data Systems, and which are scheduled to fly on a series of NASA missions in the Constellation Program. The software implements the encoder and decoder functions, and contains compressed versions of generator and parity-check matrices used in these operations.

  17. Improving soft FEC performance for higher-order modulations via optimized bit channel mappings.

    PubMed

    Häger, Christian; Amat, Alexandre Graell I; Brännström, Fredrik; Alvarado, Alex; Agrell, Erik

    2014-06-16

    Soft forward error correction with higher-order modulations is often implemented in practice via the pragmatic bit-interleaved coded modulation paradigm, where a single binary code is mapped to a nonbinary modulation. In this paper, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed fiber-optical system without optical inline dispersion compensation. Our focus is on protograph-based low-density parity-check (LDPC) codes which allow for an efficient hardware implementation, suitable for high-speed optical communications. The optimization is applied to the AR4JA protograph family, and further extended to protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full field simulations via the split-step Fourier method are used to verify the analysis. The results show performance gains of up to 0.25 dB, which translate into a possible extension of the transmission reach by roughly up to 8%, without significantly increasing the system complexity.

  18. Performance of Low-Density Parity-Check Coded Modulation

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2010-01-01

    This paper reports the simulated performance of each of the nine accumulate-repeat-4-jagged-accumulate (AR4JA) low-density parity-check (LDPC) codes [3] when used in conjunction with binary phase-shift-keying (BPSK), quadrature PSK (QPSK), 8-PSK, 16-ary amplitude PSK (16- APSK), and 32-APSK.We also report the performance under various mappings of bits to modulation symbols, 16-APSK and 32-APSK ring scalings, log-likelihood ratio (LLR) approximations, and decoder variations. One of the simple and well-performing LLR approximations can be expressed in a general equation that applies to all of the modulation types.

  19. A good performance watermarking LDPC code used in high-speed optical fiber communication system

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbo; Li, Chao; Zhang, Xiaoguang; Xi, Lixia; Tang, Xianfeng; He, Wenxue

    2015-07-01

    A watermarking LDPC code, which is a strategy designed to improve the performance of the traditional LDPC code, was introduced. By inserting some pre-defined watermarking bits into original LDPC code, we can obtain a more correct estimation about the noise level in the fiber channel. Then we use them to modify the probability distribution function (PDF) used in the initial process of belief propagation (BP) decoding algorithm. This algorithm was tested in a 128 Gb/s PDM-DQPSK optical communication system and results showed that the watermarking LDPC code had a better tolerances to polarization mode dispersion (PMD) and nonlinearity than that of traditional LDPC code. Also, by losing about 2.4% of redundancy for watermarking bits, the decoding efficiency of the watermarking LDPC code is about twice of the traditional one.

  20. Ensemble Weight Enumerators for Protograph LDPC Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush

    2006-01-01

    Recently LDPC codes with projected graph, or protograph structures have been proposed. In this paper, finite length ensemble weight enumerators for LDPC codes with protograph structures are obtained. Asymptotic results are derived as the block size goes to infinity. In particular we are interested in obtaining ensemble average weight enumerators for protograph LDPC codes which have minimum distance that grows linearly with block size. As with irregular ensembles, linear minimum distance property is sensitive to the proportion of degree-2 variable nodes. In this paper the derived results on ensemble weight enumerators show that linear minimum distance condition on degree distribution of unstructured irregular LDPC codes is a sufficient but not a necessary condition for protograph LDPC codes.

  1. Design of ACM system based on non-greedy punctured LDPC codes

    NASA Astrophysics Data System (ADS)

    Lu, Zijun; Jiang, Zihong; Zhou, Lin; He, Yucheng

    2017-08-01

    In this paper, an adaptive coded modulation (ACM) scheme based on rate-compatible LDPC (RC-LDPC) codes was designed. The RC-LDPC codes were constructed by a non-greedy puncturing method which showed good performance in high code rate region. Moreover, the incremental redundancy scheme of LDPC-based ACM system over AWGN channel was proposed. By this scheme, code rates vary from 2/3 to 5/6 and the complication of the ACM system is lowered. Simulations show that more and more obvious coding gain can be obtained by the proposed ACM system with higher throughput.

  2. FPGA-based rate-adaptive LDPC-coded modulation for the next generation of optical communication systems.

    PubMed

    Zou, Ding; Djordjevic, Ivan B

    2016-09-05

    In this paper, we propose a rate-adaptive FEC scheme based on LDPC codes together with its software reconfigurable unified FPGA architecture. By FPGA emulation, we demonstrate that the proposed class of rate-adaptive LDPC codes based on shortening with an overhead from 25% to 42.9% provides a coding gain ranging from 13.08 dB to 14.28 dB at a post-FEC BER of 10-15 for BPSK transmission. In addition, the proposed rate-adaptive LDPC coding combined with higher-order modulations have been demonstrated including QPSK, 8-QAM, 16-QAM, 32-QAM, and 64-QAM, which covers a wide range of signal-to-noise ratios. Furthermore, we apply the unequal error protection by employing different LDPC codes on different bits in 16-QAM and 64-QAM, which results in additional 0.5dB gain compared to conventional LDPC coded modulation with the same code rate of corresponding LDPC code.

  3. Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks.

    PubMed

    Arabaci, Murat; Djordjevic, Ivan B; Saunders, Ross; Marcoccia, Roberto M

    2010-02-01

    In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.

  4. High performance reconciliation for continuous-variable quantum key distribution with LDPC code

    NASA Astrophysics Data System (ADS)

    Lin, Dakai; Huang, Duan; Huang, Peng; Peng, Jinye; Zeng, Guihua

    2015-03-01

    Reconciliation is a significant procedure in a continuous-variable quantum key distribution (CV-QKD) system. It is employed to extract secure secret key from the resulted string through quantum channel between two users. However, the efficiency and the speed of previous reconciliation algorithms are low. These problems limit the secure communication distance and the secure key rate of CV-QKD systems. In this paper, we proposed a high-speed reconciliation algorithm through employing a well-structured decoding scheme based on low density parity-check (LDPC) code. The complexity of the proposed algorithm is reduced obviously. By using a graphics processing unit (GPU) device, our method may reach a reconciliation speed of 25 Mb/s for a CV-QKD system, which is currently the highest level and paves the way to high-speed CV-QKD.

  5. Design and performance investigation of LDPC-coded upstream transmission systems in IM/DD OFDM-PONs

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoxue; Guo, Lei; Wu, Jingjing; Ning, Zhaolong

    2016-12-01

    In Intensity-Modulation Direct-Detection (IM/DD) Orthogonal Frequency Division Multiplexing Passive Optical Networks (OFDM-PONs), aside from Subcarrier-to-Subcarrier Intermixing Interferences (SSII) induced by square-law detection, the same laser frequency for data sending from Optical Network Units (ONUs) results in ONU-to-ONU Beating Interferences (OOBI) at the receiver. To mitigate those interferences, we design a Low-Density Parity Check (LDPC)-coded and spectrum-efficient upstream transmission system. A theoretical channel model is also derived, in order to analyze the detrimental factors influencing system performances. Simulation results demonstrate that the receiver sensitivity is improved 3.4 dB and 2.5 dB under QPSK and 8QAM, respectively, after 100 km Standard Single-Mode Fiber (SSMF) transmission. Furthermore, the spectrum efficiency can be improved by about 50%.

  6. MIMO-OFDM System's Performance Using LDPC Codes for a Mobile Robot

    NASA Astrophysics Data System (ADS)

    Daoud, Omar; Alani, Omar

    This work deals with the performance of a Sniffer Mobile Robot (SNFRbot)-based spatial multiplexed wireless Orthogonal Frequency Division Multiplexing (OFDM) transmission technology. The use of Multi-Input Multi-Output (MIMO)-OFDM technology increases the wireless transmission rate without increasing transmission power or bandwidth. A generic multilayer architecture of the SNFRbot is proposed with low power and low cost. Some experimental results are presented and show the efficiency of sniffing deadly gazes, sensing high temperatures and sending live videos of the monitored situation. Moreover, simulation results show the achieved performance by tackling the Peak-to-Average Power Ratio (PAPR) problem of the used technology using Low Density Parity Check (LDPC) codes; and the effect of combating the PAPR on the bit error rate (BER) and the signal to noise ratio (SNR) over a Doppler spread channel.

  7. Finite-connectivity spin-glass phase diagrams and low-density parity check codes.

    PubMed

    Migliorini, Gabriele; Saad, David

    2006-02-01

    We obtain phase diagrams of regular and irregular finite-connectivity spin glasses. Contact is first established between properties of the phase diagram and the performance of low-density parity check (LDPC) codes within the replica symmetric (RS) ansatz. We then study the location of the dynamical and critical transition points of these systems within the one step replica symmetry breaking theory (RSB), extending similar calculations that have been performed in the past for the Bethe spin-glass problem. We observe that the location of the dynamical transition line does change within the RSB theory, in comparison with the results obtained in the RS case. For LDPC decoding of messages transmitted over the binary erasure channel we find, at zero temperature and rate , an RS critical transition point at while the critical RSB transition point is located at , to be compared with the corresponding Shannon bound . For the binary symmetric channel we show that the low temperature reentrant behavior of the dynamical transition line, observed within the RS ansatz, changes its location when the RSB ansatz is employed; the dynamical transition point occurs at higher values of the channel noise. Possible practical implications to improve the performance of the state-of-the-art error correcting codes are discussed.

  8. Two-stage cross-talk mitigation in an orbital-angular-momentum-based free-space optical communication system.

    PubMed

    Qu, Zhen; Djordjevic, Ivan B

    2017-08-15

    We propose and experimentally demonstrate a two-stage cross-talk mitigation method in an orbital-angular-momentum (OAM)-based free-space optical communication system, which is enabled by combining spatial offset and low-density parity-check (LDPC) coded nonuniform signaling. Different from traditional OAM multiplexing, where the OAM modes are centrally aligned for copropagation, the adjacent OAM modes (OAM states 2 and -6 and OAM states -2 and 6) in our proposed scheme are spatially offset to mitigate the mode cross talk. Different from traditional rectangular modulation formats, which transmit equidistant signal points with uniform probability, the 5-quadrature amplitude modulation (5-QAM) and 9-QAM are introduced to relieve cross-talk-induced performance degradation. The 5-QAM and 9-QAM formats are based on the Huffman coding technique, which can potentially achieve great cross-talk tolerance by combining them with corresponding nonbinary LDPC codes. We demonstrate that cross talk can be reduced by 1.6 dB and 1 dB via spatial offset for OAM states ±2 and ±6, respectively. Compared to quadrature phase shift keying and 8-QAM formats, the LDPC-coded 5-QAM and 9-QAM are able to bring 1.1 dB and 5.4 dB performance improvements in the presence of atmospheric turbulence, respectively.

  9. LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication.

    PubMed

    Djordjevic, Ivan B; Arabaci, Murat

    2010-11-22

    An orbital angular momentum (OAM) based LDPC-coded modulation scheme suitable for use in FSO communication is proposed. We demonstrate that the proposed scheme can operate under strong atmospheric turbulence regime and enable 100 Gb/s optical transmission while employing 10 Gb/s components. Both binary and nonbinary LDPC-coded OAM modulations are studied. In addition to providing better BER performance, the nonbinary LDPC-coded modulation reduces overall decoder complexity and latency. The nonbinary LDPC-coded OAM modulation provides a net coding gain of 9.3 dB at the BER of 10(-8). The maximum-ratio combining scheme outperforms the corresponding equal-gain combining scheme by almost 2.5 dB.

  10. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  11. Information rates of probabilistically shaped coded modulation for a multi-span fiber-optic communication system with 64QAM

    NASA Astrophysics Data System (ADS)

    Fehenberger, Tobias

    2018-02-01

    This paper studies probabilistic shaping in a multi-span wavelength-division multiplexing optical fiber system with 64-ary quadrature amplitude modulation (QAM) input. In split-step fiber simulations and via an enhanced Gaussian noise model, three figures of merit are investigated, which are signal-to-noise ratio (SNR), achievable information rate (AIR) for capacity-achieving forward error correction (FEC) with bit-metric decoding, and the information rate achieved with low-density parity-check (LDPC) FEC. For the considered system parameters and different shaped input distributions, shaping is found to decrease the SNR by 0.3 dB yet simultaneously increases the AIR by up to 0.4 bit per 4D-symbol. The information rates of LDPC-coded modulation with shaped 64QAM input are improved by up to 0.74 bit per 4D-symbol, which is larger than the shaping gain when considering AIRs. This increase is attributed to the reduced coding gap of the higher-rate code that is used for decoding the nonuniform QAM input.

  12. FPGA implementation of concatenated non-binary QC-LDPC codes for high-speed optical transport.

    PubMed

    Zou, Ding; Djordjevic, Ivan B

    2015-06-01

    In this paper, we propose a soft-decision-based FEC scheme that is the concatenation of a non-binary LDPC code and hard-decision FEC code. The proposed NB-LDPC + RS with overhead of 27.06% provides a superior NCG of 11.9dB at a post-FEC BER of 10-15. As a result, the proposed NB-LDPC codes represent the strong FEC candidate of soft-decision FEC for beyond 100Gb/s optical transmission systems.

  13. A novel decoding algorithm based on the hierarchical reliable strategy for SCG-LDPC codes in optical communications

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-guo; Tong, Qing-zhen; Huang, Sheng; Wang, Yong

    2013-11-01

    An effective hierarchical reliable belief propagation (HRBP) decoding algorithm is proposed according to the structural characteristics of systematically constructed Gallager low-density parity-check (SCG-LDPC) codes. The novel decoding algorithm combines the layered iteration with the reliability judgment, and can greatly reduce the number of the variable nodes involved in the subsequent iteration process and accelerate the convergence rate. The result of simulation for SCG-LDPC(3969,3720) code shows that the novel HRBP decoding algorithm can greatly reduce the computing amount at the condition of ensuring the performance compared with the traditional belief propagation (BP) algorithm. The bit error rate (BER) of the HRBP algorithm is considerable at the threshold value of 15, but in the subsequent iteration process, the number of the variable nodes for the HRBP algorithm can be reduced by about 70% at the high signal-to-noise ratio (SNR) compared with the BP algorithm. When the threshold value is further increased, the HRBP algorithm will gradually degenerate into the layered-BP algorithm, but at the BER of 10-7 and the maximal iteration number of 30, the net coding gain (NCG) of the HRBP algorithm is 0.2 dB more than that of the BP algorithm, and the average iteration times can be reduced by about 40% at the high SNR. Therefore, the novel HRBP decoding algorithm is more suitable for optical communication systems.

  14. Landsat Data Continuity Mission (LDCM) - Optimizing X-Band Usage

    NASA Technical Reports Server (NTRS)

    Garon, H. M.; Gal-Edd, J. S.; Dearth, K. W.; Sank, V. I.

    2010-01-01

    The NASA version of the low-density parity check (LDPC) 7/8-rate code, shortened to the dimensions of (8160, 7136), has been implemented as the forward error correction (FEC) schema for the Landsat Data Continuity Mission (LDCM). This is the first flight application of this code. In order to place a 440 Msps link within the 375 MHz wide X band we found it necessary to heavily bandpass filter the satellite transmitter output . Despite the significant amplitude and phase distortions that accompanied the spectral truncation, the mission required BER is maintained at < 10(exp -12) with less than 2 dB of implementation loss. We utilized a band-pass filter designed ostensibly to replicate the link distortions to demonstrate link design viability. The same filter was then used to optimize the adaptive equalizer in the receiver employed at the terminus of the downlink. The excellent results we obtained could be directly attributed to the implementation of the LDPC code and the amplitude and phase compensation provided in the receiver. Similar results were obtained with receivers from several vendors.

  15. Experimental study of non-binary LDPC coding for long-haul coherent optical QPSK transmissions.

    PubMed

    Zhang, Shaoliang; Arabaci, Murat; Yaman, Fatih; Djordjevic, Ivan B; Xu, Lei; Wang, Ting; Inada, Yoshihisa; Ogata, Takaaki; Aoki, Yasuhiro

    2011-09-26

    The performance of rate-0.8 4-ary LDPC code has been studied in a 50 GHz-spaced 40 Gb/s DWDM system with PDM-QPSK modulation. The net effective coding gain of 10 dB is obtained at BER of 10(-6). With the aid of time-interleaving polarization multiplexing and MAP detection, 10,560 km transmission over legacy dispersion managed fiber is achieved without any countable errors. The proposed nonbinary quasi-cyclic LDPC code achieves an uncoded BER threshold at 4×10(-2). Potential issues like phase ambiguity and coding length are also discussed when implementing LDPC in current coherent optical systems. © 2011 Optical Society of America

  16. 500  Gb/s free-space optical transmission over strong atmospheric turbulence channels.

    PubMed

    Qu, Zhen; Djordjevic, Ivan B

    2016-07-15

    We experimentally demonstrate a high-spectral-efficiency, large-capacity, featured free-space-optical (FSO) transmission system by using low-density, parity-check (LDPC) coded quadrature phase shift keying (QPSK) combined with orbital angular momentum (OAM) multiplexing. The strong atmospheric turbulence channel is emulated by two spatial light modulators on which four randomly generated azimuthal phase patterns yielding the Andrews spectrum are recorded. The validity of such an approach is verified by reproducing the intensity distribution and irradiance correlation function (ICF) from the full-scale simulator. Excellent agreement of experimental, numerical, and analytical results is found. To reduce the phase distortion induced by the turbulence emulator, the inexpensive wavefront sensorless adaptive optics (AO) is used. To deal with remaining channel impairments, a large-girth LDPC code is used. To further improve the aggregate data rate, the OAM multiplexing is combined with WDM, and 500 Gb/s optical transmission over the strong atmospheric turbulence channels is demonstrated.

  17. A Novel Strategy Using Factor Graphs and the Sum-Product Algorithm for Satellite Broadcast Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Chen, Jung-Chieh

    This paper presents a low complexity algorithmic framework for finding a broadcasting schedule in a low-altitude satellite system, i. e., the satellite broadcast scheduling (SBS) problem, based on the recent modeling and computational methodology of factor graphs. Inspired by the huge success of the low density parity check (LDPC) codes in the field of error control coding, in this paper, we transform the SBS problem into an LDPC-like problem through a factor graph instead of using the conventional neural network approaches to solve the SBS problem. Based on a factor graph framework, the soft-information, describing the probability that each satellite will broadcast information to a terminal at a specific time slot, is exchanged among the local processing in the proposed framework via the sum-product algorithm to iteratively optimize the satellite broadcasting schedule. Numerical results show that the proposed approach not only can obtain optimal solution but also enjoys the low complexity suitable for integral-circuit implementation.

  18. Evaluation of large girth LDPC codes for PMD compensation by turbo equalization.

    PubMed

    Minkov, Lyubomir L; Djordjevic, Ivan B; Xu, Lei; Wang, Ting; Kueppers, Franko

    2008-08-18

    Large-girth quasi-cyclic LDPC codes have been experimentally evaluated for use in PMD compensation by turbo equalization for a 10 Gb/s NRZ optical transmission system, and observing one sample per bit. Net effective coding gain improvement for girth-10, rate 0.906 code of length 11936 over maximum a posteriori probability (MAP) detector for differential group delay of 125 ps is 6.25 dB at BER of 10(-6). Girth-10 LDPC code of rate 0.8 outperforms the girth-10 code of rate 0.906 by 2.75 dB, and provides the net effective coding gain improvement of 9 dB at the same BER. It is experimentally determined that girth-10 LDPC codes of length around 15000 approach channel capacity limit within 1.25 dB.

  19. Advanced GF(32) nonbinary LDPC coded modulation with non-uniform 9-QAM outperforming star 8-QAM.

    PubMed

    Liu, Tao; Lin, Changyu; Djordjevic, Ivan B

    2016-06-27

    In this paper, we first describe a 9-symbol non-uniform signaling scheme based on Huffman code, in which different symbols are transmitted with different probabilities. By using the Huffman procedure, prefix code is designed to approach the optimal performance. Then, we introduce an algorithm to determine the optimal signal constellation sets for our proposed non-uniform scheme with the criterion of maximizing constellation figure of merit (CFM). The proposed nonuniform polarization multiplexed signaling 9-QAM scheme has the same spectral efficiency as the conventional 8-QAM. Additionally, we propose a specially designed GF(32) nonbinary quasi-cyclic LDPC code for the coded modulation system based on the 9-QAM non-uniform scheme. Further, we study the efficiency of our proposed non-uniform 9-QAM, combined with nonbinary LDPC coding, and demonstrate by Monte Carlo simulation that the proposed GF(23) nonbinary LDPC coded 9-QAM scheme outperforms nonbinary LDPC coded uniform 8-QAM by at least 0.8dB.

  20. Coded Cooperation for Multiway Relaying in Wireless Sensor Networks †

    PubMed Central

    Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar

    2015-01-01

    Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels. PMID:26131675

  1. Coded Cooperation for Multiway Relaying in Wireless Sensor Networks.

    PubMed

    Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar

    2015-06-29

    Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels.

  2. Ultra high speed optical transmission using subcarrier-multiplexed four-dimensional LDPC-coded modulation.

    PubMed

    Batshon, Hussam G; Djordjevic, Ivan; Schmidt, Ted

    2010-09-13

    We propose a subcarrier-multiplexed four-dimensional LDPC bit-interleaved coded modulation scheme that is capable of achieving beyond 480 Gb/s single-channel transmission rate over optical channels. Subcarrier-multiplexed four-dimensional LDPC coded modulation scheme outperforms the corresponding dual polarization schemes by up to 4.6 dB in OSNR at BER 10(-8).

  3. Performance of Low-Density Parity-Check Coded Modulation

    NASA Astrophysics Data System (ADS)

    Hamkins, J.

    2011-02-01

    This article presents the simulated performance of a family of nine AR4JA low-density parity-check (LDPC) codes when used with each of five modulations. In each case, the decoder inputs are codebit log-likelihood ratios computed from the received (noisy) modulation symbols using a general formula which applies to arbitrary modulations. Suboptimal soft-decision and hard-decision demodulators are also explored. Bit-interleaving and various mappings of bits to modulation symbols are considered. A number of subtle decoder algorithm details are shown to affect performance, especially in the error floor region. Among these are quantization dynamic range and step size, clipping degree-one variable nodes, "Jones clipping" of variable nodes, approximations of the min* function, and partial hard-limiting messages from check nodes. Using these decoder optimizations, all coded modulations simulated here are free of error floors down to codeword error rates below 10^{-6}. The purpose of generating this performance data is to aid system engineers in determining an appropriate code and modulation to use under specific power and bandwidth constraints, and to provide information needed to design a variable/adaptive coded modulation (VCM/ACM) system using the AR4JA codes. IPNPR Volume 42-185 Tagged File.txt

  4. Low-complexity video encoding method for wireless image transmission in capsule endoscope.

    PubMed

    Takizawa, Kenichi; Hamaguchi, Kiyoshi

    2010-01-01

    This paper presents a low-complexity video encoding method applicable for wireless image transmission in capsule endoscopes. This encoding method is based on Wyner-Ziv theory, in which side information available at a transmitter is treated as side information at its receiver. Therefore complex processes in video encoding, such as estimation of the motion vector, are moved to the receiver side, which has a larger-capacity battery. As a result, the encoding process is only to decimate coded original data through channel coding. We provide a performance evaluation for a low-density parity check (LDPC) coding method in the AWGN channel.

  5. Design and Implementation of Secure and Reliable Communication using Optical Wireless Communication

    NASA Astrophysics Data System (ADS)

    Saadi, Muhammad; Bajpai, Ambar; Zhao, Yan; Sangwongngam, Paramin; Wuttisittikulkij, Lunchakorn

    2014-11-01

    Wireless networking intensify the tractability in the home and office environment to connect the internet without wires but at the cost of risks associated with stealing the data or threat of loading malicious code with the intention of harming the network. In this paper, we proposed a novel method of establishing a secure and reliable communication link using optical wireless communication (OWC). For security, spatial diversity based transmission using two optical transmitters is used and the reliability in the link is achieved by a newly proposed method for the construction of structured parity check matrix for binary Low Density Parity Check (LDPC) codes. Experimental results show that a successful secure and reliable link between the transmitter and the receiver can be achieved by using the proposed novel technique.

  6. Future capabilities for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Berner, J. B.; Bryant, S. H.; Andrews, K. S.

    2004-01-01

    This paper will look at three new capabilities that are in different stages of development. First, turbo decoding, which provides improved telemetry performance for data rates up to about 1 Mbps, will be discussed. Next, pseudo-noise ranging will be presented. Pseudo-noise ranging has several advantages over the current sequential ranging, anmely easier operations, improved performance, and the capability to be used in a regenerative implementation on a spacecraft. Finally, Low Density Parity Check decoding will be discussed. LDPC codes can provide performance that matches or slightly exceed turbo codes, but are designed for use in the 10 Mbps range.

  7. On the reduced-complexity of LDPC decoders for ultra-high-speed optical transmission.

    PubMed

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2010-10-25

    We propose two reduced-complexity (RC) LDPC decoders, which can be used in combination with large-girth LDPC codes to enable ultra-high-speed serial optical transmission. We show that optimally attenuated RC min-sum sum algorithm performs only 0.46 dB (at BER of 10(-9)) worse than conventional sum-product algorithm, while having lower storage memory requirements and much lower latency. We further study the use of RC LDPC decoding algorithms in multilevel coded modulation with coherent detection and show that with RC decoding algorithms we can achieve the net coding gain larger than 11 dB at BERs below 10(-9).

  8. Protograph LDPC Codes Over Burst Erasure Channels

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Jones, Christopher

    2006-01-01

    In this paper we design high rate protograph based LDPC codes suitable for binary erasure channels. To simplify the encoder and decoder implementation for high data rate transmission, the structure of codes are based on protographs and circulants. These LDPC codes can improve data link and network layer protocols in support of communication networks. Two classes of codes were designed. One class is designed for large block sizes with an iterative decoding threshold that approaches capacity of binary erasure channels. The other class is designed for short block sizes based on maximizing minimum stopping set size. For high code rates and short blocks the second class outperforms the first class.

  9. A Scalable Architecture of a Structured LDPC Decoder

    NASA Technical Reports Server (NTRS)

    Lee, Jason Kwok-San; Lee, Benjamin; Thorpe, Jeremy; Andrews, Kenneth; Dolinar, Sam; Hamkins, Jon

    2004-01-01

    We present a scalable decoding architecture for a certain class of structured LDPC codes. The codes are designed using a small (n,r) protograph that is replicated Z times to produce a decoding graph for a (Z x n, Z x r) code. Using this architecture, we have implemented a decoder for a (4096,2048) LDPC code on a Xilinx Virtex-II 2000 FPGA, and achieved decoding speeds of 31 Mbps with 10 fixed iterations. The implemented message-passing algorithm uses an optimized 3-bit non-uniform quantizer that operates with 0.2dB implementation loss relative to a floating point decoder.

  10. Protograph based LDPC codes with minimum distance linearly growing with block size

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Jones, Christopher; Dolinar, Sam; Thorpe, Jeremy

    2005-01-01

    We propose several LDPC code constructions that simultaneously achieve good threshold and error floor performance. Minimum distance is shown to grow linearly with block size (similar to regular codes of variable degree at least 3) by considering ensemble average weight enumerators. Our constructions are based on projected graph, or protograph, structures that support high-speed decoder implementations. As with irregular ensembles, our constructions are sensitive to the proportion of degree-2 variable nodes. A code with too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code with too many such nodes tends to not exhibit a minimum distance that grows linearly in block length. In this paper we also show that precoding can be used to lower the threshold of regular LDPC codes. The decoding thresholds of the proposed codes, which have linearly increasing minimum distance in block size, outperform that of regular LDPC codes. Furthermore, a family of low to high rate codes, with thresholds that adhere closely to their respective channel capacity thresholds, is presented. Simulation results for a few example codes show that the proposed codes have low error floors as well as good threshold SNFt performance.

  11. High performance and cost effective CO-OFDM system aided by polar code.

    PubMed

    Liu, Ling; Xiao, Shilin; Fang, Jiafei; Zhang, Lu; Zhang, Yunhao; Bi, Meihua; Hu, Weisheng

    2017-02-06

    A novel polar coded coherent optical orthogonal frequency division multiplexing (CO-OFDM) system is proposed and demonstrated through experiment for the first time. The principle of a polar coded CO-OFDM signal is illustrated theoretically and the suitable polar decoding method is discussed. Results show that the polar coded CO-OFDM signal achieves a net coding gain (NCG) of more than 10 dB at bit error rate (BER) of 10-3 over 25-Gb/s 480-km transmission in comparison with conventional CO-OFDM. Also, compared to the 25-Gb/s low-density parity-check (LDPC) coded CO-OFDM 160-km system, the polar code provides a NCG of 0.88 dB @BER = 10-3. Moreover, the polar code can relieve the laser linewidth requirement massively to get a more cost-effective CO-OFDM system.

  12. Cooperative optimization and their application in LDPC codes

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Rong, Jian; Zhong, Xiaochun

    2008-10-01

    Cooperative optimization is a new way for finding global optima of complicated functions of many variables. The proposed algorithm is a class of message passing algorithms and has solid theory foundations. It can achieve good coding gains over the sum-product algorithm for LDPC codes. For (6561, 4096) LDPC codes, the proposed algorithm can achieve 2.0 dB gains over the sum-product algorithm at BER of 4×10-7. The decoding complexity of the proposed algorithm is lower than the sum-product algorithm can do; furthermore, the former can achieve much lower error floor than the latter can do after the Eb / No is higher than 1.8 dB.

  13. Bilayer Protograph Codes for Half-Duplex Relay Channels

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; VanNguyen, Thuy; Nosratinia, Aria

    2013-01-01

    Direct to Earth return links are limited by the size and power of lander devices. A standard alternative is provided by a two-hops return link: a proximity link (from lander to orbiter relay) and a deep-space link (from orbiter relay to Earth). Although direct to Earth return links are limited by the size and power of lander devices, using an additional link and a proposed coding for relay channels, one can obtain a more reliable signal. Although significant progress has been made in the relay coding problem, existing codes must be painstakingly optimized to match to a single set of channel conditions, many of them do not offer easy encoding, and most of them do not have structured design. A high-performing LDPC (low-density parity-check) code for the relay channel addresses simultaneously two important issues: a code structure that allows low encoding complexity, and a flexible rate-compatible code that allows matching to various channel conditions. Most of the previous high-performance LDPC codes for the relay channel are tightly optimized for a given channel quality, and are not easily adapted without extensive re-optimization for various channel conditions. This code for the relay channel combines structured design and easy encoding with rate compatibility to allow adaptation to the three links involved in the relay channel, and furthermore offers very good performance. The proposed code is constructed by synthesizing a bilayer structure with a pro to graph. In addition to the contribution to relay encoding, an improved family of protograph codes was produced for the point-to-point AWGN (additive white Gaussian noise) channel whose high-rate members enjoy thresholds that are within 0.07 dB of capacity. These LDPC relay codes address three important issues in an integrative manner: low encoding complexity, modular structure allowing for easy design, and rate compatibility so that the code can be easily matched to a variety of channel conditions without extensive re-optimization. The main problem of half-duplex relay coding can be reduced to the simultaneous design of two codes at two rates and two SNRs (signal-to-noise ratios), such that one is a subset of the other. This problem can be addressed by forceful optimization, but a clever method of addressing this problem is via the bilayer lengthened (BL) LDPC structure. This method uses a bilayer Tanner graph to make the two codes while using a concept of "parity forwarding" with subsequent successive decoding that removes the need to directly address the issue of uneven SNRs among the symbols of a given codeword. This method is attractive in that it addresses some of the main issues in the design of relay codes, but it does not by itself give rise to highly structured codes with simple encoding, nor does it give rate-compatible codes. The main contribution of this work is to construct a class of codes that simultaneously possess a bilayer parity- forwarding mechanism, while also benefiting from the properties of protograph codes having an easy encoding, a modular design, and being a rate-compatible code.

  14. High-Performance CCSDS AOS Protocol Implementation in FPGA

    NASA Technical Reports Server (NTRS)

    Clare, Loren P.; Torgerson, Jordan L.; Pang, Jackson

    2010-01-01

    The Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) space data link protocol provides a framing layer between channel coding such as LDPC (low-density parity-check) and higher-layer link multiplexing protocols such as CCSDS Encapsulation Service, which is described in the following article. Recent advancement in RF modem technology has allowed multi-megabit transmission over space links. With this increase in data rate, the CCSDS AOS protocol implementation needs to be optimized to both reduce energy consumption and operate at a high rate.

  15. SCaN Network Ground Station Receiver Performance for Future Service Support

    NASA Technical Reports Server (NTRS)

    Estabrook, Polly; Lee, Dennis; Cheng, Michael; Lau, Chi-Wung

    2012-01-01

    Objectives: Examine the impact of providing the newly standardized CCSDS Low Density Parity Check (LDPC) codes to the SCaN return data service on the SCaN SN and DSN ground stations receivers: SN Current Receiver: Integrated Receiver (IR). DSN Current Receiver: Downlink Telemetry and Tracking (DTT) Receiver. Early Commercial-Off-The-Shelf (COTS) prototype of the SN User Service Subsystem Component Replacement (USS CR) Narrow Band Receiver. Motivate discussion of general issues of ground station hardware design to enable simple and cheap modifications for support of future services.

  16. Frame Synchronization Without Attached Sync Markers

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2011-01-01

    We describe a method to synchronize codeword frames without making use of attached synchronization markers (ASMs). Instead, the synchronizer identifies the code structure present in the received symbols, by operating the decoder for a handful of iterations at each possible symbol offset and forming an appropriate metric. This method is computationally more complex and doesn't perform as well as frame synchronizers that utilize an ASM; nevertheless, the new synchronizer acquires frame synchronization in about two seconds when using a 600 kbps software decoder, and would take about 15 milliseconds on prototype hardware. It also eliminates the need for the ASMs, which is an attractive feature for short uplink codes whose coding gain would be diminished by the overheard of ASM bits. The lack of ASMs also would simplify clock distribution for the AR4JA low-density parity-check (LDPC) codes and adds a small amount to the coding gain as well (up to 0.2 dB).

  17. Quick-low-density parity check and dynamic threshold voltage optimization in 1X nm triple-level cell NAND flash memory with comprehensive analysis of endurance, retention-time, and temperature variation

    NASA Astrophysics Data System (ADS)

    Doi, Masafumi; Tokutomi, Tsukasa; Hachiya, Shogo; Kobayashi, Atsuro; Tanakamaru, Shuhei; Ning, Sheyang; Ogura Iwasaki, Tomoko; Takeuchi, Ken

    2016-08-01

    NAND flash memory’s reliability degrades with increasing endurance, retention-time and/or temperature. After a comprehensive evaluation of 1X nm triple-level cell (TLC) NAND flash, two highly reliable techniques are proposed. The first proposal, quick low-density parity check (Quick-LDPC), requires only one cell read in order to accurately estimate a bit-error rate (BER) that includes the effects of temperature, write and erase (W/E) cycles and retention-time. As a result, 83% read latency reduction is achieved compared to conventional AEP-LDPC. Also, W/E cycling is extended by 100% compared with conventional Bose-Chaudhuri-Hocquenghem (BCH) error-correcting code (ECC). The second proposal, dynamic threshold voltage optimization (DVO) has two parts, adaptive V Ref shift (AVS) and V TH space control (VSC). AVS reduces read error and latency by adaptively optimizing the reference voltage (V Ref) based on temperature, W/E cycles and retention-time. AVS stores the optimal V Ref’s in a table in order to enable one cell read. VSC further improves AVS by optimizing the voltage margins between V TH states. DVO reduces BER by 80%.

  18. 25 Tb/s transmission over 5,530 km using 16QAM at 5.2 b/s/Hz spectral efficiency.

    PubMed

    Cai, J-X; Batshon, H G; Zhang, H; Davidson, C R; Sun, Y; Mazurczyk, M; Foursa, D G; Sinkin, O; Pilipetskii, A; Mohs, G; Bergano, Neal S

    2013-01-28

    We transmit 250x100G PDM RZ-16QAM channels with 5.2 b/s/Hz spectral efficiency over 5,530 km using single-stage C-band EDFAs equalized to 40 nm. We use single parity check coded modulation and all channels are decoded with no errors after iterative decoding between a MAP decoder and an LDPC based FEC algorithm. We also observe that the optimum power spectral density is nearly independent of SE, signal baud rate or modulation format in a dispersion uncompensated system.

  19. Co-operation of digital nonlinear equalizers and soft-decision LDPC FEC in nonlinear transmission.

    PubMed

    Tanimura, Takahito; Oda, Shoichiro; Hoshida, Takeshi; Aoki, Yasuhiko; Tao, Zhenning; Rasmussen, Jens C

    2013-12-30

    We experimentally and numerically investigated the characteristics of 128 Gb/s dual polarization - quadrature phase shift keying signals received with two types of nonlinear equalizers (NLEs) followed by soft-decision (SD) low-density parity-check (LDPC) forward error correction (FEC). Successful co-operation among SD-FEC and NLEs over various nonlinear transmissions were demonstrated by optimization of parameters for NLEs.

  20. FPGA-based LDPC-coded APSK for optical communication systems.

    PubMed

    Zou, Ding; Lin, Changyu; Djordjevic, Ivan B

    2017-02-20

    In this paper, with the aid of mutual information and generalized mutual information (GMI) capacity analyses, it is shown that the geometrically shaped APSK that mimics an optimal Gaussian distribution with equiprobable signaling together with the corresponding gray-mapping rules can approach the Shannon limit closer than conventional quadrature amplitude modulation (QAM) at certain range of FEC overhead for both 16-APSK and 64-APSK. The field programmable gate array (FPGA) based LDPC-coded APSK emulation is conducted on block interleaver-based and bit interleaver-based systems; the results verify a significant improvement in hardware efficient bit interleaver-based systems. In bit interleaver-based emulation, the LDPC-coded 64-APSK outperforms 64-QAM, in terms of symbol signal-to-noise ratio (SNR), by 0.1 dB, 0.2 dB, and 0.3 dB at spectral efficiencies of 4.8, 4.5, and 4.2 b/s/Hz, respectively. It is found by emulation that LDPC-coded 64-APSK for spectral efficiencies of 4.8, 4.5, and 4.2 b/s/Hz is 1.6 dB, 1.7 dB, and 2.2 dB away from the GMI capacity.

  1. Channel coding for underwater acoustic single-carrier CDMA communication system

    NASA Astrophysics Data System (ADS)

    Liu, Lanjun; Zhang, Yonglei; Zhang, Pengcheng; Zhou, Lin; Niu, Jiong

    2017-01-01

    CDMA is an effective multiple access protocol for underwater acoustic networks, and channel coding can effectively reduce the bit error rate (BER) of the underwater acoustic communication system. For the requirements of underwater acoustic mobile networks based on CDMA, an underwater acoustic single-carrier CDMA communication system (UWA/SCCDMA) based on the direct-sequence spread spectrum is proposed, and its channel coding scheme is studied based on convolution, RA, Turbo and LDPC coding respectively. The implementation steps of the Viterbi algorithm of convolutional coding, BP and minimum sum algorithms of RA coding, Log-MAP and SOVA algorithms of Turbo coding, and sum-product algorithm of LDPC coding are given. An UWA/SCCDMA simulation system based on Matlab is designed. Simulation results show that the UWA/SCCDMA based on RA, Turbo and LDPC coding have good performance such that the communication BER is all less than 10-6 in the underwater acoustic channel with low signal to noise ratio (SNR) from -12 dB to -10dB, which is about 2 orders of magnitude lower than that of the convolutional coding. The system based on Turbo coding with Log-MAP algorithm has the best performance.

  2. Design space exploration of high throughput finite field multipliers for channel coding on Xilinx FPGAs

    NASA Astrophysics Data System (ADS)

    de Schryver, C.; Weithoffer, S.; Wasenmüller, U.; Wehn, N.

    2012-09-01

    Channel coding is a standard technique in all wireless communication systems. In addition to the typically employed methods like convolutional coding, turbo coding or low density parity check (LDPC) coding, algebraic codes are used in many cases. For example, outer BCH coding is applied in the DVB-S2 standard for satellite TV broadcasting. A key operation for BCH and the related Reed-Solomon codes are multiplications in finite fields (Galois Fields), where extension fields of prime fields are used. A lot of architectures for multiplications in finite fields have been published over the last decades. This paper examines four different multiplier architectures in detail that offer the potential for very high throughputs. We investigate the implementation performance of these multipliers on FPGA technology in the context of channel coding. We study the efficiency of the multipliers with respect to area, frequency and throughput, as well as configurability and scalability. The implementation data of the fully verified circuits are provided for a Xilinx Virtex-4 device after place and route.

  3. Constellation labeling optimization for bit-interleaved coded APSK

    NASA Astrophysics Data System (ADS)

    Xiang, Xingyu; Mo, Zijian; Wang, Zhonghai; Pham, Khanh; Blasch, Erik; Chen, Genshe

    2016-05-01

    This paper investigates the constellation and mapping optimization for amplitude phase shift keying (APSK) modulation, which is deployed in Digital Video Broadcasting Satellite - Second Generation (DVB-S2) and Digital Video Broadcasting - Satellite services to Handhelds (DVB-SH) broadcasting standards due to its merits of power and spectral efficiency together with the robustness against nonlinear distortion. The mapping optimization is performed for 32-APSK according to combined cost functions related to Euclidean distance and mutual information. A Binary switching algorithm and its modified version are used to minimize the cost function and the estimated error between the original and received data. The optimized constellation mapping is tested by combining DVB-S2 standard Low-Density Parity-Check (LDPC) codes in both Bit-Interleaved Coded Modulation (BICM) and BICM with iterative decoding (BICM-ID) systems. The simulated results validate the proposed constellation labeling optimization scheme which yields better performance against conventional 32-APSK constellation defined in DVB-S2 standard.

  4. Joint Carrier-Phase Synchronization and LDPC Decoding

    NASA Technical Reports Server (NTRS)

    Simon, Marvin; Valles, Esteban

    2009-01-01

    A method has been proposed to increase the degree of synchronization of a radio receiver with the phase of a suppressed carrier signal modulated with a binary- phase-shift-keying (BPSK) or quaternary- phase-shift-keying (QPSK) signal representing a low-density parity-check (LDPC) code. This method is an extended version of the method described in Using LDPC Code Constraints to Aid Recovery of Symbol Timing (NPO-43112), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 54. Both methods and the receiver architectures in which they would be implemented belong to a class of timing- recovery methods and corresponding receiver architectures characterized as pilotless in that they do not require transmission and reception of pilot signals. The proposed method calls for the use of what is known in the art as soft decision feedback to remove the modulation from a replica of the incoming signal prior to feeding this replica to a phase-locked loop (PLL) or other carrier-tracking stage in the receiver. Soft decision feedback refers to suitably processed versions of intermediate results of iterative computations involved in the LDPC decoding process. Unlike a related prior method in which hard decision feedback (the final sequence of decoded symbols) is used to remove the modulation, the proposed method does not require estimation of the decoder error probability. In a basic digital implementation of the proposed method, the incoming signal (having carrier phase theta theta (sub c) plus noise would first be converted to inphase (I) and quadrature (Q) baseband signals by mixing it with I and Q signals at the carrier frequency [wc/(2 pi)] generated by a local oscillator. The resulting demodulated signals would be processed through one-symbol-period integrate and- dump filters, the outputs of which would be sampled and held, then multiplied by a soft-decision version of the baseband modulated signal. The resulting I and Q products consist of terms proportional to the cosine and sine of the carrier phase cc as well as correlated noise components. These products would be fed as inputs to a digital PLL that would include a number-controlled oscillator (NCO), which provides an estimate of the carrier phase, theta(sub c).

  5. Study regarding the density evolution of messages and the characteristic functions associated of a LDPC code

    NASA Astrophysics Data System (ADS)

    Drăghici, S.; Proştean, O.; Răduca, E.; Haţiegan, C.; Hălălae, I.; Pădureanu, I.; Nedeloni, M.; (Barboni Haţiegan, L.

    2017-01-01

    In this paper a method with which a set of characteristic functions are associated to a LDPC code is shown and also functions that represent the evolution density of messages that go along the edges of a Tanner graph. Graphic representations of the density evolution are shown respectively the study and simulation of likelihood threshold that render asymptotic boundaries between which there are decodable codes were made using MathCad V14 software.

  6. Adaptive channel estimation for soft decision decoding over non-Gaussian optical channel

    NASA Astrophysics Data System (ADS)

    Xiang, Jing-song; Miao, Tao-tao; Huang, Sheng; Liu, Huan-lin

    2016-10-01

    An adaptive priori likelihood ratio (LLR) estimation method is proposed over non-Gaussian channel in the intensity modulation/direct detection (IM/DD) optical communication systems. Using the nonparametric histogram and the weighted least square linear fitting in the tail regions, the LLR is estimated and used for the soft decision decoding of the low-density parity-check (LDPC) codes. This method can adapt well to the three main kinds of intensity modulation/direct detection (IM/DD) optical channel, i.e., the chi-square channel, the Webb-Gaussian channel and the additive white Gaussian noise (AWGN) channel. The performance penalty of channel estimation is neglected.

  7. On the reduced-complexity of LDPC decoders for beyond 400 Gb/s serial optical transmission

    NASA Astrophysics Data System (ADS)

    Djordjevic, Ivan B.; Xu, Lei; Wang, Ting

    2010-12-01

    Two reduced-complexity (RC) LDPC decoders are proposed, which can be used in combination with large-girth LDPC codes to enable beyond 400 Gb/s serial optical transmission. We show that optimally attenuated RC min-sum sum algorithm performs only 0.45 dB worse than conventional sum-product algorithm, while having lower storage memory requirements and much lower latency. We further evaluate the proposed algorithms for use in beyond 400 Gb/s serial optical transmission in combination with PolMUX 32-IPQ-based signal constellation and show that low BERs can be achieved for medium optical SNRs, while achieving the net coding gain above 11.4 dB.

  8. Progressive transmission of images over fading channels using rate-compatible LDPC codes.

    PubMed

    Pan, Xiang; Banihashemi, Amir H; Cuhadar, Aysegul

    2006-12-01

    In this paper, we propose a combined source/channel coding scheme for transmission of images over fading channels. The proposed scheme employs rate-compatible low-density parity-check codes along with embedded image coders such as JPEG2000 and set partitioning in hierarchical trees (SPIHT). The assignment of channel coding rates to source packets is performed by a fast trellis-based algorithm. We examine the performance of the proposed scheme over correlated and uncorrelated Rayleigh flat-fading channels with and without side information. Simulation results for the expected peak signal-to-noise ratio of reconstructed images, which are within 1 dB of the capacity upper bound over a wide range of channel signal-to-noise ratios, show considerable improvement compared to existing results under similar conditions. We also study the sensitivity of the proposed scheme in the presence of channel estimation error at the transmitter and demonstrate that under most conditions our scheme is more robust compared to existing schemes.

  9. LDPC-based iterative joint source-channel decoding for JPEG2000.

    PubMed

    Pu, Lingling; Wu, Zhenyu; Bilgin, Ali; Marcellin, Michael W; Vasic, Bane

    2007-02-01

    A framework is proposed for iterative joint source-channel decoding of JPEG2000 codestreams. At the encoder, JPEG2000 is used to perform source coding with certain error-resilience (ER) modes, and LDPC codes are used to perform channel coding. During decoding, the source decoder uses the ER modes to identify corrupt sections of the codestream and provides this information to the channel decoder. Decoding is carried out jointly in an iterative fashion. Experimental results indicate that the proposed method requires fewer iterations and improves overall system performance.

  10. 428-Gb/s single-channel coherent optical OFDM transmission over 960-km SSMF with constellation expansion and LDPC coding.

    PubMed

    Yang, Qi; Al Amin, Abdullah; Chen, Xi; Ma, Yiran; Chen, Simin; Shieh, William

    2010-08-02

    High-order modulation formats and advanced error correcting codes (ECC) are two promising techniques for improving the performance of ultrahigh-speed optical transport networks. In this paper, we present record receiver sensitivity for 107 Gb/s CO-OFDM transmission via constellation expansion to 16-QAM and rate-1/2 LDPC coding. We also show the single-channel transmission of a 428-Gb/s CO-OFDM signal over 960-km standard-single-mode-fiber (SSMF) without Raman amplification.

  11. Low Power LDPC Code Decoder Architecture Based on Intermediate Message Compression Technique

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazunori; Togawa, Nozomu; Ikenaga, Takeshi; Goto, Satoshi

    Reducing the power dissipation for LDPC code decoder is a major challenging task to apply it to the practical digital communication systems. In this paper, we propose a low power LDPC code decoder architecture based on an intermediate message-compression technique which features as follows: (i) An intermediate message compression technique enables the decoder to reduce the required memory capacity and write power dissipation. (ii) A clock gated shift register based intermediate message memory architecture enables the decoder to decompress the compressed messages in a single clock cycle while reducing the read power dissipation. The combination of the above two techniques enables the decoder to reduce the power dissipation while keeping the decoding throughput. The simulation results show that the proposed architecture improves the power efficiency up to 52% and 18% compared to that of the decoder based on the overlapped schedule and the rapid convergence schedule without the proposed techniques respectively.

  12. Memory-efficient decoding of LDPC codes

    NASA Technical Reports Server (NTRS)

    Kwok-San Lee, Jason; Thorpe, Jeremy; Hawkins, Jon

    2005-01-01

    We present a low-complexity quantization scheme for the implementation of regular (3,6) LDPC codes. The quantization parameters are optimized to maximize the mutual information between the source and the quantized messages. Using this non-uniform quantized belief propagation algorithm, we have simulated that an optimized 3-bit quantizer operates with 0.2dB implementation loss relative to a floating point decoder, and an optimized 4-bit quantizer operates less than 0.1dB quantization loss.

  13. PMD compensation in multilevel coded-modulation schemes with coherent detection using BLAST algorithm and iterative polarization cancellation.

    PubMed

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2008-09-15

    We present two PMD compensation schemes suitable for use in multilevel (M>or=2) block-coded modulation schemes with coherent detection. The first scheme is based on a BLAST-type polarization-interference cancellation scheme, and the second scheme is based on iterative polarization cancellation. Both schemes use the LDPC codes as channel codes. The proposed PMD compensations schemes are evaluated by employing coded-OFDM and coherent detection. When used in combination with girth-10 LDPC codes those schemes outperform polarization-time coding based OFDM by 1 dB at BER of 10(-9), and provide two times higher spectral efficiency. The proposed schemes perform comparable and are able to compensate even 1200 ps of differential group delay with negligible penalty.

  14. Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection.

    PubMed

    Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang

    2018-01-15

    In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes' (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10 -5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced.

  15. Analysis of soft-decision FEC on non-AWGN channels.

    PubMed

    Cho, Junho; Xie, Chongjin; Winzer, Peter J

    2012-03-26

    Soft-decision forward error correction (SD-FEC) schemes are typically designed for additive white Gaussian noise (AWGN) channels. In a fiber-optic communication system, noise may be neither circularly symmetric nor Gaussian, thus violating an important assumption underlying SD-FEC design. This paper quantifies the impact of non-AWGN noise on SD-FEC performance for such optical channels. We use a conditionally bivariate Gaussian noise model (CBGN) to analyze the impact of correlations among the signal's two quadrature components, and assess the effect of CBGN on SD-FEC performance using the density evolution of low-density parity-check (LDPC) codes. On a CBGN channel generating severely elliptic noise clouds, it is shown that more than 3 dB of coding gain are attainable by utilizing correlation information. Our analyses also give insights into potential improvements of the detection performance for fiber-optic transmission systems assisted by SD-FEC.

  16. Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection

    PubMed Central

    Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang

    2018-01-01

    In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes’ (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10−5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced. PMID:29342963

  17. Information-reduced Carrier Synchronization of Iterative Decoded BPSK and QPSK using Soft Decision (Extrinsic) Feedback

    NASA Technical Reports Server (NTRS)

    Simon, Marvin; Valles, Esteban; Jones, Christopher

    2008-01-01

    This paper addresses the carrier-phase estimation problem under low SNR conditions as are typical of turbo- and LDPC-coded applications. In previous publications by the first author, closed-loop carrier synchronization schemes for error-correction coded BPSK and QPSK modulation were proposed that were based on feeding back hard data decisions at the input of the loop, the purpose being to remove the modulation prior to attempting to track the carrier phase as opposed to the more conventional decision-feedback schemes that incorporate such feedback inside the loop. In this paper, we consider an alternative approach wherein the extrinsic soft information from the iterative decoder of turbo or LDPC codes is instead used as the feedback.

  18. Efficacy analysis of LDPC coded APSK modulated differential space-time-frequency coded for wireless body area network using MB-pulsed OFDM UWB technology.

    PubMed

    Manimegalai, C T; Gauni, Sabitha; Kalimuthu, K

    2017-12-04

    Wireless body area network (WBAN) is a breakthrough technology in healthcare areas such as hospital and telemedicine. The human body has a complex mixture of different tissues. It is expected that the nature of propagation of electromagnetic signals is distinct in each of these tissues. This forms the base for the WBAN, which is different from other environments. In this paper, the knowledge of Ultra Wide Band (UWB) channel is explored in the WBAN (IEEE 802.15.6) system. The measurements of parameters in frequency range from 3.1-10.6 GHz are taken. The proposed system, transmits data up to 480 Mbps by using LDPC coded APSK Modulated Differential Space-Time-Frequency Coded MB-OFDM to increase the throughput and power efficiency.

  19. Adaptive software-defined coded modulation for ultra-high-speed optical transport

    NASA Astrophysics Data System (ADS)

    Djordjevic, Ivan B.; Zhang, Yequn

    2013-10-01

    In optically-routed networks, different wavelength channels carrying the traffic to different destinations can have quite different optical signal-to-noise ratios (OSNRs) and signal is differently impacted by various channel impairments. Regardless of the data destination, an optical transport system (OTS) must provide the target bit-error rate (BER) performance. To provide target BER regardless of the data destination we adjust the forward error correction (FEC) strength. Depending on the information obtained from the monitoring channels, we select the appropriate code rate matching to the OSNR range that current channel OSNR falls into. To avoid frame synchronization issues, we keep the codeword length fixed independent of the FEC code being employed. The common denominator is the employment of quasi-cyclic (QC-) LDPC codes in FEC. For high-speed implementation, low-complexity LDPC decoding algorithms are needed, and some of them will be described in this invited paper. Instead of conventional QAM based modulation schemes, we employ the signal constellations obtained by optimum signal constellation design (OSCD) algorithm. To improve the spectral efficiency, we perform the simultaneous rate adaptation and signal constellation size selection so that the product of number of bits per symbol × code rate is closest to the channel capacity. Further, we describe the advantages of using 4D signaling instead of polarization-division multiplexed (PDM) QAM, by using the 4D MAP detection, combined with LDPC coding, in a turbo equalization fashion. Finally, to solve the problems related to the limited bandwidth of information infrastructure, high energy consumption, and heterogeneity of optical networks, we describe an adaptive energy-efficient hybrid coded-modulation scheme, which in addition to amplitude, phase, and polarization state employs the spatial modes as additional basis functions for multidimensional coded-modulation.

  20. Uplink Coding

    NASA Technical Reports Server (NTRS)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the objectives, meeting goals and overall NASA goals for the NASA Data Standards Working Group. The presentation includes information on the technical progress surrounding the objective, short LDPC codes, and the general results on the Pu-Pw tradeoff.

  1. Optimal signal constellation design for ultra-high-speed optical transport in the presence of nonlinear phase noise.

    PubMed

    Liu, Tao; Djordjevic, Ivan B

    2014-12-29

    In this paper, we first describe an optimal signal constellation design algorithm suitable for the coherent optical channels dominated by the linear phase noise. Then, we modify this algorithm to be suitable for the nonlinear phase noise dominated channels. In optimization procedure, the proposed algorithm uses the cumulative log-likelihood function instead of the Euclidian distance. Further, an LDPC coded modulation scheme is proposed to be used in combination with signal constellations obtained by proposed algorithm. Monte Carlo simulations indicate that the LDPC-coded modulation schemes employing the new constellation sets, obtained by our new signal constellation design algorithm, outperform corresponding QAM constellations significantly in terms of transmission distance and have better nonlinearity tolerance.

  2. Direct-detection Free-space Laser Transceiver Test-bed

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Chen, Jeffrey R.; Dabney, Philip W.; Ferrara, Jeffrey F.; Fong, Wai H.; Martino, Anthony J.; McGarry Jan. F.; Merkowitz, Stephen M.; Principe, Caleb M.; Sun, Siaoli; hide

    2008-01-01

    NASA Goddard Space Flight Center is developing a direct-detection free-space laser communications transceiver test bed. The laser transmitter is a master-oscillator power amplifier (MOPA) configuration using a 1060 nm wavelength laser-diode with a two-stage multi-watt Ytterbium fiber amplifier. Dual Mach-Zehnder electro-optic modulators provide an extinction ratio greater than 40 dB. The MOPA design delivered 10-W average power with low-duty-cycle PPM waveforms and achieved 1.7 kW peak power. We use pulse-position modulation format with a pseudo-noise code header to assist clock recovery and frame boundary identification. We are examining the use of low-density-parity-check (LDPC) codes for forward error correction. Our receiver uses an InGaAsP 1 mm diameter photocathode hybrid photomultiplier tube (HPMT) cooled with a thermo-electric cooler. The HPMT has 25% single-photon detection efficiency at 1064 nm wavelength with a dark count rate of 60,000/s at -22 degrees Celsius and a single-photon impulse response of 0.9 ns. We report on progress toward demonstrating a combined laser communications and ranging field experiment.

  3. Nonlinear Demodulation and Channel Coding in EBPSK Scheme

    PubMed Central

    Chen, Xianqing; Wu, Lenan

    2012-01-01

    The extended binary phase shift keying (EBPSK) is an efficient modulation technique, and a special impacting filter (SIF) is used in its demodulator to improve the bit error rate (BER) performance. However, the conventional threshold decision cannot achieve the optimum performance, and the SIF brings more difficulty in obtaining the posterior probability for LDPC decoding. In this paper, we concentrate not only on reducing the BER of demodulation, but also on providing accurate posterior probability estimates (PPEs). A new approach for the nonlinear demodulation based on the support vector machine (SVM) classifier is introduced. The SVM method which selects only a few sampling points from the filter output was used for getting PPEs. The simulation results show that the accurate posterior probability can be obtained with this method and the BER performance can be improved significantly by applying LDPC codes. Moreover, we analyzed the effect of getting the posterior probability with different methods and different sampling rates. We show that there are more advantages of the SVM method under bad condition and it is less sensitive to the sampling rate than other methods. Thus, SVM is an effective method for EBPSK demodulation and getting posterior probability for LDPC decoding. PMID:23213281

  4. Nonlinear demodulation and channel coding in EBPSK scheme.

    PubMed

    Chen, Xianqing; Wu, Lenan

    2012-01-01

    The extended binary phase shift keying (EBPSK) is an efficient modulation technique, and a special impacting filter (SIF) is used in its demodulator to improve the bit error rate (BER) performance. However, the conventional threshold decision cannot achieve the optimum performance, and the SIF brings more difficulty in obtaining the posterior probability for LDPC decoding. In this paper, we concentrate not only on reducing the BER of demodulation, but also on providing accurate posterior probability estimates (PPEs). A new approach for the nonlinear demodulation based on the support vector machine (SVM) classifier is introduced. The SVM method which selects only a few sampling points from the filter output was used for getting PPEs. The simulation results show that the accurate posterior probability can be obtained with this method and the BER performance can be improved significantly by applying LDPC codes. Moreover, we analyzed the effect of getting the posterior probability with different methods and different sampling rates. We show that there are more advantages of the SVM method under bad condition and it is less sensitive to the sampling rate than other methods. Thus, SVM is an effective method for EBPSK demodulation and getting posterior probability for LDPC decoding.

  5. Combining Ratio Estimation for Low Density Parity Check (LDPC) Coding

    NASA Technical Reports Server (NTRS)

    Mahmoud, Saad; Hi, Jianjun

    2012-01-01

    The Low Density Parity Check (LDPC) Code decoding algorithm make use of a scaled receive signal derived from maximizing the log-likelihood ratio of the received signal. The scaling factor (often called the combining ratio) in an AWGN channel is a ratio between signal amplitude and noise variance. Accurately estimating this ratio has shown as much as 0.6 dB decoding performance gain. This presentation briefly describes three methods for estimating the combining ratio: a Pilot-Guided estimation method, a Blind estimation method, and a Simulation-Based Look-Up table. The Pilot Guided Estimation method has shown that the maximum likelihood estimates of signal amplitude is the mean inner product of the received sequence and the known sequence, the attached synchronization marker (ASM) , and signal variance is the difference of the mean of the squared received sequence and the square of the signal amplitude. This method has the advantage of simplicity at the expense of latency since several frames worth of ASMs. The Blind estimation method s maximum likelihood estimator is the average of the product of the received signal with the hyperbolic tangent of the product combining ratio and the received signal. The root of this equation can be determined by an iterative binary search between 0 and 1 after normalizing the received sequence. This method has the benefit of requiring one frame of data to estimate the combining ratio which is good for faster changing channels compared to the previous method, however it is computationally expensive. The final method uses a look-up table based on prior simulated results to determine signal amplitude and noise variance. In this method the received mean signal strength is controlled to a constant soft decision value. The magnitude of the deviation is averaged over a predetermined number of samples. This value is referenced in a look up table to determine the combining ratio that prior simulation associated with the average magnitude of the deviation. This method is more complicated than the Pilot-Guided Method due to the gain control circuitry, but does not have the real-time computation complexity of the Blind Estimation method. Each of these methods can be used to provide an accurate estimation of the combining ratio, and the final selection of the estimation method depends on other design constraints.

  6. Two-terminal video coding.

    PubMed

    Yang, Yang; Stanković, Vladimir; Xiong, Zixiang; Zhao, Wei

    2009-03-01

    Following recent works on the rate region of the quadratic Gaussian two-terminal source coding problem and limit-approaching code designs, this paper examines multiterminal source coding of two correlated, i.e., stereo, video sequences to save the sum rate over independent coding of both sequences. Two multiterminal video coding schemes are proposed. In the first scheme, the left sequence of the stereo pair is coded by H.264/AVC and used at the joint decoder to facilitate Wyner-Ziv coding of the right video sequence. The first I-frame of the right sequence is successively coded by H.264/AVC Intracoding and Wyner-Ziv coding. An efficient stereo matching algorithm based on loopy belief propagation is then adopted at the decoder to produce pixel-level disparity maps between the corresponding frames of the two decoded video sequences on the fly. Based on the disparity maps, side information for both motion vectors and motion-compensated residual frames of the right sequence are generated at the decoder before Wyner-Ziv encoding. In the second scheme, source splitting is employed on top of classic and Wyner-Ziv coding for compression of both I-frames to allow flexible rate allocation between the two sequences. Experiments with both schemes on stereo video sequences using H.264/AVC, LDPC codes for Slepian-Wolf coding of the motion vectors, and scalar quantization in conjunction with LDPC codes for Wyner-Ziv coding of the residual coefficients give a slightly lower sum rate than separate H.264/AVC coding of both sequences at the same video quality.

  7. Joint Schemes for Physical Layer Security and Error Correction

    ERIC Educational Resources Information Center

    Adamo, Oluwayomi

    2011-01-01

    The major challenges facing resource constraint wireless devices are error resilience, security and speed. Three joint schemes are presented in this research which could be broadly divided into error correction based and cipher based. The error correction based ciphers take advantage of the properties of LDPC codes and Nordstrom Robinson code. A…

  8. A Simulation Testbed for Adaptive Modulation and Coding in Airborne Telemetry (Brief)

    DTIC Science & Technology

    2014-10-01

    SOQPSK 0.0085924 us 0.015231 kH2 10 1/2 20 Time Modulation/ Coding State ... .. . . D - 2/3 3/4 4/5 GTRI_B-‹#› MATLAB GUI Interface 8...802.11a) • Modulations: BPSK, QPSK, 16 QAM, 64 QAM • Cyclic Prefix Lengths • Number of Subcarriers • Coding • LDPC • Rates: 1/2, 2/3, 3/4, 4/5...and Coding in Airborne Telemetry (Brief) October 2014 DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. Test

  9. Optimum Boundaries of Signal-to-Noise Ratio for Adaptive Code Modulations

    DTIC Science & Technology

    2017-11-14

    1510–1521, Feb. 2015. [2]. Pursley, M. B. and Royster, T. C., “Adaptive-rate nonbinary LDPC coding for frequency - hop communications ,” IEEE...and this can cause a very narrowband noise near the center frequency during USRP signal acquisition and generation. This can cause a high BER...Final Report APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. AIR FORCE RESEARCH LABORATORY Space Vehicles Directorate 3550 Aberdeen Ave

  10. Research on Formation of Microsatellite Communication with Genetic Algorithm

    PubMed Central

    Wu, Guoqiang; Bai, Yuguang; Sun, Zhaowei

    2013-01-01

    For the formation of three microsatellites which fly in the same orbit and perform three-dimensional solid mapping for terra, this paper proposes an optimizing design method of space circular formation order based on improved generic algorithm and provides an intersatellite direct spread spectrum communication system. The calculating equation of LEO formation flying satellite intersatellite links is guided by the special requirements of formation-flying microsatellite intersatellite links, and the transmitter power is also confirmed throughout the simulation. The method of space circular formation order optimizing design based on improved generic algorithm is given, and it can keep formation order steady for a long time under various absorb impetus. The intersatellite direct spread spectrum communication system is also provided. It can be found that, when the distance is 1 km and the data rate is 1 Mbps, the input wave matches preferably with the output wave. And LDPC code can improve the communication performance. The correct capability of (512, 256) LDPC code is better than (2, 1, 7) convolution code, distinctively. The design system can satisfy the communication requirements of microsatellites. So, the presented method provides a significant theory foundation for formation-flying and intersatellite communication. PMID:24078796

  11. Research on formation of microsatellite communication with genetic algorithm.

    PubMed

    Wu, Guoqiang; Bai, Yuguang; Sun, Zhaowei

    2013-01-01

    For the formation of three microsatellites which fly in the same orbit and perform three-dimensional solid mapping for terra, this paper proposes an optimizing design method of space circular formation order based on improved generic algorithm and provides an intersatellite direct spread spectrum communication system. The calculating equation of LEO formation flying satellite intersatellite links is guided by the special requirements of formation-flying microsatellite intersatellite links, and the transmitter power is also confirmed throughout the simulation. The method of space circular formation order optimizing design based on improved generic algorithm is given, and it can keep formation order steady for a long time under various absorb impetus. The intersatellite direct spread spectrum communication system is also provided. It can be found that, when the distance is 1 km and the data rate is 1 Mbps, the input wave matches preferably with the output wave. And LDPC code can improve the communication performance. The correct capability of (512, 256) LDPC code is better than (2, 1, 7) convolution code, distinctively. The design system can satisfy the communication requirements of microsatellites. So, the presented method provides a significant theory foundation for formation-flying and intersatellite communication.

  12. LDPC decoder with a limited-precision FPGA-based floating-point multiplication coprocessor

    NASA Astrophysics Data System (ADS)

    Moberly, Raymond; O'Sullivan, Michael; Waheed, Khurram

    2007-09-01

    Implementing the sum-product algorithm, in an FPGA with an embedded processor, invites us to consider a tradeoff between computational precision and computational speed. The algorithm, known outside of the signal processing community as Pearl's belief propagation, is used for iterative soft-decision decoding of LDPC codes. We determined the feasibility of a coprocessor that will perform product computations. Our FPGA-based coprocessor (design) performs computer algebra with significantly less precision than the standard (e.g. integer, floating-point) operations of general purpose processors. Using synthesis, targeting a 3,168 LUT Xilinx FPGA, we show that key components of a decoder are feasible and that the full single-precision decoder could be constructed using a larger part. Soft-decision decoding by the iterative belief propagation algorithm is impacted both positively and negatively by a reduction in the precision of the computation. Reducing precision reduces the coding gain, but the limited-precision computation can operate faster. A proposed solution offers custom logic to perform computations with less precision, yet uses the floating-point format to interface with the software. Simulation results show the achievable coding gain. Synthesis results help theorize the the full capacity and performance of an FPGA-based coprocessor.

  13. High-Throughput Bit-Serial LDPC Decoder LSI Based on Multiple-Valued Asynchronous Interleaving

    NASA Astrophysics Data System (ADS)

    Onizawa, Naoya; Hanyu, Takahiro; Gaudet, Vincent C.

    This paper presents a high-throughput bit-serial low-density parity-check (LDPC) decoder that uses an asynchronous interleaver. Since consecutive log-likelihood message values on the interleaver are similar, node computations are continuously performed by using the most recently arrived messages without significantly affecting bit-error rate (BER) performance. In the asynchronous interleaver, each message's arrival rate is based on the delay due to the wire length, so that the decoding throughput is not restricted by the worst-case latency, which results in a higher average rate of computation. Moreover, the use of a multiple-valued data representation makes it possible to multiplex control signals and data from mutual nodes, thus minimizing the number of handshaking steps in the asynchronous interleaver and eliminating the clock signal entirely. As a result, the decoding throughput becomes 1.3 times faster than that of a bit-serial synchronous decoder under a 90nm CMOS technology, at a comparable BER.

  14. Neural network decoder for quantum error correcting codes

    NASA Astrophysics Data System (ADS)

    Krastanov, Stefan; Jiang, Liang

    Artificial neural networks form a family of extremely powerful - albeit still poorly understood - tools used in anything from image and sound recognition through text generation to, in our case, decoding. We present a straightforward Recurrent Neural Network architecture capable of deducing the correcting procedure for a quantum error-correcting code from a set of repeated stabilizer measurements. We discuss the fault-tolerance of our scheme and the cost of training the neural network for a system of a realistic size. Such decoders are especially interesting when applied to codes, like the quantum LDPC codes, that lack known efficient decoding schemes.

  15. A software reconfigurable optical multiband UWB system utilizing a bit-loading combined with adaptive LDPC code rate scheme

    NASA Astrophysics Data System (ADS)

    He, Jing; Dai, Min; Chen, Qinghui; Deng, Rui; Xiang, Changqing; Chen, Lin

    2017-07-01

    In this paper, an effective bit-loading combined with adaptive LDPC code rate algorithm is proposed and investigated in software reconfigurable multiband UWB over fiber system. To compensate the power fading and chromatic dispersion for the high frequency of multiband OFDM UWB signal transmission over standard single mode fiber (SSMF), a Mach-Zehnder modulator (MZM) with negative chirp parameter is utilized. In addition, the negative power penalty of -1 dB for 128 QAM multiband OFDM UWB signal are measured at the hard-decision forward error correction (HD-FEC) limitation of 3.8 × 10-3 after 50 km SSMF transmission. The experimental results show that, compared to the fixed coding scheme with the code rate of 75%, the signal-to-noise (SNR) is improved by 2.79 dB for 128 QAM multiband OFDM UWB system after 100 km SSMF transmission using ALCR algorithm. Moreover, by employing bit-loading combined with ALCR algorithm, the bit error rate (BER) performance of system can be further promoted effectively. The simulation results present that, at the HD-FEC limitation, the value of Q factor is improved by 3.93 dB at the SNR of 19.5 dB over 100 km SSMF transmission, compared to the fixed modulation with uncoded scheme at the same spectrum efficiency (SE).

  16. Advanced error-prediction LDPC with temperature compensation for highly reliable SSDs

    NASA Astrophysics Data System (ADS)

    Tokutomi, Tsukasa; Tanakamaru, Shuhei; Iwasaki, Tomoko Ogura; Takeuchi, Ken

    2015-09-01

    To improve the reliability of NAND Flash memory based solid-state drives (SSDs), error-prediction LDPC (EP-LDPC) has been proposed for multi-level-cell (MLC) NAND Flash memory (Tanakamaru et al., 2012, 2013), which is effective for long retention times. However, EP-LDPC is not as effective for triple-level cell (TLC) NAND Flash memory, because TLC NAND Flash has higher error rates and is more sensitive to program-disturb error. Therefore, advanced error-prediction LDPC (AEP-LDPC) has been proposed for TLC NAND Flash memory (Tokutomi et al., 2014). AEP-LDPC can correct errors more accurately by precisely describing the error phenomena. In this paper, the effects of AEP-LDPC are investigated in a 2×nm TLC NAND Flash memory with temperature characterization. Compared with LDPC-with-BER-only, the SSD's data-retention time is increased by 3.4× and 9.5× at room-temperature (RT) and 85 °C, respectively. Similarly, the acceptable BER is increased by 1.8× and 2.3×, respectively. Moreover, AEP-LDPC can correct errors with pre-determined tables made at higher temperatures to shorten the measurement time before shipping. Furthermore, it is found that one table can cover behavior over a range of temperatures in AEP-LDPC. As a result, the total table size can be reduced to 777 kBytes, which makes this approach more practical.

  17. Sparsening Filter Design for Iterative Soft-Input Soft-Output Detectors

    DTIC Science & Technology

    2012-02-29

    filter/detector structure. Since the BP detector itself is unaltered from [1], it can accommodate a system employing channel codes such as LDPC encoding...considered in [1], or can readily be extended to the MIMO case with, for example, space-time coding as in [2,8]. Since our focus is on the design of...simplex method of [15], since it was already available in Matlab , via the “fminsearch” function. 6 Cost surfaces To visualize the cost surfaces, consider

  18. System on a Chip Real-Time Emulation (SOCRE)

    DTIC Science & Technology

    2006-09-01

    code ) i Table of Contents Preface...emulation platform included LDPC decoders, A/V and radio applications Port BEE flow to Emulation Platforms, SOC Technologies One of the key tasks of the...Once the design has been described within Simulink, the designer runs the BEE design flow within Matlab using the bee_xps interface. At this point

  19. Irreducible normalizer operators and thresholds for degenerate quantum codes with sublinear distances

    NASA Astrophysics Data System (ADS)

    Pryadko, Leonid P.; Dumer, Ilya; Kovalev, Alexey A.

    2015-03-01

    We construct a lower (existence) bound for the threshold of scalable quantum computation which is applicable to all stabilizer codes, including degenerate quantum codes with sublinear distance scaling. The threshold is based on enumerating irreducible operators in the normalizer of the code, i.e., those that cannot be decomposed into a product of two such operators with non-overlapping support. For quantum LDPC codes with logarithmic or power-law distances, we get threshold values which are parametrically better than the existing analytical bound based on percolation. The new bound also gives a finite threshold when applied to other families of degenerate quantum codes, e.g., the concatenated codes. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-11-1-0027.

  20. DVB-S2 Experiment over NASA's Space Network

    NASA Technical Reports Server (NTRS)

    Downey, Joseph A.; Evans, Michael A.; Tollis, Nicholas S.

    2017-01-01

    The commercial DVB-S2 standard was successfully demonstrated over NASAs Space Network (SN) and the Tracking Data and Relay Satellite System (TDRSS) during testing conducted September 20-22nd, 2016. This test was a joint effort between NASA Glenn Research Center (GRC) and Goddard Space Flight Center (GSFC) to evaluate the performance of DVB-S2 as an alternative to traditional NASA SN waveforms. Two distinct sets of tests were conducted: one was sourced from the Space Communication and Navigation (SCaN) Testbed, an external payload on the International Space Station, and the other was sourced from GRCs S-band ground station to emulate a Space Network user through TDRSS. In both cases, a commercial off-the-shelf (COTS) receiver made by Newtec was used to receive the signal at White Sands Complex. Using SCaN Testbed, peak data rates of 5.7 Mbps were demonstrated. Peak data rates of 33 Mbps were demonstrated over the GRC S-band ground station through a 10MHz channel over TDRSS, using 32-amplitude phase shift keying (APSK) and a rate 89 low density parity check (LDPC) code. Advanced features of the DVB-S2 standard were evaluated, including variable and adaptive coding and modulation (VCMACM), as well as an adaptive digital pre-distortion (DPD) algorithm. These features provided additional data throughput and increased link performance reliability. This testing has shown that commercial standards are a viable, low-cost alternative for future Space Network users.

  1. Spinstand demonstration of areal density enhancement using two-dimensional magnetic recording (invited)

    NASA Astrophysics Data System (ADS)

    Lippman, Thomas; Brockie, Richard; Coker, Jon; Contreras, John; Galbraith, Rick; Garzon, Samir; Hanson, Weldon; Leong, Tom; Marley, Arley; Wood, Roger; Zakai, Rehan; Zolla, Howard; Duquette, Paul; Petrizzi, Joe

    2015-05-01

    Exponential growth of the areal density has driven the magnetic recording industry for almost sixty years. But now areal density growth is slowing down, suggesting that current technologies are reaching their fundamental limit. The next generation of recording technologies, namely, energy-assisted writing and bit-patterned media, remains just over the horizon. Two-Dimensional Magnetic Recording (TDMR) is a promising new approach, enabling continued areal density growth with only modest changes to the heads and recording electronics. We demonstrate a first generation implementation of TDMR by using a dual-element read sensor to improve the recovery of data encoded by a conventional low-density parity-check (LDPC) channel. The signals are combined with a 2D equalizer into a single modified waveform that is decoded by a standard LDPC channel. Our detection hardware can perform simultaneous measurement of the pre- and post-combined error rate information, allowing one set of measurements to assess the absolute areal density capability of the TDMR system as well as the gain over a conventional shingled magnetic recording system with identical components. We discuss areal density measurements using this hardware and demonstrate gains exceeding five percent based on experimental dual reader components.

  2. Replacing the CCSDS Telecommand Protocol with the Next Generation Uplink (NGU)

    NASA Technical Reports Server (NTRS)

    Kazz, Greg J.; Greenberg, Ed; Burleigh, Scott C.

    2012-01-01

    The current CCSDS Telecommand (TC) Recommendations 1-3 have essentially been in use since the early 1960s. The purpose of this paper is to propose a successor protocol to TC. The current CCSDS recommendations can only accommodate telecommand rates up to approximately 1 mbit/s. However today's spacecraft are storehouses for software including software for Field Programmable Gate Arrays (FPGA) which are rapidly replacing unique hardware systems. Changes to flight software occasionally require uplinks to deliver very large volumes of data. In the opposite direction, high rate downlink missions that use acknowledged CCSDS File Delivery Protocol (CFDP)4 will increase the uplink data rate requirements. It is calculated that a 5 mbits/s downlink could saturate a 4 kbits/s uplink with CFDP downlink responses: negative acknowledgements (NAKs), FINISHs, End-of-File (EOF), Acknowledgements (ACKs). Moreover, it is anticipated that uplink rates of 10 to 20 mbits/s will be required to support manned missions. The current TC recommendations cannot meet these new demands. Specifically, they are very tightly coupled to the Bose-Chaudhuri-Hocquenghem (BCH) code in Ref. 2. This protocol requires that an uncorrectable BCH codeword delimit the TC frame and terminate the randomization process. This method greatly limits telecom performance since only the BCH code can support the protocol. More modern techniques such as the CCSDS Low Density Parity Check (LDPC)5 codes can provide a minimum performance gain of up to 6 times higher command data rates as long as sufficient power is available in the data. This paper will describe the proposed protocol format, trade-offs, and advantages offered, along with a discussion of how reliable communications takes place at higher nominal rates.

  3. 16QAM transmission with 5.2 bits/s/Hz spectral efficiency over transoceanic distance.

    PubMed

    Zhang, H; Cai, J-X; Batshon, H G; Davidson, C R; Sun, Y; Mazurczyk, M; Foursa, D G; Pilipetskii, A; Mohs, G; Bergano, Neal S

    2012-05-21

    We transmit 160 x 100 G PDM RZ 16 QAM channels with 5.2 bits/s/Hz spectral efficiency over 6,860 km. There are more than 3 billion 16 QAM symbols, i.e., 12 billion bits, processed in total. Using coded modulation and iterative decoding between a MAP decoder and an LDPC based FEC all channels are decoded with no remaining errors.

  4. Modified hybrid subcarrier/amplitude/ phase/polarization LDPC-coded modulation for 400 Gb/s optical transmission and beyond.

    PubMed

    Batshon, Hussam G; Djordjevic, Ivan; Xu, Lei; Wang, Ting

    2010-06-21

    In this paper, we present a modified coded hybrid subcarrier/ amplitude/phase/polarization (H-SAPP) modulation scheme as a technique capable of achieving beyond 400 Gb/s single-channel transmission over optical channels. The modified H-SAPP scheme profits from the available resources in addition to geometry to increase the bandwidth efficiency of the transmission system, and so increases the aggregate rate of the system. In this report we present the modified H-SAPP scheme and focus on an example that allows 11 bits/Symbol that can achieve 440 Gb/s transmission using components of 50 Giga Symbol/s (GS/s).

  5. Protecting quantum memories using coherent parity check codes

    NASA Astrophysics Data System (ADS)

    Roffe, Joschka; Headley, David; Chancellor, Nicholas; Horsman, Dominic; Kendon, Viv

    2018-07-01

    Coherent parity check (CPC) codes are a new framework for the construction of quantum error correction codes that encode multiple qubits per logical block. CPC codes have a canonical structure involving successive rounds of bit and phase parity checks, supplemented by cross-checks to fix the code distance. In this paper, we provide a detailed introduction to CPC codes using conventional quantum circuit notation. We demonstrate the implementation of a CPC code on real hardware, by designing a [[4, 2, 2

  6. Two high-density recording methods with run-length limited turbo code for holographic data storage system

    NASA Astrophysics Data System (ADS)

    Nakamura, Yusuke; Hoshizawa, Taku

    2016-09-01

    Two methods for increasing the data capacity of a holographic data storage system (HDSS) were developed. The first method is called “run-length-limited (RLL) high-density recording”. An RLL modulation has the same effect as enlarging the pixel pitch; namely, it optically reduces the hologram size. Accordingly, the method doubles the raw-data recording density. The second method is called “RLL turbo signal processing”. The RLL turbo code consists of \\text{RLL}(1,∞ ) trellis modulation and an optimized convolutional code. The remarkable point of the developed turbo code is that it employs the RLL modulator and demodulator as parts of the error-correction process. The turbo code improves the capability of error correction more than a conventional LDPC code, even though interpixel interference is generated. These two methods will increase the data density 1.78-fold. Moreover, by simulation and experiment, a data density of 2.4 Tbit/in.2 is confirmed.

  7. Potts glass reflection of the decoding threshold for qudit quantum error correcting codes

    NASA Astrophysics Data System (ADS)

    Jiang, Yi; Kovalev, Alexey A.; Pryadko, Leonid P.

    We map the maximum likelihood decoding threshold for qudit quantum error correcting codes to the multicritical point in generalized Potts gauge glass models, extending the map constructed previously for qubit codes. An n-qudit quantum LDPC code, where a qudit can be involved in up to m stabilizer generators, corresponds to a ℤd Potts model with n interaction terms which can couple up to m spins each. We analyze general properties of the phase diagram of the constructed model, give several bounds on the location of the transitions, bounds on the energy density of extended defects (non-local analogs of domain walls), and discuss the correlation functions which can be used to distinguish different phases in the original and the dual models. This research was supported in part by the Grants: NSF PHY-1415600 (AAK), NSF PHY-1416578 (LPP), and ARO W911NF-14-1-0272 (LPP).

  8. Concurrent error detecting codes for arithmetic processors

    NASA Technical Reports Server (NTRS)

    Lim, R. S.

    1979-01-01

    A method of concurrent error detection for arithmetic processors is described. Low-cost residue codes with check-length l and checkbase m = 2 to the l power - 1 are described for checking arithmetic operations of addition, subtraction, multiplication, division complement, shift, and rotate. Of the three number representations, the signed-magnitude representation is preferred for residue checking. Two methods of residue generation are described: the standard method of using modulo m adders and the method of using a self-testing residue tree. A simple single-bit parity-check code is described for checking the logical operations of XOR, OR, and AND, and also the arithmetic operations of complement, shift, and rotate. For checking complement, shift, and rotate, the single-bit parity-check code is simpler to implement than the residue codes.

  9. Layered Wyner-Ziv video coding.

    PubMed

    Xu, Qian; Xiong, Zixiang

    2006-12-01

    Following recent theoretical works on successive Wyner-Ziv coding (WZC), we propose a practical layered Wyner-Ziv video coder using the DCT, nested scalar quantization, and irregular LDPC code based Slepian-Wolf coding (or lossless source coding with side information at the decoder). Our main novelty is to use the base layer of a standard scalable video coder (e.g., MPEG-4/H.26L FGS or H.263+) as the decoder side information and perform layered WZC for quality enhancement. Similar to FGS coding, there is no performance difference between layered and monolithic WZC when the enhancement bitstream is generated in our proposed coder. Using an H.26L coded version as the base layer, experiments indicate that WZC gives slightly worse performance than FGS coding when the channel (for both the base and enhancement layers) is noiseless. However, when the channel is noisy, extensive simulations of video transmission over wireless networks conforming to the CDMA2000 1X standard show that H.26L base layer coding plus Wyner-Ziv enhancement layer coding are more robust against channel errors than H.26L FGS coding. These results demonstrate that layered Wyner-Ziv video coding is a promising new technique for video streaming over wireless networks.

  10. Method of Error Floor Mitigation in Low-Density Parity-Check Codes

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon (Inventor)

    2014-01-01

    A digital communication decoding method for low-density parity-check coded messages. The decoding method decodes the low-density parity-check coded messages within a bipartite graph having check nodes and variable nodes. Messages from check nodes are partially hard limited, so that every message which would otherwise have a magnitude at or above a certain level is re-assigned to a maximum magnitude.

  11. Encoded physics knowledge in checking codes for nuclear cross section libraries at Los Alamos

    NASA Astrophysics Data System (ADS)

    Parsons, D. Kent

    2017-09-01

    Checking procedures for processed nuclear data at Los Alamos are described. Both continuous energy and multi-group nuclear data are verified by locally developed checking codes which use basic physics knowledge and common-sense rules. A list of nuclear data problems which have been identified with help of these checking codes is also given.

  12. Mechanisms of lectin and antibody-dependent polymorphonuclear leukocyte-mediated cytolysis.

    PubMed

    Tsunawaki, S; Ikenami, M; Mizuno, D; Yamazaki, M

    1983-04-01

    The mechanisms of tumor lysis by polymorphonuclear leukocytes (PMNs) were investigated. In antibody-dependent PMN-mediated cytolysis (ADPC), sensitized tumor cells were specifically lysed via Fc receptors on PMNs. On the other hand, lectin-dependent PMN-mediated cytolysis (LDPC) caused nonspecific lysis of several murine tumors after recognition of carbohydrate moieties on the cell membrane of both PMNs and tumor cells. Both ADPC and LDPC depended on glycolysis, and cytotoxicity was mediated by reactive oxygen species; LDPC was dependent on superoxide and ADPC on the myeloperoxidase system. The participation of reactive oxygen species in PMN cytotoxicity was also demonstrated by pharmacological triggering with phorbol myristate acetate. These results indicate that reactive oxygen species have an important role In tumor killing by PMNs and that ADPC and LDPC have partly different cytolytic processes as well as different recognition steps.

  13. NASA Tech Briefs, October 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Topics covered include: Light-Driven Polymeric Bimorph Actuators; Guaranteeing Failsafe Operation of Extended-Scene Shack-Hartmann Wavefront Sensor Algorithm; Cloud Water Content Sensor for Sounding Balloons and Small UAVs; Pixelized Device Control Actuators for Large Adaptive Optics; T-Slide Linear Actuators; G4FET Implementations of Some Logic Circuits; Electrically Variable or Programmable Nonvolatile Capacitors; System for Automated Calibration of Vector Modulators; Complementary Paired G4FETs as Voltage-Controlled NDR Device; Three MMIC Amplifiers for the 120-to-200 GHz Frequency Band; Low-Noise MMIC Amplifiers for 120 to 180 GHz; Using Ozone To Clean and Passivate Oxygen-Handling Hardware; Metal Standards for Waveguide Characterization of Materials; Two-Piece Screens for Decontaminating Granular Material; Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer; Improved Method of Design for Folding Inflatable Shells; Ultra-Large Solar Sail; Cooperative Three-Robot System for Traversing Steep Slopes; Assemblies of Conformal Tanks; Microfluidic Pumps Containing Teflon[Trademark] AF Diaphragms; Transparent Conveyor of Dielectric Liquids or Particles; Multi-Cone Model for Estimating GPS Ionospheric Delays; High-Sensitivity GaN Microchemical Sensors; On the Divergence of the Velocity Vector in Real-Gas Flow; Progress Toward a Compact, Highly Stable Ion Clock; Instruments for Imaging from Far to Near; Reflectors Made from Membranes Stretched Between Beams; Integrated Risk and Knowledge Management Program -- IRKM-P; LDPC Codes with Minimum Distance Proportional to Block Size; Constructing LDPC Codes from Loop-Free Encoding Modules; MMICs with Radial Probe Transitions to Waveguides; Tests of Low-Noise MMIC Amplifier Module at 290 to 340 GHz; and Extending Newtonian Dynamics to Include Stochastic Processes.

  14. 50 CFR Table 15 to Part 679 - Gear Codes, Descriptions, and Use

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... following: Alpha gear code NMFS logbooks Electronic check-in/ check-out Use numeric code to complete the following: Numeric gear code IERS eLandings ADF&G COAR NMFS AND ADF&G GEAR CODES Hook-and-line HAL X X 61 X...

  15. 50 CFR Table 15 to Part 679 - Gear Codes, Descriptions, and Use

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... following: Alpha gear code NMFS logbooks Electronic check-in/ check-out Use numeric code to complete the following: Numeric gear code IERS eLandings ADF&G COAR NMFS AND ADF&G GEAR CODES Hook-and-line HAL X X 61 X...

  16. 50 CFR Table 15 to Part 679 - Gear Codes, Descriptions, and Use

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... following: Alpha gear code NMFS logbooks Electronic check-in/ check-out Use numeric code to complete the following: Numeric gear code IERS eLandings ADF&G COAR NMFS AND ADF&G GEAR CODES Hook-and-line HAL X X 61 X...

  17. Bar code-based pre-transfusion check in pre-operative autologous blood donation.

    PubMed

    Ohsaka, Akimichi; Furuta, Yoshiaki; Ohsawa, Toshiya; Kobayashi, Mitsue; Abe, Katsumi; Inada, Eiichi

    2010-10-01

    The objective of this study was to demonstrate the feasibility of a bar code-based identification system for the pre-transfusion check at the bedside in the setting of pre-operative autologous blood donation (PABD). Between July 2003 and December 2008 we determined the compliance rate and causes of failure of electronic bedside checking for PABD transfusion. A total of 5627 (9% of all transfusions) PABD units were administered without a single mistransfusion. The overall rate of compliance with electronic checking was 99%. The bar code-based identification system was applicable to the pre-transfusion check for PABD transfusion. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Safe, Multiphase Bounds Check Elimination in Java

    DTIC Science & Technology

    2010-01-28

    production of mobile code from source code, JIT compilation in the virtual ma- chine, and application code execution. The code producer uses...invariants, and inequality constraint analysis) to identify and prove redundancy of bounds checks. During class-loading and JIT compilation, the virtual...unoptimized code if the speculated invariants do not hold. The combined effect of the multiple phases is to shift the effort as- sociated with bounds

  19. Evaluation of the efficiency and fault density of software generated by code generators

    NASA Technical Reports Server (NTRS)

    Schreur, Barbara

    1993-01-01

    Flight computers and flight software are used for GN&C (guidance, navigation, and control), engine controllers, and avionics during missions. The software development requires the generation of a considerable amount of code. The engineers who generate the code make mistakes and the generation of a large body of code with high reliability requires considerable time. Computer-aided software engineering (CASE) tools are available which generates code automatically with inputs through graphical interfaces. These tools are referred to as code generators. In theory, code generators could write highly reliable code quickly and inexpensively. The various code generators offer different levels of reliability checking. Some check only the finished product while some allow checking of individual modules and combined sets of modules as well. Considering NASA's requirement for reliability, an in house manually generated code is needed. Furthermore, automatically generated code is reputed to be as efficient as the best manually generated code when executed. In house verification is warranted.

  20. Decoding and optimized implementation of SECDED codes over GF(q)

    DOEpatents

    Ward, H. Lee; Ganti, Anand; Resnick, David R

    2013-10-22

    A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.

  1. Design, decoding and optimized implementation of SECDED codes over GF(q)

    DOEpatents

    Ward, H Lee; Ganti, Anand; Resnick, David R

    2014-06-17

    A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.

  2. Decoding and optimized implementation of SECDED codes over GF(q)

    DOEpatents

    Ward, H Lee; Ganti, Anand; Resnick, David R

    2014-11-18

    A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.

  3. A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting

    PubMed Central

    Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao

    2014-01-01

    We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813

  4. Ptolemy Coding Style

    DTIC Science & Technology

    2014-09-05

    shell script that checks Java code and prints out an alphabetical list of unrec- ognized spellings. It properly handles namesWithEmbeddedCapitalization...local/bin/ispell. To run this script, type $PTII/util/testsuite/ptspell *.java • testsuite/chkjava is a shell script for checking various other...best if the svn:native property is set. Below is how to check the values for a file named README.txt: bash-3.2$ svn proplist README.txt Properties on

  5. Analysis on applicable error-correcting code strength of storage class memory and NAND flash in hybrid storage

    NASA Astrophysics Data System (ADS)

    Matsui, Chihiro; Kinoshita, Reika; Takeuchi, Ken

    2018-04-01

    A hybrid of storage class memory (SCM) and NAND flash is a promising technology for high performance storage. Error correction is inevitable on SCM and NAND flash because their bit error rate (BER) increases with write/erase (W/E) cycles, data retention, and program/read disturb. In addition, scaling and multi-level cell technologies increase BER. However, error-correcting code (ECC) degrades storage performance because of extra memory reading and encoding/decoding time. Therefore, applicable ECC strength of SCM and NAND flash is evaluated independently by fixing ECC strength of one memory in the hybrid storage. As a result, weak BCH ECC with small correctable bit is recommended for the hybrid storage with large SCM capacity because SCM is accessed frequently. In contrast, strong and long-latency LDPC ECC can be applied to NAND flash in the hybrid storage with large SCM capacity because large-capacity SCM improves the storage performance.

  6. Code development for ships -- A demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyub, B.; Mansour, A.E.; White, G.

    1996-12-31

    A demonstration summary of a reliability-based structural design code for ships is presented for two ship types, a cruiser and a tanker. For both ship types, code requirements cover four failure modes: hull girder bulking, unstiffened plate yielding and buckling, stiffened plate buckling, and fatigue of critical detail. Both serviceability and ultimate limit states are considered. Because of limitation on the length, only hull girder modes are presented in this paper. Code requirements for other modes will be presented in future publication. A specific provision of the code will be a safety check expression. The design variables are to bemore » taken at their nominal values, typically values in the safe side of the respective distributions. Other safety check expressions for hull girder failure that include load combination factors, as well as consequence of failure factors, are considered. This paper provides a summary of safety check expressions for the hull girder modes.« less

  7. An FPGA design of generalized low-density parity-check codes for rate-adaptive optical transport networks

    NASA Astrophysics Data System (ADS)

    Zou, Ding; Djordjevic, Ivan B.

    2016-02-01

    Forward error correction (FEC) is as one of the key technologies enabling the next-generation high-speed fiber optical communications. In this paper, we propose a rate-adaptive scheme using a class of generalized low-density parity-check (GLDPC) codes with a Hamming code as local code. We show that with the proposed unified GLDPC decoder architecture, a variable net coding gains (NCGs) can be achieved with no error floor at BER down to 10-15, making it a viable solution in the next-generation high-speed fiber optical communications.

  8. Hyperbolic and semi-hyperbolic surface codes for quantum storage

    NASA Astrophysics Data System (ADS)

    Breuckmann, Nikolas P.; Vuillot, Christophe; Campbell, Earl; Krishna, Anirudh; Terhal, Barbara M.

    2017-09-01

    We show how a hyperbolic surface code could be used for overhead-efficient quantum storage. We give numerical evidence for a noise threshold of 1.3 % for the \\{4,5\\}-hyperbolic surface code in a phenomenological noise model (as compared with 2.9 % for the toric code). In this code family, parity checks are of weight 4 and 5, while each qubit participates in four different parity checks. We introduce a family of semi-hyperbolic codes that interpolate between the toric code and the \\{4,5\\}-hyperbolic surface code in terms of encoding rate and threshold. We show how these hyperbolic codes outperform the toric code in terms of qubit overhead for a target logical error probability. We show how Dehn twists and lattice code surgery can be used to read and write individual qubits to this quantum storage medium.

  9. A-7 Aloft Demonstration Flight Test Plan

    DTIC Science & Technology

    1975-09-01

    6095979 72A2130 Power Supply 12 VDC 6095681 72A29 NOC 72A30 ALOFT ASCU Adapter Set 72A3100 ALOFT ASCU Adapter L20-249-1 72A3110 Page assy L Bay and ASCU ...checks will also be performed for each of the following: 3.1.2.1.1 ASCU Codes. Verification will be made that all legal ASCU codes are recognized and...invalid codes inhibit attack mode. A check will also be made to verify that the ASCU codes for pilot-option weapons A-25 enable the retarded weapons

  10. Development and characterisation of FPGA modems using forward error correction for FSOC

    NASA Astrophysics Data System (ADS)

    Mudge, Kerry A.; Grant, Kenneth J.; Clare, Bradley A.; Biggs, Colin L.; Cowley, William G.; Manning, Sean; Lechner, Gottfried

    2016-05-01

    In this paper we report on the performance of a free-space optical communications (FSOC) modem implemented in FPGA, with data rate variable up to 60 Mbps. To combat the effects of atmospheric scintillation, a 7/8 rate low density parity check (LDPC) forward error correction is implemented along with custom bit and frame synchronisation and a variable length interleaver. We report on the systematic performance evaluation of an optical communications link employing the FPGA modems using a laboratory test-bed to simulate the effects of atmospheric turbulence. Log-normal fading is imposed onto the transmitted free-space beam using a custom LabVIEW program and an acoustic-optic modulator. The scintillation index, transmitted optical power and the scintillation bandwidth can all be independently varied allowing testing over a wide range of optical channel conditions. In particular, bit-error-ratio (BER) performance for different interleaver lengths is investigated as a function of the scintillation bandwidth. The laboratory results are compared to field measurements over 1.5km.

  11. English-Afrikaans Intrasentential Code Switching: Testing a Feature Checking Account

    ERIC Educational Resources Information Center

    van Dulm, Ondene

    2009-01-01

    The work presented here aims to account for the structure of intrasentential code switching between English and Afrikaans within the framework of feature checking theory, a theory associated with minimalist syntax. Six constructions in which verb position differs between English and Afrikaans were analysed in terms of differences in the strength…

  12. Characterization of vibrissa germinative cells: transition of cell types.

    PubMed

    Osada, A; Kobayashi, K

    2001-12-01

    Germinative cells, small cell masses attached to the stalks of dermal papillae that are able to differentiate into the hair shaft and inner root sheath, form follicular bulb-like structures when co-cultured with dermal papilla cells. We studied the growth characteristics of germinative cells to determine the cell types in the vibrissa germinative tissue. Germinative tissues, attaching to dermal papillae, were cultured on 3T3 feeder layers. The cultured keratinocytes were harvested and transferred, equally and for two passages, onto lined dermal papilla cells (LDPC) and/or 3T3 feeder layers. The resulting germinative cells were classified into three types in the present experimental condition. Type 1 cells grow very well on either feeder layer, whereas Type 3 cells scarcely grow on either feeder layer. Type 2 cells are very conspicuous and are reversible. They grow well on 3T3 but growth is suppressed on LDPC feeder layers. The Type 2 cells that grow well on 3T3 feeder layers, however, are suppressed when transferred onto LDPC and the Type 2 cells that are suppressed on LDPC begin to grow again on 3T3. The transition of one cell type to another in vitro and the cell types that these germinative cell types correspond to in vivo is discussed. It was concluded that stem cells or their close progenitors reside in the germinative tissues of the vibrissa bulb except at late anagen-early catagen.

  13. On the photonic implementation of universal quantum gates, bell states preparation circuit and quantum LDPC encoders and decoders based on directional couplers and HNLF.

    PubMed

    Djordjevic, Ivan B

    2010-04-12

    The Bell states preparation circuit is a basic circuit required in quantum teleportation. We describe how to implement it in all-fiber technology. The basic building blocks for its implementation are directional couplers and highly nonlinear optical fiber (HNLF). Because the quantum information processing is based on delicate superposition states, it is sensitive to quantum errors. In order to enable fault-tolerant quantum computing the use of quantum error correction is unavoidable. We show how to implement in all-fiber technology encoders and decoders for sparse-graph quantum codes, and provide an illustrative example to demonstrate this implementation. We also show that arbitrary set of universal quantum gates can be implemented based on directional couplers and HNLFs.

  14. The small stellated dodecahedron code and friends.

    PubMed

    Conrad, J; Chamberland, C; Breuckmann, N P; Terhal, B M

    2018-07-13

    We explore a distance-3 homological CSS quantum code, namely the small stellated dodecahedron code, for dense storage of quantum information and we compare its performance with the distance-3 surface code. The data and ancilla qubits of the small stellated dodecahedron code can be located on the edges respectively vertices of a small stellated dodecahedron, making this code suitable for three-dimensional connectivity. This code encodes eight logical qubits into 30 physical qubits (plus 22 ancilla qubits for parity check measurements) in contrast with one logical qubit into nine physical qubits (plus eight ancilla qubits) for the surface code. We develop fault-tolerant parity check circuits and a decoder for this code, allowing us to numerically assess the circuit-based pseudo-threshold.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Authors.

  15. A burst-mode photon counting receiver with automatic channel estimation and bit rate detection

    NASA Astrophysics Data System (ADS)

    Rao, Hemonth G.; DeVoe, Catherine E.; Fletcher, Andrew S.; Gaschits, Igor D.; Hakimi, Farhad; Hamilton, Scott A.; Hardy, Nicholas D.; Ingwersen, John G.; Kaminsky, Richard D.; Moores, John D.; Scheinbart, Marvin S.; Yarnall, Timothy M.

    2016-04-01

    We demonstrate a multi-rate burst-mode photon-counting receiver for undersea communication at data rates up to 10.416 Mb/s over a 30-foot water channel. To the best of our knowledge, this is the first demonstration of burst-mode photon-counting communication. With added attenuation, the maximum link loss is 97.1 dB at λ=517 nm. In clear ocean water, this equates to link distances up to 148 meters. For λ=470 nm, the achievable link distance in clear ocean water is 450 meters. The receiver incorporates soft-decision forward error correction (FEC) based on a product code of an inner LDPC code and an outer BCH code. The FEC supports multiple code rates to achieve error-free performance. We have selected a burst-mode receiver architecture to provide robust performance with respect to unpredictable channel obstructions. The receiver is capable of on-the-fly data rate detection and adapts to changing levels of signal and background light. The receiver updates its phase alignment and channel estimates every 1.6 ms, allowing for rapid changes in water quality as well as motion between transmitter and receiver. We demonstrate on-the-fly rate detection, channel BER within 0.2 dB of theory across all data rates, and error-free performance within 1.82 dB of soft-decision capacity across all tested code rates. All signal processing is done in FPGAs and runs continuously in real time.

  16. BCH codes for large IC random-access memory systems

    NASA Technical Reports Server (NTRS)

    Lin, S.; Costello, D. J., Jr.

    1983-01-01

    In this report some shortened BCH codes for possible applications to large IC random-access memory systems are presented. These codes are given by their parity-check matrices. Encoding and decoding of these codes are discussed.

  17. Miscoding and other user errors: importance of ongoing education for proper blood glucose monitoring procedures.

    PubMed

    Schrock, Linda E

    2008-07-01

    This article reviews the literature to date and reports on a new study that documented the frequency of manual code-requiring blood glucose (BG) meters that were miscoded at the time of the patient's initial appointment in a hospital-based outpatient diabetes education program. Between January 1 and May 31, 2007, the type of BG meter and the accuracy of the patient's meter code (if required) and procedure for checking BG were checked during the initial appointment with the outpatient diabetes educator. If indicated, reeducation regarding the procedure for the BG meter code entry and/or BG test was provided. Of the 65 patients who brought their meter requiring manual entry of a code number or code chip to the initial appointment, 16 (25%) were miscoded at the time of the appointment. Two additional problems, one of dead batteries and one of improperly stored test strips, were identified and corrected at the first appointment. These findings underscore the importance of checking the patient's BG meter code (if required) and procedure for testing BG at each encounter with a health care professional or providing the patient with a meter that does not require manual entry of a code number or chip to match the container of test strips (i.e., an autocode meter).

  18. The serial message-passing schedule for LDPC decoding algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Mingshan; Liu, Shanshan; Zhou, Yuan; Jiang, Xue

    2015-12-01

    The conventional message-passing schedule for LDPC decoding algorithms is the so-called flooding schedule. It has the disadvantage that the updated messages cannot be used until next iteration, thus reducing the convergence speed . In this case, the Layered Decoding algorithm (LBP) based on serial message-passing schedule is proposed. In this paper the decoding principle of LBP algorithm is briefly introduced, and then proposed its two improved algorithms, the grouped serial decoding algorithm (Grouped LBP) and the semi-serial decoding algorithm .They can improve LBP algorithm's decoding speed while maintaining a good decoding performance.

  19. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure.

    PubMed

    Maier, Joscha; Sawall, Stefan; Kachelrieß, Marc

    2014-05-01

    Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levels from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the HDTV algorithm shows the best performance. At 50 mGy, the deviation from the reference obtained at 500 mGy were less than 4%. Also the LDPC algorithm provides reasonable results with deviation less than 10% at 50 mGy while PCF and MKB reconstruction show larger deviations even at higher dose levels. LDPC and HDTV increase CNR and allow for quantitative evaluations even at dose levels as low as 50 mGy. The left ventricular volumes exemplarily illustrate that cardiac parameters can be accurately estimated at lowest dose levels if sophisticated algorithms are used. This allows to reduce dose by a factor of 10 compared to today's gold standard and opens new options for longitudinal studies of the heart.

  20. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Joscha, E-mail: joscha.maier@dkfz.de; Sawall, Stefan; Kachelrieß, Marc

    2014-05-15

    Purpose: Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levelsmore » from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Methods: Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Results: Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the HDTV algorithm shows the best performance. At 50 mGy, the deviation from the reference obtained at 500 mGy were less than 4%. Also the LDPC algorithm provides reasonable results with deviation less than 10% at 50 mGy while PCF and MKB reconstruction show larger deviations even at higher dose levels. Conclusions: LDPC and HDTV increase CNR and allow for quantitative evaluations even at dose levels as low as 50 mGy. The left ventricular volumes exemplarily illustrate that cardiac parameters can be accurately estimated at lowest dose levels if sophisticated algorithms are used. This allows to reduce dose by a factor of 10 compared to today's gold standard and opens new options for longitudinal studies of the heart.« less

  1. Implementation of continuous-variable quantum key distribution with discrete modulation

    NASA Astrophysics Data System (ADS)

    Hirano, Takuya; Ichikawa, Tsubasa; Matsubara, Takuto; Ono, Motoharu; Oguri, Yusuke; Namiki, Ryo; Kasai, Kenta; Matsumoto, Ryutaroh; Tsurumaru, Toyohiro

    2017-06-01

    We have developed a continuous-variable quantum key distribution (CV-QKD) system that employs discrete quadrature-amplitude modulation and homodyne detection of coherent states of light. We experimentally demonstrated automated secure key generation with a rate of 50 kbps when a quantum channel is a 10 km optical fibre. The CV-QKD system utilises a four-state and post-selection protocol and generates a secure key against the entangling cloner attack. We used a pulsed light source of 1550 nm wavelength with a repetition rate of 10 MHz. A commercially available balanced receiver is used to realise shot-noise-limited pulsed homodyne detection. We used a non-binary LDPC code for error correction (reverse reconciliation) and the Toeplitz matrix multiplication for privacy amplification. A graphical processing unit card is used to accelerate the software-based post-processing.

  2. NASA Tech Briefs, April 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Topics covered include: Direct-Solve Image-Based Wavefront Sensing; Use of UV Sources for Detection and Identification of Explosives; Using Fluorescent Viruses for Detecting Bacteria in Water; Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System; Volcano Monitor: Autonomous Triggering of In-Situ Sensors; Wireless Fluid-Level Sensors for Harsh Environments; Interference-Detection Module in a Digital Radar Receiver; Modal Vibration Analysis of Large Castings; Structural/Radiation-Shielding Epoxies; Integrated Multilayer Insulation; Apparatus for Screening Multiple Oxygen-Reduction Catalysts; Determining Aliasing in Isolated Signal Conditioning Modules; Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems; Spectrum Analyzers Incorporating Tunable WGM Resonators; Quantum-Well Thermophotovoltaic Cells; Bounded-Angle Iterative Decoding of LDPC Codes; Conversion from Tree to Graph Representation of Requirements; Parallel Hybrid Vehicle Optimal Storage System; and Anaerobic Digestion in a Flooded Densified Leachbed.

  3. Weight-4 Parity Checks on a Surface Code Sublattice with Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Takita, Maika; Corcoles, Antonio; Magesan, Easwar; Bronn, Nicholas; Hertzberg, Jared; Gambetta, Jay; Steffen, Matthias; Chow, Jerry

    We present a superconducting qubit quantum processor design amenable to the surface code architecture. In such architecture, parity checks on the data qubits, performed by measuring their X- and Z- syndrome qubits, constitute a critical aspect. Here we show fidelities and outcomes of X- and Z-parity measurements done on a syndrome qubit in a full plaquette consisting of one syndrome qubit coupled via bus resonators to four code qubits. Parities are measured after four code qubits are prepared into sixteen initial states in each basis. Results show strong dependence on ZZ between qubits on the same bus resonators. This work is supported by IARPA under Contract W911NF-10-1-0324.

  4. A framework for employing femtosatellites in planetary science missions, including a proposed mission concept for Titan

    NASA Astrophysics Data System (ADS)

    Perez, Tracie Renea Conn

    Over the past 15 years, there has been a growing interest in femtosatellites, a class of tiny satellites having mass less than 100 grams. Research groups from Peru, Spain, England, Canada, and the United States have proposed femtosat designs and novel mission concepts for them. In fact, Peru made history in 2013 by releasing the first - and still only - femtosat tracked from LEO. However, femtosatellite applications in interplanetary missions have yet to be explored in detail. An interesting operations concept would be for a space probe to release numerous femtosatellites into orbit around a planetary object of interest, thereby augmenting the overall data collection capability of the mission. A planetary probe releasing hundreds of femtosats could complete an in-situ, simultaneous 3D mapping of a physical property of interest, achieving scientific investigations not possible for one probe operating alone. To study the technical challenges associated with such a mission, a conceptual mission design is proposed where femtosats are deployed from a host satellite orbiting Titan. The conceptual mission objective is presented: to study Titan's dynamic atmosphere. Then, the design challenges are addressed in turn. First, any science payload measurements that the femtosats provide are only useful if their corresponding locations can be determined. Specifically, what's required is a method of position determination for femtosatellites operating beyond Medium Earth Orbit and therefore beyond the help of GPS. A technique is presented which applies Kalman filter techniques to Doppler shift measurements, allowing for orbit determination of the femtosats. Several case studies are presented demonstrating the usefulness of this approach. Second, due to the inherit power and computational limitations in a femtosatellite design, establishing a radio link between each chipsat and the mothersat will be difficult. To provide a mathematical gain, a particular form of forward error correction (FEC) method called low-density parity-check (LDPC) codes is recommended. A specific low-complexity encoder, and accompanying decoder, have been implemented in the open-source software radio library, GNU Radio. Simulation results demonstrating bit error rate (BER) improvement are presented. Hardware for implementing the LDPC methods in a benchtop test are described and future work on this topic is suggested. Third, the power and spatial constraints of femtosatellite designs likely restrict the payload to one or two sensors. Therefore, it is desired to extract as much useful scientific data as possible from secondary sources, such as radiometric data. Estimating the atmospheric density model from different measurement sources is simulated; results are presented. The overall goal for this effort is to advance the field of miniature spacecraft-based technology and to highlight the advantages of using femtosatellites in future planetary exploration missions. By addressing several subsystem design challenges in this context, such a femtosat mission concept is one step closer to being feasible.

  5. A Semiautomated Journal Check-In and Binding System; or Variations on a Common Theme

    PubMed Central

    Livingston, Frances G.

    1967-01-01

    The journal check-in project described here, though based on a computerized system, uses only unit-record equipment and is designed for the medium-sized library. The frequency codes used are based on the date printed on the journal rather than on the expected date of receipt, which allows for more stability in the coding scheme. The journal's volume number and issue number, which in other systems are usually predetermined by a computer, are inserted at the time of check-in. Routine claiming of overdue issues and a systematic binding schedule have also been developed as by-products. PMID:6041836

  6. Efficient Type Representation in TAL

    NASA Technical Reports Server (NTRS)

    Chen, Juan

    2009-01-01

    Certifying compilers generate proofs for low-level code that guarantee safety properties of the code. Type information is an essential part of safety proofs. But the size of type information remains a concern for certifying compilers in practice. This paper demonstrates type representation techniques in a large-scale compiler that achieves both concise type information and efficient type checking. In our 200,000-line certifying compiler, the size of type information is about 36% of the size of pure code and data for our benchmarks, the best result to the best of our knowledge. The type checking time is about 2% of the compilation time.

  7. Proceedings of the First NASA Formal Methods Symposium

    NASA Technical Reports Server (NTRS)

    Denney, Ewen (Editor); Giannakopoulou, Dimitra (Editor); Pasareanu, Corina S. (Editor)

    2009-01-01

    Topics covered include: Model Checking - My 27-Year Quest to Overcome the State Explosion Problem; Applying Formal Methods to NASA Projects: Transition from Research to Practice; TLA+: Whence, Wherefore, and Whither; Formal Methods Applications in Air Transportation; Theorem Proving in Intel Hardware Design; Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering; Model Checking for Autonomic Systems Specified with ASSL; A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process; Software Model Checking Without Source Code; Generalized Abstract Symbolic Summaries; A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing; Component-Oriented Behavior Extraction for Autonomic System Design; Automated Verification of Design Patterns with LePUS3; A Module Language for Typing by Contracts; From Goal-Oriented Requirements to Event-B Specifications; Introduction of Virtualization Technology to Multi-Process Model Checking; Comparing Techniques for Certified Static Analysis; Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder; jFuzz: A Concolic Whitebox Fuzzer for Java; Machine-Checkable Timed CSP; Stochastic Formal Correctness of Numerical Algorithms; Deductive Verification of Cryptographic Software; Coloured Petri Net Refinement Specification and Correctness Proof with Coq; Modeling Guidelines for Code Generation in the Railway Signaling Context; Tactical Synthesis Of Efficient Global Search Algorithms; Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems; and Formal Methods for Automated Diagnosis of Autosub 6000.

  8. PPLN-waveguide-based polarization entangled QKD simulator

    NASA Astrophysics Data System (ADS)

    Gariano, John; Djordjevic, Ivan B.

    2017-08-01

    We have developed a comprehensive simulator to study the polarization entangled quantum key distribution (QKD) system, which takes various imperfections into account. We assume that a type-II SPDC source using a PPLN-based nonlinear optical waveguide is used to generate entangled photon pairs and implements the BB84 protocol, using two mutually unbiased basis with two orthogonal polarizations in each basis. The entangled photon pairs are then simulated to be transmitted to both parties; Alice and Bob, through the optical channel, imperfect optical elements and onto the imperfect detector. It is assumed that Eve has no control over the detectors, and can only gain information from the public channel and the intercept resend attack. The secure key rate (SKR) is calculated using an upper bound and by using actual code rates of LDPC codes implementable in FPGA hardware. After the verification of the simulation results, such as the pair generation rate and the number of error due to multiple pairs, for the ideal scenario, available in the literature, we then introduce various imperfections. Then, the results are compared to previously reported experimental results where a BBO nonlinear crystal is used, and the improvements in SKRs are determined for when a PPLN-waveguide is used instead.

  9. ARA type protograph codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2008-01-01

    An apparatus and method for encoding low-density parity check codes. Together with a repeater, an interleaver and an accumulator, the apparatus comprises a precoder, thus forming accumulate-repeat-accumulate (ARA codes). Protographs representing various types of ARA codes, including AR3A, AR4A and ARJA codes, are described. High performance is obtained when compared to the performance of current repeat-accumulate (RA) or irregular-repeat-accumulate (IRA) codes.

  10. Software Model Checking of ARINC-653 Flight Code with MCP

    NASA Technical Reports Server (NTRS)

    Thompson, Sarah J.; Brat, Guillaume; Venet, Arnaud

    2010-01-01

    The ARINC-653 standard defines a common interface for Integrated Modular Avionics (IMA) code. In particular, ARINC-653 Part 1 specifies a process- and partition-management API that is analogous to POSIX threads, but with certain extensions and restrictions intended to support the implementation of high reliability flight code. MCP is a software model checker, developed at NASA Ames, that provides capabilities for model checking C and C++ source code. In this paper, we present recent work aimed at implementing extensions to MCP that support ARINC-653, and we discuss the challenges and opportunities that consequentially arise. Providing support for ARINC-653 s time and space partitioning is nontrivial, though there are implicit benefits for partial order reduction possible as a consequence of the API s strict interprocess communication policy.

  11. ANSYS duplicate finite-element checker routine

    NASA Technical Reports Server (NTRS)

    Ortega, R.

    1995-01-01

    An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.

  12. Security in Active Networks

    DTIC Science & Technology

    1999-01-01

    Some means currently under investigation include domain-speci c languages which are easy to check (e.g., PLAN), proof-carrying code [NL96, Nec97...domain-speci c language coupled to an extension system with heavyweight checks. In this way, the frequent (per- packet) dynamic checks are inexpensive...to CISC architectures remains problematic. Typed assembly language [MWCG98] propagates type safety information to the assembly language level, so

  13. A source-channel coding approach to digital image protection and self-recovery.

    PubMed

    Sarreshtedari, Saeed; Akhaee, Mohammad Ali

    2015-07-01

    Watermarking algorithms have been widely applied to the field of image forensics recently. One of these very forensic applications is the protection of images against tampering. For this purpose, we need to design a watermarking algorithm fulfilling two purposes in case of image tampering: 1) detecting the tampered area of the received image and 2) recovering the lost information in the tampered zones. State-of-the-art techniques accomplish these tasks using watermarks consisting of check bits and reference bits. Check bits are used for tampering detection, whereas reference bits carry information about the whole image. The problem of recovering the lost reference bits still stands. This paper is aimed at showing that having the tampering location known, image tampering can be modeled and dealt with as an erasure error. Therefore, an appropriate design of channel code can protect the reference bits against tampering. In the present proposed method, the total watermark bit-budget is dedicated to three groups: 1) source encoder output bits; 2) channel code parity bits; and 3) check bits. In watermark embedding phase, the original image is source coded and the output bit stream is protected using appropriate channel encoder. For image recovery, erasure locations detected by check bits help channel erasure decoder to retrieve the original source encoded image. Experimental results show that our proposed scheme significantly outperforms recent techniques in terms of image quality for both watermarked and recovered image. The watermarked image quality gain is achieved through spending less bit-budget on watermark, while image recovery quality is considerably improved as a consequence of consistent performance of designed source and channel codes.

  14. Computer codes for checking, plotting and processing of neutron cross-section covariance data and their application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartori, E.; Roussin, R.W.

    This paper presents a brief review of computer codes concerned with checking, plotting, processing and using of covariances of neutron cross-section data. It concentrates on those available from the computer code information centers of the United States and the OECD/Nuclear Energy Agency. Emphasis will be placed also on codes using covariances for specific applications such as uncertainty analysis, data adjustment and data consistency analysis. Recent evaluations contain neutron cross section covariance information for all isotopes of major importance for technological applications of nuclear energy. It is therefore important that the available software tools needed for taking advantage of this informationmore » are widely known as hey permit the determination of better safety margins and allow the optimization of more economic, I designs of nuclear energy systems.« less

  15. Performance of Compiler-Assisted Memory Safety Checking

    DTIC Science & Technology

    2014-08-01

    software developer has in mind a particular object to which the pointer should point, the intended referent. A memory access error occurs when an ac...Performance of Compiler-Assisted Memory Safety Checking David Keaton Robert C. Seacord August 2014 TECHNICAL NOTE CMU/SEI-2014-TN...based memory safety checking tool and the performance that can be achieved with two such tools whose source code is freely available. The note then

  16. Intelligent Data Visualization for Cross-Checking Spacecraft System Diagnosis

    NASA Technical Reports Server (NTRS)

    Ong, James C.; Remolina, Emilio; Breeden, David; Stroozas, Brett A.; Mohammed, John L.

    2012-01-01

    Any reasoning system is fallible, so crew members and flight controllers must be able to cross-check automated diagnoses of spacecraft or habitat problems by considering alternate diagnoses and analyzing related evidence. Cross-checking improves diagnostic accuracy because people can apply information processing heuristics, pattern recognition techniques, and reasoning methods that the automated diagnostic system may not possess. Over time, cross-checking also enables crew members to become comfortable with how the diagnostic reasoning system performs, so the system can earn the crew s trust. We developed intelligent data visualization software that helps users cross-check automated diagnoses of system faults more effectively. The user interface displays scrollable arrays of timelines and time-series graphs, which are tightly integrated with an interactive, color-coded system schematic to show important spatial-temporal data patterns. Signal processing and rule-based diagnostic reasoning automatically identify alternate hypotheses and data patterns that support or rebut the original and alternate diagnoses. A color-coded matrix display summarizes the supporting or rebutting evidence for each diagnosis, and a drill-down capability enables crew members to quickly view graphs and timelines of the underlying data. This system demonstrates that modest amounts of diagnostic reasoning, combined with interactive, information-dense data visualizations, can accelerate system diagnosis and cross-checking.

  17. Combining Static Model Checking with Dynamic Enforcement Using the Statecall Policy Language

    NASA Astrophysics Data System (ADS)

    Madhavapeddy, Anil

    Internet protocols encapsulate a significant amount of state, making implementing the host software complex. In this paper, we define the Statecall Policy Language (SPL) which provides a usable middle ground between ad-hoc coding and formal reasoning. It enables programmers to embed automata in their code which can be statically model-checked using SPIN and dynamically enforced. The performance overheads are minimal, and the automata also provide higher-level debugging capabilities. We also describe some practical uses of SPL by describing the automata used in an SSH server written entirely in OCaml/SPL.

  18. Telepharmacy and bar-code technology in an i.v. chemotherapy admixture area.

    PubMed

    O'Neal, Brian C; Worden, John C; Couldry, Rick J

    2009-07-01

    A program using telepharmacy and bar-code technology to increase the presence of the pharmacist at a critical risk point during chemotherapy preparation is described. Telepharmacy hardware and software were acquired, and an inspection camera was placed in a biological safety cabinet to allow the pharmacy technician to take digital photographs at various stages of the chemotherapy preparation process. Once the pharmacist checks the medication vials' agreement with the work label, the technician takes the product into the biological safety cabinet, where the appropriate patient is selected from the pending work list, a queue of patient orders sent from the pharmacy information system. The technician then scans the bar code on the vial. Assuming the bar code matches, the technician photographs the work label, vials, diluents and fluids to be used, and the syringe (before injecting the contents into the bag) along with the vial. The pharmacist views all images as a part of the final product-checking process. This process allows the pharmacist to verify that the correct quantity of medication was transferred from the primary source to a secondary container without being physically present at the time of transfer. Telepharmacy and bar coding provide a means to improve the accuracy of chemotherapy preparation by decreasing the likelihood of using the incorrect product or quantity of drug. The system facilitates the reading of small product labels and removes the need for a pharmacist to handle contaminated syringes and vials when checking the final product.

  19. Towards a Certified Lightweight Array Bound Checker for Java Bytecode

    NASA Technical Reports Server (NTRS)

    Pichardie, David

    2009-01-01

    Dynamic array bound checks are crucial elements for the security of a Java Virtual Machines. These dynamic checks are however expensive and several static analysis techniques have been proposed to eliminate explicit bounds checks. Such analyses require advanced numerical and symbolic manipulations that 1) penalize bytecode loading or dynamic compilation, 2) complexify the trusted computing base. Following the Foundational Proof Carrying Code methodology, our goal is to provide a lightweight bytecode verifier for eliminating array bound checks that is both efficient and trustable. In this work, we define a generic relational program analysis for an imperative, stackoriented byte code language with procedures, arrays and global variables and instantiate it with a relational abstract domain as polyhedra. The analysis has automatic inference of loop invariants and method pre-/post-conditions, and efficient checking of analysis results by a simple checker. Invariants, which can be large, can be specialized for proving a safety policy using an automatic pruning technique which reduces their size. The result of the analysis can be checked efficiently by annotating the program with parts of the invariant together with certificates of polyhedral inclusions. The resulting checker is sufficiently simple to be entirely certified within the Coq proof assistant for a simple fragment of the Java bytecode language. During the talk, we will also report on our ongoing effort to scale this approach for the full sequential JVM.

  20. High Order Modulation Protograph Codes

    NASA Technical Reports Server (NTRS)

    Nguyen, Thuy V. (Inventor); Nosratinia, Aria (Inventor); Divsalar, Dariush (Inventor)

    2014-01-01

    Digital communication coding methods for designing protograph-based bit-interleaved code modulation that is general and applies to any modulation. The general coding framework can support not only multiple rates but also adaptive modulation. The method is a two stage lifting approach. In the first stage, an original protograph is lifted to a slightly larger intermediate protograph. The intermediate protograph is then lifted via a circulant matrix to the expected codeword length to form a protograph-based low-density parity-check code.

  1. Heave and Roll Response of Free Floating Bodies of Cylindrical Shape

    DTIC Science & Technology

    1977-02-01

    27, De 1000 1 a 1,NPARTS ?8. C CH~ ECK ( IF ITS OUJT OF WATER P9 9IF (VDCI) ’I.E. 0.0) Ci’l TO 1000 30. C CHECK SHAPE. 31. Ud TO 1o0003000300...22217 Center 1 ATTN: (Code 460) Cameron Station 1 ATTN: (Code 102-OS) Alexandria, VA 22314 6 ATTN: (Code 1021P) 1 ATTN: (Code 200) Commander Naval

  2. MINIMUM CHECK LIST FOR MECHANICAL PLANS AND SPECIFICATIONS.

    ERIC Educational Resources Information Center

    PIERCE, J.L.

    THIS BULLETIN HAS BEEN PREPARED FOR USE AS A MINIMUM CHECK LIST IN THE DEVELOPMENT AND REVIEW OF MECHANICAL AND ELECTRICAL PLANS AND SPECIFICATIONS BY ENGINEERS, ARCHITECTS, AND SUPERINTENDENTS IN PLANNING PUBLIC SCHOOL FACILITIES. THREE LEVELS OF GUIDELINES ARE MENTIONED--(1) MANDATORY BECAUSE OF LAW, CODE, OR REGULATION, (2) RECOMMENDED AS MOST…

  3. A Categorization of Dynamic Analyzers

    NASA Technical Reports Server (NTRS)

    Lujan, Michelle R.

    1997-01-01

    Program analysis techniques and tools are essential to the development process because of the support they provide in detecting errors and deficiencies at different phases of development. The types of information rendered through analysis includes the following: statistical measurements of code, type checks, dataflow analysis, consistency checks, test data,verification of code, and debugging information. Analyzers can be broken into two major categories: dynamic and static. Static analyzers examine programs with respect to syntax errors and structural properties., This includes gathering statistical information on program content, such as the number of lines of executable code, source lines. and cyclomatic complexity. In addition, static analyzers provide the ability to check for the consistency of programs with respect to variables. Dynamic analyzers in contrast are dependent on input and the execution of a program providing the ability to find errors that cannot be detected through the use of static analysis alone. Dynamic analysis provides information on the behavior of a program rather than on the syntax. Both types of analysis detect errors in a program, but dynamic analyzers accomplish this through run-time behavior. This paper focuses on the following broad classification of dynamic analyzers: 1) Metrics; 2) Models; and 3) Monitors. Metrics are those analyzers that provide measurement. The next category, models, captures those analyzers that present the state of the program to the user at specified points in time. The last category, monitors, checks specified code based on some criteria. The paper discusses each classification and the techniques that are included under them. In addition, the role of each technique in the software life cycle is discussed. Familiarization with the tools that measure, model and monitor programs provides a framework for understanding the program's dynamic behavior from different, perspectives through analysis of the input/output data.

  4. Static Verification for Code Contracts

    NASA Astrophysics Data System (ADS)

    Fähndrich, Manuel

    The Code Contracts project [3] at Microsoft Research enables programmers on the .NET platform to author specifications in existing languages such as C# and VisualBasic. To take advantage of these specifications, we provide tools for documentation generation, runtime contract checking, and static contract verification.

  5. Agricultural Baseline (BL0) scenario

    DOE Data Explorer

    Davis, Maggie R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000181319328); Hellwinckel, Chad M [University of Tennessee] (ORCID:0000000173085058); Eaton, Laurence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000312709626); Turhollow, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000228159350); Brandt, Craig [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000214707379); Langholtz, Matthew H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000281537154)

    2016-07-13

    Scientific reason for data generation: to serve as the reference case for the BT16 volume 1 agricultural scenarios. The agricultural baseline runs from 2015 through 2040; a starting year of 2014 is used. Date the data set was last modified: 02/12/2016 How each parameter was produced (methods), format, and relationship to other data in the data set: simulation was developed without offering a farmgate price to energy crops or residues (i.e., building on both the USDA 2015 baseline and the agricultural census data (USDA NASS 2014). Data generated are .txt output files by year, simulation identifier, county code (1-3109). Instruments used: POLYSYS (version POLYS2015_V10_alt_JAN22B) supplied by the University of Tennessee APAC The quality assurance and quality control that have been applied: • Check for negative planted area, harvested area, production, yield and cost values. • Check if harvested area exceeds planted area for annuals. • Check FIPS codes.

  6. Development of a CFD Code for Analysis of Fluid Dynamic Forces in Seals

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh M.; Przekwas, Andrzej J.; Singhal, Ashok K.

    1991-01-01

    The aim is to develop a 3-D computational fluid dynamics (CFD) code for the analysis of fluid flow in cylindrical seals and evaluation of the dynamic forces on the seals. This code is expected to serve as a scientific tool for detailed flow analysis as well as a check for the accuracy of the 2D industrial codes. The features necessary in the CFD code are outlined. The initial focus was to develop or modify and implement new techniques and physical models. These include collocated grid formulation, rotating coordinate frames and moving grid formulation. Other advanced numerical techniques include higher order spatial and temporal differencing and an efficient linear equation solver. These techniques were implemented in a 2D flow solver for initial testing. Several benchmark test cases were computed using the 2D code, and the results of these were compared to analytical solutions or experimental data to check the accuracy. Tests presented here include planar wedge flow, flow due to an enclosed rotor, and flow in a 2D seal with a whirling rotor. Comparisons between numerical and experimental results for an annular seal and a 7-cavity labyrinth seal are also included.

  7. Software Model Checking Without Source Code

    NASA Technical Reports Server (NTRS)

    Chaki, Sagar; Ivers, James

    2009-01-01

    We present a framework, called AIR, for verifying safety properties of assembly language programs via software model checking. AIR extends the applicability of predicate abstraction and counterexample guided abstraction refinement to the automated verification of low-level software. By working at the assembly level, AIR allows verification of programs for which source code is unavailable-such as legacy and COTS software-and programs that use features-such as pointers, structures, and object-orientation-that are problematic for source-level software verification tools. In addition, AIR makes no assumptions about the underlying compiler technology. We have implemented a prototype of AIR and present encouraging results on several non-trivial examples.

  8. Hardware-efficient bosonic quantum error-correcting codes based on symmetry operators

    NASA Astrophysics Data System (ADS)

    Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.

    2018-03-01

    We establish a symmetry-operator framework for designing quantum error-correcting (QEC) codes based on fundamental properties of the underlying system dynamics. Based on this framework, we propose three hardware-efficient bosonic QEC codes that are suitable for χ(2 )-interaction based quantum computation in multimode Fock bases: the χ(2 ) parity-check code, the χ(2 ) embedded error-correcting code, and the χ(2 ) binomial code. All of these QEC codes detect photon-loss or photon-gain errors by means of photon-number parity measurements, and then correct them via χ(2 ) Hamiltonian evolutions and linear-optics transformations. Our symmetry-operator framework provides a systematic procedure for finding QEC codes that are not stabilizer codes, and it enables convenient extension of a given encoding to higher-dimensional qudit bases. The χ(2 ) binomial code is of special interest because, with m ≤N identified from channel monitoring, it can correct m -photon-loss errors, or m -photon-gain errors, or (m -1 )th -order dephasing errors using logical qudits that are encoded in O (N ) photons. In comparison, other bosonic QEC codes require O (N2) photons to correct the same degree of bosonic errors. Such improved photon efficiency underscores the additional error-correction power that can be provided by channel monitoring. We develop quantum Hamming bounds for photon-loss errors in the code subspaces associated with the χ(2 ) parity-check code and the χ(2 ) embedded error-correcting code, and we prove that these codes saturate their respective bounds. Our χ(2 ) QEC codes exhibit hardware efficiency in that they address the principal error mechanisms and exploit the available physical interactions of the underlying hardware, thus reducing the physical resources required for implementing their encoding, decoding, and error-correction operations, and their universal encoded-basis gate sets.

  9. Extremely accurate sequential verification of RELAP5-3D

    DOE PAGES

    Mesina, George L.; Aumiller, David L.; Buschman, Francis X.

    2015-11-19

    Large computer programs like RELAP5-3D solve complex systems of governing, closure and special process equations to model the underlying physics of nuclear power plants. Further, these programs incorporate many other features for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. For RELAP5-3D, verification and validation are restricted to nuclear power plant applications. Verification means ensuring that the program is built right by checking that it meets its design specifications, comparing coding to algorithms and equations and comparing calculations against analytical solutions and method ofmore » manufactured solutions. Sequential verification performs these comparisons initially, but thereafter only compares code calculations between consecutive code versions to demonstrate that no unintended changes have been introduced. Recently, an automated, highly accurate sequential verification method has been developed for RELAP5-3D. The method also provides to test that no unintended consequences result from code development in the following code capabilities: repeating a timestep advancement, continuing a run from a restart file, multiple cases in a single code execution, and modes of coupled/uncoupled operation. In conclusion, mathematical analyses of the adequacy of the checks used in the comparisons are provided.« less

  10. Framework for Evaluating Loop Invariant Detection Games in Relation to Automated Dynamic Invariant Detectors

    DTIC Science & Technology

    2015-09-01

    Detectability ...............................................................................................37 Figure 20. Excel VBA Codes for Checker...National Vulnerability Database OS Operating System SQL Structured Query Language VC Verification Condition VBA Visual Basic for Applications...checks each of these assertions for detectability by Daikon. The checker is an Excel Visual Basic for Applications ( VBA ) script that checks the

  11. 19 CFR 24.24 - Harbor maintenance fee.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-662, as amended] Port code, port name and state Port descriptions and notations Alabama 1901—Mobile... http://www.pay.gov or, alternatively, mailed with a single check or money order payable to U.S. Customs... other duty, tax, or fee is imposed on the shipment, and the fee exceeds $3, a check or money order for...

  12. 19 CFR 24.24 - Harbor maintenance fee.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-662, as amended] Port code, port name and state Port descriptions and notations Alabama 1901—Mobile... http://www.pay.gov or, alternatively, mailed with a single check or money order payable to U.S. Customs... other duty, tax, or fee is imposed on the shipment, and the fee exceeds $3, a check or money order for...

  13. 19 CFR 24.24 - Harbor maintenance fee.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-662, as amended] Port code, port name and state Port descriptions and notations Alabama 1901—Mobile... http://www.pay.gov or, alternatively, mailed with a single check or money order payable to U.S. Customs... other duty, tax, or fee is imposed on the shipment, and the fee exceeds $3, a check or money order for...

  14. 19 CFR 24.24 - Harbor maintenance fee.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-662, as amended] Port code, port name and state Port descriptions and notations Alabama 1901—Mobile... http://www.pay.gov or, alternatively, mailed with a single check or money order payable to U.S. Customs... other duty, tax, or fee is imposed on the shipment, and the fee exceeds $3, a check or money order for...

  15. 26 CFR 301.6867-1 - Presumptions where owner of large amount of cash is not identified.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Revenue Code, relating to abatements, credits, and refunds, and may not institute a suit for refund in... 6532(c), relating to the 9-month statute of limitations for suits under section 7426. In addition, the...) Postage stamps; (F) Traveler's checks in any form; (G) Negotiable instruments (including personal checks...

  16. 26 CFR 301.6867-1 - Presumptions where owner of large amount of cash is not identified.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Revenue Code, relating to abatements, credits, and refunds, and may not institute a suit for refund in... 6532(c), relating to the 9-month statute of limitations for suits under section 7426. In addition, the...) Postage stamps; (F) Traveler's checks in any form; (G) Negotiable instruments (including personal checks...

  17. Abstraction Techniques for Parameterized Verification

    DTIC Science & Technology

    2006-11-01

    approach for applying model checking to unbounded systems is to extract finite state models from them using conservative abstraction techniques. Prop...36 2.5.1 Multiple Reference Processes . . . . . . . . . . . . . . . . . . . 36 2.5.2 Adding Monitor Processes...model checking to complex pieces of code like device drivers depends on the use of abstraction methods. An abstraction method extracts a small finite

  18. Automatic Testcase Generation for Flight Software

    NASA Technical Reports Server (NTRS)

    Bushnell, David Henry; Pasareanu, Corina; Mackey, Ryan M.

    2008-01-01

    The TacSat3 project is applying Integrated Systems Health Management (ISHM) technologies to an Air Force spacecraft for operational evaluation in space. The experiment will demonstrate the effectiveness and cost of ISHM and vehicle systems management (VSM) technologies through onboard operation for extended periods. We present two approaches to automatic testcase generation for ISHM: 1) A blackbox approach that views the system as a blackbox, and uses a grammar-based specification of the system's inputs to automatically generate *all* inputs that satisfy the specifications (up to prespecified limits); these inputs are then used to exercise the system. 2) A whitebox approach that performs analysis and testcase generation directly on a representation of the internal behaviour of the system under test. The enabling technologies for both these approaches are model checking and symbolic execution, as implemented in the Ames' Java PathFinder (JPF) tool suite. Model checking is an automated technique for software verification. Unlike simulation and testing which check only some of the system executions and therefore may miss errors, model checking exhaustively explores all possible executions. Symbolic execution evaluates programs with symbolic rather than concrete values and represents variable values as symbolic expressions. We are applying the blackbox approach to generating input scripts for the Spacecraft Command Language (SCL) from Interface and Control Systems. SCL is an embedded interpreter for controlling spacecraft systems. TacSat3 will be using SCL as the controller for its ISHM systems. We translated the SCL grammar into a program that outputs scripts conforming to the grammars. Running JPF on this program generates all legal input scripts up to a prespecified size. Script generation can also be targeted to specific parts of the grammar of interest to the developers. These scripts are then fed to the SCL Executive. ICS's in-house coverage tools will be run to measure code coverage. Because the scripts exercise all parts of the grammar, we expect them to provide high code coverage. This blackbox approach is suitable for systems for which we do not have access to the source code. We are applying whitebox test generation to the Spacecraft Health INference Engine (SHINE) that is part of the ISHM system. In TacSat3, SHINE will execute an on-board knowledge base for fault detection and diagnosis. SHINE converts its knowledge base into optimized C code which runs onboard TacSat3. SHINE can translate its rules into an intermediate representation (Java) suitable for analysis with JPF. JPF will analyze SHINE's Java output using symbolic execution, producing testcases that can provide either complete or directed coverage of the code. Automatically generated test suites can provide full code coverage and be quickly regenerated when code changes. Because our tools analyze executable code, they fully cover the delivered code, not just models of the code. This approach also provides a way to generate tests that exercise specific sections of code under specific preconditions. This capability gives us more focused testing of specific sections of code.

  19. NOAA Weather Radio

    Science.gov Websites

    Information Reception Problems NWR Alarms Automated Voices FIPS Codes NWR - Special Needs SAME USING SAME SAME does not make an audible beep. However, it will display the words "CHECK RECEPTION" until it Reception Problems General Information NWR Alarms FIPS Codes Automated Voices Spanish Voices Public

  20. Suite of Benchmark Tests to Conduct Mesh-Convergence Analysis of Nonlinear and Non-constant Coefficient Transport Codes

    NASA Astrophysics Data System (ADS)

    Zamani, K.; Bombardelli, F. A.

    2014-12-01

    Verification of geophysics codes is imperative to avoid serious academic as well as practical consequences. In case that access to any given source code is not possible, the Method of Manufactured Solution (MMS) cannot be employed in code verification. In contrast, employing the Method of Exact Solution (MES) has several practical advantages. In this research, we first provide four new one-dimensional analytical solutions designed for code verification; these solutions are able to uncover the particular imperfections of the Advection-diffusion-reaction equation, such as nonlinear advection, diffusion or source terms, as well as non-constant coefficient equations. After that, we provide a solution of Burgers' equation in a novel setup. Proposed solutions satisfy the continuity of mass for the ambient flow, which is a crucial factor for coupled hydrodynamics-transport solvers. Then, we use the derived analytical solutions for code verification. To clarify gray-literature issues in the verification of transport codes, we designed a comprehensive test suite to uncover any imperfection in transport solvers via a hierarchical increase in the level of tests' complexity. The test suite includes hundreds of unit tests and system tests to check vis-a-vis the portions of the code. Examples for checking the suite start by testing a simple case of unidirectional advection; then, bidirectional advection and tidal flow and build up to nonlinear cases. We design tests to check nonlinearity in velocity, dispersivity and reactions. The concealing effect of scales (Peclet and Damkohler numbers) on the mesh-convergence study and appropriate remedies are also discussed. For the cases in which the appropriate benchmarks for mesh convergence study are not available, we utilize symmetry. Auxiliary subroutines for automation of the test suite and report generation are designed. All in all, the test package is not only a robust tool for code verification but it also provides comprehensive insight on the ADR solvers capabilities. Such information is essential for any rigorous computational modeling of ADR equation for surface/subsurface pollution transport. We also convey our experiences in finding several errors which were not detectable with routine verification techniques.

  1. 76 FR 71315 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-17

    ... the fish and would then sample them for biological information (fin tissue and scale samples). They..., measured, weighed, tissue-sampled, and checked for external marks and coded-wire tags depending on the.... Then the researchers would remove and preserve fish body tissues, otoliths, and coded wire tags (from...

  2. Variable Coded Modulation software simulation

    NASA Astrophysics Data System (ADS)

    Sielicki, Thomas A.; Hamkins, Jon; Thorsen, Denise

    This paper reports on the design and performance of a new Variable Coded Modulation (VCM) system. This VCM system comprises eight of NASA's recommended codes from the Consultative Committee for Space Data Systems (CCSDS) standards, including four turbo and four AR4JA/C2 low-density parity-check codes, together with six modulations types (BPSK, QPSK, 8-PSK, 16-APSK, 32-APSK, 64-APSK). The signaling protocol for the transmission mode is based on a CCSDS recommendation. The coded modulation may be dynamically chosen, block to block, to optimize throughput.

  3. Telemetry Standards, RCC Standard 106-17. Chapter 8. Digital Data Bus Acquisition Formatting Standard

    DTIC Science & Technology

    2017-07-01

    8-3 8.4.1 Characteristics of a Singular Composite Output Signal ...................................... 8-3 8.5 Single Bus Track Spread Recording ...Format .............................................................. 8-5 8.5.1 Single Bus Recording Technique Characteristics...check FCS frame check sequence HDDR high-density digital recording MIL-STD Military Standard msb most significant bit PCM pulse code modulation

  4. Throughput and latency programmable optical transceiver by using DSP and FEC control.

    PubMed

    Tanimura, Takahito; Hoshida, Takeshi; Kato, Tomoyuki; Watanabe, Shigeki; Suzuki, Makoto; Morikawa, Hiroyuki

    2017-05-15

    We propose and experimentally demonstrate a proof-of-concept of a programmable optical transceiver that enables simultaneous optimization of multiple programmable parameters (modulation format, symbol rate, power allocation, and FEC) for satisfying throughput, signal quality, and latency requirements. The proposed optical transceiver also accommodates multiple sub-channels that can transport different optical signals with different requirements. Multi-degree-of-freedom of the parameters often leads to difficulty in finding the optimum combination among the parameters due to an explosion of the number of combinations. The proposed optical transceiver reduces the number of combinations and finds feasible sets of programmable parameters by using constraints of the parameters combined with a precise analytical model. For precise BER prediction with the specified set of parameters, we model the sub-channel BER as a function of OSNR, modulation formats, symbol rates, and power difference between sub-channels. Next, we formulate simple constraints of the parameters and combine the constraints with the analytical model to seek feasible sets of programmable parameters. Finally, we experimentally demonstrate the end-to-end operation of the proposed optical transceiver with offline manner including low-density parity-check (LDPC) FEC encoding and decoding under a specific use case with latency-sensitive application and 40-km transmission.

  5. Sierra/SolidMechanics 4.48 Verification Tests Manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plews, Julia A.; Crane, Nathan K; de Frias, Gabriel Jose

    2018-03-01

    Presented in this document is a small portion of the tests that exist in the Sierra / SolidMechanics (Sierra / SM) verification test suite. Most of these tests are run nightly with the Sierra / SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra / SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This documentmore » can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra / SM Example Problems Manual. Note, many other verification tests exist in the Sierra / SM test suite, but have not yet been included in this manual.« less

  6. Sierra/SolidMechanics 4.48 Verification Tests Manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plews, Julia A.; Crane, Nathan K.; de Frias, Gabriel Jose

    Presented in this document is a small portion of the tests that exist in the Sierra / SolidMechanics (Sierra / SM) verification test suite. Most of these tests are run nightly with the Sierra / SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra / SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This documentmore » can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra / SM Example Problems Manual. Note, many other verification tests exist in the Sierra / SM test suite, but have not yet been included in this manual.« less

  7. ITS version 5.0 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    ITS is a powerful and user-friendly software package permitting state of the art Monte Carlo solution of linear time-independent couple electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theoristsmore » alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2)multigroup codes with adjoint transport capabilities, and (3) parallel implementations of all ITS codes. Moreover the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.« less

  8. Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guth, Larry, E-mail: lguth@math.mit.edu; Lubotzky, Alexander, E-mail: alex.lubotzky@mail.huji.ac.il

    2014-08-15

    Using 4-dimensional arithmetic hyperbolic manifolds, we construct some new homological quantum error correcting codes. They are low density parity check codes with linear rate and distance n{sup ε}. Their rate is evaluated via Euler characteristic arguments and their distance using Z{sub 2}-systolic geometry. This construction answers a question of Zémor [“On Cayley graphs, surface codes, and the limits of homological coding for quantum error correction,” in Proceedings of Second International Workshop on Coding and Cryptology (IWCC), Lecture Notes in Computer Science Vol. 5557 (2009), pp. 259–273], who asked whether homological codes with such parameters could exist at all.

  9. Continuous integration and quality control for scientific software

    NASA Astrophysics Data System (ADS)

    Neidhardt, A.; Ettl, M.; Brisken, W.; Dassing, R.

    2013-08-01

    Modern software has to be stable, portable, fast and reliable. This is going to be also more and more important for scientific software. But this requires a sophisticated way to inspect, check and evaluate the quality of source code with a suitable, automated infrastructure. A centralized server with a software repository and a version control system is one essential part, to manage the code basis and to control the different development versions. While each project can be compiled separately, the whole code basis can also be compiled with one central “Makefile”. This is used to create automated, nightly builds. Additionally all sources are inspected automatically with static code analysis and inspection tools, which check well-none error situations, memory and resource leaks, performance issues, or style issues. In combination with an automatic documentation generator it is possible to create the developer documentation directly from the code and the inline comments. All reports and generated information are presented as HTML page on a Web server. Because this environment increased the stability and quality of the software of the Geodetic Observatory Wettzell tremendously, it is now also available for scientific communities. One regular customer is already the developer group of the DiFX software correlator project.

  10. Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation.

    PubMed

    Djordjevic, Ivan B

    2011-07-18

    In order to achieve multi-gigabit transmission (projected for 2020) for the use in interplanetary communications, the usage of large number of time slots in pulse-position modulation (PPM), typically used in deep-space applications, is needed, which imposes stringent requirements on system design and implementation. As an alternative satisfying high-bandwidth demands of future interplanetary communications, while keeping the system cost and power consumption reasonably low, in this paper, we describe the use of orbital angular momentum (OAM) as an additional degree of freedom. The OAM is associated with azimuthal phase of the complex electric field. Because OAM eigenstates are orthogonal the can be used as basis functions for N-dimensional signaling. The OAM modulation and multiplexing can, therefore, be used, in combination with other degrees of freedom, to solve the high-bandwidth requirements of future deep-space and near-Earth optical communications. The main challenge for OAM deep-space communication represents the link between a spacecraft probe and the Earth station because in the presence of atmospheric turbulence the orthogonality between OAM states is no longer preserved. We will show that in combination with LDPC codes, the OAM-based modulation schemes can operate even under strong atmospheric turbulence regime. In addition, the spectral efficiency of proposed scheme is N2/log2N times better than that of PPM.

  11. The use of self checks and voting in software error detection - An empirical study

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy G.; Cha, Stephen S.; Knight, John C.; Shimeall, Timothy J.

    1990-01-01

    The results of an empirical study of software error detection using self checks and N-version voting are presented. Working independently, each of 24 programmers first prepared a set of self checks using just the requirements specification of an aerospace application, and then each added self checks to an existing implementation of that specification. The modified programs were executed to measure the error-detection performance of the checks and to compare this with error detection using simple voting among multiple versions. The analysis of the checks revealed that there are great differences in the ability of individual programmers to design effective checks. It was found that some checks that might have been effective failed to detect an error because they were badly placed, and there were numerous instances of checks signaling nonexistent errors. In general, specification-based checks alone were not as effective as specification-based checks combined with code-based checks. Self checks made it possible to identify faults that had not been detected previously by voting 28 versions of the program over a million randomly generated inputs. This appeared to result from the fact that the self checks could examine the internal state of the executing program, whereas voting examines only final results of computations. If internal states had to be identical in N-version voting systems, then there would be no reason to write multiple versions.

  12. Agricultural Baseline (BL0) scenario of the 2016 Billion-Ton Report

    DOE Data Explorer

    Davis, Maggie R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000181319328); Hellwinkel, Chad [University of Tennessee, APAC] (ORCID:0000000173085058); Eaton, Laurence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000312709626); Langholtz, Matthew H [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000281537154); Turhollow, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000228159350); Brandt, Craig [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000214707379); Myers, Aaron [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000320373827)

    2016-07-13

    Scientific reason for data generation: to serve as the reference case for the BT16 volume 1 agricultural scenarios. The agricultural baseline runs from 2015 through 2040; a starting year of 2014 is used. Date the data set was last modified: 02/12/2016 How each parameter was produced (methods), format, and relationship to other data in the data set: simulation was developed without offering a farmgate price to energy crops or residues (i.e., building on both the USDA 2015 baseline and the agricultural census data (USDA NASS 2014). Data generated are .txt output files by year, simulation identifier, county code (1-3109). Instruments used: POLYSYS (version POLYS2015_V10_alt_JAN22B) supplied by the University of Tennessee APAC The quality assurance and quality control that have been applied: • Check for negative planted area, harvested area, production, yield and cost values. • Check if harvested area exceeds planted area for annuals. • Check FIPS codes.

  13. Fast and Flexible Successive-Cancellation List Decoders for Polar Codes

    NASA Astrophysics Data System (ADS)

    Hashemi, Seyyed Ali; Condo, Carlo; Gross, Warren J.

    2017-11-01

    Polar codes have gained significant amount of attention during the past few years and have been selected as a coding scheme for the next generation of mobile broadband standard. Among decoding schemes, successive-cancellation list (SCL) decoding provides a reasonable trade-off between the error-correction performance and hardware implementation complexity when used to decode polar codes, at the cost of limited throughput. The simplified SCL (SSCL) and its extension SSCL-SPC increase the speed of decoding by removing redundant calculations when encountering particular information and frozen bit patterns (rate one and single parity check codes), while keeping the error-correction performance unaltered. In this paper, we improve SSCL and SSCL-SPC by proving that the list size imposes a specific number of bit estimations required to decode rate one and single parity check codes. Thus, the number of estimations can be limited while guaranteeing exactly the same error-correction performance as if all bits of the code were estimated. We call the new decoding algorithms Fast-SSCL and Fast-SSCL-SPC. Moreover, we show that the number of bit estimations in a practical application can be tuned to achieve desirable speed, while keeping the error-correction performance almost unchanged. Hardware architectures implementing both algorithms are then described and implemented: it is shown that our design can achieve 1.86 Gb/s throughput, higher than the best state-of-the-art decoders.

  14. Did we describe what you meant? Findings and methodological discussion of an empirical validation study for a systematic review of reasons.

    PubMed

    Mertz, Marcel; Sofaer, Neema; Strech, Daniel

    2014-09-27

    The systematic review of reasons is a new way to obtain comprehensive information about specific ethical topics. One such review was carried out for the question of why post-trial access to trial drugs should or need not be provided. The objective of this study was to empirically validate this review using an author check method. The article also reports on methodological challenges faced by our study. We emailed a questionnaire to the 64 corresponding authors of those papers that were assessed in the review of reasons on post-trial access. The questionnaire consisted of all quotations ("reason mentions") that were identified by the review to represent a reason in a given author's publication, together with a set of codings for the quotations. The authors were asked to rate the correctness of the codings. We received 19 responses, from which only 13 were completed questionnaires. In total, 98 quotations and their related codes in the 13 questionnaires were checked by the addressees. For 77 quotations (79%), all codings were deemed correct, for 21 quotations (21%), some codings were deemed to need correction. Most corrections were minor and did not imply a complete misunderstanding of the citation. This first attempt to validate a review of reasons leads to four crucial methodological questions relevant to the future conduct of such validation studies: 1) How can a description of a reason be deemed incorrect? 2) Do the limited findings of this author check study enable us to determine whether the core results of the analysed SRR are valid? 3) Why did the majority of surveyed authors refrain from commenting on our understanding of their reasoning? 4) How can the method for validating reviews of reasons be improved?

  15. A qualitative study of DRG coding practice in hospitals under the Thai Universal Coverage scheme.

    PubMed

    Pongpirul, Krit; Walker, Damian G; Winch, Peter J; Robinson, Courtland

    2011-04-08

    In the Thai Universal Coverage health insurance scheme, hospital providers are paid for their inpatient care using Diagnosis Related Group-based retrospective payment, for which quality of the diagnosis and procedure codes is crucial. However, there has been limited understandings on which health care professions are involved and how the diagnosis and procedure coding is actually done within hospital settings. The objective of this study is to detail hospital coding structure and process, and to describe the roles of key hospital staff, and other related internal dynamics in Thai hospitals that affect quality of data submitted for inpatient care reimbursement. Research involved qualitative semi-structured interview with 43 participants at 10 hospitals chosen to represent a range of hospital sizes (small/medium/large), location (urban/rural), and type (public/private). Hospital Coding Practice has structural and process components. While the structural component includes human resources, hospital committee, and information technology infrastructure, the process component comprises all activities from patient discharge to submission of the diagnosis and procedure codes. At least eight health care professional disciplines are involved in the coding process which comprises seven major steps, each of which involves different hospital staff: 1) Discharge Summarization, 2) Completeness Checking, 3) Diagnosis and Procedure Coding, 4) Code Checking, 5) Relative Weight Challenging, 6) Coding Report, and 7) Internal Audit. The hospital coding practice can be affected by at least five main factors: 1) Internal Dynamics, 2) Management Context, 3) Financial Dependency, 4) Resource and Capacity, and 5) External Factors. Hospital coding practice comprises both structural and process components, involves many health care professional disciplines, and is greatly varied across hospitals as a result of five main factors.

  16. A qualitative study of DRG coding practice in hospitals under the Thai Universal Coverage Scheme

    PubMed Central

    2011-01-01

    Background In the Thai Universal Coverage health insurance scheme, hospital providers are paid for their inpatient care using Diagnosis Related Group-based retrospective payment, for which quality of the diagnosis and procedure codes is crucial. However, there has been limited understandings on which health care professions are involved and how the diagnosis and procedure coding is actually done within hospital settings. The objective of this study is to detail hospital coding structure and process, and to describe the roles of key hospital staff, and other related internal dynamics in Thai hospitals that affect quality of data submitted for inpatient care reimbursement. Methods Research involved qualitative semi-structured interview with 43 participants at 10 hospitals chosen to represent a range of hospital sizes (small/medium/large), location (urban/rural), and type (public/private). Results Hospital Coding Practice has structural and process components. While the structural component includes human resources, hospital committee, and information technology infrastructure, the process component comprises all activities from patient discharge to submission of the diagnosis and procedure codes. At least eight health care professional disciplines are involved in the coding process which comprises seven major steps, each of which involves different hospital staff: 1) Discharge Summarization, 2) Completeness Checking, 3) Diagnosis and Procedure Coding, 4) Code Checking, 5) Relative Weight Challenging, 6) Coding Report, and 7) Internal Audit. The hospital coding practice can be affected by at least five main factors: 1) Internal Dynamics, 2) Management Context, 3) Financial Dependency, 4) Resource and Capacity, and 5) External Factors. Conclusions Hospital coding practice comprises both structural and process components, involves many health care professional disciplines, and is greatly varied across hospitals as a result of five main factors. PMID:21477310

  17. DataPlus™ - a revolutionary applications generator for DOS hand-held computers

    Treesearch

    David Dean; Linda Dean

    2000-01-01

    DataPlus allows the user to easily design data collection templates for DOS-based hand-held computers that mimic clipboard data sheets. The user designs and tests the application on the desktop PC and then transfers it to a DOS field computer. Other features include: error checking, missing data checks, and sensor input from RS-232 devices such as bar code wands,...

  18. 40 CFR 86.1806-04 - On-board diagnostics.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... codes shall be consistent with SAE J2012 “Diagnostic Trouble Code Definitions—Equivalent to ISO/DIS... sent to the scan tool over a J1850 data link shall use the Cyclic Redundancy Check and the three byte..., definitions and abbreviations shall be formatted according to SAE J1930 “Electrical/Electronic Systems...

  19. 40 CFR 86.1806-04 - On-board diagnostics.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... codes shall be consistent with SAE J2012 “Diagnostic Trouble Code Definitions—Equivalent to ISO/DIS... sent to the scan tool over a J1850 data link shall use the Cyclic Redundancy Check and the three byte..., definitions and abbreviations shall be formatted according to SAE J1930 “Electrical/Electronic Systems...

  20. 40 CFR 86.1806-04 - On-board diagnostics.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... codes shall be consistent with SAE J2012 “Diagnostic Trouble Code Definitions—Equivalent to ISO/DIS... sent to the scan tool over a J1850 data link shall use the Cyclic Redundancy Check and the three byte..., definitions and abbreviations shall be formatted according to SAE J1930 “Electrical/Electronic Systems...

  1. Greater physician involvement improves coding outcomes in endobronchial ultrasound-guided transbronchial needle aspiration procedures.

    PubMed

    Pillai, Anilkumar; Medford, Andrew R L

    2013-01-01

    Correct coding is essential for accurate reimbursement for clinical activity. Published data confirm that significant aberrations in coding occur, leading to considerable financial inaccuracies especially in interventional procedures such as endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). Previous data reported a 15% coding error for EBUS-TBNA in a U.K. service. We hypothesised that greater physician involvement with coders would reduce EBUS-TBNA coding errors and financial disparity. The study was done as a prospective cohort study in the tertiary EBUS-TBNA service in Bristol. 165 consecutive patients between October 2009 and March 2012 underwent EBUS-TBNA for evaluation of unexplained mediastinal adenopathy on computed tomography. The chief coder was prospectively electronically informed of all procedures and cross-checked on a prospective database and by Trust Informatics. Cost and coding analysis was performed using the 2010-2011 tariffs. All 165 procedures (100%) were coded correctly as verified by Trust Informatics. This compares favourably with the 14.4% coding inaccuracy rate for EBUS-TBNA in a previous U.K. prospective cohort study [odds ratio 201.1 (1.1-357.5), p = 0.006]. Projected income loss was GBP 40,000 per year in the previous study, compared to a GBP 492,195 income here with no coding-attributable loss in revenue. Greater physician engagement with coders prevents coding errors and financial losses which can be significant especially in interventional specialties. The intervention can be as cheap, quick and simple as a prospective email to the coding team with cross-checks by Trust Informatics and against a procedural database. We suggest that all specialties should engage more with their coders using such a simple intervention to prevent revenue losses. Copyright © 2013 S. Karger AG, Basel.

  2. Certifying Domain-Specific Policies

    NASA Technical Reports Server (NTRS)

    Lowry, Michael; Pressburger, Thomas; Rosu, Grigore; Koga, Dennis (Technical Monitor)

    2001-01-01

    Proof-checking code for compliance to safety policies potentially enables a product-oriented approach to certain aspects of software certification. To date, previous research has focused on generic, low-level programming-language properties such as memory type safety. In this paper we consider proof-checking higher-level domain -specific properties for compliance to safety policies. The paper first describes a framework related to abstract interpretation in which compliance to a class of certification policies can be efficiently calculated Membership equational logic is shown to provide a rich logic for carrying out such calculations, including partiality, for certification. The architecture for a domain-specific certifier is described, followed by an implemented case study. The case study considers consistency of abstract variable attributes in code that performs geometric calculations in Aerospace systems.

  3. Error-correction coding for digital communications

    NASA Astrophysics Data System (ADS)

    Clark, G. C., Jr.; Cain, J. B.

    This book is written for the design engineer who must build the coding and decoding equipment and for the communication system engineer who must incorporate this equipment into a system. It is also suitable as a senior-level or first-year graduate text for an introductory one-semester course in coding theory. Fundamental concepts of coding are discussed along with group codes, taking into account basic principles, practical constraints, performance computations, coding bounds, generalized parity check codes, polynomial codes, and important classes of group codes. Other topics explored are related to simple nonalgebraic decoding techniques for group codes, soft decision decoding of block codes, algebraic techniques for multiple error correction, the convolutional code structure and Viterbi decoding, syndrome decoding techniques, and sequential decoding techniques. System applications are also considered, giving attention to concatenated codes, coding for the white Gaussian noise channel, interleaver structures for coded systems, and coding for burst noise channels.

  4. Multispectral Image Compression Based on DSC Combined with CCSDS-IDC

    PubMed Central

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches. PMID:25110741

  5. Continuous operation of four-state continuous-variable quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Matsubara, Takuto; Ono, Motoharu; Oguri, Yusuke; Ichikawa, Tsubasa; Hirano, Takuya; Kasai, Kenta; Matsumoto, Ryutaroh; Tsurumaru, Toyohiro

    2016-10-01

    We report on the development of continuous-variable quantum key distribution (CV-QKD) system that are based on discrete quadrature amplitude modulation (QAM) and homodyne detection of coherent states of light. We use a pulsed light source whose wavelength is 1550 nm and repetition rate is 10 MHz. The CV-QKD system can continuously generate secret key which is secure against entangling cloner attack. Key generation rate is 50 kbps when the quantum channel is a 10 km optical fiber. The CV-QKD system we have developed utilizes the four-state and post-selection protocol [T. Hirano, et al., Phys. Rev. A 68, 042331 (2003).]; Alice randomly sends one of four states {|+/-α⟩,|+/-𝑖α⟩}, and Bob randomly performs x- or p- measurement by homodyne detection. A commercially available balanced receiver is used to realize shot-noise-limited pulsed homodyne detection. GPU cards are used to accelerate the software-based post-processing. We use a non-binary LDPC code for error correction (reverse reconciliation) and the Toeplitz matrix multiplication for privacy amplification.

  6. Multispectral image compression based on DSC combined with CCSDS-IDC.

    PubMed

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches.

  7. [Development of operation patient security detection system].

    PubMed

    Geng, Shu-Qin; Tao, Ren-Hai; Zhao, Chao; Wei, Qun

    2008-11-01

    This paper describes a patient security detection system developed with two dimensional bar codes, wireless communication and removal storage technique. Based on the system, nurses and correlative personnel check code wait operation patient to prevent the defaults. The tests show the system is effective. Its objectivity and currency are more scientific and sophisticated than current traditional method in domestic hospital.

  8. Nurse-Facilitated Health Checks for Persons With Severe Mental Illness: A Cluster-Randomized Controlled Trial.

    PubMed

    White, Jacquie; Lucas, Joanne; Swift, Louise; Barton, Garry R; Johnson, Harriet; Irvine, Lisa; Abotsie, Gabriel; Jones, Martin; Gray, Richard J

    2018-05-01

    This study tested the effectiveness of a nurse-delivered health check with the Health Improvement Profile (HIP), which takes approximately 1.5 hours to complete and code, for persons with severe mental illness. A single-blind, cluster-randomized controlled trial was conducted in England to test whether health checks improved the general medical well-being of persons with severe mental illness at 12-month follow-up. Sixty nurses were randomly assigned to the HIP group or the treatment-as-usual group. From their case lists, 173 patients agreed to participate. HIP group nurses completed health checks for 38 of their 90 patients (42%) at baseline and 22 (24%) at follow-up. No significant between-group differences were noted in patients' general medical well-being at follow-up. Nurses who had volunteered for a clinical trial administered health checks only to a minority of participating patients, suggesting that it may not be feasible to undertake such lengthy structured health checks in routine practice.

  9. Error-correcting codes on scale-free networks

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hoon; Ko, Young-Jo

    2004-06-01

    We investigate the potential of scale-free networks as error-correcting codes. We find that irregular low-density parity-check codes with the highest performance known to date have degree distributions well fitted by a power-law function p (k) ˜ k-γ with γ close to 2, which suggests that codes built on scale-free networks with appropriate power exponents can be good error-correcting codes, with a performance possibly approaching the Shannon limit. We demonstrate for an erasure channel that codes with a power-law degree distribution of the form p (k) = C (k+α)-γ , with k⩾2 and suitable selection of the parameters α and γ , indeed have very good error-correction capabilities.

  10. Nonlinear, nonbinary cyclic group codes

    NASA Technical Reports Server (NTRS)

    Solomon, G.

    1992-01-01

    New cyclic group codes of length 2(exp m) - 1 over (m - j)-bit symbols are introduced. These codes can be systematically encoded and decoded algebraically. The code rates are very close to Reed-Solomon (RS) codes and are much better than Bose-Chaudhuri-Hocquenghem (BCH) codes (a former alternative). The binary (m - j)-tuples are identified with a subgroup of the binary m-tuples which represents the field GF(2 exp m). Encoding is systematic and involves a two-stage procedure consisting of the usual linear feedback register (using the division or check polynomial) and a small table lookup. For low rates, a second shift-register encoding operation may be invoked. Decoding uses the RS error-correcting procedures for the m-tuple codes for m = 4, 5, and 6.

  11. Assume-Guarantee Verification of Source Code with Design-Level Assumptions

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Pasareanu, Corina S.; Cobleigh, Jamieson M.

    2004-01-01

    Model checking is an automated technique that can be used to determine whether a system satisfies certain required properties. To address the 'state explosion' problem associated with this technique, we propose to integrate assume-guarantee verification at different phases of system development. During design, developers build abstract behavioral models of the system components and use them to establish key properties of the system. To increase the scalability of model checking at this level, we have developed techniques that automatically decompose the verification task by generating component assumptions for the properties to hold. The design-level artifacts are subsequently used to guide the implementation of the system, but also to enable more efficient reasoning at the source code-level. In particular we propose to use design-level assumptions to similarly decompose the verification of the actual system implementation. We demonstrate our approach on a significant NASA application, where design-level models were used to identify; and correct a safety property violation, and design-level assumptions allowed us to check successfully that the property was presented by the implementation.

  12. RELAP5-3D Resolution of Known Restart/Backup Issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mesina, George L.; Anderson, Nolan A.

    2014-12-01

    The state-of-the-art nuclear reactor system safety analysis computer program developed at the Idaho National Laboratory (INL), RELAP5-3D, continues to adapt to changes in computer hardware and software and to develop to meet the ever-expanding needs of the nuclear industry. To continue at the forefront, code testing must evolve with both code and industry developments, and it must work correctly. To best ensure this, the processes of Software Verification and Validation (V&V) are applied. Verification compares coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions. A form of this, sequentialmore » verification, checks code specifications against coding only when originally written then applies regression testing which compares code calculations between consecutive updates or versions on a set of test cases to check that the performance does not change. A sequential verification testing system was specially constructed for RELAP5-3D to both detect errors with extreme accuracy and cover all nuclear-plant-relevant code features. Detection is provided through a “verification file” that records double precision sums of key variables. Coverage is provided by a test suite of input decks that exercise code features and capabilities necessary to model a nuclear power plant. A matrix of test features and short-running cases that exercise them is presented. This testing system is used to test base cases (called null testing) as well as restart and backup cases. It can test RELAP5-3D performance in both standalone and coupled (through PVM to other codes) runs. Application of verification testing revealed numerous restart and backup issues in both standalone and couple modes. This document reports the resolution of these issues.« less

  13. Software Security Knowledge: CWE. Knowing What Could Make Software Vulnerable to Attack

    DTIC Science & Technology

    2011-05-01

    shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1...Buffer • CWE-642: External Control of Critical State Data • CWE-73: External Control of File Name or Path • CWE-426: Untrusted Search Path • CWE...94: Failure to Control Generation of Code (aka ’Code Injection’) • CWE-494: Download of Code Without Integrity Check • CWE-404: Improper Resource

  14. 77 FR 33635 - Amendment to the Bank Secrecy Act Regulations-Requirement That Clerks of Court Report Certain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-07

    ... BSA and associated regulations.\\3\\ FinCEN is authorized to impose anti-money laundering (``AML... Code); (iii) Money laundering (as defined in section 1956 or 1957 of title 18 of the United States Code... money in the country in which issued; and (ii) A cashier's check (by whatever name called, including...

  15. Applying Jlint to Space Exploration Software

    NASA Technical Reports Server (NTRS)

    Artho, Cyrille; Havelund, Klaus

    2004-01-01

    Java is a very successful programming language which is also becoming widespread in embedded systems, where software correctness is critical. Jlint is a simple but highly efficient static analyzer that checks a Java program for several common errors, such as null pointer exceptions, and overflow errors. It also includes checks for multi-threading problems, such as deadlocks and data races. The case study described here shows the effectiveness of Jlint in find-false positives in the multi-threading warnings gives an insight into design patterns commonly used in multi-threaded code. The results show that a few analysis techniques are sufficient to avoid almost all false positives. These techniques include investigating all possible callers and a few code idioms. Verifying the correct application of these patterns is still crucial, because their correct usage is not trivial.

  16. Low-dose cardio-respiratory phase-correlated cone-beam micro-CT of small animals.

    PubMed

    Sawall, Stefan; Bergner, Frank; Lapp, Robert; Mronz, Markus; Karolczak, Marek; Hess, Andreas; Kachelriess, Marc

    2011-03-01

    Micro-CT imaging of animal hearts typically requires a double gating procedure because scans during a breath-hold are not possible due to the long scan times and the high respiratory rates, Simultaneous respiratory and cardiac gating can either be done prospectively or retrospectively. True five-dimensional information can be either retrieved with retrospective gating or with prospective gating if several prospective gates are acquired. In any case, the amount of information available to reconstruct one volume for a given respiratory and cardiac phase is orders of magnitud lower than the total amount of information acquired. For example, the reconstruction of a volume from a 10% wide respiratory and a 20% wide cardiac window uses only 2% of the data acquired. Achieving a similar image quality as a nongated scan would therefore require to increase the amount of data and thereby the dose to the animal by up to a factor of 50. To achieve the goal of low-dose phase-correlated (LDPC) imaging, the authors propose to use a highly efficient combination of slightly modified existing algorithms. In particular, the authors developed a variant of the McKinnon-Bates image reconstruction algorithm and combined it with bilateral filtering in up to five dimensions to significantly reduce image noise without impairing spatial or temporal resolution. The preliminary results indicate that the proposed LDPC reconstruction method typically reduces image noise by a factor of up to 6 (e.g., from 170 to 30 HU), while the dose values lie in a range from 60 to 500 mGy. Compared to other publications that apply 250-1800 mGy for the same task [C. T. Badea et al., "4D micro-CT of the mouse heart," Mol. Imaging 4(2), 110-116 (2005); M. Drangova et al., "Fast retrospectively gated quantitative four-dimensional (4D) cardiac micro computed tomography imaging of free-breathing mice," Invest. Radiol. 42(2), 85-94 (2007); S. H. Bartling et al., "Retrospective motion gating in small animal CT of mice and rats," Invest. Radiol. 42(10), 704-714 (2007)], the authors' LDPC approach therefore achieves a more than tenfold dose usage improvement. The LDPC reconstruction method improves phase-correlated imaging from highly undersampled data. Artifacts caused by sparse angular sampling are removed and the image noise is decreased, while spatial and temporal resolution are preserved. Thus, the administered dose per animal can be decreased allowing for long-term studies with reduced metabolic inference.

  17. On the performance of joint iterative detection and decoding in coherent optical channels with laser frequency fluctuations

    NASA Astrophysics Data System (ADS)

    Castrillón, Mario A.; Morero, Damián A.; Agazzi, Oscar E.; Hueda, Mario R.

    2015-08-01

    The joint iterative detection and decoding (JIDD) technique has been proposed by Barbieri et al. (2007) with the objective of compensating the time-varying phase noise and constant frequency offset experienced in satellite communication systems. The application of JIDD to optical coherent receivers in the presence of laser frequency fluctuations has not been reported in prior literature. Laser frequency fluctuations are caused by mechanical vibrations, power supply noise, and other mechanisms. They significantly degrade the performance of the carrier phase estimator in high-speed intradyne coherent optical receivers. This work investigates the performance of the JIDD algorithm in multi-gigabit optical coherent receivers. We present simulation results of bit error rate (BER) for non-differential polarization division multiplexing (PDM)-16QAM modulation in a 200 Gb/s coherent optical system that includes an LDPC code with 20% overhead and net coding gain of 11.3 dB at BER = 10-15. Our study shows that JIDD with a pilot rate ⩽ 5 % compensates for both laser phase noise and laser frequency fluctuation. Furthermore, since JIDD is used with non-differential modulation formats, we find that gains in excess of 1 dB can be achieved over existing solutions based on an explicit carrier phase estimator with differential modulation. The impact of the fiber nonlinearities in dense wavelength division multiplexing (DWDM) systems is also investigated. Our results demonstrate that JIDD is an excellent candidate for application in next generation high-speed optical coherent receivers.

  18. TU-AB-BRC-12: Optimized Parallel MonteCarlo Dose Calculations for Secondary MU Checks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, S; Nazareth, D; Bellor, M

    Purpose: Secondary MU checks are an important tool used during a physics review of a treatment plan. Commercial software packages offer varying degrees of theoretical dose calculation accuracy, depending on the modality involved. Dose calculations of VMAT plans are especially prone to error due to the large approximations involved. Monte Carlo (MC) methods are not commonly used due to their long run times. We investigated two methods to increase the computational efficiency of MC dose simulations with the BEAMnrc code. Distributed computing resources, along with optimized code compilation, will allow for accurate and efficient VMAT dose calculations. Methods: The BEAMnrcmore » package was installed on a high performance computing cluster accessible to our clinic. MATLAB and PYTHON scripts were developed to convert a clinical VMAT DICOM plan into BEAMnrc input files. The BEAMnrc installation was optimized by running the VMAT simulations through profiling tools which indicated the behavior of the constituent routines in the code, e.g. the bremsstrahlung splitting routine, and the specified random number generator. This information aided in determining the most efficient compiling parallel configuration for the specific CPU’s available on our cluster, resulting in the fastest VMAT simulation times. Our method was evaluated with calculations involving 10{sup 8} – 10{sup 9} particle histories which are sufficient to verify patient dose using VMAT. Results: Parallelization allowed the calculation of patient dose on the order of 10 – 15 hours with 100 parallel jobs. Due to the compiler optimization process, further speed increases of 23% were achieved when compared with the open-source compiler BEAMnrc packages. Conclusion: Analysis of the BEAMnrc code allowed us to optimize the compiler configuration for VMAT dose calculations. In future work, the optimized MC code, in conjunction with the parallel processing capabilities of BEAMnrc, will be applied to provide accurate and efficient secondary MU checks.« less

  19. Did we describe what you meant? Findings and methodological discussion of an empirical validation study for a systematic review of reasons

    PubMed Central

    2014-01-01

    Background The systematic review of reasons is a new way to obtain comprehensive information about specific ethical topics. One such review was carried out for the question of why post-trial access to trial drugs should or need not be provided. The objective of this study was to empirically validate this review using an author check method. The article also reports on methodological challenges faced by our study. Methods We emailed a questionnaire to the 64 corresponding authors of those papers that were assessed in the review of reasons on post-trial access. The questionnaire consisted of all quotations (“reason mentions”) that were identified by the review to represent a reason in a given author’s publication, together with a set of codings for the quotations. The authors were asked to rate the correctness of the codings. Results We received 19 responses, from which only 13 were completed questionnaires. In total, 98 quotations and their related codes in the 13 questionnaires were checked by the addressees. For 77 quotations (79%), all codings were deemed correct, for 21 quotations (21%), some codings were deemed to need correction. Most corrections were minor and did not imply a complete misunderstanding of the citation. Conclusions This first attempt to validate a review of reasons leads to four crucial methodological questions relevant to the future conduct of such validation studies: 1) How can a description of a reason be deemed incorrect? 2) Do the limited findings of this author check study enable us to determine whether the core results of the analysed SRR are valid? 3) Why did the majority of surveyed authors refrain from commenting on our understanding of their reasoning? 4) How can the method for validating reviews of reasons be improved? PMID:25262532

  20. Abstraction and Assume-Guarantee Reasoning for Automated Software Verification

    NASA Technical Reports Server (NTRS)

    Chaki, S.; Clarke, E.; Giannakopoulou, D.; Pasareanu, C. S.

    2004-01-01

    Compositional verification and abstraction are the key techniques to address the state explosion problem associated with model checking of concurrent software. A promising compositional approach is to prove properties of a system by checking properties of its components in an assume-guarantee style. This article proposes a framework for performing abstraction and assume-guarantee reasoning of concurrent C code in an incremental and fully automated fashion. The framework uses predicate abstraction to extract and refine finite state models of software and it uses an automata learning algorithm to incrementally construct assumptions for the compositional verification of the abstract models. The framework can be instantiated with different assume-guarantee rules. We have implemented our approach in the COMFORT reasoning framework and we show how COMFORT out-performs several previous software model checking approaches when checking safety properties of non-trivial concurrent programs.

  1. What Information is Stored in DNA: Does it Contain Digital Error Correcting Codes?

    NASA Astrophysics Data System (ADS)

    Liebovitch, Larry

    1998-03-01

    The longest term correlations in living systems are the information stored in DNA which reflects the evolutionary history of an organism. The 4 bases (A,T,G,C) encode sequences of amino acids as well as locations of binding sites for proteins that regulate DNA. The fidelity of this important information is maintained by ANALOG error check mechanisms. When a single strand of DNA is replicated the complementary base is inserted in the new strand. Sometimes the wrong base is inserted that sticks out disrupting the phosphate backbone. The new base is not yet methylated, so repair enzymes, that slide along the DNA, can tear out the wrong base and replace it with the right one. The bases in DNA form a sequence of 4 different symbols and so the information is encoded in a DIGITAL form. All the digital codes in our society (ISBN book numbers, UPC product codes, bank account numbers, airline ticket numbers) use error checking code, where some digits are functions of other digits to maintain the fidelity of transmitted informaiton. Does DNA also utitlize a DIGITAL error chekcing code to maintain the fidelity of its information and increase the accuracy of replication? That is, are some bases in DNA functions of other bases upstream or downstream? This raises the interesting mathematical problem: How does one determine whether some symbols in a sequence of symbols are a function of other symbols. It also bears on the issue of determining algorithmic complexity: What is the function that generates the shortest algorithm for reproducing the symbol sequence. The error checking codes most used in our technology are linear block codes. We developed an efficient method to test for the presence of such codes in DNA. We coded the 4 bases as (0,1,2,3) and used Gaussian elimination, modified for modulus 4, to test if some bases are linear combinations of other bases. We used this method to analyze the base sequence in the genes from the lac operon and cytochrome C. We did not find evidence for such error correcting codes in these genes. However, we analyzed only a small amount of DNA and if digitial error correcting schemes are present in DNA, they may be more subtle than such simple linear block codes. The basic issue we raise here, is how information is stored in DNA and an appreciation that digital symbol sequences, such as DNA, admit of interesting schemes to store and protect the fidelity of their information content. Liebovitch, Tao, Todorov, Levine. 1996. Biophys. J. 71:1539-1544. Supported by NIH grant EY6234.

  2. FSCATT: Angular Dependence and Filter Options.

    DTIC Science & Technology

    The input routines to the code have been completely rewritten to allow for a free-form input format. The input routines now provide self-consistency checks and diagnostics for the user’s edification .

  3. The analysis of convolutional codes via the extended Smith algorithm

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.; Onyszchuk, I.

    1993-01-01

    Convolutional codes have been the central part of most error-control systems in deep-space communication for many years. Almost all such applications, however, have used the restricted class of (n,1), also known as 'rate 1/n,' convolutional codes. The more general class of (n,k) convolutional codes contains many potentially useful codes, but their algebraic theory is difficult and has proved to be a stumbling block in the evolution of convolutional coding systems. In this article, the situation is improved by describing a set of practical algorithms for computing certain basic things about a convolutional code (among them the degree, the Forney indices, a minimal generator matrix, and a parity-check matrix), which are usually needed before a system using the code can be built. The approach is based on the classic Forney theory for convolutional codes, together with the extended Smith algorithm for polynomial matrices, which is introduced in this article.

  4. Lake water quality mapping from Landsat

    NASA Technical Reports Server (NTRS)

    Scherz, J. P.

    1977-01-01

    In the project described remote sensing was used to check the quality of lake waters. The lakes of three Landsat scenes were mapped with the Bendix MDAS multispectral analysis system. From the MDAS color coded maps, the lake with the worst algae problem was easily located. The lake was closely checked, and the presence of 100 cows in the springs which fed the lake could be identified as the pollution source. The laboratory and field work involved in the lake classification project is described.

  5. Specification Improvement Through Analysis of Proof Structure (SITAPS): High Assurance Software Development

    DTIC Science & Technology

    2016-02-01

    from the tools being used. For example, while Coq proves properties it does not dump an explanation of the proofs in any currently supported form. The...Distribution Unlimited 5 Hotel room locks and card keys use a simple protocol to manage the transition of rooms from one guest to the next. The lock...retains that guest key’s code. A new guest checks in and gets a card with a new current code, and the previous code set to the previous guest’s current

  6. System description: IVY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCune, W.; Shumsky, O.

    2000-02-04

    IVY is a verified theorem prover for first-order logic with equality. It is coded in ACL2, and it makes calls to the theorem prover Otter to search for proofs and to the program MACE to search for countermodels. Verifications of Otter and MACE are not practical because they are coded in C. Instead, Otter and MACE give detailed proofs and models that are checked by verified ACL2 programs. In addition, the initial conversion to clause form is done by verified ACL2 code. The verification is done with respect to finite interpretations.

  7. Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP.

    PubMed

    Henry, R; Tiselj, I; Snoj, L

    2015-03-01

    New computational model of the JSI TRIGA Mark II research reactor was built for TRIPOLI computer code and compared with existing MCNP code model. The same modelling assumptions were used in order to check the differences of the mathematical models of both Monte Carlo codes. Differences between the TRIPOLI and MCNP predictions of keff were up to 100pcm. Further validation was performed with analyses of the normalized reaction rates and computations of kinetic parameters for various core configurations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Testability, Test Automation and Test Driven Development for the Trick Simulation Toolkit

    NASA Technical Reports Server (NTRS)

    Penn, John

    2014-01-01

    This paper describes the adoption of a Test Driven Development approach and a Continuous Integration System in the development of the Trick Simulation Toolkit, a generic simulation development environment for creating high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. It describes the approach, and the significant benefits seen, such as fast, thorough and clear test feedback every time code is checked into the code repository. It also describes an approach that encourages development of code that is testable and adaptable.

  9. An analytical benchmark and a Mathematica program for MD codes: Testing LAMMPS on the 2nd generation Brenner potential

    NASA Astrophysics Data System (ADS)

    Favata, Antonino; Micheletti, Andrea; Ryu, Seunghwa; Pugno, Nicola M.

    2016-10-01

    An analytical benchmark and a simple consistent Mathematica program are proposed for graphene and carbon nanotubes, that may serve to test any molecular dynamics code implemented with REBO potentials. By exploiting the benchmark, we checked results produced by LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) when adopting the second generation Brenner potential, we made evident that this code in its current implementation produces results which are offset from those of the benchmark by a significant amount, and provide evidence of the reason.

  10. The Problem of Modeling the Elastomechanics in Engineering

    DTIC Science & Technology

    1990-02-01

    element method by the code PROBE (McNeil Schwendler- Noetic ) and STRIPE (Aeronautical Institute of Sweden). These codes have various error checks so that...Mindlin solutions converge to the Kirchhoff solution as d--O, see eg. [12), [19]. For a detailed study of the asymptotic behavior of Reissner...of study and research for foreign students in numerical mathematics who are supported by foreign govern- ments or exchange agencies (Fulbright, etc

  11. Automated Diversity in Computer Systems

    DTIC Science & Technology

    2005-09-01

    traces that started with trace heads , namely backwards- taken branches. These branches are indicative of loops within the program, and Dynamo assumes that...would be the ones the program would normally take. Therefore when a trace head became hot (was visited enough times), only a single code trace would...all encountered trace heads . When an interesting instruction is being emulated, the tracing code checks to see if it has been encountered before

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, J; Pompos, A; Jiang, S

    Purpose: To put forth an innovative clinical paradigm for weekly chart checking so that treatment status is periodically checked accurately and efficiently. This study also aims to help optimize the chart checking clinical workflow in a busy radiation therapy clinic. Methods: It is mandated by the Texas Administrative code to check patient charts of radiation therapy once a week or every five fractions, however it varies drastically among institutions in terms of when and how it is done. Some do it every day, but a lot of efforts are wasted on opening ineligible charts; some do it on a fixedmore » day but the distribution of intervals between subsequent checks is not optimal. To establish an optimal chart checking procedure, a new paradigm was developed to achieve 1) charts are checked more accurately and more efficiently; 2) charts are checked on optimal days without any miss; 3) workload is evened out throughout a week when multiple physicists are involved. All active charts will be accessed by querying the R&V system. Priority is assigned to each chart based on the number of days before the next due date followed by sorting and workload distribution steps. New charts are also taken into account when distributing the workload so it is reasonably even throughout the week. Results: Our clinical workflow became more streamlined and smooth. In addition, charts get checked in a more timely fashion so that errors would get caught earlier should they occur. Conclusion: We developed a new weekly chart checking diagram. It helps physicists check charts in a timely manner, saves their time in busy clinics, and consequently reduces possible errors.« less

  13. Reduced circuit implementation of encoder and syndrome generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trager, Barry M; Winograd, Shmuel

    An error correction method and system includes an Encoder and Syndrome-generator that operate in parallel to reduce the amount of circuitry used to compute check symbols and syndromes for error correcting codes. The system and method computes the contributions to the syndromes and check symbols 1 bit at a time instead of 1 symbol at a time. As a result, the even syndromes can be computed as powers of the odd syndromes. Further, the system assigns symbol addresses so that there are, for an example GF(2.sup.8) which has 72 symbols, three (3) blocks of addresses which differ by a cubemore » root of unity to allow the data symbols to be combined for reducing size and complexity of odd syndrome circuits. Further, the implementation circuit for generating check symbols is derived from syndrome circuit using the inverse of the part of the syndrome matrix for check locations.« less

  14. The study on dynamic cadastral coding rules based on kinship relationship

    NASA Astrophysics Data System (ADS)

    Xu, Huan; Liu, Nan; Liu, Renyi; Lu, Jingfeng

    2007-06-01

    Cadastral coding rules are an important supplement to the existing national and local standard specifications for building cadastral database. After analyzing the course of cadastral change, especially the parcel change with the method of object-oriented analysis, a set of dynamic cadastral coding rules based on kinship relationship corresponding to the cadastral change is put forward and a coding format composed of street code, block code, father parcel code, child parcel code and grandchild parcel code is worked out within the county administrative area. The coding rule has been applied to the development of an urban cadastral information system called "ReGIS", which is not only able to figure out the cadastral code automatically according to both the type of parcel change and the coding rules, but also capable of checking out whether the code is spatiotemporally unique before the parcel is stored in the database. The system has been used in several cities of Zhejiang Province and got a favorable response. This verifies the feasibility and effectiveness of the coding rules to some extent.

  15. A new relativistic viscous hydrodynamics code and its application to the Kelvin-Helmholtz instability in high-energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazuhisa; Nonaka, Chiho

    2017-06-01

    We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions.

  16. Sierra/Aria 4.48 Verification Manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal Fluid Development Team

    Presented in this document is a portion of the tests that exist in the Sierra Thermal/Fluids verification test suite. Each of these tests is run nightly with the Sierra/TF code suite and the results of the test checked under mesh refinement against the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

  17. Performance Analysis of a JTIDS/Link-16-type Waveform Transmitted over Slow, Flat Nakagami Fading Channels in the Presence of Narrowband Interference

    DTIC Science & Technology

    2008-12-01

    The effective two-way tactical data rate is 3,060 bits per second. Note that there is no parity check or forward error correction (FEC) coding used in...of 1800 bits per second. With the use of FEC coding , the channel data rate is 2250 bits per second; however, the information data rate is still the...Link-11. If the parity bits are included, the channel data rate is 28,800 bps. If FEC coding is considered, the channel data rate is 59,520 bps

  18. Numerical and analytical bounds on threshold error rates for hypergraph-product codes

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Prabhakar, Sanjay; Dumer, Ilya; Pryadko, Leonid P.

    2018-06-01

    We study analytically and numerically decoding properties of finite-rate hypergraph-product quantum low density parity-check codes obtained from random (3,4)-regular Gallager codes, with a simple model of independent X and Z errors. Several nontrivial lower and upper bounds for the decodable region are constructed analytically by analyzing the properties of the homological difference, equal minus the logarithm of the maximum-likelihood decoding probability for a given syndrome. Numerical results include an upper bound for the decodable region from specific heat calculations in associated Ising models and a minimum-weight decoding threshold of approximately 7 % .

  19. Sensor Authentication: Embedded Processor Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svoboda, John

    2012-09-25

    Described is the c code running on the embedded Microchip 32bit PIC32MX575F256H located on the INL developed noise analysis circuit board. The code performs the following functions: Controls the noise analysis circuit board preamplifier voltage gains of 1, 10, 100, 000 Initializes the analog to digital conversion hardware, input channel selection, Fast Fourier Transform (FFT) function, USB communications interface, and internal memory allocations Initiates high resolution 4096 point 200 kHz data acquisition Computes complex 2048 point FFT and FFT magnitude. Services Host command set Transfers raw data to Host Transfers FFT result to host Communication error checking

  20. CodeSlinger: a case study in domain-driven interactive tool design for biomedical coding scheme exploration and use.

    PubMed

    Flowers, Natalie L

    2010-01-01

    CodeSlinger is a desktop application that was developed to aid medical professionals in the intertranslation, exploration, and use of biomedical coding schemes. The application was designed to provide a highly intuitive, easy-to-use interface that simplifies a complex business problem: a set of time-consuming, laborious tasks that were regularly performed by a group of medical professionals involving manually searching coding books, searching the Internet, and checking documentation references. A workplace observation session with a target user revealed the details of the current process and a clear understanding of the business goals of the target user group. These goals drove the design of the application's interface, which centers on searches for medical conditions and displays the codes found in the application's database that represent those conditions. The interface also allows the exploration of complex conceptual relationships across multiple coding schemes.

  1. A Discussion of Issues in Integrity Constraint Monitoring

    NASA Technical Reports Server (NTRS)

    Fernandez, Francisco G.; Gates, Ann Q.; Cooke, Daniel E.

    1998-01-01

    In the development of large-scale software systems, analysts, designers, and programmers identify properties of data objects in the system. The ability to check those assertions during runtime is desirable as a means of verifying the integrity of the program. Typically, programmers ensure the satisfaction of such properties through the use of some form of manually embedded assertion check. The disadvantage to this approach is that these assertions become entangled within the program code. The goal of the research is to develop an integrity constraint monitoring mechanism whereby a repository of software system properties (called integrity constraints) are automatically inserted into the program by the mechanism to check for incorrect program behaviors. Such a mechanism would overcome many of the deficiencies of manually embedded assertion checks. This paper gives an overview of the preliminary work performed toward this goal. The manual instrumentation of constraint checking on a series of test programs is discussed, This review then is used as the basis for a discussion of issues to be considered in developing an automated integrity constraint monitor.

  2. Reducing software security risk through an integrated approach

    NASA Technical Reports Server (NTRS)

    Gilliam, D.; Powell, J.; Kelly, J.; Bishop, M.

    2001-01-01

    The fourth quarter delivery, FY'01 for this RTOP is a Property-Based Testing (PBT), 'Tester's Assistant' (TA). The TA tool is to be used to check compiled and pre-compiled code for potential security weaknesses that could be exploited by hackers. The TA Instrumenter, implemented mostly in C++ (with a small part in Java), parsels two types of files: Java and TASPEC. Security properties to be checked are written in TASPEC. The Instrumenter is used in conjunction with the Tester's Assistant Specification (TASpec)execution monitor to verify the security properties of a given program.

  3. High-Speed Large-Alphabet Quantum Key Distribution Using Photonic Integrated Circuits

    DTIC Science & Technology

    2014-01-28

    polarizing beam splitter, TDC: time-to-digital converter. Extra&loss& photon/bin frame size QSER secure bpp ECC secure&key&rate& none& 0.0031 64 14...to-digital converter. photon/frame frame size QSER secure bpp ECC secure&key& rate& 1.3 16 9.5 % 2.9 layered LDPC 7.3&Mbps& Figure 24: Operating

  4. Optimal bit allocation for hybrid scalable/multiple-description video transmission over wireless channels

    NASA Astrophysics Data System (ADS)

    Jubran, Mohammad K.; Bansal, Manu; Kondi, Lisimachos P.

    2006-01-01

    In this paper, we consider the problem of optimal bit allocation for wireless video transmission over fading channels. We use a newly developed hybrid scalable/multiple-description codec that combines the functionality of both scalable and multiple-description codecs. It produces a base layer and multiple-description enhancement layers. Any of the enhancement layers can be decoded (in a non-hierarchical manner) with the base layer to improve the reconstructed video quality. Two different channel coding schemes (Rate-Compatible Punctured Convolutional (RCPC)/Cyclic Redundancy Check (CRC) coding and, product code Reed Solomon (RS)+RCPC/CRC coding) are used for unequal error protection of the layered bitstream. Optimal allocation of the bitrate between source and channel coding is performed for discrete sets of source coding rates and channel coding rates. Experimental results are presented for a wide range of channel conditions. Also, comparisons with classical scalable coding show the effectiveness of using hybrid scalable/multiple-description coding for wireless transmission.

  5. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1991-01-01

    Shannon's capacity bound shows that coding can achieve large reductions in the required signal to noise ratio per information bit (E sub b/N sub 0 where E sub b is the energy per bit and (N sub 0)/2 is the double sided noise density) in comparison to uncoded schemes. For bandwidth efficiencies of 2 bit/sym or greater, these improvements were obtained through the use of Trellis Coded Modulation and Block Coded Modulation. A method of obtaining these high efficiencies using multidimensional Multiple Phase Shift Keying (MPSK) and Quadrature Amplitude Modulation (QAM) signal sets with trellis coding is described. These schemes have advantages in decoding speed, phase transparency, and coding gain in comparison to other trellis coding schemes. Finally, a general parity check equation for rotationally invariant trellis codes is introduced from which non-linear codes for two dimensional MPSK and QAM signal sets are found. These codes are fully transparent to all rotations of the signal set.

  6. Inter-track interference mitigation with two-dimensional variable equalizer for bit patterned media recording

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Vijaya Kumar, B. V. K.

    2017-05-01

    The increased track density in bit patterned media recording (BPMR) causes increased inter-track interference (ITI), which degrades the bit error rate (BER) performance. In order to mitigate the effect of the ITI, signals from multiple tracks can be equalized by a 2D equalizer with 1D target. Usually, the 2D fixed equalizer coefficients are obtained by using a pseudo-random bit sequence (PRBS) for training. In this study, a 2D variable equalizer is proposed, where various sets of 2D equalizer coefficients are predetermined and stored for different ITI patterns besides the usual PRBS training. For data detection, as the ITI patterns are unknown in the first global iteration, the main and adjacent tracks are equalized with the conventional 2D fixed equalizer, detected with Bahl-Cocke-Jelinek-Raviv (BCJR) detector and decoded with low-density parity-check (LDPC) decoder. Then using the estimated bit information from main and adjacent tracks, the ITI pattern for each island of the main track can be estimated and the corresponding 2D variable equalizers are used to better equalize the bits on the main track. This process is executed iteratively by feeding back the main track information. Simulation results indicate that for both single-track and two-track detection, the proposed 2D variable equalizer can achieve better BER and frame error rate (FER) compared to that with the 2D fixed equalizer.

  7. Optimum Cyclic Redundancy Codes for Noisy Channels

    NASA Technical Reports Server (NTRS)

    Posner, E. C.; Merkey, P.

    1986-01-01

    Capabilities and limitations of cyclic redundancy codes (CRC's) for detecting transmission errors in data sent over relatively noisy channels (e.g., voice-grade telephone lines or very-high-density storage media) discussed in 16-page report. Due to prevalent use of bytes in multiples of 8 bits data transmission, report primarily concerned with cases in which both block length and number of redundant bits (check bits for use in error detection) included in each block are multiples of 8 bits.

  8. The PlusCal Algorithm Language

    NASA Astrophysics Data System (ADS)

    Lamport, Leslie

    Algorithms are different from programs and should not be described with programming languages. The only simple alternative to programming languages has been pseudo-code. PlusCal is an algorithm language that can be used right now to replace pseudo-code, for both sequential and concurrent algorithms. It is based on the TLA + specification language, and a PlusCal algorithm is automatically translated to a TLA + specification that can be checked with the TLC model checker and reasoned about formally.

  9. Proceedings of the Third International Workshop on Proof-Carrying Code and Software Certification

    NASA Technical Reports Server (NTRS)

    Ewen, Denney, W. (Editor); Jensen, Thomas (Editor)

    2009-01-01

    This NASA conference publication contains the proceedings of the Third International Workshop on Proof-Carrying Code and Software Certification, held as part of LICS in Los Angeles, CA, USA, on August 15, 2009. Software certification demonstrates the reliability, safety, or security of software systems in such a way that it can be checked by an independent authority with minimal trust in the techniques and tools used in the certification process itself. It can build on existing validation and verification (V&V) techniques but introduces the notion of explicit software certificates, Vvilich contain all the information necessary for an independent assessment of the demonstrated properties. One such example is proof-carrying code (PCC) which is an important and distinctive approach to enhancing trust in programs. It provides a practical framework for independent assurance of program behavior; especially where source code is not available, or the code author and user are unknown to each other. The workshop wiII address theoretical foundations of logic-based software certification as well as practical examples and work on alternative application domains. Here "certificate" is construed broadly, to include not just mathematical derivations and proofs but also safety and assurance cases, or any fonnal evidence that supports the semantic analysis of programs: that is, evidence about an intrinsic property of code and its behaviour that can be independently checked by any user, intermediary, or third party. These guarantees mean that software certificates raise trust in the code itself, distinct from and complementary to any existing trust in the creator of the code, the process used to produce it, or its distributor. In addition to the contributed talks, the workshop featured two invited talks, by Kelly Hayhurst and Andrew Appel. The PCC 2009 website can be found at http://ti.arc.nasa.gov /event/pcc 091.

  10. Analysis of error-correction constraints in an optical disk.

    PubMed

    Roberts, J D; Ryley, A; Jones, D M; Burke, D

    1996-07-10

    The compact disk read-only memory (CD-ROM) is a mature storage medium with complex error control. It comprises four levels of Reed Solomon codes allied to a sequence of sophisticated interleaving strategies and 8:14 modulation coding. New storage media are being developed and introduced that place still further demands on signal processing for error correction. It is therefore appropriate to explore thoroughly the limit of existing strategies to assess future requirements. We describe a simulation of all stages of the CD-ROM coding, modulation, and decoding. The results of decoding the burst error of a prescribed number of modulation bits are discussed in detail. Measures of residual uncorrected error within a sector are displayed by C1, C2, P, and Q error counts and by the status of the final cyclic redundancy check (CRC). Where each data sector is encoded separately, it is shown that error-correction performance against burst errors depends critically on the position of the burst within a sector. The C1 error measures the burst length, whereas C2 errors reflect the burst position. The performance of Reed Solomon product codes is shown by the P and Q statistics. It is shown that synchronization loss is critical near the limits of error correction. An example is given of miscorrection that is identified by the CRC check.

  11. Analysis of error-correction constraints in an optical disk

    NASA Astrophysics Data System (ADS)

    Roberts, Jonathan D.; Ryley, Alan; Jones, David M.; Burke, David

    1996-07-01

    The compact disk read-only memory (CD-ROM) is a mature storage medium with complex error control. It comprises four levels of Reed Solomon codes allied to a sequence of sophisticated interleaving strategies and 8:14 modulation coding. New storage media are being developed and introduced that place still further demands on signal processing for error correction. It is therefore appropriate to explore thoroughly the limit of existing strategies to assess future requirements. We describe a simulation of all stages of the CD-ROM coding, modulation, and decoding. The results of decoding the burst error of a prescribed number of modulation bits are discussed in detail. Measures of residual uncorrected error within a sector are displayed by C1, C2, P, and Q error counts and by the status of the final cyclic redundancy check (CRC). Where each data sector is encoded separately, it is shown that error-correction performance against burst errors depends critically on the position of the burst within a sector. The C1 error measures the burst length, whereas C2 errors reflect the burst position. The performance of Reed Solomon product codes is shown by the P and Q statistics. It is shown that synchronization loss is critical near the limits of error correction. An example is given of miscorrection that is identified by the CRC check.

  12. Data Race Benchmark Collection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Chunhua; Lin, Pei-Hung; Asplund, Joshua

    2017-03-21

    This project is a benchmark suite of Open-MP parallel codes that have been checked for data races. The programs are marked to show which do and do not have races. This allows them to be leveraged while testing and developing race detection tools.

  13. Seeking more Opportunities of Check Dams' harmony with nearby Circumstances via Design Thinking Process

    NASA Astrophysics Data System (ADS)

    Lin, Huan-Chun; Chen, Su-Chin; Tsai, Chen-Chen

    2014-05-01

    The contents of engineering design should indeed contain both science and art fields. However, the art aspect is too less discussed to cause an inharmonic impact with natural surroundings, and so are check dams. This study would like to seek more opportunities of check dams' harmony with nearby circumstances. According to literatures review of philosophy and cognition science fields, we suggest a thinking process of three phases to do check dams design work for reference. The first phase, conceptualization, is to list critical problems, such as the characteristics of erosion or deposition, and translate them into some goal situations. The second phase, transformation, is to use cognition methods such as analogy, association and metaphors to shape an image and prototypes. The third phase, formation, is to decide the details of the construction, such as stable safety analysis of shapes or materials. According to the previous descriptions, Taiwan's technological codes or papers about check dam design mostly emphasize the first and third phases, still quite a few lacks of the second phase. We emphases designers shouldn't ignore any phase of the framework especially the second one, or they may miss some chances to find more suitable solutions. Otherwise, this conceptual framework is simple to apply and we suppose it's a useful tool to design a more harmonic check dam with nearby natural landscape. Key Words: check dams, design thinking process, conceptualization, transformation, formation.

  14. Propel: Tools and Methods for Practical Source Code Model Checking

    NASA Technical Reports Server (NTRS)

    Mansouri-Samani, Massoud; Mehlitz, Peter; Markosian, Lawrence; OMalley, Owen; Martin, Dale; Moore, Lantz; Penix, John; Visser, Willem

    2003-01-01

    The work reported here is an overview and snapshot of a project to develop practical model checking tools for in-the-loop verification of NASA s mission-critical, multithreaded programs in Java and C++. Our strategy is to develop and evaluate both a design concept that enables the application of model checking technology to C++ and Java, and a model checking toolset for C++ and Java. The design concept and the associated model checking toolset is called Propel. It builds upon the Java PathFinder (JPF) tool, an explicit state model checker for Java applications developed by the Automated Software Engineering group at NASA Ames Research Center. The design concept that we are developing is Design for Verification (D4V). This is an adaption of existing best design practices that has the desired side-effect of enhancing verifiability by improving modularity and decreasing accidental complexity. D4V, we believe, enhances the applicability of a variety of V&V approaches; we are developing the concept in the context of model checking. The model checking toolset, Propel, is based on extending JPF to handle C++. Our principal tasks in developing the toolset are to build a translator from C++ to Java, productize JPF, and evaluate the toolset in the context of D4V. Through all these tasks we are testing Propel capabilities on customer applications.

  15. Convolutional encoding of self-dual codes

    NASA Technical Reports Server (NTRS)

    Solomon, G.

    1994-01-01

    There exist almost complete convolutional encodings of self-dual codes, i.e., block codes of rate 1/2 with weights w, w = 0 mod 4. The codes are of length 8m with the convolutional portion of length 8m-2 and the nonsystematic information of length 4m-1. The last two bits are parity checks on the two (4m-1) length parity sequences. The final information bit complements one of the extended parity sequences of length 4m. Solomon and van Tilborg have developed algorithms to generate these for the Quadratic Residue (QR) Codes of lengths 48 and beyond. For these codes and reasonable constraint lengths, there are sequential decodings for both hard and soft decisions. There are also possible Viterbi-type decodings that may be simple, as in a convolutional encoding/decoding of the extended Golay Code. In addition, the previously found constraint length K = 9 for the QR (48, 24;12) Code is lowered here to K = 8.

  16. X-Antenna: A graphical interface for antenna analysis codes

    NASA Technical Reports Server (NTRS)

    Goldstein, B. L.; Newman, E. H.; Shamansky, H. T.

    1995-01-01

    This report serves as the user's manual for the X-Antenna code. X-Antenna is intended to simplify the analysis of antennas by giving the user graphical interfaces in which to enter all relevant antenna and analysis code data. Essentially, X-Antenna creates a Motif interface to the user's antenna analysis codes. A command-file allows new antennas and codes to be added to the application. The menu system and graphical interface screens are created dynamically to conform to the data in the command-file. Antenna data can be saved and retrieved from disk. X-Antenna checks all antenna and code values to ensure they are of the correct type, writes an output file, and runs the appropriate antenna analysis code. Volumetric pattern data may be viewed in 3D space with an external viewer run directly from the application. Currently, X-Antenna includes analysis codes for thin wire antennas (dipoles, loops, and helices), rectangular microstrip antennas, and thin slot antennas.

  17. A new relativistic viscous hydrodynamics code and its application to the Kelvin–Helmholtz instability in high-energy heavy-ion collisions

    DOE PAGES

    Okamoto, Kazuhisa; Nonaka, Chiho

    2017-06-09

    Here, we construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We also split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. Furthemore, we check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken’s flow and the Israel–Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin–Helmholtz instability inmore » high-energy heavy-ion collisions.« less

  18. Numerical study of supersonic combustors by multi-block grids with mismatched interfaces

    NASA Technical Reports Server (NTRS)

    Moon, Young J.

    1990-01-01

    A three dimensional, finite rate chemistry, Navier-Stokes code was extended to a multi-block code with mismatched interface for practical calculations of supersonic combustors. To ensure global conservation, a conservative algorithm was used for the treatment of mismatched interfaces. The extended code was checked against one test case, i.e., a generic supersonic combustor with transverse fuel injection, examining solution accuracy, convergence, and local mass flux error. After testing, the code was used to simulate the chemically reacting flow fields in a scramjet combustor with parallel fuel injectors (unswept and swept ramps). Computational results were compared with experimental shadowgraph and pressure measurements. Fuel-air mixing characteristics of the unswept and swept ramps were compared and investigated.

  19. User input verification and test driven development in the NJOY21 nuclear data processing code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trainer, Amelia Jo; Conlin, Jeremy Lloyd; McCartney, Austin Paul

    Before physically-meaningful data can be used in nuclear simulation codes, the data must be interpreted and manipulated by a nuclear data processing code so as to extract the relevant quantities (e.g. cross sections and angular distributions). Perhaps the most popular and widely-trusted of these processing codes is NJOY, which has been developed and improved over the course of 10 major releases since its creation at Los Alamos National Laboratory in the mid-1970’s. The current phase of NJOY development is the creation of NJOY21, which will be a vast improvement from its predecessor, NJOY2016. Designed to be fast, intuitive, accessible, andmore » capable of handling both established and modern formats of nuclear data, NJOY21 will address many issues that many NJOY users face, while remaining functional for those who prefer the existing format. Although early in its development, NJOY21 is quickly providing input validation to check user input. By providing rapid and helpful responses to users while writing input files, NJOY21 will prove to be more intuitive and easy to use than any of its predecessors. Furthermore, during its development, NJOY21 is subject to regular testing, such that its test coverage must strictly increase with the addition of any production code. This thorough testing will allow developers and NJOY users to establish confidence in NJOY21 as it gains functionality. This document serves as a discussion regarding the current state input checking and testing practices of NJOY21.« less

  20. Evaluation of a bar-code system to detect unaccompanied baggage

    DOT National Transportation Integrated Search

    1988-02-01

    The objective of the Unaccompanied Baggage Detection System (UBDS) Project has : been to gain field experience with a system designed to identify passengers who : check baggage for a flight and subsequently fail to board that flight. In the first : p...

  1. Simultaneous message framing and error detection

    NASA Technical Reports Server (NTRS)

    Frey, A. H., Jr.

    1968-01-01

    Circuitry simultaneously inserts message framing information and detects noise errors in binary code data transmissions. Separate message groups are framed without requiring both framing bits and error-checking bits, and predetermined message sequence are separated from other message sequences without being hampered by intervening noise.

  2. Telemetry Standards, RCC Standard 106-17, Chapter 4, Pulse Code Modulation Standards

    DTIC Science & Technology

    2017-07-01

    Frame Structure .............................................................................................. 4-6 4.3.3 Cyclic Redundancy Check (Class...Spectral and BEP Comparisons for NRZ and Bi-phase............................................ A-3 A.4. PCM Frame Structure Examples...4-4 Figure 4-3. PCM Frame Structure .......................................................................................... 4-6

  3. 40 CFR 86.005-17 - On-board diagnostics.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... other available operating parameters), and functionality checks for computer output components (proper... considered acceptable. (e) Storing of computer codes. The OBD system shall record and store in computer... monitors that can be considered continuously operating monitors (e.g., misfire monitor, fuel system monitor...

  4. 40 CFR 86.005-17 - On-board diagnostics.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... other available operating parameters), and functionality checks for computer output components (proper... considered acceptable. (e) Storing of computer codes. The OBD system shall record and store in computer... monitors that can be considered continuously operating monitors (e.g., misfire monitor, fuel system monitor...

  5. Nonlinear detection for a high rate extended binary phase shift keying system.

    PubMed

    Chen, Xian-Qing; Wu, Le-Nan

    2013-03-28

    The algorithm and the results of a nonlinear detector using a machine learning technique called support vector machine (SVM) on an efficient modulation system with high data rate and low energy consumption is presented in this paper. Simulation results showed that the performance achieved by the SVM detector is comparable to that of a conventional threshold decision (TD) detector. The two detectors detect the received signals together with the special impacting filter (SIF) that can improve the energy utilization efficiency. However, unlike the TD detector, the SVM detector concentrates not only on reducing the BER of the detector, but also on providing accurate posterior probability estimates (PPEs), which can be used as soft-inputs of the LDPC decoder. The complexity of this detector is considered in this paper by using four features and simplifying the decision function. In addition, a bandwidth efficient transmission is analyzed with both SVM and TD detector. The SVM detector is more robust to sampling rate than TD detector. We find that the SVM is suitable for extended binary phase shift keying (EBPSK) signal detection and can provide accurate posterior probability for LDPC decoding.

  6. Nonlinear Detection for a High Rate Extended Binary Phase Shift Keying System

    PubMed Central

    Chen, Xian-Qing; Wu, Le-Nan

    2013-01-01

    The algorithm and the results of a nonlinear detector using a machine learning technique called support vector machine (SVM) on an efficient modulation system with high data rate and low energy consumption is presented in this paper. Simulation results showed that the performance achieved by the SVM detector is comparable to that of a conventional threshold decision (TD) detector. The two detectors detect the received signals together with the special impacting filter (SIF) that can improve the energy utilization efficiency. However, unlike the TD detector, the SVM detector concentrates not only on reducing the BER of the detector, but also on providing accurate posterior probability estimates (PPEs), which can be used as soft-inputs of the LDPC decoder. The complexity of this detector is considered in this paper by using four features and simplifying the decision function. In addition, a bandwidth efficient transmission is analyzed with both SVM and TD detector. The SVM detector is more robust to sampling rate than TD detector. We find that the SVM is suitable for extended binary phase shift keying (EBPSK) signal detection and can provide accurate posterior probability for LDPC decoding. PMID:23539034

  7. Three-dimensional structural analysis using interactive graphics

    NASA Technical Reports Server (NTRS)

    Biffle, J.; Sumlin, H. A.

    1975-01-01

    The application of computer interactive graphics to three-dimensional structural analysis was described, with emphasis on the following aspects: (1) structural analysis, and (2) generation and checking of input data and examination of the large volume of output data (stresses, displacements, velocities, accelerations). Handling of three-dimensional input processing with a special MESH3D computer program was explained. Similarly, a special code PLTZ may be used to perform all the needed tasks for output processing from a finite element code. Examples were illustrated.

  8. Dynamic Detection of Malicious Code in COTS Software

    DTIC Science & Technology

    2000-04-01

    run the following documented hostile applets or ActiveX of these tools work only on mobile code (Java, ActiveX , controls: 16-11 Hostile Applets Tiny...Killer App Exploder Runner ActiveX Check Spy eSafe Protect Desktop 9/9 blocked NB B NB 13/17 blocked NB Surfinshield Online 9/9 blocked NB B B 13/17...Exploder is an ActiveX control top (@). that performs a clean shutdown of your computer. The interface is attractive, although rather complex, as McLain’s

  9. On the RAC. CIOs must work to make their organization's time with CMS Recovery Audit Contractors as painless as possible.

    PubMed

    Lawrence, Daphne

    2009-01-01

    CIOs should act as a team with HIM and Finance to prepare for RAC audits. CIOs can take the lead in looking at improved coding systems, and can be involved in creating policies and procedures for the hospital's RAC team. RAC is an opportunity to improve documentation, coding and data analysis. RAC appeals will become more common as states share lessons learned. Follow the money and check on claims that are frequently returned.

  10. C code generation from Petri-net-based logic controller specification

    NASA Astrophysics Data System (ADS)

    Grobelny, Michał; Grobelna, Iwona; Karatkevich, Andrei

    2017-08-01

    The article focuses on programming of logic controllers. It is important that a programming code of a logic controller is executed flawlessly according to the primary specification. In the presented approach we generate C code for an AVR microcontroller from a rule-based logical model of a control process derived from a control interpreted Petri net. The same logical model is also used for formal verification of the specification by means of the model checking technique. The proposed rule-based logical model and formal rules of transformation ensure that the obtained implementation is consistent with the already verified specification. The approach is validated by practical experiments.

  11. Operative team communication during simulated emergencies: Too busy to respond?

    PubMed

    Davis, W Austin; Jones, Seth; Crowell-Kuhnberg, Adrianna M; O'Keeffe, Dara; Boyle, Kelly M; Klainer, Suzanne B; Smink, Douglas S; Yule, Steven

    2017-05-01

    Ineffective communication among members of a multidisciplinary team is associated with operative error and failure to rescue. We sought to measure operative team communication in a simulated emergency using an established communication framework called "closed loop communication." We hypothesized that communication directed at a specific recipient would be more likely to elicit a check back or closed loop response and that this relationship would vary with changes in patients' clinical status. We used the closed loop communication framework to code retrospectively the communication behavior of 7 operative teams (each comprising 2 surgeons, anesthesiologists, and nurses) during response to a simulated, postanesthesia care unit "code blue." We identified call outs, check backs, and closed loop episodes and applied descriptive statistics and a mixed-effects negative binomial regression to describe characteristics of communication in individuals and in different specialties. We coded a total of 662 call outs. The frequency and type of initiation and receipt of communication events varied between clinical specialties (P < .001). Surgeons and nurses initiated fewer and received more communication events than anesthesiologists. For the average participant, directed communication increased the likelihood of check back by at least 50% (P = .021) in periods preceding acute changes in the clinical setting, and exerted no significant effect in periods after acute changes in the clinical situation. Communication patterns vary by specialty during a simulated operative emergency, and the effect of directed communication in eliciting a response depends on the clinical status of the patient. Operative training programs should emphasize the importance of quality communication in the period immediately after an acute change in the clinical setting of a patient and recognize that communication patterns and needs vary between members of multidisciplinary operative teams. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Lake water quality mapping from LANDSAT

    NASA Technical Reports Server (NTRS)

    Scherz, J. P.

    1977-01-01

    The lakes in three LANDSAT scenes were mapped by the Bendix MDAS multispectral analysis system. Field checking the maps by three separate individuals revealed approximately 90-95% correct classification for the lake categories selected. Variations between observers was about 5%. From the MDAS color coded maps the lake with the worst algae problem was easily located. This lake was closely checked and a pollution source of 100 cows was found in the springs which fed this lake. The theory, lab work and field work which made it possible for this demonstration project to be a practical lake classification procedure are presented.

  13. Morse Code, Scrabble, and the Alphabet

    ERIC Educational Resources Information Center

    Richardson, Mary; Gabrosek, John; Reischman, Diann; Curtiss, Phyliss

    2004-01-01

    In this paper we describe an interactive activity that illustrates simple linear regression. Students collect data and analyze it using simple linear regression techniques taught in an introductory applied statistics course. The activity is extended to illustrate checks for regression assumptions and regression diagnostics taught in an…

  14. NDEC: A NEA platform for nuclear data testing, verification and benchmarking

    NASA Astrophysics Data System (ADS)

    Díez, C. J.; Michel-Sendis, F.; Cabellos, O.; Bossant, M.; Soppera, N.

    2017-09-01

    The selection, testing, verification and benchmarking of evaluated nuclear data consists, in practice, in putting an evaluated file through a number of checking steps where different computational codes verify that the file and the data it contains complies with different requirements. These requirements range from format compliance to good performance in application cases, while at the same time physical constraints and the agreement with experimental data are verified. At NEA, the NDEC (Nuclear Data Evaluation Cycle) platform aims at providing, in a user friendly interface, a thorough diagnose of the quality of a submitted evaluated nuclear data file. Such diagnose is based on the results of different computational codes and routines which carry out the mentioned verifications, tests and checks. NDEC also searches synergies with other existing NEA tools and databases, such as JANIS, DICE or NDaST, including them into its working scheme. Hence, this paper presents NDEC, its current development status and its usage in the JEFF nuclear data project.

  15. Formal Validation of Fault Management Design Solutions

    NASA Technical Reports Server (NTRS)

    Gibson, Corrina; Karban, Robert; Andolfato, Luigi; Day, John

    2013-01-01

    The work presented in this paper describes an approach used to develop SysML modeling patterns to express the behavior of fault protection, test the model's logic by performing fault injection simulations, and verify the fault protection system's logical design via model checking. A representative example, using a subset of the fault protection design for the Soil Moisture Active-Passive (SMAP) system, was modeled with SysML State Machines and JavaScript as Action Language. The SysML model captures interactions between relevant system components and system behavior abstractions (mode managers, error monitors, fault protection engine, and devices/switches). Development of a method to implement verifiable and lightweight executable fault protection models enables future missions to have access to larger fault test domains and verifiable design patterns. A tool-chain to transform the SysML model to jpf-Statechart compliant Java code and then verify the generated code via model checking was established. Conclusions and lessons learned from this work are also described, as well as potential avenues for further research and development.

  16. Monitoring Java Programs with Java PathExplorer

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Rosu, Grigore; Clancy, Daniel (Technical Monitor)

    2001-01-01

    We present recent work on the development Java PathExplorer (JPAX), a tool for monitoring the execution of Java programs. JPAX can be used during program testing to gain increased information about program executions, and can potentially furthermore be applied during operation to survey safety critical systems. The tool facilitates automated instrumentation of a program's late code which will then omit events to an observer during its execution. The observer checks the events against user provided high level requirement specifications, for example temporal logic formulae, and against lower level error detection procedures, for example concurrency related such as deadlock and data race algorithms. High level requirement specifications together with their underlying logics are defined in the Maude rewriting logic, and then can either be directly checked using the Maude rewriting engine, or be first translated to efficient data structures and then checked in Java.

  17. [The DRG responsible physician in trauma and orthopedic surgery. Surgeon, encoder, and link to medical controlling].

    PubMed

    Ruffing, T; Huchzermeier, P; Muhm, M; Winkler, H

    2014-05-01

    Precise coding is an essential requirement in order to generate a valid DRG. The aim of our study was to evaluate the quality of the initial coding of surgical procedures, as well as to introduce our "hybrid model" of a surgical specialist supervising medical coding and a nonphysician for case auditing. The department's DRG responsible physician as a surgical specialist has profound knowledge both in surgery and in DRG coding. At a Level 1 hospital, 1000 coded cases of surgical procedures were checked. In our department, the DRG responsible physician who is both a surgeon and encoder has proven itself for many years. The initial surgical DRG coding had to be corrected by the DRG responsible physician in 42.2% of cases. On average, one hour per working day was necessary. The implementation of a DRG responsible physician is a simple, effective way to connect medical and business expertise without interface problems. Permanent feedback promotes both medical and economic sensitivity for the improvement of coding quality.

  18. An international survey of building energy codes and their implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Meredydd; Roshchanka, Volha; Graham, Peter

    Buildings are key to low-carbon development everywhere, and many countries have introduced building energy codes to improve energy efficiency in buildings. Yet, building energy codes can only deliver results when the codes are implemented. For this reason, studies of building energy codes need to consider implementation of building energy codes in a consistent and comprehensive way. This research identifies elements and practices in implementing building energy codes, covering codes in 22 countries that account for 70% of global energy demand from buildings. Access to benefits of building energy codes depends on comprehensive coverage of buildings by type, age, size, andmore » geographic location; an implementation framework that involves a certified agency to inspect construction at critical stages; and independently tested, rated, and labeled building energy materials. Training and supporting tools are another element of successful code implementation, and their role is growing in importance, given the increasing flexibility and complexity of building energy codes. Some countries have also introduced compliance evaluation and compliance checking protocols to improve implementation. This article provides examples of practices that countries have adopted to assist with implementation of building energy codes.« less

  19. 78 FR 58973 - Airworthiness Directives; Dassault Aviation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... 2000EX type design are included in Dassault Aviation Falcon 2000EX (F2000EX) Aircraft Maintenance Manual... numbers. (d) Subject Air Transport Association (ATA) of America Code 05, Time Limits/ Maintenance Checks... to introduce a corrosion prevention control program, among other changes, to the maintenance...

  20. CTEPP STANDARD OPERATING PROCEDURE FOR PROCESSING COMPLETED DATA FORMS (SOP-4.10)

    EPA Science Inventory

    This SOP describes the methods for processing completed data forms. Key components of the SOP include (1) field editing, (2) data form Chain-of-Custody, (3) data processing verification, (4) coding, (5) data entry, (6) programming checks, (7) preparation of data dictionaries, cod...

  1. 26 CFR 148.1-5 - Constructive sale price.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of articles listed in Chapter 32 of the Internal Revenue Code (other than combinations) that embraces... section. For the rule applicable to combinations of two or more articles, see subdivision (iv) of this..., perforating, cutting, and dating machines, and other check protector machine devices; (o) Taxable cash...

  2. 26 CFR 148.1-5 - Constructive sale price.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of articles listed in Chapter 32 of the Internal Revenue Code (other than combinations) that embraces... section. For the rule applicable to combinations of two or more articles, see subdivision (iv) of this..., perforating, cutting, and dating machines, and other check protector machine devices; (o) Taxable cash...

  3. 26 CFR 148.1-5 - Constructive sale price.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... of articles listed in Chapter 32 of the Internal Revenue Code (other than combinations) that embraces... section. For the rule applicable to combinations of two or more articles, see subdivision (iv) of this..., perforating, cutting, and dating machines, and other check protector machine devices; (o) Taxable cash...

  4. Design of pellet surface grooves for fission gas plenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, T.J.; Jones, L.R.; Macici, N.

    1986-01-01

    In the Canada deuterium uranium pressurized heavy water reactor, short (50-cm) Zircaloy-4 clad bundles are fueled on-power. Although internal void volume within the fuel rods is adequate for the present once-through natural uranium cycle, the authors have investigated methods for increasing the internal gas storage volume needed in high-power, high-burnup, experimental ceramic fuels. This present work sought to prove the methodology for design of gas storage volume within the fuel pellets - specifically the use of grooves pressed or machined into the relatively cool pellet/cladding interface. Preanalysis and design of pellet groove shape and volume was accomplished using the TRUMPmore » heat transfer code. Postirradiation examination (PIE) was used to check the initial design and heat transfer assumptions. Fission gas release was found to be higher for the grooved pellet rods than for the comparison rods with hollow or unmodified pellets. This had been expected from the initial TRUMP thermal analyses. The ELESIM fuel modeling code was used to check in-reactor performance, but some modifications were necessary to accommodate the loss of heat transfer surface to the grooves. It was concluded that for plenum design purposes, circumferential pellet grooves could be adequately modeled by the codes TRUMP and ELESIM.« less

  5. A high throughput architecture for a low complexity soft-output demapping algorithm

    NASA Astrophysics Data System (ADS)

    Ali, I.; Wasenmüller, U.; Wehn, N.

    2015-11-01

    Iterative channel decoders such as Turbo-Code and LDPC decoders show exceptional performance and therefore they are a part of many wireless communication receivers nowadays. These decoders require a soft input, i.e., the logarithmic likelihood ratio (LLR) of the received bits with a typical quantization of 4 to 6 bits. For computing the LLR values from a received complex symbol, a soft demapper is employed in the receiver. The implementation cost of traditional soft-output demapping methods is relatively large in high order modulation systems, and therefore low complexity demapping algorithms are indispensable in low power receivers. In the presence of multiple wireless communication standards where each standard defines multiple modulation schemes, there is a need to have an efficient demapper architecture covering all the flexibility requirements of these standards. Another challenge associated with hardware implementation of the demapper is to achieve a very high throughput in double iterative systems, for instance, MIMO and Code-Aided Synchronization. In this paper, we present a comprehensive communication and hardware performance evaluation of low complexity soft-output demapping algorithms to select the best algorithm for implementation. The main goal of this work is to design a high throughput, flexible, and area efficient architecture. We describe architectures to execute the investigated algorithms. We implement these architectures on a FPGA device to evaluate their hardware performance. The work has resulted in a hardware architecture based on the figured out best low complexity algorithm delivering a high throughput of 166 Msymbols/second for Gray mapped 16-QAM modulation on Virtex-5. This efficient architecture occupies only 127 slice registers, 248 slice LUTs and 2 DSP48Es.

  6. NASA Tech Briefs, September 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    opics covered include: Filtering Water by Use of Ultrasonically Vibrated Nanotubes; Computer Code for Nanostructure Simulation; Functionalizing CNTs for Making Epoxy/CNT Composites; Improvements in Production of Single-Walled Carbon Nanotubes; Progress Toward Sequestering Carbon Nanotubes in PmPV; Two-Stage Variable Sample-Rate Conversion System; Estimating Transmitted-Signal Phase Variations for Uplink Array Antennas; Board Saver for Use with Developmental FPGAs; Circuit for Driving Piezoelectric Transducers; Digital Synchronizer without Metastability; Compact, Low-Overhead, MIL-STD-1553B Controller; Parallel-Processing CMOS Circuitry for M-QAM and 8PSK TCM; Differential InP HEMT MMIC Amplifiers Embedded in Waveguides; Improved Aerogel Vacuum Thermal Insulation; Fluoroester Co-Solvents for Low-Temperature Li+ Cells; Using Volcanic Ash to Remove Dissolved Uranium and Lead; High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell; Silicon Wafer-Scale Substrate for Microshutters and Detector Arrays; Micro-Horn Arrays for Ultrasonic Impedance Matching; Improved Controller for a Three-Axis Piezoelectric Stage; Nano-Pervaporation Membrane with Heat Exchanger Generates Medical-Grade Water; Micro-Organ Devices; Nonlinear Thermal Compensators for WGM Resonators; Dynamic Self-Locking of an OEO Containing a VCSEL; Internal Water Vapor Photoacoustic Calibration; Mid-Infrared Reflectance Imaging of Thermal-Barrier Coatings; Improving the Visible and Infrared Contrast Ratio of Microshutter Arrays; Improved Scanners for Microscopic Hyperspectral Imaging; Rate-Compatible LDPC Codes with Linear Minimum Distance; PrimeSupplier Cross-Program Impact Analysis and Supplier Stability Indicator Simulation Model; Integrated Planning for Telepresence With Time Delays; Minimizing Input-to-Output Latency in Virtual Environment; Battery Cell Voltage Sensing and Balancing Using Addressable Transformers; Gaussian and Lognormal Models of Hurricane Gust Factors; Simulation of Attitude and Trajectory Dynamics and Control of Multiple Spacecraft; Integrated Modeling of Spacecraft Touch-and-Go Sampling; Spacecraft Station-Keeping Trajectory and Mission Design Tools; Efficient Model-Based Diagnosis Engine; and DSN Simulator.

  7. DYNA3D/ParaDyn Regression Test Suite Inventory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jerry I.

    2016-09-01

    The following table constitutes an initial assessment of feature coverage across the regression test suite used for DYNA3D and ParaDyn. It documents the regression test suite at the time of preliminary release 16.1 in September 2016. The columns of the table represent groupings of functionalities, e.g., material models. Each problem in the test suite is represented by a row in the table. All features exercised by the problem are denoted by a check mark (√) in the corresponding column. The definition of “feature” has not been subdivided to its smallest unit of user input, e.g., algorithmic parameters specific to amore » particular type of contact surface. This represents a judgment to provide code developers and users a reasonable impression of feature coverage without expanding the width of the table by several multiples. All regression testing is run in parallel, typically with eight processors, except problems involving features only available in serial mode. Many are strictly regression tests acting as a check that the codes continue to produce adequately repeatable results as development unfolds; compilers change and platforms are replaced. A subset of the tests represents true verification problems that have been checked against analytical or other benchmark solutions. Users are welcomed to submit documented problems for inclusion in the test suite, especially if they are heavily exercising, and dependent upon, features that are currently underrepresented.« less

  8. Image transmission system using adaptive joint source and channel decoding

    NASA Astrophysics Data System (ADS)

    Liu, Weiliang; Daut, David G.

    2005-03-01

    In this paper, an adaptive joint source and channel decoding method is designed to accelerate the convergence of the iterative log-dimain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec, which makes it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. Due to the error resilience modes, some bits are known to be either correct or in error. The positions of these bits are then fed back to the channel decoder. The log-likelihood ratios (LLR) of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. That is, for lower channel SNR, a larger factor is assigned, and vice versa. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the non-source controlled decoding method up to 5dB in terms of PSNR for various reconstructed images.

  9. Phase II evaluation of clinical coding schemes: completeness, taxonomy, mapping, definitions, and clarity. CPRI Work Group on Codes and Structures.

    PubMed

    Campbell, J R; Carpenter, P; Sneiderman, C; Cohn, S; Chute, C G; Warren, J

    1997-01-01

    To compare three potential sources of controlled clinical terminology (READ codes version 3.1, SNOMED International, and Unified Medical Language System (UMLS) version 1.6) relative to attributes of completeness, clinical taxonomy, administrative mapping, term definitions and clarity (duplicate coding rate). The authors assembled 1929 source concept records from a variety of clinical information taken from four medical centers across the United States. The source data included medical as well as ample nursing terminology. The source records were coded in each scheme by an investigator and checked by the coding scheme owner. The codings were then scored by an independent panel of clinicians for acceptability. Codes were checked for definitions provided with the scheme. Codes for a random sample of source records were analyzed by an investigator for "parent" and "child" codes within the scheme. Parent and child pairs were scored by an independent panel of medical informatics specialists for clinical acceptability. Administrative and billing code mapping from the published scheme were reviewed for all coded records and analyzed by independent reviewers for accuracy. The investigator for each scheme exhaustively searched a sample of coded records for duplications. SNOMED was judged to be significantly more complete in coding the source material than the other schemes (SNOMED* 70%; READ 57%; UMLS 50%; *p < .00001). SNOMED also had a richer clinical taxonomy judged by the number of acceptable first-degree relatives per coded concept (SNOMED* 4.56, UMLS 3.17; READ 2.14, *p < .005). Only the UMLS provided any definitions; these were found for 49% of records which had a coding assignment. READ and UMLS had better administrative mappings (composite score: READ* 40.6%; UMLS* 36.1%; SNOMED 20.7%, *p < .00001), and SNOMED had substantially more duplications of coding assignments (duplication rate: READ 0%; UMLS 4.2%; SNOMED* 13.9%, *p < .004) associated with a loss of clarity. No major terminology source can lay claim to being the ideal resource for a computer-based patient record. However, based upon this analysis of releases for April 1995, SNOMED International is considerably more complete, has a compositional nature and a richer taxonomy. Is suffers from less clarity, resulting from a lack of syntax and evolutionary changes in its coding scheme. READ has greater clarity and better mapping to administrative schemes (ICD-10 and OPCS-4), is rapidly changing and is less complete. UMLS is a rich lexical resource, with mappings to many source vocabularies. It provides definitions for many of its terms. However, due to the varying granularities and purposes of its source schemes, it has limitations for representation of clinical concepts within a computer-based patient record.

  10. A SNP panel and online tool for checking genotype concordance through comparing QR codes.

    PubMed

    Du, Yonghong; Martin, Joshua S; McGee, John; Yang, Yuchen; Liu, Eric Yi; Sun, Yingrui; Geihs, Matthias; Kong, Xuejun; Zhou, Eric Lingfeng; Li, Yun; Huang, Jie

    2017-01-01

    In the current precision medicine era, more and more samples get genotyped and sequenced. Both researchers and commercial companies expend significant time and resources to reduce the error rate. However, it has been reported that there is a sample mix-up rate of between 0.1% and 1%, not to mention the possibly higher mix-up rate during the down-stream genetic reporting processes. Even on the low end of this estimate, this translates to a significant number of mislabeled samples, especially over the projected one billion people that will be sequenced within the next decade. Here, we first describe a method to identify a small set of Single nucleotide polymorphisms (SNPs) that can uniquely identify a personal genome, which utilizes allele frequencies of five major continental populations reported in the 1000 genomes project and the ExAC Consortium. To make this panel more informative, we added four SNPs that are commonly used to predict ABO blood type, and another two SNPs that are capable of predicting sex. We then implement a web interface (http://qrcme.tech), nicknamed QRC (for QR code based Concordance check), which is capable of extracting the relevant ID SNPs from a raw genetic data, coding its genotype as a quick response (QR) code, and comparing QR codes to report the concordance of underlying genetic datasets. The resulting 80 fingerprinting SNPs represent a significant decrease in complexity and the number of markers used for genetic data labelling and tracking. Our method and web tool is easily accessible to both researchers and the general public who consider the accuracy of complex genetic data as a prerequisite towards precision medicine.

  11. A SNP panel and online tool for checking genotype concordance through comparing QR codes

    PubMed Central

    Du, Yonghong; Martin, Joshua S.; McGee, John; Yang, Yuchen; Liu, Eric Yi; Sun, Yingrui; Geihs, Matthias; Kong, Xuejun; Zhou, Eric Lingfeng; Li, Yun

    2017-01-01

    In the current precision medicine era, more and more samples get genotyped and sequenced. Both researchers and commercial companies expend significant time and resources to reduce the error rate. However, it has been reported that there is a sample mix-up rate of between 0.1% and 1%, not to mention the possibly higher mix-up rate during the down-stream genetic reporting processes. Even on the low end of this estimate, this translates to a significant number of mislabeled samples, especially over the projected one billion people that will be sequenced within the next decade. Here, we first describe a method to identify a small set of Single nucleotide polymorphisms (SNPs) that can uniquely identify a personal genome, which utilizes allele frequencies of five major continental populations reported in the 1000 genomes project and the ExAC Consortium. To make this panel more informative, we added four SNPs that are commonly used to predict ABO blood type, and another two SNPs that are capable of predicting sex. We then implement a web interface (http://qrcme.tech), nicknamed QRC (for QR code based Concordance check), which is capable of extracting the relevant ID SNPs from a raw genetic data, coding its genotype as a quick response (QR) code, and comparing QR codes to report the concordance of underlying genetic datasets. The resulting 80 fingerprinting SNPs represent a significant decrease in complexity and the number of markers used for genetic data labelling and tracking. Our method and web tool is easily accessible to both researchers and the general public who consider the accuracy of complex genetic data as a prerequisite towards precision medicine. PMID:28926565

  12. Proof Compression and the Mobius PCC Architecture for Embedded Devices

    NASA Technical Reports Server (NTRS)

    Jensen, Thomas

    2009-01-01

    The EU Mobius project has been concerned with the security of Java applications, and of mobile devices such as smart phones that execute such applications. In this talk, I'll give a brief overview of the results obtained on on-device checking of various security-related program properties. I'll then describe in more detail how the concept of certified abstract interpretation and abstraction-carrying code can be applied to polyhedral-based analysis of Java byte code in order to verify properties pertaining to the usage of resources of a down-loaded application. Particular emphasis has been on finding ways of reducing the size of the certificates that accompany a piece of code.

  13. Software Certification - Coding, Code, and Coders

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Holzmann, Gerard J.

    2011-01-01

    We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.

  14. Phase II Evaluation of Clinical Coding Schemes

    PubMed Central

    Campbell, James R.; Carpenter, Paul; Sneiderman, Charles; Cohn, Simon; Chute, Christopher G.; Warren, Judith

    1997-01-01

    Abstract Objective: To compare three potential sources of controlled clinical terminology (READ codes version 3.1, SNOMED International, and Unified Medical Language System (UMLS) version 1.6) relative to attributes of completeness, clinical taxonomy, administrative mapping, term definitions and clarity (duplicate coding rate). Methods: The authors assembled 1929 source concept records from a variety of clinical information taken from four medical centers across the United States. The source data included medical as well as ample nursing terminology. The source records were coded in each scheme by an investigator and checked by the coding scheme owner. The codings were then scored by an independent panel of clinicians for acceptability. Codes were checked for definitions provided with the scheme. Codes for a random sample of source records were analyzed by an investigator for “parent” and “child” codes within the scheme. Parent and child pairs were scored by an independent panel of medical informatics specialists for clinical acceptability. Administrative and billing code mapping from the published scheme were reviewed for all coded records and analyzed by independent reviewers for accuracy. The investigator for each scheme exhaustively searched a sample of coded records for duplications. Results: SNOMED was judged to be significantly more complete in coding the source material than the other schemes (SNOMED* 70%; READ 57%; UMLS 50%; *p <.00001). SNOMED also had a richer clinical taxonomy judged by the number of acceptable first-degree relatives per coded concept (SNOMED* 4.56; UMLS 3.17; READ 2.14, *p <.005). Only the UMLS provided any definitions; these were found for 49% of records which had a coding assignment. READ and UMLS had better administrative mappings (composite score: READ* 40.6%; UMLS* 36.1%; SNOMED 20.7%, *p <. 00001), and SNOMED had substantially more duplications of coding assignments (duplication rate: READ 0%; UMLS 4.2%; SNOMED* 13.9%, *p <. 004) associated with a loss of clarity. Conclusion: No major terminology source can lay claim to being the ideal resource for a computer-based patient record. However, based upon this analysis of releases for April 1995, SNOMED International is considerably more complete, has a compositional nature and a richer taxonomy. It suffers from less clarity, resulting from a lack of syntax and evolutionary changes in its coding scheme. READ has greater clarity and better mapping to administrative schemes (ICD-10 and OPCS-4), is rapidly changing and is less complete. UMLS is a rich lexical resource, with mappings to many source vocabularies. It provides definitions for many of its terms. However, due to the varying granularities and purposes of its source schemes, it has limitations for representation of clinical concepts within a computer-based patient record. PMID:9147343

  15. Resolving Ethical Disputes Through Arbitration: An Alternative to Code Penalties.

    ERIC Educational Resources Information Center

    Barwis, Gail Lund

    Arbitration cases involving journalism ethics can be grouped into three major categories: outside activities that lead to conflicts of interest, acceptance of gifts that compromise journalistic objectivity, and writing false or misleading information or failing to check facts or correct errors. In most instances, failure to adhere to ethical…

  16. Clients' Preferences for Small Groups vs. Individual Testing.

    ERIC Educational Resources Information Center

    Backman, Margaret E.; And Others

    Test takers' preferences for group versus individual administration of the Micro-TOWER System of Vocational Evaluation are reported. The system was administered to 211 clients at a vocational rehabilitation center, and consisted of work samples measuring the following job skills: record checking, filing, lamp assembly, message-taking, zip coding,…

  17. OLIFE: Tight Binding Code for Transmission Coefficient Calculation

    NASA Astrophysics Data System (ADS)

    Mijbil, Zainelabideen Yousif

    2018-05-01

    A new and human friendly transport calculation code has been developed. It requires a simple tight binding Hamiltonian as the only input file and uses a convenient graphical user interface to control calculations. The effect of magnetic field on junction has also been included. Furthermore the transmission coefficient can be calculated between any two points on the scatterer which ensures high flexibility to check the system. Therefore Olife can highly be recommended as an essential tool for pretesting studying and teaching electron transport in molecular devices that saves a lot of time and effort.

  18. Program Listings for EOSAEL 80-B and Ancillary Codes AGAUS and FLASH. Volume II. User’s Manual Supplement.

    DTIC Science & Technology

    1982-02-01

    FORMAT(1X,39NINVALID INPUTS TO CWIC. IERR-1 RETURNED) CWC01450 IERR=1 CWCO01460 RETURN CWC6OI470 20 TInE=RV 1) CWCOI4SO XO=RV( 2) CJC 01490 H3=RV( 3...ERROR CHECKS AGXO1910 IF (IT.LE.0) IT=I AGXO192o IF (IT.GT.JDIMCK(1)) CALL DIMER( ) AGX01930 IF(JDIMCKcI).LT.65) WRITE(IOUT, 1295 AGX0940 C CHECK FOR...Office System Planning Corporation ATTN: DACS -BMT (Colonel Harry F. Ennis) ATTN: COL Hank Shelton 5001 Eisenhower Avenue 1500 Wilson Boulevard

  19. Error coding simulations

    NASA Technical Reports Server (NTRS)

    Noble, Viveca K.

    1993-01-01

    There are various elements such as radio frequency interference (RFI) which may induce errors in data being transmitted via a satellite communication link. When a transmission is affected by interference or other error-causing elements, the transmitted data becomes indecipherable. It becomes necessary to implement techniques to recover from these disturbances. The objective of this research is to develop software which simulates error control circuits and evaluate the performance of these modules in various bit error rate environments. The results of the evaluation provide the engineer with information which helps determine the optimal error control scheme. The Consultative Committee for Space Data Systems (CCSDS) recommends the use of Reed-Solomon (RS) and convolutional encoders and Viterbi and RS decoders for error correction. The use of forward error correction techniques greatly reduces the received signal to noise needed for a certain desired bit error rate. The use of concatenated coding, e.g. inner convolutional code and outer RS code, provides even greater coding gain. The 16-bit cyclic redundancy check (CRC) code is recommended by CCSDS for error detection.

  20. C2x: A tool for visualisation and input preparation for CASTEP and other electronic structure codes

    NASA Astrophysics Data System (ADS)

    Rutter, M. J.

    2018-04-01

    The c2x code fills two distinct roles. Its first role is in acting as a converter between the binary format .check files from the widely-used CASTEP [1] electronic structure code and various visualisation programs. Its second role is to manipulate and analyse the input and output files from a variety of electronic structure codes, including CASTEP, ONETEP and VASP, as well as the widely-used 'Gaussian cube' file format. Analysis includes symmetry analysis, and manipulation arbitrary cell transformations. It continues to be under development, with growing functionality, and is written in a form which would make it easy to extend it to working directly with files from other electronic structure codes. Data which c2x is capable of extracting from CASTEP's binary checkpoint files include charge densities, spin densities, wavefunctions, relaxed atomic positions, forces, the Fermi level, the total energy, and symmetry operations. It can recreate .cell input files from checkpoint files. Volumetric data can be output in formats useable by many common visualisation programs, and c2x will itself calculate integrals, expand data into supercells, and interpolate data via combinations of Fourier and trilinear interpolation. It can extract data along arbitrary lines (such as lines between atoms) as 1D output. C2x is able to convert between several common formats for describing molecules and crystals, including the .cell format of CASTEP. It can construct supercells, reduce cells to their primitive form, and add specified k-point meshes. It uses the spglib library [2] to report symmetry information, which it can add to .cell files. C2x is a command-line utility, so is readily included in scripts. It is available under the GPL and can be obtained from http://www.c2x.org.uk. It is believed to be the only open-source code which can read CASTEP's .check files, so it will have utility in other projects.

  1. Random Testing and Model Checking: Building a Common Framework for Nondeterministic Exploration

    NASA Technical Reports Server (NTRS)

    Groce, Alex; Joshi, Rajeev

    2008-01-01

    Two popular forms of dynamic analysis, random testing and explicit-state software model checking, are perhaps best viewed as search strategies for exploring the state spaces introduced by nondeterminism in program inputs. We present an approach that enables this nondeterminism to be expressed in the SPIN model checker's PROMELA language, and then lets users generate either model checkers or random testers from a single harness for a tested C program. Our approach makes it easy to compare model checking and random testing for models with precisely the same input ranges and probabilities and allows us to mix random testing with model checking's exhaustive exploration of non-determinism. The PROMELA language, as intended in its design, serves as a convenient notation for expressing nondeterminism and mixing random choices with nondeterministic choices. We present and discuss a comparison of random testing and model checking. The results derive from using our framework to test a C program with an effectively infinite state space, a module in JPL's next Mars rover mission. More generally, we show how the ability of the SPIN model checker to call C code can be used to extend SPIN's features, and hope to inspire others to use the same methods to implement dynamic analyses that can make use of efficient state storage, matching, and backtracking.

  2. Towards a supported common NEAMS software stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cormac Garvey

    2012-04-01

    The NEAMS IPSC's are developing multidimensional, multiphysics, multiscale simulation codes based on first principles that will be capable of predicting all aspects of current and future nuclear reactor systems. These new breeds of simulation codes will include rigorous verification, validation and uncertainty quantification checks to quantify the accuracy and quality of the simulation results. The resulting NEAMS IPSC simulation codes will be an invaluable tool in designing the next generation of Nuclear Reactors and also contribute to a more speedy process in the acquisition of licenses from the NRC for new Reactor designs. Due to the high resolution of themore » models, the complexity of the physics and the added computational resources to quantify the accuracy/quality of the results, the NEAMS IPSC codes will require large HPC resources to carry out the production simulation runs.« less

  3. A hydrodynamic approach to cosmology - Methodology

    NASA Technical Reports Server (NTRS)

    Cen, Renyue

    1992-01-01

    The present study describes an accurate and efficient hydrodynamic code for evolving self-gravitating cosmological systems. The hydrodynamic code is a flux-based mesh code originally designed for engineering hydrodynamical applications. A variety of checks were performed which indicate that the resolution of the code is a few cells, providing accuracy for integral energy quantities in the present simulations of 1-3 percent over the whole runs. Six species (H I, H II, He I, He II, He III) are tracked separately, and relevant ionization and recombination processes, as well as line and continuum heating and cooling, are computed. The background radiation field is simultaneously determined in the range 1 eV to 100 keV, allowing for absorption, emission, and cosmological effects. It is shown how the inevitable numerical inaccuracies can be estimated and to some extent overcome.

  4. Experiences with Cray multi-tasking

    NASA Technical Reports Server (NTRS)

    Miya, E. N.

    1985-01-01

    The issues involved in modifying an existing code for multitasking is explored. They include Cray extensions to FORTRAN, an examination of the application code under study, designing workable modifications, specific code modifications to the VAX and Cray versions, performance, and efficiency results. The finished product is a faster, fully synchronous, parallel version of the original program. A production program is partitioned by hand to run on two CPUs. Loop splitting multitasks three key subroutines. Simply dividing subroutine data and control structure down the middle of a subroutine is not safe. Simple division produces results that are inconsistent with uniprocessor runs. The safest way to partition the code is to transfer one block of loops at a time and check the results of each on a test case. Other issues include debugging and performance. Task startup and maintenance (e.g., synchronization) are potentially expensive.

  5. Synthesizing Certified Code

    NASA Technical Reports Server (NTRS)

    Whalen, Michael; Schumann, Johann; Fischer, Bernd

    2002-01-01

    Code certification is a lightweight approach to demonstrate software quality on a formal level. Its basic idea is to require producers to provide formal proofs that their code satisfies certain quality properties. These proofs serve as certificates which can be checked independently. Since code certification uses the same underlying technology as program verification, it also requires many detailed annotations (e.g., loop invariants) to make the proofs possible. However, manually adding theses annotations to the code is time-consuming and error-prone. We address this problem by combining code certification with automatic program synthesis. We propose an approach to generate simultaneously, from a high-level specification, code and all annotations required to certify generated code. Here, we describe a certification extension of AUTOBAYES, a synthesis tool which automatically generates complex data analysis programs from compact specifications. AUTOBAYES contains sufficient high-level domain knowledge to generate detailed annotations. This allows us to use a general-purpose verification condition generator to produce a set of proof obligations in first-order logic. The obligations are then discharged using the automated theorem E-SETHEO. We demonstrate our approach by certifying operator safety for a generated iterative data classification program without manual annotation of the code.

  6. Residual Effects on Students of a College Poverty Immersion Experience

    ERIC Educational Resources Information Center

    Firmin, Michael W.; Markham, Ruth Lowrie; Stultz, Kurt J.; Johnson, Heidi J.; Garland, Elizabeth P.

    2016-01-01

    The authors report the results of a phenomenological, qualitative research study involving 20 students who participated in a weekend poverty immersion experience. Analysis of the tape-recorded interviews included coding, checks for internal validity, and the generation of themes common to most of the research participants. Two overall results were…

  7. Decoupling erasure coding from massive multiplayer online role-playing games in model checking

    NASA Astrophysics Data System (ADS)

    Liu, Linhui; Li, Wei

    2009-07-01

    SMPs must work. Given the current status of unstable configurations, systems engineers predictably desire the emulation of RAID. in order to surmount this problem, we verify not only that IPv7 and symmetric encryption can cooperate to overcome this problem, but that the same is true for web browsers.

  8. Application of advanced computational codes in the design of an experiment for a supersonic throughflow fan rotor

    NASA Technical Reports Server (NTRS)

    Wood, Jerry R.; Schmidt, James F.; Steinke, Ronald J.; Chima, Rodrick V.; Kunik, William G.

    1987-01-01

    Increased emphasis on sustained supersonic or hypersonic cruise has revived interest in the supersonic throughflow fan as a possible component in advanced propulsion systems. Use of a fan that can operate with a supersonic inlet axial Mach number is attractive from the standpoint of reducing the inlet losses incurred in diffusing the flow from a supersonic flight Mach number to a subsonic one at the fan face. The design of the experiment using advanced computational codes to calculate the components required is described. The rotor was designed using existing turbomachinery design and analysis codes modified to handle fully supersonic axial flow through the rotor. A two-dimensional axisymmetric throughflow design code plus a blade element code were used to generate fan rotor velocity diagrams and blade shapes. A quasi-three-dimensional, thin shear layer Navier-Stokes code was used to assess the performance of the fan rotor blade shapes. The final design was stacked and checked for three-dimensional effects using a three-dimensional Euler code interactively coupled with a two-dimensional boundary layer code. The nozzle design in the expansion region was analyzed with a three-dimensional parabolized viscous code which corroborated the results from the Euler code. A translating supersonic diffuser was designed using these same codes.

  9. Building Automatic Grading Tools for Basic of Programming Lab in an Academic Institution

    NASA Astrophysics Data System (ADS)

    Harimurti, Rina; Iwan Nurhidayat, Andi; Asmunin

    2018-04-01

    The skills of computer programming is a core competency that must be mastered by students majoring in computer sciences. The best way to improve this skill is through the practice of writing many programs to solve various problems from simple to complex. It takes hard work and a long time to check and evaluate the results of student labs one by one, especially if the number of students a lot. Based on these constrain, web proposes Automatic Grading Tools (AGT), the application that can evaluate and deeply check the source code in C, C++. The application architecture consists of students, web-based applications, compilers, and operating systems. Automatic Grading Tools (AGT) is implemented MVC Architecture and using open source software, such as laravel framework version 5.4, PostgreSQL 9.6, Bootstrap 3.3.7, and jquery library. Automatic Grading Tools has also been tested for real problems by submitting source code in C/C++ language and then compiling. The test results show that the AGT application has been running well.

  10. Teuchos C++ memory management classes, idioms, and related topics, the complete reference : a comprehensive strategy for safe and efficient memory management in C++ for high performance computing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartlett, Roscoe Ainsworth

    2010-05-01

    The ubiquitous use of raw pointers in higher-level code is the primary cause of all memory usage problems and memory leaks in C++ programs. This paper describes what might be considered a radical approach to the problem which is to encapsulate the use of all raw pointers and all raw calls to new and delete in higher-level C++ code. Instead, a set of cooperating template classes developed in the Trilinos package Teuchos are used to encapsulate every use of raw C++ pointers in every use case where it appears in high-level code. Included in the set of memory management classesmore » is the typical reference-counted smart pointer class similar to boost::shared ptr (and therefore C++0x std::shared ptr). However, what is missing in boost and the new standard library are non-reference counted classes for remaining use cases where raw C++ pointers would need to be used. These classes have a debug build mode where nearly all programmer errors are caught and gracefully reported at runtime. The default optimized build mode strips all runtime checks and allows the code to perform as efficiently as raw C++ pointers with reasonable usage. Also included is a novel approach for dealing with the circular references problem that imparts little extra overhead and is almost completely invisible to most of the code (unlike the boost and therefore C++0x approach). Rather than being a radical approach, encapsulating all raw C++ pointers is simply the logical progression of a trend in the C++ development and standards community that started with std::auto ptr and is continued (but not finished) with std::shared ptr in C++0x. Using the Teuchos reference-counted memory management classes allows one to remove unnecessary constraints in the use of objects by removing arbitrary lifetime ordering constraints which are a type of unnecessary coupling [23]. The code one writes with these classes will be more likely to be correct on first writing, will be less likely to contain silent (but deadly) memory usage errors, and will be much more robust to later refactoring and maintenance. The level of debug-mode runtime checking provided by the Teuchos memory management classes is stronger in many respects than what is provided by memory checking tools like Valgrind and Purify while being much less expensive. However, tools like Valgrind and Purify perform a number of types of checks (like usage of uninitialized memory) that makes these tools very valuable and therefore complement the Teuchos memory management debug-mode runtime checking. The Teuchos memory management classes and idioms largely address the technical issues in resolving the fragile built-in C++ memory management model (with the exception of circular references which has no easy solution but can be managed as discussed). All that remains is to teach these classes and idioms and expand their usage in C++ codes. The long-term viability of C++ as a usable and productive language depends on it. Otherwise, if C++ is no safer than C, then is the greater complexity of C++ worth what one gets as extra features? Given that C is smaller and easier to learn than C++ and since most programmers don't know object-orientation (or templates or X, Y, and Z features of C++) all that well anyway, then what really are most programmers getting extra out of C++ that would outweigh the extra complexity of C++ over C? C++ zealots will argue this point but the reality is that C++ popularity has peaked and is becoming less popular while the popularity of C has remained fairly stable over the last decade22. Idioms like are advocated in this paper can help to avert this trend but it will require wide community buy-in and a change in the way C++ is taught in order to have the greatest impact. To make these programs more secure, compiler vendors or static analysis tools (e.g. klocwork23) could implement a preprocessor-like language similar to OpenMP24 that would allow the programmer to declare (in comments) that certain blocks of code should be ''pointer-free'' or allow smaller blocks to be 'pointers allowed'. This would significantly improve the robustness of code that uses the memory management classes described here.« less

  11. Stress analysis and evaluation of a rectangular pressure vessel

    NASA Astrophysics Data System (ADS)

    Rezvani, M. A.; Ziada, H. H.; Shurrab, M. S.

    1992-10-01

    This study addresses structural analysis and evaluation of an abnormal rectangular pressure vessel, designed to house equipment for drilling and collecting samples from Hanford radioactive waste storage tanks. It had to be qualified according to ASME boiler and pressure vessel code, section 8; however, it had the cover plate bolted along the long face, a configuration not addressed by the code. Finite element method was used to calculate stresses resulting from internal pressure; these stresses were then used to evaluate and qualify the vessel. Fatigue is not a concern; thus, it can be built according to section 8, division 1 instead of division 2. Stress analysis was checked against the code. A stayed plate was added to stiffen the long side of the vessel.

  12. Checking Questionable Entry of Personally Identifiable Information Encrypted by One-Way Hash Transformation

    PubMed Central

    Chen, Xianlai; Fann, Yang C; McAuliffe, Matthew; Vismer, David

    2017-01-01

    Background As one of the several effective solutions for personal privacy protection, a global unique identifier (GUID) is linked with hash codes that are generated from combinations of personally identifiable information (PII) by a one-way hash algorithm. On the GUID server, no PII is permitted to be stored, and only GUID and hash codes are allowed. The quality of PII entry is critical to the GUID system. Objective The goal of our study was to explore a method of checking questionable entry of PII in this context without using or sending any portion of PII while registering a subject. Methods According to the principle of GUID system, all possible combination patterns of PII fields were analyzed and used to generate hash codes, which were stored on the GUID server. Based on the matching rules of the GUID system, an error-checking algorithm was developed using set theory to check PII entry errors. We selected 200,000 simulated individuals with randomly-planted errors to evaluate the proposed algorithm. These errors were placed in the required PII fields or optional PII fields. The performance of the proposed algorithm was also tested in the registering system of study subjects. Results There are 127,700 error-planted subjects, of which 114,464 (89.64%) can still be identified as the previous one and remaining 13,236 (10.36%, 13,236/127,700) are discriminated as new subjects. As expected, 100% of nonidentified subjects had errors within the required PII fields. The possibility that a subject is identified is related to the count and the type of incorrect PII field. For all identified subjects, their errors can be found by the proposed algorithm. The scope of questionable PII fields is also associated with the count and the type of the incorrect PII field. The best situation is to precisely find the exact incorrect PII fields, and the worst situation is to shrink the questionable scope only to a set of 13 PII fields. In the application, the proposed algorithm can give a hint of questionable PII entry and perform as an effective tool. Conclusions The GUID system has high error tolerance and may correctly identify and associate a subject even with few PII field errors. Correct data entry, especially required PII fields, is critical to avoiding false splits. In the context of one-way hash transformation, the questionable input of PII may be identified by applying set theory operators based on the hash codes. The count and the type of incorrect PII fields play an important role in identifying a subject and locating questionable PII fields. PMID:28213343

  13. Checking Questionable Entry of Personally Identifiable Information Encrypted by One-Way Hash Transformation.

    PubMed

    Chen, Xianlai; Fann, Yang C; McAuliffe, Matthew; Vismer, David; Yang, Rong

    2017-02-17

    As one of the several effective solutions for personal privacy protection, a global unique identifier (GUID) is linked with hash codes that are generated from combinations of personally identifiable information (PII) by a one-way hash algorithm. On the GUID server, no PII is permitted to be stored, and only GUID and hash codes are allowed. The quality of PII entry is critical to the GUID system. The goal of our study was to explore a method of checking questionable entry of PII in this context without using or sending any portion of PII while registering a subject. According to the principle of GUID system, all possible combination patterns of PII fields were analyzed and used to generate hash codes, which were stored on the GUID server. Based on the matching rules of the GUID system, an error-checking algorithm was developed using set theory to check PII entry errors. We selected 200,000 simulated individuals with randomly-planted errors to evaluate the proposed algorithm. These errors were placed in the required PII fields or optional PII fields. The performance of the proposed algorithm was also tested in the registering system of study subjects. There are 127,700 error-planted subjects, of which 114,464 (89.64%) can still be identified as the previous one and remaining 13,236 (10.36%, 13,236/127,700) are discriminated as new subjects. As expected, 100% of nonidentified subjects had errors within the required PII fields. The possibility that a subject is identified is related to the count and the type of incorrect PII field. For all identified subjects, their errors can be found by the proposed algorithm. The scope of questionable PII fields is also associated with the count and the type of the incorrect PII field. The best situation is to precisely find the exact incorrect PII fields, and the worst situation is to shrink the questionable scope only to a set of 13 PII fields. In the application, the proposed algorithm can give a hint of questionable PII entry and perform as an effective tool. The GUID system has high error tolerance and may correctly identify and associate a subject even with few PII field errors. Correct data entry, especially required PII fields, is critical to avoiding false splits. In the context of one-way hash transformation, the questionable input of PII may be identified by applying set theory operators based on the hash codes. The count and the type of incorrect PII fields play an important role in identifying a subject and locating questionable PII fields. ©Xianlai Chen, Yang C Fann, Matthew McAuliffe, David Vismer, Rong Yang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.02.2017.

  14. Counter-Check of 4,937 WDS Objects for Being Physical Double Stars

    NASA Astrophysics Data System (ADS)

    Knapp, Wilfried; Bryant, T. V.

    2018-04-01

    The WDS catalog contains (as of August 2017) more than 20,000 V-coded objects which are considered to be physical pairs because of their common proper motion (CPM) or other attributes. For 4,937 of these objects both components were identified in the UCAC5 catalog and counter-checked with UCAC5 proper motion data using a CPM assessment scheme according to Knapp and Nanson 2017. A surprisingly large number of these pairs seem to be optical rather than physical. Additionally GAIA DR1 positions are given for all components, and precise separation and position angle based on GAIA DR1 coordinates were calculated for all of the 4,937 pair.

  15. Verifying Architectural Design Rules of the Flight Software Product Line

    NASA Technical Reports Server (NTRS)

    Ganesan, Dharmalingam; Lindvall, Mikael; Ackermann, Chris; McComas, David; Bartholomew, Maureen

    2009-01-01

    This paper presents experiences of verifying architectural design rules of the NASA Core Flight Software (CFS) product line implementation. The goal of the verification is to check whether the implementation is consistent with the CFS architectural rules derived from the developer's guide. The results indicate that consistency checking helps a) identifying architecturally significant deviations that were eluded during code reviews, b) clarifying the design rules to the team, and c) assessing the overall implementation quality. Furthermore, it helps connecting business goals to architectural principles, and to the implementation. This paper is the first step in the definition of a method for analyzing and evaluating product line implementations from an architecture-centric perspective.

  16. The Infobiotics Workbench: an integrated in silico modelling platform for Systems and Synthetic Biology.

    PubMed

    Blakes, Jonathan; Twycross, Jamie; Romero-Campero, Francisco Jose; Krasnogor, Natalio

    2011-12-01

    The Infobiotics Workbench is an integrated software suite incorporating model specification, simulation, parameter optimization and model checking for Systems and Synthetic Biology. A modular model specification allows for straightforward creation of large-scale models containing many compartments and reactions. Models are simulated either using stochastic simulation or numerical integration, and visualized in time and space. Model parameters and structure can be optimized with evolutionary algorithms, and model properties calculated using probabilistic model checking. Source code and binaries for Linux, Mac and Windows are available at http://www.infobiotics.org/infobiotics-workbench/; released under the GNU General Public License (GPL) version 3. Natalio.Krasnogor@nottingham.ac.uk.

  17. Photometric Mapping of Two Kepler Eclipsing Binaries: KIC11560447 and KIC8868650

    NASA Astrophysics Data System (ADS)

    Senavci, Hakan Volkan; Özavci, I.; Isik, E.; Hussain, G. A. J.; O'Neal, D. O.; Yilmaz, M.; Selam, S. O.

    2018-04-01

    We present the surface maps of two eclipsing binary systems KIC11560447 and KIC8868650, using the Kepler light curves covering approximately 4 years. We use the code DoTS, which is based on maximum entropy method in order to reconstruct the surface maps. We also perform numerical tests of DoTS to check the ability of the code in terms of tracking phase migration of spot clusters. The resulting latitudinally averaged maps of KIC11560447 show that spots drift towards increasing orbital longitudes, while the overall behaviour of spots on KIC8868650 drifts towards decreasing latitudes.

  18. Airfoil Vibration Dampers program

    NASA Technical Reports Server (NTRS)

    Cook, Robert M.

    1991-01-01

    The Airfoil Vibration Damper program has consisted of an analysis phase and a testing phase. During the analysis phase, a state-of-the-art computer code was developed, which can be used to guide designers in the placement and sizing of friction dampers. The use of this computer code was demonstrated by performing representative analyses on turbine blades from the High Pressure Oxidizer Turbopump (HPOTP) and High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). The testing phase of the program consisted of performing friction damping tests on two different cantilever beams. Data from these tests provided an empirical check on the accuracy of the computer code developed in the analysis phase. Results of the analysis and testing showed that the computer code can accurately predict the performance of friction dampers. In addition, a valuable set of friction damping data was generated, which can be used to aid in the design of friction dampers, as well as provide benchmark test cases for future code developers.

  19. Description of Panel Method Code ANTARES

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert; George, Mike (Technical Monitor)

    2000-01-01

    Panel method code ANTARES was developed to compute wall interference corrections in a rectangular wind tunnel. The code uses point doublets to represent blockage effects and line doublets to represent lifting effects of a wind tunnel model. Subsonic compressibility effects are modeled by applying the Prandtl-Glauert transformation. The closed wall, open jet, or perforated wall boundary condition may be assigned to a wall panel centroid. The tunnel walls can be represented by using up to 8000 panels. The accuracy of panel method code ANTARES was successfully investigated by comparing solutions for the closed wall and open jet boundary condition with corresponding Method of Images solutions. Fourier transform solutions of a two-dimensional wind tunnel flow field were used to check the application of the perforated wall boundary condition. Studies showed that the accuracy of panel method code ANTARES can be improved by increasing the total number of wall panels in the circumferential direction. It was also shown that the accuracy decreases with increasing free-stream Mach number of the wind tunnel flow field.

  20. Experimental check of bremsstrahlung dosimetry predictions for 0.75 MeV electrons

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Halbleib, J. A.; Beezhold, W.

    Bremsstrahlung dose in CaF2 TLDs from the radiation produced by 0.75 MeV electrons incident on Ta/C targets is measured and compared with that calculated via the CYLTRAN Monte Carlo code. The comparison was made to validate the code, which is used to predict and analyze radiation environments of flash X-ray simulators measured by TLDs. Over a wide range of Ta target thicknesses and radiation angles the code is found to agree with the 5% measurements. For Ta thickness near those that optimize the radiation output, however, the code overestimates the radiation dose at small angles. Maximum overprediction is about 14 + or - 5%. The general agreement, nonetheless, gives confidence in using the code at this energy and in the TLD calibration procedure. For the bulk of the measurements, a standard TLD employing a 2.2 mm thick Al equilibrator was used. In this paper we also show that this thickness can significantly attenuate the free-field dose and introduces significant photon buildup in the equalibrator.

  1. Unit Testing for the Application Control Language (ACL) Software

    NASA Technical Reports Server (NTRS)

    Heinich, Christina Marie

    2014-01-01

    In the software development process, code needs to be tested before it can be packaged for release in order to make sure the program actually does what it says is supposed to happen as well as to check how the program deals with errors and edge cases (such as negative or very large numbers). One of the major parts of the testing process is unit testing, where you test specific units of the code to make sure each individual part of the code works. This project is about unit testing many different components of the ACL software and fixing any errors encountered. To do this, mocks of other objects need to be created and every line of code needs to be exercised to make sure every case is accounted for. Mocks are important to make because it gives direct control of the environment the unit lives in instead of attempting to work with the entire program. This makes it easier to achieve the second goal of exercising every line of code.

  2. Influence of the plasma environment on atomic structure using an ion-sphere model

    DOE PAGES

    Belkhiri, Madeny Jean; Fontes, Christopher John; Poirier, Michel

    2015-09-03

    Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for themore » six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe 22+, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the MCDF value of B. Saha et al.« less

  3. Influence of the plasma environment on atomic structure using an ion-sphere model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belkhiri, Madeny Jean; Fontes, Christopher John; Poirier, Michel

    Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for themore » six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe 22+, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the MCDF value of B. Saha et al.« less

  4. Numerical ‘health check’ for scientific codes: the CADNA approach

    NASA Astrophysics Data System (ADS)

    Scott, N. S.; Jézéquel, F.; Denis, C.; Chesneaux, J.-M.

    2007-04-01

    Scientific computation has unavoidable approximations built into its very fabric. One important source of error that is difficult to detect and control is round-off error propagation which originates from the use of finite precision arithmetic. We propose that there is a need to perform regular numerical 'health checks' on scientific codes in order to detect the cancerous effect of round-off error propagation. This is particularly important in scientific codes that are built on legacy software. We advocate the use of the CADNA library as a suitable numerical screening tool. We present a case study to illustrate the practical use of CADNA in scientific codes that are of interest to the Computer Physics Communications readership. In doing so we hope to stimulate a greater awareness of round-off error propagation and present a practical means by which it can be analyzed and managed.

  5. Diagnosis - Using automatic test equipment and artificial intelligence expert systems

    NASA Astrophysics Data System (ADS)

    Ramsey, J. E., Jr.

    Three expert systems (ATEOPS, ATEFEXPERS, and ATEFATLAS), which were created to direct automatic test equipment (ATE), are reviewed. The purpose of the project was to develop an expert system to troubleshoot the converter-programmer power supply card for the F-15 aircraft and have that expert system direct the automatic test equipment. Each expert system uses a different knowledge base or inference engine, basing the testing on the circuit schematic, test requirements document, or ATLAS code. Implementing generalized modules allows the expert systems to be used for any different unit under test. Using converted ATLAS to LISP code allows the expert system to direct any ATE using ATLAS. The constraint propagated frame system allows for the expansion of control by creating the ATLAS code, checking the code for good software engineering techniques, directing the ATE, and changing the test sequence as needed (planning).

  6. Evaluating the accuracy of technicians and pharmacists in checking unit dose medication cassettes.

    PubMed

    Ambrose, Peter J; Saya, Frank G; Lovett, Larry T; Tan, Sandy; Adams, Dale W; Shane, Rita

    2002-06-15

    The accuracy rates of board-registered pharmacy technicians and pharmacists in checking unit dose medication cassettes in the inpatient setting at two separate institutions were examined. Cedars-Sinai Medical Center and Long Beach Memorial Medical Center, both in Los Angeles county, petitioned the California State Board of Pharmacy to approve a waiver of the California Code of Regulations to conduct an experimental program to compare the accuracy of unit dose medication cassettes checked by pharmacists with that of cassettes checked by trained, certified pharmacy technicians. The study consisted of three parts: assessing pharmacist baseline checking accuracy (Phase I), developing a technician-training program and certifying technicians who completed the didactic and practical training (Phase II), and evaluating the accuracy of certified technicians checking unit dose medication cassettes as a daily function (Phase III). Twenty-nine pharmacists and 41 technicians (3 of whom were pharmacy interns) participated in the study. Of the technicians, all 41 successfully completed the didactic and practical training, 39 successfully completed the audits and became certified checkers, and 2 (including 1 of the interns) did not complete the certification audits because they were reassigned to another work area or had resigned. In Phase II, the observed accuracy rate and its lower confidence limit exceeded the predetermined minimum requirement of 99.8% for a certified checker. The mean accuracy rates for technicians were identical at the two institutions (p = 1.0). The difference in mean accuracy rates between pharmacists (99.52%; 95% confidence interval [CI] 99.44-99.58%) and technicians, (99.89%; 95% CI 99.87-99.90%) was significant (p < 0.0001). Inpatient technicians who had been trained and certified in a closely supervised program that incorporated quality assurance mechanisms could safely and accurately check unit dose medication cassettes filled by other technicians.

  7. Structural design, analysis, and code evaluation of an odd-shaped pressure vessel

    NASA Astrophysics Data System (ADS)

    Rezvani, M. A.; Ziada, H. H.

    1992-12-01

    An effort to design, analyze, and evaluate a rectangular pressure vessel is described. Normally pressure vessels are designed in circular or spherical shapes to prevent stress concentrations. In this case, because of operational limitations, the choice of vessels was limited to a rectangular pressure box with a removable cover plate. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code is used as a guideline for pressure containments whose width or depth exceeds 15.24 cm (6.0 in.) and where pressures will exceed 103.4 KPa (15.0 lbf/in(sup 2)). This evaluation used Section 8 of this Code, hereafter referred to as the Code. The dimensions and working pressure of the subject vessel fall within the pressure vessel category of the Code. The Code design guidelines and rules do not directly apply to this vessel. Therefore, finite-element methodology was used to analyze the pressure vessel, and the Code then was used in qualifying the vessel to be stamped to the Code. Section 8, Division 1 of the Code was used for evaluation. This action was justified by selecting a material for which fatigue damage would not be a concern. The stress analysis results were then checked against the Code, and the thicknesses adjusted to satisfy Code requirements. Although not directly applicable, the Code design formulas for rectangular vessels were also considered and presented.

  8. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1989-01-01

    Two aspects of the work for NASA are examined: the construction of multi-dimensional phase modulation trellis codes and a performance analysis of these codes. A complete list is contained of all the best trellis codes for use with phase modulation. LxMPSK signal constellations are included for M = 4, 8, and 16 and L = 1, 2, 3, and 4. Spectral efficiencies range from 1 bit/channel symbol (equivalent to rate 1/2 coded QPSK) to 3.75 bits/channel symbol (equivalent to 15/16 coded 16-PSK). The parity check polynomials, rotational invariance properties, free distance, path multiplicities, and coding gains are given for all codes. These codes are considered to be the best candidates for implementation of a high speed decoder for satellite transmission. The design of a hardware decoder for one of these codes, viz., the 16-state 3x8-PSK code with free distance 4.0 and coding gain 3.75 dB is discussed. An exhaustive simulation study of the multi-dimensional phase modulation trellis codes is contained. This study was motivated by the fact that coding gains quoted for almost all codes found in literature are in fact only asymptotic coding gains, i.e., the coding gain at very high signal to noise ratios (SNRs) or very low BER. These asymptotic coding gains can be obtained directly from a knowledge of the free distance of the code. On the other hand, real coding gains at BERs in the range of 10(exp -2) to 10(exp -6), where these codes are most likely to operate in a concatenated system, must be done by simulation.

  9. Solution of the lossy nonlinear Tricomi equation with application to sonic boom focusing

    NASA Astrophysics Data System (ADS)

    Salamone, Joseph A., III

    Sonic boom focusing theory has been augmented with new terms that account for mean flow effects in the direction of propagation and also for atmospheric absorption/dispersion due to molecular relaxation due to oxygen and nitrogen. The newly derived model equation was numerically implemented using a computer code. The computer code was numerically validated using a spectral solution for nonlinear propagation of a sinusoid through a lossy homogeneous medium. An additional numerical check was performed to verify the linear diffraction component of the code calculations. The computer code was experimentally validated using measured sonic boom focusing data from the NASA sponsored Superboom Caustic and Analysis Measurement Program (SCAMP) flight test. The computer code was in good agreement with both the numerical and experimental validation. The newly developed code was applied to examine the focusing of a NASA low-boom demonstration vehicle concept. The resulting pressure field was calculated for several supersonic climb profiles. The shaping efforts designed into the signatures were still somewhat evident despite the effects of sonic boom focusing.

  10. 49 CFR 592.6 - Duties of a registered importer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pursuant to § 592.5(a)(5)(iv), with an original hand-written signature and not with a signature that is... paragraph (d) of this section (the 30-day period will be extended if the Administrator has made written... on which Code J is checked, and the EPA has granted the ICI written permission to operate the vehicle...

  11. Artificial Intelligence in Space Platforms.

    DTIC Science & Technology

    1984-12-01

    technician would be resposible for filling the data base with DSCS particular information concerning thrusters, 90 b...fault conditions and performing predefined self -preserving (entering a safe-hold stat9) switching actions. Is capable of storing contingency or...on-board for syntactical errors (parity, sign, logic, time). Uses coding or other self -checking techniques to minimize the effects of Internally

  12. 30 CFR 1218.51 - How to make payments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., General § 1218.51 How to make payments. (a) Definitions. ACH—Automated Clearing House. A type of EFT using... (three-alpha and nine-numeric characters). Pay.gov—A type of EFT using the ACH network that is initiated...) Federal Reserve check. (5) You must include your payor code on all payments. (6) You must pay in U.S...

  13. 49 CFR 592.6 - Duties of a registered importer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... insofar as the vehicle has been imported by an Independent Commercial Importer (ICI) who holds a current certificate of conformity with the EPA, the ICI has imported the vehicle under an EPA Declaration form 3520-1 on which Code J is checked, and the EPA has granted the ICI written permission to operate the vehicle...

  14. 49 CFR 592.6 - Duties of a registered importer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... conformity, but only insofar as the vehicle has been imported by an Independent Commercial Importer (ICI) who holds a current certificate of conformity with the EPA, the ICI has imported the vehicle under an EPA Declaration form 3520-1 on which Code J is checked, and the EPA has granted the ICI written permission to...

  15. Analysis of Molecular Genetics Content in Spanish Secondary School Textbooks

    ERIC Educational Resources Information Center

    Martinez-Gracia, M. V.; Gil-Quilez, M. J.; Osada, J.

    2006-01-01

    The treatment of molecular biology in thirty-four Spanish high school biology textbooks has been analysed using a check-list made up of twenty-three items. The study showed a tendency to confuse the genetic code with genetic information. The treatment of DNA transcription, regulation of gene expression and translation were presented as masses of…

  16. Jobsite Supervisor Instructor's Manual for Electrical Apprentice Technical Training. Revised to Meet 1978 Electrical Code.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Community Colleges, Raleigh.

    One hundred and sixteen lesson plans for a first, second, third and fourth year electrical apprentice technical training program are presented in this manual. The lesson plans are generally organized into four steps: introducing the lesson, presenting the lessons (e.g., demonstration), student application (use of worksheets), and checking and…

  17. Learning to Teach Nothing in Particular: A Uniquely American Educational Dilemma

    ERIC Educational Resources Information Center

    Cohen, David K.

    2011-01-01

    When inspectors visit construction sites to assess the quality of work, they do so against the building code, which typically is written out in detail and used to guide work and teach apprentices. When attending physicians supervise interns as they take patients' histories or check their blood pressure, they compare the interns' work with…

  18. Student's Plagiarisms in Higher Learning Institutions in the Era of Improved Internet Access: Case Study of Developing Countries

    ERIC Educational Resources Information Center

    Anney, Vicent Naano; Mosha, Mary Atanas

    2015-01-01

    This study investigated students' plagiarism practices in Tanzania higher learning institutions by involving two universities-one public and one private university as a case study. The universities involved have honour code and policies for plagiarism detection however they do not employ software for checking students' plagiarism. The study…

  19. Regression Verification Using Impact Summaries

    NASA Technical Reports Server (NTRS)

    Backes, John; Person, Suzette J.; Rungta, Neha; Thachuk, Oksana

    2013-01-01

    Regression verification techniques are used to prove equivalence of syntactically similar programs. Checking equivalence of large programs, however, can be computationally expensive. Existing regression verification techniques rely on abstraction and decomposition techniques to reduce the computational effort of checking equivalence of the entire program. These techniques are sound but not complete. In this work, we propose a novel approach to improve scalability of regression verification by classifying the program behaviors generated during symbolic execution as either impacted or unimpacted. Our technique uses a combination of static analysis and symbolic execution to generate summaries of impacted program behaviors. The impact summaries are then checked for equivalence using an o-the-shelf decision procedure. We prove that our approach is both sound and complete for sequential programs, with respect to the depth bound of symbolic execution. Our evaluation on a set of sequential C artifacts shows that reducing the size of the summaries can help reduce the cost of software equivalence checking. Various reduction, abstraction, and compositional techniques have been developed to help scale software verification techniques to industrial-sized systems. Although such techniques have greatly increased the size and complexity of systems that can be checked, analysis of large software systems remains costly. Regression analysis techniques, e.g., regression testing [16], regression model checking [22], and regression verification [19], restrict the scope of the analysis by leveraging the differences between program versions. These techniques are based on the idea that if code is checked early in development, then subsequent versions can be checked against a prior (checked) version, leveraging the results of the previous analysis to reduce analysis cost of the current version. Regression verification addresses the problem of proving equivalence of closely related program versions [19]. These techniques compare two programs with a large degree of syntactic similarity to prove that portions of one program version are equivalent to the other. Regression verification can be used for guaranteeing backward compatibility, and for showing behavioral equivalence in programs with syntactic differences, e.g., when a program is refactored to improve its performance, maintainability, or readability. Existing regression verification techniques leverage similarities between program versions by using abstraction and decomposition techniques to improve scalability of the analysis [10, 12, 19]. The abstractions and decomposition in the these techniques, e.g., summaries of unchanged code [12] or semantically equivalent methods [19], compute an over-approximation of the program behaviors. The equivalence checking results of these techniques are sound but not complete-they may characterize programs as not functionally equivalent when, in fact, they are equivalent. In this work we describe a novel approach that leverages the impact of the differences between two programs for scaling regression verification. We partition program behaviors of each version into (a) behaviors impacted by the changes and (b) behaviors not impacted (unimpacted) by the changes. Only the impacted program behaviors are used during equivalence checking. We then prove that checking equivalence of the impacted program behaviors is equivalent to checking equivalence of all program behaviors for a given depth bound. In this work we use symbolic execution to generate the program behaviors and leverage control- and data-dependence information to facilitate the partitioning of program behaviors. The impacted program behaviors are termed as impact summaries. The dependence analyses that facilitate the generation of the impact summaries, we believe, could be used in conjunction with other abstraction and decomposition based approaches, [10, 12], as a complementary reduction technique. An evaluation of our regression verification technique shows that our approach is capable of leveraging similarities between program versions to reduce the size of the queries and the time required to check for logical equivalence. The main contributions of this work are: - A regression verification technique to generate impact summaries that can be checked for functional equivalence using an off-the-shelf decision procedure. - A proof that our approach is sound and complete with respect to the depth bound of symbolic execution. - An implementation of our technique using the LLVMcompiler infrastructure, the klee Symbolic Virtual Machine [4], and a variety of Satisfiability Modulo Theory (SMT) solvers, e.g., STP [7] and Z3 [6]. - An empirical evaluation on a set of C artifacts which shows that the use of impact summaries can reduce the cost of regression verification.

  20. Performance and structure of single-mode bosonic codes

    NASA Astrophysics Data System (ADS)

    Albert, Victor V.; Noh, Kyungjoo; Duivenvoorden, Kasper; Young, Dylan J.; Brierley, R. T.; Reinhold, Philip; Vuillot, Christophe; Li, Linshu; Shen, Chao; Girvin, S. M.; Terhal, Barbara M.; Jiang, Liang

    2018-03-01

    The early Gottesman, Kitaev, and Preskill (GKP) proposal for encoding a qubit in an oscillator has recently been followed by cat- and binomial-code proposals. Numerically optimized codes have also been proposed, and we introduce codes of this type here. These codes have yet to be compared using the same error model; we provide such a comparison by determining the entanglement fidelity of all codes with respect to the bosonic pure-loss channel (i.e., photon loss) after the optimal recovery operation. We then compare achievable communication rates of the combined encoding-error-recovery channel by calculating the channel's hashing bound for each code. Cat and binomial codes perform similarly, with binomial codes outperforming cat codes at small loss rates. Despite not being designed to protect against the pure-loss channel, GKP codes significantly outperform all other codes for most values of the loss rate. We show that the performance of GKP and some binomial codes increases monotonically with increasing average photon number of the codes. In order to corroborate our numerical evidence of the cat-binomial-GKP order of performance occurring at small loss rates, we analytically evaluate the quantum error-correction conditions of those codes. For GKP codes, we find an essential singularity in the entanglement fidelity in the limit of vanishing loss rate. In addition to comparing the codes, we draw parallels between binomial codes and discrete-variable systems. First, we characterize one- and two-mode binomial as well as multiqubit permutation-invariant codes in terms of spin-coherent states. Such a characterization allows us to introduce check operators and error-correction procedures for binomial codes. Second, we introduce a generalization of spin-coherent states, extending our characterization to qudit binomial codes and yielding a multiqudit code.

  1. A transactional approach to preventing early childhood neglect: The Family Check-Up as a public health strategy.

    PubMed

    Dishion, Thomas J; Mun, Chung Jung; Drake, Emily C; Tein, Jenn-Yun; Shaw, Daniel S; Wilson, Melvin

    2015-11-01

    This study examined the hypothesis that a brief, strengths-based home visiting strategy can promote positive engagement between caregiver and child and thereby reduce various forms of early childhood neglect. A total of 731 low-income families receiving services through the Women, Infants, and Children nutritional supplement program were randomized to the Women, Infants, and Children as usual or the Family Check-Up intervention. Assessments and intervention services were delivered in the home environment at ages 2, 3, 4, and 5. During the assessments, staff videotaped caregiver-child interactions and rated various features of the home environment, including the physical appropriateness of the home setting for children. Trained observers later coded the videotapes, unaware of the family's intervention condition. Specific caregiver-child interaction patterns were coded and macroratings were made of the caregiver's affection, monitoring, and involvement with the child. An intention to treat design revealed that randomization to the Family Check-Up increased duration of positive engagement between caregivers and children by age 3, which in turn was prognostic of less neglect of the child at age 4, controlling for family adversity. It was also found that family adversity moderated the impact of the intervention, such that the families with the most adverse circumstances were highly responsive to the intervention. Families with the highest levels of adversity exhibited the strongest mediation between positive engagement and reduction of neglect. Findings are discussed with respect to developmental theory and their potential implications for a public health approach to the prevention of early childhood maltreatment.

  2. Data quality in a DRG-based information system.

    PubMed

    Colin, C; Ecochard, R; Delahaye, F; Landrivon, G; Messy, P; Morgon, E; Matillon, Y

    1994-09-01

    The aim of this study initiated in May 1990 was to evaluate the quality of the medical data collected from the main hospital of the "Hospices Civils de Lyon", Edouard Herriot Hospital. We studied a random sample of 593 discharge abstracts from 12 wards of the hospital. Quality control was performed by checking multi-hospitalized patients' personal data, checking that each discharge abstract was exhaustive, examining the quality of abstracting, studying diagnoses and medical procedures coding, and checking data entry. Assessment of personal data showed a 4.4% error rate. It was mainly accounted for by spelling mistakes in surnames and first names, and mistakes in dates of birth. The quality of a discharge abstract was estimated according to the two purposes of the medical information system: description of hospital morbidity per patient and Diagnosis Related Group's case mix. Error rates in discharge abstracts were expressed in two ways: an overall rate for errors of concordance between Discharge Abstracts and Medical Records, and a specific rate for errors modifying classification in Diagnosis Related Groups (DRG). For abstracting medical information, these error rates were 11.5% (SE +/- 2.2) and 7.5% (SE +/- 1.9) respectively. For coding diagnoses and procedures, they were 11.4% (SE +/- 1.5) and 1.3% (SE +/- 0.5) respectively. For data entry on the computerized data base, the error rate was 2% (SE +/- 0.5) and 0.2% (SE +/- 0.05). Quality control must be performed regularly because it demonstrates the degree of participation from health care teams and the coherence of the database.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. The Classification and Evaluation of Computer-Aided Software Engineering Tools

    DTIC Science & Technology

    1990-09-01

    International Business Machines Corporation Customizer is a Registered Trademark of Index Technology Corporation Data Analyst is a Registered Trademark of...years, a rapid series of new approaches have been adopted including: information engineering, entity- relationship modeling, automatic code generation...support true information sharing among tools and automated consistency checking. Moreover, the repository must record and manage the relationships and

  4. Lean and Efficient Software: Whole-Program Optimization of Executables

    DTIC Science & Technology

    2015-06-30

    Approved for public release; distribution is unlimited. Financial Data Contact: Krisztina Nagy T: (607) 273-7340 x.117 F : (607) 273-8752 knagy...grammatech.com Administrative Contact: Derek Burrows T: (607) 273-7340 x.113 F : (607) 273-8752 dburrows@grammatech.com Report Documentation Page...library subroutines, removing redundant argument checking and interface layers, eliminating dead code, and improving computational efficiency. In

  5. 77 FR 21854 - Collection of Checks and Other Items by Federal Reserve Banks and Funds Transfers Through Fedwire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-12

    ... Commercial Code (UCC).\\3\\ The Board specifically requested comment on the following two items: whether use of... entirely, as the Reserve Banks could simply pay direct compensation based on the provisions of UCC section... compensation based on the provisions of UCC section 4A-506, which is already incorporated into Regulation J...

  6. Australian DefenceScience. Volume 16, Number 2, Winter

    DTIC Science & Technology

    2008-01-01

    Making Virtual Advisers speedily interactive To provide an authentically interactive experience for humans working with Virtual Advisers, the Virtual...peer trusted and strong authentication for checking of security credentials without recourse to third parties or infrastructure, thus eliminating...multiple passwords, or carry around multiple security tokens.” Each CodeStick device is readied for use with a biometric authentication process. Since

  7. Fault-Tolerant Computing: An Overview

    DTIC Science & Technology

    1991-06-01

    Addison Wesley:, Reading, MA) 1984. [8] J. Wakerly , Error Detecting Codes, Self-Checking Circuits and Applications , (Elsevier North Holland, Inc.- New York... applicable to bit-sliced organi- zations of hardware. In the first time step, the normal computation is performed on the operands and the results...for error detection and fault tolerance in parallel processor systems while perform- ing specific computation-intensive applications [111. Contrary to

  8. Validating LES for Jet Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2011-01-01

    Engineers charged with making jet aircraft quieter have long dreamed of being able to see exactly how turbulent eddies produce sound and this dream is now coming true with the advent of large eddy simulation (LES). Two obvious challenges remain: validating the LES codes at the resolution required to see the fluid-acoustic coupling, and the interpretation of the massive datasets that are produced. This paper addresses the former, the use of advanced experimental techniques such as particle image velocimetry (PIV) and Raman and Rayleigh scattering, to validate the computer codes and procedures used to create LES solutions. This paper argues that the issue of accuracy of the experimental measurements be addressed by cross-facility and cross-disciplinary examination of modern datasets along with increased reporting of internal quality checks in PIV analysis. Further, it argues that the appropriate validation metrics for aeroacoustic applications are increasingly complicated statistics that have been shown in aeroacoustic theory to be critical to flow-generated sound, such as two-point space-time velocity correlations. A brief review of data sources available is presented along with examples illustrating cross-facility and internal quality checks required of the data before it should be accepted for validation of LES.

  9. Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network.

    PubMed

    Han, Changcai; Yang, Jinsheng

    2017-10-30

    The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes.

  10. Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network

    PubMed Central

    Han, Changcai; Yang, Jinsheng

    2017-01-01

    The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes. PMID:29084155

  11. On Frequency Offset Estimation Using the iNET Preamble in Frequency Selective Fading Channels

    DTIC Science & Technology

    2014-03-01

    ASM fields; (bottom) the relationship between the indexes of the received samples r(n), the signal samples s(n), the preamble samples p (n) and the short...frequency offset estimators for SOQPSK-TG equipped with the iNET preamble and operating in ISI channels. Four of the five estimators exam - ined here are...sync marker ( ASM ), and data bits (an LDPC codeword). The availability of a preamble introduces the possibility of data-aided synchro- nization in

  12. Microbiological water methods: quality control measures for Federal Clean Water Act and Safe Drinking Water Act regulatory compliance.

    PubMed

    Root, Patsy; Hunt, Margo; Fjeld, Karla; Kundrat, Laurie

    2014-01-01

    Quality assurance (QA) and quality control (QC) data are required in order to have confidence in the results from analytical tests and the equipment used to produce those results. Some AOAC water methods include specific QA/QC procedures, frequencies, and acceptance criteria, but these are considered to be the minimum controls needed to perform a microbiological method successfully. Some regulatory programs, such as those at Code of Federal Regulations (CFR), Title 40, Part 136.7 for chemistry methods, require additional QA/QC measures beyond those listed in the method, which can also apply to microbiological methods. Essential QA/QC measures include sterility checks, reagent specificity and sensitivity checks, assessment of each analyst's capabilities, analysis of blind check samples, and evaluation of the presence of laboratory contamination and instrument calibration and checks. The details of these procedures, their performance frequency, and expected results are set out in this report as they apply to microbiological methods. The specific regulatory requirements of CFR Title 40 Part 136.7 for the Clean Water Act, the laboratory certification requirements of CFR Title 40 Part 141 for the Safe Drinking Water Act, and the International Organization for Standardization 17025 accreditation requirements under The NELAC Institute are also discussed.

  13. Computational Predictions of the Performance Wright 'Bent End' Propellers

    NASA Technical Reports Server (NTRS)

    Wang, Xiang-Yu; Ash, Robert L.; Bobbitt, Percy J.; Prior, Edwin (Technical Monitor)

    2002-01-01

    Computational analysis of two 1911 Wright brothers 'Bent End' wooden propeller reproductions have been performed and compared with experimental test results from the Langley Full Scale Wind Tunnel. The purpose of the analysis was to check the consistency of the experimental results and to validate the reliability of the tests. This report is one part of the project on the propeller performance research of the Wright 'Bent End' propellers, intend to document the Wright brothers' pioneering propeller design contributions. Two computer codes were used in the computational predictions. The FLO-MG Navier-Stokes code is a CFD (Computational Fluid Dynamics) code based on the Navier-Stokes Equations. It is mainly used to compute the lift coefficient and the drag coefficient at specified angles of attack at different radii. Those calculated data are the intermediate results of the computation and a part of the necessary input for the Propeller Design Analysis Code (based on Adkins and Libeck method), which is a propeller design code used to compute the propeller thrust coefficient, the propeller power coefficient and the propeller propulsive efficiency.

  14. A Secure and Robust Approach to Software Tamper Resistance

    NASA Astrophysics Data System (ADS)

    Ghosh, Sudeep; Hiser, Jason D.; Davidson, Jack W.

    Software tamper-resistance mechanisms have increasingly assumed significance as a technique to prevent unintended uses of software. Closely related to anti-tampering techniques are obfuscation techniques, which make code difficult to understand or analyze and therefore, challenging to modify meaningfully. This paper describes a secure and robust approach to software tamper resistance and obfuscation using process-level virtualization. The proposed techniques involve novel uses of software check summing guards and encryption to protect an application. In particular, a virtual machine (VM) is assembled with the application at software build time such that the application cannot run without the VM. The VM provides just-in-time decryption of the program and dynamism for the application's code. The application's code is used to protect the VM to ensure a level of circular protection. Finally, to prevent the attacker from obtaining an analyzable snapshot of the code, the VM periodically discards all decrypted code. We describe a prototype implementation of these techniques and evaluate the run-time performance of applications using our system. We also discuss how our system provides stronger protection against tampering attacks than previously described tamper-resistance approaches.

  15. Quality of recording of diabetes in the UK: how does the GP's method of coding clinical data affect incidence estimates? Cross-sectional study using the CPRD database

    PubMed Central

    Tate, A Rosemary; Dungey, Sheena; Glew, Simon; Beloff, Natalia; Williams, Rachael; Williams, Tim

    2017-01-01

    Objective To assess the effect of coding quality on estimates of the incidence of diabetes in the UK between 1995 and 2014. Design A cross-sectional analysis examining diabetes coding from 1995 to 2014 and how the choice of codes (diagnosis codes vs codes which suggest diagnosis) and quality of coding affect estimated incidence. Setting Routine primary care data from 684 practices contributing to the UK Clinical Practice Research Datalink (data contributed from Vision (INPS) practices). Main outcome measure Incidence rates of diabetes and how they are affected by (1) GP coding and (2) excluding ‘poor’ quality practices with at least 10% incident patients inaccurately coded between 2004 and 2014. Results Incidence rates and accuracy of coding varied widely between practices and the trends differed according to selected category of code. If diagnosis codes were used, the incidence of type 2 increased sharply until 2004 (when the UK Quality Outcomes Framework was introduced), and then flattened off, until 2009, after which they decreased. If non-diagnosis codes were included, the numbers continued to increase until 2012. Although coding quality improved over time, 15% of the 666 practices that contributed data between 2004 and 2014 were labelled ‘poor’ quality. When these practices were dropped from the analyses, the downward trend in the incidence of type 2 after 2009 became less marked and incidence rates were higher. Conclusions In contrast to some previous reports, diabetes incidence (based on diagnostic codes) appears not to have increased since 2004 in the UK. Choice of codes can make a significant difference to incidence estimates, as can quality of recording. Codes and data quality should be checked when assessing incidence rates using GP data. PMID:28122831

  16. Practical guide to bar coding for patient medication safety.

    PubMed

    Neuenschwander, Mark; Cohen, Michael R; Vaida, Allen J; Patchett, Jeffrey A; Kelly, Jamie; Trohimovich, Barbara

    2003-04-15

    Bar coding for the medication administration step of the drug-use process is discussed. FDA will propose a rule in 2003 that would require bar-code labels on all human drugs and biologicals. Even with an FDA mandate, manufacturer procrastination and possible shifts in product availability are likely to slow progress. Such delays should not preclude health systems from adopting bar-code-enabled point-of-care (BPOC) systems to achieve gains in patient safety. Bar-code technology is a replacement for traditional keyboard data entry. The elements of bar coding are content, which determines the meaning; data format, which refers to the embedded data and symbology, which describes the "font" in which the machine-readable code is written. For a BPOC system to deliver an acceptable level of patient protection, the hospital must first establish reliable processes for a patient identification band, caregiver badge, and medication bar coding. Medications can have either drug-specific or patient-specific bar codes. Both varieties result in the desired code that supports patient's five rights of drug administration. When medications are not available from the manufacturer in immediate-container bar-coded packaging, other means of applying the bar code must be devised, including the use of repackaging equipment, overwrapping, manual bar coding, and outsourcing. Virtually all medications should be bar coded, the bar code on the label should be easily readable, and appropriate policies, procedures, and checks should be in place. Bar coding has the potential to be not only cost-effective but to produce a return on investment. By bar coding patient identification tags, caregiver badges, and immediate-container medications, health systems can substantially increase patient safety during medication administration.

  17. RAY-RAMSES: a code for ray tracing on the fly in N-body simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreira, Alexandre; Llinares, Claudio; Bose, Sownak

    2016-05-01

    We present a ray tracing code to compute integrated cosmological observables on the fly in AMR N-body simulations. Unlike conventional ray tracing techniques, our code takes full advantage of the time and spatial resolution attained by the N-body simulation by computing the integrals along the line of sight on a cell-by-cell basis through the AMR simulation grid. Moroever, since it runs on the fly in the N-body run, our code can produce maps of the desired observables without storing large (or any) amounts of data for post-processing. We implemented our routines in the RAMSES N-body code and tested the implementationmore » using an example of weak lensing simulation. We analyse basic statistics of lensing convergence maps and find good agreement with semi-analytical methods. The ray tracing methodology presented here can be used in several cosmological analysis such as Sunyaev-Zel'dovich and integrated Sachs-Wolfe effect studies as well as modified gravity. Our code can also be used in cross-checks of the more conventional methods, which can be important in tests of theory systematics in preparation for upcoming large scale structure surveys.« less

  18. Proceedings of the Second NASA Formal Methods Symposium

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar (Editor)

    2010-01-01

    This publication contains the proceedings of the Second NASA Formal Methods Symposium sponsored by the National Aeronautics and Space Administration and held in Washington D.C. April 13-15, 2010. Topics covered include: Decision Engines for Software Analysis using Satisfiability Modulo Theories Solvers; Verification and Validation of Flight-Critical Systems; Formal Methods at Intel -- An Overview; Automatic Review of Abstract State Machines by Meta Property Verification; Hardware-independent Proofs of Numerical Programs; Slice-based Formal Specification Measures -- Mapping Coupling and Cohesion Measures to Formal Z; How Formal Methods Impels Discovery: A Short History of an Air Traffic Management Project; A Machine-Checked Proof of A State-Space Construction Algorithm; Automated Assume-Guarantee Reasoning for Omega-Regular Systems and Specifications; Modeling Regular Replacement for String Constraint Solving; Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol; Can Regulatory Bodies Expect Efficient Help from Formal Methods?; Synthesis of Greedy Algorithms Using Dominance Relations; A New Method for Incremental Testing of Finite State Machines; Verification of Faulty Message Passing Systems with Continuous State Space in PVS; Phase Two Feasibility Study for Software Safety Requirements Analysis Using Model Checking; A Prototype Embedding of Bluespec System Verilog in the PVS Theorem Prover; SimCheck: An Expressive Type System for Simulink; Coverage Metrics for Requirements-Based Testing: Evaluation of Effectiveness; Software Model Checking of ARINC-653 Flight Code with MCP; Evaluation of a Guideline by Formal Modelling of Cruise Control System in Event-B; Formal Verification of Large Software Systems; Symbolic Computation of Strongly Connected Components Using Saturation; Towards the Formal Verification of a Distributed Real-Time Automotive System; Slicing AADL Specifications for Model Checking; Model Checking with Edge-valued Decision Diagrams; and Data-flow based Model Analysis.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram

    The systems resilience research community has developed methods to manually insert additional source-program level assertions to trap errors, and also devised tools to conduct fault injection studies for scalar program codes. In this work, we contribute the first vector oriented LLVM-level fault injector VULFI to help study the effects of faults in vector architectures that are of growing importance, especially for vectorizing loops. Using VULFI, we conduct a resiliency study of nine real-world vector benchmarks using Intel’s AVX and SSE extensions as the target vector instruction sets, and offer the first reported understanding of how faults affect vector instruction sets.more » We take this work further toward automating the insertion of resilience assertions during compilation. This is based on our observation that during intermediate (e.g., LLVM-level) code generation to handle full and partial vectorization, modern compilers exploit (and explicate in their code-documentation) critical invariants. These invariants are turned into error-checking code. We confirm the efficacy of these automatically inserted low-overhead error detectors for vectorized for-loops.« less

  20. Constitutive relations in TRAC-P1A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohatgi, U.S.; Saha, P.

    1980-08-01

    The purpose of this document is to describe the basic thermal-hydraulic models and correlations that are in the TRAC-P1A code, as released in March 1979. It is divided into two parts, A and B. Part A describes the models in the three-dimensional vessel module of TRAC, whereas Part B focuses on the loop components that are treated by one-dimensional formulations. The report follows the format of the questions prepared by the Analysis Development Branch of USNRC and the questionnaire has been attached to this document for completeness. Concerted efforts have been made in understanding the present models in TRAC-P1A bymore » going through the FORTRAN listing of the code. Some discrepancies between the code and the TRAC-P1A manual have been found. These are pointed out in this document. Efforts have also been made to check the TRAC references for the range of applicability of the models and correlations used in the code. 26 refs., 5 figs., 1 tab.« less

  1. Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel

    NASA Technical Reports Server (NTRS)

    Downey, Joseph; Downey, James; Reinhart, Richard C.; Evans, Michael Alan; Mortensen, Dale John

    2016-01-01

    The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 248-phase shift keying (PSK) and 1632- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 bsHz) modulation combined with various LDPC encoding rates to maximize throughput. With a symbol rate of 200 Mbaud, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results, compensation techniques for filtering and equalization, and architecture considerations going forward for efficient use of NASA's infrastructure.

  2. Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel

    NASA Technical Reports Server (NTRS)

    Downey, Joseph A.; Downey, James M.; Reinhart, Richard C.; Evans, Michael A.; Mortensen, Dale J.

    2016-01-01

    The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 2/4/8-phase shift keying (PSK) and 16/32- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 b/s/Hz) modulation combined with various LDPC encoding rates to maximize through- put. With a symbol rate of 200 M-band, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results, compensation techniques for filtering and equalization, and architecture considerations going forward for efficient use of NASA's infrastructure.

  3. How to Find a Bug in Ten Thousand Lines Transport Solver? Outline of Experiences from AN Advection-Diffusion Code Verification

    NASA Astrophysics Data System (ADS)

    Zamani, K.; Bombardelli, F.

    2011-12-01

    Almost all natural phenomena on Earth are highly nonlinear. Even simplifications to the equations describing nature usually end up being nonlinear partial differential equations. Transport (ADR) equation is a pivotal equation in atmospheric sciences and water quality. This nonlinear equation needs to be solved numerically for practical purposes so academicians and engineers thoroughly rely on the assistance of numerical codes. Thus, numerical codes require verification before they are utilized for multiple applications in science and engineering. Model verification is a mathematical procedure whereby a numerical code is checked to assure the governing equation is properly solved as it is described in the design document. CFD verification is not a straightforward and well-defined course. Only a complete test suite can uncover all the limitations and bugs. Results are needed to be assessed to make a distinction between bug-induced-defect and innate limitation of a numerical scheme. As Roache (2009) said, numerical verification is a state-of-the-art procedure. Sometimes novel tricks work out. This study conveys the synopsis of the experiences we gained during a comprehensive verification process which was done for a transport solver. A test suite was designed including unit tests and algorithmic tests. Tests were layered in complexity in several dimensions from simple to complex. Acceptance criteria defined for the desirable capabilities of the transport code such as order of accuracy, mass conservation, handling stiff source term, spurious oscillation, and initial shape preservation. At the begining, mesh convergence study which is the main craft of the verification is performed. To that end, analytical solution of ADR equation gathered. Also a new solution was derived. In the more general cases, lack of analytical solution could be overcome through Richardson Extrapolation and Manufactured Solution. Then, two bugs which were concealed during the mesh convergence study uncovered with the method of false injection and visualization of the results. Symmetry had dual functionality: there was a bug, which was hidden due to the symmetric nature of a test (it was detected afterward utilizing artificial false injection), on the other hand self-symmetry was used to design a new test, and in a case the analytical solution of the ADR equation was unknown. Assisting subroutines designed to check and post-process conservation of mass and oscillatory behavior. Finally, capability of the solver also checked for stiff reaction source term. The above test suite not only was a decent tool of error detection but also it provided a thorough feedback on the ADR solvers limitations. Such information is the crux of any rigorous numerical modeling for a modeler who deals with surface/subsurface pollution transport.

  4. Software Assurance Curriculum Project Volume 1: Master of Software Assurance Reference Curriculum

    DTIC Science & Technology

    2010-08-01

    activity by providing a check on the relevance and currency of the process used to develop the MSwA2010 curriculum content. Figure 2 is an expansion of...random oracle model, symmetric crypto primitives, modes of operations, asymmetric crypto primitives (Chapter 5) [16] Detailed design...encryption, public key encryption, digital signatures, message authentication codes, crypto protocols, cryptanalysis, and further detailed crypto

  5. FORTRAN multitasking library for use on the ELXSI 6400 and the CRAY XMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montry, G.R.

    1985-07-16

    A library of FORTRAN-based multitasking routines has been written for the ELXSI 6400 and the CRAY XMP. This library is designed to make multitasking codes easily transportable between machines with different hardware configurations. The library provides enhanced error checking and diagnostics over vendor-supplied multitasking intrinsics. The library also contains multitasking control structures not normally supplied by the vendor.

  6. Methodology to Improve Aviation Security With Terrorist Using Aircraft as a Weapon

    DTIC Science & Technology

    2013-09-01

    STATEMENT Approval for public release;distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words ) The aviation industry... Electronic Baggage Screening Program EDS Explosive Detection System EMMI Energy, Matter, Material wealth, and Information ETD Explosives Trace...12 All checked baggage in the United States has been subjected to 100% screening since December 2003 under TSA’s Electronic Baggage Screening

  7. MO-G-BRE-05: Clinical Process Improvement and Billing in Radiation Oncology: A Case Study of Applying FMEA for CPT Code 77336 (continuing Medical Physics Consultation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spirydovich, S; Huq, M

    2014-06-15

    Purpose: The improvement of quality in healthcare can be assessed by Failure Mode and Effects Analysis (FMEA). In radiation oncology, FMEA, as applied to the billing CPT code 77336, can improve both charge capture and, most importantly, quality of the performed services. Methods: We created an FMEA table for the process performed under CPT code 77336. For a given process step, each member of the assembled team (physicist, dosimetrist, and therapist) independently assigned numerical values for: probability of occurrence (O, 1–10), severity (S, 1–10), and probability of detection (D, 1–10) for every failure mode cause and effect combination. The riskmore » priority number, RPN, was then calculated as a product of O, S and D from which an average RPN was calculated for each combination mentioned above. A fault tree diagram, with each process sorted into 6 categories, was created with linked RPN. For processes with high RPN recommended actions were assigned. 2 separate R and V systems (Lantis and EMR-based ARIA) were considered. Results: We identified 9 potential failure modes and corresponding 19 potential causes of these failure modes all resulting in unjustified 77336 charge and compromised quality of care. In Lantis, the range of RPN was 24.5–110.8, and of S values – 2–10. The highest ranking RPN of 110.8 came from the failure mode described as “end-of-treatment check not done before the completion of treatment”, and the highest S value of 10 (RPN=105) from “overrides not checked”. For the same failure modes, within ARIA electronic environment with its additional controls, RPN values were significantly lower (44.3 for end-of-treatment missing check and 20.0 for overrides not checked). Conclusion: Our work has shown that when charge capture was missed that also resulted in some services not being performed. Absence of such necessary services may result in sub-optimal quality of care rendered to patients.« less

  8. Runtime Detection of C-Style Errors in UPC Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirkelbauer, P; Liao, C; Panas, T

    2011-09-29

    Unified Parallel C (UPC) extends the C programming language (ISO C 99) with explicit parallel programming support for the partitioned global address space (PGAS), which provides a global memory space with localized partitions to each thread. Like its ancestor C, UPC is a low-level language that emphasizes code efficiency over safety. The absence of dynamic (and static) safety checks allows programmer oversights and software flaws that can be hard to spot. In this paper, we present an extension of a dynamic analysis tool, ROSE-Code Instrumentation and Runtime Monitor (ROSECIRM), for UPC to help programmers find C-style errors involving the globalmore » address space. Built on top of the ROSE source-to-source compiler infrastructure, the tool instruments source files with code that monitors operations and keeps track of changes to the system state. The resulting code is linked to a runtime monitor that observes the program execution and finds software defects. We describe the extensions to ROSE-CIRM that were necessary to support UPC. We discuss complications that arise from parallel code and our solutions. We test ROSE-CIRM against a runtime error detection test suite, and present performance results obtained from running error-free codes. ROSE-CIRM is released as part of the ROSE compiler under a BSD-style open source license.« less

  9. Simulations of linear and Hamming codes using SageMath

    NASA Astrophysics Data System (ADS)

    Timur, Tahta D.; Adzkiya, Dieky; Soleha

    2018-03-01

    Digital data transmission over a noisy channel could distort the message being transmitted. The goal of coding theory is to ensure data integrity, that is, to find out if and where this noise has distorted the message and what the original message was. Data transmission consists of three stages: encoding, transmission, and decoding. Linear and Hamming codes are codes that we discussed in this work, where encoding algorithms are parity check and generator matrix, and decoding algorithms are nearest neighbor and syndrome. We aim to show that we can simulate these processes using SageMath software, which has built-in class of coding theory in general and linear codes in particular. First we consider the message as a binary vector of size k. This message then will be encoded to a vector with size n using given algorithms. And then a noisy channel with particular value of error probability will be created where the transmission will took place. The last task would be decoding, which will correct and revert the received message back to the original message whenever possible, that is, if the number of error occurred is smaller or equal to the correcting radius of the code. In this paper we will use two types of data for simulations, namely vector and text data.

  10. The effect of on/off indicator design on state confusion, preference, and response time performance, executive summary

    NASA Technical Reports Server (NTRS)

    Donner, Kimberly A.; Holden, Kritina L.; Manahan, Meera K.

    1991-01-01

    Investigated are five designs of software-based ON/OFF indicators in a hypothetical Space Station Power System monitoring task. The hardware equivalent of the indicators used in the present study is the traditional indicator light that illuminates an ON label or an OFF label. Coding methods used to represent the active state were reverse video, color, frame, check, or reverse video with check. Display background color was also varied. Subjects made judgments concerning the state of indicators that resulted in very low error rates and high percentages of agreement across indicator designs. Response time measures for each of the five indicator designs did not differ significantly, although subjects reported that color was the best communicator. The impact of these results on indicator design is discussed.

  11. Analysis of an all-digital maximum likelihood carrier phase and clock timing synchronizer for eight phase-shift keying modulation

    NASA Astrophysics Data System (ADS)

    Degaudenzi, Riccardo; Vanghi, Vieri

    1994-02-01

    In all-digital Trellis-Coded 8PSK (TC-8PSK) demodulator well suited for VLSI implementation, including maximum likelihood estimation decision-directed (MLE-DD) carrier phase and clock timing recovery, is introduced and analyzed. By simply removing the trellis decoder the demodulator can efficiently cope with uncoded 8PSK signals. The proposed MLE-DD synchronization algorithm requires one sample for the phase and two samples per symbol for the timing loop. The joint phase and timing discriminator characteristics are analytically derived and numerical results checked by means of computer simulations. An approximated expression for steady-state carrier phase and clock timing mean square error has been derived and successfully checked with simulation findings. Synchronizer deviation from the Cramer Rao bound is also discussed. Mean acquisition time for the digital synchronizer has also been computed and checked, using the Monte Carlo simulation technique. Finally, TC-8PSK digital demodulator performance in terms of bit error rate and mean time to lose lock, including digital interpolators and synchronization loops, is presented.

  12. Information Theory, Inference and Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Mackay, David J. C.

    2003-10-01

    Information theory and inference, often taught separately, are here united in one entertaining textbook. These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.

  13. Inversion of Zeeman polarization for solar magnetic field diagnostics

    NASA Astrophysics Data System (ADS)

    Derouich, M.

    2017-05-01

    The topic of magnetic field diagnostics with the Zeeman effect is currently vividly discussed. There are some testable inversion codes available to the spectropolarimetry community and their application allowed for a better understanding of the magnetism of the solar atmosphere. In this context, we propose an inversion technique associated with a new numerical code. The inversion procedure is promising and particularly successful for interpreting the Stokes profiles in quick and sufficiently precise way. In our inversion, we fit a part of each Stokes profile around a target wavelength, and then determine the magnetic field as a function of the wavelength which is equivalent to get the magnetic field as a function of the height of line formation. To test the performance of the new numerical code, we employed "hare and hound" approach by comparing an exact solution (called input) with the solution obtained by the code (called output). The precision of the code is also checked by comparing our results to the ones obtained with the HAO MERLIN code. The inversion code has been applied to synthetic Stokes profiles of the Na D1 line available in the literature. We investigated the limitations in recovering the input field in case of noisy data. As an application, we applied our inversion code to the polarization profiles of the Fe Iλ 6302.5 Å observed at IRSOL in Locarno.

  14. Neutron flux measurements on a mock-up of a storage cask for high-level nuclear waste using 2.5 MeV neutrons.

    PubMed

    Suárez, H Saurí; Becker, F; Klix, A; Pang, B; Döring, T

    2018-06-07

    To store and dispose spent nuclear fuel, shielding casks are employed to reduce the emitted radiation. To evaluate the exposure of employees handling such casks, Monte Carlo radiation transport codes can be employed. Nevertheless, to assess the reliability of these codes and nuclear data, experimental checks are required. In this study, a neutron generator (NG) producing neutrons of 2.5 MeV was employed to simulate neutrons produced in spent nuclear fuel. Different configurations of shielding layers of steel and polyethylene were positioned between the target of the NG and a NE-213 detector. The results of the measurements of neutron and γ radiation and the corresponding simulations with the code MCNP6 are presented. Details of the experimental set-up as well as neutron and photon flux spectra are provided as reference points for such NG investigations with shielding structures.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, Benjamin; Koyama, Kazuya, E-mail: benjamin.bose@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk

    We develop a code to produce the power spectrum in redshift space based on standard perturbation theory (SPT) at 1-loop order. The code can be applied to a wide range of modified gravity and dark energy models using a recently proposed numerical method by A.Taruya to find the SPT kernels. This includes Horndeski's theory with a general potential, which accommodates both chameleon and Vainshtein screening mechanisms and provides a non-linear extension of the effective theory of dark energy up to the third order. Focus is on a recent non-linear model of the redshift space power spectrum which has been shownmore » to model the anisotropy very well at relevant scales for the SPT framework, as well as capturing relevant non-linear effects typical of modified gravity theories. We provide consistency checks of the code against established results and elucidate its application within the light of upcoming high precision RSD data.« less

  16. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix E: Pressure-fed booster test bed for the liquid rocket booster study

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The stress analysis/structural design of the Pressure-Fed Booster Engine Test Bed using the existing F-1 Test Facility Test Stand at Huntsville, Alabama is described. The analysis has been coded and set up for solution on NASTRAN. A separate stress program was established to take the NASTRAN output and perform stress checks on the members. Joint checks and other necessary additional checks were performed by hand. The notes include a brief description of other programs which assist in reproducing and reviewing the NASTRAN results. The redesign of the test stand members and the stress analysis was performed per the A.I.S.C. Code. Loads on the stand consist of the loaded run tanks; wind loads; seismic loads; live loads consisting of snow and ice: live and dead loads of steel; and loaded pressurant bottle. In combining loads, wind loads and seismic loads were each combined with full live loads. Wind and seismic loads were not combined. No one third increase in allowables was taken for the environmental loads except at decks 147 and 214, where the increase was used when considering the stay rods, brackets and stay beams. Wind and seismic loads were considered from each of the four coordinate directions (i.e. N,S,E,W) to give eight basic conditions. The analysis was run with the pressurant tank mounted at level 125. One seismic condition was also run with the tank mounted at levels 169 and 214. No failures were noted with mounting at level 169, but extensive deck failure with mounting at level 214 (the loadsets used are included on the tape, but no detailed results are included in the package). Decking support beams at levels 147 and 214 are not included in the model. The stress program thus does not reduce strut lengths to the length between support beams (the struts are attached to the beams at intersection points) and gives stress ratios larger than one for some of the struts. The affected members were therefore checked by hand.

  17. Local Education Agency Planning Analyst's Procedures. A Vocational Education Planning System for Local School Districts. Volume III.

    ERIC Educational Resources Information Center

    Goldman, Charles I.

    The manual is part of a series to assist in planning procedures for local and State vocational agencies. It details steps required to process a local education agency's data after the data have been coded onto keypunch forms. Program, course, and overhead data are input into a computer data base and error checks are performed. A computer model is…

  18. Efficient quantum dialogue without information leakage

    NASA Astrophysics Data System (ADS)

    Yin, Ai-Han; Tang, Zhi-Hui; Chen, Dong

    2015-02-01

    A two-step quantum dialogue scheme is put forward with a class of three-qubit W state and quantum dense coding. Each W state can carry three bits of secret information and the measurement result is encrypted without information leakage. Furthermore, we utilize the entangle properties of W state and decoy photon checking technique to realize three-time channel detection, which can improve the efficiency and security of the scheme.

  19. Missile Aerodynamics (Aerodynamique des Missiles)

    DTIC Science & Technology

    1998-11-01

    Magnus effect. effects on a spinning finned cylindrical body. Despite the large As noted above, the source, magnitude and even the direction amount of...axis, and to circular- cylindrical bodies in combination with determine directly the pressures acting on the body. triangular, rectangular, or...pressure drop in smooth cylindrical codes, as well as for testing and checking CFD-based tubes", NACA ARR L4C16, 1944. results. 6. Nielsen, J. N. and

  20. Realization of ActiveX control based on ATL in VC 2008

    NASA Astrophysics Data System (ADS)

    Li, Shuhua; Tie, Yong

    2011-10-01

    ActiveX has a key role in web development, this paper realizes the classical program Polygon in the newest Visual C++ environment 2008 and tests each function of control in ActiveX Control Test Container. After that web code is created rapidly via ActiveX Control Pad and it is checked in HTML. Development process and key point attention are summarized systematically which can guide the related developers.

  1. 26 CFR 1.6050I-2 - Returns relating to cash in excess of $10,000 received as bail by court clerks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 of the United States Code); (3) Money laundering (as defined in section 1956 or 1957 of title 18... are customarily used and accepted as money in the country in which issued; and (2) A cashier's check..., or money order having a face amount of not more than $10,000. Specified criminal offense means— (1) A...

  2. [Variations in patient data coding affect hospital standardized mortality ratio (HSMR)].

    PubMed

    van den Bosch, Wim F; Silberbusch, Joseph; Roozendaal, Klaas J; Wagner, Cordula

    2010-01-01

    To investigate the impact of coding variations on 'hospital standardized mortality ratio' (HSMR) and to define variation reduction measures. Retrospective, descriptive. We analysed coding variations in HSMR parameters for main diagnosis, urgency of the admission and comorbidity in the national medical registration (LMR) database of admissions in 6 Dutch top clinical hospitals during 2003-2007. More than a quarter of these admission records had been included in the HSMR calculation. Admissions with ICD-9 main diagnosis codes that were excluded from HSMR calculations were investigated for inter-hospital variability and correct exclusion. Variation in coding admission type was signalled by analyzing admission records with diagnoses that had an emergency nature by their title. Variation in the average number of comorbidity diagnoses per admission was determined as an indicator for coding variation. Interviews with coding teams were used to check whether the conclusions of the analysis were correct. Over 165,000 admissions that were excluded from HSMR calculations showed large variability between hospitals. This figure was 40% of all admissions that were included. Of the admissions with a main diagnosis indicating an emergency, 34% to 93% were recorded as an emergency. The average number of comorbidity diagnoses varied between hospitals from 0.9 to 3.0 per admission. Coding of main diagnoses, urgency of admission and comorbidities showed strong inter-hospital variation with a potentially large impact on the HSMR outcomes of the hospitals. Coding variations originated from differences in interpretation of coding rules, differences in coding capacity, quality of patient records and discharge documentation and timely delivery of these.

  3. Causes of Death Data in the Global Burden of Disease Estimates for Ischemic and Hemorrhagic Stroke.

    PubMed

    Truelsen, Thomas; Krarup, Lars-Henrik; Iversen, Helle K; Mensah, George A; Feigin, Valery L; Sposato, Luciano A; Naghavi, Mohsen

    2015-01-01

    Stroke mortality estimates in the Global Burden of Disease (GBD) study are based on routine mortality statistics and redistribution of ill-defined codes that cannot be a cause of death, the so-called 'garbage codes' (GCs). This study describes the contribution of these codes to stroke mortality estimates. All available mortality data were compiled and non-specific cause codes were redistributed based on literature review and statistical methods. Ill-defined codes were redistributed to their specific cause of disease by age, sex, country and year. The reassignment was done based on the International Classification of Diseases and the pathology behind each code by checking multiple causes of death and literature review. Unspecified stroke and primary and secondary hypertension are leading contributing 'GCs' to stroke mortality estimates for hemorrhagic stroke (HS) and ischemic stroke (IS). There were marked differences in the fraction of death assigned to IS and HS for unspecified stroke and hypertension between GBD regions and between age groups. A large proportion of stroke fatalities are derived from the redistribution of 'unspecified stroke' and 'hypertension' with marked regional differences. Future advancements in stroke certification, data collections and statistical analyses may improve the estimation of the global stroke burden. © 2015 S. Karger AG, Basel.

  4. Influence of the plasma environment on atomic structure using an ion-sphere model

    NASA Astrophysics Data System (ADS)

    Belkhiri, Madeny; Fontes, Christopher J.; Poirier, Michel

    2015-09-01

    Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for the six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe22 +, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the multiconfiguration Dirac-Fock value of B. Saha and S. Fritzsche [J. Phys. B 40, 259 (2007), 10.1088/0953-4075/40/2/002]. Last, the present model is compared to experimental data in titanium measured on the terawatt Astra facility and provides values for electron temperature and density in agreement with the maria code.

  5. Large deflection elastic-plastic dynamic response of stiffened shells of revolution

    NASA Technical Reports Server (NTRS)

    Stricklin, J. A.; Haisler, W. E.; Vonriesemann, W. A.; Leick, R. D.; Hunsaker, B.; Saczalski, K. J.

    1972-01-01

    The formulation and check out porblems for a computer code DYNAPLAS, which analyzes the large deflection elastic-plastic dynamic response of stiffened shells of revolution, are presented. The formulation for special discretization is by the finite element method with finite differences being used for the evaluation of the pseudo forces due to material and geometric nonlinearities. Time integration is by the Houbolt method. The stiffeners may be due to concentrated or distributed eccentric rings and spring supports at arbitrary angles around the circumference of the elements. Check out porblems include the comparison of solutions from DYNAPLAS with experimental and other computer solutions for rings, conical and cylindrical shells and a curved panel. A hypothetical submarine including stiffeners and missile tube is studied under a combination of hydrostatic and dynamically applied asymmetrical pressure loadings.

  6. Deadlock-free genetic scheduling algorithm for automated manufacturing systems based on deadlock control policy.

    PubMed

    Xing, KeYi; Han, LiBin; Zhou, MengChu; Wang, Feng

    2012-06-01

    Deadlock-free control and scheduling are vital for optimizing the performance of automated manufacturing systems (AMSs) with shared resources and route flexibility. Based on the Petri net models of AMSs, this paper embeds the optimal deadlock avoidance policy into the genetic algorithm and develops a novel deadlock-free genetic scheduling algorithm for AMSs. A possible solution of the scheduling problem is coded as a chromosome representation that is a permutation with repetition of parts. By using the one-step look-ahead method in the optimal deadlock control policy, the feasibility of a chromosome is checked, and infeasible chromosomes are amended into feasible ones, which can be easily decoded into a feasible deadlock-free schedule. The chromosome representation and polynomial complexity of checking and amending procedures together support the cooperative aspect of genetic search for scheduling problems strongly.

  7. Error coding simulations in C

    NASA Technical Reports Server (NTRS)

    Noble, Viveca K.

    1994-01-01

    When data is transmitted through a noisy channel, errors are produced within the data rendering it indecipherable. Through the use of error control coding techniques, the bit error rate can be reduced to any desired level without sacrificing the transmission data rate. The Astrionics Laboratory at Marshall Space Flight Center has decided to use a modular, end-to-end telemetry data simulator to simulate the transmission of data from flight to ground and various methods of error control. The simulator includes modules for random data generation, data compression, Consultative Committee for Space Data Systems (CCSDS) transfer frame formation, error correction/detection, error generation and error statistics. The simulator utilizes a concatenated coding scheme which includes CCSDS standard (255,223) Reed-Solomon (RS) code over GF(2(exp 8)) with interleave depth of 5 as the outermost code, (7, 1/2) convolutional code as an inner code and CCSDS recommended (n, n-16) cyclic redundancy check (CRC) code as the innermost code, where n is the number of information bits plus 16 parity bits. The received signal-to-noise for a desired bit error rate is greatly reduced through the use of forward error correction techniques. Even greater coding gain is provided through the use of a concatenated coding scheme. Interleaving/deinterleaving is necessary to randomize burst errors which may appear at the input of the RS decoder. The burst correction capability length is increased in proportion to the interleave depth. The modular nature of the simulator allows for inclusion or exclusion of modules as needed. This paper describes the development and operation of the simulator, the verification of a C-language Reed-Solomon code, and the possibility of using Comdisco SPW(tm) as a tool for determining optimal error control schemes.

  8. Quality of recording of diabetes in the UK: how does the GP's method of coding clinical data affect incidence estimates? Cross-sectional study using the CPRD database.

    PubMed

    Tate, A Rosemary; Dungey, Sheena; Glew, Simon; Beloff, Natalia; Williams, Rachael; Williams, Tim

    2017-01-25

    To assess the effect of coding quality on estimates of the incidence of diabetes in the UK between 1995 and 2014. A cross-sectional analysis examining diabetes coding from 1995 to 2014 and how the choice of codes (diagnosis codes vs codes which suggest diagnosis) and quality of coding affect estimated incidence. Routine primary care data from 684 practices contributing to the UK Clinical Practice Research Datalink (data contributed from Vision (INPS) practices). Incidence rates of diabetes and how they are affected by (1) GP coding and (2) excluding 'poor' quality practices with at least 10% incident patients inaccurately coded between 2004 and 2014. Incidence rates and accuracy of coding varied widely between practices and the trends differed according to selected category of code. If diagnosis codes were used, the incidence of type 2 increased sharply until 2004 (when the UK Quality Outcomes Framework was introduced), and then flattened off, until 2009, after which they decreased. If non-diagnosis codes were included, the numbers continued to increase until 2012. Although coding quality improved over time, 15% of the 666 practices that contributed data between 2004 and 2014 were labelled 'poor' quality. When these practices were dropped from the analyses, the downward trend in the incidence of type 2 after 2009 became less marked and incidence rates were higher. In contrast to some previous reports, diabetes incidence (based on diagnostic codes) appears not to have increased since 2004 in the UK. Choice of codes can make a significant difference to incidence estimates, as can quality of recording. Codes and data quality should be checked when assessing incidence rates using GP data. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Simulations of inspiraling and merging double neutron stars using the Spectral Einstein Code

    NASA Astrophysics Data System (ADS)

    Haas, Roland; Ott, Christian D.; Szilagyi, Bela; Kaplan, Jeffrey D.; Lippuner, Jonas; Scheel, Mark A.; Barkett, Kevin; Muhlberger, Curran D.; Dietrich, Tim; Duez, Matthew D.; Foucart, Francois; Pfeiffer, Harald P.; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-06-01

    We present results on the inspiral, merger, and postmerger evolution of a neutron star-neutron star (NSNS) system. Our results are obtained using the hybrid pseudospectral-finite volume Spectral Einstein Code (SpEC). To test our numerical methods, we evolve an equal-mass system for ≈22 orbits before merger. This waveform is the longest waveform obtained from fully general-relativistic simulations for NSNSs to date. Such long (and accurate) numerical waveforms are required to further improve semianalytical models used in gravitational wave data analysis, for example, the effective one body models. We discuss in detail the improvements to SpEC's ability to simulate NSNS mergers, in particular mesh refined grids to better resolve the merger and postmerger phases. We provide a set of consistency checks and compare our results to NSNS merger simulations with the independent bam code. We find agreement between them, which increases confidence in results obtained with either code. This work paves the way for future studies using long waveforms and more complex microphysical descriptions of neutron star matter in SpEC.

  10. Performance comparison of AV1, HEVC, and JVET video codecs on 360 (spherical) video

    NASA Astrophysics Data System (ADS)

    Topiwala, Pankaj; Dai, Wei; Krishnan, Madhu; Abbas, Adeel; Doshi, Sandeep; Newman, David

    2017-09-01

    This paper compares the coding efficiency performance on 360 videos, of three software codecs: (a) AV1 video codec from the Alliance for Open Media (AOM); (b) the HEVC Reference Software HM; and (c) the JVET JEM Reference SW. Note that 360 video is especially challenging content, in that one codes full res globally, but typically looks locally (in a viewport), which magnifies errors. These are tested in two different projection formats ERP and RSP, to check consistency. Performance is tabulated for 1-pass encoding on two fronts: (1) objective performance based on end-to-end (E2E) metrics such as SPSNR-NN, and WS-PSNR, currently developed in the JVET committee; and (2) informal subjective assessment of static viewports. Constant quality encoding is performed with all the three codecs for an unbiased comparison of the core coding tools. Our general conclusion is that under constant quality coding, AV1 underperforms HEVC, which underperforms JVET. We also test with rate control, where AV1 currently underperforms the open source X265 HEVC codec. Objective and visual evidence is provided.

  11. Status of the Space Radiation Monte Carlos Simulation Based on FLUKA and ROOT

    NASA Technical Reports Server (NTRS)

    Andersen, Victor; Carminati, Federico; Empl, Anton; Ferrari, Alfredo; Pinsky, Lawrence; Sala, Paola; Wilson, Thomas L.

    2002-01-01

    The NASA-funded project reported on at the first IWSSRR in Arona to develop a Monte-Carlo simulation program for use in simulating the space radiation environment based on the FLUKA and ROOT codes is well into its second year of development, and considerable progress has been made. The general tasks required to achieve the final goals include the addition of heavy-ion interactions into the FLUKA code and the provision of a ROOT-based interface to FLUKA. The most significant progress to date includes the incorporation of the DPMJET event generator code within FLUKA to handle heavy-ion interactions for incident projectile energies greater than 3GeV/A. The ongoing effort intends to extend the treatment of these interactions down to 10 MeV, and at present two alternative approaches are being explored. The ROOT interface is being pursued in conjunction with the CERN LHC ALICE software team through an adaptation of their existing AliROOT software. As a check on the validity of the code, a simulation of the recent data taken by the ATIC experiment is underway.

  12. PDB file parser and structure class implemented in Python.

    PubMed

    Hamelryck, Thomas; Manderick, Bernard

    2003-11-22

    The biopython project provides a set of bioinformatics tools implemented in Python. Recently, biopython was extended with a set of modules that deal with macromolecular structure. Biopython now contains a parser for PDB files that makes the atomic information available in an easy-to-use but powerful data structure. The parser and data structure deal with features that are often left out or handled inadequately by other packages, e.g. atom and residue disorder (if point mutants are present in the crystal), anisotropic B factors, multiple models and insertion codes. In addition, the parser performs some sanity checking to detect obvious errors. The Biopython distribution (including source code and documentation) is freely available (under the Biopython license) from http://www.biopython.org

  13. Simulation of cryogenic turbopump annular seals

    NASA Astrophysics Data System (ADS)

    Palazzolo, Alan B.

    1992-12-01

    The goal of the current work is to develop software that can accurately predict the dynamic coefficients, forces, leakage and horsepower loss for annular seals which have a potential for affecting the rotordynamic behavior of the pumps. The fruit of last year's research was the computer code SEALPAL which included capabilities for linear tapered geometry, Moody friction factor and inlet pre-swirl. This code produced results which in most cases compared very well with check cases presented in the literature. TAMUSEAL Icode, which was written to improve SEALPAL by correcting a bug and by adding more accurate integration algorithms and additional capabilities, was then used to predict dynamic coefficients and leakage for the NASA/Pratt and Whitney Alternate Turbopump Development (ATD) LOX Pump's seal.

  14. ROSSTEP v1.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allevato, Adam

    2016-07-21

    ROSSTEP is a system for sequentially running roslaunch, rosnode, and bash scripts automatically, for use in Robot Operating System (ROS) applications. The system consists of YAML files which define actions and conditions. A python file parses the code and runs actions sequentially using the sys and subprocess python modules. Between actions, it uses various ROS-based code to check conditions required to proceed, and only moves on to the next action when all the necessary conditions have been met. Included is rosstep-creator, a QT application designed to create the YAML files required for ROSSTEP. It has a nearly one-to-one mapping frommore » interface elements to YAML output, and serves as a convenient GUI for working with the ROSSTEP system.« less

  15. Progress Toward a Multidimensional Representation of the 5.56-mm Interior Ballistics

    DTIC Science & Technology

    2009-08-01

    were performed as a check of all the major species formed at one atmosphere pressure. Cheetah (17) thermodynamics calculations were performed under...in impermeable boundaries that only yield to gas-dynamic flow after a prescribed pressure load is reached act as rigid bodies within the chamber... Cheetah Code, version 4.0; Lawrence Livermore National Laboratory: Livermore, CA, 2005. 18. Williams, A. W.; Brant, A. L.; Kaste, P. J.; Colburn, J. W

  16. Microcomputer Applications in Power and Propulsion Systems.

    DTIC Science & Technology

    1981-03-01

    WAKERLY John "Error detecting codes self-checking circuits and applications ". The computer science library - NORTH HOLLAND NY A1 9-t FULL AUTHORITY DIGITAL...7 AD-A09 267 ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT-ETC F/6 9/2 MAR 81ICROCONPUTER APPLICATIONS IN POWER AND PROPULSION SYSTEMS.(U...SERIES No. 113 Microcomputer Applications in Power and Propulsion Systems This document has been approved for public releasea and sale, ift

  17. Airport Landside. Volume V. Appendix B. ALSIM Subroutines.

    DTIC Science & Technology

    1982-06-01

    CHKQS for the same reason as above. N is next set to 2 which is the process code for express check-in. ITEMPI is then set to CHEK2 . This variable is...RCARO.BAGCO.OPLCO, CHEK2 ,CHEK3,CGTRO.ERROR.SECUO.TRX99 00C23C00 IN7EGFR𔃾 CTQL0.CTRLI 00024000 INTEC.EA.4 DPDPS.DPQCS.EPDPS,EPOCS C00250OO INTEGER-2 IDI’AI

  18. Cardiovascular risk factor assessment after pre-eclampsia in primary care

    PubMed Central

    2009-01-01

    Background Pre-eclampsia is associated with an increased risk of development of cardiovascular disease later in life. It is not known how general practitioners in the Netherlands care for these women after delivery with respect to cardiovascular risk factor management. Methods Review of medical records of 1196 women in four primary health care centres, who were registered from January 2000 until July 2007 with an International Classification of Primary Care (ICPC) code indicating pregnancy. Records were searched for indicators of pre-eclampsia. Of those who experienced pre-eclampsia and of a random sample of 150 women who did not, the following information on cardiovascular risk factor management after pregnancy was extracted from the records: frequency and timing of blood pressure, cholesterol and glucose measurements - and vascular diagnoses. Additionally the sensitivity and specificity of ICPC coding for pre-eclampsia were determined. Results 35 women experienced pre-eclampsia. Blood pressure was more often checked after pregnancy in these women than in controls (57.1% vs. 12.0%, p < 0.001). In 50% of the cases blood pressure was measured within 3 months after delivery with no further follow-up visit. A check for glucose and cholesterol levels was rare, and equally frequent in PE and control women. 20% of the previously normotensive women in the PE group had hypertension at one or more occasions after three months post partum versus none in the control group. The ICPC coding for pre-eclampsia showed a sensitivity of 51.4% and a specificity of 100.0%. Conclusion Despite the evidence of increased risk of future cardiovascular disease in women with a history of pre-eclampsia, follow-up of these women is insufficient and undeveloped in primary care in the Netherlands. PMID:19995418

  19. Translating the evidence for emergency equipment and supplies into practice among healthcare providers in a tertiary mental health institution: a best practice implementation project.

    PubMed

    Lu, Qiufen; Ng, Hui Chin; Xie, Huiting

    2015-05-15

    In the mental health care setting, patients are more vulnerable to choking and the risk of cardiac and respiratory problems due to behavioral problems and use of rapid tranquilization. Poorly maintained, incomplete or damaged equipment in emergency trolleys have previously been documented in various articles as a major contributing factor to deaths and delayed response to resuscitation attempts. This project aimed to examine the current practices for managing emergency equipment. An evidence implementation project was undertaken by utilizing the Joanna Briggs Institute's Practical Application of Clinical Evidence System and Getting Research Into Practice programs. Pre- and post-implementation audits were conducted in a mental health institution over 25 months. Strategies were implemented between audits to enhance adoption of the best available evidence regarding the checking and maintenance of emergency equipment. The baseline audit data showed that adherence was lowest in ensuring the functional status of emergency equipment (53%), followed by conducting regular checks for functional status, using inventory, and documenting these checks (60%). In line with the Getting Research Into Practice module, barriers such as the lack of knowledge and skills regarding emergency equipment were addressed with town hall meetings, code blue drills and education sessions. Follow-up audit results showed improvement in all areas. The greatest improvement was in documentation of emergency equipment checks, which improved by 18%, from 80% to 98%. Audits enabled the timely identification of potential lapses in the management of emergency equipment so that the barriers could be addressed, and strategies in line with the best available evidence regarding the checking and maintenance of emergency equipment were adopted. The Joanna Briggs Institute.

  20. Aggression, Violence and Injury in Minor League Ice Hockey: Avenues for Prevention of Injury.

    PubMed

    Cusimano, Michael D; Ilie, Gabriela; Mullen, Sarah J; Pauley, Christopher R; Stulberg, Jennifer R; Topolovec-Vranic, Jane; Zhang, Stanley

    2016-01-01

    In North America, more than 800,000 youth are registered in organized ice hockey leagues. Despite the many benefits of involvement, young players are at significant risk for injury. Body-checking and aggressive play are associated with high frequency of game-related injury including concussion. We conducted a qualitative study to understand why youth ice hockey players engage in aggressive, injury-prone behaviours on the ice. Semi-structured interviews were conducted with 61 minor ice hockey participants, including male and female players, parents, coaches, trainers, managers and a game official. Players were aged 13-15 playing on competitive body checking teams or on non-body checking teams. Interviews were manually transcribed, coded and analyzed for themes relating to aggressive play in minor ice hockey. Parents, coaches, teammates and the media exert a large influence on player behavior. Aggressive behavior is often reinforced by the player's social environment and justified by players to demonstrate loyalty to teammates and especially injured teammates by seeking revenge particularly in competitive, body-checking leagues. Among female and male players in non-body checking organizations, aggressive play is not reinforced by the social environment. These findings are discussed within the framework of social identity theory and social learning theory, in order to understand players' need to seek revenge and how the social environment reinforces aggressive behaviors. This study provides a better understanding of the players' motivations and environmental influences around aggressive and violent play which may be conducive to injury. The findings can be used to help design interventions aimed at reducing aggression and related injuries sustained during ice hockey and sports with similar cultures and rules.

Top