Sample records for check valve development

  1. Simple Check Valves for Microfluidic Devices

    NASA Technical Reports Server (NTRS)

    Willis, Peter A.; Greer, Harold F.; Smith, J. Anthony

    2010-01-01

    A simple design concept for check valves has been adopted for microfluidic devices that consist mostly of (1) deformable fluorocarbon polymer membranes sandwiched between (2) borosilicate float glass wafers into which channels, valve seats, and holes have been etched. The first microfluidic devices in which these check valves are intended to be used are micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. In this application, it will be necessary to store some liquid samples in reservoirs in the devices for subsequent laboratory analysis, and check valves are needed to prevent cross-contamination of the samples. The simple check-valve design concept is also applicable to other microfluidic devices and to fluidic devices in general. These check valves are simplified microscopic versions of conventional rubber- flap check valves that are parts of numerous industrial and consumer products. These check valves are fabricated, not as separate components, but as integral parts of microfluidic devices. A check valve according to this concept consists of suitably shaped portions of a deformable membrane and the two glass wafers between which the membrane is sandwiched (see figure). The valve flap is formed by making an approximately semicircular cut in the membrane. The flap is centered over a hole in the lower glass wafer, through which hole the liquid in question is intended to flow upward into a wider hole, channel, or reservoir in the upper glass wafer. The radius of the cut exceeds the radius of the hole by an amount large enough to prevent settling of the flap into the hole. As in a conventional rubber-flap check valve, back pressure in the liquid pushes the flap against the valve seat (in this case, the valve seat is the adjacent surface of the lower glass wafer), thereby forming a seal that prevents backflow.

  2. Development and testing of a passive check valve for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Moore, B. D.; Maddocks, J. R.; Miller, F. K.

    2014-11-01

    Several cryogenic technologies use check valves, such as the Cold Cycle Dilution Refrigerator (CCDR) and the Hybrid Pulse-Tube/Reverse-Brayton Cryocooler. This paper details the development of a reed-style passive check valve with a PTFE seat for cryogenic applications. The experimental results of tests on the valve using helium gas at temperatures from 293 K down to 5.2 K, verify a scaling argument based on fundamental fluid dynamics that allows results from 78 K to be used in predicting valve performance at much lower temperatures. The scaling argument is then applied to a test conducted at the normal boiling point of Nitrogen to examine the results of improved fabrication methods.

  3. Fluid check valve has fail-safe feature

    NASA Technical Reports Server (NTRS)

    Gaul, L. C.

    1965-01-01

    Check valve ensures unidirectional fluid flow and, in case of failure, vents the downstream fluid to the atmosphere and gives a positive indication of malfunction. This dual valve consists of a master check valve and a fail-safe valve.

  4. Check valve

    DOEpatents

    Upton, Hubert Allen; Garcia, Pablo

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion.

  5. Check valve

    DOEpatents

    Upton, H.A.; Garcia, P.

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs.

  6. Inkjet 3D printed check microvalve

    NASA Astrophysics Data System (ADS)

    Walczak, Rafał; Adamski, Krzysztof; Lizanets, Danylo

    2017-04-01

    3D printing enables fast and relatively easy fabrication of various microfluidic structures including microvalves. A check microvalve is the simplest valve enabling control of the fluid flow in microchannels. Proper operation of the check valve is ensured by a movable element that tightens the valve seat during backward flow and enables free flow for forward pressure. Thus, knowledge of the mechanical properties of the movable element is crucial for optimal design and operation of the valve. In this paper, we present for the first time the results of investigations on basic mechanical properties of the building material used in multijet 3D printing. Specified mechanical properties were used in the design and fabrication of two types of check microvalve—with deflecting or hinge-fixed microflap—with 200 µm and 300 µm thickness. Results of numerical simulation and experimental data of the microflap deflection were obtained and compared. The valves were successfully 3D printed and characterised. Opening/closing characteristics of the microvalve for forward and backward pressures were determined. Thus, proper operation of the check microvalve so developed was confirmed.

  7. Development and Characterization a Single-Active-Chamber Piezoelectric Membrane Pump with Multiple Passive Check Valves.

    PubMed

    Zhang, Ronghui; You, Feng; Lv, Zhihan; He, Zhaocheng; Wang, Haiwei; Huang, Ling

    2016-12-12

    In order to prevent the backward flow of piezoelectric pumps, this paper presents a single-active-chamber piezoelectric membrane pump with multiple passive check valves. Under the condition of a fixed total number of passive check valves, by means of changing the inlet valves and outlet valves' configuration, the pumping characteristics in terms of flow rate and backpressure are experimentally investigated. Like the maximum flow rate and backpressure, the testing results show that the optimal frequencies are significantly affected by changes in the number inlet valves and outlet valves. The variation ratios of the maximum flow rate and the maximum backpressure are up to 66% and less than 20%, respectively. Furthermore, the piezoelectric pump generally demonstrates very similar flow rate and backpressure characteristics when the number of inlet valves in one kind of configuration is the same as that of outlet valves in another configuration. The comparison indicates that the backflow from the pumping chamber to inlet is basically the same as the backflow from the outlet to the pumping chamber. No matter whether the number of inlet valves or the number of outlet valves is increased, the backflow can be effectively reduced. In addition, the backpressure fluctuation can be significantly suppressed with an increase of either inlet valves or outlet valves. It also means that the pump can prevent the backflow more effectively at the cost of power consumption. The pump is very suitable for conditions where more accurate flow rates are needed and wear and fatigue of check valves often occur.

  8. Development of a novel passive top-down uniflow scavenged two-stroke GDI engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciccarelli, G.; Reynolds, Steve; Oliver, Phillip

    2010-02-15

    The design and performance characteristics of a novel top-down uniflow scavenged gasoline direct-injection two-stroke engine are presented. The novelty of the engine lies in the cylinder head that contains multiple check valves that control scavenging airflow into the cylinder from a supercharged air plenum. When the cylinder pressure drops below the intake plenum pressure during the expansion stroke, air flows into the cylinder through the check valves. During compression the cylinder pressure increases to a level above the intake plenum pressure and the check valves close preventing back-flow into the intake plenum. The engine head design provides asymmetrical intake valvemore » timing without the use of poppet valves and the associated valve-train. In combination with an external Roots-type supercharger that supplies the plenum and exhaust ports at the bottom of the cylinder wall, the novel head provides top-down uniflow air scavenging. Motoring tests indicated that the check valves seal and the peak pressure is governed by the compression ratio. The only drawback observed is that valve closing is delayed as the engine speed increases. In order to investigate the valve dynamics, additional tests were performed in an optically-accessible cold flow test rig that enabled the direct measurement of valve opening and closing time under various conditions. (author)« less

  9. 75 FR 28480 - Airworthiness Directives; Airbus Model A300 Series Airplanes; Model A300 B4-600, B4-600R, F4-600R...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... pressurise the hydraulic reservoirs, due to leakage of the Crissair reservoir air pressurisation check valves. * * * The leakage of the check valves was caused by an incorrect spring material. The affected Crissair check valves * * * were then replaced with improved check valves P/N [part number] 2S2794-1 * * *. More...

  10. Liquid rocket pressure regulators, relief valves, check valves, burst disks, and explosive valves. [design techniques and practices

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The development of and operational programs for effective use in design are presented for liquid rocket pressure regulators, relief valves, check valves, burst disks, and explosive valves. A review of the total design problem is presented, and design elements are identified which are involved in successful design. Current technology pertaining to these elements is also described. Design criteria are presented which state what rule or standard must be imposed on each essential design element to assure successful design. These criteria serve as a checklist of rules for a project manager to use in guiding a design or in assessing its adequacy. Recommended practices are included which state how to satisfy each of the criteria.

  11. Water system microbial check valve development

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Greenley, D. R.; Putnam, D. F.

    1978-01-01

    A residual iodine microbial check valve (RIMCV) assembly was developed and tested. The assembly is designed to be used in the space shuttle potable water system. The RIMCV is based on an anion exchange resin that is supersaturated with an iodine solution. This system causes a residual to be present in the effluent water which provides continuing bactericidal action. A flight prototype design was finalized and five units were manufactured and delivered.

  12. Microspheres as resistive elements in a check valve for low pressure and low flow rate conditions.

    PubMed

    Ou, Kevin; Jackson, John; Burt, Helen; Chiao, Mu

    2012-11-07

    In this paper we describe a microsphere-based check valve integrated with a micropump. The check valve uses Ø20 μm polystyrene microspheres to rectify flow in low pressure and low flow rate applications (Re < 1). The microspheres form a porous medium in the check valve increasing fluidic resistance based on the direction of flow. Three check valve designs were fabricated and characterized to study the microspheres' effectiveness as resistive elements. A maximum diodicity (ratio of flow in the forward and reverse direction) of 18 was achieved. The pumping system can deliver a minimum flow volume of 0.25 μL and a maximum flow volume of 1.26 μL under an applied pressure of 0.2 kPa and 1 kPa, respectively. A proof-of-concept study was conducted using a pharmaceutical agent, docetaxel (DTX), as a sample drug showing the microsphere check valve's ability to limit diffusion from the micropump. The proposed check valve and pumping concept shows strong potential for implantable drug delivery applications with low flow rate requirements.

  13. Check valve installation in pilot operated relief valve prevents reverse pressurization

    NASA Technical Reports Server (NTRS)

    Oswalt, L.

    1966-01-01

    Two check valves prevent reverse flow through pilot-operated relief valves of differential area piston design. Title valves control pressure flow to ensure that the piston dome pressure is always at least as great as the main relief valve discharge pressure.

  14. Fabrication of micro metallic valve and pump

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Kabasawa, Yasunari; Ito, Kuniyoshi

    2010-03-01

    Fabrication of micro devices by using micro metal forming was proposed by the authors. We developed a desktop servo-press machine with precise tooling system. Precise press forming processes including micro forging and micro joining has been carried out in a progressive die. In this study, micro metallic valve and pump were fabricated by using the precise press forming. The components are made of sheet metals, and assembled in to a unit in the progressive die. A micro check-valve with a diameter of 3mm and a length of 3.2mm was fabricated, and the property of flow resistance was evaluated. The results show that the check valve has high property of leakage proof. Since the valve is a unit parts with dimensions of several millimeters, it has advantage to be adapted to various pump design. Here, two kinds of micro pumps with the check-valves were fabricated. One is diaphragm pump actuated by vibration of the diaphragm, and another is tube-shaped pump actuated by resonation. The flow quantities of the pumps were evaluated and the results show that both of the pumps have high pumping performance.

  15. 76 FR 6786 - Notice of a Regional Project Waiver of Section 1605 (Buy American) of the American Recovery and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... manufactured wafer swing check valves. The wafer swing check valves will be used for the filter feed pumps as... check valves will prevent backflow into the filter feed pumps at the Glen Water Reclamation Facility in...

  16. Vertical pump with free floating check valve

    DOEpatents

    Lindsay, Malcolm

    1980-01-01

    A vertical pump with a bottom discharge having a free floating check valve isposed in the outlet plenum thereof. The free floating check valve comprises a spherical member with a hemispherical cage-like member attached thereto which is capable of allowing forward or reverse flow under appropriate conditions while preventing reverse flow under inappropriate conditions.

  17. Magnetically operated check valve

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor); Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  18. Magnetically operated check valve

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-06-01

    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  19. 75 FR 42585 - Airworthiness Directives; Empresa Brasileira de Aeronautica S.A. (EMBRAER) Model ERJ 170 and ERJ...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... (Low Stage Bleed Check Valve) specified in Section 1 of the EMBRAER 170 Maintenance Review Board Report...-11-02-002 (Low Stage Bleed Check Valve), specified in Section 1 of the EMBRAER 170 Maintenance Review... Task 36-11-02-002 (Low Stage Bleed Check Valve) specified in Section 1 of the EMBRAER 170 Maintenance...

  20. 75 FR 9816 - Airworthiness Directives; Empresa Brasileira de Aeronautica S.A. (EMBRAER) Model ERJ 170 and ERJ...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... maintenance plan to include repetitive functional tests of the low-stage check valve. For certain other... program to include maintenance Task Number 36-11-02- 002 (Low Stage Bleed Check Valve), specified in... Check Valve) in Section 1 of the EMBRAER 170 Maintenance Review Board Report MRB-1621. Issued in Renton...

  1. Magnetically operated check valve

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1993-03-01

    A magnetically operated check valve is disclosed having, in one aspect, a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  2. Space shuttle prototype check valve development

    NASA Technical Reports Server (NTRS)

    Tellier, G. F.

    1976-01-01

    Contaminant-resistant seal designs and a dynamically stable prototype check valve for the orbital maneuvering and reaction control helium pressurization systems of the space shuttle were developed. Polymer and carbide seal models were designed and tested. Perfluoroelastomers compatible with N2O4 and N2H4 types were evaluated and compared with Teflon in flat and captive seal models. Low load sealing and contamination resistance tests demonstrated cutter seal superiority over polymer seals. Ceramic and carbide materials were evaluated for N2O4 service using exposure to RFNA as a worst case screen; chemically vapor deposited tungsten carbide was shown to be impervious to the acid after 6 months immersion. A unique carbide shell poppet/cutter seat check valve was designed and tested to demonstrate low cracking pressure ( 2.0 psid), dynamic stability under all test bench flow conditions, contamination resistance (0.001 inch CRES wires cut with 1.5 pound seat load) and long life of 100,000 cycles (leakage 1.0 scc/hr helium from 0.1 to 400 psig).

  3. Fluid relief and check valve

    DOEpatents

    Blaedel, K.L.; Lord, S.C.; Murray, I.

    1986-07-17

    A passive fluid pressure relief and check valve allows the relief pressure to be slaved to a reference pressure independently of the exhaust pressure. The pressure relief valve is embodied by a submerged vent line in a sealing fluid, the relief pressure being a function of the submerged depth. A check valve is embodied by a vertical column of fluid (the maximum back pressure being a function of the height of the column of fluid). The pressure is vented into an exhaust system which keeps the exhaust out of the area providing the reference pressure.

  4. Development of a 30mm Frangible Projectile Crimper

    DTIC Science & Technology

    1977-02-01

    located at end of tank. Open drain valve to drain condensation Tht outomatic lank drain equipped compressor makes this unnecessary. PRESSURE SWITCH : The... pressure switch is automatic and will start compressor at the low pressure and stop when the maximum pressure is leached. It is adjusted to start...of the check valve, located between the compressor and the tank, together with the relief valve on pressure switch relief valve units, and the cen

  5. Refuge alternatives relief valve testing and design

    PubMed Central

    Lutz, T.J.; Bissert, P.T.; Homce, G.T.; Yonkey, J.A.

    2016-01-01

    The U.S. National Institute for Occupational Safety and Health (NIOSH) has been researching refuge alternatives (RAs) since 2007. RAs typically have built-in pressure relief valves (PRVs) to prevent the unit from reaching unsafe pressures. The U.S. Mine Safety and Health Administration requires that these valves vent the chamber at a maximum pressure of 1.25 kPa (0.18 psi, 5.0 in. H2O), or as specified by the manufacturer, above mine atmospheric pressure in the RA. To facilitate PRV testing, an instrumented benchtop test fixture was developed using an off-the-shelf centrifugal blower and ductwork. Relief pressures and flow characteristics were measured for three units: (1) a modified polyvinyl chloride check valve, (2) an off-the-shelf brass/cast-iron butterfly check valve and (3) a commercially available valve that was designed specifically for one manufacturer’s steel prefabricated RAs and had been adapted for use in one mine operator’s built-in-place RA. PRVs used in tent-style RAs were not investigated. The units were tested with different modifications and configurations in order to check compliance with Title 30 Code of Federal Regulations, or 30 CFR, regulations. The commercially available relief valve did not meet the 30 CFR relief pressure specification but may meet the manufacturer’s specification. Alternative valve designs were modified to meet the 30 CFR relief pressure specification, but all valve designs will need further design research to examine survivability in the event of a 103 kPa (15.0 psi) impulse overpressure during a disaster. PMID:28018003

  6. Fires in P-3 Aircraft Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel

    2006-01-01

    Fires in three P3 aircraft oxygen systems have occurred: one in the Royal Australian Air Force (RAAF) in 1984 and two in the U.S. Navy in 1998 and 2003. All three fires started in the aluminum manifold and check valve (MCV) assembly and produced similar damages to the aircraft in which they occurred. This paper discusses a failure analysis conducted by the NASA Johnson Space Center White Sands Test Facility (WSTF) Oxygen Hazards and Testing Team on the 2003 U.S. Navy VP62 fire. It was surmised that the fire started due to heat generated by an oxygen leak past a silicone check valve seal or possibly because of particle impact near the seat of one of the MCV assembly check valves. An additional analysis of fires in several check valve poppet seals from other aircraft is discussed. These burned poppet seals came from P3 oxygen systems that had been serviced at the Naval Air Station (NAS) in Jacksonville following standard fill procedures. It was concluded that these seal fires occurred due to the heat from compression heating, particle impact, or the heat generated by an oxygen leak past the silicone check valve seal. The fact that catastrophic fires did not occur in the case of each check valve seal fire was attributed to the protective nature of the aluminum oxide layer on the check valve poppets. To prevent future fires of this nature, the U.S. and Canadian fleets of P3 aircraft have been retrofitted with MCV assemblies with an upgraded design and more burn-resistant materials.

  7. Experimental investigation of a new method for advanced fast reactor shutdown cooling

    NASA Astrophysics Data System (ADS)

    Pakholkov, V. V.; Kandaurov, A. A.; Potseluev, A. I.; Rogozhkin, S. A.; Sergeev, D. A.; Troitskaya, Yu. I.; Shepelev, S. F.

    2017-07-01

    We consider a new method for fast reactor shutdown cooling using a decay heat removal system (DHRS) with a check valve. In this method, a coolant from the decay heat exchanger (DHX) immersed into the reactor upper plenum is supplied to the high-pressure plenum and, then, inside the fuel subassemblies (SAs). A check valve installed at the DHX outlet opens by the force of gravity after primary pumps (PP-1) are shut down. Experimental studies of the new and alternative methods of shutdown cooling were performed at the TISEY test facility at OKBM. The velocity fields in the upper plenum of the reactor model were obtained using the optical particle image velocimetry developed at the Institute of Applied Physics (Russian Academy of Sciences). The study considers the process of development of natural circulation in the reactor and the DHRS models and the corresponding evolution of the temperature and velocity fields. A considerable influence of the valve position in the displacer of the primary pump on the natural circulation of water in the reactor through the DHX was discovered (in some modes, circulation reversal through the DHX was obtained). Alternative DHRS designs without a shell at the DHX outlet with open and closed check valve are also studied. For an open check valve, in spite of the absence of a shell, part of the flow is supplied through the DHX pipeline and then inside the SA simulators. When simulating power modes of the reactor operation, temperature stratification of the liquid was observed, which increased in the cooling mode via the DHRS. These data qualitatively agree with the results of tests at BN-600 and BN-800 reactors.

  8. Pump, and earth-testable spacecraft capillary heat transport loop using augmentation pump and check valves

    NASA Technical Reports Server (NTRS)

    Baker, David (Inventor)

    1998-01-01

    A spacecraft includes heat-generating payload equipment, and a heat transport system with a cold plate thermally coupled to the equipment and a capillary-wick evaporator, for evaporating coolant liquid to cool the equipment. The coolant vapor is coupled to a condenser and in a loop back to the evaporator. A heated coolant reservoir is coupled to the loop for pressure control. If the wick is not wetted, heat transfer will not begin or continue. A pair of check valves are coupled in the loop, and the heater is cycled for augmentation pumping of coolant to and from the reservoir. This augmentation pumping, in conjunction with the check valves, wets the wick. The wick liquid storage capacity allows the augmentation pump to provide continuous pulsed liquid flow to assure continuous vapor transport and a continuously operating heat transport system. The check valves are of the ball type to assure maximum reliability. However, any type of check valve can be used, including designs which are preloaded in the closed position. The check valve may use any ball or poppet material which resists corrosion. For optimum performance during testing on Earth, the ball or poppet would have neutral buoyancy or be configured in a closed position when the heat transport system is not operating. The ball may be porous to allow passage of coolant vapor.

  9. Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid

    DOEpatents

    Ackerman, Carl D.

    1983-03-29

    An apparatus for and method of pumping hot, erosive slurry of coal solids in a coal derived, water immiscible liquid to higher pressure involves the use of a motive fluid which is miscible with the liquid of the slurry. The apparatus includes a pump 12, a remote check valve 14 and a chamber 16 between and in fluid communication with the pump 12 and check valve 14 through conduits 18,20. Pump 12 exerts pressure on the motive fluid and thereby on the slurry through a concentration gradient of coal solids within chamber 16 to alternately discharge slurry under pressure from the outlet port of check valve 14 and draw slurry in through the inlet port of check valve 14.

  10. Fast acting check valve

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1979-01-01

    A check valve which closes more rapidly to prevent wearing of the valve seat and of the valve member that seals thereagainst, including a solenoid or other actuator that aids the normal spring to quickly close the valve at approximately the time when downpath fluid flow would stop, the actuator then being deenergized. The control circuit that operates the actuator can include a pair of pressure sensors sensing pressure both upstream and downstream from the valve seat. Where the valve is utilized to control flow to or from a piston pump, energization of the actuator can be controlled by sensing when the pump piston reaches its extreme of travel.

  11. Magnetic Check Valve

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-01-01

    Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.

  12. Water system microbial check valve development

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Greenley, D. R.; Putnam, D. F.

    1978-01-01

    Development work on a device for the Space Shuttle that will prevent the transfer of viable microorganisms within water systems is described. The device serves as a check valve in that it prevents the transfer or cross-contamination of microorganisms from a nonpotable system into a potable water system when these systems are interconnected. In this regard, the function of the device is similar to that of the air gap found in conventional one gravity systems. The device is essentially a bed of resin material impregnated with iodine. Basic design data for a variety of flow and temperature conditions are presented, together with results of challenging the beds with suspensions of seven microorganisms including aerobes, anaerobes, and spore formers.

  13. Reliability of excess-flow check-valves in turbine lubrication systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dundas, R.E.

    1996-12-31

    Reliability studies on excess-flow check valves installed in a gas turbine lubrication system for prevention of spray fires subsequent to fracture or separation of lube lines were conducted. Fault-tree analyses are presented for the case of failure of a valve to close when called upon by separation of a downstream line, as well as for the case of accidental closure during normal operation, leading to interruption of lubricating oil flow to a bearing. The probabilities of either of these occurrences are evaluated. The results of a statistical analysis of accidental closure of excess-flow check valves in commercial airplanes in themore » period 1986--91 are also given, as well as a summary of reliability studies on the use of these valves in residential gas installations, conducted under the sponsorship of the Gas Research Institute.« less

  14. Primary cooling check valve steam generator and loose parts events of November 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-12-23

    On November 10, 1985, a primary coolant check valve, CV-3-8, was opened for inspection. The valve flapper and mounting bracket were found to have become detached from the valve body and were resting in the bottom of the valve. Normally, the bracket is secured to the valve body with three studs and nuts. All three sets of studs, nuts and stud retainers were missing. As part of the effort to locate the missing valve parts, the primary side of the No. 2A steam generator was opened for inspection. Three cap screws and an associated locking bar used to secure certainmore » internals were found to be missing. In response, the Director, Reactor Engineering Department was assigned lead responsibility for developing and directing the implementation of a plan to correct deficiencies and ready the plant to return to operation. Next, a Special Safety Assessment Team was established to provide a structured assessment of the safety aspect of the component failures and the implications of such failures to other components in the primary coolant system. This structured assessment was to result in the development of an action plan that included the development of specific safety criteria, and identification and conduct of special investigations and analyses required for recovery from the event. Finally, an independent Management Review Team was created. The purpose of this report is to document the work of the Management Review Team, including the causal factors analyses, and various reviews required to support the recovery process.« less

  15. Chemical Safety Alert: Shaft Blow-Out Hazard of Check and Butterfly Valves

    EPA Pesticide Factsheets

    Certain types of check and butterfly valves can undergo shaft-disk separation and fail catastrophically, even when operated within their design limits of pressure and temperature, causing toxic/flammable gas releases, fires, and vapor cloud explosions.

  16. Microbial Check Valve for Shuttle

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.; Sauer, R. L.

    1978-01-01

    The Microbial Check Valve (MCV) is a device developed for the Space Shuttle that prevents the transfer of viable microorganisms within water systems. The device is essentially a bed of resin material, impregnated with iodine, that kills microorganisms on contact. It prevents the cross-contamination of microorganisms from a nonpotable system into the potable water system when these systems are interconnected. In this regard, the function of the device is similar to that of the 'air gap' found in conventional one-gravity systems. Basic design data are presented including pressure drop, scaling factors, sizing criteria, and the results of challenging the device with suspensions of seven microorganisms including aerobes, anaerobes and spore formers.

  17. Liquid blocking check valve

    DOEpatents

    Merrill, John T.

    1984-01-01

    A liquid blocking check valve useful particularly in a pneumatic system utilizing a pressurized liquid fill chamber. The valve includes a floatable ball disposed within a housing defining a chamber. The housing is provided with an inlet aperture disposed in the top of said chamber, and an outlet aperture disposed in the bottom of said chamber in an offset relation to said inlet aperture and in communication with a cutaway side wall section of said housing.

  18. Vein-style air pumping tube and tire system and method of assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedict, Robert Leon; Gobinath, Thulasiram; Lin, Cheng-Hsiung

    An air pumping tube and tire system and method of assembling is provided in which a tire groove is formed to extend into a flexing region of a tire sidewall and a complementary air pumping tube inserts into the tire groove. In the green, uncured air pumping tube condition, one or more check valves are assembled into the air pumping tube through access shafts and align with an internal air passageway of the air pumping tube. Plug components of the system enclose the check valves in the air pumping tube and the check valve-containing green air pumping tube is thenmore » cured.« less

  19. Advanced Microbial Check Valve development. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Greenley, D. R.; Putnam, D. F.; Sauer, R. L.

    1981-01-01

    The Microbial Check Valve (MCV) is a flight qualified assembly that provides bacteriologically safe drinking water for the Space Shuttle. The 1-lb unit is basically a canister packed with an iodinated ion-exchange resin. The device is used to destroy organisms in a water stream as the water passes through it. It is equally effective for fluid flow in either direction and its primary method of disinfection is killing rather than filtering. The MCV was developed to disinfect the fuel cell water and to prevent back contamination of stored potable water on the Space Shuttle. This paper reports its potential for space applications beyond the basic Shuttle mission. Data are presented that indicate the MCV is suitable for use in advanced systems that NASA has under development for the reclamation of humidity condensate, wash water and human urine.

  20. Solid state lift for micrometering in a fuel injector

    DOEpatents

    Milam, David M.; Carroll, Thomas S.; Lee, Chien-Chang; Miller, Charles R.

    2002-01-01

    A fuel injector performs main fuel injection by raising fuel pressure in a nozzle chamber to lift a check valve member to a fully open position, and performs preinjection or microinjection by operating a solid state motor to lift the check valve member a much smaller distance.

  1. An Apparatus for Measuring Rates of Discharge of a Fuel-Injection System

    NASA Technical Reports Server (NTRS)

    Dutee, Francis J

    1941-01-01

    A portable apparatus for rapidly determining rates of discharge of a fuel-injection system is described. Satisfactory operation of this apparatus with injection-pump speeds up to 2400 r.p.m was obtained. Rate-of-discharge tests were made with several cam-plunger-valve injection systems with long injection tubes. A check valve designed to reduce secondary discharges was tested. This check valve was operated with injection-pump speeds up to 2400 r.p.m without the occurrence of large secondary discharges.

  2. SU8 diaphragm micropump with monolithically integrated cantilever check valves.

    PubMed

    Ezkerra, Aitor; Fernández, Luis José; Mayora, Kepa; Ruano-López, Jesús Miguel

    2011-10-07

    This paper presents a SU8 unidirectional diaphragm micropump with embedded out-of-plane cantilever check valves. The device represents a reliable and low-cost solution for integration of microfluidic control in lab-on-a-chip devices. Its planar architecture allows monolithic definition of its components in a single step and potential integration with previously reported PCR, electrophoresis and flow-sensing SU8 microdevices. Pneumatic actuation is applied on a PDMS diaphragm, which is bonded to the SU8 body at wafer level, further enhancing its integration and mass production capabilities. The cantilever check valves move synchronously with the diaphragm, feature fast response (10ms), low dead volume (86nl) and a 94% flow blockage up to 300kPa. The micropump achieves a maximum flow rate of 177 μl min(-1) at 6 Hz and 200 kPa with an effective area of 10 mm(2). The device is reliable, self-priming and tolerant to particles and big bubbles. To the knowledge of the authors, this is the first micropump in SU8 with monolithically integrated cantilever check valves.

  3. Dynamic modeling and simulation of an integral bipropellant propulsion double-valve combined test system

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Wang, Huasheng; Xia, Jixia; Cai, Guobiao; Zhang, Zhenpeng

    2017-04-01

    For the pressure reducing regulator and check valve double-valve combined test system in an integral bipropellant propulsion system, a system model is established with modular models of various typical components. The simulation research is conducted on the whole working process of an experiment of 9 MPa working condition from startup to rated working condition and finally to shutdown. Comparison of simulation results with test data shows: five working conditions including standby, startup, rated pressurization, shutdown and halt and nine stages of the combined test system are comprehensively disclosed; valve-spool opening and closing details of the regulator and two check valves are accurately revealed; the simulation also clarifies two phenomena which test data are unable to clarify, one is the critical opening state in which the check valve spools slightly open and close alternately in their own fully closed positions, the other is the obvious effects of flow-field temperature drop and temperature rise in pipeline network with helium gas flowing. Moreover, simulation results with consideration of component wall heat transfer are closer to the test data than those under the adiabatic-wall condition, and more able to reveal the dynamic characteristics of the system in various working stages.

  4. Piezoelectric Pulsed Microjets

    DTIC Science & Technology

    2011-04-29

    microjets presents new design capabilities [ 9 , 18, 19]. An actuator is developed and tested here that integrates these two subsystems together to produce... actuator during testing. A digital pressure gauge was placed in-line after the accumulator to monitor bias pressure during testing. A check valve is used...bled off from the hydraulic actuator without affecting the pressure maintained in the accumulator. Air is bled from the system via a bleed valve within

  5. Beating Back Bacteria

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under a NASA-Johnson Space Center contract, Umpqua Research developed the MCV (Trademark) (Microbial Check Valve) which uses iodinated ion exchange resin used for water purification systems aboard space missions. Using this resin, MRLB International, Inc., developed and commercialized the Dentapure purification cartridge used by dentists nationwide.

  6. Development of seals for a geothermal downhole intensifier. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Captain, K.M.; Harvey, A.C.; Caskey, B.C.

    1985-08-01

    A system using high-velocity fluid jets in conjunction with a rotary diamond bit is currently considered as the best candidate for reducing the cost of drilling geothermal wells. Technical, safety and cost considerations indicate that the required jet supply pressure can best be established by a downhole pressure intensifier. Key intensifier components are the check valve and plunger seals, which must prevent leakage of the high-pressure, high-temperature abrasive fluid (drilling mud). To achieve the required performance, novel ceramic seals are currently being developed. The check valve seal includes a tapered polymeric plug and ceramic stop acting against a ceramic seat.more » The ceramic plunger seal is a variant of the ''stepped-joint'' piston ring and is designed to minimize contact pressure and abrasive wear. Initial testing of these seals in the laboratory shows encouraging results; design refinement and further testing is in progress. 2 refs., 6 figs., 3 tabs.« less

  7. Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)

    NASA Technical Reports Server (NTRS)

    Engler, Charles; Canham, John

    2014-01-01

    NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the initial valve design and subsequent improvements that resulted from prototype testing. The initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated. Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the initial Valve design was used to develop a second, more robust Aperture Valve. Based on a check-ball design, the ETU / flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, non-magnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.

  8. Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)

    NASA Technical Reports Server (NTRS)

    Hakun, Claef F.; Engler, Charles D.; Barber, Willie E.; Canham, John S.

    2014-01-01

    NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the Initial valve design and subsequent improvements that resulted from prototype testing. The Initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the Titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated.Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the Initial Valve design was used to develop a second, more robust Aperture valve. Based on a check-ball design, the ETU flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, nonmagnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.

  9. Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)

    NASA Technical Reports Server (NTRS)

    Engler, Charles D.; Canham, John S.

    2014-01-01

    NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the Initial valve design and subsequent improvements that resulted from prototype testing. The Initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the Titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated. Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the Initial Valve design was used to develop a second, more robust Aperture valve. Based on a check-ball design, the ETU /flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, nonmagnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.

  10. Remotely adjustable check-valves with an electrochemical release mechanism for implantable biomedical microsystems.

    PubMed

    Pan, Tingrui; Baldi, Antonio; Ziaie, Babak

    2007-06-01

    In this paper, we present two remotely adjustable check-valves with an electrochemical release mechanism for implantable biomedical microsystems. These valves allow one to vary the opening pressure set-point and flow resistance over a period of time. The first design consists of a micromachined check-valve array using a SU-8 polymer structural layer deposited on the top of a gold sacrificial layer. The second design is based on a variable length cantilever beam structure with a gold sacrificial layer. The adjustable cantilever-beam structure is fabricated by gold thermo-compression bond of a thin silicon wafer over a glass substrate. In both designs, the evaporated gold can be electrochemically dissolved using a constant DC current via a telemetry link. In the first design the dissolution simply opens up individual outlets, while in the second design, gold anchors are sequentially dissolved hence increasing the effective length of the cantilever beam (reducing the opening pressure). A current density of 35 mA/cm(2) is used to dissolve the gold sacrificial layers. Both gravity and syringe-pump driven flow are used to characterize the valve performance. A multi-stage fluidic performance (e.g. flow resistance and opening pressure) is clearly demonstrated.

  11. 30 CFR 250.1624 - Blowout prevention equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... station and one BOP-control station on the rig floor; and (5) A choke line and a kill line each equipped with two full-opening valves and a choke manifold. One of the choke-line valves and one of the kill-line valves shall be remotely controlled except that a check valve may be installed on the kill line in...

  12. 30 CFR 250.1624 - Blowout prevention equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... station and one BOP-control station on the rig floor; and (5) A choke line and a kill line each equipped with two full-opening valves and a choke manifold. One of the choke-line valves and one of the kill-line valves shall be remotely controlled except that a check valve may be installed on the kill line in...

  13. 30 CFR 250.1624 - Blowout prevention equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... station and one BOP-control station on the rig floor; and (5) A choke line and a kill line each equipped with two full-opening valves and a choke manifold. One of the choke-line valves and one of the kill-line valves shall be remotely controlled except that a check valve may be installed on the kill line in...

  14. 30 CFR 250.1624 - Blowout prevention equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... station and one BOP-control station on the rig floor; and (5) A choke line and a kill line each equipped with two full-opening valves and a choke manifold. One of the choke-line valves and one of the kill-line valves shall be remotely controlled except that a check valve may be installed on the kill line in...

  15. 49 CFR 195.450 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... remote control valve as follows: (1) Check valve means a valve that permits fluid to flow freely in one direction and contains a mechanism to automatically prevent flow in the other direction. (2) Remote control.... The RCV is usually operated by the supervisory control and data acquisition (SCADA) system. The...

  16. 49 CFR 195.450 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... remote control valve as follows: (1) Check valve means a valve that permits fluid to flow freely in one direction and contains a mechanism to automatically prevent flow in the other direction. (2) Remote control.... The RCV is usually operated by the supervisory control and data acquisition (SCADA) system. The...

  17. 49 CFR 195.450 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... remote control valve as follows: (1) Check valve means a valve that permits fluid to flow freely in one direction and contains a mechanism to automatically prevent flow in the other direction. (2) Remote control.... The RCV is usually operated by the supervisory control and data acquisition (SCADA) system. The...

  18. 49 CFR 195.450 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... remote control valve as follows: (1) Check valve means a valve that permits fluid to flow freely in one direction and contains a mechanism to automatically prevent flow in the other direction. (2) Remote control.... The RCV is usually operated by the supervisory control and data acquisition (SCADA) system. The...

  19. 49 CFR 195.450 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... remote control valve as follows: (1) Check valve means a valve that permits fluid to flow freely in one direction and contains a mechanism to automatically prevent flow in the other direction. (2) Remote control.... The RCV is usually operated by the supervisory control and data acquisition (SCADA) system. The...

  20. Conceptual design of ACB-CP for ITER cryogenic system

    NASA Astrophysics Data System (ADS)

    Jiang, Yongcheng; Xiong, Lianyou; Peng, Nan; Tang, Jiancheng; Liu, Liqiang; Zhang, Liang

    2012-06-01

    ACB-CP (Auxiliary Cold Box for Cryopumps) is used to supply the cryopumps system with necessary cryogen in ITER (International Thermonuclear Experimental Reactor) cryogenic distribution system. The conceptual design of ACB-CP contains thermo-hydraulic analysis, 3D structure design and strength checking. Through the thermohydraulic analysis, the main specifications of process valves, pressure safety valves, pipes, heat exchangers can be decided. During the 3D structure design process, vacuum requirement, adiabatic requirement, assembly constraints and maintenance requirement have been considered to arrange the pipes, valves and other components. The strength checking has been performed to crosscheck if the 3D design meets the strength requirements for the ACB-CP.

  1. Design criteria monograph for pressure regulators, relief valves, check valves, burst disks, and explosive valves

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Monograph reviews and assesses current design practices, and from them establishes firm guidance for achieving greater consistency in design, increased reliability in end product, and greater efficiency in design effort. Five devices are treated separately. Guides to aid in configuration selection are outlined.

  2. Dual Check Valve and Method of Controlling Flow Through the Same

    NASA Technical Reports Server (NTRS)

    Corallo, Roger (Inventor)

    2016-01-01

    A dual check valve includes, a housing having a cavity fluidically connecting three ports, a movable member movably engaged within the cavity from at least a first position occluding a first port of the three ports, a second position occluding a second port of the three ports, and a third position allowing flow between both the first port, the second port and a third port of the three ports.

  3. Long life assurance study for manned spacecraft long life hardware. Volume 3: Long life assurance studies of components

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The guidelines for selecting hardware to be used in manned spacecraft to obtain a five year operational lifetime without maintenance were developed. An analysis was conducted on the design, application, failure mechanisms, manufacturing processes and controls, screen and burn-in techniques, and quality control of hardware items. The equipment considered for evaluation include: (1) electric motors and bearings; (2) accelerometers; (3) gyroscopes and bearings; (4) compressors and pumps, (5) magnetic tape recorders; (6) plumbing components and tubing; (7) check valves; (8) pressure regulators and solenoid valves; (9) thermal control valves; (10) pressure vessels and positive expulsion devices; (11) nickel cadmium batteries; and (12) transducers.

  4. Refuge alternatives relief valve testing and design with updated test stand.

    PubMed

    Lutz, T J; Bissert, P T; Homce, G T; Yonkey, J A

    2018-03-01

    Underground refuge alternatives require an air source to supply breathable air to the occupants. This requires pressure relief valves to prevent unsafe pressures from building up within the refuge alternative. The U.S. Mine Safety and Health Administration (MSHA) mandates that pressure relief valves prevent pressure from exceeding 1.25 kPa (0.18 psi), or as specified by the manufacturer, above mine atmospheric pressure when a fan or compressor is used for the air supply. The U.S. National Institute for Occupational Safety and Health (NIOSH) tested a variety of pressure relief valves using an instrumented test fixture consisting of data acquisition equipment, a centrifugal blower, ductwork and various sensors to determine if the subject pressure relief valves meet the MSHA requirement. Relief pressures and flow characteristics, including opening pressure and flow rate, were measured for five different pressure relief valves under a variety of conditions. The subject pressure relief valves included two off-the-shelf modified check valves, two check valves used in MSHA-approved built-in-place refuge alternatives, and a commercially available valve that was designed for a steel refuge alternative and is currently being used in some built-in-place refuge alternatives. The test results showed relief pressures ranging from 0.20 to 1.53 kPa (0.03 to 0.22 psi) and flow rates up to 19.3 m 3 /min (683 scfm). As tested, some of the pressure relief valves did not meet the 1.25 kPa (0.18 psi) relief specification.

  5. 42 CFR 84.137 - Inhalation and exhalation valves; check valves; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY... constructed to allow airflow toward the facepiece only shall be provided in the connections to the facepiece...

  6. 42 CFR 84.137 - Inhalation and exhalation valves; check valves; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY... constructed to allow airflow toward the facepiece only shall be provided in the connections to the facepiece...

  7. Developmental testing resulting in a simplified liquid oxygen check valve for the Space Shuttle Main Propulsion System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S.; Barrett, Michael J.; Reith, Timothy W.

    1993-01-01

    The coil spring in a Space Shuttle liquid oxygen check valve failed due to cyclic fatigue in September, 1991. The dual-flapper, swing check valve is used to prevent reverse flow to the Space Shuttle Main Engines. Upon inspection of the failed component, the spring tangs were found to be missing and heavy wear was observed on the inner diameter of the spring coils. The fracture surfaces revealed that the metal had been steadily worn away until a simple overload caused the final fracture. A series of flow tests using water and a water/gas mixture was conducted to identify the flow phenomenon which produced the cyclic wear. A Plexiglas outlet housing was utilized to view the flapper behavior under different flow conditions and to aid in high speed photography. The tests revealed that flow instabilities induced two oscillatory flapper responses: a rocking mode and a chattering mode. Initially, attempts were made to reduce the spring-flapper oscillations. However, the final solution to the problem was a springless configuration which satisfied the valve's design requirements and eliminated the oscillations. The springless design relied on the inherent ability of the reverse flow momentum to close the flappers.

  8. Polymeric check valve with an elevated pedestal for precise cracking pressure in a glaucoma drainage device.

    PubMed

    Park, Chang-Ju; Yang, Dong-Seong; Cha, Jung-Joon; Lee, Jong-Hyun

    2016-02-01

    This paper presents the design, fabrication, and characterization of a polymeric micro check valve for a glaucoma drainage device (GDD) featuring the precise regulation of intraocular pressure (IOP) and effective aqueous humor turnover (AHT). The pedestal, slightly elevated by selective coating of a parylene C film, induces pre-stress in the thin valve membrane, which enhances the predictability of the cracking pressure of the GDD. The proposed GDD comprises a cannula and a normally closed polymeric micro check valve, which are made of PDMS, a biocompatible polymer, with three layers: top (cover), intermediate (thin valve membrane), and bottom (base plate). A feedback channel, located between the top and intermediate layers, prevents reverse flow by feeding the pressure of the outlet channel back to the thin valve membrane. To achieve a precise cracking pressure and sufficient drainage of humor for humans, the thicknesses of the valve membrane and parylene C film are designed to be 58 μm and 1 μm, respectively, which are confirmed using a COMSOL simulation. The experimental results show that the cracking pressure of the fabricated GDD lies within the range of normal IOP (1.33-2.67 kPa). The forward flow rate (drainage rate), 4.3 ± 0.9 μL/min at 2.5 kPa, is adequate to accommodate the rate of AHT in a normal human eye (2.4 ± 0.6 μL/min). The reverse flow was not observed when a hydrostatic pressure of up to 4 kPa was applied to the outlet and the feedback channel.

  9. Advanced microbial check valve development

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Greenley, D. R.

    1980-01-01

    A flight certified assembly identified as a Microbial Check Valve (MCV) was developed and tested. The MCV is a canister packed with an iodinated anionic exchange resin. The device is used to destroy organisms in a water stream as the water passes through the device. The device is equally effective for fluid flow in either direction and its primary method of organism removal is killing rather than filtering. The MCV was successfully developed for the space shuttle to: disinfect fuel cell water; and prevent back contamination of the stored potable water supply. One version of the device consists of a high residual iodinated resin bed that imparts approximately 2 ppm of iodine to the fuel cell water as it flows to the potable water tanks. A second version of the device consists of a low residual iodinated resin bed. One of these low residual beds is located at each use port in the potable water system for the dual purpose of removing some iodine from the potable water as it is dispensed and also to prevent back contamination of the potable supply.

  10. Std 598, valve inspection and testing, sixth edition, September 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    This book covers inspection, supplementary examination, and pressure test requirements for both resilient-seated and metal-to-metal-seated gate, globe, plug, ball, check, and butterfly valves for the petroleum refinery service. The inspection requirements pertain to inspection by the purchaser and to any supplementary examinations the purchaser may require at the valve manufacturer's plant. The testing requirements cover both required and optional pressure tests by the valve manufacturer at his plant.

  11. STS-55 pad abort: Engine 2011 oxidizer preburner augmented spark igniter check valve leak

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The STS-55 initial launch attempt of Columbia (OV102) was terminated on KSC launch pad A March 22, 1993 at 9:51 AM E.S.T. due to violation of an ME-3 (Engine 2011) Launch Commit Criteria (LCC) limit exceedance. The event description and timeline are summarized. Propellant loading was initiated on 22 March, 1993 at 1:15 AM EST. All SSME chill parameters and launch commit criteria (LCC) were nominal. At engine start plus 1.44 seconds, a Failure Identification (FID) was posted against Engine 2011 for exceeding the 50 psia Oxidizer Preburner (OPB) purge pressure redline. The engine was shut down at 1.50 seconds followed by Engines 2034 and 2030. All shut down sequences were nominal and the mission was safely aborted. The OPB purge pressure redline violation and the abort profile/overlay for all three engines are depicted. SSME Avionics hardware and software performed nominally during the incident. A review of vehicle data table (VDT) data and controller software logic revealed no failure indications other than the single FID 013-414, OPB purge pressure redline exceeded. Software logic was executed according to requirements and there was no anomalous controller software operation. Immediately following the abort, a Rocketdyne/NASA failure investigation team was assembled. The team successfully isolated the failure cause to the oxidizer preburner augmented spark igniter purge check valve not being fully closed due to contamination. The source of the contaminant was traced to a cut segment from a rubber O-ring which was used in a fine clean tool during valve production prior to 1992. The valve was apparently contaminated during its fabrication in 1985. The valve had performed acceptably on four previous flights of the engine, and SSME flight history shows 780 combined check valve flights without failure. The failure of an Engine 3 (SSME No. 2011) check valve to close was sensed by onboard engine instruments even though all other engine operations were normal. This resulted in an engine shutdown and safe sequential shutdown of all three engines prior to ignition of the solid boosters.

  12. Refuge alternatives relief valve testing and design with updated test stand

    PubMed Central

    Lutz, T.J.; Bissert, P.T.; Homce, G.T.; Yonkey, J.A.

    2018-01-01

    Underground refuge alternatives require an air source to supply breathable air to the occupants. This requires pressure relief valves to prevent unsafe pressures from building up within the refuge alternative. The U.S. Mine Safety and Health Administration (MSHA) mandates that pressure relief valves prevent pressure from exceeding 1.25 kPa (0.18 psi), or as specified by the manufacturer, above mine atmospheric pressure when a fan or compressor is used for the air supply. The U.S. National Institute for Occupational Safety and Health (NIOSH) tested a variety of pressure relief valves using an instrumented test fixture consisting of data acquisition equipment, a centrifugal blower, ductwork and various sensors to determine if the subject pressure relief valves meet the MSHA requirement. Relief pressures and flow characteristics, including opening pressure and flow rate, were measured for five different pressure relief valves under a variety of conditions. The subject pressure relief valves included two off-the-shelf modified check valves, two check valves used in MSHA-approved built-in-place refuge alternatives, and a commercially available valve that was designed for a steel refuge alternative and is currently being used in some built-in-place refuge alternatives. The test results showed relief pressures ranging from 0.20 to 1.53 kPa (0.03 to 0.22 psi) and flow rates up to 19.3 m3/min (683 scfm). As tested, some of the pressure relief valves did not meet the 1.25 kPa (0.18 psi) relief specification. PMID:29563650

  13. Micro Linear Pump with Electromagnetic Actuator

    NASA Astrophysics Data System (ADS)

    Suzumori, Koichi; Furusawa, Hiroaki; Kanda, Takefumi; Yamada, Yoshiaki; Nagata, Takashi

    In recent years, research and development of the micro-fluid systems have been activated in the field of chemical technology and biotechnology. Micro-fluid systems are realized by micromachine technology and MEMS technology. Micro pump is an essential element for miniaturization of chemical analysis reaction systems. The aim of this research is development of a micro linear pump which will be built into micro-fluid systems. This pump aims to take a sample of very-small-quantity of liquids. Taking a sample of very-small-quantity of liquids reduce the amount used and waste fluid of a reagent. Full length and diameter of this pump are 32.5mm and 6mm respectively. The features of this pump are (1) the pump is built with actuator, (2) the gap of 7μm between piston and cylinder is achieved through fine machining process, and (3) micro check-valves of 2mm diameter made of stainless-steel film are fabricated and integrated. In this paper, the structure and the characteristics of this pump were shown. And the characteristics after improvement of micro check-valves were shown.

  14. Impact characteristics for high-pressure large-flow water-based emulsion pilot operated check valve reverse opening

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Huang, Chuanhui; Yu, Ping; Zhang, Lei

    2017-10-01

    To improve the dynamic characteristics and cavitation characteristics of large-flow pilot operated check valve, consider the pilot poppet as the research object, analyses working principle and design three different kinds of pilot poppets. The vibration characteristics and impact characteristics are analyzed. The simulation model is established through flow field simulation software. The cavitation characteristics of large-flow pilot operated check valve are studied and discussed. On this basis, high-pressure large-flow impact experimental system is used for impact experiment, and the cavitation index is discussed. Then optimal structure is obtained. Simulation results indicate that the increase of pilot poppet half cone angle can effectively reduce the cavitation area, reducing the generation of cavitation. Experimental results show that the pressure impact is not decreasing with increasing of pilot poppet half cone angle in process of unloading, but the unloading capacity, response speed and pilot poppet half cone angle are positively correlated. The impact characteristics of 60° pilot poppet, and its cavitation index is lesser, which indicates 60° pilot poppet is the optimal structure, with the theory results are basically identical.

  15. 40 CFR 86.328-79 - Leak checks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flows may be used to estimate the in-use flow rates. (3) The sample probe and the connection between the sample probe and valve V2 (Figure D79-1) may be excluded from the leak check. (b) Pressure side leak...

  16. 40 CFR 86.328-79 - Leak checks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... flows may be used to estimate the in-use flow rates. (3) The sample probe and the connection between the sample probe and valve V2 (Figure D79-1) may be excluded from the leak check. (b) Pressure side leak...

  17. 40 CFR 86.328-79 - Leak checks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flows may be used to estimate the in-use flow rates. (3) The sample probe and the connection between the sample probe and valve V2 (Figure D79-1) may be excluded from the leak check. (b) Pressure side leak...

  18. 40 CFR 86.328-79 - Leak checks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flows may be used to estimate the in-use flow rates. (3) The sample probe and the connection between the sample probe and valve V2 (Figure D79-1) may be excluded from the leak check. (b) Pressure side leak...

  19. Quantifying In Situ Metal and Organic Contaminant Mobility in Marine Sediments

    DTIC Science & Technology

    2009-01-01

    and west of Ford Island, within the Pearl Harbor Naval Base. Sediments are fine grain silts and clays of basaltic origins and contain various... fiber filters for organics), and check valves (Figure 8) connected to synchronized parallel rotary valves connected to the collection chamber. Samples

  20. Remote control spill reduction technology : a survey and analysis of applications for liquid pipeline systems

    DOT National Transportation Integrated Search

    1995-01-01

    Given the 1988 directive, the OPS conducted a study on the potential for EFRDs : to minimize the volume of pipeline spills. They concluded that Remote Controlled Valves : (RCVs) and check valves are the only EFRDs that are effective on hazardous liqu...

  1. DETAIL OF THE LIQUID HYDROGEN AND LIQUID OXYGEN VENT VALVES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE LIQUID HYDROGEN AND LIQUID OXYGEN VENT VALVES, SIXTH LEVEL OF THE EXTERNAL TANK CHECK-OUT CELLS, HB-2, FACING NORTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  2. 76 FR 9982 - Airworthiness Directives; Bombardier, Inc. Model DHC-8-400 Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... manufactured with an outlet fitting containing red anodized threads. These MFCV do not provide adequate... that some motive flow check valves (MFCV) were manufactured with an outlet fitting containing red... containing red anodized threads. These MFCV do not provide adequate electrical bonding between the valve and...

  3. Experimental and Analytical Investigation of Pressure Differentials for Clean and Loaded Wire Meshes Used in Zeolite Retention

    NASA Technical Reports Server (NTRS)

    Knox, James C.

    2004-01-01

    Following failure of the carbon dioxide removal assembly (CDRA) on the ISS, a CDRA teardown, test, and evaluation (TT&E) effort found that the sorbent material was not retained as intended by the packed beds and that presence of the sorbent in the check valve and selector valve was the cause of the failure of these components. This paper documents the development of design data for an in-line filter element. The purpose of the in-line filter is to provide temporary protection for on-orbit CDRA hardware until the bed retainment system can be redesigned and replaced.

  4. High-pressure microfluidic control in lab-on-a-chip devices using mobile polymer monoliths.

    PubMed

    Hasselbrink, Ernest F; Shepodd, Timothy J; Rehm, Jason E

    2002-10-01

    We have developed a nonstick polymer formulation for creating moving parts inside of microfluidic channels and have applied the technique to create piston-based devices that overcome several microfluidic flow control challenges. The parts were created bycompletely filling the channels of a glass microfluidic chip with the monomer/ solvent/initiator components of a nonstick photopolymer and then selectively exposing the chip to UV light in order to define mobile pistons (or other quasi-two-dimensional shapes) inside the channels. Stops defined in the substrate prevent the part from flushing out of the device but also provide sealing surfaces so that valves and other flow control devices are possible. Sealing against pressures greater than 30 MPa (4,500 psi) and actuation times less than 33 ms are observed. An on-chip check valve, a diverter valve, and a 10-nL pipet are demonstrated. This valving technology, coupled with high-pressure electrokinetic pumps, should make it possible to create a completely integrated HPLC system on a chip.

  5. An Innovation for Global Clean Water

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Under contract to NASA, Umpqua Research developed the Microbial Check Valve (MCV) iodine-dispensing system for the Space Shuttle Orbiter, introduced in 1979 to purify astronauts' drinking water. In 1989, NASA awarded the company a new contract to develop a system for continuous iodine release over long periods for use in the International Space Station. In 1993, the company demonstrated the Regenerable Biocide Delivery Unit, and NASA granted it an exclusive license.

  6. 46 CFR 56.50-30 - Boiler feed piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-30 Boiler feed piping. (a) General... paragraph (d) or (e) of this section. (2) Feed pump supply to power boilers may utilize the group feed... required stop and stop-check valves, shall be designed for either the feed pump relief valve setting or the...

  7. 46 CFR 56.50-30 - Boiler feed piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-30 Boiler feed piping. (a) General... paragraph (d) or (e) of this section. (2) Feed pump supply to power boilers may utilize the group feed... required stop and stop-check valves, shall be designed for either the feed pump relief valve setting or the...

  8. GAS METERING PUMP

    DOEpatents

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  9. Sludge sampler

    DOEpatents

    Ward, Ralph C.

    1983-01-01

    The disclosure relates to a sludge sampler comprising an elongated generally cylindrical housing containing a baffle containing an aperture. Connected to the aperture is a flexible tubing having a valve for maintaining and releasing pressure in the lower end of the housing and exiting the upper end of the housing. The lower end of the housing contains a ball check valve maintained in closed position by pressure. When the lower end of the device contacts the sludge bed, the pressure valve is opened, enabling sludge to enter the lower end of the housing. After the sample is collected the valve is closed. An upsetting pin opens the valve to empty a sludge sample after the sample is removed from the fluid.

  10. Nonlinear dynamic modeling for smart material electro-hydraulic actuator development

    NASA Astrophysics Data System (ADS)

    Larson, John P.; Dapino, Marcelo J.

    2013-03-01

    Smart material electro-hydraulic actuators use hydraulic rectification by one-way check valves to amplify the motion of smart materials, such as magnetostrictives and piezoelectrics, in order to create compact, lightweight actuators. A piston pump driven by a smart material is combined with a hydraulic cylinder to form a self-contained, power-by-wire actuator that can be used in place of a conventional hydraulic system without the need for hydraulic lines and a centralized pump. The performance of an experimental actuator driven by a 12.7 mm diameter, 114 mm length Terfenol-D rod is evaluated over a range of applied input frequencies, loads, and currents. The peak performance achieved is 37 W, moving a 220 N load at a rate of 17 cm/s and producing a blocked pressure of 12.5 MPa. Additional tests are conducted to quantify the dynamic behavior of the one-way reed valves using a scanning laser vibrometer to identify the frequency response of the reeds and the effect of the valve seat and fluid mass loading. A lumped-parameter model is developed for the system that includes valve inertia and fluid response nonlinearities, and the model results are compared with the experimental data.

  11. A simple device for the collection of water and dissolved gases at defined depths

    USDA-ARS?s Scientific Manuscript database

    A device, consisting of a jar fitted with an inlet comprised of a gas-tight check valve and 2-way ball valve outlet connected via tubing to a portable peristaltic pump, was constructed to collect water samples without atmospheric contamination or loss of dissolved gases. A headspace void for dissol...

  12. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT X, AUTOMATIC TRANSMISSIONS--HYDRAULIC SYSTEMS (PART II).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF MAINTENANCE PROCEDURES FOR AUTOMATIC TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) CHECKING THE HYDRAULIC SYSTEM, (2) SERVICING THE HYDRAULIC SYSTEM, (3) EXAMINING THE RANGE CONTROL VALVE, (4) EXAMINING THE LOCK-UP AND FLOW VALVE, (5) EXAMINING THE MAIN REGULATOR…

  13. Penetration and Duration of Fuel Sprays from a Pump Injection System

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1934-01-01

    High-speed motion pictures were taken of individual fuel sprays from a pump injection system. The changes in the spray-tip penetration with changes in the pump speed, injection-valve opening and closing pressures, discharge-orifice area, injection-tube length and diameter, and pump throttle setting were measured. The pump was used with and without a check valve. The results show that the penetration of the spray tip can be controlled by the dimensions of the injection tube, the area of the discharge orifice, and the injection-valve opening and closing pressures.

  14. Survey of the Literature: Controlled Generation of Liquid Droplets

    DTIC Science & Technology

    1988-08-01

    modified to permit greater reproducibility and drop size consistency utilizes a hypodermic syringe positioned in a soleniod , with its plunger filled...1.0 SOLENOID ATM. XCESS VALVE FROM CLOCK CIRCUIT CENTERING SCREWS Figure 3. Apparatus of Reil and Hallett (1969) for Production of Uniform nrops Using...Generator, Using an Inverted Aerosol Outlet. 49 Drop Generating System NOZZLE POWDERED IRON FILL ELECTRIC SOLENOID MICROMETER SCREW CHECK VALVE

  15. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, J.C.; Paulson, D.N.; Allen, P.C.

    1983-01-04

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. [sup 4]He, [sup 3]He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3--4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel. 10 figs.

  16. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.

    1983-01-01

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. .sup.4 He, .sup.3 He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3-4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel.

  17. Integral isolation valve systems for loss of coolant accident protection

    DOEpatents

    Kanuch, David J.; DiFilipo, Paul P.

    2018-03-20

    A nuclear reactor includes a nuclear reactor core comprising fissile material disposed in a reactor pressure vessel having vessel penetrations that exclusively carry flow into the nuclear reactor and at least one vessel penetration that carries flow out of the nuclear reactor. An integral isolation valve (IIV) system includes passive IIVs each comprising a check valve built into a forged flange and not including an actuator, and one or more active IIVs each comprising an active valve built into a forged flange and including an actuator. Each vessel penetration exclusively carrying flow into the nuclear reactor is protected by a passive IIV whose forged flange is directly connected to the vessel penetration. Each vessel penetration carrying flow out of the nuclear reactor is protected by an active IIV whose forged flange is directly connected to the vessel penetration. Each active valve may be a normally closed valve.

  18. New Hardware for Tethered Balloons,

    DTIC Science & Technology

    1980-01-01

    package contained a differential- pressure switch , and a command receiver. Long wires extended up to the gas valves to actuate them, and a long tube was...similar in appear- ance to the former valve, but does contain batteries, an aneroid- operated switch, and a differential- pressure switch . Design is such...that either the aneroid-operated switch or the differential- pressure switch can be easily removed for checking Or setting in the laboratory. Likewise the

  19. Phi29 Connector-DNA Interactions Govern DNA Crunching and Rotation, Supporting the Check-Valve Model

    PubMed Central

    Kumar, Rajendra; Grubmüller, Helmut

    2016-01-01

    During replication of the ϕ29 bacteriophage inside a bacterial host cell, a DNA packaging motor transports the viral DNA into the procapsid against a pressure difference of up to 40 ± 20 atm. Several models have been proposed for the underlying molecular mechanism. Here we have used molecular dynamics simulations to examine the role of the connector part of the motor, and specifically the one-way revolution and the push-roll model. We have focused at the structure and intermolecular interactions between the DNA and the connector, for which a near-complete structure is available. The connector is found to induce considerable DNA deformations with respect to its canonical B-form. We further assessed by force-probe simulations to which extent the connector is able to prevent DNA leakage and found that the connector can act as a partial one-way valve by a check-valve mechanism via its mobile loops. Analysis of the geometry, flexibility, and energetics of channel lysine residues suggested that this arrangement of residues is incompatible with the observed DNA packaging step-size of ∼2.5 bp, such that the step-size is probably determined by the other components of the motor. Previously proposed DNA revolution and rolling motions inside the connector channel are both found implausible due to structural entanglement between the DNA and connector loops that have not been resolved in the crystal structure. Rather, in the simulations, the connector facilitates minor DNA rotation during the packaging process compatible with recent optical-tweezers experiments. Combined with the available experimental data, our simulation results suggest that the connector acts as a check-valve that prevents DNA leakage and induces DNA compression and rotation during DNA packaging. PMID:26789768

  20. An in-situ Mobile pH Calibrator for application with HOV and ROV platform in deep sea environments

    NASA Astrophysics Data System (ADS)

    Tan, C.; Ding, K.; Seyfried, W. E., Jr.

    2014-12-01

    Recently, a novel in-situ sensor calibration instrument, Mobile pH Calibrator (MpHC), was developed for application with HOV Alvin. It was specifically designed to conduct in-situ pH measurement in deep sea hydrothermal diffuse fluids with in-situ calibration function. In general, the sensor calibrator involves three integrated electrodes (pH, dissolved H2 and H2S) and a temperature sensor, all of which are installed in a cell with a volume of ~ 1 ml. A PEEK check valve cartridge is installed at the inlet end of the cell to guide the flow path during the measurement and calibration processes. Two PEEK tubes are connected at outlet end of the cell for drawing out hydrothermal fluid and delivering pH buffer fluids. During its measurement operation, the pump draws in hydrothermal fluid, which then passes through the check valve directly into the sensing cell. When in calibration mode, the pump delivers pH buffers into the cell, while automatically closing the check valve to the outside environment. This probe has two advantages compared to our previous unit used during KNOX18RR MAR cruise in 2008 and MARS cabled observatory deployment in 2012. First, in the former design, a 5 cm solenoid valve was equipped with the probe. This enlarged size prevented its application in specific point or small area. In this version, the probe has only a dimension of 1.6 cm for an easy access to hydrothermal biological environments. Secondly, the maximum temperature condition of the earlier system was limited by the solenoid valve precluding operation in excess of 50 ºC. The new design avoids this problem, which improves its temperature tolerance. The upper limit of temperature condition is now up to 100oC, therefore enabling broader application in hydrothermal diffuse flow system on the seafloor. During SVC cruise (AT26-12) in the Gulf of Mexico this year, the MpHC was successfully tested with Alvin dives at the depth up to 2600 m for measuring pH with in-situ calibration in seafloor cold seep environment. The measurement and calibration were also conducted in hydrothermal diffuse flow at temperature condition exceeding 70 ºC with Alvin dives during a recent cruise AT26-17 in ASHES vent field and Main Endeavour Field on Juan de Fuca Ridge. Data from these seagoing deployments will be presented, with emphasis on both technical and scientific aplications.

  1. Systems for delivering liquified natural gas to an engine

    DOEpatents

    Bingham, Dennis N.; Wilding, Bruce M.; O'Brien, James E.; Siahpush, Ali S.; Brown, Kevin B.

    2000-01-01

    A fuel delivery system includes a fuel tank configured to receive liquid natural gas. A first conduit extends from a vapor holding portion of the fuel tank to an economizer valve. A second conduit extends from a liquid holding portion of the fuel tank to the economizer valve. Fluid coupled to the economizer valve is a vaporizer which is heated by coolant from the engine and is positioned below the fuel tank. The economizer valve selectively withdraws either liquid natural gas or vaporized natural gas from the fuel tank depending on the pressure within the vapor holding portion of the fuel tank. A delivery conduit extends from the vaporizer to the engine. A return conduit having a check valve formed therein extends from the delivery conduit to the vapor holding portion of the fuel tank for pressurizing the fuel tank.

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XIX, I--ENGINE TUNE-UP--CUMMINS DIESEL ENGINE, II--FRONT END SUSPENSION AND AXLES.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIESEL ENGINE TUNE-UP PROCEDURES AND THE DESIGN OF FRONT END SUSPENSION AND AXLES USED ON DIESEL ENGINE EQUIPMENT. TOPICS ARE (1) PRE-TUNE-UP CHECKS, (2) TIMING THE ENGINE, (3) INJECTOR PLUNGER AND VALVE ADJUSTMENTS, (4) FUEL PUMP ADJUSTMENTS ON THE ENGINE (PTR AND PTG),…

  3. Modelling and study of active vibration control for off-road vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Junwei; Chen, Sizhong

    2014-05-01

    In view of special working characteristics and structure, engineering machineries do not have conventional suspension system typically. Consequently, operators have to endure severe vibrations which are detrimental both to their health and to the productivity of the loader. Based on displacement control, a kind of active damping method is developed for a skid-steer loader. In this paper, the whole hydraulic system for active damping method is modelled which include swash plate dynamics model, proportional valve model, piston accumulator model, pilot-operated check valve model, relief valve model, pump loss model, and cylinder model. A new road excitation model is developed for the skid-steer loader specially. The response of chassis vibration acceleration to road excitation is verified through simulation. The simulation result of passive accumulator damping is compared with measurements and the comparison shows that they are close. Based on this, parallel PID controller and track PID controller with acceleration feedback are brought into the simulation model, and the simulation results are compared with passive accumulator damping. It shows that the active damping methods with PID controllers are better in reducing chassis vibration acceleration and pitch movement. In the end, the test work for active damping method is proposed for the future work.

  4. Valve malfunction detection apparatus

    NASA Astrophysics Data System (ADS)

    Burley, Richard K.

    1993-07-01

    A detection system is provided for sensing a malfunction of a valve having an outlet connected to an end of a first pipe through which pressurized fluid may be flowed in a downstream direction away from the valve. The system includes a bypass pipe connected at its opposite ends to the first pipe and operative to bypass a portion of the fluid flow therethrough around a predetermined section thereof. A housing is interiorly divided by a flexible diaphragm into first and second opposite chambers which are respectively communicated with the first pipe section and the bypass pipe, the diaphragm being spring-biased toward the second chamber. The diaphragm housing cooperates with check valves and orifices connected in the two pipes to create and maintain a negative pressure in the first pipe section in response to closure of the valve during pressurized flow through the first pipe. A pressure switch senses the negative pressure and transmits a signal indicative thereof to a computer. Upon cessation of the signal while the valve is still closed, the computer responsively generates a signal indicating that the valve, or another portion of the detection system, is leaking.

  5. Valve malfunction detection apparatus

    NASA Technical Reports Server (NTRS)

    Burley, Richard K. (Inventor)

    1993-01-01

    A detection system is provided for sensing a malfunction of a valve having an outlet connected to an end of a first pipe through which pressurized fluid may be flowed in a downstream direction away from the valve. The system includes a bypass pipe connected at its opposite ends to the first pipe and operative to bypass a portion of the fluid flow therethrough around a predetermined section thereof. A housing is interiorly divided by a flexible diaphragm into first and second opposite chambers which are respectively communicated with the first pipe section and the bypass pipe, the diaphragm being spring-biased toward the second chamber. The diaphragm housing cooperates with check valves and orifices connected in the two pipes to create and maintain a negative pressure in the first pipe section in response to closure of the valve during pressurized flow through the first pipe. A pressure switch senses the negative pressure and transmits a signal indicative thereof to a computer. Upon cessation of the signal while the valve is still closed, the computer responsively generates a signal indicating that the valve, or another portion of the detection system, is leaking.

  6. 40 CFR 92.118 - Analyzer checks and calibrations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.118... sampling system at the sample probe or valve V2 at atmospheric pressure. Simultaneously, start the time...

  7. Thermodynamic Pressure/Temperature Transducer Health Check

    NASA Technical Reports Server (NTRS)

    Immer, Christopher D. (Inventor); Eckhoff, Anthony (Inventor); Medelius, Pedro J. (Inventor); Deyoe, Richard T. (Inventor); Starr, Stanley O. (Inventor)

    2004-01-01

    A device and procedure for checking the health of a pressure transducer in situ is provided. The procedure includes measuring a fixed change in pressure above ambient pressure and a fixed change in pressure below ambient pressure. This is done by first sealing an enclosed volume around the transducer with a valve. A piston inside the sealed volume is increasing the pressure. A fixed pressure below ambient pressure is obtained by opening the valve, driving the piston The output of the pressure transducer is recorded for both the overpressuring and the underpressuring. By comparing this data with data taken during a preoperative calibration, the health of the transducer is determined from the linearity, the hysteresis, and the repeatability of its output. The further addition of a thermometer allows constant offset error in the transducer output to be determined.

  8. Design considerations and quantitative assessment for the development of percutaneous mitral valve stent.

    PubMed

    Kumar, Gideon Praveen; Cui, Fangsen; Phang, Hui Qun; Su, Boyang; Leo, Hwa Liang; Hon, Jimmy Kim Fatt

    2014-07-01

    Percutaneous heart valve replacement is gaining popularity, as more positive reports of satisfactory early clinical experiences are published. However this technique is mostly used for the replacement of pulmonary and aortic valves and less often for the repair and replacement of atrioventricular valves mainly due to their anatomical complexity. While the challenges posed by the complexity of the mitral annulus anatomy cannot be mitigated, it is possible to design mitral stents that could offer good anchorage and support to the valve prosthesis. This paper describes four new Nitinol based mitral valve designs with specific features intended to address migration and paravalvular leaks associated with mitral valve designs. The paper also describes maximum possible crimpability assessment of these mitral stent designs using a crimpability index formulation based on the various stent design parameters. The actual crimpability of the designs was further evaluated using finite element analysis (FEA). Furthermore, fatigue modeling and analysis was also done on these designs. One of the models was then coated with polytetrafluoroethylene (PTFE) with leaflets sutured and put to: (i) leaflet functional tests to check for proper coaptation of the leaflet and regurgitation leakages on a phantom model and (ii) anchorage test where the stented valve was deployed in an explanted pig heart. Simulations results showed that all the stents designs could be crimped to 18F without mechanical failure. Leaflet functional test results showed that the valve leaflets in the fabricated stented valve coapted properly and the regurgitation leakage being within acceptable limits. Deployment of the stented valve in the explanted heart showed that it anchors well in the mitral annulus. Based on these promising results of the one design tested, the other stent models proposed here were also considered to be promising for percutaneous replacement of mitral valves for the treatment of mitral regurgitation, by virtue of their key features as well as effective crimping. These models will be fabricated and put to all the aforementioned tests before being taken for animal trials. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Foot pedal operated fluid type exercising device

    NASA Technical Reports Server (NTRS)

    Crum, G. W.; Sauter, R. J. (Inventor)

    1973-01-01

    A foot pedal operated exercising device is reported that contains a dynamometer formed of a pair of cylinders each containing a piston. The pistons are linked to each other. The upper portions of the two cylinders are joined together by a common opening to provide a common fluid reservoir and each piston is provided with a one way check valve to maintain an adequate supply of working fluid. Fluid from the driven cylinder is transmitted to the other cylinder through separate constant force spring biased valves each valve takes the predominant portion of the pressure drop thereby providing a constant force hydraulic dynamometer. A device is provided to determine the amount of movement of piston travel.

  10. Two-phase flow patterns of a top heat mode closed loop oscillating heat pipe with check valves (THMCLOHP/CV)

    NASA Astrophysics Data System (ADS)

    Thongdaeng, S.; Bubphachot, B.; Rittidech, S.

    2016-11-01

    This research is aimed at studying the two-phase flow pattern of a top heat mode closed loop oscillating heat pipe with check valves. The working fluids used are ethanol and R141b and R11 coolants with a filling ratio of 50% of the total volume. It is found that the maximum heat flux occurs for the R11 coolant used as the working fluid in the case with the inner diameter of 1.8 mm, inclination angle of -90°, evaporator temperature of 125°C, and evaporator length of 50 mm. The internal flow patterns are found to be slug flow/disperse bubble flow/annular flow, slug flow/disperse bubble flow/churn flow, slug flow/bubble flow/annular flow, slug flow/disperse bubble flow, bubble flow/annular flow, and slug flow/annular flow.

  11. A molecular-sized tunnel-porous crystal with a ratchet gear structure and its one-way guest-molecule transportation property

    NASA Astrophysics Data System (ADS)

    Kataoka, Keisuke; Yasumoto, Tetsuaki; Manabe, Yousuke; Sato, Hiroyasu; Yamano, Akihito; Katagiri, Toshimasa

    2013-01-01

    An anisotropic tunnel microporous crystal was prepared. Active transportation of anthracene as a guest molecule in the anisotropic tunnels was observed. The direction of anthracene movement implies that the anisotropic tunnel did not work as a flap-check valve. The direction of the movement was consistent with that caused by a Brownian ratchet.An anisotropic tunnel microporous crystal was prepared. Active transportation of anthracene as a guest molecule in the anisotropic tunnels was observed. The direction of anthracene movement implies that the anisotropic tunnel did not work as a flap-check valve. The direction of the movement was consistent with that caused by a Brownian ratchet. Electronic supplementary information (ESI) available. CCDC reference numbers 837539 and 837540. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30880k

  12. Launch Vehicle Sizing Benefits Utilizing Main Propulsion System Crossfeed and Project Status

    NASA Technical Reports Server (NTRS)

    Chandler, Frank; Scheiern, M.; Champion, R.; Mazurkivich, P.; Lyles, Garry (Technical Monitor)

    2002-01-01

    To meet the goals for a next generation Reusable Launch Vehicle (RLV), a unique propulsion feed system concept was identified using crossfeed between the booster and orbiter stages that could reduce the Two-Stage-to-Orbit (TSTO) vehicle weight and Design, Development, Test and Evaluation (DDT&E) costs by approximately 25%, while increasing safety and reliability. The Main Propulsion System (MPS) crossfeed water demonstration test program addresses all activities required to reduce the risks for the MPS crossfeed system from a Technology Readiness Level (TRL) of 2 to 4 by the completion of testing and analysis by June 2003. During the initial period, that ended in March 2002, a subscale water flow test article was defined. Procurement of a subscale crossfeed check valve was initiated and the specifications for the various components were developed. The fluid transient and pressurization analytical models were developed separately and successfully integrated. The test matrix for the water flow test was developed to correlate the integrated model. A computational fluid dynamics (CFD) model of the crossfeed check valve was developed to assess flow disturbances and internal flow dynamics. Based on the results, the passive crossfeed system concept was very feasible and offered a safe system to be used in an RLV architecture. A water flow test article was designed to accommodate a wide range of flows simulating a number of different types of propellant systems. During the follow-on period, the crossfeed system model will be further refined, the test article will be completed, the water flow test will be performed, and finally the crossfeed system model will be correlated with the test data. This validated computer model will be used to predict the full-scale vehicle crossfeed system performance.

  13. Reduction of shunt current in buffer-free IrMn based spin-valve structures

    NASA Astrophysics Data System (ADS)

    Kocaman, B.; Akdoğan, N.

    2018-06-01

    The presence of thick buffer layers in magnetic sensor devices decreases sensor sensitivity due to shunt currents. With this motivation, we produced IrMn-based spin-valve multilayers without using buffer layer. We also studied the effects of post-annealing and IrMn thickness on exchange bias field (HEB) and blocking temperature (TB) of the system. Magnetization measurements indicate that both HEB and TB values are significantly enhanced with post-annealing of IrMn layer. In addition, we report that IrMn thickness of the system strongly influences the magnetization and transport characteristics of the spin-valve structures. We found that the minimum thickness of IrMn layer is 6 nm in order to achieve the lowest shunt current and high blocking temperature (>300 K). We also investigated the training of exchange bias to check the long-term durability of IrMn-based spin-valve structures for device applications.

  14. 40 CFR 91.324 - Analyzer leakage check.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flows and bypass flows may be used to estimate the in-use flow rates. (3) The sample probe and the connection between the sample probe and valve V2 (see Figure 1 in appendix B of this subpart) may be excluded...

  15. 40 CFR 91.324 - Analyzer leakage check.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flows and bypass flows may be used to estimate the in-use flow rates. (3) The sample probe and the connection between the sample probe and valve V2 (see Figure 1 in appendix B of this subpart) may be excluded...

  16. 40 CFR 91.324 - Analyzer leakage check.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flows and bypass flows may be used to estimate the in-use flow rates. (3) The sample probe and the connection between the sample probe and valve V2 (see Figure 1 in appendix B of this subpart) may be excluded...

  17. 40 CFR 91.324 - Analyzer leakage check.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... flows and bypass flows may be used to estimate the in-use flow rates. (3) The sample probe and the connection between the sample probe and valve V2 (see Figure 1 in appendix B of this subpart) may be excluded...

  18. 40 CFR 91.324 - Analyzer leakage check.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... flows and bypass flows may be used to estimate the in-use flow rates. (3) The sample probe and the connection between the sample probe and valve V2 (see Figure 1 in appendix B of this subpart) may be excluded...

  19. Expedition Seven Lu with EMU in Quest airlock

    NASA Image and Video Library

    2003-09-05

    ISS007-E-14470 (5 September 2003) --- Astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, performs routine maintenance on an Extravehicular Mobility Unit (EMU) space suit in the Quest airlock on the International Space Station (ISS). The work represents a mid-term checkout and included emptying and refilling the suit’s water tank and loops, cycling relief valves, checking sensors and collecting data, a leak check and running the suit’s fan for two hours to lubricate it.

  20. Expedition Seven Lu with EMU in Quest airlock

    NASA Image and Video Library

    2003-09-05

    ISS007-E-14473 (5 September 2003) --- Astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, performs routine maintenance on an Extravehicular Mobility Unit (EMU) space suit in the Quest airlock on the International Space Station (ISS). The work represents a mid-term checkout and included emptying and refilling the suit’s water tank and loops, cycling relief valves, checking sensors and collecting data, a leak check and running the suit’s fan for two hours to lubricate it.

  1. Expedition Seven Lu with EMU in Quest airlock

    NASA Image and Video Library

    2003-09-05

    ISS007-E-14469 (5 September 2003) --- Astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, performs routine maintenance on an Extravehicular Mobility Unit (EMU) space suit in the Quest airlock on the International Space Station (ISS). The work represents a mid-term checkout and included emptying and refilling the suit’s water tank and loops, cycling relief valves, checking sensors and collecting data, a leak check and running the suit’s fan for two hours to lubricate it.

  2. Expedition Seven Lu with EMU in Quest airlock

    NASA Image and Video Library

    2003-09-05

    ISS007-E-14472 (5 September 2003) --- Astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, performs routine maintenance on an Extravehicular Mobility Unit (EMU) space suit in the Quest airlock on the International Space Station (ISS). The work represents a mid-term checkout and included emptying and refilling the suit’s water tank and loops, cycling relief valves, checking sensors and collecting data, a leak check and running the suit’s fan for two hours to lubricate it.

  3. Field joint environmental protection system vibration/pressurization qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    The procedures used and results obtained from vibration testing the redesigned solid rocket motor (RSRM) field joint environmental protection system (FJEPS), hereafter referred to as the joint protection system (JPS) are documented. The major purposes were to certify that the flight-designed JPS will withstand the dynamic environmental conditions of the redesigned solid rocket booster, and to certify that the cartridge check valve (vent valve) will relieve pressure build-up under the JPS during the initial 120 sec of flight. Also, an evaluation of the extruded cork insulation bonding was performed after the vibration testing.

  4. Northwest Boundary Containment/Treatment System Baseline Conditions, System Startup, and Operational Assessment. Volume 1.

    DTIC Science & Technology

    1987-12-01

    combination pressure reducing check valve that is manually I controlled. A shutoff valve is installed on each well discharge line to iso - late the well from...3are 10 to 70 ft thick. The greatest thickness of surficial deposits pene- trated in borings in the study area was 69.7 ft in Well 27002 , in which...approximately 37 ft of silty clay and fine sand overlie 33 ft of gravelly sand. The gravelly sand of well 27002 is typical of the sediments comprising the

  5. The Next Generation of Cold Immersion Dry Suit Design Evolution for Hypothermia Prevention

    NASA Technical Reports Server (NTRS)

    Galofaro, Joel

    2013-01-01

    This new utility patent is an active design that relies on the lung's role as an organic heat exchanger for providing deep body core heating of air. It is based on the fact that the greatest heat loss mechanism for an insulated human body immersed in a cold water environment is due to heat loss through respiration. This innovation successfully merges two existing technologies (cold immersion suit and existing valve technologies) to produce a new product that helps prevent against the onset of hypothermia at sea. During normal operations, a human maintains an approximate body temperature of [98.6 F (37 C)]. A mechanism was developed to recover the warm temperature from the body and reticulate it in a survival suit. The primary intention is to develop an encompassing systems design that can both easily and cost effectively be integrated in all existing currently manufactured cold water survival suits, and as such, it should be noted that the cold water immersion suit is only used as a framework or tool for laying out the required design elements. At the heart of the suit is the Warm Air Recovery (WAR) system, which relies on a single, large Main Purge Valve (MPV) and secondary Purge Valves (PV) to operate. The main purge valve has a thin membrane, which is normally closed, and acts as a one-way check valve. When warm air is expelled from the lungs, it causes the main purge valve to open. Air forced from the MPV is dumped directly into the suit, thereby providing warmth to the torso, legs, and arms. A slight positive over-pressure in the suit causes warm waste air (or water if the suit is punctured) to be safely vented into the sea through large PVs located at the bottom of each arm and leg. The secondary purge valves act to prevent the buildup of large concentrations of CO2 gas and help guard against asphyxia. It is noted that the MPV causes the inhalation and exhalation cycles to be completely isolated from one another in the current suit design.

  6. Recommendations for the management of individuals with acquired valvular heart diseases who are involved in leisure-time physical activities or competitive sports.

    PubMed

    Mellwig, Klaus Peter; van Buuren, Frank; Gohlke-Baerwolf, Christa; Bjørnstad, Hans Halvor

    2008-02-01

    Physical check-ups among athletes with valvular heart disease are of significant relevance. In athletes with mitral valve stenosis the extent of allowed physical activity is dependant on the size of the left atrium and the severity of the valve defect. Patients with mild-to-moderate mitral valve regurgitation can participate in all types of sport associated with low and moderate isometric stress and moderate dynamic stress. Patients under anticoagulation should not participate in any type of contact sport. Asymptomatic athletes with mild aortic valve stenosis can take part in all types of sport, as long as left ventricular function and size are normal, a normal response to exercise at the level performed during athletic activities is present and there are no arrhythmias. Asymptomatic athletes with moderate aortic valve stenosis should only take part in sports with low dynamic and static stress. Aortic valve regurgitation is often present due to connective tissue disease of a bicuspid valve. Athletes with mild aortic valve regurgitation, with normal end diastolic left ventricular size and systolic function can participate in all types of sport. A mitral valve prolapse is often associated with structural diseases of the myocardium and endocardium. In patients with mitral valve prolapse Holter-ECG monitoring should also be performed to detect significant arrhythmias. All athletes with known valvular heart disease, a previous history of infective endocarditis and valve surgery should receive endocarditis prophylaxis before dental, oral, respiratory, intestinal and genitourinary procedures associated with bacteraemia. Sport activities have to be avoided during active infection with fever.

  7. Internal flow patterns on heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves using ethanol and a silver nano-ethanol mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuwakietkumjohn, N.; Rittidech, S.

    The aim of this research was to investigate the internal flow patterns and heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves (CLOHP/CV). The ratio of number of check valves to meandering turns was 0.2. Ethanol and a silver nano-ethanol mixture were used as working fluids with a filling ratio of 50% by total volume of tube. The CLOHP/CV was made of a glass tube with an inside diameter of 2.4 mm. The evaporator section was 50 mm and 100 mm in length and there were 10 meandering turns. An inclination angle of 90 from horizontal axis wasmore » established. The evaporator section was heated by an electric heater and the condenser section was cooled by distilled water. Temperature at the evaporator section was controlled at 85 C, 105 C and 125 C. The inlet and outlet temperatures were measured. A digital camera and video camera were used to observe the flow patterns at the evaporator. The silver nano-ethanol mixture gave higher heat flux than ethanol. When the temperature at the evaporator section was increased from 85 C to 105 C and 125 C. It was found that, the flow patterns occurred as annular flow + slug flow, slug flow + bubble flow and dispersed bubble flow + bubble flow respectively. The main regime of each flow pattern can be determined from the flow pattern map ethanol and a silver nano-ethanol mixture. Each of the two working fluids gave corresponding flow patterns. (author)« less

  8. 46 CFR 176.810 - Fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Inspection of each hand portable fire extinguisher, semiportable fire extinguisher, and fixed gas fire..., and valves, and the inspection and testing of alarms and ventilation shutdowns, for each fixed gas...) Checking of each cylinder containing compressed gas to ensure it has been tested and marked in accordance...

  9. Heat driven pulse pump

    NASA Technical Reports Server (NTRS)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  10. Heat exchanger efficiently operable alternatively as evaporator or condenser

    DOEpatents

    Ecker, Amir L.

    1981-01-01

    A heat exchanger adapted for efficient operation alternatively as evaporator or condenser and characterized by flexible outer tube having a plurality of inner conduits and check valves sealingly disposed within the outer tube and connected with respective inlet and outlet master flow conduits and configured so as to define a parallel flow path for a first fluid such as a refrigerant when flowed in one direction and to define a serpentine and series flow path for the first fluid when flowed in the opposite direction. The flexible outer tube has a heat exchange fluid, such as water, flowed therethrough by way of suitable inlet and outlet connections. The inner conduits and check valves form a package that is twistable so as to define a spiral annular flow path within the flexible outer tube for the heat exchange fluid. The inner conduits have thin walls of highly efficient heat transfer material for transferring heat between the first and second fluids. Also disclosed are specific materials and configurations.

  11. Electromagnetically-Actuated Reciprocating Pump for High-Flow-Rate Microfluidic Applications

    PubMed Central

    Ke, Ming-Tsun; Zhong, Jian-Hao; Lee, Chia-Yen

    2012-01-01

    This study presents an electromagnetically-actuated reciprocating pump for high-flow-rate microfluidic applications. The pump comprises four major components, namely a lower glass plate containing a copper microcoil, a middle PMMA plate incorporating a PDMS diaphragm with a surface-mounted magnet, upper PMMA channel plates, and a ball-type check valve located at the channel inlet. When an AC current is passed through the microcoil, an alternating electromagnetic force is established between the coil and the magnet. The resulting bi-directional deflection of the PDMS diaphragm causes the check-valve to open and close; thereby creating a pumping effect. The experimental results show that a coil input current of 0.4 A generates an electromagnetic force of 47 mN and a diaphragm deflection of 108 μm. Given an actuating voltage of 3 V and a driving frequency of 15 Hz, the flow rate is found to be 13.2 mL/min under zero head pressure conditions. PMID:23201986

  12. Environmental control system transducer development study. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Brudnicki, M. J.

    1974-01-01

    A development test program of transducers for aerospace projects is described. Stability and performance of existing transducers, and improvements compatible with shuttle ECS requirements are investigated. These requirements incorporate design and development features into the transducers, and include the following: (1) improvement of overall transducer ruggedness and reliability; (2) common transducers for all ECS fluids that will be unaffected by long quiescent periods in the space environment, that will require no maintenance or refurbishing for at least 100 launches; and (3) appropriate self-check features that simplify checkout and maintenance. Models of three different transducers, a three-way valve for pressure transducers from closed liquid loops, surface-type platinum-wire resistance temperature sensors, and a nuclenics gaging system are evaluated. Tests and development improvements are described.

  13. 78 FR 26716 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... currently requires a repetitive inspection program on certain check valves in the hydraulic systems that... hydraulic systems on airplanes that have had a certain modification embodied during production or in-service... hydraulic leaks, possibly leading to the loss of all three hydraulic systems and consequent loss of control...

  14. 46 CFR 76.25-20 - Pressure tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Suitable check valves shall be installed to prevent salt water from entering the pressure tank, and low water and low pressure alarms shall be fitted. (b) [Reserved] ... 46 Shipping 3 2010-10-01 2010-10-01 false Pressure tank. 76.25-20 Section 76.25-20 Shipping COAST...

  15. 46 CFR 172.150 - Survival conditions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Subchapter O of This Chapter § 172.150 Survival conditions. A tankship is presumed to survive assumed damage...) Each submerged opening must be weathertight. (d) Progressive flooding. Pipes, ducts or tunnels within the assumed extent of damage must be either— (1) Equipped with arrangements such as stop check valves...

  16. 46 CFR 172.150 - Survival conditions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Subchapter O of This Chapter § 172.150 Survival conditions. A tankship is presumed to survive assumed damage...) Each submerged opening must be weathertight. (d) Progressive flooding. Pipes, ducts or tunnels within the assumed extent of damage must be either— (1) Equipped with arrangements such as stop check valves...

  17. 46 CFR 172.150 - Survival conditions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Subchapter O of This Chapter § 172.150 Survival conditions. A tankship is presumed to survive assumed damage...) Each submerged opening must be weathertight. (d) Progressive flooding. Pipes, ducts or tunnels within the assumed extent of damage must be either— (1) Equipped with arrangements such as stop check valves...

  18. Carotenoids co-localize with hydroxyapatite, cholesterol, and other lipids in calcified stenotic aortic valves. Ex vivo Raman maps compared to histological patterns.

    PubMed

    Bonetti, A; Bonifacio, A; Della Mora, A; Livi, U; Marchini, M; Ortolani, F

    2015-04-20

    Unlike its application for atherosclerotic plaque analysis, Raman microspectroscopy was sporadically used to check the sole nature of bioapatite deposits in stenotic aortic valves, neglecting the involvement of accumulated lipids/lipoproteins in the calcific process. Here, Raman microspectroscopy was employed for examination of stenotic aortic valve leaflets to add information on nature and distribution of accumulated lipids and their correlation with mineralization in the light of its potential precocious diagnostic use. Cryosections from surgically explanted stenotic aortic valves (n=4) were studied matching Raman maps against specific histological patterns. Raman maps revealed the presence of phospholipids/triglycerides and cholesterol, which showed spatial overlapping with one another and Raman-identified hydroxyapatite. Moreover, the Raman patterns correlated with those displayed by both von-Kossa-calcium- and Nile-blue-stained serial cryosections. Raman analysis also provided the first identification of carotenoids, which co-localized with the identified lipid moieties. Additional fit concerned the distribution of collagen and elastin. The good correlation of Raman maps with high-affinity staining patterns proved that Raman microspectroscopy is a reliable tool in evaluating calcification degree, alteration/displacement of extracellular matrix components, and accumulation rate of different lipid forms in calcified heart valves. In addition, the novel identification of carotenoids supports the concept that valve stenosis is an atherosclerosis-like valve lesion, consistently with their previous Raman microspectroscopical identification inside atherosclerotic plaques.

  19. Independent Orbiter Assessment (IOA): Analysis of the elevon subsystem

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.; Riccio, J. R.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Orbiter Elevon system hardware. The elevon actuators are located at the trailing edge of the wing surface. The proper function of the elevons is essential during the dynamic flight phases of ascent and entry. In the ascent phase of flight, the elevons are used for relieving high wing loads. For entry, the elevons are used to pitch and roll the vehicle. Specifically, the elevon system hardware comprises the following components: flow cutoff valve; switching valve; electro-hydraulic (EH) servoactuator; secondary delta pressure transducer; bypass valve; power valve; power valve check valve; primary actuator; primary delta pressure transducer; and primary actuator position transducer. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 25 failure modes analyzed, 18 were determined to be PCIs.

  20. Two-tank working gas storage system for heat engine

    DOEpatents

    Hindes, Clyde J.

    1987-01-01

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  1. 49 CFR 230.57 - Injectors and feedwater pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Appurtenances Injectors, Feedwater Pumps, and Flue Plugs § 230.57 Injectors and feedwater pumps. (a) Water... water to the boiler, at least one of which is a live steam injector. (b) Maintenance and testing... delivering water to the boiler. Boiler checks, delivery pipes, feed water pipes, tank hose and tank valves...

  2. 46 CFR 174.207 - Damaged stability criteria.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Permeability of spaces. The permeability of a floodable space must be as specified by Table 174.207(b) of this...) Equipped with arrangements, such as stop check-valves, to prevent progressive flooding of the spaces with... permit progressive flooding of the spaces with which they connect. (d) Buoyancy of superstructure. For...

  3. 46 CFR 174.207 - Damaged stability criteria.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Permeability of spaces. The permeability of a floodable space must be as specified by Table 174.207(b) of this...) Equipped with arrangements, such as stop check-valves, to prevent progressive flooding of the spaces with... permit progressive flooding of the spaces with which they connect. (d) Buoyancy of superstructure. For...

  4. 46 CFR 174.207 - Damaged stability criteria.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Permeability of spaces. The permeability of a floodable space must be as specified by Table 174.207(b) of this...) Equipped with arrangements, such as stop check-valves, to prevent progressive flooding of the spaces with... permit progressive flooding of the spaces with which they connect. (d) Buoyancy of superstructure. For...

  5. 46 CFR 174.207 - Damaged stability criteria.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Permeability of spaces. The permeability of a floodable space must be as specified by Table 174.207(b) of this...) Equipped with arrangements, such as stop check-valves, to prevent progressive flooding of the spaces with... permit progressive flooding of the spaces with which they connect. (d) Buoyancy of superstructure. For...

  6. Pressure-Application Device for Testing Pressure Sensors

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A portable pressure-application device has been designed and built for use in testing and calibrating piezoelectric pressure transducers in the field. The device generates pressure pulses of known amplitude. A pressure pulse (in contradistinction to a steady pressure) is needed because in the presence of a steady pressure, the electrical output of a piezoelectric pressure transducer decays rapidly with time. The device includes a stainless- steel compressed-air-storage cylinder of 500 cu cm volume. A manual hand pump with check valves and a pressure gauge are located at one end of the cylinder. A three-way solenoid valve that controls the release of pressurized air is located at the other end of the cylinder. Power for the device is provided by a 3.7-V cordless-telephone battery. The valve is controlled by means of a pushbutton switch, which activates a 5 V to +/-15 V DC-to-DC converter that powers the solenoid. The outlet of the solenoid valve is connected to the pressure transducer to be tested. Before the solenoid is energized, the transducer to be tested is at atmospheric pressure. When the solenoid is actuated by the push button, pressurized air from inside the cylinder is applied to the transducer. Once the pushbutton is released, the cylinder pressure is removed from the transducer and the pressurized air applied to the transducer is vented, bringing the transducer back to atmospheric pressure. Before this device was used for actual calibration, its accuracy was checked with a NIST (National Institute of Standards and Technology) traceable calibrator and commercially calibrated pressure transducers. This work was done by Wanda Solano of Stennis Space Center and Greg Richardson of Lockheed Martin Corp.

  7. Development of a thermodynamic model for a cold cycle 3He-4He dilution refrigerator

    NASA Astrophysics Data System (ADS)

    Mueller, B. W.; Miller, F. K.

    2016-10-01

    A thermodynamic model of a 3He-4He cold cycle dilution refrigerator with no actively-driven mechanical components is developed and investigated. The refrigerator employs a reversible superfluid magnetic pump, passive check valves, a phase separation chamber, and a series of recuperative heat exchangers to continuously circulate 3He-4He and maintain a 3He concentration gradient across the mixing chamber. The model predicts cooling power and mixing chamber temperature for a range of design and operating parameters, allowing an evaluation of feasibility for potential 3He-4He cold cycle dilution refrigerator prototype designs. Model simulations for a prototype refrigerator design are presented.

  8. A microfluidic circulatory system integrated with capillary-assisted pressure sensors.

    PubMed

    Chen, Yangfan; Chan, Ho Nam; Michael, Sean A; Shen, Yusheng; Chen, Yin; Tian, Qian; Huang, Lu; Wu, Hongkai

    2017-02-14

    The human circulatory system comprises a complex network of blood vessels interconnecting biologically relevant organs and a heart driving blood recirculation throughout this system. Recreating this system in vitro would act as a bridge between organ-on-a-chip and "body-on-a-chip" and advance the development of in vitro models. Here, we present a microfluidic circulatory system integrated with an on-chip pressure sensor to closely mimic human systemic circulation in vitro. A cardiac-like on-chip pumping system is incorporated in the device. It consists of four pumping units and passive check valves, which mimic the four heart chambers and heart valves, respectively. Each pumping unit is independently controlled with adjustable pressure and pump rate, enabling users to control the mimicked blood pressure and heartbeat rate within the device. A check valve is located downstream of each pumping unit to prevent backward leakage. Pulsatile and unidirectional flow can be generated to recirculate within the device by programming the four pumping units. We also report an on-chip capillary-assisted pressure sensor to monitor the pressure inside the device. One end of the capillary was placed in the measurement region, while the other end was sealed. Time-dependent pressure changes were measured by recording the movement of the liquid-gas interface in the capillary and calculating the pressure using the ideal gas law. The sensor covered the physiologically relevant blood pressure range found in humans (0-142.5 mmHg) and could respond to 0.2 s actuation time. With the aid of the sensor, the pressure inside the device could be adjusted to the desired range. As a proof of concept, human normal left ventricular and arterial pressure profiles were mimicked inside this device. Human umbilical vein endothelial cells (HUVECs) were cultured on chip and cells can respond to mechanical forces generated by arterial-like flow patterns.

  9. Long-term corrosion evaluation of stainless steels in Space Shuttle iodinated resin and water

    NASA Technical Reports Server (NTRS)

    Krohn, Douglas D.

    1992-01-01

    The effects of stainless steel exposure to iodinated water is a concern in developing the Integrated Water System (IWS) for Space Station Freedom. The IWS has a life requirement of 30 years, but the effects of general and localized corrosion over such a long period have not been determined for the candidate materials. In 1978, Umpqua Research Center immersed stainless steel 316L, 321, and 347 specimens in a solution of deionized water and the Space Shuttle microbial check valve resin. In April 1990, the solution was chemically analyzed to determine the level of corrosion formed, and the surface of each specimen was examined with scanning electron microscopy and metallography to determine the extent of general and pitting corrosion. This examination showed that the attack on the stainless steels was negligible and never penetrated past the first grain boundary layer. Of the three alloys, 316L performed the best; however, all three materials proved to be compatible with an aqueous iodine environment. In addition to the specimens exposed to aqueous iodine, a stainless steel specimen (unspecified alloy) was exposed to moist microbial check valve resin and air for a comparable period. This environment allowed contact of the metal to the resin as well as to the iodine vapor. Since the particular stainless steel alloy was not known, energy dispersive spectroscopy was used to determine that this alloy was stainless steel 301. The intergranular corrosion found on the specimen was limited to the first grain boundary layer.

  10. Dielectric elastomer pump for artificial organisms

    NASA Astrophysics Data System (ADS)

    Bowers, Amy E.; Rossiter, Jonathan M.; Walters, Peter J.; Ieropoulos, Ioannis A.

    2011-04-01

    This paper presents a bio-inspired, dielectric elastomer (DE) based tubular pumping unit, developed for eventual use as a component of an artificial digestive tract onboard a microbial fuel cell powered robot (EcoBot). The pump effects fluid displacement by direct actuation of the tube wall as opposed to excitation by an external body. The actuator consists of a DE tube moulded from silicone, held in a negative pressure chamber, which is used for prestraining the tube. The pump is coupled with custom designed polymeric check valves in order to rectify the fluid flow and assess the performance of the unit. The valves exhibited the necessary low opening pressures required for use with the actuator. The tube's actuation characteristics were measured both with and without liquid in the system. Based on these data the optimal operating conditions for the pump are discussed. The pump and valve system has achieved flowrates in excess of 40μl/s. This radially contracting/expanding actuator element is the fundamental component of a peristaltic pump. This 'soft pump' concept is suitable for biomimetic robotic systems, or for the medical or food industries where hard contact with the delivered substrate may be undesirable. Future work will look at connecting multiple tubes in series in order to achieve peristalsis.

  11. Sample Processor for Life on Icy Worlds (SPLIce): Design and Test Results

    NASA Technical Reports Server (NTRS)

    Chinn, Tori N.; Lee, Anthony K.; Boone, Travis D.; Tan, Ming X.; Chin, Matthew M.; McCutcheon, Griffin C.; Horne, Mera F.; Padgen, Michael R.; Blaich, Justin T.; Forgione, Joshua B.; hide

    2017-01-01

    We report the design, development, and testing of the Sample Processor for Life on Icy Worlds (SPLIce) system, a microfluidic sample processor to enable autonomous detection of signatures of life and measurements of habitability parameters in Ocean Worlds. This monolithic fluid processing-and-handling system (Figure 1; mass 0.5 kg) retrieves a 50-L-volume sample and prepares it to supply a suite of detection instruments, each with unique preparation needs. SPLIce has potential applications in orbiter missions that sample ocean plumes, such as found in Saturns icy moon Enceladus, or landed missions on the surface of icy satellites, such as Jupiters moon Europa. Answering the question Are we alone in the universe? is captivating and exceptionally challenging. Even general criteria that define life very broadly include a significant role for water [1,2]. Searches for extinct or extant life therefore prioritize locations of abundant water whether in ancient (Mars), or present (Europa and Enceladus) times. Only two previous planetary missions had onboard fluid processing: the Viking Biology Experiments [3] and Phoenixs Wet Chemistry Laboratory (WCL) [4]. SPLIce differs crucially from those systems, including its capability to process and distribute L-volume samples and the integration autonomous control of a wide range of fluidic functions, including: 1) retrieval of fluid samples from an evacuated sample chamber; 2) onboard multi-year storage of dehydrated reagents; 3) integrated pressure, pH, and conductivity measurement; 4) filtration and retention of insoluble particles for microscopy; 5) dilution or vacuum-driven concentration of samples to accommodate instrument working ranges; 6) removal of gas bubbles from sample aliquots; 7) unidirectional flow (check valves); 8) active flow-path selection (solenoid-actuated valves); 9) metered pumping in 100 nL volume increments. The SPLIce manifold, made of three thermally fused layers of precision-machined cyclo-olefin polymer, supports all fluidic components (Figure 1) and integrated microchannels (125 x 250 m). Fluid is pumped by a stepper-motor-driven pump (Lee Co.). The functionality of the integrated MEMS pressure sensor (Honeywell) and passive check valves (Figure 2) were tested in conjunction with our newly designed integral bubble traps (Figure 3) and hydrophobic membrane-based concentrator (Figure 4). The concentrator (initially tested as a standalone component) demonstrated 5-fold vacuum-evaporative concentration. Polyethylene fused bead beds (PEFBBs; 50 porosity) store drylyophilized buffers, calibrants, and fluorescent dyes, and also promote mixing of sample with calibrant, dye, or H2O. Software-controlled automated tests demonstrated successful 1) fluid delivery to each component 2) valve and pump synchronization 3) sample aliquot delivery to instrument interface ports, and 4) rehydration of vacuum-dried fluorescent dye. In Figure 5, fluorescein on PEFBBs was rehydrated for 15 min using a pump-delivered water aliquot; it is displaced as H2O enters the bottom of the channel and pushes the dye into a check valve. Ultimately, SPLIce will fluorescently label amino acids in the sample for microchip-based electrophoretic (MCE) chiral separation and detection to seek and quantify key organic bio-signatures [5]; it will also deliver sample to a microfluidic version of WCL (mWCL) to measure soluble ions and redox-active species.

  12. Thrombolysis Is an Effective and Safe Therapy in Stuck Mitral Valves With Delayed Presentation as Well as Hemodynamically Unstable Patients: A Single Centre Study

    PubMed Central

    Bade, Arun Shivajirao; Shaikh, Shakil Sattar Ahmed; Khemani, Hemant; Singh, Gurkirat; Bansal, Narender Omprakash

    2018-01-01

    Background Thrombosis is a complication of prosthetic valves on oral anticoagulants which is associated with significant morbidity and mortality. A re-operation carries a substantial risk, with mortality rate from 10% to 15% in selected series, which may be 2- or 3-folds higher in critically ill patients. This study conducted in a tertiary care cardiology unit aimed to evaluate the effectiveness and safety of thrombolytic therapy in stuck mitral bileaflet heart valves. Methods As a prospective observational study, clinical symptoms and fluoroscopy were the mainstay in diagnosis of stuck mitral valve. Gradient across the valve by transthoracic echocardiography was used to monitor the therapy every 6 h. Fall of mean gradient more than 50% was considered as successful thrombolysis. And final results were again checked by fluoroscopy with documentation of improved leaflet movement. Results Totally we studied 34 patients. Patients receiving thrombolytic therapy with streptokinase achieved an overall 91.2% freedom from a repeat operation or major complications, a large subcutaneous hematoma occurred in one ( 2.9%), reoperation required in two due to failure of treatment (5.9%), allergic reaction in one (2.9%), one patient developed transient neurologic dysfunction (2.9%) and one patient died during therapy due to refractory cardiogenic shock(2.9%). All patients including those with delayed presentation (> 14 days) and hemodynamically unstable patients had good results similar to those who presented within 14 days and hemodynamically stable. Mortality was higher in unstable patients and reoperation was higher with delayed presentation. Conclusions Thrombolysis with streptokinase is highly successful and safe therapy in hemodynamically stable as well as unstable patients, or those with early or delayed presentation with stuck bileaflet mitral valves, especially in centers where round the clock cardiothoracic surgery backup is not available. PMID:29904451

  13. Environmental Assessment for Renovation and Small Addition for AGE Facility MacDill AFB, Florida

    DTIC Science & Technology

    2005-05-01

    one lift station, all of the sanitary sewer lines have, in essence , at least one check valve to stop the inflow of floodwater to the WWTP. The...Force Base Installation Restoration Program 7621 Hillsborough Loop Dr. MacDill AFB, FL 33621-5207 Jasmine Raffington FL Coastal Management

  14. 49 CFR 178.42 - Specification 3E seamless steel cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings. (1) Threads must be clean cut, even, without checks, and to gauge. (2) Taper threads, when used, must be of length not less than as specified for American Standard taper pipe threads. (3) Straight...

  15. 49 CFR 178.42 - Specification 3E seamless steel cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings. (1) Threads must be clean cut, even, without checks, and to gauge. (2) Taper threads, when used, must be of length not less than as specified for American Standard taper pipe threads. (3) Straight...

  16. 49 CFR 178.42 - Specification 3E seamless steel cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings. (1) Threads must be clean cut, even, without checks, and to gauge. (2) Taper threads, when used, must be of length not less than as specified for American Standard taper pipe threads. (3) Straight...

  17. 49 CFR 178.42 - Specification 3E seamless steel cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings. (1) Threads must be clean cut, even, without checks, and to gauge. (2) Taper threads, when used, must be of length not less than as specified for American Standard taper pipe threads. (3) Straight...

  18. 49 CFR 178.42 - Specification 3E seamless steel cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings. (1) Threads must be clean cut, even, without checks, and to gauge. (2) Taper threads, when used, must be of length not less than as specified for American Standard taper pipe threads. (3) Straight...

  19. 49 CFR 180.416 - Discharge system inspection and maintenance program for cargo tanks transporting liquefied...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... unique identification number and maximum working pressure. (c) Post-delivery hose check. After each... unloading. (d) Monthly inspections and tests. (1) The operator must visually inspect each delivery hose... actuate all emergency discharge control devices designed to close the internal self-closing stop valve to...

  20. 49 CFR 180.416 - Discharge system inspection and maintenance program for cargo tanks transporting liquefied...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... unique identification number and maximum working pressure. (c) Post-delivery hose check. After each... unloading. (d) Monthly inspections and tests. (1) The operator must visually inspect each delivery hose... actuate all emergency discharge control devices designed to close the internal self-closing stop valve to...

  1. 49 CFR 180.416 - Discharge system inspection and maintenance program for cargo tanks transporting liquefied...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... unique identification number and maximum working pressure. (c) Post-delivery hose check. After each... unloading. (d) Monthly inspections and tests. (1) The operator must visually inspect each delivery hose... actuate all emergency discharge control devices designed to close the internal self-closing stop valve to...

  2. 49 CFR 180.416 - Discharge system inspection and maintenance program for cargo tanks transporting liquefied...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... unique identification number and maximum working pressure. (c) Post-delivery hose check. After each... unloading. (d) Monthly inspections and tests. (1) The operator must visually inspect each delivery hose... actuate all emergency discharge control devices designed to close the internal self-closing stop valve to...

  3. 76 FR 64801 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    .... But we might have found it necessary to use different words from those in the MCAI to ensure the AD is... blocked by water, which fails to enter the drain bottles. Investigation revealed that drain bottles used in the primary pitot-static system include check valves, which impede the entry of water into the...

  4. 40 CFR 63.148 - Leak inspection provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry... line; or (2) Secure the bypass line valve in the closed position with a car-seal or a lock-and-key type... configuration has been checked out, and records of any car-seal that has broken. (4) For each inspection during...

  5. 40 CFR 63.148 - Leak inspection provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry... line; or (2) Secure the bypass line valve in the closed position with a car-seal or a lock-and-key type... configuration has been checked out, and records of any car-seal that has broken. (4) For each inspection during...

  6. 40 CFR 63.148 - Leak inspection provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry... line; or (2) Secure the bypass line valve in the closed position with a car-seal or a lock-and-key type... configuration has been checked out, and records of any car-seal that has broken. (4) For each inspection during...

  7. 40 CFR 63.148 - Leak inspection provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry... line; or (2) Secure the bypass line valve in the closed position with a car-seal or a lock-and-key type... configuration has been checked out, and records of any car-seal that has broken. (4) For each inspection during...

  8. A Flush Toilet Model for the Transistor

    NASA Astrophysics Data System (ADS)

    Organtini, Giovanni

    2012-04-01

    In introductory physics textbooks, diodes working principles are usually well described in a relatively simple manner. According to our experience, they are well understood by students. Even when no formal derivation of the physics laws governing the current flow through a diode is given, the use of this device as a check valve is easily accepted. This is not true for transistors. In most textbooks the behavior of a transistor is given without formal explanation. When the amplification is computed, for some reason, students have difficulties in identifying the basic physical mechanisms that give rise to such an effect. In this paper we give a simple and captivating illustration of the working principles of a transistor as an amplifier, tailored to high school students even with almost no background in electronics nor in modern physics. We assume that the target audience is familiar with the idea that a diode works as a check valve for currents. The lecture emphasis is on the illustration of physics principles governing the behavior of a transistor, rather than on a formal description of the processes leading to amplification.

  9. Electrochemical control of iodine disinfectant for space transportation system and space station potable water

    NASA Technical Reports Server (NTRS)

    Geer, Richard D.

    1989-01-01

    An electrochemical microbial check valve method (EC-MCV) for controlling the iodine disinfectant in potable water (PW) for NASA's space operations was proposed. The factors affecting the design and performance of the unit were analyzed. This showed that it would be feasible to construct a recyclable unit in a small volume that will operate in either an iodine removal or addition mode. The EC-MCV should remove active iodine species rapidly from PW, but the rapid delivery rates at end-use may make complete removal of excess I(-) difficult under some conditions. Its performace change with AgI buildup needs to be investigated, as this controls the time for recycling the unit. The EC-MCV has advantages over the passive microbial check valve (MCV) method currently in use, as it would allow precise control of the I2 level and would not introduce excess I(-) to the water. The presence of oxygen in the EC-MCV needs to be investigated as it could affect the efficiency of I2 addition and excess I(-) removal.

  10. Carotenoids Co-Localize with Hydroxyapatite, Cholesterol, and Other Lipids in Calcified Stenotic Aortic Valves. Ex Vivo Raman Maps Compared to Histological Patterns

    PubMed Central

    Bonetti, A.; Bonifacio, A.; Mora, A. Della; Livi, U.; Marchini, M.; Ortolani, F.

    2015-01-01

    Unlike its application for atherosclerotic plaque analysis, Raman microspectroscopy was sporadically used to check the sole nature of bioapatite deposits in stenotic aortic valves, neglecting the involvement of accumulated lipids/lipoproteins in the calcific process. Here, Raman microspectroscopy was employed for examination of stenotic aortic valve leaflets to add information on nature and distribution of accumulated lipids and their correlation with mineralization in the light of its potential precocious diagnostic use. Cryosections from surgically explanted stenotic aortic valves (n=4) were studied matching Raman maps against specific histological patterns. Raman maps revealed the presence of phospholipids/triglycerides and cholesterol, which showed spatial overlapping with one another and Raman-identified hydroxyapatite. Moreover, the Raman patterns correlated with those displayed by both von-Kossa-calcium- and Nile-blue-stained serial cryosections. Raman analysis also provided the first identification of carotenoids, which co-localized with the identified lipid moieties. Additional fit concerned the distribution of collagen and elastin. The good correlation of Raman maps with high-affinity staining patterns proved that Raman microspectroscopy is a reliable tool in evaluating calcification degree, alteration/displacement of extracellular matrix components, and accumulation rate of different lipid forms in calcified heart valves. In addition, the novel identification of carotenoids supports the concept that valve stenosis is an atherosclerosis-like valve lesion, consistently with their previous Raman microspectroscopical identification inside atherosclerotic plaques. PMID:26150160

  11. A jazz-based approach for optimal setting of pressure reducing valves in water distribution networks

    NASA Astrophysics Data System (ADS)

    De Paola, Francesco; Galdiero, Enzo; Giugni, Maurizio

    2016-05-01

    This study presents a model for valve setting in water distribution networks (WDNs), with the aim of reducing the level of leakage. The approach is based on the harmony search (HS) optimization algorithm. The HS mimics a jazz improvisation process able to find the best solutions, in this case corresponding to valve settings in a WDN. The model also interfaces with the improved version of a popular hydraulic simulator, EPANET 2.0, to check the hydraulic constraints and to evaluate the performances of the solutions. Penalties are introduced in the objective function in case of violation of the hydraulic constraints. The model is applied to two case studies, and the obtained results in terms of pressure reductions are comparable with those of competitive metaheuristic algorithms (e.g. genetic algorithms). The results demonstrate the suitability of the HS algorithm for water network management and optimization.

  12. Guide for Oxygen Component Qualification Tests

    NASA Technical Reports Server (NTRS)

    Bamford, Larry J.; Rucker, Michelle A.; Dobbin, Douglas

    1996-01-01

    Although oxygen is a chemically stable element, it is not shock sensitive, will not decompose, and is not flammable. Oxygen use therefore carries a risk that should never be overlooked, because oxygen is a strong oxidizer that vigorously supports combustion. Safety is of primary concern in oxygen service. To promote safety in oxygen systems, the flammability of materials used in them should be analyzed. At the NASA White Sands Test Facility (WSTF), we have performed configurational tests of components specifically engineered for oxygen service. These tests follow a detailed WSTF oxygen hazards analysis. The stated objective of the tests was to provide performance test data for customer use as part of a qualification plan for a particular component in a particular configuration, and under worst-case conditions. In this document - the 'Guide for Oxygen Component Qualification Tests' - we outline recommended test systems, and cleaning, handling, and test procedures that address worst-case conditions. It should be noted that test results apply specifically to: manual valves, remotely operated valves, check valves, relief valves, filters, regulators, flexible hoses, and intensifiers. Component systems are not covered.

  13. 40 CFR 86.309-79 - Sampling and analytical system; schematic drawing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or parts of components that are wetted by the sample or corrosive calibration gases shall be either... must be within 2 inches of the analyzer entrance port. (vi) Calibration or span gases for the NOX... calibration gases. (ii) V2—optional heated selector valve to purge the sample probe, perform leak checks, or...

  14. 40 CFR 86.309-79 - Sampling and analytical system; schematic drawing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or parts of components that are wetted by the sample or corrosive calibration gases shall be either... must be within 2 inches of the analyzer entrance port. (vi) Calibration or span gases for the NOX... calibration gases. (ii) V2—optional heated selector valve to purge the sample probe, perform leak checks, or...

  15. A Flush Toilet Model for the Transistor

    ERIC Educational Resources Information Center

    Organtini, Giovanni

    2012-01-01

    In introductory physics textbooks, diodes working principles are usually well described in a relatively simple manner. According to our experience, they are well understood by students. Even when no formal derivation of the physics laws governing the current flow through a diode is given, the use of this device as a check valve is easily accepted.…

  16. KSC-06pd0616

    NASA Image and Video Library

    2006-04-13

    KENNEDY SPACE CENTER, FLA. - In the transfer aisle of the Vehicle Assembly Building, workers check the rim around the nose cap of external tank number 119, the tank designated for mission STS-121. The cap was removed in order to install a new gaseous oxygen vent valve underneath. Vapors are created prior to launch as the liquid oxygen in the external tank boils off. At the forward end of each external tank propellant tank is a vent and relief valve that can be opened before launch for venting or by excessive tank pressure for relief. The vent function is available only before launch. Mission STS-121 to the International Space Station is scheduled for launch in July. Photo credit: NASA/Jim Grossmann

  17. 40 CFR 86.140-94 - Exhaust sample analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) and (2) of this section if required. (4) Check flow rates and pressures. (5) Measure THC, CO, CO2, CH4... accomplished by either of the following methods: (i) Close heated valve in THC sample (see Figures B94-5 or B94... pressure. (ii) Connect zero and span line directly to THC sample probe and introduce gases at a flow rate...

  18. 40 CFR 86.140-94 - Exhaust sample analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) and (2) of this section if required. (4) Check flow rates and pressures. (5) Measure THC, CO, CO2, CH4... accomplished by either of the following methods: (i) Close heated valve in THC sample (see Figures B94-5 or B94... pressure. (ii) Connect zero and span line directly to THC sample probe and introduce gases at a flow rate...

  19. 40 CFR 86.140-94 - Exhaust sample analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) and (2) of this section if required. (4) Check flow rates and pressures. (5) Measure THC, CO, CO2, CH4... accomplished by either of the following methods: (i) Close heated valve in THC sample (see Figures B94-5 or B94... pressure. (ii) Connect zero and span line directly to THC sample probe and introduce gases at a flow rate...

  20. Tidal sampler

    DOEpatents

    Hayes, David W.

    1978-01-01

    An apparatus for pumping a sample of water or other liquid that uses the energy generated from the rise and fall of the liquid level to force a sample of the liquid into a collection vessel. A suction vessel and booster vessel with interconnecting tubing and check valves are responsive to an oscillating liquid level to pump a portion of said liquid into a collection vessel.

  1. A check valve controlled laser-induced microjet for uniform transdermal drug delivery

    NASA Astrophysics Data System (ADS)

    Ham, Hwi-chan; Jang, Hun-jae; Yoh, Jack J.

    2017-12-01

    A narrow nozzle ejects a microjet of 150 μm in diameter with a velocity of 140 m/s a by the laser-induced bubble expansion in the designed injector. The pulsed form of the driving force at a period of 10 Hz from the connected Er:YAG laser makes it possible for multiple microjet ejections aimed at delivery of drugs into a skin target. The pulsed actuation of the microjet generation is however susceptible to the air leak which can cause the outside air to enter into the momentarily de-pressurized nozzle, leading to a significant reduction of the microjet speed during the pulsed administering of the drug. In the present study, we designed a ball-check valve injector which is less prone to an unwanted air build up inside the nozzle by controlling the nozzle pressure to remain above ambient pressure at all times. The new device is rigorously compared against the reported performance of the previous injector and has shown to maintain about 97% of the initial microjet speed regardless of the number of shots administered; likewise, the drug penetration depth into a porcine skin is improved to 1.5 to 2.25 times the previously reported penetration depths.

  2. Is mitral valve repair superior to replacement for chronic ischemic mitral regurgitation with left ventricular dysfunction?

    PubMed Central

    2010-01-01

    Background This study was undertaken to compare mitral valve repair and replacement as treatments for ischemic mitral regurgitation (IMR) with left ventricular dysfunction (LVD). Specifically, we sought to determine whether the choice of mitral valve procedure affected survival, and discover which patients were predicted to benefit from mitral valve repair and which from replacement. Methods A total of 218 consecutive patients underwent either mitral valve repair (MVP, n = 112) or mitral valve replacement (MVR, n = 106). We retrospectively reviewed the clinical material, operation methods, echocardiography check during operation and follow-up. Patients details and follow-up outcomes were compared using multivariate and Kaplan-Meier analyses. Results No statistical difference was found between the two groups in term of intraoperative data. Early mortality was 3.2% (MVP 2.7% and MVR 3.8%). At discharge, Left ventricular end-systolic and end-diastolic diameter and left ventricular ejection fraction (LVEF) were improved more in the MVP group than MVR group (P < 0.05), however, in follow-up no statistically significant difference was observed between the MVR and MVP group (P > 0.05). Follow-up mitral regurgitation grade was significantly improved in the MVR group compared with the MVP group (P < 0.05). The Kaplan-Meier survival estimates at 1, 3, and 5 years were simlar between MVP and MVR group. Logistic regression revealed poor survival was associated with old age(#75), preoperative renal insufficiency and low left ventricular ejection fraction (< 30%). Conclusion Mitral valve repair is the procedure of choice in the majority of patients having surgery for severe ischemic mitral regurgitation with left ventricular dysfunction. Early results of MVP treatment seem to be satisfactory, but several lines of data indicate that mitral valve repair provided less long-term benefit than mitral valve replacement in the LVD patients. PMID:21059216

  3. Banking cryopreserved heart valves in Europe: assessment of a 5-year operation in an international tissue bank in Brussels.

    PubMed

    Goffin, Y; Grandmougin, D; Van Hoeck, B

    1996-01-01

    The heart valve bank of the European Homograft Bank has been set up in 1988 to meet the growing demand of cardiac surgeons for various sized and quality controlled cryopreserved homografts. Heart valve donors less than 60 years of age were classified in 3 categories: multiorgan donors with non transplantable hearts, recipients of cardiac transplantation and non beating heart cadavers with a warm ischemic time of less than 6 hours. Past history and biology were checked for transmissible diseases. Preparation, progressive freezing and storage in liquid nitrogen vapors, and quality control were according to the standards of the Belgian Ministry of Health. From end January 1989 to end May 1994, 989 homograft valves were cryopreserved (514 pulmonary, 475 aortic and 3 mitral) whereas 962 valves were discarded. The first cause of rejection being a major macroscopic lesion (41.48%). 138 hearts accepted at inspection were contaminated and 43 cases remained so after antibiotics. 38 cases were positive for hepatitis B or C. Complication at distribution and thawing included 10 instances of bag rupture and 15 of transversal fracture through the wall of the conduit. 477 aortic, 474 pulmonary valves as well as one mitral were implanted between May 1989 and May 1994, either for left or right ventricular outflow tract reconstruction. In the left ventricular outflow tract series 111 aortic and 23 pulmonary homograft valves were used in cases of native endocarditis, prosthetic endocarditis or recurrent endocarditis after homograft implantation. 9.6% of the requests could no be satisfied. Regular follow up information was available from 382 implants-40.1% only. The assessment of 5 years operation of the heart valve bank indicates: 1) the efficiency of selecting, cryopreserving and allocating quality controlled homograft valves from a large pool of donor hearts provided by a network of hospitals; 2) the difficulty of obtaining regular follow up information on the implants.

  4. Nonlinear solid finite element analysis of mitral valves with heterogeneous leaflet layers

    NASA Astrophysics Data System (ADS)

    Prot, V.; Skallerud, B.

    2009-02-01

    An incompressible transversely isotropic hyperelastic material for solid finite element analysis of a porcine mitral valve response is described. The material model implementation is checked in single element tests and compared with a membrane implementation in an out-of-plane loading test to study how the layered structures modify the stress response for a simple geometry. Three different collagen layer arrangements are used in finite element analysis of the mitral valve. When the leaflets are arranged in two layers with the collagen on the ventricular side, the stress in the fibre direction through the thickness in the central part of the anterior leaflet is homogenized and the peak stress is reduced. A simulation using membrane elements is also carried out for comparison with the solid finite element results. Compared to echocardiographic measurements, the finite element models bulge too much in the left atrium. This may be due to evidence of active muscle fibres in some parts of the anterior leaflet, whereas our constitutive modelling is based on passive material.

  5. Multi-bottle, no compressor, mean pressure control system for a Stirling engine

    DOEpatents

    Corey, John A.

    1990-01-01

    The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.

  6. Pressure Relief Devices

    NASA Astrophysics Data System (ADS)

    Manha, William D.

    2010-09-01

    Pressure relief devices are used in pressure systems and on pressure vessels to prevent catastrophic rupture or explosion from excessive pressure. Pressure systems and pressure vessels have manufacturers maximum rated operating pressures or maximum design pressures(MDP) for which there are relatively high safety factors and minimum risk of rupture or explosion. Pressure systems and pressure vessels that have a potential to exceed the MDP by being connected to another higher pressure source, a compressor, or heat to water(boiler) are required to have over-pressure protecting devices. Such devices can be relief valves and/or burst discs to safely relieve potentially excessive pressure and prevent unacceptable ruptures and explosions which result in fail-safe pressure systems and pressure vessels. Common aerospace relief valve and burst disc requirements and standards will be presented. This will include the NASA PSRP Interpretation Letter TA-88-074 Fault Tolerance of Systems Using Specially Certified Burst Disks that dictates burst disc requirements for payloads on Shuttle. Two recent undesirable manned space payloads pressure relief devices and practices will be discussed, as well as why these practices should not be continued. One example for discussion is the use of three burst discs that have been placed in series to comply with safety requirements of three controls to prevent a catastrophic hazard of the over-pressurization and rupture of pressure system and/or vessels. The cavities between the burst discs are evacuated and are the reference pressures for activating the two upstream burst discs. If the upstream burst disc leaks into the reference cavity, the reference pressure increases and it can increase the burst disc activating pressure and potentially result in the burst disc assembly being ineffective for over pressure protection. The three burst discs-in-series assembly was found acceptable because the burst discs are designed for minimum risk(DFMR) of leakage into the reference cavity. Since the burst discs are DFMR, a single burst disc would suffice, without adding the two leak-into-reference cavity failure modes. A single DFMR burst disc is preferable. An Alpha Magnetic Spectrometer - 02 burst disc assembly, with three-in-series burst discs test failure, necessitated the deletion of one of the burst discs, will be presented. Payload relief valves require periodic retests were extended significantly beyond the normal one year retest period because of the reduced ISS down mass capability which followed the Columbia accident. The acceptability of the extended retest period was determined by analysis, materials stability, benign environment, relatively inert fluid exposure, etc.(The policy letter, NC4-02-205 Guidelines for Certification and Verification of Pressure System Control Hardware, that permitted this action will be provided even though this application is not recommended for extending relief valve annual retest requirements.) The first crack pressure of a relief valve after an extended inactive period can be higher than the set crack pressure. Extrapolation of the extended inactive period and increased crack pressure could result in ineffective over pressure protection. Thus, relief valves with a ring or lever for activation are recommended so the relief valve can periodically be verified to open, functionality verified and the extended relief valve retest period should be discouraged. Stainless Steel cylindrical poppet-in-cylindrical housing check valves should never be used in a fluid with ions for an extended period of time, because the poppet is vulnerable to seizing or not functioning as a relief valve, even though the specifications, crack pressure, reseat pressure, maximum flow, and reseat leak look very much like the specifications for a relief valve. The technical reasons for this avoidance of using check valves as a relief valve will be discussed. The presentation will be summarized and recommendations made.

  7. Independent Orbiter Assessment (IOA): Analysis of the orbiter main propulsion system

    NASA Technical Reports Server (NTRS)

    Mcnicoll, W. J.; Mcneely, M.; Holden, K. A.; Emmons, T. E.; Lowery, H. J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Main Propulsion System (MPS) hardware are documented. The Orbiter MPS consists of two subsystems: the Propellant Management Subsystem (PMS) and the Helium Subsystem. The PMS is a system of manifolds, distribution lines and valves by which the liquid propellants pass from the External Tank (ET) to the Space Shuttle Main Engines (SSMEs) and gaseous propellants pass from the SSMEs to the ET. The Helium Subsystem consists of a series of helium supply tanks and their associated regulators, check valves, distribution lines, and control valves. The Helium Subsystem supplies helium that is used within the SSMEs for inflight purges and provides pressure for actuation of SSME valves during emergency pneumatic shutdowns. The balance of the helium is used to provide pressure to operate the pneumatically actuated valves within the PMS. Each component was evaluated and analyzed for possible failure modes and effects. Criticalities were assigned based on the worst possible effect of each failure mode. Of the 690 failure modes analyzed, 349 were determined to be PCIs.

  8. ETR HEAT EXCHANGER BUILDING, TRA644. A PRIMARY COOLANT PUMP AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR HEAT EXCHANGER BUILDING, TRA-644. A PRIMARY COOLANT PUMP AND 24-INCH CHECK VALVE ARE MOUNTED IN A SHIELDED CUBICLE. NOTE CONNECTION AT RIGHT THROUGH SHIELD WALL TO PUMP MOTOR ON OTHER SIDE. INL NEGATIVE NO. 56-4177. Jack L. Anderson, Photographer, 12/21/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  9. Active Diagnosis of Navy Machinery Rev 2.0

    DTIC Science & Technology

    2016-10-01

    electrical distribution and potable water supply systems. Because of these dependencies, ship auxiliary system failures can cause combat load failure...buildup generally causes a pipe to disconnect from a junction, causing water to leak . This limits the faults that are testable, since many of the faults...pipes, junctions, pumps, flow meters, thermal loads, check valve, and water tank. Each agent is responsible for maintaining its constraints locally

  10. Regenerable biocide delivery unit, volume 1

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Wheeler, Richard R., Jr.

    1992-01-01

    The Microbial Check Valve (MCV), which is currently used aboard the Shuttle Orbiter for disinfection of the potable water supply, is an expendable flow-through canister containing iodinated ion exchange resin. Means for extension of MCV life are desirable to avoid resupply penalties. The Phase 1 Regenerable Biocide Delivery Unit program demonstrated the feasibility of regenerating an MCV in situ, using a strong aqueous elemental iodine solution resulting from diversion of the MCV influent to a packed bed containing iodine crystals. In small column tests, eight manual regenerations of an MCV resin were accomplished. The term Regenerative Microbial Check Valve (RMCV) was adopted describing this new technology. The Phase 2 program resulted in the development of a full scale and fully autonomous prototype RMCV, capable of maintaining residual I(sub 2) levels between 2.0 - 4.0 mg/L for prolonged periods. During six months of testing at the Space Station baseline flow rate of 120 cm(sup 3)/min, the prototype RMCV underwent nine regenerations. RMCV life cycle tests, using a variety of influent streams, were conducted over an eighteen month period to determine the useful lives of MCV's incorporating this new technology and to determine ultimate failure mechanisms. MCV life extensions of 130 fold were demonstrated, limited only by the Phase 2 performance period. Based upon this work, it is certain that RMCV units can be developed to provide unattended biocide addition for the thirty year life of Space Station Freedom, or for other longer duration applications such as a Lunar Base or Mars mission. RMCV technology was also demonstrated capable of delivering, on demand, a concentrated aqueous I(sub 2) solution for potential use as a disinfectant during transient episodes of microbial surface contamination, for the control of biofilm formation, or as a preventative measure in systems which are particularly susceptible to the growth of microorganisms.

  11. How to Make a Heart Valve: From Embryonic Development to Bioengineering of Living Valve Substitutes

    PubMed Central

    MacGrogan, Donal; Luxán, Guillermo; Driessen-Mol, Anita; Bouten, Carlijn; Baaijens, Frank; de la Pompa, José Luis

    2014-01-01

    Cardiac valve disease is a significant cause of ill health and death worldwide, and valve replacement remains one of the most common cardiac interventions in high-income economies. Despite major advances in surgical treatment, long-term therapy remains inadequate because none of the current valve substitutes have the potential for remodeling, regeneration, and growth of native structures. Valve development is coordinated by a complex interplay of signaling pathways and environmental cues that cause disease when perturbed. Cardiac valves develop from endocardial cushions that become populated by valve precursor mesenchyme formed by an epithelial–mesenchymal transition (EMT). The mesenchymal precursors, subsequently, undergo directed growth, characterized by cellular compartmentalization and layering of a structured extracellular matrix (ECM). Knowledge gained from research into the development of cardiac valves is driving exploration into valve biomechanics and tissue engineering directed at creating novel valve substitutes endowed with native form and function. PMID:25368013

  12. Pulsation damping of the reciprocating compressor with Helmholtz resonator

    NASA Astrophysics Data System (ADS)

    Wang, W.; Zhang, Y.; Zhou, Q.; Peng, X.; Feng, J.; Jia, X.

    2017-08-01

    Research presented in this paper investigated the mounting of a Helmholtz resonator near the valve chamber of a reciprocating compressor to attenuate the gas pulsation in the valve chamber as well as the pipeline downstream. Its attenuation characteristics were simulated with the plane wave theory together with the transfer matrix method, and the damping effect was checked by comparing the pressure pulsation levels before and after mounting the resonator. The results show that the Helmholtz resonator was effective in attenuating the gas pulsation in the valve chamber and piping downstream, and the pulsation level was decreased by 40% in the valve chamber and 30% at maximum in the piping downstream. The damping effect of the resonator was sensitive to its resonant frequency, and various resonators working simultaneously didn’t interfere with each other. When two resonators were mounted in parallel, with resonant frequencies equal to the second and fourth harmonic frequencies, the pressure pulsation components corresponding to the resonant frequencies were remarkably decreased at the same time, while the pulsation levels at other harmonic frequencies kept almost unchanged. After a series of simulations and experiments a design criterion of chock tube and volume parameter has been proposed for the targeted frequencies to be damped. Furthermore, the frequency-adjustable Helmholtz resonator which was applied to the variable speed compressor was investigated.

  13. System for the removal of contaminant soil-gas vapors

    DOEpatents

    Weidner, Jerry R.; Downs, Wayne C.; Kaser, Timothy G.; Hall, H. James

    1997-01-01

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources.

  14. System for the removal of contaminant soil-gas vapors

    DOEpatents

    Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.

    1997-12-16

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.

  15. Asset Management and Facility Equipment Maintenance Nexus: Maintenance Effectiveness

    DTIC Science & Technology

    2013-09-01

    only include the top-level asset, “recreational facility” and its associated buildings, while the asset/component hierarchy of a hydroelectric turbine ...motor windings that can’t be maintained but might indicate a manufacturer defect. What conditions? — If every USACE lock were constructed with a...13-16 99 5. Slip Clutch 5. Sprocket 5. Spur/Pinnion Gear 4. Direct Acting Hydraulic Cylinder 5. Check Valve 5

  16. Kate's Model Verification Tools

    NASA Technical Reports Server (NTRS)

    Morgan, Steve

    1991-01-01

    Kennedy Space Center's Knowledge-based Autonomous Test Engineer (KATE) is capable of monitoring electromechanical systems, diagnosing their errors, and even repairing them when they crash. A survey of KATE's developer/modelers revealed that they were already using a sophisticated set of productivity enhancing tools. They did request five more, however, and those make up the body of the information presented here: (1) a transfer function code fitter; (2) a FORTRAN-Lisp translator; (3) three existing structural consistency checkers to aid in syntax checking their modeled device frames; (4) an automated procedure for calibrating knowledge base admittances to protect KATE's hardware mockups from inadvertent hand valve twiddling; and (5) three alternatives for the 'pseudo object', a programming patch that currently apprises KATE's modeling devices of their operational environments.

  17. Intraluminal valves: development, function and disease

    PubMed Central

    Geng, Xin; Cha, Boksik; Mahamud, Md. Riaj

    2017-01-01

    ABSTRACT The circulatory system consists of the heart, blood vessels and lymphatic vessels, which function in parallel to provide nutrients and remove waste from the body. Vascular function depends on valves, which regulate unidirectional fluid flow against gravitational and pressure gradients. Severe valve disorders can cause mortality and some are associated with severe morbidity. Although cardiac valve defects can be treated by valve replacement surgery, no treatment is currently available for valve disorders of the veins and lymphatics. Thus, a better understanding of valves, their development and the progression of valve disease is warranted. In the past decade, molecules that are important for vascular function in humans have been identified, with mouse studies also providing new insights into valve formation and function. Intriguing similarities have recently emerged between the different types of valves concerning their molecular identity, architecture and development. Shear stress generated by fluid flow has also been shown to regulate endothelial cell identity in valves. Here, we review our current understanding of valve development with an emphasis on its mechanobiology and significance to human health, and highlight unanswered questions and translational opportunities. PMID:29125824

  18. Integrated Heat Switch/Oxide Sorption Compressor

    NASA Technical Reports Server (NTRS)

    Bard, Steven

    1989-01-01

    Thermally-driven, nonmechanical compressor uses container filled with compressed praseodymium cerium oxide powder (PrCeOx) to provide high-pressure flow of oxygen gas for driving closed-cycle Joule-Thomson-expansion refrigeration unit. Integrated heat switch/oxide sorption compressor has no moving parts except check valves, which control flow of oxygen gas between compressor and closed-cycle Joule-Thomson refrigeration system. Oxygen expelled from sorbent at high pressure by evacuating heat-switch gap and turning on heater.

  19. Assessing the Health Effects of Blast Injuries and Embedded Metal Fragments

    DTIC Science & Technology

    2017-10-01

    isoflurane and open oxygen tank valve (check psi) Prep Vetbond, buprenorphine, 1 ml syringes and #10 scalpel blades In the vivarium, weigh each...with #10 blade over gastrocnemius Inject pellets into muscle tissue using 14 or 16 gauge needle and plunger (one at a time) Repeat incision and...Fluovac canister and record on adsorber canister (dispose of canister at 1400 grams) Clean clippers in Blade Wash, wipe down with isopropyl alcohol, then

  20. Duct having oscillatory side wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouse, Kenneth M.

    A pump system includes a particulate consolidator pump that has a pump outlet. A duct is coupled to the pump outlet. The duct has a wall that is coupled with an oscillator. The oscillator is operable to oscillate the wall at a controlled frequency. The controlled frequency is selected with respect to breaking static bridging of particulate in the duct due, at least in part, to consolidation of the particulate from a downstream check valve.

  1. Burbank performs Part 1 of the WRS-1 Repair

    NASA Image and Video Library

    2012-03-08

    ISS030-E-128752 (8 March 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, performs part one of the Water Recovery System-1 (WRS-1) repair in the Tranquility node of the International Space Station. Burbank removed and replaced the failed Catalytic Reactor (CR), and installed a temporary filter kit between the new CR and the Microbial Check Valve (MCV) to support a system flush of the new Orbital Replacement Unit (ORU).

  2. Activation of the E1 Ultra High Pressure Propulsion Test Facility at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Messer, Bradley; Messer, Elisabeth; Sewell, Dale; Sass, Jared; Lott, Jeff; Dutreix, Lionel, III

    2001-01-01

    After a decade of construction and a year of activation the El Ultra High Pressure Propulsion Test Facility at NASA's Stennis Space Center is fully operational. The El UHP Propulsion Test Facility is a multi-cell, multi-purpose component and engine test facility . The facility is capable of delivering cryogenic propellants at low, high, and ultra high pressures with flow rates ranging from a few pounds per second up to two thousand pounds per second. Facility activation is defined as a series of tasks required to transition between completion of construction and facility operational readiness. Activating the El UHP Propulsion Test Facility involved independent system checkouts, propellant system leak checks, fluid and gas sampling, gaseous system blow downs, pressurization and vent system checkouts, valve stability testing, valve tuning cryogenic cold flows, and functional readiness tests.

  3. Design and development of a large diameter high pressure fast acting propulsion valve and valve actuator

    NASA Technical Reports Server (NTRS)

    Srinivasan, K. V.

    1986-01-01

    The design and development of a large diameter high pressure quick acting propulsion valve and valve actuator is described. The valve is the heart of a major test facility dedicated to conducting full scale performance tests of aircraft landing systems. The valve opens in less than 300 milliseconds releasing a 46-centimeter- (18-in.-) diameter water jet and closes in 300 milliseconds. The four main components of the valve, i.e., valve body, safety shutter, high speed shutter, and pneumatic-hydraulic actuator, are discussed. This valve is unique and may have other aerospace and industrial applications.

  4. Design and Development of a Large Diameter, High Pressure, Fast Acting Propulsion Valve and Valve Actuator

    NASA Technical Reports Server (NTRS)

    Srinivasan, K. V.

    1986-01-01

    This paper describes the design and development of a large diameter high pressure quick acting propulsion valve and valve actuator. The valve is the heart of a major test facility dedicated to conducting full scale performance tests of aircraft landing gear systems. The valve opens in less than 300 milliseconds releasing a 46 cm (18 in) diameter water jet and closes in 300 milliseconds. The four main components of the valve, i.e., valve body, safety shutter, high speed shutter, and pneumatic-hydraulic actuator, are discussed. This valve is unique and may have other aerospace and industrial applications.

  5. Recycle dynamics during centrifugal compressor ESD, start-up and surge control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botros, K.K.; Jones, B.J.; Richards, D.J.

    1996-12-31

    Recycle systems are important components in the operation of centrifugal compressor stations. They are essential during a start-up operation, for surge protection and for emergency shutdown (ESD). These operations are inherently dynamic where interactions between equipment, control and gas flow occur in a complex manner with the associated risk of compressor surge. Of particular importance are the effects or recycle system capacity, the recycle valve characteristics, check valve dynamic behavior, piping geometry and capacitance around the compressor unit, and the performance characteristics of the centrifugal compressor itself. This paper presents numerical results of the effects of some of these parametersmore » on surge control, ESD and unit startup. These parameters are: (1) The effects of damping the surge control flow signal in an attempt to suppress the signal noise, on the integrity of the surge control system; (2) The effects of recycle valve characteristics, stroke time and valve capacity on ESD; (3) The effects of recycle line size on ESD; and (4) The effects of the recycle valve closing time (or rate) on the startup operation, with the intent of shortening this time to minimum for environmental reasons. Results were obtained from the solution of the pertinent dynamic equations describing the gas and equipment dynamics which has been verified against field and laboratory measurements. The samples presented in this paper were applied to a 24 MW natural gas compressor station on the NOVA Gas Transmission system, and to a scale-down laboratory model. Influence of other parameters from this investigation were published elsewhere and are cited in the reference section.« less

  6. Banking of cryopreserved heart valves in Europe: assessment of a 10-year operation in the European Homograft Bank (EHB).

    PubMed

    Goffin, Y A; Van Hoeck, B; Jashari, R; Soots, G; Kalmar, P

    2000-03-01

    The preparation, banking and distribution of cryopreserved heart valves has been carried out at the European Homograft Bank (EHB) in Brussels without interruption since January 1989. We present an assessment of the Bank's activities during this 10-year period. Heart valve donors aged <62 years form three categories: multiorgan donors with non-transplantable hearts; recipients of cardiac transplantation; and non-beating heart cadavers with a warm ischemia time of less than 6 h. Past history and biology are checked for transmissible diseases. Dissection, incubation in antibiotics and cryopreservation in 10% dimethylsulfoxide with storage in liquid nitrogen vapors (about -150 degrees C), and quality control are according to the standards of the Belgian Ministry of Health. Cryopreserved valves are shipped to the implantation centers in a dry shipper at about -150 degrees C. Between January 30th 1989 and December 31st 1998, 1,817 non-transplantable hearts and 12 excised semilunar valves were obtained. In total, 2,077 valves (1,032 pulmonary, 931 aortic and 13 mitral) were decontaminated, cryopreserved and stored in liquid nitrogen vapor (six more valves were refrigerated). In total, 1,515 valves were discarded at different stages of the protocol, the main causes of rejection being significant macroscopic lesions (68.2% aortic and 26.67% pulmonary). Inadequate excision at procurement (10.37% pulmonary), persistent contamination after antibiotics (5.6%) and positive serology for hepatitis B and C and Q fever (5.4%) were other frequent causes for rejection. Among the 2,117 accepted valves, 1,398 were graded first and 719 second choice, mainly on the basis of morphology. In total, 2,090 cryopreserved valves and one refrigerated valve were implanted in 39 institutions between May 1989 and December 1998. Of requests, 10.02% could not be satisfied. In total, 967 pulmonary valves were implanted in the right ventricular outflow tract (RVOT); 424 during a Ross procedure, and 76 in the left ventricular outflow tract (LVOT). Of the aortic valves, 732 were implanted in the LVOT and 266 in the RVOT. Mitral homografts were used for tricuspid valve replacement in two cases, and in the mitral position in seven. Complications at distribution and thawing included 10 bag ruptures and 16 transversal conduit wall fractures. Of the valves shipped, 317 (13.16%) were not used and were returned safely in the dry shipper. Comparison of distribution rates in the first 5.5 and last 4.5 years of EHB activity shows: (i) a significant increase in pulmonary valve implantations in the RVOT (from 71.95% to 81.95%); and (ii) a marked increase (265%) in pulmonary homograft implantations as part of a Ross operation, and a significant decrease (28%) in aortic homograft implantation in the LVOT. While macroscopic lesions of procured aortic valves remain the most frequent and unavoidable cause of homograft rejection during quality control, the high percentage of inadequate surgical heart valve excision should be corrected. The rates of bacterial contamination and positive serology seem acceptable. Storage and shipping of cryopreserved homografts in liquid nitrogen vapor permits them to be spared very efficiently. The increasing use of pulmonary valves for RVOT reconstruction either in congenital heart disease or as part of the Ross procedure compensates for the limited availability of good quality aortic valves.

  7. Development of a smart type motor operated valve for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Hwoi; Park, Joo-Hyun; Lee, Dong-young; Koo, In-Soo

    2005-12-01

    In this paper, the design concept of the smart type motor operator valve for nuclear power plant was described. The development objective of the smart valve is to achieve superior accuracy, long-term reliability, and ease of use. In this reasons, developed smart valve has fieldbus communication such as deviceNet and Profibus-DP, auto-tuning PID controller, self-diagnostics, and on-line calibration capabilities. And also, to achieve pressure, temperature, and flow control with internal PID controller, the pressure sensor and transmitter were included in this valve. And, temperature and flow signal acquisition port was prepared. The developed smart valve will be performed equipment qualification test such as environment, EMI/EMC, and vibration in Korea Test Lab. And, the valve performance is tested in a test loop which is located in Seoul National University Lab. To apply nuclear power plant, the software is being developed according to software life cycle. The developed software is verified by independent software V and V team. It is expected that the smart valve can be applied to an existing NPPs for replacing or to a new nuclear power plants. The design and fabrication of smart valve is now being processed.

  8. Internal combustion engine for natural gas compressor operation

    DOEpatents

    Hagen, Christopher; Babbitt, Guy

    2016-12-27

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.

  9. Oscillating-Linear-Drive Vacuum Compressor for CO2

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Shimko, Martin

    2005-01-01

    A vacuum compressor has been designed to compress CO2 from approximately equal to 1 psia (approximately equal to 6.9 kPa absolute pressure) to approximately equal to 75 psia (approximately equal to 0.52 MPa), to be insensitive to moisture, to have a long operational life, and to be lightweight, compact, and efficient. The compressor consists mainly of (1) a compression head that includes hydraulic diaphragms, a gas-compression diaphragm, and check valves; and (2) oscillating linear drive that includes a linear motor and a drive spring, through which compression force is applied to the hydraulic diaphragms. The motor is driven at the resonance vibrational frequency of the motor/spring/compression-head system, the compression head acting as a damper that takes energy out of the oscillation. The net effect of the oscillation is to cause cyclic expansion and contraction of the gas-compression diaphragm, and, hence, of the volume bounded by this diaphragm. One-way check valves admit gas into this volume from the low-pressure side during expansion and allow the gas to flow out to the high-pressure side during contraction. Fatigue data and the results of diaphragm stress calculations have been interpreted as signifying that the compressor can be expected to have an operational life of greater than 30 years with a confidence level of 99.9 percent.

  10. SLM Produced Hermetically Sealed Isolation Valve

    NASA Technical Reports Server (NTRS)

    Richard, James

    2014-01-01

    Marshall Space Flight Center (MSFC) has developed a valve concept to replace traditional pyrotechnic-driven isolation valves. This paper will describe the valve design and development process. The valve design uses a stem/wedge to support a disk inside the valve. That disk hermetically seals the pressurized fluids. A release mechanism holds the stem/wedge and a large spring in place. When required to open, a solenoid is energized and pulls the release mechanism allowing the spring to pull the stem/wedge away from the disk. Now the disk is unsupported and the pressure ruptures the disk allowing flow to the outlet of the valve. This paper will provide details of this design, describe the development testing, and show the results from the valve level tests performed. Also, a trade study is presented to show the advantages of this design to a conventional pyrotechnic-based valve.

  11. SLM Produced Hermetically Sealed Isolation Valve

    NASA Technical Reports Server (NTRS)

    Richard, James A.

    2014-01-01

    Marshall Space Flight Center (MSFC) has developed a valve concept to replace traditional pyrotechnic driven isolation valves. This paper will describe the valve design and development process. The valve design uses a stem/wedge to support a disk inside the valve. That disk hermetically seals the pressurized fluids. A release mechanism holds the stem/wedge and a large spring in place. When required to open, a solenoid is energized and pulls the release mechanism allowing the spring to pull the stem/wedge away from the disk. Now the disk is unsupported and the pressure ruptures the disk allowing flow to the outlet of the valve. This paper will provide details of this design, describe the development testing, and show the results from the valve level tests performed. Also, a trade study is presented to show the advantages of this design to a conventional pyrotechnic based valve.

  12. Shunt Devices for the Treatment of Adult Hydrocephalus: Recent Progress and Characteristics

    PubMed Central

    MIYAKE, Hiroji

    2016-01-01

    Various types of shunt valves have been developed during the past 50 years, most of which can be classified into the following categories: (1) fixed differential pressure valves; (2) fixed differential pressure (DP) valves with an antisiphon mechanism; (3) programmable DP valves; (4) programmable DP valves with an antisiphon mechanism; and (5) programmable antisiphon valves. When considering the myriad of possible postoperative condition changes, such as the onset of accidental non-related diseases or trauma in adults, and changes in normal physiological development or anticipation of future shunt removal in children, it has become standard to use the programmable valve as a first choice for cerebrospinal fluid shunting. However, it is still unclear what type of shunt valve is suitable for each individual case. Based on the results of SINPHONI and more recently SINPHONI 2 trials, the programmable DP valve is recommended as the first line shunt valve. The programmable DP valve with an antisiphon mechanism is thought to be beneficial for tall, slender patients, who have a tendency for easily developing complications of overdrainage, however, this type of valve must be used cautiously in obese patients because of the increased risk of underdrainage. Although the current evidence is still insufficient, the programmable antisiphon valve, which costs the same as the programmable DP valve, is also thought to be the first line shunt valve. The quick reference table is applicable for most shunt valves, and for patients with either the ventriculoperitoneal or the lumboperitoneal shunt. PMID:27041631

  13. Shunt Devices for the Treatment of Adult Hydrocephalus: Recent Progress and Characteristics.

    PubMed

    Miyake, Hiroji

    2016-05-15

    Various types of shunt valves have been developed during the past 50 years, most of which can be classified into the following categories: (1) fixed differential pressure valves; (2) fixed differential pressure (DP) valves with an antisiphon mechanism; (3) programmable DP valves; (4) programmable DP valves with an antisiphon mechanism; and (5) programmable antisiphon valves. When considering the myriad of possible postoperative condition changes, such as the onset of accidental non-related diseases or trauma in adults, and changes in normal physiological development or anticipation of future shunt removal in children, it has become standard to use the programmable valve as a first choice for cerebrospinal fluid shunting. However, it is still unclear what type of shunt valve is suitable for each individual case. Based on the results of SINPHONI and more recently SINPHONI 2 trials, the programmable DP valve is recommended as the first line shunt valve. The programmable DP valve with an antisiphon mechanism is thought to be beneficial for tall, slender patients, who have a tendency for easily developing complications of overdrainage, however, this type of valve must be used cautiously in obese patients because of the increased risk of underdrainage. Although the current evidence is still insufficient, the programmable antisiphon valve, which costs the same as the programmable DP valve, is also thought to be the first line shunt valve. The quick reference table is applicable for most shunt valves, and for patients with either the ventriculoperitoneal or the lumboperitoneal shunt.

  14. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 6: Primary nozzle diffuser analysis

    NASA Technical Reports Server (NTRS)

    Foley, Michael J.

    1989-01-01

    The primary nozzle diffuser routes fuel from the main fuel valve on the Space Shuttle Main Engine (SSME) to the nozzle coolant inlet mainfold, main combustion chamber coolant inlet mainfold, chamber coolant valve, and the augmented spark igniters. The diffuser also includes the fuel system purge check valve connection. A static stress analysis was performed on the diffuser because no detailed analysis was done on this part in the past. Structural concerns were in the area of the welds because approximately 10 percent are in areas inaccessible by X-ray testing devices. Flow dynamics and thermodynamics were not included in the analysis load case. Constant internal pressure at maximum SSME power was used instead. A three-dimensional, finite element method was generated using ANSYS version 4.3A on the Lockheed VAX 11/785 computer to perform the stress computations. IDEAS Supertab on a Sun 3/60 computer was used to create the finite element model. Rocketdyne drawing number RS009156 was used for the model interpretation. The flight diffuser is denoted as -101. A description of the model, boundary conditions/load case, material properties, structural analysis/results, and a summary are included for documentation.

  15. Flapper Valve and Hayfork: Functional anatomy and taxonomic potential of the Gastric Mill of Bairdioidea (Ostracoda, Podocopida).

    PubMed

    Maddocks, Rosalie F

    2018-02-07

    The chewing apparatus of the Bairdioidea has been described just once and is rarely illustrated, but it might have more taxonomic significance than commonly supposed. It is constructed as a flapper valve (hinged check valve), which is unique among Ostracoda and unusual among animals. It projects into the midgut and is substantially enveloped by it. It serves three functions: to move bites of food into the stomach, to close the esophagus against back-flow, and to pack strands of food and mucus onto the rotating food ball. It is probably less effective for macerating the food to reduce particle size. Two braces anchor this structure to the lateral wall of the forehead. It is lined by cuticle that is shed at each molt, and the formation of food balls is interrupted during molting. In its construction and action, this apparatus is quite unlike the gastric mill of decapod crustaceans, and it shows only distant homology to the dorsal Wulst of Cypridoidea. Some architectural details differ among families and genera. The well-sclerotized plate has some potential for fossil preservation in exceptional circumstances. A revised anatomical analysis is presented, together with an annotated glossary of terms.

  16. Vapor-Compression Heat Pumps for Operation Aboard Spacecraft

    NASA Technical Reports Server (NTRS)

    Ruemmele, Warren; Ungar, Eugene; Cornwell, John

    2006-01-01

    Vapor-compression heat pumps (including both refrigerators and heat pumps) of a proposed type would be capable of operating in microgravity and would be safe to use in enclosed environments like those of spacecraft. The designs of these pumps would incorporate modifications of, and additions to, vapor-compression cycles of heat pumps now used in normal Earth gravitation, in order to ensure efficiency and reliability during all phases of operation, including startup, shutdown, nominal continuous operation, and peak operation. Features of such a design might include any or all of the following: (1) Configuring the compressor, condenser, evaporator, valves, capillary tubes (if any), and controls to function in microgravitation; (2) Selection of a working fluid that satisfies thermodynamic requirements and is safe to use in a closed crew compartment; (3) Incorporation of a solenoid valve and/or a check valve to prevent influx of liquid to the compressor upon startup (such influx could damage the compressor); (4) Use of a diode heat pipe between the cold volume and the evaporator to limit the influx of liquid to the compressor upon startup; and (5) Use of a heated block to vaporize any liquid that arrives at the compressor inlet.

  17. Microstructured Nickel-Titanium Thin Film Leaflets for Hybrid Tissue Engineered Heart Valves Fabricated by Magnetron Sputter Deposition.

    PubMed

    Loger, K; Engel, A; Haupt, J; Lima de Miranda, R; Lutter, G; Quandt, E

    2016-03-01

    Heart valves are constantly exposed to high dynamic loading and are prone to degeneration. Therefore, it is a challenge to develop a durable heart valve substitute. A promising approach in heart valve engineering is the development of hybrid scaffolds which are composed of a mechanically strong inorganic mesh enclosed by valvular tissue. In order to engineer an efficient, durable and very thin heart valve for transcatheter implantations, we developed a fabrication process for microstructured heart valve leaflets made from a nickel-titanium (NiTi) thin film shape memory alloy. To examine the capability of microstructured NiTi thin film as a matrix scaffold for tissue engineered hybrid heart valves, leaflets were successfully seeded with smooth muscle cells (SMCs). In vitro pulsatile hydrodynamic testing of the NiTi thin film valve leaflets demonstrated that the SMC layer significantly improved the diastolic sufficiency of the microstructured leaflets, without affecting the systolic efficiency. Compared to an established porcine reference valve model, magnetron sputtered NiTi thin film material demonstrated its suitability for hybrid tissue engineered heart valves.

  18. Variable Step Integration Coupled with the Method of Characteristics Solution for Water-Hammer Analysis, A Case Study

    NASA Technical Reports Server (NTRS)

    Turpin, Jason B.

    2004-01-01

    One-dimensional water-hammer modeling involves the solution of two coupled non-linear hyperbolic partial differential equations (PDEs). These equations result from applying the principles of conservation of mass and momentum to flow through a pipe, and usually the assumption that the speed at which pressure waves propagate through the pipe is constant. In order to solve these equations for the interested quantities (i.e. pressures and flow rates), they must first be converted to a system of ordinary differential equations (ODEs) by either approximating the spatial derivative terms with numerical techniques or using the Method of Characteristics (MOC). The MOC approach is ideal in that no numerical approximation errors are introduced in converting the original system of PDEs into an equivalent system of ODEs. Unfortunately this resulting system of ODEs is bound by a time step constraint so that when integrating the equations the solution can only be obtained at fixed time intervals. If the fluid system to be modeled also contains dynamic components (i.e. components that are best modeled by a system of ODEs), it may be necessary to take extremely small time steps during certain points of the model simulation in order to achieve stability and/or accuracy in the solution. Coupled together, the fixed time step constraint invoked by the MOC, and the occasional need for extremely small time steps in order to obtain stability and/or accuracy, can greatly increase simulation run times. As one solution to this problem, a method for combining variable step integration (VSI) algorithms with the MOC was developed for modeling water-hammer in systems with highly dynamic components. A case study is presented in which reverse flow through a dual-flapper check valve introduces a water-hammer event. The predicted pressure responses upstream of the check-valve are compared with test data.

  19. H-Coal Pilot Plant: letdown-valve experience through Coal Run No. 7 in the H-Coal Pilot Plant, E-3. [Runs 1 thru 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, N.D.

    1982-05-01

    This report covers the development of the various letdown valves used for the two-stage high pressure and temperature coal slurry letdown system as used at the H-Coal Pilot Plant. The period covered in this report was from the prestart-up oil circulation through Coal Runs No. 1 - No. 7. The valves covered are the Willis, which was used exclusively from Coal Runs No. 1 - No. 5, the Cameron and the Kieley and Mueller. The LV-202B Kieley and Mueller and LV-204B Cameron valves again showed little valve wear during short Coal Run No. 7, which demonstrates that the full potentialmore » of these valve designs has not been achieved yet. The problem with the Kieley and Mueller plug freezing will be looked at further, with addition of grease ports and a possible new designed plug shaft and stem guide being made for the valve. The Willis valves developed the same body leaks around the bonnet areas that occurred during Coal Run No. 6. This will be looked at before Coal Run No. 8, but no further trim development is planned. To summarize the progress of the LV-202 and LV-204 valves, the Willis was developed to last about 100 hours, which is the expected life for this valve design in our coal liquefaction process; whereas, the Cameron and Kieley and Mueller valves have lasted for days with good results. The Cameron and Kieley and Mueller valves still have not reached their full potential in plant operation, and, along with the new Masoneilan Sasol, Masoneilan Prototype, Hammel Dahl and Paul valves, future progress in Coal Run No. 8 for the high pressure and temperature letdown valves is anticipated.« less

  20. The automotive application of discontinuously reinforced TiB-Ti composites

    NASA Astrophysics Data System (ADS)

    Saito, Takashi

    2004-05-01

    In 1998, Toyota Motor Corporation adopted intake valves and exhaust valves made of titanium-based alloys for the engine of its Altezza. Both valves were manufactured via a newly developed cost-effective powder metallurgy process. The exhaust valve is made of a newly developed titanium metal-matrix composite (MMC). The valve has achieved sufficient durability and reliability with a manufacturing cost acceptable for the mass-produced automobile engine components.

  1. 5. DIABLO DAM: DETAIL VIEW OF RELIEF VALVES AT ELEVATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DIABLO DAM: DETAIL VIEW OF RELIEF VALVES AT ELEVATION 1044. VALVE IN FOREGROUND IS A BUTTERFLY VALVE SIX FEET IN DIAMETER; VALVE TO THE REAR IS A JOHNSON-TYPE NEEDLE VALVE BOTH VALVES WERE MANUFACTURED BY THE PELTON WATER WHEEL COMPANY, 1989. - Skagit Power Development, Diablo Dam, On Skagit River, 6.9 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  2. The Melody® valve and Ensemble® delivery system for transcatheter pulmonary valve replacement

    PubMed Central

    McElhinney, Doff B; Hennesen, Jill T

    2013-01-01

    The Melody® transcatheter pulmonary valve (TPV) is a percutaneous valve system designed for the treatment of obstruction and/or regurgitation of prosthetic conduits placed between the right ventricle and pulmonary arteries in patients with congenital heart disease. In 2000, Melody TPV became the first transcatheter valve implanted in a human; in 2006 it became the first transcatheter valve commercially available anywhere in the world; and in 2010 it was launched as the first commercially available transcatheter valve in the United States. In this review, we present the clinical background against which the Melody valve was developed and implemented, introduce the rationale for and challenges of transcatheter valve technology for this population, outline the history and technical details of its development and use, and summarize currently available data concerning the performance of the device. PMID:23834411

  3. Improvement of a Pneumatic Control Valve with Self-Holding Function

    NASA Astrophysics Data System (ADS)

    Dohta, Shujiro; Akagi, Tetsuya; Kobayashi, Wataru; Shimooka, So; Masago, Yusuke

    2017-10-01

    The purpose of this study is to develop a small-sized, lightweight and low-cost control valve with low energy consumption and to apply it to the assistive system. We have developed some control valves; a tiny on/off valve using a vibration motor, and an on/off valve with self-holding function. We have also proposed and tested the digital servo valve with self-holding function using permanent magnets and a small-sized servo motor. In this paper, in order to improve the valve, an analytical model of the digital servo valve is proposed. And the simulated results by using the analytical model and identified parameters were compared with the experimental results. Then, the improved digital servo valve was designed based on the calculated results and tested. As a result, we realized the digital servo valve that can control the flow rate more precisely while maintaining its volume and weight compared with the previous valve. As an application of the improved valve, a position control system of rubber artificial muscle was built and the position control was performed successfully.

  4. Evaluation of mitral valve replacement anchoring in a phantom

    NASA Astrophysics Data System (ADS)

    McLeod, A. Jonathan; Moore, John; Lang, Pencilla; Bainbridge, Dan; Campbell, Gordon; Jones, Doug L.; Guiraudon, Gerard M.; Peters, Terry M.

    2012-02-01

    Conventional mitral valve replacement requires a median sternotomy and cardio-pulmonary bypass with aortic crossclamping and is associated with significant mortality and morbidity which could be reduced by performing the procedure off-pump. Replacing the mitral valve in the closed, off-pump, beating heart requires extensive development and validation of surgical and imaging techniques. Image guidance systems and surgical access for off-pump mitral valve replacement have been previously developed, allowing the prosthetic valve to be safely introduced into the left atrium and inserted into the mitral annulus. The major remaining challenge is to design a method of securely anchoring the prosthetic valve inside the beating heart. The development of anchoring techniques has been hampered by the expense and difficulty in conducting large animal studies. In this paper, we demonstrate how prosthetic valve anchoring may be evaluated in a dynamic phantom. The phantom provides a consistent testing environment where pressure measurements and Doppler ultrasound can be used to monitor and assess the valve anchoring procedures, detecting pararvalvular leak when valve anchoring is inadequate. Minimally invasive anchoring techniques may be directly compared to the current gold standard of valves sutured under direct vision, providing a useful tool for the validation of new surgical instruments.

  5. FLUID MECHANICS OF ARTIFICIAL HEART VALVES

    PubMed Central

    Dasi, Lakshmi P; Simon, Helene A; Sucosky, Philippe; Yoganathan, Ajit P

    2009-01-01

    SUMMARY 1. Artificial heart valves have been in use for over five decades to replace diseased heart valves. Since the first heart valve replacement performed with a caged-ball valve, more than 50 valve designs have been developed, differing principally in valve geometry, number of leaflets and material. To date, all artificial heart valves are plagued with complications associated with haemolysis, coagulation for mechanical heart valves and leaflet tearing for tissue-based valve prosthesis. For mechanical heart valves, these complications are believed to be associated with non-physiological blood flow patterns. 2. In the present review, we provide a bird’s-eye view of fluid mechanics for the major artificial heart valve types and highlight how the engineering approach has shaped this rapidly diversifying area of research. 3. Mechanical heart valve designs have evolved significantly, with the most recent designs providing relatively superior haemodynamics with very low aerodynamic resistance. However, high shearing of blood cells and platelets still pose significant design challenges and patients must undergo life-long anticoagulation therapy. Bioprosthetic or tissue valves do not require anticoagulants due to their distinct similarity to the native valve geometry and haemodynamics, but many of these valves fail structurally within the first 10–15 years of implantation. 4. These shortcomings have directed present and future research in three main directions in attempts to design superior artificial valves: (i) engineering living tissue heart valves; (ii) development of advanced computational tools; and (iii) blood experiments to establish the link between flow and blood damage. PMID:19220329

  6. Fluid mechanics of artificial heart valves.

    PubMed

    Dasi, Lakshmi P; Simon, Helene A; Sucosky, Philippe; Yoganathan, Ajit P

    2009-02-01

    1. Artificial heart valves have been in use for over five decades to replace diseased heart valves. Since the first heart valve replacement performed with a caged-ball valve, more than 50 valve designs have been developed, differing principally in valve geometry, number of leaflets and material. To date, all artificial heart valves are plagued with complications associated with haemolysis, coagulation for mechanical heart valves and leaflet tearing for tissue-based valve prosthesis. For mechanical heart valves, these complications are believed to be associated with non-physiological blood flow patterns. 2. In the present review, we provide a bird's-eye view of fluid mechanics for the major artificial heart valve types and highlight how the engineering approach has shaped this rapidly diversifying area of research. 3. Mechanical heart valve designs have evolved significantly, with the most recent designs providing relatively superior haemodynamics with very low aerodynamic resistance. However, high shearing of blood cells and platelets still pose significant design challenges and patients must undergo life-long anticoagulation therapy. Bioprosthetic or tissue valves do not require anticoagulants due to their distinct similarity to the native valve geometry and haemodynamics, but many of these valves fail structurally within the first 10-15 years of implantation. 4. These shortcomings have directed present and future research in three main directions in attempts to design superior artificial valves: (i) engineering living tissue heart valves; (ii) development of advanced computational tools; and (iii) blood experiments to establish the link between flow and blood damage.

  7. Concomitant Transapical Transcatheter Valve Implantations: Edwards Sapien Valve for Severe Mitral Regurgitation in a Patient with Failing Mitral Bioprostheses and JenaValve for the Treatment of Pure Aortic Regurgitation.

    PubMed

    Aydin, Unal; Gul, Mehmet; Aslan, Serkan; Akkaya, Emre; Yildirim, Aydin

    2015-04-28

    Transcatheter valve implantation is a novel interventional technique, which was developed as an  alternative therapy for surgical aortic valve replacement in inoperable patients with severe aortic stenosis. Despite limited experience in using transcatheter valve implantation for mitral and aortic regurgitation, transapical transcatheter aortic valve implantation and valve-in-valve implantation for degenerated mitral valve bioprosthesis can be performed in high-risk patients who are not candidates for conventional replacement surgery. In this case, we present the simultaneous transcatheter valve implantation via transapical approach for both degenerated bioprosthetic mitral valve with severe regurgitation and pure severe aortic regurgitation.

  8. Mitral valve surgery - minimally invasive

    MedlinePlus

    ... flow. Your valve has developed an infection (infectious endocarditis). You have severe mitral valve prolapse that is ... function. Damage to your heart valve from infection (endocarditis). A minimally invasive procedure has many benefits. There ...

  9. Rotary pneumatic valve

    DOEpatents

    Hardee, Harry C.

    1991-01-01

    A rotary pneumatic valve which is thrust balanced and the pneumatic pressure developed produces only radial loads on the valve cylinder producing negligible resistance and thus minimal torque on the bearings of the valve. The valve is multiplexed such that at least two complete switching cycles occur for each revolution of the cylinder spindle.

  10. Use of computer modeling to investigate a dynamic interaction problem in the Skylab TACS quad-valve package

    NASA Technical Reports Server (NTRS)

    Hesser, R. J.; Gershman, R.

    1975-01-01

    A valve opening-response problem encountered during development of a control valve for the Skylab thruster attitude control system (TACS) is described. The problem involved effects of dynamic interaction among valves in the quad-redundant valve package. Also described is a detailed computer simulation of the quad-valve package which was helpful in resolving the problem.

  11. Pannus Formation Leads to Valve Malfunction in the Tricuspid Position 19 Years after Triple Valve Replacement.

    PubMed

    Alskaf, Ebraham; McConkey, Hannah; Laskar, Nabila; Kardos, Attila

    2016-06-20

    The Medtronic ATS Open Pivot mechanical valve has been successfully used in heart valve surgery for more than two decades. We present the case of a patient who, 19 years following a tricuspid valve replacement with an ATS prosthesis as part of a triple valve operation following infective endocarditis, developed severe tricuspid regurgitation due to pannus formation.

  12. Electromagnetic Smart Valves for Cryogenic Applications

    NASA Astrophysics Data System (ADS)

    Traum, M. J.; Smith, J. L.; Brisson, J. G.; Gerstmann, J.; Hannon, C. L.

    2004-06-01

    Electromagnetic valves with smart control capability have been developed and demonstrated for use in the cold end of a Collins-style cryocooler. The toroidal geometry of the valves was developed utilizing a finite-element code and optimized for maximum opening force with minimum input current. Electromagnetic smart valves carry two primary benefits in cryogenic applications: 1) magnetic actuation eliminates the need for mechanical linkages and 2) valve timing can be modified during system cool down and in regular operation for cycle optimization. The smart feature of these electromagnetic valves resides in controlling the flow of current into the magnetic coil. Electronics have been designed to shape the valve actuation current, limiting the residence time of magnetic energy in the winding. This feature allows control of flow through the expander via an electrical signal while dissipating less than 0.0071 J/cycle as heat into the cold end. The electromagnetic smart valves have demonstrated reliable, controllable dynamic cycling. After 40 hours of operation, they suffered no perceptible mechanical degradation. These features enable the development of a miniaturized Collins-style cryocooler capable of removing 1 Watt of heat at 10 K.

  13. Industrial application of low voltage bidirectional automatic release of reserve

    NASA Astrophysics Data System (ADS)

    Popa, G. N.; Diniş, C. M.; Iagăr, A.; Deaconu, S. I.; Popa, I.

    2018-01-01

    The paper presents an analysis on low voltage industrial electrical installation controlled by bidirectional automatic release of reserve. Industrial electrical installation is for removing smoke in case of fire from a textile company. The main parts of the installation of removing smoke in case of fire are: general electrical panel; reserve electrical panel; three-phase induction motors for driven fans; electrical actuators for inlet and outlet valves; clean air inlet pipe, respectively, the outlet pipe for smoke. The operation and checking of bidirectional automatic release of reserve are present in the paper.

  14. Research on digital system design of nuclear power valve

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolong; Li, Yuan; Wang, Tao; Dai, Ye

    2018-04-01

    With the progress of China's nuclear power industry, nuclear power plant valve products is in a period of rapid development, high performance, low cost, short cycle of design requirements for nuclear power valve is proposed, so there is an urgent need for advanced digital design method and integrated design platform to provide technical support. Especially in the background of the nuclear power plant leakage in Japan, it is more practical to improve the design capability and product performance of the nuclear power valve. The finite element numerical analysis is a common and effective method for the development of nuclear power valves. Nuclear power valve has high safety, complexity of valve chamber and nonlinearity of seal joint surface. Therefore, it is urgent to establish accurate prediction models for earthquake prediction and seal failure to meet engineering accuracy and calculation conditions. In this paper, a general method of finite element modeling for nuclear power valve assembly and key components is presented, aiming at revealing the characteristics and rules of finite element modeling of nuclear power valves, and putting forward aprecision control strategy for finite element models for nuclear power valve characteristics analysis.

  15. Surgery for rheumatic mitral valve disease in sub-saharan African countries: why valve repair is still the best surgical option.

    PubMed

    Mvondo, Charles Mve; Pugliese, Marta; Giamberti, Alessandro; Chelo, David; Kuate, Liliane Mfeukeu; Boombhi, Jerome; Dailor, Ellen Marie

    2016-01-01

    Rheumatic valve disease, a consequence of acute rheumatic fever, remains endemic in developing countries in the sub-Saharan region where it is the leading cause of heart failure and cardiovascular death, involving predominantly a young population. The involvement of the mitral valve is pathognomonic and mitral surgery has become the lone therapeutic option for the majority of these patients. However, controversies exist on the choice between valve repair or prosthetic valve replacement. Although the advantages of mitral valve repair over prosthetic valve replacement in degenerative mitral disease are well established, this has not been the case for rheumatic lesions, where the use of prosthetic valves, specifically mechanical devices, even in poorly compliant populations remains very common. These patients deserve more accurate evaluation in the choice of the surgical strategy which strongly impacts the post-operative outcomes. This report discusses the factors supporting mitral repair surgery in rheumatic disease, according to the patients' characteristics and the effectiveness of the current repair techniques compared to prosthetic valve replacement in developing countries.

  16. Krox20 defines a subpopulation of cardiac neural crest cells contributing to arterial valves and bicuspid aortic valve.

    PubMed

    Odelin, Gaëlle; Faure, Emilie; Coulpier, Fanny; Di Bonito, Maria; Bajolle, Fanny; Studer, Michèle; Avierinos, Jean-François; Charnay, Patrick; Topilko, Piotr; Zaffran, Stéphane

    2018-01-03

    Although cardiac neural crest cells are required at early stages of arterial valve development, their contribution during valvular leaflet maturation remains poorly understood. Here, we show in mouse that neural crest cells from pre-otic and post-otic regions make distinct contributions to the arterial valve leaflets. Genetic fate-mapping analysis of Krox20-expressing neural crest cells shows a large contribution to the borders and the interleaflet triangles of the arterial valves. Loss of Krox20 function results in hyperplastic aortic valve and partially penetrant bicuspid aortic valve formation. Similar defects are observed in neural crest Krox20 -deficient embryos. Genetic lineage tracing in Krox20 -/- mutant mice shows that endothelial-derived cells are normal, whereas neural crest-derived cells are abnormally increased in number and misplaced in the valve leaflets. In contrast, genetic ablation of Krox20 -expressing cells is not sufficient to cause an aortic valve defect, suggesting that adjacent cells can compensate this depletion. Our findings demonstrate a crucial role for Krox20 in arterial valve development and reveal that an excess of neural crest cells may be associated with bicuspid aortic valve. © 2018. Published by The Company of Biologists Ltd.

  17. Development of Overflow-Prevention Valve with Trigger Mechanism.

    NASA Astrophysics Data System (ADS)

    Ishino, Yuji; Mizuno, Takeshi; Takasaki, Masaya

    2016-09-01

    A new overflow-prevention valve for combustible fluid is developed which uses a trigger mechanism. Loading arms for combustible fluid are used for transferring oil from a tanker to tanks and vice versa. The loading arm has a valve for preventing overflow. Overflow- prevention valves cannot use any electric component to avoid combustion. Therefore, the valve must be constructed only by mechanical parts. The conventional overflow-prevention valve uses fluid and pneumatic forces. It consists of a sensor probe, a cylinder, a main valve for shutting off the fluid and a locking mechanism for holding an open state of the main valve. The proposed overflow-prevention valve uses the pressure due to the height difference between the fluid level of the tank and the sensor probe. However, the force of the cylinder produced by the pressure is too small to release the locking mechanism. Therefore, a trigger mechanism is introduced between the cylinder and the locking mechanism. The trigger mechanism produces sufficient force to release the locking mechanism and close the main valve when the height of fluid exceeds a threshold value. A trigger mechanism is designed and fabricated. The operation necessary for closing the main valve is conformed experimentally.

  18. Design of a Cyclic Pressure Bioreactor for the Ex Vivo Study of Aortic Heart Valves

    PubMed Central

    Schipke, Kimberly J.; Filip To, S. D.; Warnock, James N.

    2011-01-01

    The aortic valve, located between the left ventricle and the aorta, allows for unidirectional blood flow, preventing backflow into the ventricle. Aortic valve leaflets are composed of interstitial cells suspended within an extracellular matrix (ECM) and are lined with an endothelial cell monolayer. The valve withstands a harsh, dynamic environment and is constantly exposed to shear, flexion, tension, and compression. Research has shown calcific lesions in diseased valves occur in areas of high mechanical stress as a result of endothelial disruption or interstitial matrix damage1-3. Hence, it is not surprising that epidemiological studies have shown high blood pressure to be a leading risk factor in the onset of aortic valve disease4. The only treatment option currently available for valve disease is surgical replacement of the diseased valve with a bioprosthetic or mechanical valve5. Improved understanding of valve biology in response to physical stresses would help elucidate the mechanisms of valve pathogenesis. In turn, this could help in the development of non-invasive therapies such as pharmaceutical intervention or prevention. Several bioreactors have been previously developed to study the mechanobiology of native or engineered heart valves6-9. Pulsatile bioreactors have also been developed to study a range of tissues including cartilage10, bone11 and bladder12. The aim of this work was to develop a cyclic pressure system that could be used to elucidate the biological response of aortic valve leaflets to increased pressure loads. The system consisted of an acrylic chamber in which to place samples and produce cyclic pressure, viton diaphragm solenoid valves to control the timing of the pressure cycle, and a computer to control electrical devices. The pressure was monitored using a pressure transducer, and the signal was conditioned using a load cell conditioner. A LabVIEW program regulated the pressure using an analog device to pump compressed air into the system at the appropriate rate. The system mimicked the dynamic transvalvular pressure levels associated with the aortic valve; a saw tooth wave produced a gradual increase in pressure, typical of the transvalvular pressure gradient that is present across the valve during diastole, followed by a sharp pressure drop depicting valve opening in systole. The LabVIEW program allowed users to control the magnitude and frequency of cyclic pressure. The system was able to subject tissue samples to physiological and pathological pressure conditions. This device can be used to increase our understanding of how heart valves respond to changes in the local mechanical environment. PMID:21876532

  19. Design of a cyclic pressure bioreactor for the ex vivo study of aortic heart valves.

    PubMed

    Schipke, Kimberly J; To, S D Filip; Warnock, James N

    2011-08-23

    The aortic valve, located between the left ventricle and the aorta, allows for unidirectional blood flow, preventing backflow into the ventricle. Aortic valve leaflets are composed of interstitial cells suspended within an extracellular matrix (ECM) and are lined with an endothelial cell monolayer. The valve withstands a harsh, dynamic environment and is constantly exposed to shear, flexion, tension, and compression. Research has shown calcific lesions in diseased valves occur in areas of high mechanical stress as a result of endothelial disruption or interstitial matrix damage(1-3). Hence, it is not surprising that epidemiological studies have shown high blood pressure to be a leading risk factor in the onset of aortic valve disease(4). The only treatment option currently available for valve disease is surgical replacement of the diseased valve with a bioprosthetic or mechanical valve(5). Improved understanding of valve biology in response to physical stresses would help elucidate the mechanisms of valve pathogenesis. In turn, this could help in the development of non-invasive therapies such as pharmaceutical intervention or prevention. Several bioreactors have been previously developed to study the mechanobiology of native or engineered heart valves(6-9). Pulsatile bioreactors have also been developed to study a range of tissues including cartilage(10), bone(11) and bladder(12). The aim of this work was to develop a cyclic pressure system that could be used to elucidate the biological response of aortic valve leaflets to increased pressure loads. The system consisted of an acrylic chamber in which to place samples and produce cyclic pressure, viton diaphragm solenoid valves to control the timing of the pressure cycle, and a computer to control electrical devices. The pressure was monitored using a pressure transducer, and the signal was conditioned using a load cell conditioner. A LabVIEW program regulated the pressure using an analog device to pump compressed air into the system at the appropriate rate. The system mimicked the dynamic transvalvular pressure levels associated with the aortic valve; a saw tooth wave produced a gradual increase in pressure, typical of the transvalvular pressure gradient that is present across the valve during diastole, followed by a sharp pressure drop depicting valve opening in systole. The LabVIEW program allowed users to control the magnitude and frequency of cyclic pressure. The system was able to subject tissue samples to physiological and pathological pressure conditions. This device can be used to increase our understanding of how heart valves respond to changes in the local mechanical environment.

  20. 9. BUTTERFLY VALVE CONTROL DIABLO POWERHOUSE. BUTTERFLY VALVES WERE MANUFACTURED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. BUTTERFLY VALVE CONTROL DIABLO POWERHOUSE. BUTTERFLY VALVES WERE MANUFACTURED BY THE PELTON WATER WHEEL COMPANY IN 1931, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  1. 3D printed disposable optics and lab-on-a-chip devices for chemical sensing with cell phones

    NASA Astrophysics Data System (ADS)

    Comina, G.; Suska, A.; Filippini, D.

    2017-02-01

    Digital manufacturing (DM) offers fast prototyping capabilities and great versatility to configure countless architectures at affordable development costs. Autonomous lab-on-a-chip (LOC) devices, conceived as only disposable accessory to interface chemical sensing to cell phones, require specific features that can be achieved using DM techniques. Here we describe stereo-lithography 3D printing (SLA) of optical components and unibody-LOC (ULOC) devices using consumer grade printers. ULOC devices integrate actuation in the form of check-valves and finger pumps, as well as the calibration range required for quantitative detection. Coupling to phone camera readout depends on the detection approach, and includes different types of optical components. Optical surfaces can be locally configured with a simple polishing-free post-processing step, and the representative costs are 0.5 US$/device, same as ULOC devices, both involving fabrication times of about 20 min.

  2. Automatic external filling for the ion source gas bottle of a Van de Graaff accelerator

    NASA Astrophysics Data System (ADS)

    Strivay, D.; Bastin, T.; Dehove, C.; Dumont, P. D.; Marchal, A.; Garnir, H.; Weber, G.

    1997-09-01

    We describe a fully automatic system we developed to fill, from an external gas bottle, the ion source terminal gas storage bottle of a 2 MV Van de Graaff accelerator without depressing the 25 bar insulating gas. The system is based on a programmable automate ordering electropneumatical valves. The only manual operation is the connection of the external gas cylinder. The time needed for a gas change is reduced to typically 15 min (depending on the residual pressure wished for the gas removed from the terminal bottle). To check this system we study the ionic composition of the ion beam delivered by our accelerator after different gas changes. The switching magnet of our accelerator was used to analyse the ionic composition of the accelerated beams in order to verify the degree of elimination of the previous gases in the system.

  3. Effect of iodine disinfection products on higher plants

    NASA Technical Reports Server (NTRS)

    Janik, D.; Macler, B.; Macelroy, R. D.; Thorstenson, Y.; Sauer, R.

    1989-01-01

    Iodine is used to disinfect potable water on United States spacecraft. Iodinated potable water will likely be used to grow plants in space. Little is known about the effects of iodine disinfection products on plants. Seeds of select higher plants were germinated in water iodinated using the Shuttle Microbial Check Valve, and water to which measured amounts of iodine was added. Percent germination was decreased in seeds of most species germinated in iodinated water. Beans were most affected. Germination rates, determined from germination half-times, were decreased for beans germinated in iodinated water, and water to which iodide was added. Development was retarded and rootlets were conspicuously absent in bean and several other plant species germinated in iodinated water. Iodide alone did not elicit these responses. Clearly iodine disinfection products can affect higher plants. These effects must be carefully considered for plant experimentation and cultivation in space, and in design and testing of closed environmental life support systems.

  4. Improved multiple-shot gun for use as a combustion stability rating device

    NASA Technical Reports Server (NTRS)

    Sokolowski, D. E.

    1973-01-01

    A program was conducted to develop and experimentally evaluate an improved version of a modified machine gun for use as a device for rating the relative combustion stability of various rocket combustors. Following the results of a previous study involving a caliber .30 machine gun, a caliber .50 machine gun was modified in order to extend the charge-size range of the device. Nitrocellulose charge sizes ranging from 1.004 to 9.720 grams were fired at rates up to four shots per second. Shock pressures up to 25,512 kN/sq m were measured near the end of a shortened gun barrel. A minimal resistance type of check valve permitted the gun to fire into pressurized regions; back pressures up to 3448 kN/sq m abs were tested. The final modified assembly was evaluated during combustion stability tests on rocket combustors burning a FLOX-methane propellant combination.

  5. The Application of Metal Matrix Composite Materials in Propulsion System Valves

    NASA Technical Reports Server (NTRS)

    Laszar, John; Shah, Sandeep; Kashalikar, Uday; Rozenoyer, Boris

    2003-01-01

    Metal Matrix Composite (MMC) materials have been developed and used in many applications to reduce the weight of components where weight and deflection are the driving design requirement. MMC materials are being developed for use in some propulsion system components, such as turbo-pumps and thrust chambers. However, to date, no propulsion system valves have been developed that take advantage of the materials unique properties. The stiffness of MMC's could help keep valves light or improve life where deflection is the design constraint (such as seal and bearing locations). The low CTE of the materials might allow the designer to reduce tolerances and clearances producing better performance and lighter weight valves. Using unique manufacturing processes allow parts to be plated/coated for longer life and allow joining either by welding or threading/bolting. Additionally, casting of multi part pre-forms to form a single part can lead to designs that would be hard or impossible to manufacture with other methods. Therefore, NASA's Marshall Space Flight Center (MSFC) has developed and tested a prototype propulsion system valve that utilizes these materials to demonstrate these advantages. Through design and testing, this effort will determine the best use of these materials in valves designed to achieve the goal of a highly reliable and lightweight propulsion system. This paper is a continuation of the paper, The Application of Metal Matrix Composite Materials In Propulsion System Valves, presented at the JANNAF Conference held in April, 2002. Fabrication techniques employed, valve development, and valve test results will be discussed in this paper.

  6. Development of a Calibration Rig for a Large Multi-Component Rotor Balance

    DTIC Science & Technology

    2000-05-01

    valve pressure reducer pressure manifold pressure switch pressure transducer pressure relief valve pressure gage off on control valve pressure switch on...Each of the four manifolds has been equipped with a pressure switch , a pressure transducer, a pressure gage, and a pressure relief valve. If the...valve. A pressure switch is installed between the servo valve and the actuator. This pressure switch is used as a diagnostic indicator by the

  7. Line Fluid Actuated Valve Development Program. [for application on the space shuttle

    NASA Technical Reports Server (NTRS)

    Lynch, R. A.

    1975-01-01

    The feasibility of a line-fluid actuated valve design for potential application as a propellant-control valve on the space shuttle was examined. Design and analysis studies of two prototype valve units were conducted and demonstrated performance is reported. It was shown that the line-fluid actuated valve concept offers distinct weight and electrical advantages over alternate valve concepts. Summaries of projected performance and design goals are also included.

  8. Loss of Axin2 results in impaired heart valve maturation and subsequent myxomatous valve disease.

    PubMed

    Hulin, Alexia; Moore, Vicky; James, Jeanne M; Yutzey, Katherine E

    2017-01-01

    Myxomatous valve disease (MVD) is the most common aetiology of primary mitral regurgitation. Recent studies suggest that defects in heart valve development can lead to heart valve disease in adults. Wnt/β-catenin signalling is active during heart valve development and has been reported in human MVD. The consequences of increased Wnt/β-catenin signalling due to Axin2 deficiency in postnatal valve remodelling and pathogenesis of MVD were determined. To investigate the role of Wnt/β-catenin signalling, we analysed heart valves from mice deficient in Axin2 (KO), a negative regulator of Wnt/β-catenin signalling. Axin2 KO mice display enlarged mitral and aortic valves (AoV) after birth with increased Wnt/β-catenin signalling and cell proliferation, whereas Sox9 expression and collagen deposition are decreased. At 2 months in Axin2 KO mice, the valve extracellular matrix (ECM) is stratified but distal AoV leaflets remain thickened and develop aortic insufficiency. Progressive myxomatous degeneration is apparent at 4 months with extensive ECM remodelling and focal aggrecan-rich areas, along with increased BMP signalling. Infiltration of inflammatory cells is also observed in Axin2 KO AoV prior to ECM remodelling. Overall, these features are consistent with the progression of human MVD. Finally, Axin2 expression is decreased and Wnt/β-catenin signalling is increased in myxomatous mitral valves in a murine model of Marfan syndrome, supporting the importance of Wnt/β-catenin signalling in the development of MVD. Altogether, these data indicate that Axin2 limits Wnt/β-catenin signalling after birth and allows proper heart valve maturation. Moreover, dysregulation of Wnt/β-catenin signalling resulting from loss of Axin2 leads to progressive MVD. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.

  9. Durability Tests of Ball Valve Prototype with Flowmeter Operation

    NASA Astrophysics Data System (ADS)

    Rogula, J.; Romanik, G.

    2018-02-01

    The results of the investigation of the prototypical ball valve are presented in this article. The innovation of the tested valve is a ball with a built-in measuring orifice. The valve has been subjected to durability tests. Leakage under three temperatures: ambient, -30°C and +100°C was analyzed. Sealing elements of the valve were tested for roughness and deviation of shape before and after the cycles of operation. Ball valve operation means cycles of open/close. It was planned to perform 1000 cycles at each temperature condition accordingly. Tests of the valve were performed under gas pressure equal to 10 MPa. The research was carried out under the Operational Program "Intelligent Development" (POIR 01.01.01-00-0013 / 15 "Development of devices for measurement of media flow on industrial trunk-lines".

  10. Innovative Stemless Valve Eliminates Emissions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Big Horn Valve Inc. (BHVI), of Sheridan, Wyoming, won a series of SBIR and Small Business Technology Transfer (STTR) contracts with Kennedy Space Center and Marshall Space Flight Center to explore and develop a revolutionary valve technology. BHVI developed a low-mass, high-efficiency, leak-proof cryogenic valve using composites and exotic metals, and had no stem-actuator, few moving parts, with an overall cylindrical shape. The valve has been installed at a methane coal gas field, and future applications are expected to include in-flight refueling of military aircraft, high-volume gas delivery systems, petroleum refining, and in the nuclear industry.

  11. Valve leakage inspection, testing, and maintenance process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikin, J.A.; Reinwald, J.W.

    1989-01-01

    Atomic Energy of Canada Limited-Research Company (AECL-RC), Chalk River, has more than 50 person-years dedicated toward the leak-free valve. In the early 1970s, the Chalk River Nuclear Laboratories (CRNL) developed valve stem live-loading and recently completed the packing tests for the Electric Power Research Institute (EPRI)-funded Valve Packing Improvement Study. Current safety concerns with asbestos-based valve packings and the difficulty in removing newer graphite packings prompted CRNL to investigate methods to improve valve repacking procedures. The present practice of valve packing replacement is very labor-intensive, requiring use of hand tools such as corkscrew devices and special packing picks. Use ofmore » water jets to cut or fragment the packing for withdrawal from the stuffing box does improve the process, but removal of the lantern or junk rings is still difficult. To address these problems, AECL-RC has developed a unique valve maintenance process designed to reduce person-rem exposures, the risk of scoring the stem or stuffing box, and maintenance costs and to improve the engineering quality of valve repair.« less

  12. Temporal and spatial regulation of epsin abundance and VEGFR3 signaling are required for lymphatic valve formation and function.

    PubMed

    Liu, Xiaolei; Pasula, Satish; Song, Hoogeun; Tessneer, Kandice L; Dong, Yunzhou; Hahn, Scott; Yago, Tadayuki; Brophy, Megan L; Chang, Baojun; Cai, Xiaofeng; Wu, Hao; McManus, John; Ichise, Hirotake; Georgescu, Constantin; Wren, Jonathan D; Griffin, Courtney; Xia, Lijun; Srinivasan, R Sathish; Chen, Hong

    2014-10-14

    Lymphatic valves prevent the backflow of the lymph fluid and ensure proper lymphatic drainage throughout the body. Local accumulation of lymphatic fluid in tissues, a condition called lymphedema, is common in individuals with malformed lymphatic valves. The vascular endothelial growth factor receptor 3 (VEGFR3) is required for the development of lymphatic vascular system. The abundance of VEGFR3 in collecting lymphatic trunks is high before valve formation and, except at valve regions, decreases after valve formation. We found that in mesenteric lymphatics, the abundance of epsin 1 and 2, which are ubiquitin-binding adaptor proteins involved in endocytosis, was low at early stages of development. After lymphatic valve formation, the initiation of steady shear flow was associated with an increase in the abundance of epsin 1 and 2 in collecting lymphatic trunks, but not in valve regions. Epsin 1 and 2 bound to VEGFR3 and mediated the internalization and degradation of VEGFR3, resulting in termination of VEGFR3 signaling. Mice with lymphatic endothelial cell-specific deficiency of epsin 1 and 2 had dilated lymphatic capillaries, abnormally high VEGFR3 abundance in collecting lymphatics, immature lymphatic valves, and defective lymph drainage. Deletion of a single Vegfr3 allele or pharmacological suppression of VEGFR3 signaling restored normal lymphatic valve development and lymph drainage in epsin-deficient mice. Our findings establish a critical role for epsins in the temporal and spatial regulation of VEGFR3 abundance and signaling in collecting lymphatic trunks during lymphatic valve formation. Copyright © 2014, American Association for the Advancement of Science.

  13. Temporal and Spatial Regulation of Epsin Abundance and VEGFR3 Signaling are Required for Lymphatic Valve Formation and Function

    PubMed Central

    Liu, Xiaolei; Pasula, Satish; Song, Hoogeun; Tessneer, Kandice L.; Dong, Yunzhou; Hahn, Scott; Yago, Tadayuki; Brophy, Megan; Chang, Baojun; Cai, Xiaofeng; Wu, Hao; McManus, John; Ichise, Hirotake; Georgescu, Constantin; Wren, Jonathan D.; Griffin, Courtney; Xia, Lijun; Srinivasan, R. Sathish; Chen, Hong

    2014-01-01

    Lymphatic valves prevent the backflow of the lymph fluid and ensure proper lymphatic drainage throughout the body. Local accumulation of lymphatic fluid in tissues, a condition called lymphedema, is common in individuals with malformed lymphatic valves. The vascular endothelial growth factor receptor 3 (VEGFR3) is required for the development of lymphatic vascular system. The abundance of VEGFR3 in collecting lymphatic trunks is high before valve formation and, except at valve regions, decreases after valve formation. We found that in mesenteric lymphatics, the abundance of epsin 1 and 2, which are ubiquitin-binding adaptor proteins involved in endocytosis, was low at early stages of development. After lymphatic valve formation, the initiation of steady shear flow was associated with an increase in the abundance of epsin 1 and 2 in collecting lymphatic trunks, but not in valve regions. Epsin 1 and 2 bound to VEGFR3 and mediated the internalization and degradation of VEGFR3, resulting in termination of VEGFR3 signaling. Mice with lymphatic endothelial cell-specific deficiency of epsin 1 and 2 had dilated lymphatic capillaries, abnormally high VEGFR3 abundance in collecting lymphatics, immature lymphatic valves, and defective lymph drainage. Deletion of a single Vegfr3 allele or pharmacological suppression of VEGFR3 signaling restored normal lymphatic valve development and lymph drainage in epsin-deficient mice. Our findings establish a critical role for epsins in the temporal and spatial regulation of VEGFR3 abundance and signaling in collecting lymphatic trunks during lymphatic valve formation. PMID:25314967

  14. Design criteria monograph for valve components

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Monograph treats valve design technology problems as they were solved in successful development of flightweight operational valves for liquid rocket systems. General practices for cleaning and contamination prevention are summarized. Balance of information is arranged by topic, since detail design requirements apply to most types of valves.

  15. Prognostics for Ground Support Systems: Case Study on Pneumatic Valves

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Goebel, Kai

    2011-01-01

    Prognostics technologies determine the health (or damage) state of a component or sub-system, and make end of life (EOL) and remaining useful life (RUL) predictions. Such information enables system operators to make informed maintenance decisions and streamline operational and mission-level activities. We develop a model-based prognostics methodology for pneumatic valves used in ground support equipment for cryogenic propellant loading operations. These valves are used to control the flow of propellant, so failures may have a significant impact on launch availability. Therefore, correctly predicting when valves will fail enables timely maintenance that avoids launch delays and aborts. The approach utilizes mathematical models describing the underlying physics of valve degradation, and, employing the particle filtering algorithm for joint state-parameter estimation, determines the health state of the valve and the rate of damage progression, from which EOL and RUL predictions are made. We develop a prototype user interface for valve prognostics, and demonstrate the prognostics approach using historical pneumatic valve data from the Space Shuttle refueling system.

  16. Fabrication of Microfluidic Valves Using a Hydrogel Molding Method

    NASA Astrophysics Data System (ADS)

    Sugiura, Yusuke; Hirama, Hirotada; Torii, Toru

    2015-08-01

    In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed. For the rapid prototyping of PDMS microchannels, a method that uses a hydrogel as the casting mold has been recently developed. This technique can be used to prepare a three-dimensional structure through simple and uncomplicated methods. In this study, we were able to fabricate microfluidic valves easily using this rapid prototyping method that utilizes hydrogel cast molding. In addition, we confirmed that the valve displacement could be predicted within a range of constant pressures. Moreover, because microfluidic valves fabricated using this method can be directly observed from a cross-sectional direction, we anticipate that this technology will significantly contribute to clarifying fluid behavior and other phenomena in microchannels and microfluidic valves with complex structures.

  17. Fabrication of Microfluidic Valves Using a Hydrogel Molding Method.

    PubMed

    Sugiura, Yusuke; Hirama, Hirotada; Torii, Toru

    2015-08-24

    In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed. For the rapid prototyping of PDMS microchannels, a method that uses a hydrogel as the casting mold has been recently developed. This technique can be used to prepare a three-dimensional structure through simple and uncomplicated methods. In this study, we were able to fabricate microfluidic valves easily using this rapid prototyping method that utilizes hydrogel cast molding. In addition, we confirmed that the valve displacement could be predicted within a range of constant pressures. Moreover, because microfluidic valves fabricated using this method can be directly observed from a cross-sectional direction, we anticipate that this technology will significantly contribute to clarifying fluid behavior and other phenomena in microchannels and microfluidic valves with complex structures.

  18. Conceptual model for early health technology assessment of current and novel heart valve interventions

    PubMed Central

    Huygens, Simone A; Rutten-van Mölken, Maureen P M H; Bekkers, Jos A; Bogers, Ad J J C; Bouten, Carlijn V C; Chamuleau, Steven A J; de Jaegere, Peter P T; Kappetein, Arie Pieter; Kluin, Jolanda; van Mieghem, Nicolas M D A; Versteegh, Michel I M; Witsenburg, Maarten; Takkenberg, Johanna J M

    2016-01-01

    Objective The future promises many technological advances in the field of heart valve interventions, like tissue-engineered heart valves (TEHV). Prior to introduction in clinical practice, it is essential to perform early health technology assessment. We aim to develop a conceptual model (CM) that can be used to investigate the performance and costs requirements for TEHV to become cost-effective. Methods After scoping the decision problem, a workgroup developed the draft CM based on clinical guidelines. This model was compared with existing models for cost-effectiveness of heart valve interventions, identified by systematic literature search. Next, it was discussed with a Delphi panel of cardiothoracic surgeons, cardiologists and a biomedical scientist (n=10). Results The CM starts with the valve implantation. If patients survive the intervention, they can remain alive without complications, die from non-valve-related causes or experience a valve-related event. The events are separated in early and late events. After surviving an event, patients can experience another event or die due to non-valve-related causes. Predictors will include age, gender, NYHA class, left ventricular function and diabetes. Costs and quality adjusted life years are to be attached to health conditions to estimate long-term costs and health outcomes. Conclusions We developed a CM that will serve as foundation of a decision-analytic model that can estimate the potential cost-effectiveness of TEHV in early development stages. This supports developers in deciding about further development of TEHV and identifies promising interventions that may result in faster take-up in clinical practice by clinicians and reimbursement by payers. PMID:27843569

  19. [Mitral valve endocarditis after Turkish "Festival of Sacrifice"].

    PubMed

    Blaich, A; Fasel, D; Kaech, C; Frei, R

    2011-09-01

    Erysipelothrix rhusiopathiae is the causative agent of swine erysipelas. Systemic infections caused by E. rhusiopathiae are rare, but often (90%) associated with endocarditis. In about 60% of cases endocarditis develops on normal heart valves, and despite appropriate antibiotic therapy about one-third of the patients requires valve replacement. We report the case of a housewife, who developed a mitral valve endocarditis due to E. rhusiopathiae after preparing meat for the Turkish "Festival of Sacrifice".

  20. Pulse-width-modulated servo valve for autopilot system

    NASA Technical Reports Server (NTRS)

    Garner, H. D.

    1974-01-01

    Valve was developed for autopilot wing-lever system and is to be used in light, single-engine aircraft. Valve is controlled by electronic circuit which feeds pulse-width-modulated correction signals to two solenoids. Valve housing is cast from plastic, making it very economical to fabricate.

  1. Complementary role of cardiac CT in the assessment of aortic valve replacement dysfunction

    PubMed Central

    Moss, Alastair J; Dweck, Marc R; Dreisbach, John G; Williams, Michelle C; Mak, Sze Mun; Cartlidge, Timothy; Nicol, Edward D; Morgan-Hughes, Gareth J

    2016-01-01

    Aortic valve replacement is the second most common cardiothoracic procedure in the UK. With an ageing population, there are an increasing number of patients with prosthetic valves that require follow-up. Imaging of prosthetic valves is challenging with conventional echocardiographic techniques making early detection of valve dysfunction or complications difficult. CT has recently emerged as a complementary approach offering excellent spatial resolution and the ability to identify a range of aortic valve replacement complications including structural valve dysfunction, thrombus development, pannus formation and prosthetic valve infective endocarditis. This review discusses each and how CT might be incorporated into a multimodal cardiovascular imaging pathway for the assessment of aortic valve replacements and in guiding clinical management. PMID:27843568

  2. Transcatheter heart valves for the treatment of aortic stenosis: state-of-the-art.

    PubMed

    Del Valle-Fernández, R; Ruiz, C E

    2008-10-01

    Degenerative aortic stenosis is the most frequent heart valve disease. As an alternative to surgical aortic valve replacement, several companies are working on the development of new prosthesis designed to be deployed by transcatheter approaches. Both transfemoral and transapical techniques are feasible, and initial trials in high-risk patients show good procedural outcomes and mid-term (up to 2 years) functionality. Two first-generation prosthesis (Edwards-SAPIEN and CoreValve Revalving System) are commercially available in Europe, and a number of other second-generation valves (with the capabilities of repositioning and retrievability) are under evaluation. Among them, the Sadra-Lotus Valve, The Direct Flow Medical valve and the Paniagua Heart Valve have published first-in-man results; the JenaValve and AorTx devices have also been temporarily implanted in humans. The development of repositionable and retrievable prosthesis with improved profile is mandatory, and it is the main focus of current projects. Not only technical improvements but also operators specialization and an optimal patient selection are essential to improve these initial Some procedural challenges need to be overcome prior to the expansion of these techniques to lower risk groups, and time is needed for detailed long-term outcomes and risk estimations. Only with a close collaboration among different specialists, basic researchers and the industry will the future development of transcatheter aortic implantation techniques be ensured.

  3. Fast valve based on double-layer eddy-current repulsion for disruption mitigation in Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhuang, H D; Zhang, X D

    2015-05-01

    A fast valve based on the double-layer eddy-current repulsion mechanism has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to a double-layer eddy-current coil, a preload system was added to improve the security of the valve, whereby the valve opens more quickly and the open-valve time becomes shorter, making it much safer than before. In this contribution, testing platforms, open-valve characteristics, and throughput of the fast valve are discussed. Tests revealed that by choosing appropriate parameters the valve opened within 0.15 ms, and open-valve times were no longer than 2 ms. By adjusting working parameter values, the maximum number of particles injected during this open-valve time was estimated at 7 × 10(22). The fast valve will become a useful tool to further explore disruption mitigation experiments on EAST in 2015.

  4. 17. ROSS POWERHOUSE: BUTTERFLY VALVE CONTROLS FOR UNIT 43. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. ROSS POWERHOUSE: BUTTERFLY VALVE CONTROLS FOR UNIT 43. THE BUTTERFLY VALVE LOCK INDICATES THE BUTTERFLY VALVE IS CLOSED AS UNIT 43 WAS SHUT DOWN FOR REPAIRS, 1989. - Skagit Power Development, Ross Powerhouse, On Skagit River, 10.7 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  5. Evaluation of a transient, simultaneous, arbitrary Lagrange-Euler based multi-physics method for simulating the mitral heart valve.

    PubMed

    Espino, Daniel M; Shepherd, Duncan E T; Hukins, David W L

    2014-01-01

    A transient multi-physics model of the mitral heart valve has been developed, which allows simultaneous calculation of fluid flow and structural deformation. A recently developed contact method has been applied to enable simulation of systole (the stage when blood pressure is elevated within the heart to pump blood to the body). The geometry was simplified to represent the mitral valve within the heart walls in two dimensions. Only the mitral valve undergoes deformation. A moving arbitrary Lagrange-Euler mesh is used to allow true fluid-structure interaction (FSI). The FSI model requires blood flow to induce valve closure by inducing strains in the region of 10-20%. Model predictions were found to be consistent with existing literature and will undergo further development.

  6. Advanced technology for space shuttle auxiliary propellant valves

    NASA Technical Reports Server (NTRS)

    Wichmann, H.

    1973-01-01

    Valves for the gaseous hydrogen/gaseous oxygen shuttle auxiliary propulsion system are required to feature low leakage over a wide temperature range coupled with high cycle life, long term compatibility and minimum maintenance. In addition, those valves used as thruster shutoff valves must feature fast response characteristics to achieve small, repeatable minimum impulse bits. These valve technology problems are solved by developing unique valve components such as sealing closures, guidance devices, and actuation means and by demonstrating two prototype valve concepts. One of the prototype valves is cycled over one million cycles without exceeding a leakage rate of 27 scc's per hour at 450 psia helium inlet pressure throughout the cycling program.

  7. Aerodynamic Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  8. Heart valve cardiomyocytes of mouse embryos express the serotonin transporter SERT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavone, Luigi Michele; Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Naples; Spina, Anna

    2008-12-12

    Multiple evidence demonstrate a role for serotonin and its transporter SERT in heart valve development and disease. By utilizing a Cre/loxP system driven by SERT gene expression, we recently demonstrated a regionally restricted distribution of SERT-expressing cells in developing mouse heart. In order to characterize the cell types exhibiting SERT expression within the mouse heart valves at early developmental stages, in this study we performed immunohistochemistry for Islet1 (Isl1) and connexin-43 (Cx-43) on heart sections from SERT{sup Cre/+};ROSA26R embryos previously stained with X-gal. We observed the co-localization of LacZ staining with Isl1 labelling in the outflow tract, the right ventriclemore » and the conal region of E11.5 mouse heart. Cx-43 labelled cells co-localized with LacZ stained cells in the forming atrioventricular valves. These results demonstrate the cardiomyocyte phenotype of SERT-expressing cells in heart valves of the developing mouse heart, thus suggesting an active role of SERT in early heart valve development.« less

  9. Development and experimental characterization of a pneumatic valve actuated by a dielectric elastomer membrane

    NASA Astrophysics Data System (ADS)

    Hill, Marc; Rizzello, Gianluca; Seelecke, Stefan

    2017-08-01

    Due to their many features including lightweight and low energy consumption, dielectric elastomer (DE) membrane actuators are of interest for a number of industrial applications, such as pumping systems or valve control units. In particular, the use of DEs in valve control units offers advantages over traditional solenoid valves, including lower power requirements and relative simplicity in achieving proportional control. Additionally, DEs generate low thermal dissipation and are capable of virtually silent operation. The contribution of this work is the development of a new valve system based on a circular DE membrane pre-loaded with a linear spring. The valve is designed for pressurized air and operates by actuating a lever mechanism that opens and closes an outlet port. After presenting the operating principle and system design, several experiments are presented to compare actuator force, stroke, and dissipated energy for several pressure differentials and associated volume flows. It is observed that the DE-driven valve achieves a performance similar to a solenoid-based valve, while requiring a significantly lower amount of input energy. In addition, it is shown that DE-membrane valves can be controlled proportionally by simply adjusting the actuator voltage.

  10. Mitral valve surgery - open

    MedlinePlus

    ... place. There are two types of mitral valves: Mechanical, made of man-made (synthetic) materials, such as ... Mechanical heart valves last a lifetime. However, blood clots may develop on them. This can cause them ...

  11. Nitric Oxide Synthase-3 Promotes Embryonic Development of Atrioventricular Valves

    PubMed Central

    Liu, Yin; Lu, Xiangru; Xiang, Fu-Li; Lu, Man; Feng, Qingping

    2013-01-01

    Nitric oxide synthase-3 (NOS3) has recently been shown to promote endothelial-to-mesenchymal transition (EndMT) in the developing atrioventricular (AV) canal. The present study was aimed to investigate the role of NOS3 in embryonic development of AV valves. We hypothesized that NOS3 promotes embryonic development of AV valves via EndMT. To test this hypothesis, morphological and functional analysis of AV valves were performed in wild-type (WT) and NOS3−/− mice at postnatal day 0. Our data show that the overall size and length of mitral and tricuspid valves were decreased in NOS3−/− compared with WT mice. Echocardiographic assessment showed significant regurgitation of mitral and tricuspid valves during systole in NOS3−/− mice. These phenotypes were all rescued by cardiac specific NOS3 overexpression. To assess EndMT, immunostaining of Snail1 was performed in the embryonic heart. Both total mesenchymal and Snail1+ cells in the AV cushion were decreased in NOS3−/− compared with WT mice at E10.5 and E12.5, which was completely restored by cardiac specific NOS3 overexpression. In cultured embryonic hearts, NOS3 promoted transforming growth factor (TGFβ), bone morphogenetic protein (BMP2) and Snail1expression through cGMP. Furthermore, mesenchymal cell formation and migration from cultured AV cushion explants were decreased in the NOS3−/− compared with WT mice. We conclude that NOS3 promotes AV valve formation during embryonic heart development and deficiency in NOS3 results in AV valve insufficiency. PMID:24204893

  12. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.

    PubMed

    Wu, Shaohua; Duan, Bin; Qin, Xiaohong; Butcher, Jonathan T

    2017-03-15

    Regeneration and repair of injured or diseased heart valves remains a clinical challenge. Tissue engineering provides a promising treatment approach to facilitate living heart valve repair and regeneration. Three-dimensional (3D) biomimetic scaffolds that possess heterogeneous and anisotropic features that approximate those of native heart valve tissue are beneficial to the successful in vitro development of tissue engineered heart valves (TEHV). Here we report the development and characterization of a novel composite scaffold consisting of nano- and micro-scale fibrous woven fabrics and 3D hydrogels by using textile techniques combined with bioactive hydrogel formation. Embedded nano-micro fibrous scaffolds within hydrogel enhanced mechanical strength and physical structural anisotropy of the composite scaffold (similar to native aortic valve leaflets) and also reduced its compaction. We determined that the composite scaffolds supported the growth of human aortic valve interstitial cells (HAVIC), balanced the remodeling of heart valve ECM against shrinkage, and maintained better physiological fibroblastic phenotype in both normal and diseased HAVIC over single materials. These fabricated composite scaffolds enable the engineering of a living heart valve graft with improved anisotropic structure and tissue biomechanics important for maintaining valve cell phenotypes. Heart valve-related disease is an important clinical problem, with over 300,000 surgical repairs performed annually. Tissue engineering offers a promising strategy for heart valve repair and regeneration. In this study, we developed and tissue engineered living nano-micro fibrous woven fabric/hydrogel composite scaffolds by using textile technique combined with bioactive hydrogel formation. The novelty of our technique is that the composite scaffolds can mimic physical structure anisotropy and the mechanical strength of natural aortic valve leaflet. Moreover, the composite scaffolds prevented the matrix shrinkage, which is major problem that causes the failure of TEHV, and better maintained physiological fibroblastic phenotype in both normal and diseased HAVIC. This work marks the first report of a combination composite scaffold using 3D hydrogel enhanced by nano-micro fibrous woven fabric, and represents a promising tissue engineering strategy to treat heart valve injury. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. DARPA Advanced Cannon Propellant (ACP) Library User’s Guide. Appendix E. Patents Dealing with LP Gun Hardware

    DTIC Science & Technology

    1981-06-15

    clip 30. A spool 32 in- than as herein specifically illustrated or described, and r 3,782,241 3 4 that certain changes in the form and arrangement of...34 storke " to -- stroke--. 5igncd and 5caicd this Fourteenth Day of March 1978 ISEA 1.I .4 test: Rk TH C. MASON LITRELLE F. PARKER A ttesting Officer Acting...10.67 cells. One thereby closing the check valve 36. This quantity of 45 would select 10 cells and increase the storke length compressed air and

  14. Aortic valve surgery - minimally invasive

    MedlinePlus

    ... There are two main types of new valves: Mechanical, made of man-made materials, such as titanium ... Mechanical heart valves do not fail often. However, blood clots can develop on them. If a blood ...

  15. Successful treatment of pure aortic insufficiency with transapical implantation of the JenaValve.

    PubMed

    Bleiziffer, Sabine; Mazzitelli, Domenico; Nöbauer, Christian; Ried, Thomas; Lange, Rüdiger

    2013-08-01

    Transcatheter aortic valve implantation was predominantly developed for patients with severe calcified aortic stenosis, as most devices are designed to anchor within the native valve calcium. We report on a patient with pure insufficiency of a non-calcified aortic valve, in whom an anatomically oriented catheter valve was implanted successfully. The design of the prosthesis with position feelers engaging the native aortic valve leaflets proved to be suitable for the treatment of pure aortic insufficiency. Georg Thieme Verlag KG Stuttgart · New York.

  16. Lightweight Motorized Valve

    NASA Technical Reports Server (NTRS)

    Gonzalez, R.; Vandewalle, J.

    1986-01-01

    Redesigned actuator assembly weighs 50 percent less. Isolator valve operated by ac motor instead of usual dc solenoid. Valve weighs only 3 lb (1.4 kg). New valve functions with either two-phase or three-phase power. Developed for isolating fluids in propellant tanks, manifolds, and interconnecting lines of Space Shuttle reaction control and orbital maneuvering subsystems, valve suited to applications in which leakage must be kept to minimum at high pressure differences - in petroleum and chemical processing.

  17. Monolithic Teflon membrane valves and pumps for harsh chemical and low-temperature use.

    PubMed

    Willis, Peter A; Hunt, Brian D; White, Victor E; Lee, Michael C; Ikeda, Michael; Bae, Sam; Pelletier, Michael J; Grunthaner, Frank J

    2007-11-01

    Microfluidic diaphragm valves and pumps capable of surviving conditions required for unmanned spaceflight applications have been developed. The Pasteur payload of the European ExoMars Rover is expected to experience temperatures ranging between -100 degrees C and +50 degrees C during its transit to Mars and on the Martian surface. As such, the Urey instrument package, which contains at its core a lab-on-a-chip capillary electrophoresis analysis system first demonstrated by Mathies et al., requires valving and pumping systems that are robust under these conditions before and after exposure to liquid samples, which are to be analyzed for chemical signatures of past or present living processes. The microfluidic system developed to meet this requirement uses membranes consisting of Teflon and Teflon AF as a deformable material in the valve seat region between etched Borofloat glass wafers. Pneumatic pressure and vacuum, delivered via off-chip solenoid valves, are used to actuate individual on-chip valves. Valve sealing properties of Teflon diaphragm valves, as well as pumping properties from collections of valves, are characterized. Secondary processing for embossing the membrane against the valve seats after fabrication is performed to optimize single valve sealing characteristics. A variety of different material solutions are found to produce robust devices. The optimal valve system utilizes a membrane of mechanically cut Teflon sandwiched between two thin spun films of Teflon AF-1600 as a composite "laminated" diaphragm. Pump rates up to 1600 nL s(-1) are achieved with pumps of this kind. These high pumping rates are possible because of the very fast response of the membranes to applied pressure, enabling extremely fast pump cycling with relatively small liquid volumes, compared to analogous diaphragm pumps. The developed technologies are robust over extremes of temperature cycling and are applicable in a wide range of chemical environments.

  18. Acute obstruction by Pannus in patients with aortic medtronic-hall valves: 30 years of experience.

    PubMed

    Ellensen, Vegard Skalstad; Andersen, Knut Sverre; Vitale, Nicola; Davidsen, Einar Skulstad; Segadal, Leidulf; Haaverstad, Rune

    2013-12-01

    Acute dysfunction of mechanical aortic valve prostheses is a life-threatening adverse event. Pannus overgrowth, which is fibroelastic hyperplasia originating from the periannular area, is one cause of dysfunction. The aim of this study was to determine the annual incidence of readmittance resulting from acute obstruction caused by pannus during 30 years of observation in patients with Medtronic-Hall aortic valve prostheses and to analyze the risk factors associated with pannus development. From 1982 to 2004, 1,187 patients in our department underwent aortic valve replacement with Medtronic-Hall mechanical monoleaflet valve prostheses. As of December 31, 2012, 27 of these patients (2.3%) had presented with acute valve dysfunction caused by pannus obstruction. The annual incidence of pannus was 0.7 per 1,000. The median time from the primary operation to prosthetic dysfunction was 11.1 years (range, 1.2 to 26.8 years). Of the 20 patients who underwent reoperation, 2 died. Seven patients died before reoperation. Women had a higher risk for the development of obstructing pannus, and patients with pannus obstruction were younger. Valve size was not an independent risk factor. Women and younger patients are at higher risk for pannus development. When acute dysfunction by pannus is suspected in a mechanical aortic valve, an immediate echocardiogram and an emergency aortic valve replacement should be carried out because of the potential of a fatal outcome. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Aortic valve insufficiency in the teenager and young adult: the role of prosthetic valve replacement.

    PubMed

    Bradley, Scott M

    2013-10-01

    The contents of this article were presented in the session "Aortic insufficiency in the teenager" at the congenital parallel symposium of the 2013 Society of Thoracic Surgeons (STS) annual meeting. The accompanying articles detail the approaches of aortic valve repair and the Ross procedure.(1,2) The current article focuses on prosthetic valve replacement. For many young patients requiring aortic valve surgery, either aortic valve repair or a Ross procedure provides a good option. The advantages include avoidance of anticoagulation and potential for growth. In other patients, a prosthetic valve is an appropriate alternative. This article discusses the current state of knowledge regarding mechanical and bioprosthetic valve prostheses and their specific advantages relative to valve repair or a Ross procedure. In current practice, young patients requiring aortic valve surgery frequently undergo valve replacement with a prosthetic valve. In STS adult cardiac database, among patients ≤30 years of age undergoing aortic valve surgery, 34% had placement of a mechanical valve, 51% had placement of a bioprosthetic valve, 9% had aortic valve repair, and 2% had a Ross procedure. In the STS congenital database, among patients 12 to 30 years of age undergoing aortic valve surgery, 21% had placement of a mechanical valve, 18% had placement of a bioprosthetic valve, 30% had aortic valve repair, and 24% had a Ross procedure. In the future, the balance among these options may be altered by design improvements in prosthetic valves, alternatives to warfarin, the development of new patch materials for valve repair, and techniques to avoid Ross autograft failure.

  20. Numerical investigation on effect of aortic root geometry on flow induced structural stresses developed in a bileaflet mechanical heart valve

    NASA Astrophysics Data System (ADS)

    Abbas, S. S.; Nasif, M. S.; Said, M. A. M.; Kadhim, S. K.

    2017-10-01

    Structural stresses developed in an artificial bileaflet mechanical heart valve (BMHV) due to pulsed blood flow may cause valve failure due to yielding. In this paper, von-Mises stresses are computed and compared for BMHV placed in two types of aortic root geometries that are aortic root with axisymmetric sinuses and with axisymmetric bulb, at different physiological blood flow rates. With BMHV placed in an aortic root with axisymmetric sinuses, the von-Mises stresses developed in the valve were found to be up to 47% higher than BMHV placed in aortic root with axisymmetric bulb under similar physiological conditions. High velocity vectors and therefore high von-Mises stresses have been observed for BMHV placed in aortic root with axisymmetric sinuses, that can lead to valve failure.

  1. MEMS Micro-Valve for Space Applications

    NASA Technical Reports Server (NTRS)

    Chakraborty, I.; Tang, W. C.; Bame, D. P.; Tang, T. K.

    1998-01-01

    We report on the development of a Micro-ElectroMechanical Systems (MEMS) valve that is designed to meet the rigorous performance requirements for a variety of space applications, such as micropropulsion, in-situ chemical analysis of other planets, or micro-fluidics experiments in micro-gravity. These systems often require very small yet reliable silicon valves with extremely low leak rates and long shelf lives. Also, they must survive the perils of space travel, which include unstoppable radiation, monumental shock and vibration forces, as well as extreme variations in temperature. Currently, no commercial MEMS valve meets these requirements. We at JPL are developing a piezoelectric MEMS valve that attempts to address the unique problem of space. We begin with proven configurations that may seem familiar. However, we have implemented some major design innovations that should produce a superior valve. The JPL micro-valve is expected to have an extremely low leak rate, limited susceptibility to particulates, vibration or radiation, as well as a wide operational temperature range.

  2. Reynolds Shear Stress for Textile Prosthetic Heart Valves in Relation to Fabric Design

    PubMed Central

    Bark, David L.; Koupei, Atieh Yousefi; Forleo, Marcio; Vaesken, Antoine; Heim, Frederic; Dasi, Lakshmi P.

    2016-01-01

    The most widely implanted prosthetic heart valves are either mechanical or bioprosthetic. While the former suffers from thrombotic risks, the latter suffers from a lack of durability. Textile valves, alternatively, can be designed with durability and to exhibit hemodynamics similar to the native valve, lowering the risk for thrombosis. Deviations from native valve hemodynamics can result in an increased Reynolds Shear Stress (RSS), which has the potential to instigate hemolysis or shear-induced thrombosis. This study is aimed at characterizing flow in multiple textile valve designs with an aim of developing a low profile valve. Valves were created using a shaping process based on heating a textile membrane and placed within a left heart simulator. Turbulence and bulk hemodynamics were assessed through particle imaging velocimetry (PIV), along with flow and pressure measurements. Overall, RSS was reduced for low profile valves relative to high profile valves, but was otherwise similar among low profile valves. However, leakage was found in 3 of the 4 low profile valve designs driving the fabric design for low profile valves. Through textile design, low profile valves can be created with favorable hemodynamics. PMID:26919564

  3. Design of Epoxy based Resin Composites for Automotive Applications: A Case Study on IC Engine Valve Guide

    NASA Astrophysics Data System (ADS)

    Sidhu, J. S.; Lathkar, G. S.; Sharma, S. B.

    2018-01-01

    The present attempt in this project is to reduce the vibrations, temperature due to friction, noise and weight of I C engine valve guide by replacing conventional metal valve guide with composite valve guide. Composite materials have been used in automotive components because of their properties such as low weight, high specific stiffness, corrosion resistance, ability to produce complex shapes, high specific strength and good impact energy absorption etc. The Internal combustion engine valve guides are the parts that support the valves in the cylinder head, besides this it keeps lubricating oil from getting sucked into the combustion chamber past the intake valve stem, it keeps exhaust gases from getting into the crankcase past the exhaust valve stem and it also keeps the valve face in perfect alignment with the valve seat. A valve guide test rig is indigenously fabricated. Valve guides are manufactured using the developed composite material (Resin ARL-136, Hardener AH-126 and 4 vol% WS2), on a CNC lathe. The performance of the developed composite guide under varied conditions of speeds, that is, fixed change in rpm and modulated changes in rpm is assessed. Noise, temperature and vibrations are measured. The experimental data revealed that contribution of composite guide in respect of acceleration, velocity and displacement components of vibration is not substantial. A substantial reduction in noise levels is seen. As far as temperature rise due to friction is concerned maximum components fail at elevated temperatures, with composite guides the temperature generated due to friction at higher speeds is less, a considerable weight reduction is also observed.

  4. Application of Model-based Prognostics to a Pneumatic Valves Testbed

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Kulkarni, Chetan S.; Gorospe, George

    2014-01-01

    Pneumatic-actuated valves play an important role in many applications, including cryogenic propellant loading for space operations. Model-based prognostics emphasizes the importance of a model that describes the nominal and faulty behavior of a system, and how faulty behavior progresses in time, causing the end of useful life of the system. We describe the construction of a testbed consisting of a pneumatic valve that allows the injection of faulty behavior and controllable fault progression. The valve opens discretely, and is controlled through a solenoid valve. Controllable leaks of pneumatic gas in the testbed are introduced through proportional valves, allowing the testing and validation of prognostics algorithms for pneumatic valves. A new valve prognostics approach is developed that estimates fault progression and predicts remaining life based only on valve timing measurements. Simulation experiments demonstrate and validate the approach.

  5. Development of myoelectric control type speaking valve with low flow resistance

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Sakurai, Kohei; Mimaki, Shinya

    2015-12-01

    We aimed to develop welfare devices for patients with phonation disorder. One of these devices is the electrical controltype speaking valve system. The conventional speaking valves have one-way valve architecture, they open when the user breathes in, and they close when user breathes out and produce voices. This type is very simple and tough, but some users feel closeness in case of exhalation without phonation. This problem is caused by its mechanism what can not be controlled by user's will. Therefore, we proposed an electrical control-type speaking valve system to resolve this problem. This valve is controlled by neck myoelectric signal of sternohyoid muscle. From our previous report, it was clarified that this valve had better performance about easy-to-breath. Furthermore, we proposed the compact myoelectric control-type speaking valve system. The new-type speaking valve was enough small to attach the human body, and its opening area is larger than that of conventional one. Additionally, we described the improvement of flow channel shape by using of FEM analysis. According to the result of the analysis, it was clarified that the shape-improved speaking valve gets the low flow resistance channel in case of inspiration. In this report, we tried to make the flow resistance lower by the shape of current plates, in case of both inspiration and exhalation. From the result of FEM analysis, our speaking valve could get better flow channel than older one.

  6. FLUID-STRUCTURE INTERACTION MODELS OF THE MITRAL VALVE: FUNCTION IN NORMAL AND PATHOLOGIC STATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunzelman, K. S.; Einstein, Daniel R.; Cochran, R. P.

    2007-08-29

    Successful mitral valve repair is dependent upon a full understanding of normal and abnormal mitral valve anatomy and function. Computational analysis is one such method that can be applied to simulate mitral valve function in order to analyze the roles of individual components, and evaluate proposed surgical repair. We developed the first three-dimensional, finite element (FE) computer model of the mitral valve including leaflets and chordae tendineae, however, one critical aspect that has been missing until the last few years was the evaluation of fluid flow, as coupled to the function of the mitral valve structure. We present here ourmore » latest results for normal function and specific pathologic changes using a fluid-structure interaction (FSI) model. Normal valve function was first assessed, followed by pathologic material changes in collagen fiber volume fraction, fiber stiffness, fiber splay, and isotropic stiffness. Leaflet and chordal stress and strain, and papillary muscle force was determined. In addition, transmitral flow, time to leaflet closure, and heart valve sound were assessed. Model predictions in the normal state agreed well with a wide range of available in-vivo and in-vitro data. Further, pathologic material changes that preserved the anisotropy of the valve leaflets were found to preserve valve function. By contrast, material changes that altered the anisotropy of the valve were found to profoundly alter valve function. The addition of blood flow and an experimentally driven microstructural description of mitral tissue represent significant advances in computational studies of the mitral valve, which allow further insight to be gained. This work is another building block in the foundation of a computational framework to aid in the refinement and development of a truly noninvasive diagnostic evaluation of the mitral valve. Ultimately, it represents the basis for simulation of surgical repair of pathologic valves in a clinical and educational setting.« less

  7. Preoperative planning with three-dimensional reconstruction of patient's anatomy, rapid prototyping and simulation for endoscopic mitral valve repair.

    PubMed

    Sardari Nia, Peyman; Heuts, Samuel; Daemen, Jean; Luyten, Peter; Vainer, Jindrich; Hoorntje, Jan; Cheriex, Emile; Maessen, Jos

    2017-02-01

    Mitral valve repair performed by an experienced surgeon is superior to mitral valve replacement for degenerative mitral valve disease; however, many surgeons are still deterred from adapting this procedure because of a steep learning curve. Simulation-based training and planning could improve the surgical performance and reduce the learning curve. The aim of this study was to develop a patient-specific simulation for mitral valve repair and provide a proof of concept of personalized medicine in a patient prospectively planned for mitral valve surgery. A 65-year old male with severe symptomatic mitral valve regurgitation was referred to our mitral valve heart team. On the basis of three-dimensional (3D) transoesophageal echocardiography and computed tomography, 3D reconstructions of the patient's anatomy were constructed. By navigating through these reconstructions, the repair options and surgical access were chosen (minimally invasive repair). Using rapid prototyping and negative mould fabrication, we developed a process to cast a patient-specific mitral valve silicone replica for preoperative repair in a high-fidelity simulator. Mitral valve and negative mould were printed in systole to capture the pathology when the valve closes. A patient-specific mitral valve silicone replica was casted and mounted in the simulator. All repair techniques could be performed in the simulator to choose the best repair strategy. As the valve was printed in systole, no special testing other than adjusting the coaptation area was required. Subsequently, the patient was operated, mitral valve pathology was validated and repair was successfully done as in the simulation. The patient-specific simulation and planning could be applied for surgical training, starting the (minimally invasive) mitral valve repair programme, planning of complex cases and the evaluation of new interventional techniques. The personalized medicine could be a possible pathway towards enhancing reproducibility, patient's safety and effectiveness of a complex surgical procedure. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  8. AUTOMOTIVE DIESEL MAINTENANCE 2 UNIT IV, AUTOMATIC TRANSMISSIONS--HYDRAULICS (PART II).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF VALVES UTILIZED IN HYDRAULIC TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) REVIEWING FACTS ABOUT PUMPS, (2) USING VALVES FOR CONTROL, (3) TROUBLESHOOTING PROCEDURES ON RELIEF VALVES, (4) USING DIRECTIONAL CONTROL VALVES,…

  9. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering.

    PubMed

    Jahnavi, S; Saravanan, U; Arthi, N; Bhuvaneshwar, G S; Kumary, T V; Rajan, S; Verma, R S

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44 + , αSMA + , Vimentin + and CD105 - human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Biofilm formation and design features of indwelling silicone rubber tracheoesophageal voice prostheses--an electron microscopical study.

    PubMed

    Leunisse, C; van Weissenbruch, R; Busscher, H J; van der Mei, H C; Dijk, F; Albers, F W

    2001-01-01

    After total laryngectomy, voice can be restored with a silicone rubber tracheoesophageal voice prosthesis. However, biofilm formation and subsequent deterioration of the silicone material of the prosthesis will limit device life by impairing valve function. To simulate the natural process of biofilm development under dynamic nutrient conditions, a modified Robbins device was used to evaluate the biofilm-related valve dysfunction of the Groningen, Provox2, Blom-Singer indwelling, and VoiceMaster voice prostheses. Obstruction of the semicircular slit-valved Groningen prosthesis leading to increased airway resistance was caused not only by a buildup of deposits on the esophageal flange and valve hat, but also by accumulation of deposits on the semicircular valve seating. The hinged flap valved Provox2 and indwelling Blom-Singer prostheses failed to close sufficiently because of biofilm formation on the valve seating. The esophageal flange of the VoiceMaster prosthesis was affected, but the tripod structure of the ball valve was fully colonized up to the titanium sleeve, which interfered with proper valve opening and closure. These findings on biofilm formation could be used for the further development and modification of critical design features of voice prostheses to facilitate tracheoesophageal speech. Copyright 2001 John Wiley & Sons, Inc.

  11. Topography of aortic heart valves. [applied to the development of a prosthetic heart valve

    NASA Technical Reports Server (NTRS)

    Karara, H. M.

    1974-01-01

    The cooperative effort towards the development of a tri-leaflet prosthetic heart valve is described. The photogrammetric studies were conducted on silicone rubber molds. Information on data acquisition and data reduction phases is given, and certain accuracy aspects of the project are explained. The various outputs which are discussed include digital models, profiles, and contour maps.

  12. Ceramic valve development for heavy-duty low heat rejection diesel engines

    NASA Technical Reports Server (NTRS)

    Weber, K. E.; Micu, C. J.

    1989-01-01

    Monolithic ceramic valves can be successfully operated in a heavy-duty diesel engine, even under extreme low heat rejection operating conditions. This paper describes the development of a silicon nitride valve from the initial design stage to actual engine testing. Supplier involvement, finite element analysis, and preliminary proof of concept demonstration testing played a significant role in this project's success.

  13. Frequency Rectification Applied to Piezoelectric Energy Harvesting and Improving Available Power of Piezoelectric Motors

    NASA Astrophysics Data System (ADS)

    Kuroda, Kazuaki; LCGT Collaboration

    Piezoelectric materials are just now, within the last decade, coming into their own as a commercial material. Capable of converting energy from the mechanical domain to the electrical domain; piezos are ideal sensors, vibration dampers, energy harvesters, and actuators. Frequency rectification, or the conversion of small, high frequency piezoelectric vibrations into useful low frequency actuation, is required to obtain widespread industrial use of piezoelectric devices. This work examines three manifestations of piezoelectric frequency rectification: energy harvesting, a hydraulic motor, and friction based commercial-off-the-shelf motors. An energy harvesting device is developed, manufactured, and tested in this work, resulting in the development of a high Energy Density (J/m 3), high Power Density (W/m3) energy harvester. The device is shown to have an Energy Density nearly twice that of a similar conventional energy harvesting device. The result of this work is the development of an energy harvesting system that generates more energy in a given volume of piezoelectric material, opening the possibility of miniaturization of energy harvesting devices. Also presented is an effort to integrate a high frequency, high flow rate micromachined valve array into a PiezoHydraulic Pump (PHP), enabling resonant operation of the PHP. Currently, the device is limited by the resonant frequency of the proprietary passive check valves. The PHP is fully characterized, and the microvalve array is tested to determine its resonant frequency in a fluid medium. The valve testing resulted in a resonant frequency of 6.9 kHz, slightly lower than the target operating frequency of 10 kHz. Finally, the results of an examination of frequency rectification as applied to COTS piezoelectric motors are presented. Currently, motors are almost universally characterized based upon their available mechanical power. A better comparison is one based upon the actual Energy Density of the piezoelectric material utilized in the motor compared to the theoretical maximum Energy Density under the motor operating conditions (i.e., frequency, applied electric field). The result of this work is a more descriptive metric to evaluate piezoelectric motors that provides information on the effectiveness of the motor drive train; that is, how effectively the motion of the piezoelectric is transferred to the outside world.

  14. Advanced diesel engine component development program, tasks 4-14

    NASA Astrophysics Data System (ADS)

    Kaushal, Tony S.; Weber, Karen E.

    1994-11-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system that eliminated the conventional camshaft was demonstrated on the test bed. High pressure fuel injection via a common rail system was also developed to reduce particulate emissions.

  15. Advanced diesel engine component development program, tasks 4-14

    NASA Technical Reports Server (NTRS)

    Kaushal, Tony S.; Weber, Karen E.

    1994-01-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system that eliminated the conventional camshaft was demonstrated on the test bed. High pressure fuel injection via a common rail system was also developed to reduce particulate emissions.

  16. Ramipril retards development of aortic valve stenosis in a rabbit model: mechanistic considerations.

    PubMed

    Ngo, Doan Tm; Stafford, Irene; Sverdlov, Aaron L; Qi, Weier; Wuttke, Ronald D; Zhang, Yuan; Kelly, Darren J; Weedon, Helen; Smith, Malcolm D; Kennedy, Jennifer A; Horowitz, John D

    2011-02-01

    Aortic valve stenosis (AVS) is associated with significant cardiovascular morbidity and mortality. To date, no therapeutic modality has been shown to be effective in retarding AVS progression. We evaluated the effect of angiotensin-converting enzyme inhibition with ramipril on disease progression in a recently developed rabbit model of AVS. The effects of 8 weeks of treatment with either vitamin D₂ at 25,000 IU for 4 days a week alone or in combination with ramipril (0.5 mg·kg⁻¹) on aortic valve structure and function were examined in New Zealand white rabbits. Echocardiographic aortic valve backscatter (AV(BS)) and aortic valve:outflow tract flow velocity ratio were utilized to quantify changes in valve structure and function. Treatment with ramipril significantly reduced AV(BS) and improved aortic valve :outflow tract flow velocity ratio. The intravalvular content of the pro-oxidant thioredoxin-interacting protein was decreased significantly with ramipril treatment. Endothelial function, as measured by asymmetric dimethylarginine concentrations and vascular responses to ACh, was improved significantly with ramipril treatment. Ramipril retards the development of AVS, reduces valvular thioredoxin-interacting protein accumulation and limits endothelial dysfunction in this animal model. These findings provide important insights into the mechanisms of AVS development and an impetus for future human studies of AVS retardation using an angiotensin-converting enzyme inhibitor. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  17. Fluid Dynamic Characterization of a Polymeric Heart Valve Prototype (Poli-Valve) tested under Continuous and Pulsatile Flow Conditions

    PubMed Central

    De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D.; Costantino, Maria Laura

    2016-01-01

    Introduction Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy, the latter display better fluid dynamic behaviour but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the haemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of two groups of newly developed supra-annular tri-leaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. Methods Two types of Poli-Valves made of SBC differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. An ad - hoc designed pulse duplicator allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the valve’s behaviour. Results Both types Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by ISO 5840 Standard. Results were compared with five mechanical heart valves (MHVs) and five tissue heart valves (THVs), currently available on the market. Conclusion Based on these results, polymeric heart valves based on styrenic block copolymers, as Poli-Valves are, can be considered as promising alternative for heart valve replacement in near future. PMID:26689146

  18. Fluid dynamic characterization of a polymeric heart valve prototype (Poli-Valve) tested under continuous and pulsatile flow conditions.

    PubMed

    De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D; Costantino, Maria Laura

    2015-11-01

    Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy; the latter display better fluid dynamic behavior but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the hemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of 2 groups of newly developed supra-annular, trileaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. 2 types of Poli-Valves made of SBC and differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. A pulse duplicator designed ad hoc allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the behavior of the valve. Both types of Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by the ISO 5840 Standard. Results were compared with 5 mechanical heart valves (MHVs) and 5 tissue heart valves (THVs), currently available on the market. Based on these results, PHVs based on styrenic block copolymers, as are Poli-Valves, can be considered a promising alternative for heart valve replacement in the near future.

  19. Metallurgical Laboratory (MetLab) Treatability Study: An Analysis of Passive Soil Vapor Extraction Wells (PSVE) FY1999 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riha, B.D.

    1999-10-20

    The results to date on the treatability study of the PSVE system at the MetLab of the Savannah River Site (SRS) indicate the technology is performing well. Well concentrations are decreasing and contour maps of the vadose zone soil gas plume show a decrease in the extent of the plume. In the 18 months of operation approximately 200 pounds of chlorinated organic contaminants have been removed by natural barometric pumping of wells fitted with BaroBall valves (low pressure check valves). The mass removal estimates are approximate since the flow rates are estimated, the concentration data is based on exponential fitsmore » of a limited data set, and the concentration data is normalized to the average CO2.The concentration values presented in this report should be taken as the general trend or order of magnitude of concentration until longer-term data is collected. These trends are of exponentially decreasing concentration showing the same characteristics as the concentration trends at the SRS Miscellaneous Chemical Basin after three years of PSVE (Riha et. al., 1999).« less

  20. High precision innovative micropump for artificial pancreas

    NASA Astrophysics Data System (ADS)

    Chappel, E.; Mefti, S.; Lettieri, G.-L.; Proennecke, S.; Conan, C.

    2014-03-01

    The concept of artificial pancreas, which comprises an insulin pump, a continuous glucose meter and a control algorithm, is a major step forward in managing patient with type 1 diabetes mellitus. The stability of the control algorithm is based on short-term precision micropump to deliver rapid-acting insulin and to specific integrated sensors able to monitor any failure leading to a loss of accuracy. Debiotech's MEMS micropump, based on the membrane pump principle, is made of a stack of 3 silicon wafers. The pumping chamber comprises a pillar check-valve at the inlet, a pumping membrane which is actuated against stop limiters by a piezo cantilever, an anti-free-flow outlet valve and a pressure sensor. The micropump inlet is tightly connected to the insulin reservoir while the outlet is in direct communication with the patient skin via a cannula. To meet the requirement of a pump dedicated to closed-loop application for diabetes care, in addition to the well-controlled displacement of the pumping membrane, the high precision of the micropump is based on specific actuation profiles that balance effect of pump elasticity in low-consumption push-pull mode.

  1. Intraoperative Assessment of Tricuspid Valve Function After Conservative Repair

    PubMed Central

    Revuelta, J.M.; Gomez-Duran, C.; Garcia-Rinaldi, R.; Gallagher, M.W.

    1982-01-01

    It is desirable to repair coexistent tricuspid valve pathology at the time of mitral valve corrections. Conservative tricuspid repair may consist of commissurotomy, annuloplasty, or both. It is important that the repair be appropriate or tricuspid valve replacement may be necessary. A simple reproducible method of intraoperative testing for tricuspid valve insufficiency has been developed and used in 25 patients. Fifteen patients have been recatheterized, and the correlation between the intraoperative and postoperative findings has been consistent. PMID:15226931

  2. Mitral valve-sparing procedures and prosthetic heart valve failure: A case report

    PubMed Central

    Khan, Nasir A; Butany, Jagdish; Leong, Shaun W; Rao, Vivek; Cusimano, Robert J; Ross, Heather J

    2009-01-01

    Prosthetic heart valve dysfunction due to thrombus or pannus formation can be a life-threatening complication. The present report describes a 47-year-old woman who developed valvular cardiomyopathy after chorda-sparing mitral valve replacement, and subsequently underwent heart transplantation for progressive heart failure. The explanted mitral valve prosthesis showed significant thrombus and pannus leading to reduced leaflet mobility and valvular stenosis. The present report illustrates the role of the subvalvular apparatus and pannus in prosthesis dysfunction. PMID:19279993

  3. The development of a microprocessor-controlled linearly-actuated valve assembly

    NASA Technical Reports Server (NTRS)

    Wall, R. H.

    1984-01-01

    The development of a proportional fluid control valve assembly is presented. This electromechanical system is needed for space applications to replace the current proportional flow controllers. The flow is controlled by a microprocessor system that monitors the control parameters of upstream pressure and requested volumetric flow rate. The microprocessor achieves the proper valve stem displacement by means of a digital linear actuator. A linear displacement sensor is used to measure the valve stem position. This displacement is monitored by the microprocessor system as a feedback signal to close the control loop. With an upstream pressure between 15 and 47 psig, the developed system operates between 779 standard CU cm/sec (SCCS) and 1543 SCCS.

  4. Radiation-induced valvular heart disease.

    PubMed

    Gujral, Dorothy M; Lloyd, Guy; Bhattacharyya, Sanjeev

    2016-02-15

    Radiation to the mediastinum is a key component of treatment with curative intent for a range of cancers including Hodgkin's lymphoma and breast cancer. Exposure to radiation is associated with a risk of radiation-induced heart valve damage characterised by valve fibrosis and calcification. There is a latent interval of 10-20 years between radiation exposure and development of clinically significant heart valve disease. Risk is related to radiation dose received, interval from exposure and use of concomitant chemotherapy. Long-term outlook and the risk of valve surgery are related to the effects of radiation on mediastinal structures including pulmonary fibrosis and pericardial constriction. Dose prediction models to predict the risk of heart valve disease in the future and newer radiation techniques to reduce the radiation dose to the heart are being developed. Surveillance strategies for this cohort of cancer survivors at risk of developing significant heart valve complications are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  6. Experimental Investigation of a Multi-Cycle Single-Tube Pulse Detonation Rocket Engine with a Coaxial Rotary Valve

    NASA Astrophysics Data System (ADS)

    Matsuoka, Ken; Esumi, Motoki; Ikeguchi, Ken Bryan; Kasahara, Jiro; Matsuo, Akiko; Funaki, Ikkoh

    We developed a novel coaxial rotary valve for a multi-tube PDE. Since this single valve can supply three different gases (fuel, oxidizer and purge gas) into a combustor, the unification of the valve systems for three different gases is possible by using our newly designed valve. A PDRE system can be simple and lightweight by using this valve, and thus its thrust-weight ratio can be increased. We proposed the design of a multi-tube rotary-valved PDRE system by this rotary valve. Moreover, in preparation for a multi-tube rotary-valved PDRE, we carried out the multi-cycle operation experiment by the single-tube rotary-valved PDRE system. The combustion wave velocity was measured to confirm the operation of the PDRE system. Deflagration-to-detonation transition (DDT) was confirmed and DDT distance decreased under the condition of high operation frequency. In addition, a maximum operation frequency was 159 Hz.

  7. AB0 blood types: impact on development of prosthetic mechanical valve thrombosis

    PubMed Central

    Astarcıoğlu, Mehmet Ali; Kalçık, Macit; Yesin, Mahmut; Gürsoy, Mustafa Ozan; Şen, Taner; Karakoyun, Süleyman; Gündüz, Sabahattin; Özkan, Mehmet

    2016-01-01

    Objective: The non-O alleles of the ABO genotype have been associated with an increased risk of thrombosis. We aimed to assess the association between blood group status and prosthetic valve thrombosis. Methods: The association between AB0 blood group status and prosthetic valve thrombosis was assessed in this retrospective study. Transesophageal echocardiography was performed in 149 patients with a diagnosis of prosthetic valve thrombosis and in 192 control subjects. Results: Non-0 blood group type (p<0.001), presence of NYHA class III-IV status (p<0.001), and central nervous system (p<0.001) and non-central nervous system (p<0.001) emboli were significantly more prevalent in prosthetic valve thrombosis patients than in the control subjects. The incidence of ineffective anticoagulation was higher in patients with prosthetic valve thrombosis than in controls (p<0.001), as was the presence of moderate to severe left atrial spontaneous echo contrast (p<0.001). The non-0 blood prosthetic valve thrombosis subgroup had a higher incidence of obstructive thrombi and central nervous system thrombotic events than having 0 blood prosthetic valve thrombosis subgroup. Non-0 blood group, ineffective anticoagulation, left atrial spontaneous echo contrast, and a poor NYHA functional capacity were identified to be the predictors of prosthetic valve thrombosis. Conclusion: Our data demonstrate that patients with non-0 compared with 0 blood groups have higher incidence of prosthetic valve thrombosis and central nervous system embolism and similar rates of non-central nervous system embolism at presentation compared with 0 blood group type. Thus, non-O blood group may be a risk factor that may be prone to the development of prosthetic valve thrombosis in patients with prosthetic heart valves. PMID:27488753

  8. A low-cost bioprosthetic semilunar valve for research, disease modelling and surgical training applications.

    PubMed

    Rosa, Benoit; Machaidze, Zurab; Shin, Borami; Manjila, Sunil; Brown, David W; Baird, Christopher W; Mayer, John E; Dupont, Pierre E

    2017-11-01

    This paper provides detailed instructions for constructing low-cost bioprosthetic semilunar valves for animal research and clinical training. This work fills an important gap between existing simulator training valves and clinical valves by providing fully functioning designs that can be employed in ex vivo and in vivo experiments and can also be modified to model valvular disease. Valves are constructed in 4 steps consisting of creating a metal frame, covering it with fabric and attaching a suture ring and leaflets. Computer-aided design files are provided for making the frame from wire or by metal 3D printing. The covering fabric and suturing ring are made from materials readily available in a surgical lab, while the leaflets are made from pericardium. The entire fabrication process is described in figures and in a video. To demonstrate disease modelling, design modifications are described for producing paravalvular leaks, and these valves were evaluated in porcine ex vivo (n = 3) and in vivo (n = 6) experiments. Porcine ex vivo and acute in vivo experiments demonstrate that the valves can replicate the performance of clinical valves for research and training purposes. Surgical implantation is similar, and echocardiograms are comparable to clinical valves. Furthermore, valve leaflet function was satisfactory during acute in vivo tests with little central regurgitation, while the paravalvular leak modifications consistently produced leaks in the desired locations. The detailed design procedure presented here, which includes a tutorial video and computer-aided design files, should be of substantial benefit to researchers developing valve disease models and to clinicians developing realistic valve training systems. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  9. Development of Long-Lifetime Pulsed Gas Valves for Pulsed Electric Thrusters

    NASA Technical Reports Server (NTRS)

    Burkhardt, Wendel M.; Crapuchettes, John M.; Addona, Brad M.; Polzin, Kurt A.

    2015-01-01

    The design and test results for two types of pulsed gas valves are presented. The valves, a piezo valve and a solenoid actuated valve, must have exceedingly long lifetime to support gas-fed pulsed electric thruster operation for missions of interest. The performance of both valves was tested, with both demonstrating the capability to throttle the gas flow rate while maintaining low leakage levels below 10(exp -3) sccs of He at the beginning of valve lifetime. The piezo valve varies the flow rate by changing the amount that the valve is open, which is a function of applied voltage. This valve demonstrated continuous throttlability from 0-10 mL/s, with opening and closing times of 100 microsecond or less. The solenoid actuated valve flow rate changes as a function of the inlet gas pressure, with demonstrated flow rates in these tests from 2.7-11 mL per second. The valve response time is slower than the piezo valve, opening in 1-2 ms and closing in several ms. The solenoid actuated valve was tested to one million cycles, with the valve performance remaining relatively unchanged throughout the test. Galling of the sliding plunger caused the valve to bind and fail just after one million cycles, but at this point in the test the valve sealing surface leak rate still appeared to be well below the maximum target leak rake of 1×10(exp -3) sccs of He.

  10. HB-EGF function in cardiac valve development requires interaction with heparan sulfate proteoglycans.

    PubMed

    Iwamoto, Ryo; Mine, Naoki; Kawaguchi, Taichiro; Minami, Seigo; Saeki, Kazuko; Mekada, Eisuke

    2010-07-01

    HB-EGF, a member of the EGF family of growth factors, plays an important role in cardiac valve development by suppressing mesenchymal cell proliferation. Here, we show that HB-EGF must interact with heparan sulfate proteoglycans (HSPGs) to properly function in this process. In developing valves, HB-EGF is synthesized in endocardial cells but accumulates in the mesenchyme by interacting with HSPGs. Disrupting the interaction between HB-EGF and HSPGs in an ex vivo model of endocardial cushion explants resulted in increased mesenchymal cell proliferation. Moreover, homozygous knock-in mice (HB(Delta)(hb/)(Delta)(hb)) expressing a mutant HB-EGF that cannot bind to HSPGs developed enlarged cardiac valves with hyperproliferation of mesenchymal cells; this resulted in a phenotype that resembled that of Hbegf-null mice. Interestingly, although Hbegf-null mice had abnormal heart chambers and lung alveoli, HB(Delta)(hb/)(Delta)(hb) mice did not exhibit these defects. These results indicate that interactions with HSPGs are essential for the function of HB-EGF, especially in cardiac valve development, in which HB-EGF suppresses mesenchymal cell proliferation.

  11. Design of a Magnetostrictive-Hydraulic Actuator Considering Nonlinear System Dynamics and Fluid-Structure Coupling

    NASA Astrophysics Data System (ADS)

    Larson, John Philip

    Smart material electro-hydraulic actuators (EHAs) utilize fluid rectification via one-way check valves to amplify the small, high-frequency vibrations of certain smart materials into large motions of a hydraulic cylinder. Although the concept has been demonstrated in previously, the operating frequency of smart material EHA systems has been limited to a small fraction of the available bandwidth of the driver materials. The focus of this work is to characterize and model the mechanical performance of a magnetostrictive EHA considering key system components: rectification valves, smart material driver, and fluid-system components, leading to an improved actuator design relative to prior work. The one-way valves were modeled using 3-D finite element analysis, and their behavior was characterized experimentally by static and dynamic experimental measurement. Taking into account the effect of the fluid and mechanical conditions applied to the valves within the pump, the dynamic response of the valve was quantified and applied to determine rectification bandwidth of different valve configurations. A novel miniature reed valve, designed for a frequency response above 10~kHz, was fabricated and tested within a magnetostrictive EHA. The nonlinear response of the magnetostrictive driver, including saturation and hysteresis effects, was modeled using the Jiles-Atherton approach to calculate the magnetization and the resulting magnetostriction based on the applied field calculated within the rod from Maxwell's equations. The dynamic pressure response of the fluid system components (pumping chamber, hydraulic cylinder, and connecting passages) was measured over a range of input frequencies. For the magnetostrictive EHA tested, the peak performance frequency was found to be limited by the fluid resonances within the system. A lumped-parameter modeling approach was applied to model the overall behavior of a magnetostrictive EHA, incorporating models for the reed valve response, nonlinear magnetostrictive behavior, and fluid behavior (including inertia and compliance). This model was validated by experimental study of a magnetostrictive EHA with a reduced volume manifold. The model was subsequently applied to design a compact magnetostrictive EHA for aircraft applications. Testing of the system shows that the output performance increases with frequency up to a peak unloaded flow rate of 100 cm3/s (6.4 cu in/s) at 1200 Hz, which is a 100% to 500% increase over previous state-of-the-art systems. A blocked differential pressure of 12.1 MPa (1750 psi) was measured, resulting in a power capacity of 310 W, more than 100 W higher than previously reported values. The design and modeling approach used to scale up the performance to create a compact aircraft EHA can also be applied to reduce the size and weight of smart material EHAs for lower power level applications.

  12. Design and CFD analysis of intake port and exhaust port for a 4 valve cylinder head engine

    NASA Astrophysics Data System (ADS)

    Latheesh, V. M.; Parthasarathy, P.; Baskaran, V.; Karthikeyan, S.

    2018-02-01

    In cylinder air motion in a compression ignition engine effects mixing of air-fuel, quality of combustion and emission produced. The primary objective is to design and analyze intake and the exhaust port for a four valve cylinder head to meet higher emission norms for a given diesel engine with two valves. In this work, an existing cylinder head designed for two valves was redesigned with 4 valves. The modern trend also confirms this approach. This is being followed in the design and development of new generation engines to meet the stringent environment norms, competition in market and demand for more fuel-efficient engines. The swirl ratio and flow coefficient were measured for different valve lifts using STAR CCM+. CFD results were validated with the two-valve cylinder experimental results. After validation, a comparison between two-valve and four-valve cylinder head was done. The conversion of two valve cylinder head to 4 valves may not support modern high swirl generating port layout and requires a trade-off between many design parameters.

  13. [Percutaneously implantable aortic valve: the JenaValve concept evolution].

    PubMed

    Figulla, Hans R; Ferrari, Markus

    2006-10-01

    Due to the increasing incidence of severe aortic stenosis in old and multimorbid patients, the percutaneous implantation of aortic valve-carrying stents has become an alternative to the surgical replacement of aortic valves. Starting in 1995, the authors developed a self-expanding stent which transferred the necessary forces for anchoring up to the aorta ascendens-a conception taken over from CoreValve. The further improvement of this idea over the past 11 years has led to a self-expanding, relatively short stent-valve system that is reliably positioned in the cusps of the old aortic valve and holds the old valve like a paper clip, thus transferring the holding forces physiologically. As compared to conventional systems, the sophisticated insertion catheter requires further chronic animal tests so as to represent a true alternative to the conventional surgical procedure.

  14. Development Specification for RV-346/348 Positive Pressure Relief Valves (PPRV)

    NASA Technical Reports Server (NTRS)

    Ralston, Russell L.

    2017-01-01

    This specification establishes the requirements for design, performance, safety, testing, and manufacture of the RV-346 and RV-348, Positive Pressure Relief Valve (PPRV) as part of the Advanced Extravehicular Mobility Unit (EMU)(AEMU) Portable Life Support System (PLSS). The RV-346 serves as the Positive Pressure Relief Valve (PPRV), and the RV-348 serves as the Secondary Positive Pressure Relief Valve (SPPRV).

  15. Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax

    PubMed Central

    Kanady, John D.; Dellinger, Michael T.; Munger, Stephanie J.; Witte, Marlys H.; Simon, Alexander M.

    2011-01-01

    Intraluminal valves are required for the proper function of lymphatic collecting vessels and large lymphatic trunks like the thoracic duct. Despite recent progress in the study of lymphvasculogenesis and lymphangiogenesis, the molecular mechanisms controlling the morphogenesis of lymphatic valves remains poorly understood. Here, we report that gap junction proteins, or connexins (Cxs), are required for lymphatic valvulogenesis. Cx37 and Cx43 are expressed early in mouse lymphatic development in the jugular lymph sacs, and later in development these Cxs become enriched and differentially expressed by lymphatic endothelial cells on the upstream and downstream sides of the valves. Specific deficiencies of Cx37 and Cx43 alone or in combination result in defective valve formation in lymphatic collecting vessels, lymphedema, and chylothorax. We also show that Cx37 regulates jugular lymph sac size and that both Cx37 and Cx43 are required for normal thoracic duct development, including valve formation. Another Cx family member, Cx47, whose human analog is mutated in some families with lymphedema, is also highly enriched in a subset of endothelial cells in lymphatic valves. Mechanistically, we present data from Foxc2−/− embryos suggesting that Cx37 may be a target of regulation by Foxc2, a transcription factor that is mutated in human lymphedema-distichiasis syndrome. These results show that at least three Cxs are expressed in the developing lymphatic vasculature and, when defective, are associated with clinically manifest lymphatic disorders in mice and man. PMID:21515254

  16. Development of a Laboratory Test for Multiport Injector Deposits: Approaches 1 and 2.

    DTIC Science & Technology

    1987-09-01

    developed approximately 20 years ago by the U. S. Army at Southwest Research Institute (SwRI) for screening fuels with a tendency to form intake valve de ...the left in Figure 2 was developed specifically to evaluate the fuel- de - positing tendencies in both cold carburetor throat and hot intake valve areas...Carburetor Throttle U-,Removable Plate and Throat Deposit Sleeve De pos iti n Ass emb ly Variable Poerta Intake Valve Depositing Assembl> 1,� V. -A.C

  17. Observation of cavitation in a mechanical heart valve in a total artificial heart.

    PubMed

    Lee, Hwansung; Tsukiya, Tomonori; Homma, Akihiko; Kamimura, Tadayuki; Takewa, Yoshiaki; Nishinaka, Tomohiro; Tatsumi, Eisuke; Taenaka, Yoshiyuki; Takano, Hisateru; Kitamura, Soichiro

    2004-01-01

    Recently, cavitation on the surface of mechanical heart valves has been studied as a cause of fractures occurring in implanted mechanical heart valves. The cause of cavitation in mechanical heart valves was investigated using the 25 mm Medtronic Hall valve and the 23 mm Omnicarbon valve. Closing of these valves in the mitral position was simulated in an electrohydraulic totally artificial heart. Tests were conducted under physiologic pressures at heart rates from 60 to 100 beats per minute with cardiac outputs from 4.8 to 7.7 L/min. The disk closing motion was measured by a laser displacement sensor. A high-speed video camera was used to observe the cavitation bubbles in the mechanical heart valves. The maximum closing velocity of the Omnicarbon valve was faster than that of the Medtronic Hall valve. In both valves, the closing velocity of the leaflet, used as the cavitation threshold, was approximately 1.3-1.5 m/s. In the case of the Medtronic Hall valve, cavitation bubbles were generated by the squeeze flow and by the effects of the venturi and the water hammer. With the Omnicarbon valve, the cavitation bubbles were generated by the squeeze flow and the water hammer. The mechanism leading to the development of cavitation bubbles depended on the valve closing velocity and the valve stop geometry. Most of the cavitation bubbles were observed around the valve stop and were generated by the squeeze flow.

  18. Patient-specific pediatric silicone heart valve models based on 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Ilina, Anna; Lasso, Andras; Jolley, Matthew A.; Wohler, Brittany; Nguyen, Alex; Scanlan, Adam; Baum, Zachary; McGowan, Frank; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Patient-specific heart and valve models have shown promise as training and planning tools for heart surgery, but physically realistic valve models remain elusive. Available proprietary, simulation-focused heart valve models are generic adult mitral valves and do not allow for patient-specific modeling as may be needed for rare diseases such as congenitally abnormal valves. We propose creating silicone valve models from a 3D-printed plastic mold as a solution that can be adapted to any individual patient and heart valve at a fraction of the cost of direct 3D-printing using soft materials. METHODS: Leaflets of a pediatric mitral valve, a tricuspid valve in a patient with hypoplastic left heart syndrome, and a complete atrioventricular canal valve were segmented from ultrasound images. A custom software was developed to automatically generate molds for each valve based on the segmentation. These molds were 3D-printed and used to make silicone valve models. The models were designed with cylindrical rims of different sizes surrounding the leaflets, to show the outline of the valve and add rigidity. Pediatric cardiac surgeons practiced suturing on the models and evaluated them for use as surgical planning and training tools. RESULTS: Five out of six surgeons reported that the valve models would be very useful as training tools for cardiac surgery. In this first iteration of valve models, leaflets were felt to be unrealistically thick or stiff compared to real pediatric leaflets. A thin tube rim was preferred for valve flexibility. CONCLUSION: The valve models were well received and considered to be valuable and accessible tools for heart valve surgery training. Further improvements will be made based on surgeons' feedback.

  19. Development and evaluation of a pliable biological valved conduit. Part II: Functional and hemodynamic evaluation.

    PubMed

    Sung, H W; Witzel, T H; Hata, C; Tu, R; Shen, S H; Lin, D; Noishiki, Y; Tomizawa, Y; Quijano, R C

    1993-04-01

    Many congenital cardiac malformations may require a valved conduit for the reconstruction of the right ventricular outflow tract. In spite of many endeavors made in the last 25 years, the clinical results of right ventricular outflow tract reconstruction with currently available valved conduits are still not satisfactory. Specific problems encountered clinically include suboptimal hemodynamic performance, conduit kinking or compression, and fibrous peeling from the luminal surface. To address these deficiencies, we undertook the development of a biological valved conduit: a bovine external jugular vein graft with a retained native valve cross-linked with a diglycidyl ether (DE). This study, using a canine model, was to evaluate the functional and hemodynamic performance of this newly developed valved conduit. Three 14 mm conduits, implanted as bypass grafts, right ventricle to pulmonary artery, were evaluated. The evaluation was conducted with a noninvasive color Doppler flow mapping system at pre-implantation, immediately post implantation, one- and three-months post implantation, and prior to retrieval (five-months post implantation). The two-dimensional tomographic inspection of the leaflet motion at various periods post implantation showed that the valvular leaflets in the DE treated conduit was quite pliable. No cardiac failure or valvular dysfunction was observed in any of the studied cases. The color Doppler flow mapping study demonstrated that the valve in the DE treated conduit was competent, with no conduit kinking or compression observed in any of the three cases. The spectral Doppler velocity study evidenced that the transvalvular pressure gradients of the DE treated conduit were minimal as compared to those of the currently available conduits. In conclusion, from the functional and hemodynamic performance points of view, this newly developed valved conduit is superior to those currently available.

  20. Gravitational shunt units may cause under-drainage in bedridden patients.

    PubMed

    Kaestner, S; Kruschat, T; Nitzsche, N; Deinsberger, W

    2009-03-01

    Implantation of a shunt in a hydrocephalic patient still carries a risk of complications such as over-drainage and under-drainage. Gravitational shunt units are especially designed to minimize the problem of over-drainage. Nevertheless, these valves carry a risk of under-drainage. The best choice of valve for a patient is still challenging. The purpose of this survey was to identify in which patients a gravitational shunt valve is liable to lead to under-drainage. Patients with hydrocephalus entered prospectively into a data base were reviewed retrospectively. The patients were treated between January 2006 to the end of Feb 2007 and those experiencing under- or over-drainage were identified. Thirty-five ventriculo-peritoneal shunt systems were implanted in adult patients. The cause of the hydrocephalus was: normal pressure hydrocephalus in 18 patients, post-haemorrhagic following subarachnoid or intracerebral haemorrhage in 11, associated with a tumour in four and followed a head injury in two patients. Three different valves were used: an adjustable shunt valve with gravitational unit (Pro-GAV 0-20/25 in 21 patients), a gravitational shunt valve with fixed opening pressure (GAV 5/30 in nine patients) and an adjustable differential valve (Hakim medos in five patients). Four patients developed severe, valve-related under-drainage. Each had received a gravitational shunt valve and all were bedridden. In two of these patients it was necessary to change the valve. One patient who had received a differential valve, after regaining mobility developed severe over-drainage with bilateral subdural haematomas. Over-drainage was not seen in long-term bedridden patients with a differential shunt valve. If a bedridden patient with a gravitational shunt valve system lies with a slightly elevated head, this leads to activation of the gravitational unit and this may cause under drainage. As a result, we advise not using an anti-siphon devices in a patient who is bedridden for a long period.

  1. Pressure model of a four-way spool valve for simulating electrohydraulic control systems

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.

    1976-01-01

    An equation that relates the pressure flow characteristics of hydraulic spool valves was developed. The dependent variable is valve output pressure, and the independent variables are spool position and flow. This causal form of equation is preferred in applications that simulate the effects of hydraulic line dynamics. Results from this equation are compared with those from the conventional valve equation, whose dependent variable is flow. A computer program of the valve equations includes spool stops, leakage spool clearances, and dead-zone characteristics of overlap spools.

  2. Id4 functions downstream of Bmp signaling to restrict TCF function in endocardial cells during atrioventricular valve development.

    PubMed

    Ahuja, Suchit; Dogra, Deepika; Stainier, Didier Y R; Reischauer, Sven

    2016-04-01

    The atrioventricular canal (AVC) connects the atrial and ventricular chambers of the heart and its formation is critical for the development of the cardiac valves, chamber septation and formation of the cardiac conduction system. Consequently, problems in AVC formation can lead to congenital defects ranging from cardiac arrhythmia to incomplete cardiac septation. While our knowledge about early heart tube formation is relatively comprehensive, much remains to be investigated about the genes that regulate AVC formation. Here we identify a new role for the basic helix-loop-helix factor Id4 in zebrafish AVC valve development and function. id4 is first expressed in the AVC endocardium and later becomes more highly expressed in the atrial chamber. TALEN induced inactivation of id4 causes retrograde blood flow at the AV canal under heat induced stress conditions, indicating defects in AV valve function. At the molecular level, we found that id4 inactivation causes misexpression of several genes important for AVC and AV valve formation including bmp4 and spp1. We further show that id4 appears to control the number of endocardial cells that contribute to the AV valves by regulating Wnt signaling in the developing AVC endocardium. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. TexMi: Development of Tissue-Engineered Textile-Reinforced Mitral Valve Prosthesis

    PubMed Central

    Moreira, Ricardo; Gesche, Valentine N.; Hurtado-Aguilar, Luis G.; Schmitz-Rode, Thomas; Frese, Julia

    2014-01-01

    Mitral valve regurgitation together with aortic stenosis is the most common valvular heart disease in Europe and North America. Mechanical and biological prostheses available for mitral valve replacement have significant limitations such as the need of a long-term anticoagulation therapy and failure by calcifications. Both types are unable to remodel, self-repair, and adapt to the changing hemodynamic conditions. Moreover, they are mostly designed for the aortic position and do not reproduce the native annular-ventricular continuity, resulting in suboptimal hemodynamics, limited durability, and gradually decreasing ventricular pumping efficiency. A tissue-engineered heart valve specifically designed for the mitral position has the potential to overcome the limitations of the commercially available substitutes. For this purpose, we developed the TexMi, a living textile-reinforced mitral valve, which recapitulates the key elements of the native one: annulus, asymmetric leaflets (anterior and posterior), and chordae tendineae to maintain the native annular-ventricular continuity. The tissue-engineered valve is based on a composite scaffold consisting of the fibrin gel as a cell carrier and a textile tubular structure with the twofold task of defining the gross three-dimensional (3D) geometry of the valve and conferring mechanical stability. The TexMi valves were molded with ovine umbilical vein cells and stimulated under dynamic conditions for 21 days in a custom-made bioreactor. Histological and immunohistological stainings showed remarkable tissue development with abundant aligned collagen fibers and elastin deposition. No cell-mediated tissue contraction occurred. This study presents the proof-of-principle for the realization of a tissue-engineered mitral valve with a simple and reliable injection molding process readily adaptable to the patient's anatomy and pathological situation by producing a patient-specific rapid prototyped mold. PMID:24665896

  4. Cascading Tesla Oscillating Flow Diode for Stirling Engine Gas Bearings

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger

    2012-01-01

    Replacing the mechanical check-valve in a Stirling engine with a micromachined, non-moving-part flow diode eliminates moving parts and reduces the risk of microparticle clogging. At very small scales, helium gas has sufficient mass momentum that it can act as a flow controller in a similar way as a transistor can redirect electrical signals with a smaller bias signal. The innovation here forces helium gas to flow in predominantly one direction by offering a clear, straight-path microchannel in one direction of flow, but then through a sophisticated geometry, the reversed flow is forced through a tortuous path. This redirection is achieved by using microfluid channel flow to force the much larger main flow into this tortuous path. While microdiodes have been developed in the past, this innovation cascades Tesla diodes to create a much higher pressure in the gas bearing supply plenum. In addition, the special shape of the leaves captures loose particles that would otherwise clog the microchannel of the gas bearing pads.

  5. Assembly and method for testing the integrity of stuffing tubes

    DOEpatents

    Morrison, Edward Francis

    1997-01-01

    A stuffing tube integrity checking assembly includes first and second annular seals, with each seal adapted to be positioned about a stuffing tube penetration component. An annular inflation bladder is provided, the bladder having a slot extending longitudinally therealong and including a separator for sealing the slot. A first valve is in fluid communication with the bladder for introducing pressurized fluid to the space defined by the bladder when mounted about the tube. First and second releasible clamps are provided. Each clamp assembly is positioned about the bladder for securing the bladder to one of the seals for thereby establishing a fluid-tight chamber about the tube.

  6. Preliminary engineering study: Quick opening valve MSFC high Reynolds number wind tunnel

    NASA Technical Reports Server (NTRS)

    1983-01-01

    FluiDyne Engineering Corporation has conducted a preliminary engineering study of a quick-opening valve for the MSFC High Reynolds Number Wind Tunnel under NASA Contract NAS8-35056. The subject valve is intended to replace the Mylar diaphragm system as the flow initiation device for the tunnel. Only valves capable of opening within 0.05 sec. and providing a minimum of 11.4 square feet of flow area were considered. Also, the study focused on valves which combined the quick-opening and tight shutoff features in a single unit. A ring sleeve valve concept was chosen for refinement and pricing. Sealing for tight shutoff, ring sleeve closure release and sleeve actuation were considered. The resulting cost estimate includes the valve and requisite modifications to the facility to accommodate the valve as well as the associated design and development work.

  7. Severe bioprosthetic mitral valve stenosis in pregnancy.

    PubMed

    Munoz-Mendoza, Jerson; Pinto Miranda, Veronica; Tanawuttiwat, Tanyanan; Badiye, Amit; Chaparro, Sandra V

    2016-01-01

    A 21-year-old woman in the 16th week of pregnancy was admitted due to acute presentation of severe exertional dyspnea. She had undergone mitral valve replacement (MVR) with bioprosthetic valve for infective endocarditis 2 years ago. She developed congestive heart failure from mitral bioprosthetic valve stenosis due to early structural valve deterioration. She also had severe pulmonary hypertension and underwent a redo MVR using a mechanical valve prosthesis with good maternal outcome but fetal demise. This report brings up the debate about what type of valve should be used in women in reproductive age, and discusses the management of severe mitral stenosis and stenosis of a bioprosthetic valve during pregnancy. Surgical options can almost always be delayed until fetal maturity is achieved and a simultaneous cesarean section can be performed. However, under certain circumstances when the maternal welfare is in jeopardy the surgical intervention is mandatory even before the fetus reaches viability.

  8. Investigation of a rotary valving system with variable valve timing for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Cross, Paul C.; Hansen, Craig N.

    1994-11-01

    The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve Timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multifuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this final report.

  9. 3D Printed Multimaterial Microfluidic Valve.

    PubMed

    Keating, Steven J; Gariboldi, Maria Isabella; Patrick, William G; Sharma, Sunanda; Kong, David S; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  10. Cerebrospinal Fluid Lumbar Tapping Utilization for Suspected Ventriculoperitoneal Shunt Under-Drainage Malfunctions.

    PubMed

    Lee, Jong-Beom; Ahn, Ho-Young; Lee, Hong-Jae; Yang, Ji-Ho; Yi, Jin-Seok; Lee, Il-Woo

    2017-01-01

    The diagnosis of shunt malfunction can be challenging since neuroimaging results are not always correlated with clinical outcomes. The purpose of this study was to evaluate the efficacy of a simple, minimally invasive cerebrospinal fluid (CSF) lumbar tapping test that predicts shunt under-drainage in hydrocephalus patients. We retrospectively reviewed the clinical and radiological features of 48 patients who underwent routine CSF lumbar tapping after ventriculoperitoneal shunt (VPS) operation using a programmable shunting device. We compared shunt valve opening pressure and CSF lumbar tapping pressure to check under-drainage. The mean pressure difference between valve opening pressure and CSF lumbar tapping pressure of all patients were 2.21±24.57 mmH 2 O. The frequency of CSF lumbar tapping was 2.06±1.26 times. Eighty five times lumbar tapping of 41 patients showed that their VPS function was normal which was consistent with clinical improvement and decreased ventricle size on computed tomography scan. The mean pressure difference in these patients was -3.69±19.20 mmH 2 O. The mean frequency of CSF lumbar tapping was 2.07±1.25 times. Fourteen cases of 10 patients revealed suspected VPS malfunction which were consistent with radiological results and clinical symptoms, defined as changes in ventricle size and no clinical improvement. The mean pressure difference was 38.07±23.58 mmH 2 O. The mean frequency of CSF lumbar tapping was 1.44±1.01 times. Pressure difference greater than 35 mmH 2 O was shown in 2.35% of the normal VPS function group (2 of 85) whereas it was shown in 64.29% of the suspected VPS malfunction group (9 of 14). The difference was statistically significant ( p =0.000001). Among 10 patients with under-drainage, 5 patients underwent shunt revision. The causes of the shunt malfunction included 3 cases of proximal occlusion and 2 cases of distal obstruction and valve malfunction. Under-drainage of CSF should be suspected if CSF lumbar tapping pressure is 35 mmH 2 O higher than the valve opening pressure and shunt malfunction evaluation or adjustment of the valve opening pressure should be made.

  11. Adjustable shunt valve-induced magnetic resonance imaging artifact: a comparative study.

    PubMed

    Toma, Ahmed K; Tarnaris, Andrew; Grieve, Joan P; Watkins, Laurence D; Kitchen, Neil D

    2010-07-01

    In this paper, the authors' goal was to compare the artifact induced by implanted (in vivo) adjustable shunt valves in spin echo, diffusion weighted (DW), and gradient echo MR imaging pulse sequences. The MR images obtained in 8 patients with proGAV and 6 patients with Strata II adjustable shunt valves were assessed for artifact areas in different planes as well as the total volume for different pulse sequences. Artifacts induced by the Strata II valve were significantly larger than those induced by proGAV valve in spin echo MR imaging pulse sequence (29,761 vs 2450 mm(3) on T2-weighted fast spin echo, p = 0.003) and DW images (100,138 vs 38,955 mm(3), p = 0.025). Artifacts were more marked on DW MR images than on spin echo pulse sequence for both valve types. Adjustable valve-induced artifacts can conceal brain pathology on MR images. This should influence the choice of valve implantation site and the type of valve used. The effect of artifacts on DW images should be highlighted pending the development of less MR imaging artifact-inducing adjustable shunt valves.

  12. Comparison of tricuspid and bicuspid aortic valve hemodynamics under steady flow conditions

    NASA Astrophysics Data System (ADS)

    Seaman, Clara; Ward, James; Sucosky, Philippe

    2011-11-01

    The bicuspid aortic valve (BAV), a congenital valvular defect consisting of two leaflets instead of three, is associated with a high prevalence of calcific aortic valve disease (CAVD). CAVD also develops in the normal tricuspid aortic valve (TAV) but its progression in the BAV is more severe and rapid. Although hemodynamic abnormalities are increasingly considered potential pathogenic contributor, the native BAV hemodynamics remain largely unknown. Therefore, this study aims at comparing experimentally the hemodynamic environments in TAV and BAV anatomies. Particle-image velocimetry was used to characterize the flow downstream of a native TAV and a model BAV mounted in a left-heart simulator and subjected to three steady flow rates characterizing different phases of the cardiac cycle. While the TAV developed a jet aligned along the valve axis, the BAV was shown to develop a skewed systolic jet with skewness decreasing with increasing flow rate. Measurement of the transvalvular pressure revealed a valvular resistance up to 50% larger in the BAV than in the TAV. The increase in velocity between the TAV and BAV leads to an increase in shear stress downstream of the valve. This study reveals strong hemodynamic abnormalities in the BAV, which may contribute to CAVD pathogenesis.

  13. [Development and evaluation of a prosthetic valved conduit dilated by percutaneous approach: experimental study in the lamb].

    PubMed

    Boudjemline, Y; Laborde, F; Pineau, E; Mollet, A; Abadir, S; Bonhoeffer, P; Bonnet, D; Sidi, D

    2006-05-01

    This study was undertaken to develop a dilated valved conduit for reconstruction of the right ventricular outflow tract in the animal. The conduits were made by sewing a valved tube (Medtronic Inc) inside a vascular stent (Numed Inc). After preparation, they were inserted surgically in five lambs. The conduits were then dilated 6 weeks and 3 months after their implantation. Before sacrificing the animals at 3 months, a 22 mm valved stent was implanted percutaneously inside the surgical conduits. One animal died suddenly due to kinking of the conduit. Balloon dilatation was performed in the surviving animals. The first dilatation only had a modest impact on valvular function but it was much aggravated after the second dilatation. A valved stent was successfully inserted percutaneously. At sacrifice, all the conduits were completely engulfed in an intense fibrosis. In conclusion, a valved biological conduit for reconstruction of the right ventricular ejection tract has been developed and can be dilated sequentially to follow growth. The new product could have an important role to play in the management of congenital malformations involving the right ventricular outflow tract.

  14. Design and Development of Sequential Rotary Valve

    NASA Technical Reports Server (NTRS)

    D’Orsi, Nicholas; Castillo, Priscilla

    2017-01-01

    Valves are used to regulate the flow of fluids through systems. This rotary valve's main purpose is to fill, pressurize, empty, and vent three smaller tanks with the supply of one larger tank. Many different designs are being taken into consideration, which are each at different stages of development. The furthest along uses three ball valves on a common shaft to open and close their respective ports as the shaft completes one full rotation or cycle. We were tasked with advancing this design to its first test as a plastic model for flow verification, as well as sizing and ordering the necessary O-rings and fasteners. A motor will also be sized to satisfy the torque requirements, and will then be programmed using a Raspberry Pi to rotate the shaft at the calculated speed and dwelling times needed to fill each tank equally. In addition, we have also been advancing designs that use a camshaft and poppets. These are earlier on in their development, currently being sized to replicate the expected flow patterns of the rotary ball valve. Expected outcomes of this valve include bi-directionality, successful sealing under pressure, and accurate cycling.

  15. Static Flow Characteristics of a Mass Flow Injecting Valve

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Paxson, Dan

    1995-01-01

    A sleeve valve is under development for ground-based forced response testing of air compression systems. This valve will be used to inject air and to impart momentum to the flow inside the first stage of a multi-stage compressor. The valve was designed to deliver a maximum mass flow of 0.22 lbm/s (0.1 kg/s) with a maximum valve throat area of 0.12 sq. in (80 sq. mm), a 100 psid (689 KPA) pressure difference across the valve and a 68 F, (20 C) air supply. It was assumed that the valve mass flow rate would be proportional to the valve orifice area. A static flow calibration revealed a nonlinear valve orifice area to mass flow relationship which limits the maximum flow rate that the valve can deliver. This nonlinearity was found to be caused by multiple choking points in the flow path. A simple model was used to explain this nonlinearity and the model was compared to the static flow calibration data. Only steady flow data is presented here. In this report, the static flow characteristics of a proportionally controlled sleeve valve are modelled and validated against experimental data.

  16. Recently patented transcatheter aortic valves in clinical trials.

    PubMed

    Neragi-Miandoab, Siyamek; Skripochnik, Edvard; Salemi, Arash; Girardi, Leonard

    2013-12-01

    The most widely used heart valve worldwide is the Edwards Sapien, which currently has 60% of the worldwide transcatheter aortic valve implantation (TAVI) market. The CoreValve is next in line in popularity, encompassing 35% of the worldwide TAVI market. Although these two valves dominate the TAVI market, a number of newer transcatheter valves have been introduced and others are in early clinical evaluation. The new valves are designed to reduce catheter delivery diameter, improve ease of positioning and sealing, and facilitate repositioning or removal. The most recent transcatheter valves for transapical use include Acurate TA (Symetis), Engager (Medtronic), and JenaValve the Portico (St Jude), Sadra Lotus Medical (Boston Scientific), and the Direct Flow Medical. These new inventions may introduce more effective treatment options for high-risk patients with severe aortic stenosis. Improvements in transcatheter valves and the developing variability among them may allow for more tailored approaches with respect to patient's anatomy, while giving operators the opportunity to choose devices they feel more comfortable with. Moreover, introducing new devices to the market will create a competitive environment among producers that will reduce high prices and expand availability. The present review article includes a discussion of recent patents related to Transcatheter Aortic Valves.

  17. Thermostatic Valves Containing Silicone-Oil Actuators

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana C.; Bame, David P.; Karlmann, Paul B.; Prina, Mauro; Young, William; Fisher, Richard

    2009-01-01

    Flow-splitting and flow-mixing thermally actuated spool valves have been developed for controlling flows of a heat-transfer fluid in a temperature-regulation system aboard the Mars Science Laboratory (MSL) rover. Valves like these could also be useful in terrestrial temperature-regulation systems, including automobile air-conditioning systems and general refrigeration systems. These valves are required to provide smoother actuation over a wider temperature range than the flow-splitting, thermally actuated spool valves used in the Mars Explorer Rover (MER). Also, whereas the MER valves are unstable (tending to oscillate) in certain transition temperature ranges, these valves are required not to oscillate. The MER valves are actuated by thermal expansion of a wax against spring-loaded piston rods (as in common automotive thermostats). The MSL valves contain similar actuators that utilize thermal expansion of a silicone oil, because silicone-oil actuators were found to afford greater and more nearly linear displacements, needed for smoother actuation, over the required wider temperature range. The MSL valves also feature improved spool designs that reflect greater understanding of fluid dynamics, consideration of pressure drops in valves, and a requirement for balancing of pressures in different flow branches.

  18. UDP-glucose Dehydrogenase Polymorphisms from Patients with Congenital Heart Valve Defects Disrupt Enzyme Stability and Quaternary Assembly*

    PubMed Central

    Hyde, Annastasia S.; Farmer, Erin L.; Easley, Katherine E.; van Lammeren, Kristy; Christoffels, Vincent M.; Barycki, Joseph J.; Bakkers, Jeroen; Simpson, Melanie A.

    2012-01-01

    Cardiac valve defects are a common congenital heart malformation and a significant clinical problem. Defining molecular factors in cardiac valve development has facilitated identification of underlying causes of valve malformation. Gene disruption in zebrafish revealed a critical role for UDP-glucose dehydrogenase (UGDH) in valve development, so this gene was screened for polymorphisms in a patient population suffering from cardiac valve defects. Two genetic substitutions were identified and predicted to encode missense mutations of arginine 141 to cysteine and glutamate 416 to aspartate, respectively. Using a zebrafish model of defective heart valve formation caused by morpholino oligonucleotide knockdown of UGDH, transcripts encoding the UGDH R141C or E416D mutant enzymes were unable to restore cardiac valve formation and could only partially rescue cardiac edema. Characterization of the mutant recombinant enzymes purified from Escherichia coli revealed modest alterations in the enzymatic activity of the mutants and a significant reduction in the half-life of enzyme activity at 37 °C. This reduction in activity could be propagated to the wild-type enzyme in a 1:1 mixed reaction. Furthermore, the quaternary structure of both mutants, normally hexameric, was destabilized to favor the dimeric species, and the intrinsic thermal stability of the R141C mutant was highly compromised. The results are consistent with the reduced function of both missense mutations significantly reducing the ability of UGDH to provide precursors for cardiac cushion formation, which is essential to subsequent valve formation. The identification of these polymorphisms in patient populations will help identify families genetically at risk for valve defects. PMID:22815472

  19. Dielectric elastomer actuators used for pneumatic valve technology

    NASA Astrophysics Data System (ADS)

    Giousouf, Metin; Kovacs, Gabor

    2013-10-01

    Dielectric elastomer actuators have been investigated for applications in the field of pneumatic automation technology. We have developed different valve designs with stacked dielectric elastomer actuators and with integrated high voltage converters. The actuators were made using VHB-4910 material and a stacker machine for automated fabrication of the cylindrical actuators. Typical characteristics of pneumatic valves such as flow rate, power consumption and dynamic behaviour are presented. For valve construction the force and stroke parameters of the dielectric elastomer actuator have been measured. Further, benefits for valve applications using dielectric elastomers are shown as well as their potential operational area. Finally, challenges are discussed that are relevant for the use of elastomer actuators in valves for industrial applications.

  20. Mechanical valve obstruction: Review of diagnostic and treatment strategies

    PubMed Central

    Salamon, Jason; Munoz-Mendoza, Jerson; Liebelt, Jared J; Taub, Cynthia C

    2015-01-01

    Prosthetic valve obstruction (PVO) is a rare but feared complication of mechanical valve replacement. Diagnostic evaluation should focus on differentiating prosthetic valve thrombosis (PVT) from pannus formation, as their treatment options differ. History of sub-optimal anti-coagulation and post-op time course to development of PVO are useful clinical characteristics in differentiating thrombus from pannus formation. Treatment of PVT is influenced by the patient’s symptoms, valve location, degree of obstruction and thrombus size and may include thrombolysis or surgical intervention. Alternatively, pannus formation requires surgical intervention. The purpose of this article is to review the pathophysiology, epidemiology, diagnostic approach and treatment options for aortic and mitral valve PVO. PMID:26730292

  1. A review of design and modeling of magnetorheological valve

    NASA Astrophysics Data System (ADS)

    Abd Fatah, Abdul Yasser; Mazlan, Saiful Amri; Koga, Tsuyoshi; Zamzuri, Hairi; Zeinali, Mohammadjavad; Imaduddin, Fitrian

    2015-01-01

    Following recent rapid development of researches in utilizing Magnetorheological (MR) fluid, a smart material that can be magnetically controlled to change its apparent viscosity instantaneously, a lot of applications have been established to exploit the benefits and advantages of using the MR fluid. One of the most important applications for MR fluid in devices is the MR valve, where it uses the popular flow or valve mode among the available working modes for MR fluid. As such, MR valve is widely applied in a lot of hydraulic actuation and vibration reduction devices, among them are dampers, actuators and shock absorbers. This paper presents a review on MR valve, discusses on several design configurations and the mathematical modeling for the MR valve. Therefore, this review paper classifies the MR valve based on the coil configuration and geometrical arrangement of the valve, and focusing on four different mathematical models for MR valve: Bingham plastic, Herschel-Bulkley, bi-viscous and Herschel-Bulkley with pre-yield viscosity (HBPV) models for calculating yield stress and pressure drop in the MR valve. Design challenges and opportunities for application of MR fluid and MR valve are also highlighted in this review. Hopefully, this review paper can provide basic knowledge on design and modeling of MR valve, complementing other reviews on MR fluid, its applications and technologies.

  2. Solenoid valve, type 1, NASA P/N 20M32258-1 (Carleton P/N 2426-0001-1)

    NASA Technical Reports Server (NTRS)

    Baczkowski, M. L.

    1972-01-01

    The design, development, and evaluation of a solenoid valve assembly are discussed. The valve is a two-way, normally closed configuration for use as a control element in the metabolic analyzer of biomedical experiments during Skylab missions.

  3. Design and Development of a Miniaturized Double Latching Solenoid Valve for the Sample Analysis at Mars Instrument Suite

    NASA Technical Reports Server (NTRS)

    Smith, James T.

    2008-01-01

    The development of the in-house Miniaturized Double Latching Solenoid Valve, or Microvalve, for the Gas Processing System (GPS) of the Sample Analysis at Mars (SAM) instrument suite is described. The Microvalve is a double latching solenoid valve that actuates a pintle shaft axially to hermetically seal an orifice. The key requirements and the design innovations implemented to meet them are described.

  4. Percutaneous transluminal alcohol septal myocardial ablation after aortic valve replacement

    NASA Technical Reports Server (NTRS)

    Sitges, M.; Kapadia, S.; Rubin, D. N.; Thomas, J. D.; Tuzcu, M. E.; Lever, H. M.

    2001-01-01

    When left ventricular outflow tract obstruction develops after aortic valve replacement, few treatment choices have been available until now. We present a patient with prior aortic valve replacement who developed left ventricle outflow tract obstruction that was successfully treated with a percutaneous transcoronary myocardial septal alcohol ablation. This technique is a useful tool for the treatment of obstructive hypertrophic cardiomyopathy, especially in those patients with prior heart surgery. Copyright 2001 Wiley-Liss, Inc.

  5. Quantification and comparison of the mechanical properties of four human cardiac valves.

    PubMed

    Pham, Thuy; Sulejmani, Fatiesa; Shin, Erica; Wang, Di; Sun, Wei

    2017-05-01

    Although having the same ability to permit unidirectional flow within the heart, the four main valves-the mitral valve (MV), aortic (AV), tricuspid (TV) and pulmonary (PV) valves-experience different loading conditions; thus, they exhibit different structural integrity from one another. Most research on heart valve mechanics have been conducted mainly on MV and AV or an individual valve, but none quantify and compare the mechanical and structural properties among the four valves from the same aged patient population whose death was unrelated to cardiovascular disease. A total of 114 valve leaflet samples were excised from 12 human cadavers whose death was unrelated to cardiovascular disease (70.1±3.7years old). Tissue mechanical and structural properties were characterized by planar biaxial mechanical testing and histological methods. The experimental data were then fitted with a Fung-type constitutive model. The four valves differed substantially in thickness, degree of anisotropy, and stiffness. The leaflets of the left heart (the AV leaflets and the anterior mitral leaflets, AML) were significantly stiffer and less compliant than their counterparts in the right heart. TV leaflets were the most extensible and isotropic, while AML and AV leaflets were the least extensible and the most anisotropic. Age plays a significant role in the reduction of leaflet stiffness and extensibility with nearly straightened collagen fibers observed in the leaflet samples from elderly groups (65years and older). Results from 114 human leaflet samples not only provided a baseline quantification of the mechanical properties of aged human cardiac valves, but also offered a better understanding of the age-dependent differences among the four valves. It is hoped that the experimental data collected and the associated constitutive models in this study can facilitate future studies of valve diseases, treatments and the development of interventional devices. Most research on heart valve mechanics have been conducted mainly on mitral and aortic valves or an individual valve, but none quantify and compare the mechanical and structural properties among the four valves from the same relatively healthy elderly patient population. In this study, the mechanical and microstructural properties of 114 leaflets of aortic, mitral, pulmonary and tricuspid valves from 12 human cadaver hearts were mechanically tested, analyzed and compared. Our results not only provided a baseline quantification of the mechanical properties of aged human valves, but a age range between patients (51-87years) also offers a better understanding of the age-dependent differences among the four valves. It is hoped that the obtained experimental data and associated constitutive parameters can facilitate studies of valve diseases, treatments and the development of interventional devices. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. PSC, a Programmable Software Controller for a Multiple Bladder, Sequentially Inflatable G-Suit.

    DTIC Science & Technology

    1983-12-01

    Valves . For inflation and deflation, industrial soleniod pilot valves provide filling and dumping via a manually thrown three -poition switch...medicine with a tool for performing that research. This research concerns itself with developing a programmable valve actuation controller generic to g...Subsystem 2 - Software Controller ......... -5 %o Subsystem 3 - Cromemco D/7A S-100 Bus S y m Conversion Board ....o...... -6 Subsyst 4 Computer/ Valve

  7. Bistable (latching) solenoid actuated propellant isolation valve

    NASA Technical Reports Server (NTRS)

    Wichmann, H.; Deboi, H. H.

    1979-01-01

    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  8. Stemless Ball Valve

    NASA Technical Reports Server (NTRS)

    Burgess, Robert K.; Yakos, David; Walthall, Bryan

    2012-01-01

    This invention utilizes a new method of opening and closing a ball valve. Instead of rotating the ball with a perpendicular stem (as is the case with standard ball valves), the ball is rotated around a fixed axis by two guide pins. This innovation eliminates the leak point that is present in all standard ball valves due to the penetration of an actuation stem through the valve body. The VOST (Venturi Off-Set-Technology) valve has been developed for commercial applications. The standard version of the valve consists of an off-set venturi flow path through the valve. This path is split at the narrowest portion of the venturi, allowing the section upstream from the venturi to be rotated. As this rotation takes place, the venturi becomes restricted as one face rotates with respect to the other, eventually closing off the flow path. A spring-loaded seal made of resilient material is embedded in the upstream face of the valve, making a leak-proof seal between the faces; thus a valve is formed. The spring-loaded lip seal is the only seal that can provide a class six, or bubble-tight, seal against the opposite face of the valve. Tearing action of the seal by high-velocity gas on this early design required relocation of the seal to the downstream face of the valve. In the stemless embodiment of this valve, inner and outer magnetic cartridges are employed to transfer mechanical torque from the outside of the valve to the inside without the use of a stem. This eliminates the leak path caused by the valve stems in standard valves because the stems penetrate through the bodies of these valves.

  9. Tricuspid valve and percutaneous approach: No longer the forgotten valve!

    PubMed

    Bouleti, Claire; Juliard, Jean-Michel; Himbert, Dominique; Iung, Bernard; Brochet, Eric; Urena, Marina; Dilly, Marie-Pierre; Ou, Phalla; Nataf, Patrick; Vahanian, Alec

    2016-01-01

    Tricuspid valve disease is mainly represented by tricuspid regurgitation (TR), which is a predictor of poor outcome. TR is usually secondary, caused by right ventricle pressure or volume overload, the leading cause being left-sided heart valve diseases. Tricuspid surgery for severe TR is recommended during left valve surgery, and consists of either a valve replacement or, most often, a tricuspid repair with or without prosthetic annuloplasty. When TR persists or worsens after left valvular surgery, redo isolated tricuspid surgery is associated with high mortality. In addition, a sizeable proportion of patients present with tricuspid surgery deterioration over time, and need a reintervention, which is associated with high morbi-mortality rates. In this context, and given the recent major breakthrough in the percutaneous treatment of aortic and mitral valve diseases, the tricuspid valve appears an appealing challenge, although it raises specific issues. The first applications of transcatheter techniques for tricuspid valve disease were valve-in-valve and valve-in-ring implantation for degenerated bioprosthesis or ring annuloplasty. Some concerns remain regarding prosthesis sizing, rapid ventricular pacing and the best approach, but these procedures appear to be safe and effective. More recently, bicuspidization using a transcatheter approach for the treatment of native tricuspid valve has been published, in two patients. Finally, other devices are in preclinical development. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Development and Characterization Testing of an Air Pulsation Valve for a Pulse Detonation Engine Supersonic Parametric Inlet Test Section

    NASA Technical Reports Server (NTRS)

    Tornabene, Robert

    2005-01-01

    In pulse detonation engines, the potential exists for gas pulses from the combustor to travel upstream and adversely affect the inlet performance of the engine. In order to determine the effect of these high frequency pulses on the inlet performance, an air pulsation valve was developed to provide air pulses downstream of a supersonic parametric inlet test section. The purpose of this report is to document the design and characterization tests that were performed on a pulsation valve that was tested at the NASA Glenn Research Center 1x1 Supersonic Wind Tunnel (SWT) test facility. The high air flow pulsation valve design philosophy and analyses performed are discussed and characterization test results are presented. The pulsation valve model was devised based on the concept of using a free spinning ball valve driven from a variable speed electric motor to generate air flow pulses at preset frequencies. In order to deliver the proper flow rate, the flow port was contoured to maximize flow rate and minimize pressure drop. To obtain sharp pressure spikes the valve flow port was designed to be as narrow as possible to minimize port dwell time.

  11. Patient selection, echocardiographic screening and treatment strategies for interventional tricuspid repair using the edge-to-edge repair technique.

    PubMed

    Hausleiter, Jörg; Braun, Daniel; Orban, Mathias; Latib, Azeem; Lurz, Philipp; Boekstegers, Peter; von Bardeleben, Ralph Stephan; Kowalski, Marek; Hahn, Rebecca T; Maisano, Francesco; Hagl, Christian; Massberg, Steffen; Nabauer, Michael

    2018-04-24

    Severe tricuspid regurgitation (TR) has long been neglected despite its well known association with mortality. While surgical mortality rates remain high in isolated tricuspid valve surgery, interventional TR repair is rapidly evolving as an alternative to cardiac surgery in selected patients at high surgical risk. Currently, interventional edge-to-edge repair is the most frequently applied technique for TR repair even though the device has not been developed for this particular indication. Due to the inherent differences in tricuspid and mitral valve anatomy and pathology, percutaneous repair of the tricuspid valve is challenging due to a variety of factors including the complexity and variability of tricuspid valve anatomy, echocardiographic visibility of the valve leaflets, and device steering to the tricuspid valve. Furthermore, it remains to be clarified which patients are suitable for a percutaneous tricuspid repair and which features predict a successful procedure. On the basis of the available experience, we describe criteria for patient selection including morphological valve features, a standardized process for echocardiographic screening, and a strategy for clip placement. These criteria will help to achieve standardization of valve assessment and the procedural approach, and to further develop interventional tricuspid valve repair using either currently available devices or dedicated tricuspid edge-to-edge repair devices in the future. In summary, this manuscript will provide guidance for patient selection and echocardiographic screening when considering edge-to-edge repair for severe TR.

  12. Surgical Approaches to Aortic Valve Replacement and Repair—Insights and Challenges

    PubMed Central

    Ramchandani, Mahesh; Reardon, Michael J

    2014-01-01

    Since 1960, surgical aortic valve replacement (sAVR) had been the only effective treatment for symptomatic severe aortic stenosis until the recent development of transcatheter aortic valve replacement (TAVR). TAVR has offered an alternative, minimally invasive treatment approach particularly for patients whose age or co-morbidities make them unsuitable for sAVR. The rapid and enthusiastic utilization of this new technique has triggered some speculation about the imminent demise of sAVR. We believe that despite the recent advances in TAVR, surgical approach to aortic valve replacement has continued to develop and will continue to be highly relevant in the future. This article will discuss the recent developments and current approaches for sAVR, and how these approaches will keep pace with catheter-based technologies. PMID:29588775

  13. Recurrent protein-losing enteropathy and tricuspid valve insufficiency in a transplanted heart: a causal relationship?

    PubMed

    Aggarwal, Sanjeev; Delius, Ralph E; Walters, Henry L; L'Ecuyer, Thomas J

    2012-01-01

    This case report describes a toddler who developed a protein-losing enteropathy (PLE) 4 years after orthotopic heart transplantation (OHT). He was born with a hypoplastic left heart syndrome for which he underwent a successful Norwood procedure, a Hemi-Fontan palliation, and a Fontan palliation at 18 months of age. Fifteen months following the Fontan operation, he developed a PLE and Fontan failure requiring OHT. Four years after OHT, he developed a severe tricuspid regurgitation and a PLE. His PLE improved after tricuspid valve replacement. It is now 2 years since his tricuspid valve replacement and he remains clinically free of ascites and peripheral edema with a normal serum albumin level. His prosthetic tricuspid valve is functioning normally. © 2011 Wiley Periodicals, Inc.

  14. Underlying Rheumatic Disease: An Important Determinant of Outcome in Tricuspid Valve Repair.

    PubMed

    Munasur, Mandhir; Naidoo, Datshana

    2016-03-01

    Tricuspid regurgitation (TR) accompanying severe left-sided valve disease occurs on a functional basis, secondary to pulmonary hypertension and tricuspid annular dilatation. In the context of endemic left-sided rheumatic heart disease, non-recognition of organic disease of the tricuspid valve may adversely influence surgical decision-making, resulting in suboptimal outcomes. A retrospective analysis of the perioperative and follow up data of 30 patients who underwent tricuspid valve surgery with concomitant left-sided valve replacement was undertaken. Preoperative evaluation by two-dimensional transthoracic echocardiography was routinely employed. Outcomes were analyzed by evaluation of the perioperative and two-year follow up clinical and echocardiographic data. All subjects had severe TR. Mixed tricuspid valve disease occurred in 11 subjects (36.7%). Tricuspid valve repair was performed in 28 patients. A significant improvement (p <0.05) in the following parameters occurred at six weeks postoperatively: NYHA functional class, tricuspid annular diameter, systolic pulmonary artery pressure, severity of TR and tricuspid transvalvular gradient. Severe residual postoperative TR occurred in 26.7% of patients, but there were no identifiable predictors for this phenomenon. Severe residual postoperative TR was not associated with major adverse cardiovascular events. Preoperative (p = 0.013) and postoperative (p<0.002) pulmonary hypertension were associated with the development of major adverse cardiovascular events. The technique of tricuspid valve repair was not associated with the occurrence of major adverse cardiovascular events, nor with the development of severe residual postoperative TR. A satisfactory outcome was observed in only 40% of the study population. The coexistence of mixed tricuspid valve disease in rheumatic heart disease patients undergoing left-sided valve surgery is an important determinant of outcome in tricuspid valve repair. The persistence of severe TR contributes to poor long-term outcomes, and its incidence may be lowered by the adoption of appropriate perioperative imaging techniques to delineate valve morphology.

  15. Development of a completely autologous valved conduit with the sinus of Valsalva using in-body tissue architecture technology: a pilot study in pulmonary valve replacement in a beagle model.

    PubMed

    Yamanami, Masashi; Yahata, Yuki; Uechi, Masami; Fujiwara, Megumi; Ishibashi-Ueda, Hatsue; Kanda, Keiichi; Watanabe, Taiji; Tajikawa, Tsutomu; Ohba, Kenkichi; Yaku, Hitoshi; Nakayama, Yasuhide

    2010-09-14

    We developed autologous prosthetic implants by simple and safe in-body tissue architecture technology. We present the first report on the development of autologous valved conduit with the sinus of Valsalva (BIOVALVE) by using this unique technology and its subsequent implantation in the pulmonary valves in a beagle model. A mold of BIOVALVE organization was assembled using 2 types of specially designed silicone rods with a small aperture in a trileaflet shape between them. The concave rods had 3 projections that resembled the protrusions of the sinus of Valsalva. The molds were placed in the dorsal subcutaneous spaces of beagle dogs for 4 weeks. The molds were covered with autologous connective tissues. BIOVALVEs with 3 leaflets in the inner side of the conduit with the sinus of Valsalva were obtained after removing the molds. These valves had adequate burst strength, similar to that of native valves. Tight valvular coaptation and sufficient open orifice area were observed in vitro. These BIOVALVEs were implanted to the main pulmonary arteries as allogenic conduit valves (n=3). Postoperative echocardiography demonstrated smooth movement of the leaflets with trivial regurgitation. Histological examination of specimens obtained at 84 days showed that the surface of the leaflet was covered by endothelial cells and neointima, including an elastin fiber network, and was formed at the anastomosis sides on the luminal surface of the conduit. We developed the first completely autologous BIOVALVE and successfully implanted these BIOVALVEs in a beagle model in a pilot study.

  16. Society of Thoracic Surgeons 2008 cardiac risk models predict in-hospital mortality of heart valve surgery in a Chinese population: a multicenter study.

    PubMed

    Wang, Lv; Lu, Fang-Lin; Wang, Chong; Tan, Meng-Wei; Xu, Zhi-yun

    2014-12-01

    The Society of Thoracic Surgeons 2008 cardiac surgery risk models have been developed for heart valve surgery with and without coronary artery bypass grafting. The aim of our study was to evaluate the performance of Society of Thoracic Surgeons 2008 cardiac risk models in Chinese patients undergoing single valve surgery and the predicted mortality rates of those undergoing multiple valve surgery derived from the Society of Thoracic Surgeons 2008 risk models. A total of 12,170 patients underwent heart valve surgery from January 2008 to December 2011. Combined congenital heart surgery and aortal surgery cases were excluded. A relatively small number of valve surgery combinations were excluded. The final research population included the following isolated heart valve surgery types: aortic valve replacement, mitral valve replacement, and mitral valve repair. The following combined valve surgery types were included: mitral valve replacement plus tricuspid valve repair, mitral valve replacement plus aortic valve replacement, and mitral valve replacement plus aortic valve replacement and tricuspid valve repair. Evaluation was performed by using the Hosmer-Lemeshow test and C-statistics. Data from 9846 patients were analyzed. The Society of Thoracic Surgeons 2008 cardiac risk models showed reasonable discrimination and poor calibration (C-statistic, 0.712; P = .00006 in Hosmer-Lemeshow test). Society of Thoracic Surgeons 2008 models had better discrimination (C-statistic, 0.734) and calibration (P = .5805) in patients undergoing isolated valve surgery than in patients undergoing multiple valve surgery (C-statistic, 0.694; P = .00002 in Hosmer-Lemeshow test). Estimates derived from the Society of Thoracic Surgeons 2008 models exceeded the mortality rates of multiple valve surgery (observed/expected ratios of 1.44 for multiple valve surgery and 1.17 for single valve surgery). The Society of Thoracic Surgeons 2008 cardiac surgery risk models performed well when predicting the mortality for Chinese patients undergoing valve surgery. The Society of Thoracic Surgeons 2008 models were suitable for single valve surgery in a Chinese population; estimates of mortality for multiple valve surgery derived from the Society of Thoracic Surgeons 2008 models were less accurate. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  17. 3D Printed Multimaterial Microfluidic Valve

    PubMed Central

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  18. Recycling of the pulmonary valve: an elegant solution for secondary pulmonary regurgitation in patients with tetralogy of Fallot.

    PubMed

    Prêtre, René; Rosser, Barbara; Mueller, Christoph; Kretschmar, Oliver; Dave, Hitendu

    2012-09-01

    The purpose of this study was to review our experience with recycling of the pulmonary valve in cases of chronic pulmonary insufficiency after a transannular patch procedure as part of a repair of tetralogy of Fallot. Eight patients in whom the technique was used were reviewed. Technically, the valve was reapproximated at the anterior commissure if the valve leaflet was sufficiently developed and of good tissue quality. Additional corrections were performed in 5 patients (resection of an infundibular aneurysm [5 patients], repair of the tricuspid valve [1 patient]). The valve was competent with no or trivial regurgitation in 5 patients and a small regurgitation in 3 patients. There was no significant transvalvular gradient in 5 patients with tricuspid valves and a small gradient in 3 patients with a bicuspid valves (<23 mm Hg). The valve function remained stable over the follow-up period (median time, 32 months). Recycling of the pulmonary valve is an interesting concept that could avoid the necessary reoperations linked with valves or valved prostheses. The repair must be carefully followed in bicuspid valves because of a reduction in the opening area. Valve leaflets of good quality should be preserved during the primary repair of tetralogy of Fallot and the transannular incision should be made across the anterior commissure if possible. These steps should allow a few patients to profit from a recycling of their valves in the future. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Detection and quantification of angiogenesis in experimental valve disease with integrin-targeted nanoparticles and 19-fluorine MRI/MRS

    PubMed Central

    Waters, Emily A; Chen, Junjie; Allen, John S; Zhang, Huiying; Lanza, Gregory M; Wickline, Samuel A

    2008-01-01

    Background Angiogenesis is a critical early feature of atherosclerotic plaque development and may also feature prominently in the pathogenesis of aortic valve stenosis. It has been shown that MRI can detect and quantify specific molecules of interest expressed in cardiovascular disease and cancer by measuring the unique fluorine signature of appropriately targeted perfluorocarbon (PFC) nanoparticles. In this study, we demonstrated specific binding of ανβ3 integrin targeted nanoparticles to neovasculature in a rabbit model of aortic valve disease. We also showed that fluorine MRI could be used to detect and quantify the development of neovasculature in the excised aortic valve leaflets. Methods New Zealand White rabbits consumed a cholesterol diet for ~180 days and developed aortic valve thickening, inflammation, and angiogenesis mimicking early human aortic valve disease. Rabbits (n = 7) were treated with ανβ3 integrin targeted PFC nanoparticles or control untargeted PFC nanoparticles (n = 6). Competitive inhibition in vivo of nanoparticle binding (n = 4) was tested by pretreatment with targeted nonfluorinated nanoparticles followed 2 hours later by targeted PFC nanoparticles. 2 hours after treatment, aortic valves were excised and 19F MRS was performed at 11.7T. Integrated 19F spectral peaks were compared using a one-way ANOVA and Hsu's MCB (multiple comparisons with the best) post hoc t test. In 3 additional rabbits treated with ανβ3 integrin targeted PFC nanoparticles, 19F spectroscopy was performed on a 3.0T clinical scanner. The presence of angiogenesis was confirmed by immunohistochemistry. Results Valves of rabbits treated with targeted PFC nanoparticles had 220% more fluorine signal than valves of rabbits treated with untargeted PFC nanoparticles (p < 0.001). Pretreatment of rabbits with targeted oil-based nonsignaling nanoparticles reduced the fluorine signal by 42% due to competitive inhibition, to a level not significantly different from control animals. Nanoparticles were successfully detected in all samples scanned at 3.0T. PECAM endothelial staining and ανβ3 integrin staining revealed the presence of neovasculature within the valve leaflets. Conclusion Integrin-targeted PFC nanoparticles specifically detect early angiogenesis in sclerotic aortic valves of cholesterol fed rabbits. These techniques may be useful for assessing atherosclerotic components of preclinical aortic valve disease in patients and could assist in defining efficacy of medical therapies. PMID:18817557

  20. Are anticoagulant independent mechanical valves within reach-fast prototype fabrication and in vitro testing of innovative bi-leaflet valve models.

    PubMed

    Scotten, Lawrence N; Siegel, Rolland

    2015-08-01

    Exploration for causes of prosthetic valve thrombogenicity has frequently focused on forward or post-closure flow detail. In prior laboratory studies, we uncovered high amplitude flow velocities of short duration close to valve closure implying potential for substantial shear stress with subsequent initiation of blood coagulation pathways. This may be relevant to widely accepted clinical disparity between mechanical and tissue valves vis-à-vis thrombogenicity. With a series of prototype bi-leaflet mechanical valves, we attempt reduction of closure related velocities with the objective of identifying a prototype valve with thrombogenic potential similar to our tissue valve control. This iterative design approach may find application in preclinical assessment of valves for anticoagulation independence. Tested valves included: prototype mechanical bi-leaflet BVs (n=56), controls (n=2) and patented early prototype mechanicals (n=2) from other investigators. Pulsatile and quasi-steady flow systems were used for testing. Projected dynamic valve area (PDVA) was measured using previously described novel technology. Flow velocity over the open and closing periods was determined by volumetric flow rate/PDVA. For the closed valve interval, use was made of data obtained from quasi-steady back pressure/flow tests. Performance was ranked by a proposed thrombogenicity potential index (TPI) relative to tissue and mechanical control valves. Optimization of the prototype valve designs lead to a 3-D printed model (BV3D). For the mitral/aortic site, BV3D has lower TPI (1.10/1.47) relative to the control mechanical valve (3.44/3.93) and similar to the control tissue valve (ideal TPI ≤1.0). Using unique technology, rapid prototyping and thrombogenicity ranking, optimization of experimental valves for reduced thrombogenic potential was expedited and simplified. Innovative mechanical valve configurations were identified that merit consideration for further development which may bring the anti-coagulation independent mechanical valve within reach.

  1. Automatic Mesh Generation of Hybrid Mesh on Valves in Multiple Positions in Feedline Systems

    NASA Technical Reports Server (NTRS)

    Ross, Douglass H.; Ito, Yasushi; Dorothy, Fredric W.; Shih, Alan M.; Peugeot, John

    2010-01-01

    Fluid flow simulations through a valve often require evaluation of the valve in multiple opening positions. A mesh has to be generated for the valve for each position and compounding. The problem is the fact that the valve is typically part of a larger feedline system. In this paper, we propose to develop a system to create meshes for feedline systems with parametrically controlled valve openings. Herein we outline two approaches to generate the meshes for a valve in a feedline system at multiple positions. There are two issues that must be addressed. The first is the creation of the mesh on the valve for multiple positions. The second is the generation of the mesh for the total feedline system including the valve. For generation of the mesh on the valve, we will describe the use of topology matching and mesh generation parameter transfer. For generation of the total feedline system, we will describe two solutions that we have implemented. In both cases the valve is treated as a component in the feedline system. In the first method the geometry of the valve in the feedline system is replaced with a valve at a different opening position. Geometry is created to connect the valve to the feedline system. Then topology for the valve is created and the portion of the topology for the valve is topology matched to the standard valve in a different position. The mesh generation parameters are transferred and then the volume mesh for the whole feedline system is generated. The second method enables the user to generate the volume mesh on the valve in multiple open positions external to the feedline system, to insert it into the volume mesh of the feedline system, and to reduce the amount of computer time required for mesh generation because only two small volume meshes connecting the valve to the feedline mesh need to be updated.

  2. How Heart Valves Evolve to Adapt to an Extreme-Pressure System: Morphologic and Biomechanical Properties of Giraffe Heart Valves.

    PubMed

    Amstrup Funder, Jonas; Christian Danielsen, Carl; Baandrup, Ulrik; Martin Bibby, Bo; Carl Andelius, Ted; Toft Brøndum, Emil; Wang, Tobias; Michael Hasenkam, J

    2017-01-01

    Heart valves which exist naturally in an extreme-pressure system must have evolved in a way to resist the stresses of high pressure. Giraffes are interesting as they naturally have a blood pressure twice that of humans. Thus, knowledge regarding giraffe heart valves may aid in developing techniques to design improved pressure-resistant biological heart valves. Heart valves from 12 giraffes and 10 calves were explanted and subjected to either biomechanical or morphological examinations. Strips from the heart valves were subjected to cyclic loading tests, followed by failure tests. Thickness measurements and analyses of elastin and collagen content were also made. Valve specimens were stained with hematoxylin and eosin, elastic van Gieson stain, Masson's trichrome and Fraser-Lendrum stain, as well as immunohistochemical reactions for morphological examinations. The aortic valve was shown to be 70% (95% CI 42-103%) stronger in the giraffe than in its bovine counterpart (p <0.001). No significant difference was found between mitral or pulmonary valves. After normalization for collagen, no significant differences were found in strength between species. The giraffe aortic valve was found to be significantly stiffer than the bovine aortic valve (p <0.001), with no significant difference between mitral and pulmonary valves. On a dry weight basis, the aortic (10.9%), pulmonary (4.3%), and mitral valves (9.6%) of giraffes contained significantly more collagen than those of calves. The elastin contents of the pulmonary valves (2.5%) and aortic valves (1.5%) were also higher in giraffes. The greater strength of the giraffe aortic valve is most likely due to a compact collagen construction. Both, collagen and elastin contents were higher in giraffes than in calves, which would make giraffe valves more resistant to the high-pressure forces. However, collagen also stiffens and thickens the valves. The mitral leaflets showed similar (but mostly insignificant) trends in strength, stiffness, and collagen content.

  3. Are anticoagulant independent mechanical valves within reach—fast prototype fabrication and in vitro testing of innovative bi-leaflet valve models

    PubMed Central

    Siegel, Rolland

    2015-01-01

    Background Exploration for causes of prosthetic valve thrombogenicity has frequently focused on forward or post-closure flow detail. In prior laboratory studies, we uncovered high amplitude flow velocities of short duration close to valve closure implying potential for substantial shear stress with subsequent initiation of blood coagulation pathways. This may be relevant to widely accepted clinical disparity between mechanical and tissue valves vis-à-vis thrombogenicity. With a series of prototype bi-leaflet mechanical valves, we attempt reduction of closure related velocities with the objective of identifying a prototype valve with thrombogenic potential similar to our tissue valve control. This iterative design approach may find application in preclinical assessment of valves for anticoagulation independence. Methods Tested valves included: prototype mechanical bi-leaflet BVs (n=56), controls (n=2) and patented early prototype mechanicals (n=2) from other investigators. Pulsatile and quasi-steady flow systems were used for testing. Projected dynamic valve area (PDVA) was measured using previously described novel technology. Flow velocity over the open and closing periods was determined by volumetric flow rate/PDVA. For the closed valve interval, use was made of data obtained from quasi-steady back pressure/flow tests. Performance was ranked by a proposed thrombogenicity potential index (TPI) relative to tissue and mechanical control valves. Results Optimization of the prototype valve designs lead to a 3-D printed model (BV3D). For the mitral/aortic site, BV3D has lower TPI (1.10/1.47) relative to the control mechanical valve (3.44/3.93) and similar to the control tissue valve (ideal TPI ≤1.0). Conclusions Using unique technology, rapid prototyping and thrombogenicity ranking, optimization of experimental valves for reduced thrombogenic potential was expedited and simplified. Innovative mechanical valve configurations were identified that merit consideration for further development which may bring the anti-coagulation independent mechanical valve within reach. PMID:26417581

  4. Biologically-Inspired Micro-Robots. Volume 1. Robots Based on Crickets

    DTIC Science & Technology

    2005-05-19

    is limited to flat, smooth surfaces. Another group of specialized robots that use piezoelectric actuators are the pipe robots developed at Shanghai...along in a pipe . They were developed for very specific terrain that allows them to take advantage of the small strain, high- frequency motion of...the valve. To open the valve you apply a current to the TiNi, heating it and pulling the plunger up, opening the valve. All three components are

  5. Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality

    PubMed Central

    Claiborne, Thomas E; Slepian, Marvin J; Hossainy, Syed; Bluestein, Danny

    2013-01-01

    Present prosthetic heart valves, while hemodynamically effective, remain limited by progressive structural deterioration of tissue valves or the burden of chronic anticoagulation for mechanical valves. An idealized valve prosthesis would eliminate these limitations. Polymeric heart valves (PHVs), fabricated from advanced polymeric materials, offer the potential of durability and hemocompatibility. Unfortunately, the clinical realization of PHVs to date has been hampered by findings of in vivo calcification, degradation and thrombosis. Here, the authors review the evolution of PHVs, evaluate the state of the art of this technology and propose a pathway towards clinical reality. In particular, the authors discuss the development of a novel aortic PHV that may be deployed via transcatheter implantation, as well as its optimization via device thrombogenicity emulation. PMID:23249154

  6. Analysis of IR spectra of mineralized deposits on human cardiac valves

    NASA Astrophysics Data System (ADS)

    Ivanov-Omskii, V. I.; Yastrebov, S. G.; Gulyaev, N. I.

    2017-05-01

    IR spectroscopy in the range of vibration of hydroxy groups has been used to analyze the binding energy of mineralized deposits to cardiac valves of patients of varied gender and age. A tendency was revealed toward a gender-independent rise in the binding energy of mineralized deposits to valve tissues with increasing age of patients. The analysis enables making recommendations concerning the early diagnostics of valve calcination, monitoring of its development, and therapy of calcinoses.

  7. Transcatheter aortic valve-in-valve implantation for severe bioprosthetic stenosis after Bentall operation using a homograft in a patient with Behçet's disease.

    PubMed

    Joo, Hyung Joon; Hong, Soon Jun; Yu, Cheol Woong

    2015-03-01

    A 43-year-old man presented with severe aortic stenosis. Eight years previously, he had undergone primary surgical aortic valve replacement (AVR) for severe aortic regurgitation, but one year later developed cardiac arrest and complete atrioventricular block as a result of non-bacterial thrombotic endocarditis with severe valvular dehiscence. Following the diagnosis of prosthetic valve failure caused by Behçet's disease, the patient underwent a Bentall operation using 23 mm aortic homograft with permanent pacemaker implantation and coronary artery bypass grafting. Subsequently, he was stable with steroid administration and azathioprine for seven years after the second operation, but recently suffered from severe dyspnea and chest pain. Echocardiography revealed the development of severe aortic stenosis. A preprocedural evaluation demonstrated a porcelain aorta with severe calcification in the previous homograft valve on computed tomography, and critical stenosis at the ostium of the left circumflex artery on coronary angiography. After percutaneous coronary intervention for the ostium of the left circumflex artery, a transcatheter AVR was successfully performed using a 26 mm Edwards SAPIEN XT valve. The patient recovered without any complications after the procedure. This is the first report of a successful transcatheter aortic valve-in valve implantation for severe homograft aortic stenosis after a Bentall operation, using a homograft, in a patient with Behçet's disease.

  8. Bmp2 and Notch cooperate to pattern the embryonic endocardium.

    PubMed

    Papoutsi, T; Luna-Zurita, L; Prados, B; Zaffran, S; de la Pompa, J L

    2018-05-31

    Signaling interactions between myocardium and endocardium pattern embryonic cardiac regions, instructing their development to fulfill specific functions in the mature heart. We show that ectopic Bmp2 expression in the mouse chamber myocardium changes the transcriptional signature of adjacent chamber endocardial cells into valve tissue, and enables them to undergo epithelial-mesenchyme transition. This induction is independent of valve myocardium specification and requires high levels of Notch1 activity. Biochemical experiments suggest that Bmp2-mediated Notch1 induction is achieved through transcriptional activation of the Notch ligand Jag1, and physical interaction of Smad1/5 with the intracellular domain of the Notch1 receptor. Thus, widespread myocardial Bmp2 and endocardial Notch signaling drive presumptive ventricular endocardium to differentiate into valve endocardium. Understanding the molecular basis of valve development is instrumental to designing therapeutic strategies for congenital heart valve defects. © 2018. Published by The Company of Biologists Ltd.

  9. [Experience of Mitral Valve Replacement Using a Pulmonary Autograft (Ross II Operation) in an Infant;Report of a Case].

    PubMed

    Kawahito, Tomohisa; Egawa, Yoshiyasu; Yoshida, Homare; Shimoe, Yasushi; Onishi, Tatsuya; Miyagi, Yuhichi; Terada, Kazuya; Ohta, Akira

    2015-07-01

    A 24-day-old boy suddenly developed progressive heart failure and was transported to our hospital. Echocardiography showed massive mitral regurgitation due to chordal rupture. Mitral valve repair was performed at 28 days of life, but postoperative valvular function was not satisfactory. A mechanical valve was implanted in the supra-annular position at 37 days of life. Two months after valve replacement, the mechanical valve was suddenly stuck. Emergent redo valve replacement was performed, but the prosthetic valve became stuck again 2 months after the 3rd operation, despite sufficient anti-coagulation therapy. At the 4th operation (6 months after birth), we implanted a pulmonary autograft in the mitral position instead of another mechanical valve in an emergent operation. The right ventricular outflow tract was reconstructed with a valved conduit. A postoperative catheter examination, which was performed 1 year after the Ross II operation, showed mild mitral stenosis with no regurgitation. Previous reports of Ross II operations in infants are rare and long-term results are unknown. However, we advocate that this procedure should be a rescue operation for mitral valve dysfunction in the early period of infants.

  10. A rare situation in acute rheumatic carditis: Involvement of all four valves.

    PubMed

    Güvenç, Osman; Çimen, Derya

    2017-01-01

    Güvenç O, Çimen D. A rare situation in acute rheumatic carditis: Involvement of all four valves. Turk J Pediatr 2017; 59: 497-500. Acute rheumatic fever continues to be an important health problem, especially in countries that are socioeconomically underdeveloped. Carditis, which develops in approximately half of the patients, is responsible for both early-stage mortality as well as late-stage surgical treatment due to heart valve insufficiency or stenosis. The most frequent and severe valve involvement is with the mitral valve, while the aortic valve has the second highest incidence of involvement. Pulmonary and tricuspid valves are rarely involved. The literature cites a few adult cases in which all four valves are affected by rheumatic carditis; however, to the best of our knowledge, there have been no acute-stage rheumatic carditis pediatric cases reported. This article presents a 13-year-old male patient of Syrian origin who escaped to Turkey from the war in his country, and who was in the acute stage of rheumatic carditis in which all four valves were involved.

  11. Three-dimentional simulation of flow-induced platelet activation in artificial heart valves

    NASA Astrophysics Data System (ADS)

    Hedayat, Mohammadali; Asgharzadeh, Hafez; Borazjani, Iman

    2015-11-01

    Since the advent of heart valve, several valve types such as mechanical and bio-prosthetic valves have been designed. Mechanical Heart Valves (MHV) are durable but suffer from thromboembolic complications that caused by shear-induced platelet activation near the valve region. Bio-prosthetic Heart Valves (BHV) are known for better hemodynamics. However, they usually have a short average life time. Realistic simulations of heart valves in combination with platelet activation models can lead to a better understanding of the potential risk of thrombus formation in such devices. In this study, an Eulerian approach is developed to calculate the platelet activation in three-dimensional simulations of flow through MHV and BHV using a parallel overset-curvilinear immersed boundary technique. A curvilinear body-fitted grid is used for the flow simulation through the anatomic aorta, while the sharp-interface immersed boundary method is used for simulation of the Left Ventricle (LV) with prescribed motion. In addition, dynamics of valves were calculated numerically using under-relaxed strong-coupling algorithm. Finally, the platelet activation results for BMV and MHV are compared with each other.

  12. Application of simple biomechanical and biochemical tests to heart valve leaflets: implications for heart valve characterization and tissue engineering.

    PubMed

    Huang, Hsiao-Ying S; Balhouse, Brittany N; Huang, Siyao

    2012-11-01

    A simple biomechanical test with real-time displacement and strain mapping is reported, which provides displacement vectors and principal strain directions during the mechanical characterization of heart valve tissues. The maps reported in the current study allow us to quickly identify the approximate strain imposed on a location in the samples. The biomechanical results show that the aortic valves exhibit stronger anisotropic mechanical behavior than that of the pulmonary valves before 18% strain equibiaxial stretching. In contrast, the pulmonary valves exhibit stronger anisotropic mechanical behavior than aortic valves beyond 28% strain equibiaxial stretching. Simple biochemical tests are also conducted. Collagens are extracted at different time points (24, 48, 72, and 120 h) at different locations in the samples. The results show that extraction time plays an important role in determining collagen concentration, in which a minimum of 72 h of extraction is required to obtain saturated collagen concentration. This work provides an easy approach for quantifying biomechanical and biochemical properties of semilunar heart valve tissues, and potentially facilitates the development of tissue engineered heart valves.

  13. Nucleotide Catabolism on the Surface of Aortic Valve Xenografts; Effects of Different Decellularization Strategies.

    PubMed

    Kutryb-Zajac, Barbara; Yuen, Ada H Y; Khalpey, Zain; Zukowska, Paulina; Slominska, Ewa M; Taylor, Patricia M; Goldstein, Steven; Heacox, Albert E; Lavitrano, Marialuisa; Chester, Adrian H; Yacoub, Magdi H; Smolenski, Ryszard T

    2016-04-01

    Extracellular nucleotide metabolism controls thrombosis and inflammation and may affect degeneration and calcification of aortic valve prostheses. We evaluated the effect of different decellularization strategies on enzyme activities involved in extracellular nucleotide metabolism. Porcine valves were tested intact or decellularized either by detergent treatment or hypotonic lysis and nuclease digestion. The rates of ATP hydrolysis, AMP hydrolysis, and adenosine deamination were estimated by incubation of aorta or valve leaflet sections with substrates followed by HPLC analysis. We demonstrated relatively high activities of ecto-enzymes on porcine valve as compared to the aortic wall. Hypotonic lysis/nuclease digestion preserved >80 % of ATP and AMP hydrolytic activity but reduced adenosine deamination to <10 %. Detergent decellularization completely removed (<5 %) all these activities. These results demonstrate high intensity of extracellular nucleotide metabolism on valve surface and indicate that various valve decellularization techniques differently affect ecto-enzyme activities that could be important in the development of improved valve prostheses.

  14. Micro system comprising 96 micro valves on a titer plate

    NASA Astrophysics Data System (ADS)

    Krabbe, S.; Flitsch, D.; Büchs, J.; Schomburg, W. K.

    2016-10-01

    A system of 96 micro valves has been developed and mounted on top of a 48-well micro titer plate providing two valves for each well controlling its air inlet and outlet. Testing of the valve system showed that all valves are working and are opened and closed reliably. A pneumatic system is switching inlet and outlet valves independently of each other. The geometry of the feed channels ensures an equal air flow through all wells, when the valves are open. Between the micro valves, one optical fibre was inserted through the lid of each well allowing measuring the oxygen partial pressure in the enclosed air volume by fluorescence sensor spots. Escherichia coli bacteria were grown inside the wells and their metabolism was observed by the oxygen partial pressure change due to respiration. In all 48 wells, the same oxygen transfer rate was observed within an averaged standard deviation of 1 mmol/L/h. The oxygen transfer rate differences compared to a macroscopic standard shake flask system were overall compatible within their uncertainties.

  15. Heart Valve Biomechanics and Underlying Mechanobiology

    PubMed Central

    Ayoub, Salma; Ferrari, Giovanni; Gorman, Robert C.; Gorman, Joseph H.; Schoen, Frederick J.; Sacks, Michael S.

    2017-01-01

    Heart valves control unidirectional blood flow within the heart during the cardiac cycle. They have a remarkable ability to withstand the demanding mechanical environment of the heart, achieving lifetime durability by processes involving the ongoing remodeling of the extracellular matrix. The focus of this review is on heart valve functional physiology, with insights into the link between disease-induced alterations in valve geometry, tissue stress, and the subsequent cell mechanobiological responses and tissue remodeling. We begin with an overview of the fundamentals of heart valve physiology and the characteristics and functions of valve interstitial cells (VICs). We then provide an overview of current experimental and computational approaches that connect VIC mechanobiological response to organ- and tissue-level deformations and improve our understanding of the underlying functional physiology of heart valves. We conclude with a summary of future trends and offer an outlook for the future of heart valve mechanobiology, specifically, multiscale modeling approaches, and the potential directions and possible challenges of research development. PMID:27783858

  16. Aortic valve replacement for stenosis with or without coronary artery bypass grafting after 2 previous isolated coronary artery bypass grafting operations

    PubMed Central

    Lee Henry, Christopher; Ko, Jong Mi; Henry, Albert Carl; Matter, Gregory John

    2011-01-01

    Aortic valve replacement following an earlier coronary artery bypass grafting (CABG) procedure is fairly common. When this situation occurs, the type of valve dysfunction is usually stenosis (with or without regurgitation), and whether it was missed at the time of the earlier CABG or developed subsequently is usually unclear. We attempted to determine the survival in patients who had had aortic valve replacement after 2 previous CABG procedures. We describe 12 patients who had aortic valve replacement for aortic stenosis; rather than one previous CABG operation, all had had 2 previous CABG procedures. Only one patient died in the early postoperative period after aortic valve replacement, and the remaining 11 were improved substantially: all have lived at least 11 months, and one is still alive at over 101 months after aortic valve replacement. Aortic valve replacement remains beneficial for most patients even after 2 previous CABG procedures. PMID:21307968

  17. Anterior mitral valve aneurysm: a rare sequelae of aortic valve endocarditis.

    PubMed

    Janardhanan, Rajesh; Kamal, Muhammad Umar; Riaz, Irbaz Bin; Smith, M Cristy

    2016-03-01

    SummaryIn intravenous drug abusers, infective endocarditis usually involves right-sided valves, with Staphylococcus aureus being the most common etiologic agent. We present a patient who is an intravenous drug abuser with left-sided (aortic valve) endocarditis caused by Enterococcus faecalis who subsequently developed an anterior mitral valve aneurysm, which is an exceedingly rare complication. A systematic literature search was conducted which identified only five reported cases in the literature of mitral valve aneurysmal rupture in the setting of E. faecalis endocarditis. Real-time 3D-transesophageal echocardiography was critical in making an accurate diagnosis leading to timely intervention. Early recognition of a mitral valve aneurysm (MVA) is important because it may rupture and produce catastrophic mitral regurgitation (MR) in an already seriously ill patient requiring emergency surgery, or it may be overlooked at the time of aortic valve replacement (AVR).Real-time 3D-transesophageal echocardiography (RT-3DTEE) is much more advanced and accurate than transthoracic echocardiography for the diagnosis and management of MVA. © 2016 The authors.

  18. Hybrid textile heart valve prosthesis: preliminary in vitro evaluation.

    PubMed

    Vaesken, Antoine; Pidancier, Christian; Chakfe, Nabil; Heim, Frederic

    2016-09-22

    Transcatheter aortic valve implantation (TAVI) is nowadays a popular alternative technique to surgical valve replacement for critical patients. Biological valve tissue has been used in these devices for over a decade now with over 100,000 implantations. However, material degradations due to crimping for catheter insertion purpose have been reported, and with only 6-year follow-up, no information is available about the long-term durability of biological tissue. Moreover, expensive biological tissue harvesting and chemical treatment procedures tend to promote the development of synthetic valve leaflet materials. Textile polyester (PET) material is characterized by outstanding folding and strength properties combined with proven biocompatibility and could therefore be considered as a candidate to replace biological valve leaflets in TAVI devices. Nevertheless, the material should be preferentially partly elastic in order to limit water hammer effects at valve closing time and prevent exaggerated stress from occurring into the stent and the valve. The purpose of the present work is to study in vitro the mechanical as well as the hydrodynamic behavior of a hybrid elastic textile valve device combining non-deformable PET yarn and elastic polyurethane (PU) yarn. The hybrid valve properties are compared with those of a non-elastic textile valve. Testing results show improved hydrodynamic properties with the elastic construction. However, under fatigue conditions, the interaction between PU and PET yarns tends to limit the valve durability.

  19. Mechanical valve replacement in congenital heart disease.

    PubMed

    Fiane, A E; Lindberg, H L; Saatvedt, K; Svennevig, J L

    1996-05-01

    Mechanical valves are the prosthesis of choice in valve replacement in children. However, the problem of somatic growth leading to patient-valve mismatch remains present, and the appropriate anticoagulation regimen remains controversial. We present our experience of valve replacement in a young population over 20 years. Between 1972 and 1992, 48 patients (34 males and 14 females), mean age 11.2 years (range 0.4-27.4 years), underwent mechanical valve replacement at our institution. Aortic valve replacement was performed in 28 patients (58.3%), mitral valve replacement in 13 (27.1%), tricuspid valve replacement in six (12.5%) and pulmonary valve replacement in one patient (2.1%). The prostheses used were: St. Jude Medical (n = 2), Björk-Shiley (n = 14), Medtronic Hall (n = 16), Duromedics (n = 2) and CarboMedics (n = 14). Early mortality was 14.3%, 10.7% for aortic valve replacement and 30.8% for mitral valve replacement. Mean follow up for all patients was 8.3 years (range 0-22 years), with a total of 398 patient-years. Seven patients died during the follow up (17.1%). Survival after 10 years, including operative mortality, was 81% for aortic valve replacement, 33% for mitral valve replacement, 83% for tricuspid valve replacement and 100% for pulmonary valve replacement. All patients were anticoagulated with warfarin. In eight patients (16.7%) an antiplatelet drug (aspirin or dipyridamole) was added. Major events included paravalvular leak in six patients (1.5%/pty), valve thrombosis in five (mitral position in two, tricuspid in three) (1.3%/pty) and endocarditis in one patient (0.3%/pty). Minor thromboembolic events occurred in three patients (0.8%/pty) and minor hemorrhagic events in three (0.8%/pty). No patients developed hemolytic anemia and there was no case of structural failure. In our experience, mechanical prostheses in congenital heart disease were associated with significant morbidity and mortality, however long term survival after aortic valve replacement was good (81% at 10 years). Thromboembolic and hemorrhagic events were of minor significance. Atrio-ventricular valve replacement carried the highest risk of valve thrombosis and we now give warfarin and an antiplatelet drug to children undergoing mechanical valve implantation in this position.

  20. Twenty-five-year experience with the Björk-Shiley convexoconcave heart valve: a continuing clinical concern.

    PubMed

    Blot, William J; Ibrahim, Michel A; Ivey, Tom D; Acheson, Donald E; Brookmeyer, Ron; Weyman, Arthur; Defauw, Joseph; Smith, J Kermit; Harrison, Donald

    2005-05-31

    The first Björk-Shiley convexoconcave (BSCC) prosthetic heart valves were implanted in 1978. The 25th anniversary provided a stimulus to summarize the research data relevant to BSCC valve fracture, patient management, and current clinical options. Published and unpublished data on the risks of BSCC valve fracture and replacement were compiled, and strategies for identifying candidates for prophylactic valve reoperation were summarized. By December 2003, outlet strut fractures (OSFs), often with fatal outcomes, had been reported in 633 BSCC valves (0.7% of 86,000 valves implanted). Fractures still continue to occur, but average rates of OSFs in 60 degrees valves are now <0.1% per year. OSF risk varies markedly by valve characteristics, especially valve angle and size, with weaker effects associated with other manufacturing variables. OSF risks are mildly lower among women than men but decline sharply with advancing age. The risks of valve replacement typically greatly exceed those of OSF. By comparing individualized estimated risks of OSF versus valve replacement, guidelines have been developed to identify the small percentage of BSCC patients (mostly younger men) who would be expected to have a gain in life expectancy should reoperative surgery be performed. Twenty-five years after the initial BSCC valve implants, fractures continue to occur. Continued monitoring of BSCC patients is needed to track and quantify risks and enable periodic updating of guidelines for patients and their physicians.

  1. Percutaneous Transcatheter One-Step Mechanical Aortic Disc Valve Prosthesis Implantation: A Preliminary Feasibility Study in Swine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sochman, Jan; Peregrin, Jan H.; Rocek, Miloslav

    Purpose. To evaluate the feasibility of one-step implantation of a new type of stent-based mechanical aortic disc valve prosthesis (MADVP) above and across the native aortic valve and its short-term function in swine with both functional and dysfunctional native valves. Methods. The MADVP consisted of a folding disc valve made of silicone elastomer attached to either a nitinol Z-stent (Z model) or a nitinol cross-braided stent (SX model). Implantation of 10 MADVPs (6 Z and 4 SX models) was attempted in 10 swine: 4 (2 Z and 2 SX models) with a functional native valve and 6 (4 Z andmore » 2 SX models) with aortic regurgitation induced either by intentional valve injury or by MADVP placement across the native valve. MADVP function was observed for up to 3 hr after implantation. Results. MADVP implantation was successful in 9 swine. One animal died of induced massive regurgitation prior to implantation. Four MADVPs implanted above functioning native valves exhibited good function. In 5 swine with regurgitation, MADVP implantation corrected the induced native valve dysfunction and the device's continuous good function was observed in 4 animals. One MADVP (SX model) placed across native valve gradually migrated into the left ventricle. Conclusion. The tested MADVP can be implanted above and across the native valve in a one-step procedure and can replace the function of the regurgitating native valve. Further technical development and testing are warranted, preferably with a manufactured MADVP.« less

  2. Fixation and mounting of porcine aortic valves for use in mock circuits.

    PubMed

    Schlöglhofer, Thomas; Aigner, Philipp; Stoiber, Martin; Schima, Heinrich

    2013-10-01

    Investigations of the circulatory system in vitro use mock circuits that require valves to mimic the cardiac situation. Whereas mechanical valves increase water hammer effects due to inherent stiffness and do not allow the use of pressure lines or catheters, bioprosthetic valves are expensive and of limited durability in test fluids. Therefore, we developed a cheap, fast, alternative method to mount valves obtained from the slaughterhouse in mock circuits. Porcine aortic roots were obtained from the abattoir and used either in native condition or after fixation. Fixation was performed at a constant retrograde pressure to ensure closed valve position. Fixation time was 4 h in a 0.5%-glutaraldehyde phosphate buffer. The fixed valves were molded into a modular mock circulation connector using a fast curing silicone. Valve functionality was evaluated in a pulsatile setting (cardiac output = 4.7 l/min, heart rate = 80 beats/min) and compared before and after fixation. Leaflet motion was recorded with a high-speed camera and valve insufficiency was quantified by leakage flow under steady pressure application (80 mmHg). Under physiological conditions the aortic valves showed almost equal leaflet motion in native and fixed conditions. However, the leaflets of the native valves showed lower stiffness and more fluttering during systole than the fixed specimens. Under retrograde pressure, fresh and fixed valves showed small leakage flows of <30 ml/min. The new mounting and fixation procedure is a fast method to fabricate low cost biologic valves for the use in mock circuits.

  3. 7. Unit 3 Service Water System Valves, view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Unit 3 Service Water System Valves, view to the east. These pipes and valves supply water from the draft chest for cooling the generator barrels. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  4. Atrioventricular valve repair in patients with single-ventricle physiology: mechanisms, techniques of repair, and clinical outcomes.

    PubMed

    Honjo, Osami; Mertens, Luc; Van Arsdell, Glen S

    2011-01-01

    Significant atrioventricular (AV) valve insufficiency in patient with single ventricle-physiology is strongly associated with poor survival. Herein we discuss the etiology and mechanism of development of significant AV valve insufficiency in patients with single-ventricle physiology, surgical indication and repair techniques, and clinical outcomes along with our 10-year surgical experience. Our recent clinical series and literature review indicate that it is of prime importance to appreciate the high incidence and clinical effect of the structural abnormalities of AV valve. Valve repair at stage II palliation may minimize the period of volume overload, thereby potentially preserving post-repair ventricular function. Since 85% of the AV valve insufficiency was associated with structural abnormalities, inspection of an AV valve that has more than mild to moderate insufficiency is recommended because they are not likely to be successfully treated with volume unloading surgery alone. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Indication for percutaneous aortic valve implantation

    PubMed Central

    Akin, Ibrahim; Kische, Stephan; Rehders, Tim C.; Nienaber, Christoph A.; Rauchhaus, Mathias; Schneider, Henrik; Liebold, Andreas

    2010-01-01

    The incidence of valvular aortic stenosis has increased over the past decades due to improved life expectancy. Surgical aortic valve replacement is currently the only treatment option for severe symptomatic aortic stenosis that has been shown to improve survival. However, up to one third of patients who require lifesaving surgical aortic valve replacement are denied surgery due to high comorbidities resulting in a higher operative mortality rate. In the past such patients could only be treated with medical therapy or percutaneous aortic valvuloplasty, neither of which has been shown to improve mortality. With advances in interventional cardiology, transcatheter methods have been developed for aortic valve replacement with the goal of offering a therapeutic solution for patients who are unfit for surgical therapy. Currently there are two catheter-based treatment systems in clinical application (the Edwards SAPIEN aortic valve and the CoreValve ReValving System), utilizing either a balloon-expandable or a self-expanding stent platform, respectively. PMID:22371763

  6. Engineering based assessment for a shape design of a pediatric ePTFE pulmonary conduit valve.

    PubMed

    Tsuboko, Yusuke; Shiraishi, Yasuyuki; Yamada, Akihiro; Yambe, Tomoyuki; Miura, Hidekazu; Mura, Seitaro; Yamagishi, Masaaki

    2016-08-01

    The authors examined the hemodynamic characteristics of expanded polytetrafluoroethylene (ePTFE) pulmonary valved conduits quantitatively by our originally developed pediatric pulmonary mechanical circulatory system, in order to suggest the optimal shape design. The system consisted of pneumatically driven right atrium and ventricle model, a pulmonary valve chamber, and elastic pulmonary compliance model with peripheral vascular resistance units, a venous reservoir. We employed two different types of ePTFE valve and evaluated the relationship between the leaflets motion and hemodynamic characteristics by using a high-speed video camera. As a result, we successfully reproduced hemodynamic simulations in our pediatric pulmonary mock system. We confirmed that the presence of bulging sinuses in the pulmonary valved conduit reduced the transvalvular energy loss and increased the valve opening area during systolic period. Our engineering-based in vitro analysis could be useful for proposing a shape design optimization of sophisticated pediatric ePTFE pulmonary valve.

  7. Fault detection and diagnosis of diesel engine valve trains

    NASA Astrophysics Data System (ADS)

    Flett, Justin; Bone, Gary M.

    2016-05-01

    This paper presents the development of a fault detection and diagnosis (FDD) system for use with a diesel internal combustion engine (ICE) valve train. A novel feature is generated for each of the valve closing and combustion impacts. Deformed valve spring faults and abnormal valve clearance faults were seeded on a diesel engine instrumented with one accelerometer. Five classification methods were implemented experimentally and compared. The FDD system using the Naïve-Bayes classification method produced the best overall performance, with a lowest detection accuracy (DA) of 99.95% and a lowest classification accuracy (CA) of 99.95% for the spring faults occurring on individual valves. The lowest DA and CA values for multiple faults occurring simultaneously were 99.95% and 92.45%, respectively. The DA and CA results demonstrate the accuracy of our FDD system for diesel ICE valve train fault scenarios not previously addressed in the literature.

  8. Minimally invasive right lateral thoracotomy without aortic cross-clamping: an attractive alternative to repeat sternotomy for reoperative mitral valve surgery.

    PubMed

    Umakanthan, Ramanan; Petracek, Michael R; Leacche, Marzia; Solenkova, Nataliya V; Eagle, Susan S; Thompson, Annemarie; Ahmad, Rashid M; Greelish, James P; Ball, Stephen K; Hoff, Steven J; Absi, Tarek S; Balaguer, Jorge M; Byrne, John G

    2010-03-01

    The study aim was to determine the safety and benefits of minimally invasive mitral valve surgery without aortic cross-clamping for mitral valve surgery after previous cardiac surgery. Between January 2006 and August 2008, a total of 90 consecutive patients (38 females, 52 males; mean age 66 +/- 9 years) underwent minimally invasive mitral valve surgery after having undergone previous cardiac surgery. Of these patients, 80 (89%) underwent mitral valve replacement and 10 (11%) mitral valve repair utilizing a small (5 cm) right lateral thoracotomy along the 4th or 5th intercostal space under fibrillatory arrest (mean temperature 28 +/- 2 degrees C). The predicted mortality, calculated using the Society of Thoracic Surgeons (STS) algorithm, was compared to the observed mortality. The mean ejection fraction was 45 +/- 13%, mean NYHA class 3 +/- 1, while 66 patients (73%) had previous coronary artery bypass grafting and 37 (41%) had previous valve surgery. Twenty-six patients (29%) underwent non-elective surgery. Cardiopulmonary bypass was instituted through axillary (n = 19), femoral (n = 70) or direct use aortic (n = 1) cannulation. Operative mortality was 2% (2/90), lower than the STS-predicted mortality of 7%. Three patients (3%) developed acute renal failure postoperatively, one patient (1%) required new-onset hemodialysis, and one (1%) developed postoperative stroke. No patients developed postoperative myocardial infarction. The mean postoperative packed red blood cell transfusion requirement at 48 h was 2 +/- 3 units. Minimally invasive right thoracotomy without aortic cross-clamping is an excellent alternative to conventional redo-sternotomy for reoperative mitral valve surgery. The present study confirmed that this technique is safe and effective in reducing operative mortality in high-risk patients undergoing reoperative cardiac surgery.

  9. A new paradigm for obtaining marketing approval for pediatric-sized prosthetic heart valves.

    PubMed

    Yoganathan, Ajit P; Fogel, Mark; Gamble, Susan; Morton, Michael; Schmidt, Paul; Secunda, Jeff; Vidmar, Sara; Del Nido, Pedro

    2013-10-01

    Congenital heart valve disease is one of the most common abnormalities in children. There are limited technological solutions available for treating children with congenital heart valve diseases. The aim of this study is to provide the details of the consensus reached in terms of pediatric definitions, design approach, in vitro testing, and clinical trials, which may be used as guidance for developing prosthetic heart valves for the pediatric indication. In stark contrast to the various designs of adult-sized replacement valves available in the market, there are no Food and Drug Administration (FDA)-approved prosthetic heart valves available for use in the pediatric population. There is a pressing need for FDA-approved pediatric valve devices in the United States. The pediatric patient population has been typically excluded from replacement heart valve trials for several reasons. In January 2010, heart valve manufacturers and pediatric clinicians collaborated with academicians and FDA staff in a workshop to suggest ways to successfully evaluate pediatric prosthetic valves and conduct pediatric clinical trials to provide acceptable heart valve replacement options for this patient population. Recommendations, derived from ISO 5840:2005 and the 2010 FDA Draft Replacement Heart Valve Guidance, are provided for hydrodynamic, durability, and fatigue testing. The article specifically addresses in vitro and premarket and postmarket approval clinical studies that should be considered by a heart valve manufacturer for obtaining regulatory approval of pediatric sizes of prosthetic heart valve designs that are already approved for adult clinical use. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  10. AN INVERSE MODELING APPROACH FOR STRESS ESTIMATION IN MITRAL VALVE ANTERIOR LEAFLET VALVULOPLASTY FOR IN-VIVO VALVULAR BIOMATERIAL ASSESSMENT

    PubMed Central

    Lee, Chung-Hao; Amini, Rouzbeh; Gorman, Robert C.; Gorman, Joseph H.; Sacks, Michael S.

    2013-01-01

    Estimation of regional tissue stresses in the functioning heart valve remains an important goal in our understanding of normal valve function and in developing novel engineered tissue strategies for valvular repair and replacement. Methods to accurately estimate regional tissue stresses are thus needed for this purpose, and in particular to develop accurate, statistically informed means to validate computational models of valve function. Moreover, there exists no currently accepted method to evaluate engineered heart valve tissues and replacement heart valve biomaterials undergoing valvular stresses in blood contact. While we have utilized mitral valve anterior leaflet valvuloplasty as an experimental approach to address this limitation, robust computational techniques to estimate implant stresses are required. In the present study, we developed a novel numerical analysis approach for estimation of the in-vivo stresses of the central region of the mitral valve anterior leaflet (MVAL) delimited by a sonocrystal transducer array. The in-vivo material properties of the MVAL were simulated using an inverse FE modeling approach based on three pseudo-hyperelastic constitutive models: the neo-Hookean, exponential-type isotropic, and full collagen-fiber mapped transversely isotropic models. A series of numerical replications with varying structural configurations were developed by incorporating measured statistical variations in MVAL local preferred fiber directions and fiber splay. These model replications were then used to investigate how known variations in the valve tissue microstructure influence the estimated ROI stresses and its variation at each time point during a cardiac cycle. Simulations were also able to include estimates of the variation in tissue stresses for an individual specimen dataset over the cardiac cycle. Of the three material models, the transversely anisotropic model produced the most accurate results, with ROI averaged stresses at the fully-loaded state of 432.6±46.5 kPa and 241.4±40.5 kPa in the radial and circumferential directions, respectively. We conclude that the present approach can provide robust instantaneous mean and variation estimates of tissue stresses of the central regions of the MVAL. PMID:24275434

  11. Twist1 Transcriptional Targets in the Developing Atrio-Ventricular Canal of the Mouse

    PubMed Central

    Vrljicak, Pavle; Cullum, Rebecca; Xu, Eric; Chang, Alex C. Y.; Wederell, Elizabeth D.; Bilenky, Mikhail; Jones, Steven J. M.; Marra, Marco A.; Karsan, Aly; Hoodless, Pamela A.

    2012-01-01

    Malformations of the cardiovascular system are the most common type of birth defect in humans, frequently affecting the formation of valves and septa. During heart valve and septa formation, cells from the atrio-ventricular canal (AVC) and outflow tract (OFT) regions of the heart undergo an epithelial-to-mesenchymal transformation (EMT) and invade the underlying extracellular matrix to give rise to endocardial cushions. Subsequent maturation of newly formed mesenchyme cells leads to thin stress-resistant leaflets. TWIST1 is a basic helix-loop-helix transcription factor expressed in newly formed mesenchyme cells of the AVC and OFT that has been shown to play roles in cell survival, cell proliferation and differentiation. However, the downstream targets of TWIST1 during heart valve formation remain unclear. To identify genes important for heart valve development downstream of TWIST1, we performed global gene expression profiling of AVC, OFT, atria and ventricles of the embryonic day 10.5 mouse heart by tag-sequencing (Tag-seq). Using this resource we identified a novel set of 939 genes, including 123 regulators of transcription, enriched in the valve forming regions of the heart. We compared these genes to a Tag-seq library from the Twist1 null developing valves revealing significant gene expression changes. These changes were consistent with a role of TWIST1 in controlling differentiation of mesenchymal cells following their transformation from endothelium in the mouse. To study the role of TWIST1 at the DNA level we performed chromatin immunoprecipitation and identified novel direct targets of TWIST1 in the developing heart valves. Our findings support a role for TWIST1 in the differentiation of AVC mesenchyme post-EMT in the mouse, and suggest that TWIST1 can exert its function by direct DNA binding to activate valve specific gene expression. PMID:22815831

  12. Uraemic hyperparathyroidism causes a reversible inflammatory process of aortic valve calcification in rats

    PubMed Central

    Shuvy, Mony; Abedat, Suzan; Beeri, Ronen; Danenberg, Haim D.; Planer, David; Ben-Dov, Iddo Z.; Meir, Karen; Sosna, Jacob; Lotan, Chaim

    2008-01-01

    Aims Renal failure is associated with aortic valve calcification (AVC). Our aim was to develop an animal model for exploring the pathophysiology and reversibility of AVC, utilizing rats with diet-induced kidney disease. Methods and results Sprague–Dawley rats (n = 23) were fed a phosphate-enriched, uraemia-inducing diet for 7 weeks followed by a normal diet for 2 weeks (‘diet group’). These rats were compared with normal controls (n = 10) and with uraemic controls fed with phosphate-depleted diet (‘low-phosphate group’, n = 10). Clinical investigations included serum creatinine, phosphate and parathyroid hormone (PTH) levels, echocardiography, and multislice computed tomography. Pathological examinations of the valves included histological characterization, Von Kossa staining, and antigen and gene expression analyses. Eight diet group rats were further assessed for reversibility of valve calcification following normalization of their kidney function. At 4 weeks, all diet group rats developed renal failure and hyperparathyroidism. At week 9, renal failure resolved with improvement in the hyperparathyroid state. Echocardiography demonstrated valve calcifications only in diet group rats. Tomographic calcium scores were significantly higher in the diet group compared with controls. Von Kossa stain in diet group valves revealed calcium deposits, positive staining for osteopontin, and CD68. Gene expression analyses revealed overexpression of osteoblast genes and nuclear factor κB activation. Valve calcification resolved after diet cessation in parallel with normalization of PTH levels. Resolution was associated with down-regulation of inflammation and osteoblastic features. Low-phosphate group rats developed kidney dysfunction similar to that of the diet group but with normal levels of PTH. Calcium scores and histology showed only minimal valve calcification. Conclusion We developed an animal model for AVC. The process is related to disturbed mineral metabolism. It is associated with inflammation and osteoblastic features. Furthermore, the process is reversible upon normalization of the mineral homeostasis. Thus, our model constitutes a convenient platform for studying AVC and potential remedies. PMID:18390899

  13. Uraemic hyperparathyroidism causes a reversible inflammatory process of aortic valve calcification in rats.

    PubMed

    Shuvy, Mony; Abedat, Suzan; Beeri, Ronen; Danenberg, Haim D; Planer, David; Ben-Dov, Iddo Z; Meir, Karen; Sosna, Jacob; Lotan, Chaim

    2008-08-01

    Renal failure is associated with aortic valve calcification (AVC). Our aim was to develop an animal model for exploring the pathophysiology and reversibility of AVC, utilizing rats with diet-induced kidney disease. Sprague-Dawley rats (n = 23) were fed a phosphate-enriched, uraemia-inducing diet for 7 weeks followed by a normal diet for 2 weeks ('diet group'). These rats were compared with normal controls (n = 10) and with uraemic controls fed with phosphate-depleted diet ('low-phosphate group', n = 10). Clinical investigations included serum creatinine, phosphate and parathyroid hormone (PTH) levels, echocardiography, and multislice computed tomography. Pathological examinations of the valves included histological characterization, Von Kossa staining, and antigen and gene expression analyses. Eight diet group rats were further assessed for reversibility of valve calcification following normalization of their kidney function. At 4 weeks, all diet group rats developed renal failure and hyperparathyroidism. At week 9, renal failure resolved with improvement in the hyperparathyroid state. Echocardiography demonstrated valve calcifications only in diet group rats. Tomographic calcium scores were significantly higher in the diet group compared with controls. Von Kossa stain in diet group valves revealed calcium deposits, positive staining for osteopontin, and CD68. Gene expression analyses revealed overexpression of osteoblast genes and nuclear factor kappaB activation. Valve calcification resolved after diet cessation in parallel with normalization of PTH levels. Resolution was associated with down-regulation of inflammation and osteoblastic features. Low-phosphate group rats developed kidney dysfunction similar to that of the diet group but with normal levels of PTH. Calcium scores and histology showed only minimal valve calcification. We developed an animal model for AVC. The process is related to disturbed mineral metabolism. It is associated with inflammation and osteoblastic features. Furthermore, the process is reversible upon normalization of the mineral homeostasis. Thus, our model constitutes a convenient platform for studying AVC and potential remedies.

  14. Antimisting Fuel (AMK) Flight Degrader Development and Aircraft Fuel System Investigation

    DTIC Science & Technology

    1987-02-01

    Summary of Test Results 134 CV880 Support of the CID Mission 135 Comparison of the Pump/Degrader and Needle- Valve Degrader 146 Operation on Freshly Blended...Drain Valve 53 AM 33. View of Right Side of Number 3 Engine 54 34. Redundant Shutoff Valve 55 35. Bottom View of Number 3 Engine 55 36. Onboard...Supply and Regulation/Shutoff Valves 78 44. ATMP8O-1 Pump/Degrader Test Module 79 45. Fuel Flow Circuits 80 vii La LIST OF ILLUSTRATIONS (Continued

  15. Developments in suspended particle devices (SPD)

    NASA Astrophysics Data System (ADS)

    Yu, Byung-Seok; Kim, Eung-Soo; Lee, Young-Woo

    1997-10-01

    Light valve using suspended particles was invented first by Edwin H. Land. But it could not be made to large area because it was a liquid cell containing a suspension of the particles between both transparent conductive layers. For several years, so many trials have been to make a large size of light valve. Recently we could make the light valve of large size which is film type by phase separation and/or emulsification methods. In this paper, we are introducing the light valve film made by HGI.

  16. Variable Valve Actuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation ismore » a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of the mechanism it was determined that the single cam design did not have enough flexibility to satisfy three critical OEM requirements simultaneously, (maximum valve lift variation, intake valve opening timing and valve closing duration), and a new approach would be necessary. After numerous internal design reviews including several with the OEM a dual cam design was developed that had the flexibility to meet all motion requirements. The second cam added complexity to the mechanism however the cost was offset by the deletion of the electric motor required in the previous design. New patent applications including detailed drawings and potential valve motion profiles were generated and alternate two cam designs were proposed and evaluated for function, cost, reliability and durability. Hardware was designed and built and testing of sample hardware was successfully completed on an engine test stand. The mechanism developed during the course of this investigation can be applied by Original Equipment Manufacturers, (OEM), to their advanced diesel engines with the ultimate goal of reducing emissions and improving fuel economy. The objectives are: (1) Develop an optimal, cost effective, variable valve actuation (VVA) system for advanced low temperature diesel combustion processes. (2) Design and model alternative mechanical approaches and down-select for optimum design. (3) Build and demonstrate a mechanism capable of application on running engines.« less

  17. A case report and literature overview: Abiotrophia defectiva aortic valve endocarditis in developing countries.

    PubMed

    Ramos, J N; dos Santos, L S; Vidal, L M R; Pereira, P M A; Salgado, A A; Fortes, C Q; Vieira, V V; Mattos-Guaraldi, A L; Júnior, R H; Damasco, P V

    2014-06-01

    A fatal case of aortic valve endocarditis due to Abiotrophia defectiva was reported in Brazil. An overview of cases of endocarditis and other human infections related to A. defectiva in developing countries was also accomplished.

  18. Space storable propulsion components development

    NASA Technical Reports Server (NTRS)

    Hagler, R., Jr.

    1982-01-01

    The current development status of components to control the flow of propellants (liquid fluorine and hydrazine) in a demonstration space storable propulsion system is discussed. The criteria which determined the designs for the pressure regulator, explosive-actuated valves, propellant shutoff valve, latching solenoid-actuated valve and propellant filter are presented. The test philosophy that was followed during component development is outlined. The results from compatibility demonstrations for reusable connectors, flange seals, and CRES/Ti-6Al4V transition tubes and the evaluations of processes for welding (hand-held TIG, automated TIG, and EB), cleaning for fluorine service, and decontamination after fluorine exposure are described.

  19. Minimum impulse thruster valve design and development

    NASA Technical Reports Server (NTRS)

    Huftalen, Richard L.; Platt, Andrea L.; Parker, Morgan J.; Yankura, George A.

    2003-01-01

    The design and development of a minimum impulse thruster valve was conducted, by Moog, under contract by NASA's Jet Propulsion Laboratory, California Institute of Technology, for deep space propulsion systems. The effort was focused on applying known solenoid design techniques scaled to provide a 1 -millisecond response capability for monopropellant, hydrazine ACS thruster applications. The valve has an extended operating temperature range of 20(deg)F to +350(deg)F with a total mass of less than 25 grams and nominal power draw of 7 watts. The design solution resulted in providing a solenoid valve that is one-tenth the scale of the standard product line. The valve has the capability of providing a mass flow rate of 0.0009 pounds per second hydrazine. The design life of 1,000,000 cycles was demonstrated both dry and wet. Not all design factors scaled as expected and proved to be the focus of the final development effort. These included the surface interactions, hydrodynamics and driver electronics. The resulting solution applied matured design approaches to minimize the program risk with innovative methods to address the impacts of scale.

  20. Tissue-Engineered Heart Valve with a Tubular Leaflet Design for Minimally Invasive Transcatheter Implantation

    PubMed Central

    Moreira, Ricardo; Velz, Thaddaeus; Alves, Nuno; Gesche, Valentine N.; Malischewski, Axel; Schmitz-Rode, Thomas; Frese, Julia

    2015-01-01

    Transcatheter aortic valve implantation of (nonviable) bioprosthetic valves has been proven a valid alternative to conventional surgical implantation in patients at high or prohibitive mortality risk. In this study we present the in vitro proof-of-principle of a newly developed tissue-engineered heart valve for minimally invasive implantation, with the ultimate aim of adding the unique advantages of a living tissue with regeneration capabilities to the continuously developing transcatheter technologies. The tube-in-stent is a fibrin-based tissue-engineered valve with a tubular leaflet design. It consists of a tubular construct sewn into a self-expandable nitinol stent at three commissural attachment points and along a circumferential line so that it forms three coaptating leaflets by collapsing under diastolic back pressure. The tubular constructs were molded with fibrin and human umbilical vein cells. After 3 weeks of conditioning in a bioreactor, the valves were fully functional with unobstructed opening (systolic phase) and complete closure (diastolic phase). Tissue analysis showed a homogeneous cell distribution throughout the valve's thickness and deposition of collagen types I and III oriented along the longitudinal direction. Immunohistochemical staining against CD31 and scanning electron microscopy revealed a confluent endothelial cell layer on the surface of the valves. After harvesting, the valves underwent crimping for 20 min to simulate the catheter-based delivery. This procedure did not affect the valvular functionality in terms of orifice area during systole and complete closure during diastole. No influence on the extracellular matrix organization, as assessed by immunohistochemistry, nor on the mechanical properties was observed. These results show the potential of combining tissue engineering and minimally invasive implantation technology to obtain a living heart valve with a simple and robust tubular design for transcatheter delivery. The effect of the in vivo remodeling on the functionality of the tube-in-stent valve remains to be tested. PMID:25380414

  1. Role of modern 3D echocardiography in valvular heart disease

    PubMed Central

    2014-01-01

    Three-dimensional (3D) echocardiography has been conceived as one of the most promising methods for the diagnosis of valvular heart disease, and recently has become an integral clinical tool thanks to the development of high quality real-time transesophageal echocardiography (TEE). In particular, for mitral valve diseases, this new approach has proven to be the most unique, powerful, and convincing method for understanding the complicated anatomy of the mitral valve and its dynamism. The method has been useful for surgical management, including robotic mitral valve repair. Moreover, this method has become indispensable for nonsurgical mitral procedures such as edge to edge mitral repair and transcatheter closure of paravaluvular leaks. In addition, color Doppler 3D echo has been valuable to identify the location of the regurgitant orifice and the severity of the mitral regurgitation. For aortic and tricuspid valve diseases, this method may not be quite as valuable as for the mitral valve. However, the necessity of 3D echo is recognized for certain situations even for these valves, such as for evaluating the aortic annulus for transcatheter aortic valve implantation. It is now clear that this method, especially with the continued development of real-time 3D TEE technology, will enhance the diagnosis and management of patients with these valvular heart diseases. PMID:25378966

  2. Proportional mechanical ventilation through PWM driven on/off solenoid valve.

    PubMed

    Sardellitti, I; Cecchini, S; Silvestri, S; Caldwell, D G

    2010-01-01

    Proportional strategies for artificial ventilation are the most recent form of synchronized partial ventilatory assistance and intra-breath control techniques available in clinical practice. Currently, the majority of commercial ventilators allowing proportional ventilation uses proportional valves to generate the flow rate pattern. This paper proposes on-off solenoid valves for proportional ventilation given their small size, low cost and short switching time, useful for supplying high frequency ventilation. A new system based on a novel fast switching driver circuit combined with on/off solenoid valve is developed. The average short response time typical of onoff solenoid valves was further reduced through the driving circuit for the implementation of PWM control. Experimental trials were conducted for identifying the dynamic response of the PWM driven on/off valve and for verifying its effectiveness in generating variable-shaped ventilatory flow rate patterns. The system was able to smoothly follow the reference flow rate patterns also changing in time intervals as short as 20 ms, achieving a flow rate resolution up to 1 L/min and repeatability in the order of 0.5 L/min. Preliminary results showed the feasibility of developing a stand alone portable device able to generate both proportional and high frequency ventilation by only using on-off solenoid valves.

  3. Wnt/β-catenin signaling enables developmental transitions during valvulogenesis

    PubMed Central

    Bosada, Fernanda M.; Devasthali, Vidusha; Jones, Kimberly A.; Stankunas, Kryn

    2016-01-01

    Heart valve development proceeds through coordinated steps by which endocardial cushions (ECs) form thin, elongated and stratified valves. Wnt signaling and its canonical effector β-catenin are proposed to contribute to endocardial-to-mesenchymal transformation (EMT) through postnatal steps of valvulogenesis. However, genetic redundancy and lethality have made it challenging to define specific roles of the canonical Wnt pathway at different stages of valve formation. We developed a transgenic mouse system that provides spatiotemporal inhibition of Wnt/β-catenin signaling by chemically inducible overexpression of Dkk1. Unexpectedly, this approach indicates canonical Wnt signaling is required for EMT in the proximal outflow tract (pOFT) but not atrioventricular canal (AVC) cushions. Furthermore, Wnt indirectly promotes pOFT EMT through its earlier activity in neighboring myocardial cells or their progenitors. Subsequently, Wnt/β-catenin signaling is activated in cushion mesenchymal cells where it supports FGF-driven expansion of ECs and then AVC valve extracellular matrix patterning. Mice lacking Axin2, a negative Wnt regulator, have larger valves, suggesting that accumulating Axin2 in maturing valves represents negative feedback that restrains tissue overgrowth rather than simply reporting Wnt activity. Disruption of these Wnt/β-catenin signaling roles that enable developmental transitions during valvulogenesis could account for common congenital valve defects. PMID:26893350

  4. Development of a Passive Liquid Valve (PLV) Utilizing a Pressure Equilibrium Phenomenon on the Centrifugal Microfluidic Platform

    PubMed Central

    Al-Faqheri, Wisam; Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Bahari, Norulain; Arof, Hamzah; Rothan, Hussin A.; Yusof, Rohana; Madou, Marc

    2015-01-01

    In this paper, we propose an easy-to-implement passive liquid valve (PLV) for the microfluidic compact-disc (CD). This valve can be implemented by introducing venting chambers to control the air flow of the source and destination chambers. The PLV mechanism is based on equalizing the main forces acting on the microfluidic CD (i.e., the centrifugal and capillary forces) to control the burst frequency of the source chamber liquid. For a better understanding of the physics behind the proposed PLV, an analytical model is described. Moreover, three parameters that control the effectiveness of the proposed valve, i.e., the liquid height, liquid density, and venting chamber position with respect to the CD center, are tested experimentally. To demonstrate the ability of the proposed PLV valve, microfluidic liquid switching and liquid metering are performed. In addition, a Bradford assay is performed to measure the protein concentration and evaluated in comparison to the benchtop procedure. The result shows that the proposed valve can be implemented in any microfluidic process that requires simplicity and accuracy. Moreover, the developed valve increases the flexibility of the centrifugal CD platform for passive control of the liquid flow without the need for an external force or trigger. PMID:25723143

  5. Development of a passive liquid valve (PLV) utilizing a pressure equilibrium phenomenon on the centrifugal microfluidic platform.

    PubMed

    Al-Faqheri, Wisam; Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Bahari, Norulain; Arof, Hamzah; Rothan, Hussin A; Yusof, Rohana; Madou, Marc

    2015-02-25

    In this paper, we propose an easy-to-implement passive liquid valve (PLV) for the microfluidic compact-disc (CD). This valve can be implemented by introducing venting chambers to control the air flow of the source and destination chambers. The PLV mechanism is based on equalizing the main forces acting on the microfluidic CD (i.e., the centrifugal and capillary forces) to control the burst frequency of the source chamber liquid. For a better understanding of the physics behind the proposed PLV, an analytical model is described. Moreover, three parameters that control the effectiveness of the proposed valve, i.e., the liquid height, liquid density, and venting chamber position with respect to the CD center, are tested experimentally. To demonstrate the ability of the proposed PLV valve, microfluidic liquid switching and liquid metering are performed. In addition, a Bradford assay is performed to measure the protein concentration and evaluated in comparison to the benchtop procedure. The result shows that the proposed valve can be implemented in any microfluidic process that requires simplicity and accuracy. Moreover, the developed valve increases the flexibility of the centrifugal CD platform for passive control of the liquid flow without the need for an external force or trigger.

  6. Critically safe volume vacuum pickup for use in wet or dry cleanup of radioactive enclosures

    DOEpatents

    Zeren, J.D.

    1993-12-28

    A physical compact vacuum pickup device of critically safe volume and geometric shape is provided for use in radioactive enclosures, such as a small glove box, to facilitate manual cleanup of either wet or dry radioactive material. The device is constructed and arranged so as to remain safe when filled to capacity with plutonium-239 oxide. Two fine mesh filter bags are supported on the exterior of a rigid fine mesh stainless steel cup. This assembly is sealed within, and spaced from, the interior walls of a stainless steel canister. An air inlet communicates with the interior of the canister. A modified conventional vacuum head is physically connected to, and associated with, the interior of the mesh cup. The volume of the canister, as defined by the space between the mesh cup and the interior walls of the canister, forms a critically safe volume and geometric shape for dry radioactive particles that are gathered within the canister. A critically safe liquid volume is maintained by operation of a suction terminating float valve, and/or by operation of redundant vacuum check/liquid drain valves and placement of the air inlet. 5 figures.

  7. Critically safe volume vacuum pickup for use in wet or dry cleanup of radioactive enclosures

    DOEpatents

    Zeren, Joseph D.

    1993-12-28

    A physical compact vacuum pickup device of critically safe volume and geometric shape is provided for use in radioactive enclosures, such as a small glove box, to facilitate manual cleanup of either wet or dry radioactive material. The device is constructed and arranged so as to remain safe when filled to capacity with plutonium-239 oxide. Two fine mesh filter bags are supported on the exterior of a rigid fine mesh stainless steel cup. This assembly is sealed within, and spaced from, the interior walls of a stainless steel canister. An air inlet communicates with the interior of the canister. A modified conventional vacuum head is physically connected to, and associated with, the interior of the mesh cup. The volume of the canister, as defined by the space between the mesh cup and the interior walls of the canister, forms a critically safe volume and geometric shape for dry radioactive particles that are gathered within the canister. A critically safe liquid volume is maintained by operation of a suction terminating float valve, and/or by operation of redundant vacuum check/liquid drain valves and placement of the air inlet.

  8. Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices.

    PubMed

    Bezuidenhout, Deon; Williams, David F; Zilla, Peter

    2015-01-01

    Efficient function and long-term durability without the need for anticoagulation, coupled with the ability to be accommodated in many different types of patient, are the principal requirements of replacement heart valves. Although the clinical use of valves appeared to have remained steady for several decades, the evolving demands for the elderly and frail patients typically encountered in the developed world, and the needs of much younger and poorer rheumatic heart disease patients in the developing world have now necessitated new paradigms for heart valve technologies and associated materials. This includes further consideration of durable elastomeric materials. The use of polymers to produce flexible leaflet valves that have the benefits of current commercial bioprosthetic and mechanical valves without any of their deficiencies has been held desirable since the mid 1950s. Much attention has been focused on thermoplastic polyurethanes in view of their generally good physico-chemical properties and versatility in processing, coupled with the improving biocompatibility and stability of recent formulations. Accelerated in vitro durability of between 600 and 1000 million cycles has been achieved using polycarbonate urethanes, and good resistance to degradation, calcification and thrombosis in vivo has been shown with some polysiloxane-based polyurethanes. Nevertheless, polymeric valves have remained relegated to use in temporary ventricular assist devices for bridging heart failure patients to transplantation. Some recent studies suggest that there is a greater degree of instability in thermoplastic materials than hitherto believed so that significant challenges remain in the search for the combination of durability and biocompatibility that would allow polymeric valves to become a clinical reality for surgical implantation. Perhaps more importantly, they could become candidates for use in situations where minimally invasive transcatheter procedures are used to replace diseased valves. Being amenable to relatively inexpensive mass production techniques, the attainment of this goal could benefit very large numbers of patients in developing and emerging countries who currently have no access to treatment for rheumatic heart disease that is so prevalent in these areas. This review discusses the evolution and current status of polymeric valves in wide-ranging circumstances.

  9. Optimal design of an electro-hydraulic valve for heavy-duty vehicle clutch actuator with certain constraints

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Shi, Peng; Karimi, Hamid Reza; Zhang, Hui

    2016-02-01

    The main objective of this paper is to investigate the sensitivity analysis and optimal design of a proportional solenoid valve (PSV) operated pressure reducing valve (PRV) for heavy-duty automatic transmission clutch actuators. The nonlinear electro-hydraulic valve model is developed based on fluid dynamics. In order to implement the sensitivity analysis and optimization for the PRV, the PSV model is validated by comparing the results with data obtained from a real test-bench. The sensitivity of the PSV pressure response with regard to the structural parameters is investigated by using Sobol's method. Finally, simulations and experimental investigations are performed on the optimized prototype and the results reveal that the dynamical characteristics of the valve have been improved in comparison with the original valve.

  10. Assembly and method for testing the integrity of stuffing tubes

    DOEpatents

    Morrison, E.F.

    1997-08-26

    A stuffing tube integrity checking assembly includes first and second annular seals, with each seal adapted to be positioned about a stuffing tube penetration component. An annular inflation bladder is provided, the bladder having a slot extending longitudinally there along and including a separator for sealing the slot. A first valve is in fluid communication with the bladder for introducing pressurized fluid to the space defined by the bladder when mounted about the tube. First and second releasible clamps are provided. Each clamp assembly is positioned about the bladder for securing the bladder to one of the seals for thereby establishing a fluid-tight chamber about the tube. 5 figs.

  11. Some Characteristics of Fuel Sprays from Open Nozzles

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Lee, D W

    1930-01-01

    The penetration and cone-angle of fuel sprays from open nozzles were recorded with the NACA Spray Photography Equipment. The results show that for injection systems in which the rate of pressure rise at the discharge orifice is high, open nozzles give spray-tip velocities and penetrations which compare favorably with those of closed nozzles. The spray cone-angle was the same for all tests, although open nozzles having different orifice diameters were used, and one nozzle was used both as an open and as a closed nozzle. In designing a fuel system using open nozzles, particular care must be taken to avoid air pockets. The check valve should be placed close to the discharge orifice.

  12. Performance Qualification Test of the ISS Water Processor Assembly (WPA) Expendables

    NASA Technical Reports Server (NTRS)

    Carter, Layne; Tabb, David; Tatara, James D.; Mason, Richard K.

    2005-01-01

    The Water Processor Assembly (WPA) for use on the International Space Station (ISS) includes various technologies for the treatment of waste water. These technologies include filtration, ion exchange, adsorption, catalytic oxidation, and iodination. The WPA hardware implementing portions of these technologies, including the Particulate Filter, Multifiltration Bed, Ion Exchange Bed, and Microbial Check Valve, was recently qualified for chemical performance at the Marshall Space Flight Center. Waste water representing the quality of that produced on the ISS was generated by test subjects and processed by the WPA. Water quality analysis and instrumentation data was acquired throughout the test to monitor hardware performance. This paper documents operation of the test and the assessment of the hardware performance.

  13. Description of a new species of the costata-group (Cladocera, Chydoridae, Aloninae) from Brazil.

    PubMed

    Sousa, Francisco Diogo R; Santos, Sandro; Güntzel, Adriana Maria; Diniz, Leidiane Pereira; De Melo Júnior, Mauro; Elmoor-Loureiro, Lourdes M A

    2015-11-12

    The aim of this study is to describe a new species of the costata-group from Brazil. Alona margipluma sp. nov. shares morphological traits with A. costata Sars, 1862, A. natalensis Sinev, 2008, and A. cheni Sinev, 1999, but differs from them in: (i) thin setulae between the marginal setae on the valves, (ii) setae 4-5 on the exopodite of limb III long and different in length, (iii) bottle-shaped sensillum on the basal endite of limb IV. For identification of Alona margipluma sp. nov. it is necessary to check carefully the main head pores and postabdomen characters since the former superficially resemble A. iheringula, A. setigera and Alona guttata.

  14. Liquid crystal light valve technologies for display applications

    NASA Astrophysics Data System (ADS)

    Kikuchi, Hiroshi; Takizawa, Kuniharu

    2001-11-01

    The liquid crystal (LC) light valve, which is a spatial light modulator that uses LC material, is a very important device in the area of display development, image processing, optical computing, holograms, etc. In particular, there have been dramatic developments in the past few years in the application of the LC light valve to projectors and other display technologies. Various LC operating modes have been developed, including thin film transistors, MOS-FETs and other active matrix drive techniques to meet the requirements for higher resolution, and substantial improvements have been achieved in the performance of optical systems, resulting in brighter display images. Given this background, the number of applications for the LC light valve has greatly increased. The resolution has increased from QVGA (320 x 240) to QXGA (2048 x 1536) or even super- high resolution of eight million pixels. In the area of optical output, projectors of 600 to 13,000 lm are now available, and they are used for presentations, home theatres, electronic cinema and other diverse applications. Projectors using the LC light valve can display high- resolution images on large screens. They are now expected to be developed further as part of hyper-reality visual systems. This paper provides an overview of the needs for large-screen displays, human factors related to visual effects, the way in which LC light valves are applied to projectors, improvements in moving picture quality, and the results of the latest studies that have been made to increase the quality of images and moving images or pictures.

  15. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells.

    PubMed

    Duan, B; Kapetanovic, E; Hockaday, L A; Butcher, J T

    2014-05-01

    Tissue engineering has great potential to provide a functional de novo living valve replacement, capable of integration with host tissue and growth. Among various valve conduit fabrication techniques, three-dimensional (3-D) bioprinting enables deposition of cells and hydrogels into 3-D constructs with anatomical geometry and heterogeneous mechanical properties. Successful translation of this approach, however, is constrained by the dearth of printable and biocompatible hydrogel materials. Furthermore, it is not known how human valve cells respond to these printed environments. In this study, 3-D printable formulations of hybrid hydrogels are developed, based on methacrylated hyaluronic acid (Me-HA) and methacrylated gelatin (Me-Gel), and used to bioprint heart valve conduits containing encapsulated human aortic valvular interstitial cells (HAVIC). Increasing Me-Gel concentration resulted in lower stiffness and higher viscosity, facilitated cell spreading, and better maintained HAVIC fibroblastic phenotype. Bioprinting accuracy was dependent upon the relative concentrations of Me-Gel and Me-HA, but when optimized enabled the fabrication of a trileaflet valve shape accurate to the original design. HAVIC encapsulated within bioprinted heart valves maintained high viability, and remodeled the initial matrix by depositing collagen and glyosaminoglycans. These findings represent the first rational design of bioprinted trileaflet valve hydrogels that regulate encapsulated human VIC behavior. The use of anatomically accurate living valve scaffolds through bioprinting may accelerate understanding of physiological valve cell interactions and progress towards de novo living valve replacements. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Optical-to-optical interface device

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.; Bleha, W. P.; Miller, L.; Grinberg, J.; Fraas, L.; Margerum, D.

    1975-01-01

    An investigation was conducted to develop an optical-to-optical interface device capable of performing real-time incoherent-to-incoherent optical image conversion. The photoactivated liquid crystal light valve developed earlier represented a prototype liquid crystal light valve device capable of performing these functions. A device was developed which had high performance and extended lifetime.

  17. Vitamin D(2) supplementation induces the development of aortic stenosis in rabbits: interactions with endothelial function and thioredoxin-interacting protein.

    PubMed

    Ngo, Doan T M; Stafford, Irene; Kelly, Darren J; Sverdlov, Aaron L; Wuttke, Ronald D; Weedon, Helen; Nightingale, Angus K; Rosenkranz, Anke C; Smith, Malcolm D; Chirkov, Yuliy Y; Kennedy, Jennifer A; Horowitz, John D

    2008-08-20

    Understanding of the pathophysiology of aortic valve stenosis (AVS) and finding potentially effective treatments are impeded by the lack of suitable AVS animal models. A previous study demonstrated the development of AVS in rabbits with vitamin D(2) and cholesterol supplementation without any hemodynamic changes in the cholesterol supplemented group alone. The current study aimed to determine whether AVS develops in an animal model with vitamin D(2) supplementation alone, and to explore pathophysiological mechanisms underlying this process. The effects of 8 weeks' treatment with vitamin D(2) alone (n=8) at 25,000 IU/4 days weekly on aortic valve structure and function were examined in male New Zealand white rabbits. Echocardiographic aortic valve backscatter (AV(BS)), transvalvular velocity, and transvalvular pressure gradient were utilized to quantitate changes in valve structure and function. Valvular histology/immunochemistry and function were examined after 8 weeks. Changes in valves were compared with those in endothelial function and in valvular measurement of thioredoxin-interacting protein (TXNIP), a marker/mediator of reactive oxygen species-induced oxidative stress. Vitamin D(2) treated rabbits developed AVS with increased AV(BS) (17.6+/-1.4 dB vs 6.7+/-0.8 dB, P<0.0001), increased transvalvular velocity and transvalvular pressure gradient (both P<0.01 via 2-way ANOVA) compared to the control group. There was associated valve calcification, lipid deposition and macrophage infiltration. Endothelial function was markedly impaired, and intravalvular TXNIP concentration increased. In this model, vitamin D(2) induces the development of AVS with histological features similar to those of early AVS in humans and associated endothelial dysfunction/redox stress. AVS development may result from the loss of nitric oxide suppression of TXNIP expression.

  18. Semaphorin3A, Neuropilin-1, and PlexinA1 are required for lymphatic valve formation.

    PubMed

    Bouvrée, Karine; Brunet, Isabelle; Del Toro, Raquel; Gordon, Emma; Prahst, Claudia; Cristofaro, Brunella; Mathivet, Thomas; Xu, Yunling; Soueid, Jihane; Fortuna, Vitor; Miura, Nayoki; Aigrot, Marie-Stéphane; Maden, Charlotte H; Ruhrberg, Christiana; Thomas, Jean Léon; Eichmann, Anne

    2012-08-03

    The lymphatic vasculature plays a major role in fluid homeostasis, absorption of dietary lipids, and immune surveillance. Fluid transport depends on the presence of intraluminal valves within lymphatic collectors. Defective formation of lymphatic valves leads to lymphedema, a progressive and debilitating condition for which curative treatments are currently unavailable. How lymphatic valve formation is regulated remains largely unknown. We investigated if the repulsive axon guidance molecule Semaphorin3A (Sema3A) plays a role in lymphatic valve formation. We show that Sema3A mRNA is expressed in lymphatic vessels and that Sema3A protein binds to lymphatic valves expressing the Neuropilin-1 (Nrp1) and PlexinA1 receptors. Using mouse knockout models, we show that Sema3A is selectively required for lymphatic valve formation, via interaction with Nrp1 and PlexinA1. Sema3a(-/-) mice exhibit defects in lymphatic valve formation, which are not due to abnormal lymphatic patterning or sprouting, and mice carrying a mutation in the Sema3A binding site of Nrp1, or deficient for Plxna1, develop lymphatic valve defects similar to those seen in Sema3a(-/-) mice. Our data demonstrate an essential direct function of Sema3A-Nrp1-PlexinA1 signaling in lymphatic valve formation.

  19. Recent experiences with iodine water disinfection in Shuttle

    NASA Technical Reports Server (NTRS)

    Gibbons, Randall E.; Flanagan, David T.; Schultz, John R.; Sauer, Richard L.; Slezak, Terry N.

    1990-01-01

    Microbial proliferation in the STS potable water system is prevented by maintaining a 2-5 ppm iodine residual. The iodine is added to fuel cell water by an iodinated ion exchange resin in the Microbial Check Valve (MCV). Crew comments indicated excessive iodine in the potable water. To better define the problem, a method of in-flight iodine analysis was developed. Inflight analysis during STS-30 and STS-28 indicated iodine residuals were generally in the 9-13 ppm range. It was determined that the high iodine residual was caused by MCV influent temperatures in excess of 120 F. This is well above the MCV operating range of 65-90 F. The solution to this problem was to develop a resin suitable for the higher temperatures. Since 8 months were required to formulate a MCV resin suitable for the higher temperatures, a temporary solution was necessary. Two additional MCV's were installed on the chilled and ambient water lines leading into the galley to remove the excess iodine. These reduced the iodine residual to 3-4 ppm during STS-33, STS-34, STS-36 and STS-32. A high-temperature resin was formulated and initially flown on STS-31.

  20. Exploiting heat treatment effects on SMAs macro and microscopic properties in developing fire protection devices

    NASA Astrophysics Data System (ADS)

    Burlacu, L.; Cimpoeşu, N.; Bujoreanu, L. G.; Lohan, N. M.

    2017-08-01

    Ni-Ti shape memory alloys (SMAs) are intelligent alloys which demonstrate unique properties, such as shape memory effect, two-way shape memory effect, super-elasticity and vibration damping which, accompanied by good processability, excellent corrosion resistance and biocompatibility as well as fair wear resistance and cyclic stability, enabled the development of important industrial applications (such as sensors, actuators, fasteners, couplings and valves), medical applications (such as stents, bone implants, orthodontic archwires, minimal invasive surgical equipment) as well as environmental health and safety devices (anti-seismic dampers, fire safety devices). The phase transitions in Ni-Ti SMAs are strongly influenced by processing methods, chemical compositions and thermomechanical history. This paper presents a study of the effects of heat treatment on the mechanical and thermal properties of commercial Ni-Ti shape memory alloy (SMA). The experimental work involved subjecting a SMA rod to heat-treatment consisting in heating up to 500°C, 10 minutes-maintaining and water quenching. Mechanical properties were highlighted by microhardness tests while thermal characteristics were emphasized by differential scanning calorimetry (DSC). The presence of chemical composition fluctuations was checked by X-ray energy dispersive spectroscopy performed with an EDAX Bruker analyzer.

  1. Flow in prosthetic heart valves: state-of-the-art and future directions.

    PubMed

    Yoganathan, Ajit P; Chandran, K B; Sotiropoulos, Fotis

    2005-12-01

    Since the first successful implantation of a prosthetic heart valve four decades ago, over 50 different designs have been developed including both mechanical and bioprosthetic valves. Today, the most widely implanted design is the mechanical bileaflet, with over 170,000 implants worldwide each year. Several different mechanical valves are currently available and many of them have good bulk forward flow hemodynamics, with lower transvalvular pressure drops, larger effective orifice areas, and fewer regions of forward flow stasis than their earlier-generation counterparts such as the ball-and-cage and tilting-disc valves. However, mechanical valve implants suffer from complications resulting from thrombus deposition and patients implanted with these valves need to be under long-term anti-coagulant therapy. In general, blood thinners are not needed with bioprosthetic implants, but tissue valves suffer from structural failure with, an average life-time of 10-12 years, before replacement is needed. Flow-induced stresses on the formed elements in blood have been implicated in thrombus initiation within the mechanical valve prostheses. Regions of stress concentration on the leaflets during the complex motion of the leaflets have been implicated with structural failure of the leaflets with bioprosthetic valves. In vivo and in vitro experimental studies have yielded valuable information on the relationship between hemodynamic stresses and the problems associated with the implants. More recently, Computational Fluid Dynamics (CFD) has emerged as a promising tool, which, alongside experimentation, can yield insights of unprecedented detail into the hemodynamics of prosthetic heart valves. For CFD to realize its full potential, however, it must rely on numerical techniques that can handle the enormous geometrical complexities of prosthetic devices with spatial and temporal resolution sufficiently high to accurately capture all hemodynamically relevant scales of motion. Such algorithms do not exist today and their development should be a major research priority. For CFD to further gain the confidence of valve designers and medical practitioners it must also undergo comprehensive validation with experimental data. Such validation requires the use of high-resolution flow measuring tools and techniques and the integration of experimental studies with CFD modeling.

  2. A STRONGLY COUPLED REACTOR CORE ISOLATION COOLING SYSTEM MODEL FOR EXTENDED STATION BLACK-OUT ANALYSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling

    2015-03-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoidmore » overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety system components such as the safety relief valve (SRV), the RCIC system, the wet well, and the dry well. The results show reasonable system behaviors while exhibiting rich dynamics such as variable flow rates through RCIC turbine and pump during the SBO transient. The model has the potential to resolve the Fukushima RCIC mystery after adding the off-design two-phase turbine operation model and other additional improvements.« less

  3. Cost-effectiveness of homograft heart valve replacement surgery: an introductory study.

    PubMed

    Yaghoubi, Mohsen; Aghayan, Hamid Reza; Arjmand, Babak; Emami-Razavi, Seyed Hassan

    2011-05-01

    The clinical effectiveness of heart valve replacement surgery has been well documented. Mechanical and homograft valves are used routinely for replacement of damaged heart valves. Homograft valves are produced in our country but we import the mechanical valves. To our knowledge the cost-effectiveness of homograft valve has not been assessed. The objective of the present study was to compare the cost-effectiveness of homograft valve replacement with mechanical valve replacement surgery. Our samples were selected from 200 patients that underwent homograft and mechanical heart valve replacement surgery in Imam-Khomeini hospital (2000-2005). In each group we enrolled 30 patients. Quality of life was measured using the SF-36 questionnaire and utility was measured in quality-adjusted life years (QALYs). For each group we calculated the price of heart valve and hospitalization charges. Finally the cost-effectiveness of each treatment modalities were summarized as costs per QALYs gained. Forty male and twenty female participated in the study. The mean score of quality of life was 66.06 (SD = 9.22) in homograft group and 57.85 (SD = 11.30) in mechanical group (P < 0.05). The mean QALYs gained in homograft group was 0.67 more than mechanical group. The incremental cost-effectiveness ratio (ICER) revealed a cost savings of 1,067 US$ for each QALY gained in homograft group. Despite limitation of this introductory study, we concluded that homograft valve replacement was more effective and less expensive than mechanical valve. These findings can encourage healthcare managers and policy makers to support the production of homograft valves and allocate more recourse for developing such activities.

  4. Estimation of aortic valve leaflets from 3D CT images using local shape dictionaries and linear coding

    NASA Astrophysics Data System (ADS)

    Liang, Liang; Martin, Caitlin; Wang, Qian; Sun, Wei; Duncan, James

    2016-03-01

    Aortic valve (AV) disease is a significant cause of morbidity and mortality. The preferred treatment modality for severe AV disease is surgical resection and replacement of the native valve with either a mechanical or tissue prosthetic. In order to develop effective and long-lasting treatment methods, computational analyses, e.g., structural finite element (FE) and computational fluid dynamic simulations, are very effective for studying valve biomechanics. These computational analyses are based on mesh models of the aortic valve, which are usually constructed from 3D CT images though many hours of manual annotation, and therefore an automatic valve shape reconstruction method is desired. In this paper, we present a method for estimating the aortic valve shape from 3D cardiac CT images, which is represented by triangle meshes. We propose a pipeline for aortic valve shape estimation which includes novel algorithms for building local shape dictionaries and for building landmark detectors and curve detectors using local shape dictionaries. The method is evaluated on real patient image dataset using a leave-one-out approach and achieves an average accuracy of 0.69 mm. The work will facilitate automatic patient-specific computational modeling of the aortic valve.

  5. Effect of valsalva in the pulmonary prosthetic conduit valve on hemodynamic function in a mock circulatory system.

    PubMed

    Tsuboko, Yusuke; Shiraishi, Yasuyuki; Yamada, Akihiro; Yambe, Tomoyuki; Matsuo, Satoshi; Saiki, Yoshikatsu; Yamagishi, Masaaki

    2015-01-01

    Pulmonary conduit valves are used as one of the surgical treatment methods of congenital heart diseases. We have been designing a sophisticated pulmonary conduit valve for the right ventricular outflow tract reconstruction in pediatric patients. In this study, two types of polyester grafts with or without bulging structures for the conduit valves were used and evaluated from the hemodynamic point of view focusing on the application of these conduit valves in the grown-up congenital heart failure patients. We examined valvular function in the originally developed pulmonary mock circulatory system, which consisted of a pneumatic driven right ventricular model, a pulmonary valve chamber, and an elastic pulmonary compliance model with peripheral vascular resistance units. Prior to the measurement, a bileaflet valve was sutured in each conduit. Each conduit valve was installed in the mock right ventricular outflow portion, and its leaflet motion was obtained by using a high-speed camera synchronously with pressure and flow waveforms. As a result, we could obtain hemodynamic changes in two different types of conduits for pulmonary valves, and it was indicated that the presence of the Valsalva shape might be effective for promoting valvular response in the low cardiac output condition.

  6. Surgical outcomes in native valve infectious endocarditis: the experience of the Cardiovascular Surgery Department - Cluj-Napoca Heart Institute.

    PubMed

    Molnar, Adrian; Muresan, Ioan; Trifan, Catalin; Pop, Dana; Sacui, Diana

    2015-01-01

    The introduction of Duke's criteria and the improvement of imaging methods has lead to an earlier and a more accurate diagnosis of infectious endocarditis (IE). The options for the best therapeutic approach and the timing of surgery are still a matter of debate and require a close colaboration between the cardiologist, the infectionist and the cardiac surgeon. We undertook a retrospective, descriptive study, spanning over a period of five years (from January 1st, 2007 to December 31st, 2012), on 100 patients who underwent surgery for native valve infectious endocarditis in our unit. The patients' age varied between 13 and 77 years (with a mean of 54 years), of which 85 were males (85%). The main microorganisms responsible for IE were: Streptococcus Spp. (21 cases - 21%), Staphylococcus Spp. (15 cases - 15%), and Enterococcus Spp. (9 cases - 9%). The potential source of infection was identified in 26 patients (26%), with most cases being in the dental area (16 cases - 16%). The lesions caused by IE were situated in the left heart in 96 patients (96%), mostly on the aortic valve (50 cases - 50%). In most cases (82%) we found preexisting endocardial lesions which predisposed to the development of IE, most of them being degenerative valvular lesions (38 cases - 38%). We performed the following surgical procedures: surgery on a single valve - aortic valve replacement (40 cases), mitral valve replacement (19 cases), mitral valve repair (1 case), surgery on more than one valve - mitral and aortic valve replacement (20 cases), aortic and tricuspid valve replacement (1 case), aortic valve replacement with a mechanical valve associated with mitral valve repair (5 cases), aortic valve replacement with a biological valve associated with mitral valve repair (2 cases), and mitral valve replacement with a mechanical valve combined with De Vega procedure on the tricuspid valve (1 case). In 5 patients (5%) the bacteriological examination of valve pieces excised during surgery was positive. In 3 cases it matched the germ identified in the hemocultures, and in 2 cases it evidenced another bacterium. The overall mortality of 5% is well between the limits presented in literature, being higher (30%) in patients who required emergency surgery. For the patients who return into our clinic with prosthetic valve endocarditis, the mortality after surgery was even higher (50%).

  7. In Vitro Evaluation of a Novel Hemodynamically Optimized Trileaflet Polymeric Prosthetic Heart Valve

    PubMed Central

    Claiborne, Thomas E.; Sheriff, Jawaad; Kuetting, Maximilian; Steinseifer, Ulrich; Slepian, Marvin J.; Bluestein, Danny

    2013-01-01

    Calcific aortic valve disease is the most common and life threatening form of valvular heart disease, characterized by stenosis and regurgitation, which is currently treated at the symptomatic end-stages via open-heart surgical replacement of the diseased valve with, typically, either a xenograft tissue valve or a pyrolytic carbon mechanical heart valve. These options offer the clinician a choice between structural valve deterioration and chronic anticoagulant therapy, respectively, effectively replacing one disease with another. Polymeric prosthetic heart valves (PHV) offer the promise of reducing or eliminating these complications, and they may be better suited for the new transcatheter aortic valve replacement (TAVR) procedure, which currently utilizes tissue valves. New evidence indicates that the latter may incur damage during implantation. Polymer PHVs may also be incorporated into pulsatile circulatory support devices such as total artificial heart and ventricular assist devices that currently employ mechanical PHVs. Development of polymer PHVs, however, has been slow due to the lack of sufficiently durable and biocompatible polymers. We have designed a new trileaflet polymer PHV for surgical implantation employing a novel polymer—xSIBS—that offers superior bio-stability and durability. The design of this polymer PHV was optimized for reduced stresses, improved hemodynamic performance, and reduced thrombogenicity using our device thrombogenicity emulation (DTE) methodology, the results of which have been published separately. Here we present our new design, prototype fabrication methods, hydrodynamics performance testing, and platelet activation measurements performed in the optimized valve prototype and compare it to the performance of a gold standard tissue valve. The hydrodynamic performance of the two valves was comparable in all measures, with a certain advantage to our valve during regurgitation. There was no significant difference between the platelet activation rates of our polymer valve and the tissue valve, indicating that similar to the latter, its recipients may not require anticoagulation. This work proves the feasibility of our optimized polymer PHV design and brings polymeric valves closer to clinical viability. PMID:23445066

  8. Triple valve surgery: a 25-year experience.

    PubMed

    Yilmaz, Mustafa; Ozkan, Murat; Böke, Erkmen

    2004-09-01

    Surgical treatment of rheumatic valvular disease still constitutes a significant number of cardiac operations in developing countries. Despite improvements in myocardial protection and cardiopulmonary bypass techniques, triple valve operations (aortic, mitral and tricuspid valves) are still challenging because of longer duration of cardiopulmonary bypass and higher degree of myocardial decompensation. This study was instituted in order to assess results of triple valve surgery. Between 1977 and 2002, 34 patients underwent triple valve surgery in our clinic by the same surgeon (EB). Eleven patients underwent triple valve replacement (32.4%) and 23 underwent tricuspid valve annuloplasty with aortic and mitral valve replacements (67.6%). There was no significant difference between the two groups of patients who underwent triple valve replacement and aortic and mitral valve replacement with tricuspid valve annuloplasty. There were 4 hospital deaths (11.8%) occurring within 30 days. The duration of follow-up for 30 survivors ranged from 6 to 202 months (mean 97 months). The actuarial survival rates were 85%, 72%, and 48% at 5, 10, and 15 years respectively. Actuarial freedom from reoperation rates at 5, 10, and 15 years was 86.3%, 71.9%, and 51.2%, respectively. Freedom from cerebral thromboembolism and anticoagulation-related hemorrhage rates, expressed in actuarial terms was 75.9% and 62.9% at 5 and 10 years. Major cerebral complications occurred in 10 of the 30 patients. We prefer replacing, if repairing is not possible, the tricuspid valve, with a bileaflet mechanical prosthesis in a patient with valve replacement of the left heart who will be anticoagulated in order to avoid unfavorable properties of bioprosthesis like degeneration and of old generation mechanical prosthesis like thrombosis and poor hemodynamic function. In recent years, results of triple valve surgery either with tricuspid valve conservation or valve replacement in suitable cases have become encouraging with improvements in surgical techniques and myocardial preservation methods.

  9. Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics

    PubMed Central

    Mao, Wenbin; Li, Kewei; Sun, Wei

    2016-01-01

    Computational modeling of heart valve dynamics incorporating both fluid dynamics and valve structural responses has been challenging. In this study, we developed a novel fully-coupled fluid-structure interaction (FSI) model using smoothed particle hydrodynamics (SPH). A previously developed nonlinear finite element (FE) model of transcatheter aortic valves (TAV) was utilized to couple with SPH to simulate valve leaflet dynamics throughout the entire cardiac cycle. Comparative simulations were performed to investigate the impact of using FE-only models versus FSI models, as well as an isotropic versus an anisotropic leaflet material model in TAV simulations. From the results, substantial differences in leaflet kinematics between FE-only and FSI models were observed, and the FSI model could capture the realistic leaflet dynamic deformation due to its more accurate spatial and temporal loading conditions imposed on the leaflets. The stress and the strain distributions were similar between the FE and FSI simulations. However, the peak stresses were different due to the water hammer effect induced by the flow inertia in the FSI model during the closing phase, which led to 13%–28% lower peak stresses in the FE-only model compared to that of the FSI model. The simulation results also indicated that tissue anisotropy had a minor impact on hemodynamics of the valve. However, a lower tissue stiffness in the radial direction of the leaflets could reduce the leaflet peak stress caused by the water hammer effect. It is hoped that the developed FSI models can serve as an effective tool to better assess valve dynamics and optimize next generation TAV designs. PMID:27844463

  10. Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.

    PubMed

    Mao, Wenbin; Li, Kewei; Sun, Wei

    2016-12-01

    Computational modeling of heart valve dynamics incorporating both fluid dynamics and valve structural responses has been challenging. In this study, we developed a novel fully-coupled fluid-structure interaction (FSI) model using smoothed particle hydrodynamics (SPH). A previously developed nonlinear finite element (FE) model of transcatheter aortic valves (TAV) was utilized to couple with SPH to simulate valve leaflet dynamics throughout the entire cardiac cycle. Comparative simulations were performed to investigate the impact of using FE-only models vs. FSI models, as well as an isotropic vs. an anisotropic leaflet material model in TAV simulations. From the results, substantial differences in leaflet kinematics between FE-only and FSI models were observed, and the FSI model could capture the realistic leaflet dynamic deformation due to its more accurate spatial and temporal loading conditions imposed on the leaflets. The stress and the strain distributions were similar between the FE and FSI simulations. However, the peak stresses were different due to the water hammer effect induced by the fluid inertia in the FSI model during the closing phase, which led to 13-28% lower peak stresses in the FE-only model compared to that of the FSI model. The simulation results also indicated that tissue anisotropy had a minor impact on hemodynamics of the valve. However, a lower tissue stiffness in the radial direction of the leaflets could reduce the leaflet peak stress caused by the water hammer effect. It is hoped that the developed FSI models can serve as an effective tool to better assess valve dynamics and optimize next generation TAV designs.

  11. Fluid Dynamics of Thrombosis in Transcatheter Aortic Valves

    NASA Astrophysics Data System (ADS)

    Seo, Jung Hee; Zhu, Chi; Dou, Zhongwang; Resar, Jon; Mittal, Rajat

    2017-11-01

    Transcatheter aortic valve replacement (TAVR) with bioprosthetic valves (BPV) has become highly prevalent in recent years. While one advantage of BPVs over mechanical ones is the lower incidence of valve thrombosis, recent clinical studies have suggested a higher than expected incidence of subclinical bioprosthetic valve thrombosis (BVT). Many factors that might affect the transvalvular hemodynamics including the valve position, orientation, stent, and interaction with the coronary flow, have been suggested, but the casual mechanisms of valve thrombosis are still unknown. In the present study, the hemodynamics associated with the formation of BVT is investigated using a novel, coupled flow-structure-biochemical computational modeling. A reduced degree of freedom, fluid-structure-interaction model is proposed for the efficient simulation of the hemodynamics and leaflet dynamics in the BPVs. Simple models to take into account the effects of the stent and coronary flows have also been developed. Simulations are performed for canonical models of BPVs in the aorta in various configurations and the results are examined to provide insights into the mechanisms for valve thrombosis. Supported by the NSF Grants IIS-1344772, CBET-1511200 and NSF XSEDE Grant TG-CTS100002.

  12. Enhanced rhamnolipids production via efficient foam-control using stop valve as a foam breaker.

    PubMed

    Long, Xuwei; Shen, Chong; He, Ni; Zhang, Guoliang; Meng, Qin

    2017-01-01

    In this study, a stop valve was used as a foam breaker for dealing with the massive overflowing foam in rhamnolipid fermentation. As found, a stop valve at its tiny opening could break over 90% of the extremely stable rhamnolipid foam into enriched liquid when foam flows through the sharp gap in valve. The efficient foam-control by the stop valve considerably improved the rhamnolipid fermentation and significantly enhanced the rhamnolipid productivity by 83% compared to the regular fermentation. This efficient foam breaking was mainly achieved by a high shear rate in combination with fast separation of air from the collapsed foam. Altogether, the stop valve possessed a great activity in breaking rhamnolipid foam, and the involving mechanism holds the potential for developing efficient foam breakers for industrial rhamnolipid fermentation. Copyright © 2016. Published by Elsevier Ltd.

  13. Single-use thermoplastic microfluidic burst valves enabling on-chip reagent storage

    PubMed Central

    Rahmanian, Omid D.

    2014-01-01

    A simple and reliable method for fabricating single-use normally closed burst valves in thermoplastic microfluidic devices is presented, using a process flow that is readily integrated into established workflows for the fabrication of thermoplastic microfluidics. An experimental study of valve performance reveals the relationships between valve geometry and burst pressure. The technology is demonstrated in a device employing multiple valves engineered to actuate at different inlet pressures that can be generated using integrated screw pumps. On-chip storage and reconstitution of fluorescein salt sealed within defined reagent chambers are demonstrated. By taking advantage of the low gas and water permeability of cyclic olefin copolymer, the robust burst valves allow on-chip hermetic storage of reagents, making the technology well suited for the development of integrated and disposable assays for use at the point of care. PMID:25972774

  14. The processes in spring-loaded injection valves of solid injection oil engines

    NASA Technical Reports Server (NTRS)

    Lutz, O

    1934-01-01

    On the premise of a rectangular velocity wave arriving at the valve, the equation of motion of a spring-loaded valve stem is developed and analyzed. It is found that the stem oscillates, the oscillation frequency being consistently above the natural frequency of the nozzle stem alone, and whose amplitudes would increase in the absence of damping. The results are evaluated and verified on an example. The pressure in the valve and the spray volume are analyzed and several pertinent questions are discussed on the basis of the results.

  15. NSI-1 Squib adapter development and final test report for usage on space shuttle gas sampler valve/bottle assembly 3270

    NASA Technical Reports Server (NTRS)

    Siebel, J. E.

    1983-01-01

    The possibility of utilizing the NSI-1 squib in place cartridge assembly 2270 for the function of both events required for the Space Shuttle Gas Sampler Valve/Bottle Assembly 3270 was determined. Additionally, it was a requirement that the closure disk of the NSI-1 squib and explosive residue therefrom be retained from the valve cavity in so far as possible to prevent any significant particulate from scratching the valve bore and causing sample leakage following the postfire 2 event.

  16. Percutaneous Pulmonary Valve Placement

    PubMed Central

    Prieto, Lourdes R.

    2015-01-01

    Patients with congenital heart disease and pulmonary valve disease need multiple procedures over their lifetimes to replace their pulmonary valves. Chronic pulmonary stenosis, regurgitation, or both have untoward effects on ventricular function and on the clinical status of these patients. To date, all right ventricle–pulmonary artery conduits have had relatively short lifespans. Percutaneous pulmonary valve implantation, although relatively new, will probably reduce the number of operative procedures that these patients will have to undergo over a lifetime. Refinement and further development of this procedure holds promise for the extension of this technology to other patient populations. PMID:26175629

  17. Computed Flow Through An Artificial Heart Valve

    NASA Technical Reports Server (NTRS)

    Rogers, Stewart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee

    1994-01-01

    Report discusses computations of blood flow through prosthetic tilting disk valve. Computational procedure developed in simulation used to design better artificial hearts and valves by reducing or eliminating following adverse flow characteristics: large pressure losses, which prevent hearts from working efficiently; separated and secondary flows, which causes clotting; and high turbulent shear stresses, which damages red blood cells. Report reiterates and expands upon part of NASA technical memorandum "Computed Flow Through an Artificial Heart and Valve" (ARC-12983). Also based partly on research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478).

  18. Computer-Aided-Design of the Hydraulic System of Three-Dimensional Cartridge Valve Blocks (Selected Articles)

    DTIC Science & Technology

    1991-03-21

    sectional representation of the spatial figure can be correctly determined. 6 The AutoLisp language system in the AutoCAD software provides the most...softwares are developed on the 32-bit machines and little progress has been reported for the 16-bit machines. Even the AutoCAD is a two-ard-a-half... AutoCAD software as the basis, developed the design package of 3-D cartridge valve blocks on IM PC/AT. To realize the 3-D displaying of cartridge valves

  19. [Testing system design and analysis for the execution units of anti-thrombotic device].

    PubMed

    Li, Zhelong; Cui, Haipo; Shang, Kun; Liao, Yuehua; Zhou, Xun

    2015-02-01

    In an anti-thrombotic pressure circulatory device, relays and solenoid valves serve as core execution units. Thus the therapeutic efficacy and patient safety of the device will directly depend on their performance. A new type of testing system for relays and solenoid valves used in the anti-thrombotic device has been developed, which can test action response time and fatigue performance of relay and solenoid valve. PC, data acquisition card and test platform are used in this testing system based on human-computer interaction testing modules. The testing objectives are realized by using the virtual instrument technology, the high-speed data acquisition technology and reasonable software design. The two sets of the system made by relay and solenoid valve are tested. The results proved the universality and reliability of the testing system so that these relays and solenoid valves could be accurately used in the antithrombotic pressure circulatory equipment. The newly-developed testing system has a bright future in the aspects of promotion and application prospect.

  20. State-of-the-Art Review of Echocardiographic Imaging in the Evaluation and Treatment of Functional Tricuspid Regurgitation.

    PubMed

    Hahn, Rebecca T

    2016-12-01

    Functional or secondary tricuspid regurgitation (TR) is the most common cause of severe TR in the Western world. The presence of functional TR, either isolated or in combination with left heart disease, is associated with unfavorable natural history. Surgical mortality for isolated tricuspid valve interventions remains higher than for any other single valve surgery, and surgical options for repair do not have consistent long-term durability. In addition, as more patients undergo transcatheter left valve interventions, developing transcatheter solutions for functional TR has gained greater momentum. Numerous transcatheter devices are currently in early clinical trials. All patients require an assessment of valve morphology and function, and transcatheter devices typically require intraprocedural guidance by echocardiography. The following review will describe tricuspid anatomy, define echocardiographic views for evaluating tricuspid valve morphology and function, and discuss imaging requirements for the current transcatheter devices under development for the treatment of functional TR. © 2016 American Heart Association, Inc.

  1. Load control system. [for space shuttle external tank ground tests

    NASA Technical Reports Server (NTRS)

    Grosse, J. C.

    1977-01-01

    The load control system developed for the shuttle external structural tests is described. The system consists of a load programming/display module, and a load control module along with the following hydraulic system components: servo valves, dump valves, hydraulic system components, and servo valve manifold blocks. One load programming/display subsystem can support multiple load control subsystem modules.

  2. Simulations of heart valves by thin shells with non-linear material properties

    NASA Astrophysics Data System (ADS)

    Borazjani, Iman; Asgharzadeh, Hafez; Hedayat, Mohammadali

    2016-11-01

    The primary function of a heart valve is to allow blood to flow in only one direction through the heart. Triangular thin-shell finite element formulation is implemented, which considers only translational degrees of freedom, in three-dimensional domain to simulate heart valves undergoing large deformations. The formulation is based on the nonlinear Kirchhoff thin-shell theory. The developed method is intensively validated against numerical and analytical benchmarks. This method is added to previously developed membrane method to obtain more realistic results since ignoring bending forces can results in unrealistic wrinkling of heart valves. A nonlinear Fung-type constitutive relation, based on experimentally measured biaxial loading tests, is used to model the material properties for response of the in-plane motion in heart valves. Furthermore, the experimentally measured liner constitutive relation is used to model the material properties to capture the flexural motion of heart valves. The Fluid structure interaction solver adopts a strongly coupled partitioned approach that is stabilized with under-relaxation and the Aitken acceleration technique. This work was supported by American Heart Association (AHA) Grant 13SDG17220022 and the Center of Computational Research (CCR) of University at Buffalo.

  3. Magnetic timing valves for fluid control in paper-based microfluidics.

    PubMed

    Li, Xiao; Zwanenburg, Philip; Liu, Xinyu

    2013-07-07

    Multi-step analytical tests, such as an enzyme-linked immunosorbent assay (ELISA), require delivery of multiple fluids into a reaction zone and counting the incubation time at different steps. This paper presents a new type of paper-based magnetic valves that can count the time and turn on or off a fluidic flow accordingly, enabling timed fluid control in paper-based microfluidics. The timing capability of these valves is realized using a paper timing channel with an ionic resistor, which can detect the event of a solution flowing through the resistor and trigger an electromagnet (through a simple circuit) to open or close a paper cantilever valve. Based on this principle, we developed normally-open and normally-closed valves with a timing period up to 30.3 ± 2.1 min (sufficient for an ELISA on paper-based platforms). Using the normally-open valve, we performed an enzyme-based colorimetric reaction commonly used for signal readout of ELISAs, which requires a timed delivery of an enzyme substrate to a reaction zone. This design adds a new fluid-control component to the tool set for developing paper-based microfluidic devices, and has the potential to improve the user-friendliness of these devices.

  4. Embryological origin of the endocardium and derived valve progenitor cells: from developmental biology to stem cell-based valve repair.

    PubMed

    Pucéat, Michel

    2013-04-01

    The cardiac valves are targets of both congenital and acquired diseases. The formation of valves during embryogenesis (i.e., valvulogenesis) originates from endocardial cells lining the myocardium. These cells undergo an endothelial-mesenchymal transition, proliferate and migrate within an extracellular matrix. This leads to the formation of bilateral cardiac cushions in both the atrioventricular canal and the outflow tract. The embryonic origin of both the endocardium and prospective valve cells is still elusive. Endocardial and myocardial lineages are segregated early during embryogenesis and such a cell fate decision can be recapitulated in vitro by embryonic stem cells (ESC). Besides genetically modified mice and ex vivo heart explants, ESCs provide a cellular model to study the early steps of valve development and might constitute a human therapeutic cell source for decellularized tissue-engineered valves. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves.

    PubMed

    Sotiropoulos, Fotis; Borazjani, Iman

    2009-03-01

    In nearly half of the heart valve replacement surgeries performed annually, surgeons prefer to implant bileaflet mechanical heart valves (BMHV) because of their durability and long life span. All current BMHV designs, however, are prone to thromboembolic complications and implant recipients need to be on a life-long anticoagulant medication regiment. Non-physiologic flow patterns and turbulence generated by the valve leaflets are believed to be the major culprit for the increased risk of thromboembolism in BMHV implant recipients. In this paper, we review recent advances in developing predictive fluid-structure interaction (FSI) algorithms that can simulate BMHV flows at physiologic conditions and at resolution sufficiently fine to start probing the links between hemodynamics and blood-cell damage. Numerical simulations have provided the first glimpse into the complex hemodynamic environment experienced by blood cells downstream of the valve leaflets and successfully resolved for the first time the experimentally observed explosive transition to a turbulent-like state at the start of the decelerating flow phase. The simulations have also resolved a number of subtle features of experimentally observed valve kinematics, such as the asymmetric opening and closing of the leaflets and the leaflet rebound during closing. The paper also discusses a future research agenda toward developing a powerful patient-specific computational framework for optimizing valve design and implantation in a virtual surgery environment.

  6. A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves

    PubMed Central

    Borazjani, Iman

    2009-01-01

    In nearly half of the heart valve replacement surgeries performed annually, surgeons prefer to implant bileaflet mechanical heart valves (BMHV) because of their durability and long life span. All current BMHV designs, however, are prone to thromboembolic complications and implant recipients need to be on a life-long anticoagulant medication regiment. Non-physiologic flow patterns and turbulence generated by the valve leaflets are believed to be the major culprit for the increased risk of thromboembolism in BMHV implant recipients. In this paper, we review recent advances in developing predictive fluid–structure interaction (FSI) algorithms that can simulate BMHV flows at physiologic conditions and at resolution sufficiently fine to start probing the links between hemodynamics and blood-cell damage. Numerical simulations have provided the first glimpse into the complex hemodynamic environment experienced by blood cells downstream of the valve leaflets and successfully resolved for the first time the experimentally observed explosive transition to a turbulent-like state at the start of the decelerating flow phase. The simulations have also resolved a number of subtle features of experimentally observed valve kinematics, such as the asymmetric opening and closing of the leaflets and the leaflet rebound during closing. The paper also discusses a future research agenda toward developing a powerful patient-specific computational framework for optimizing valve design and implantation in a virtual surgery environment. PMID:19194734

  7. Lung cancer following bronchoscopic lung volume reduction for severe emphysema: a case and its management.

    PubMed

    Tummino, Celine; Maldonado, Fabien; Laroumagne, Sophie; Astoul, Philippe; Dutau, Hervé

    2012-01-01

    Bronchoscopic lung volume reduction using endobronchial valves has been suggested as a potentially safer alternative to surgery in selected cases. Complications of this technique include pneumothoraces, pneumonia, COPD exacerbations, hemoptysis, and valve migrations. We report the case of a male patient who developed a parenchymal mass in the treated lobe after valve insertion. Due to severe emphysema, transthoracic needle aspiration was not feasible. Removal of the valves was mandatory to perform transbronchialbiopsies which revealed a non-small cell primary lung cancer. This first description illustrates the potential risk of lung cancer development following bronchoscopic lung volume reduction and highlights the different approach to diagnosis and management of indeterminate peripheral lung lesions needed in this context. Copyright © 2011 S. Karger AG, Basel.

  8. Sequential Ligand-Dependent Notch Signaling Activation Regulates Valve Primordium Formation and Morphogenesis.

    PubMed

    MacGrogan, Donal; D'Amato, Gaetano; Travisano, Stanislao; Martinez-Poveda, Beatriz; Luxán, Guillermo; Del Monte-Nieto, Gonzalo; Papoutsi, Tania; Sbroggio, Mauro; Bou, Vanesa; Gomez-Del Arco, Pablo; Gómez, Manuel Jose; Zhou, Bin; Redondo, Juan Miguel; Jiménez-Borreguero, Luis J; de la Pompa, José Luis

    2016-05-13

    The Notch signaling pathway is crucial for primitive cardiac valve formation by epithelial-mesenchymal transition, and NOTCH1 mutations cause bicuspid aortic valve; however, the temporal requirement for the various Notch ligands and receptors during valve ontogeny is poorly understood. The aim of this study is to determine the functional specificity of Notch in valve development. Using cardiac-specific conditional targeted mutant mice, we find that endothelial/endocardial deletion of Mib1-Dll4-Notch1 signaling, possibly favored by Manic-Fringe, is specifically required for cardiac epithelial-mesenchymal transition. Mice lacking endocardial Jag1, Notch1, or RBPJ displayed enlarged valve cusps, bicuspid aortic valve, and septal defects, indicating that endocardial Jag1 to Notch1 signaling is required for post-epithelial-mesenchymal transition valvulogenesis. Valve dysmorphology was associated with increased mesenchyme proliferation, indicating that Jag1-Notch1 signaling restricts mesenchyme cell proliferation non-cell autonomously. Gene profiling revealed upregulated Bmp signaling in Jag1-mutant valves, providing a molecular basis for the hyperproliferative phenotype. Significantly, the negative regulator of mesenchyme proliferation, Hbegf, was markedly reduced in Jag1-mutant valves. Hbegf expression in embryonic endocardial cells could be readily activated through a RBPJ-binding site, identifying Hbegf as an endocardial Notch target. Accordingly, addition of soluble heparin-binding EGF-like growth factor to Jag1-mutant outflow tract explant cultures rescued the hyperproliferative phenotype. During cardiac valve formation, Dll4-Notch1 signaling leads to epithelial-mesenchymal transition and cushion formation. Jag1-Notch1 signaling subsequently restrains Bmp-mediated valve mesenchyme proliferation by sustaining Hbegf-EGF receptor signaling. Our studies identify a mechanism of signaling cross talk during valve morphogenesis involved in the origin of congenital heart defects associated with reduced NOTCH function. © 2016 American Heart Association, Inc.

  9. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices.

    PubMed

    Toley, Bhushan J; Wang, Jessica A; Gupta, Mayuri; Buser, Joshua R; Lafleur, Lisa K; Lutz, Barry R; Fu, Elain; Yager, Paul

    2015-03-21

    Failure to utilize valving and automation techniques has restricted the complexity of fluidic operations that can be performed in paper microfluidic devices. We developed a toolkit of paper microfluidic valves and methods for automatic valve actuation using movable paper strips and fluid-triggered expanding elements. To the best of our knowledge, this is the first functional demonstration of this valving strategy in paper microfluidics. After introduction of fluids on devices, valves can actuate automatically after a) a certain period of time, or b) the passage of a certain volume of fluid. Timing of valve actuation can be tuned with greater than 8.5% accuracy by changing lengths of timing wicks, and we present timed on-valves, off-valves, and diversion (channel-switching) valves. The actuators require ~30 μl fluid to actuate and the time required to switch from one state to another ranges from ~5 s for short to ~50 s for longer wicks. For volume-metered actuation, the size of a metering pad can be adjusted to tune actuation volume, and we present two methods - both methods can achieve greater than 9% accuracy. Finally, we demonstrate the use of these valves in a device that conducts a multi-step assay for the detection of the malaria protein PfHRP2. Although slightly more complex than devices that do not have moving parts, this valving and automation toolkit considerably expands the capabilities of paper microfluidic devices. Components of this toolkit can be used to conduct arbitrarily complex, multi-step fluidic operations on paper-based devices, as demonstrated in the malaria assay device.

  10. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices

    PubMed Central

    Toley, Bhushan J.; Wang, Jessica A.; Gupta, Mayuri; Buser, Joshua R.; Lafleur, Lisa K.; Lutz, Barry R.; Fu, Elain; Yager, Paul

    2015-01-01

    Failure to utilize valving and automation techniques has restricted the complexity of fluidic operations that can be performed in paper microfluidic devices. We developed a toolkit of paper microfluidic valves and methods for automatic valve actuation using movable paper strips and fluid-triggered expanding elements. To the best of our knowledge, this is the first functional demonstration of this valving strategy in paper microfluidics. After introduction of fluids on devices, valves can actuate automatically a) after a certain period of time, or b) after the passage of a certain volume of fluid. Timing of valve actuation can be tuned with greater than 8.5% accuracy by changing lengths of timing wicks, and we present timed on-valves, off-valves, and diversion (channel-switching) valves. The actuators require ~30 μl fluid to actuate and the time required to switch from one state to another ranges from ~5 s for short to ~50s for longer wicks. For volume-metered actuation, the size of a metering pad can be adjusted to tune actuation volume, and we present two methods – both methods can achieve greater than 9% accuracy. Finally, we demonstrate the use of these valves in a device that conducts a multi-step assay for the detection of the malaria protein PfHRP2. Although slightly more complex than devices that do not have moving parts, this valving and automation toolkit considerably expands the capabilities of paper microfluidic devices. Components of this toolkit can be used to conduct arbitrarily complex, multi-step fluidic operations on paper-based devices, as demonstrated in the malaria assay device. PMID:25606810

  11. Development of a novel parallel-spool pilot operated high-pressure solenoid valve with high flow rate and high speed

    NASA Astrophysics Data System (ADS)

    Dong, Dai; Li, Xiaoning

    2015-03-01

    High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system. However, traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously. A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system. A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design. Mathematical models of the opening process and flow rate of the valve are established. Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response. Corresponding formulas to solve 4 parts of the response time are derived. Key factors that influence the opening response time are analyzed. According to the mathematical model of the valve, a simulation of the opening process is carried out by MATLAB. Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve. Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool. The experimental results are in agreement with the simulated results, therefore the validity of the theoretical analysis is verified. Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa. The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s. According to the result of the load driving test, the valve can meet the demands of the driving system. The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate.

  12. Advances in cardiovascular fluid mechanics: bench to bedside.

    PubMed

    Dasi, Lakshmi P; Sucosky, Philippe; de Zelicourt, Diane; Sundareswaran, Kartik; Jimenez, Jorge; Yoganathan, Ajit P

    2009-04-01

    This paper presents recent advances in cardiovascular fluid mechanics that define the current state of the art. These studies include complex multimodal investigations with advanced measurement and simulation techniques. We first discuss the complex flows within the total cavopulmonary connection in Fontan patients. We emphasize the quantification of energy losses by studying the importance of caval offsets as well as the differences among various Fontan surgical protocols. In our studies of the fluid mechanics of prosthetic heart valves, we reveal for the first time the full three-dimensional complexity of flow fields in the vicinity of bileaflet and trileaflet valves and the microscopic hinge flow dynamics. We also present results of these valves functioning in a patient-specific native aorta geometry. Our in vitro mitral valve studies show the complex mechanism of the native mitral valve apparatus. We demonstrate that the different components of the mitral valve have independent and synergistically complex functions that allow the valve to operate efficiently. We also show how valve mechanics change under pathological and repair conditions associated with enlarged ventricles. Finally, our ex vivo studies on the interactions between the aortic valve and its surrounding hemodynamic environment are aimed at providing insights into normal valve function and valve pathology. We describe the development of organ- and tissue-culture systems and the biological response of the tissue subjected to their respective simulated mechanical environment. The studies noted above have enhanced our understanding of the complex fluid mechanics associated with the cardiovascular system and have led to new translational technologies.

  13. Automated electric valve for electrokinetic separation in a networked microfluidic chip.

    PubMed

    Cui, Huanchun; Huang, Zheng; Dutta, Prashanta; Ivory, Cornelius F

    2007-02-15

    This paper describes an automated electric valve system designed to reduce dispersion and sample loss into a side channel when an electrokinetically mobilized concentration zone passes a T-junction in a networked microfluidic chip. One way to reduce dispersion is to control current streamlines since charged species are driven along them in the absence of electroosmotic flow. Computer simulations demonstrate that dispersion and sample loss can be reduced by applying a constant additional electric field in the side channel to straighten current streamlines in linear electrokinetic flow (zone electrophoresis). This additional electric field was provided by a pair of platinum microelectrodes integrated into the chip in the vicinity of the T-junction. Both simulations and experiments of this electric valve with constant valve voltages were shown to provide unsatisfactory valve performance during nonlinear electrophoresis (isotachophoresis). On the basis of these results, however, an automated electric valve system was developed with improved valve performance. Experiments conducted with this system showed decreased dispersion and increased reproducibility as protein zones isotachophoretically passed the T-junction. Simulations of the automated electric valve offer further support that the desired shape of current streamlines was maintained at the T-junction during isotachophoresis. Valve performance was evaluated at different valve currents based on statistical variance due to dispersion. With the automated control system, two integrated microelectrodes provide an effective way to manipulate current streamlines, thus acting as an electric valve for charged species in electrokinetic separations.

  14. Structural deterioration of the Freestyle aortic valve: mode of presentation and mechanisms.

    PubMed

    Mohammadi, Siamak; Baillot, Richard; Voisine, Pierre; Mathieu, Patrick; Dagenais, François

    2006-08-01

    Structural valve deterioration is the major cause of bioprosthetic valve failure. Because of the unique design features and anti-calcification treatment of the Freestyle (Medtronic Inc, Minneapolis, Minn) stentless bioprosthesis, development of structural valve deterioration may differ in comparison with other bioprosthetic valves. This study evaluates the mechanisms and clinical presentation of structural valve deterioration in the Freestyle stentless bioprosthesis. Between January 1993 and August 2005, 608 patients underwent aortic valve replacement with a Freestyle stentless bioprosthesis. The implantation technique was subcoronary in 475 patients and a root replacement in 133 patients. Mean overall follow-up was 5.6 +/- 3.4 years. Follow-up was complete in all patients. Clinical and echocardiographic follow-ups were conducted prospectively. Freedom from structural valve deterioration was 95.8% at 10 years. Twelve patients showed evidence of structural valve deterioration and underwent reoperation for aortic regurgitation (n = 10) or aortic stenosis (n = 2). The mean age of patients with structural valve deterioration was significantly lower than patients without structural valve deterioration (62.6 +/- 8.2 years vs 68.6 +/- 8.3 years, P = .02). The median time between implantation and explantation was 8.7 years (range: 1.9-13.3 years). Eleven structural valve deteriorations occurred after subcoronary implantation, and 1 structural valve deterioration occurred after root implantation (P = .4). The mechanisms of structural valve deterioration were leaflet tears in 10 patients (6 in the left coronary cusp and 4 in the right coronary cusp), severe valve calcification in 1 patient, and cusp fibrosis in 1 patient. The interval between onset of symptoms and reoperation was acute or subacute in 10 patients. At 10 years, the Freestyle stentless bioprosthesis shows excellent freedom from structural valve deterioration. Structural valve deterioration in the Freestyle stentless bioprosthesis relates to leaflet tear with minimal calcification in the majority of cases. Because of the fast onset of symptoms with leaflet tear, patients with a Freestyle stentless bioprosthesis should be informed of the preferential mode of failure and time-frame of symptoms.

  15. Distant downstream steady-state flow studies of a mechanical heart valve: PIV study of secondary flow in a model aortic arch

    NASA Astrophysics Data System (ADS)

    Fix, Brandon R.; Popma, Christopher J.; Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    Each year, hundreds of thousands of aortic and mitral heart valves are replaced with prosthetic valves. In efforts to develop a valve that does not require lifelong anticoagulation therapy, previous experimental research has been devoted to analyzing the hemodynamics of various heart valve designs, limited to the flow up to only 2 diameters downstream of the valve. Two-component, two-dimensional (2C-2D) particle image velocimetry (PIV) was used in this study to examine secondary flow velocity fields in a curved tube modeling an aorta at five locations (0-, 45-, 90-, 135-, 180-degrees). A bileaflet valve, opened to 30-, 45-, and 59-degrees, and one (no-valve) baseline condition were examined under three steady flow inflows (Re = 218, 429, 634). In particular, variations in the two-dimensional turbulent shear stresses at each cross sectional plane were analyzed. The results suggest that bileaflet valves in the aortic model produce significant turbulence and vorticity up to 5.5 downstream diameters, i.e. up to the 90-degrees location. Expanding this research towards aortic heart valve hemodynamics highlights a need for additional studies extending beyond the typical few diameters downstream to fully characterize valvular function. Supported by the NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  16. Semaphorin3A, Neuropilin-1, and PlexinA1 Are Required for Lymphatic Valve Formation

    PubMed Central

    Bouvrée, Karine; Brunet, Isabelle; del Toro, Raquel; Gordon, Emma; Prahst, Claudia; Cristofaro, Brunella; Mathivet, Thomas; Xu, Yunling; Soueid, Jihane; Fortuna, Vitor; Miura, Nayoki; Aigrot, Marie-Stéphane; Maden, Charlotte H.; Ruhrberg, Christiana; Thomas, Jean Léon; Eichmann, Anne

    2013-01-01

    Rationale The lymphatic vasculature plays a major role in fluid homeostasis, absorption of dietary lipids, and immune surveillance. Fluid transport depends on the presence of intraluminal valves within lymphatic collectors. Defective formation of lymphatic valves leads to lymphedema, a progressive and debilitating condition for which curative treatments are currently unavailable. How lymphatic valve formation is regulated remains largely unknown. Objective We investigated if the repulsive axon guidance molecule Semaphorin3A (Sema3A) plays a role in lymphatic valve formation. Methods and Results We show that Sema3A mRNA is expressed in lymphatic vessels and that Sema3A protein binds to lymphatic valves expressing the Neuropilin-1 (Nrp1) and PlexinA1 receptors. Using mouse knockout models, we show that Sema3A is selectively required for lymphatic valve formation, via interaction with Nrp1 and PlexinA1. Sema3a−/− mice exhibit defects in lymphatic valve formation, which are not due to abnormal lymphatic patterning or sprouting, and mice carrying a mutation in the Sema3A binding site of Nrp1, or deficient for Plxna1, develop lymphatic valve defects similar to those seen in Sema3a−/− mice. Conclusions Our data demonstrate an essential direct function of Sema3A-Nrp1-PlexinA1 signaling in lymphatic valve formation. PMID:22723296

  17. Native valve endocarditis due to Corynebacterium group JK.

    PubMed

    Moffie, B G; Veenendaal, R A; Thompson, J

    1990-12-01

    We report a case of a 32-yr-old woman on chronic intermittent haemodialysis, who developed endocarditis due to a Corynebacterium group JK, involving both the native aortic and mitral valves. Despite a four-week treatment with vancomycin, an aortic root abscess developed. The diagnosis was confirmed on autopsy.

  18. Simultaneous in- and out-of-plane Mitral Valve Annular Force Measurements.

    PubMed

    Skov, Søren N; Røpcke, Diana M; Telling, Kristine; Ilkjær, Christine; Tjørnild, Marcell J; Nygaard, Hans; Nielsen, Sten L; Jensen, Morten O

    2015-06-01

    Mitral valve repair with annuloplasty is often favoured over total valve replacement. In order to develop and optimize new annuloplasty ring designs, it is important to study the complex biomechanical behaviour of the valve annulus and the subvalvular apparatus with simultaneous in- and out-of-plane restraining force measurements. A new flat D-shaped mitral valve annular force transducer was developed. The transducer was mounted with strain gauges to measure strain and calibrated to provide simultaneous restraining forces in- and out of the mitral annular plane. The force transducer was implanted and evaluated in an 80 kg porcine experimental model. Accumulation of out-of-plane restraining forces, creating strain in the anterior segment were 0.7 ± 0.0 N (towards apex) and an average force accumulation of 1.5 ± 0.3 N, creating strain in the commissural segments (away from apex). The accumulations of in-plane restraining forces, creating strain on the inner side of the ring were 1.7 ± 0.2 N (away from ring center). A new mitral annular force transducer was successfully developed and evaluated in vivo. The transducer was able to measure forces simultaneously in different planes. Initial indications point towards overall agreement with previous individual force measurements in- and out-of the mitral annular plane. This can provide more detailed insight into the annular force distribution, and could potentially improve the level of evidence based mitral valve repair and support the development of future mitral annuloplasty devices.

  19. Cerebrospinal Fluid Lumbar Tapping Utilization for Suspected Ventriculoperitoneal Shunt Under-Drainage Malfunctions

    PubMed Central

    Lee, Jong-Beom; Ahn, Ho-Young; Lee, Hong-Jae; Yang, Ji-Ho; Yi, Jin-Seok; Lee, Il-Woo

    2017-01-01

    Objective The diagnosis of shunt malfunction can be challenging since neuroimaging results are not always correlated with clinical outcomes. The purpose of this study was to evaluate the efficacy of a simple, minimally invasive cerebrospinal fluid (CSF) lumbar tapping test that predicts shunt under-drainage in hydrocephalus patients. Methods We retrospectively reviewed the clinical and radiological features of 48 patients who underwent routine CSF lumbar tapping after ventriculoperitoneal shunt (VPS) operation using a programmable shunting device. We compared shunt valve opening pressure and CSF lumbar tapping pressure to check under-drainage. Results The mean pressure difference between valve opening pressure and CSF lumbar tapping pressure of all patients were 2.21±24.57 mmH2O. The frequency of CSF lumbar tapping was 2.06±1.26 times. Eighty five times lumbar tapping of 41 patients showed that their VPS function was normal which was consistent with clinical improvement and decreased ventricle size on computed tomography scan. The mean pressure difference in these patients was −3.69±19.20 mmH2O. The mean frequency of CSF lumbar tapping was 2.07±1.25 times. Fourteen cases of 10 patients revealed suspected VPS malfunction which were consistent with radiological results and clinical symptoms, defined as changes in ventricle size and no clinical improvement. The mean pressure difference was 38.07±23.58 mmH2O. The mean frequency of CSF lumbar tapping was 1.44±1.01 times. Pressure difference greater than 35 mmH2O was shown in 2.35% of the normal VPS function group (2 of 85) whereas it was shown in 64.29% of the suspected VPS malfunction group (9 of 14). The difference was statistically significant (p=0.000001). Among 10 patients with under-drainage, 5 patients underwent shunt revision. The causes of the shunt malfunction included 3 cases of proximal occlusion and 2 cases of distal obstruction and valve malfunction. Conclusion Under-drainage of CSF should be suspected if CSF lumbar tapping pressure is 35 mmH2O higher than the valve opening pressure and shunt malfunction evaluation or adjustment of the valve opening pressure should be made. PMID:28061484

  20. [Foreign body in the tricuspid valve with valvular insufficiency and right-left shunt].

    PubMed

    Delebarre, P; Augustin-Normand, C; Capronier, C; Cramer, J; Godeau, P; Letac, B; Forman, J; Maurice, P; Ourbak, P

    1987-05-01

    We present the case of a 50-year old man who progressively developed tricuspid valve insufficiency with opening of a patent foramen ovale responsible for right-to-left shunt with polycythaemia. The tricuspid valve insufficiency was due to a foreign body, probably of surgical origin as suggested by its radiological image and by the patient's previous history. It would have been introduced, far away from the tricuspid valve (compound fracture of the wrist), several years previously. At surgery, we found the foreign body embedded in the valve system. As a possible mechanism for the mutilation, an undiagnosed endocarditis was suspected but could not be confirmed. Three cases tricuspid endocarditis (with foreign bodies in the right ventricle) and 3 cases of asymptomatic tricuspid valve foreign bodies have been published. Fifty-five cases of foreign bodies introduced peripherally and migrated into the heart, the pericardium and the pulmonary artery are reviewed.

  1. Shape-based diagnosis of the aortic valve

    NASA Astrophysics Data System (ADS)

    Ionasec, Razvan Ioan; Tsymbal, Alexey; Vitanovski, Dime; Georgescu, Bogdan; Zhou, S. Kevin; Navab, Nassir; Comaniciu, Dorin

    2009-02-01

    Disorders of the aortic valve represent a common cardiovascular disease and an important public-health problem worldwide. Pathological valves are currently determined from 2D images through elaborate qualitative evalu- ations and complex measurements, potentially inaccurate and tedious to acquire. This paper presents a novel diagnostic method, which identies diseased valves based on 3D geometrical models constructed from volumetric data. A parametric model, which includes relevant anatomic landmarks as well as the aortic root and lea ets, represents the morphology of the aortic valve. Recently developed robust segmentation methods are applied to estimate the patient specic model parameters from end-diastolic cardiac CT volumes. A discriminative distance function, learned from equivalence constraints in the product space of shape coordinates, determines the corresponding pathology class based on the shape information encoded by the model. Experiments on a heterogeneous set of 63 patients aected by various diseases demonstrated the performance of our method with 94% correctly classied valves.

  2. Microfluidic Pumps Containing Teflon [Trademark] AF Diaphragms

    NASA Technical Reports Server (NTRS)

    Willis, Peter; White, Victor; Grunthaner, Frank; Ikeda, Mike; Mathies, Richard A.

    2009-01-01

    Microfluidic pumps and valves based on pneumatically actuated diaphragms made of Teflon AF polymers are being developed for incorporation into laboratory-on-a-chip devices that must perform well over temperature ranges wider than those of prior diaphragm-based microfluidic pumps and valves. Other potential applications include implanted biomedical microfluidic devices, wherein the biocompatability of Teflon AF polymers would be highly advantageous. These pumps and valves have been demonstrated to function stably after cycling through temperatures from -125 to 120 C. These pumps and valves are intended to be successors to similar prior pumps and valves containing diaphragms made of polydimethylsiloxane (PDMS) [commonly known as silicone rubber]. The PDMS-containing valves ae designed to function stably only within the temperature range from 5 to 80 C. Undesirably, PDMS membranes are somwehat porous and retain water. PDMS is especially unsuitable for use at temperatures below 0 C because the formation of ice crystals increases porosity and introduces microshear.

  3. High response speed microfluidic ice valves with enhanced thermal conductivity and a movable refrigeration source

    PubMed Central

    Si, Chaorun; Hu, Songtao; Cao, Xiaobao; Wu, Weichao

    2017-01-01

    Due to their ease of fabrication, facile use and low cost, ice valves have great potential for use in microfluidic platforms. For this to be possible, a rapid response speed is key and hence there is still much scope for improvement in current ice valve technology. Therefore, in this study, an ice valve with enhanced thermal conductivity and a movable refrigeration source has been developed. An embedded aluminium cylinder is used to dramatically enhance the heat conduction performance of the microfluidic platform and a movable thermoelectric unit eliminates the thermal inertia, resulting in a faster cooling process. The proposed ice valve achieves very short closing times (0.37 s at 10 μL/min) and also operates at high flow rates (1150 μL/min). Furthermore, the response time of the valve decreased by a factor of 8 when compared to current state of the art technology. PMID:28084447

  4. In-plane cost-effective magnetically actuated valve for microfluidic applications

    NASA Astrophysics Data System (ADS)

    Pugliese, Marco; Ferrara, Francesco; Bramanti, Alessandro Paolo; Gigli, Giuseppe; Maiorano, Vincenzo

    2017-04-01

    We present a new in-plane magnetically actuated microfluidic valve. Its simple design includes a circular area joining two channels lying on the same plane. The area is parted by a septum lying on and adhering to a magneto-active polymeric ‘floor’ membrane, keeping the channels normally separated (valve closed). Under the action of a magnetic field, the membrane collapses, letting the liquid flow below the septum (valve open). The valve was extensively characterized experimentally, and modeled and optimized theoretically. The growing interest in lab on chips, especially for diagnostics and precision medicine, is driving researchers towards smart, efficient and low cost solutions to the management of biological samples. In this context, the valve developed in this work represents a useful building-block for microfluidic applications requiring precise flow control, its main features being easy and rapid manufacturing, biocompatibility and low cost.

  5. High response speed microfluidic ice valves with enhanced thermal conductivity and a movable refrigeration source

    NASA Astrophysics Data System (ADS)

    Si, Chaorun; Hu, Songtao; Cao, Xiaobao; Wu, Weichao

    2017-01-01

    Due to their ease of fabrication, facile use and low cost, ice valves have great potential for use in microfluidic platforms. For this to be possible, a rapid response speed is key and hence there is still much scope for improvement in current ice valve technology. Therefore, in this study, an ice valve with enhanced thermal conductivity and a movable refrigeration source has been developed. An embedded aluminium cylinder is used to dramatically enhance the heat conduction performance of the microfluidic platform and a movable thermoelectric unit eliminates the thermal inertia, resulting in a faster cooling process. The proposed ice valve achieves very short closing times (0.37 s at 10 μL/min) and also operates at high flow rates (1150 μL/min). Furthermore, the response time of the valve decreased by a factor of 8 when compared to current state of the art technology.

  6. The two-stroke poppet valve engine. Part 2: Numerical investigations of intake and exhaust flow behaviour

    NASA Astrophysics Data System (ADS)

    Kamili Zahidi, M.; Razali Hanipah, M.

    2017-10-01

    A two-stroke poppet valve engine is developed to overcome the common problems in conventional two-stroke engine designs. However, replacing piston control port with poppet valve will resulted different flow behaviour. This paper presents the model and simulation result of three-dimensional (3D) port flow investigation of a two-stroke poppet valve engine. The objective of the investigation is to conduct a numerical investigation on port flow performance of two-stroke poppet valve engine and compare the results obtained from the experimental investigation. The model is to be used for the future numerical study of the engine. The volume flow rate results have been compared with the results obtained experimentally as presented in first part of this paper. The model has shown good agreement in terms of the flow rate at initial and final valve lifts but reduced by about 50% during half-lift region.

  7. Consequence of patient substitution of nattokinase for warfarin after aortic valve replacement with a mechanical prosthesis.

    PubMed

    Elahi, Maqsood M; Choi, Charles H; Konda, Subbareddy; Shake, Jay G

    2015-01-01

    This report describes a patient's self-substitution of nattokinase for the vitamin K antagonist warfarin after aortic valve replacement with a mechanical prosthesis. Nattokinase is an enzyme derived from a popular fermented soybean preparation in Japan (natto), which has fibrinolytic properties and is gaining popularity in nontraditional health journals and nonmedical health websites as an over-the-counter thrombolytic. After nearly a year of use of nattokinase without warfarin, the patient developed thrombus on the mechanical valve and underwent successful repeat valve replacement. We believe this is the first documented case of nattokinase being used as a substitute for warfarin after valve replacement, and we strongly discourage its use for this purpose.

  8. Consequence of patient substitution of nattokinase for warfarin after aortic valve replacement with a mechanical prosthesis

    PubMed Central

    Elahi, Maqsood M.; Choi, Charles H.; Konda, Subbareddy

    2015-01-01

    This report describes a patient's self-substitution of nattokinase for the vitamin K antagonist warfarin after aortic valve replacement with a mechanical prosthesis. Nattokinase is an enzyme derived from a popular fermented soybean preparation in Japan (natto), which has fibrinolytic properties and is gaining popularity in nontraditional health journals and nonmedical health websites as an over-the-counter thrombolytic. After nearly a year of use of nattokinase without warfarin, the patient developed thrombus on the mechanical valve and underwent successful repeat valve replacement. We believe this is the first documented case of nattokinase being used as a substitute for warfarin after valve replacement, and we strongly discourage its use for this purpose. PMID:25552810

  9. Amyloid substance within stenotic aortic valves promotes mineralization.

    PubMed

    Audet, Audrey; Côté, Nancy; Couture, Christian; Bossé, Yohan; Després, Jean-Pierre; Pibarot, Philippe; Mathieu, Patrick

    2012-10-01

    Accumulation of apolipoproteins may play an important role in the pathobiology of calcific aortic valve disease (CAVD). We aimed to explore the hypothesis that apolipoprotein-derived amyloid could play a role in the development of CAVD. In 70 explanted CAVD valves and 15 control non-calcified aortic valves, we assessed the presence of amyloid by using Congo red staining. Immunohistochemistry was performed to document the presence of apolipoprotein AI (Apo-AI). Apoptosis was documented by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) studies performed in control and CAVD valves. Control valves were free of amyloid. Deposition of amyloid was detected in all CAVD valves, and the amount was positively correlated with plasma high-density lipoprotein and Apo-AI levels. Apo-AI within CAVD valves co-localized with intense staining of fibrillar amyloid. In turn, deposition of amyloid co-localized with apoptosis near mineralized areas. Isolation of amyloid fibrils confirmed that Apo-AI is a major component of amyloid deposits in CAVD. In vitro, CAVD-derived amyloid extracts increased apoptosis and mineralization of isolated aortic valvular interstitial cells. Apo-AI is a major component of amyloid substance present within CAVD valves. Furthermore, amyloid deposits participate in mineralization in CAVD by promoting apoptosis of valvular interstitial cells. © 2012 Blackwell Publishing Ltd.

  10. A Genomics-Based Model for Prediction of Severe Bioprosthetic Mitral Valve Calcification.

    PubMed

    Ponasenko, Anastasia V; Khutornaya, Maria V; Kutikhin, Anton G; Rutkovskaya, Natalia V; Tsepokina, Anna V; Kondyukova, Natalia V; Yuzhalin, Arseniy E; Barbarash, Leonid S

    2016-08-31

    Severe bioprosthetic mitral valve calcification is a significant problem in cardiovascular surgery. Unfortunately, clinical markers did not demonstrate efficacy in prediction of severe bioprosthetic mitral valve calcification. Here, we examined whether a genomics-based approach is efficient in predicting the risk of severe bioprosthetic mitral valve calcification. A total of 124 consecutive Russian patients who underwent mitral valve replacement surgery were recruited. We investigated the associations of the inherited variation in innate immunity, lipid metabolism and calcium metabolism genes with severe bioprosthetic mitral valve calcification. Genotyping was conducted utilizing the TaqMan assay. Eight gene polymorphisms were significantly associated with severe bioprosthetic mitral valve calcification and were therefore included into stepwise logistic regression which identified male gender, the T/T genotype of the rs3775073 polymorphism within the TLR6 gene, the C/T genotype of the rs2229238 polymorphism within the IL6R gene, and the A/A genotype of the rs10455872 polymorphism within the LPA gene as independent predictors of severe bioprosthetic mitral valve calcification. The developed genomics-based model had fair predictive value with area under the receiver operating characteristic (ROC) curve of 0.73. In conclusion, our genomics-based approach is efficient for the prediction of severe bioprosthetic mitral valve calcification.

  11. A Genomics-Based Model for Prediction of Severe Bioprosthetic Mitral Valve Calcification

    PubMed Central

    Ponasenko, Anastasia V.; Khutornaya, Maria V.; Kutikhin, Anton G.; Rutkovskaya, Natalia V.; Tsepokina, Anna V.; Kondyukova, Natalia V.; Yuzhalin, Arseniy E.; Barbarash, Leonid S.

    2016-01-01

    Severe bioprosthetic mitral valve calcification is a significant problem in cardiovascular surgery. Unfortunately, clinical markers did not demonstrate efficacy in prediction of severe bioprosthetic mitral valve calcification. Here, we examined whether a genomics-based approach is efficient in predicting the risk of severe bioprosthetic mitral valve calcification. A total of 124 consecutive Russian patients who underwent mitral valve replacement surgery were recruited. We investigated the associations of the inherited variation in innate immunity, lipid metabolism and calcium metabolism genes with severe bioprosthetic mitral valve calcification. Genotyping was conducted utilizing the TaqMan assay. Eight gene polymorphisms were significantly associated with severe bioprosthetic mitral valve calcification and were therefore included into stepwise logistic regression which identified male gender, the T/T genotype of the rs3775073 polymorphism within the TLR6 gene, the C/T genotype of the rs2229238 polymorphism within the IL6R gene, and the A/A genotype of the rs10455872 polymorphism within the LPA gene as independent predictors of severe bioprosthetic mitral valve calcification. The developed genomics-based model had fair predictive value with area under the receiver operating characteristic (ROC) curve of 0.73. In conclusion, our genomics-based approach is efficient for the prediction of severe bioprosthetic mitral valve calcification. PMID:27589735

  12. Experimental verification of the flow characteristics of an active controlled microfluidic valve with annular boundary

    NASA Astrophysics Data System (ADS)

    Pan, Chun-Peng; Wang, Dai-Hua

    2014-03-01

    The principle and structural configuration of an active controlled microfluidic valve with annular boundary is presented in this paper. The active controlled flowrate model of the active controlled microfluidic valve with annular boundary is established. The prototypes of the active controlled microfluidic valves with annular boundaries with three different combinations of the inner and outer radii are fabricated and tested on the established experimental setup. The experimental results show that: (1) The active controlled microfluidic valve with annular boundary possesses the on/off switching and the continuous control capability of the fluid with simple structure and easy fabrication processing; (2) When the inner and outer diameters of the annular boundary are 1.5 mm and 3.5 mm, respectively, the maximum flowrate of the valve is 0.14 ml/s when the differential pressure of the inlet and outlet of the valve is 1000 Pa and the voltage applied to circular piezoelectric unimorph actuator is 100 V; (3) The established active controlled flowrate model can accurately predict the controlled flowrate of the active controlled microfluidic valves with the maximum relative error of 6.7%. The results presented in this paper lay the foundation for designing and developing the active controlled microfluidic valves with annular boundary driven by circular piezoelectric unimorph actuators.

  13. Pathology of myxomatous mitral valve disease in the dog.

    PubMed

    Fox, Philip R

    2012-03-01

    Mitral valve competence requires complex interplay between structures that comprise the mitral apparatus - the mitral annulus, mitral valve leaflets, chordae tendineae, papillary muscles, and left atrial and left ventricular myocardium. Myxomatous mitral valve degeneration is prevalent in the canine, and most adult dogs develop some degree of mitral valve disease as they age, highlighting the apparent vulnerability of canine heart valves to injury. Myxomatous valvular remodeling is associated with characteristic histopathologic features. Changes include expansion of extracellular matrix with glycosaminoglycans and proteoglycans; valvular interstitial cell alteration; and attenuation or loss of the collagen-laden fibrosa layer. These lead to malformation of the mitral apparatus, biomechanical dysfunction, and mitral incompetence. Mitral regurgitation is the most common manifestation of myxomatous valve disease and in advanced stages, associated volume overload promotes progressive valvular regurgitation, left atrial and left ventricular remodeling, atrial tears, chordal rupture, and congestive heart failure. Future studies are necessary to identify clinical-pathologic correlates that track disease severity and progression, detect valve dysfunction, and facilitate risk stratification. It remains unresolved whether, or to what extent, the pathobiology of myxomatous mitral valve degeneration is the same between breeds of dogs, between canines and humans, and how these features are related to aging and genetics. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Surgical outcomes in native valve infectious endocarditis: the experience of the Cardiovascular Surgery Department – Cluj-Napoca Heart Institute

    PubMed Central

    MOLNAR, ADRIAN; MURESAN, IOAN; TRIFAN, CATALIN; POP, DANA; SACUI, DIANA

    2015-01-01

    Background and aims The introduction of Duke’s criteria and the improvement of imaging methods has lead to an earlier and a more accurate diagnosis of infectious endocarditis (IE). The options for the best therapeutic approach and the timing of surgery are still a matter of debate and require a close colaboration between the cardiologist, the infectionist and the cardiac surgeon. Methods We undertook a retrospective, descriptive study, spanning over a period of five years (from January 1st, 2007 to December 31st, 2012), on 100 patients who underwent surgery for native valve infectious endocarditis in our unit. Results The patients’ age varied between 13 and 77 years (with a mean of 54 years), of which 85 were males (85%). The main microorganisms responsible for IE were: Streptococcus Spp. (21 cases – 21%), Staphylococcus Spp. (15 cases – 15%), and Enterococcus Spp. (9 cases – 9%). The potential source of infection was identified in 26 patients (26%), with most cases being in the dental area (16 cases – 16%). The lesions caused by IE were situated in the left heart in 96 patients (96%), mostly on the aortic valve (50 cases – 50%). In most cases (82%) we found preexisting endocardial lesions which predisposed to the development of IE, most of them being degenerative valvular lesions (38 cases – 38%). We performed the following surgical procedures: surgery on a single valve - aortic valve replacement (40 cases), mitral valve replacement (19 cases), mitral valve repair (1 case), surgery on more than one valve – mitral and aortic valve replacement (20 cases), aortic and tricuspid valve replacement (1 case), aortic valve replacement with a mechanical valve associated with mitral valve repair (5 cases), aortic valve replacement with a biological valve associated with mitral valve repair (2 cases), and mitral valve replacement with a mechanical valve combined with De Vega procedure on the tricuspid valve (1 case). In 5 patients (5%) the bacteriological examination of valve pieces excised during surgery was positive. In 3 cases it matched the germ identified in the hemocultures, and in 2 cases it evidenced another bacterium. Conclusion The overall mortality of 5% is well between the limits presented in literature, being higher (30%) in patients who required emergency surgery. For the patients who return into our clinic with prosthetic valve endocarditis, the mortality after surgery was even higher (50%). PMID:26609267

  15. Mitral Valve Prolapse (For Parents)

    MedlinePlus

    ... develops after some sort of inflammatory condition, like endocarditis (infection of the inner lining of the heart) ... a bacterial infection of the heart valve (infective endocarditis). It very rarely happens during childhood. Many times ...

  16. A thin film nitinol heart valve.

    PubMed

    Stepan, Lenka L; Levi, Daniel S; Carman, Gregory P

    2005-11-01

    In order to create a less thrombogenic heart valve with improved longevity, a prosthetic heart valve was developed using thin film nitinol (NiTi). A "butterfly" valve was constructed using a single, elliptical piece of thin film NiTi and a scaffold made from Teflon tubing and NiTi wire. Flow tests and pressure readings across the valve were performed in vitro in a pulsatile flow loop. Bio-corrosion experiments were conducted on untreated and passivated thin film nitinol. To determine the material's in vivo biocompatibility, thin film nitinol was implanted in pigs using stents covered with thin film NiTi. Flow rates and pressure tracings across the valve were comparable to those through a commercially available 19 mm Perimount Edwards tissue valve. No signs of corrosion were present on thin film nitinol samples after immersion in Hank's solution for one month. Finally, organ and tissue samples explanted from four pigs at 2, 3, 4, and 6 weeks after thin film NiTi implantation appeared without disease, and the thin film nitinol itself was without thrombus formation. Although long term testing is still necessary, thin film NiTi may be very well suited for use in artificial heart valves.

  17. Real-time 3D visualization of cellular rearrangements during cardiac valve formation

    PubMed Central

    Pestel, Jenny; Ramadass, Radhan; Gauvrit, Sebastien; Helker, Christian; Herzog, Wiebke

    2016-01-01

    During cardiac valve development, the single-layered endocardial sheet at the atrioventricular canal (AVC) is remodeled into multilayered immature valve leaflets. Most of our knowledge about this process comes from examining fixed samples that do not allow a real-time appreciation of the intricacies of valve formation. Here, we exploit non-invasive in vivo imaging techniques to identify the dynamic cell behaviors that lead to the formation of the immature valve leaflets. We find that in zebrafish, the valve leaflets consist of two sets of endocardial cells at the luminal and abluminal side, which we refer to as luminal cells (LCs) and abluminal cells (ALCs), respectively. By analyzing cellular rearrangements during valve formation, we observed that the LCs and ALCs originate from the atrium and ventricle, respectively. Furthermore, we utilized Wnt/β-catenin and Notch signaling reporter lines to distinguish between the LCs and ALCs, and also found that cardiac contractility and/or blood flow is necessary for the endocardial expression of these signaling reporters. Thus, our 3D analyses of cardiac valve formation in zebrafish provide fundamental insights into the cellular rearrangements underlying this process. PMID:27302398

  18. Heart valves from polyester fibers: a preliminary 6-month in vivo study.

    PubMed

    Vaesken, Antoine; Pelle, Anne; Pavon-Djavid, Graciela; Rancic, Jeanne; Chakfe, Nabil; Heim, Frederic

    2018-06-27

    Transcatheter aortic valve implantation (TAVI) has become a popular alternative technique to surgical valve replacement for critical patients. Biological valve tissue has been used in TAVI procedures for over a decade, with over 150,000 implantations to date. However, with only 6 years of follow up, little is known about the long-term durability of biological tissue. Moreover, the high cost of tissue harvesting and chemical treatment procedures favor the development of alternative synthetic valve leaflet materials. In that context, textile polyester [polyethylene terephthalate (PET)] could be considered as an interesting candidate to replace the biological valve leaflets in TAVI procedures. However, no result is available in the literature about the behavior of textile once in contact with biological tissue in the valve position. The interaction of synthetic textile material with living tissues should be comparable to biological tissue. The purpose of this preliminary work is to compare the in vivo performances of various woven textile PET valves over a 6-month period in order to identify favorable textile construction features. In vivo results indicate that fibrosis as well as calcium deposit can be limited with an appropriate material design.

  19. Real-time 3D visualization of cellular rearrangements during cardiac valve formation.

    PubMed

    Pestel, Jenny; Ramadass, Radhan; Gauvrit, Sebastien; Helker, Christian; Herzog, Wiebke; Stainier, Didier Y R

    2016-06-15

    During cardiac valve development, the single-layered endocardial sheet at the atrioventricular canal (AVC) is remodeled into multilayered immature valve leaflets. Most of our knowledge about this process comes from examining fixed samples that do not allow a real-time appreciation of the intricacies of valve formation. Here, we exploit non-invasive in vivo imaging techniques to identify the dynamic cell behaviors that lead to the formation of the immature valve leaflets. We find that in zebrafish, the valve leaflets consist of two sets of endocardial cells at the luminal and abluminal side, which we refer to as luminal cells (LCs) and abluminal cells (ALCs), respectively. By analyzing cellular rearrangements during valve formation, we observed that the LCs and ALCs originate from the atrium and ventricle, respectively. Furthermore, we utilized Wnt/β-catenin and Notch signaling reporter lines to distinguish between the LCs and ALCs, and also found that cardiac contractility and/or blood flow is necessary for the endocardial expression of these signaling reporters. Thus, our 3D analyses of cardiac valve formation in zebrafish provide fundamental insights into the cellular rearrangements underlying this process. © 2016. Published by The Company of Biologists Ltd.

  20. Development of an iron nitrate resistant injector valve for the Space Shuttle orbiter primary thruster

    NASA Technical Reports Server (NTRS)

    Wichmann, Horst; Marquardt, Kaiser; Goforth, Alyssa

    1993-01-01

    Design of a direct-acting valve (DAV) for a primary thruster which is fully interchangeable with a thruster equipped with pilot-operated valves is described. The DAV is based on a bellows to isolate propellants form the actuator for maximum resistance to iron nitrate and other contamination and to select optimum materials for the actuator. It provides improved seal performance under all operating conditions and insensitivity to pressure transients. As compared with the existing pilot-operated valve, the DAV design is much simpler, consists of fewer parts, and will be lower in cost.

  1. Tricuspid regurgitation and right ventricular function after mitral valve surgery with or without concomitant tricuspid valve procedure.

    PubMed

    Desai, Ravi R; Vargas Abello, Lina Maria; Klein, Allan L; Marwick, Thomas H; Krasuski, Richard A; Ye, Ying; Nowicki, Edward R; Rajeswaran, Jeevanantham; Blackstone, Eugene H; Pettersson, Gösta B

    2013-11-01

    To study the effect of mitral valve repair with or without concomitant tricuspid valve repair on functional tricuspid regurgitation and right ventricular function. From 2001 to 2007, 1833 patients with degenerative mitral valve disease, a structurally normal tricuspid valve, and no coronary artery disease underwent mitral valve repair, and 67 underwent concomitant tricuspid valve repair. Right ventricular function (myocardial performance index and tricuspid annular plane systolic excursion) was measured before and after surgery using transthoracic echocardiography for randomly selected patients with tricuspid regurgitation grade 0, 1+, and 2+ (100 patients for each grade) and 93 with grade 3+/4+, 393 patients in total. In patients with mild (<3+) preoperative tricuspid regurgitation, mitral valve repair alone was associated with reduced tricuspid regurgitation and mild worsening of right ventricular function. Tricuspid regurgitation of 2+ or greater developed in fewer than 20%, and right ventricular function had improved, but not to preoperative levels, at 3 years. In patients with severe (3+/4+) preoperative tricuspid regurgitation, mitral valve repair alone reduced tricuspid regurgitation and improved right ventricular function; however, tricuspid regurgitation of 2+ or greater returned and right ventricular function worsened toward preoperative levels within 3 years. Concomitant tricuspid valve repair effectively eliminated severe tricuspid regurgitation and improved right ventricular function. Also, over time, tricuspid regurgitation did not return and right ventricular function continued to improve to levels comparable to that of patients with lower grades of preoperative tricuspid regurgitation. In patients with mitral valve disease and severe tricuspid regurgitation, mitral valve repair alone was associated with improved tricuspid regurgitation and right ventricular function. However, the improvements were incomplete and temporary. In contrast, concomitant tricuspid valve repair effectively and durably eliminated severe tricuspid regurgitation and improved right ventricular function toward normal, supporting an aggressive approach to important functional tricuspid regurgitation. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  2. Tricuspid regurgitation and right ventricular function after mitral valve surgery with or without concomitant tricuspid valve procedure

    PubMed Central

    Desai, Ravi R.; Vargas Abello, Lina Maria; Klein, Allan L.; Marwick, Thomas H.; Krasuski, Richard A.; Ye, Ying; Nowicki, Edward R.; Rajeswaran, Jeevanantham; Blackstone, Eugene H.; Pettersson, Gösta B.

    2014-01-01

    Objectives To study the effect of mitral valve repair with or without concomitant tricuspid valve repair on functional tricuspid regurgitation and right ventricular function. Methods From 2001 to 2007, 1833 patients with degenerative mitral valve disease, a structurally normal tricuspid valve, and no coronary artery disease underwent mitral valve repair, and 67 underwent concomitant tricuspid valve repair. Right ventricular function (myocardial performance index and tricuspid annular plane systolic excursion) was measured before and after surgery using transthoracic echocardiography for randomly selected patients with tricuspid regurgitation grade 0, 1+, and 2+(100 patients for each grade) and 93 with grade 3+/4+, 393 patients in total. Results In patients with mild (<3+) preoperative tricuspid regurgitation, mitral valve repair alone was associated with reduced tricuspid regurgitation and mild worsening of right ventricular function. Tricuspid regurgitation of 2+or greater developed in fewer than 20%, and right ventricular function had improved, but not to preoperative levels, at 3 years. In patients with severe (3+/4+) preoperative tricuspid regurgitation, mitral valve repair alone reduced tricuspid regurgitation and improved right ventricular function; however, tricuspid regurgitation of 2+ or greater returned and right ventricular function worsened toward preoperative levels within 3 years. Concomitant tricuspid valve repair effectively eliminated severe tricuspid regurgitation and improved right ventricular function. Also, over time, tricuspid regurgitation did not return and right ventricular function continued to improve to levels comparable to that of patients with lower grades of preoperative tricuspid regurgitation. Conclusions In patients with mitral valve disease and severe tricuspid regurgitation, mitral valve repair alone was associated with improved tricuspid regurgitation and right ventricular function. However, the improvements were incomplete and temporary. In contrast, concomitant tricuspid valve repair effectively and durably eliminated severe tricuspid regurgitation and improved right ventricular function toward normal, supporting an aggressive approach to important functional tricuspid regurgitation. PMID:23010580

  3. High-pressure cryogenic valves for the Vulcain rocket motor

    NASA Astrophysics Data System (ADS)

    Garceau, P.; Meyer, F.

    The high-pressure valve developed to control the flow of liquid oxygen or hydrogen into the gas generator of the ESA Vulcain rocket motor is described. The spherical ball-seal design employed provides high reliability over a service lifetime of 5000 on-off actuations at temperatures 20-350 K and pressures up to 200 bar. Leakage is limited to a few cu cm/sec of hydrogen at 20 K. The steps in the development process, from the definition of the valve specifications to the fabrication and testing phase are reviewed, and the final design is shown in drawings, diagrams, and photographs.

  4. 20. ROSS POWERHOUSE: BUTTERFLY VALVE AS SEEN FROM INSIDE THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. ROSS POWERHOUSE: BUTTERFLY VALVE AS SEEN FROM INSIDE THE SCROLL CASE, 1987. - Skagit Power Development, Ross Powerhouse, On Skagit River, 10.7 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  5. Real-Time Prognostics of a Rotary Valve Actuator

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew

    2015-01-01

    Valves are used in many domains and often have system-critical functions. As such, it is important to monitor the health of valves and their actuators and predict remaining useful life. In this work, we develop a model-based prognostics approach for a rotary valve actuator. Due to limited observability of the component with multiple failure modes, a lumped damage approach is proposed for estimation and prediction of damage progression. In order to support the goal of real-time prognostics, an approach to prediction is developed that does not require online simulation to compute remaining life, rather, a function mapping the damage state to remaining useful life is found offline so that predictions can be made quickly online with a single function evaluation. Simulation results demonstrate the overall methodology, validating the lumped damage approach and demonstrating real-time prognostics.

  6. The role of flow in the morphodynamics of embryonic heart

    NASA Astrophysics Data System (ADS)

    Gharib, Morteza

    2017-11-01

    Nature has shown us that some hearts do not require valves to achieve unidirectional flow. In its earliest stages, the vertebrate heart consists of a primitive tube that drives blood through a simple vascular network nourishing tissues and other developing organ systems. We have shown that in the case of the embryonic zebrafish heart, an elastic wave resonance mechanism based on impedance mismatches at the boundaries of the heart tube is the likely mechanism responsible for the valveless pumping behavior. When functioning normally, mature heart valves prevent intracardiac retrograde blood flow; before valves develop there is considerable regurgitation, resulting in oscillatory flow between the atrium and ventricle. We show that reversing flows are particularly strong stimuli to endothelial cells and that heart valves form as a developmental response to oscillatory blood flow through the maturing heart.

  7. Durability of hand-sewn valves in the right ventricular outlet.

    PubMed

    Nunn, Graham R; Bennetts, Jayme; Onikul, Ella

    2008-08-01

    The objective was to compare the medium- and long-term outcomes for pericardial monocusp valves, polytetrafluoroethylene (Gore-Tex, WL Gore and Associates Inc, Flagstaff, Ariz) 0.1-mm monocusp valves, and bileaflet 0.l-mm polytetrafluoroethylene valves and their efficiency in the right ventricular outlet. We reviewed all hand-sewn right ventricular outlet valves created by the author (Graham R. Nunn) in the setting of repaired tetralogy of Fallot or equivalent right ventricular outlet pathology when the native pulmonary valve could not be preserved. The valves were assessed by serial transthoracic echocardiography and more recently by magnetic resonance imaging angiography for late valve function. The bileaflet polytetrafluoroethylene valves were constructed in a standardized fashion from a semicircle of 0.1-mm polytetrafluoroethylene (the radius of which equaled the length of the outflow tract incision) that gave a lengthened free edge to the leaflets, central fixation of the free edge posteriorly just proximal to the branch pulmonary arteries, and generous augmentation of the outflow tract with polytetrafluoroethylene patch-plasty. The bileaflet configuration shortens the closing time against the posterior wall, and the leaflets are forced to maintain their configuration without prolapse into the right ventricular outlet. The valve can be generously oversized in young children to try to avoid the need for replacement. A total of 54 patients met the selection criteria--22 patients received fresh autologous pericardial monocusps, 7 patients received polytetrafluoroethylene (0.1-mm) monocusps, and 25 patients received bileaflet polytetrafluoroethylene (0.1-mm) outlet valves. The pericardial valves have the longest follow-up, and all valves developed free pulmonary incompetence. Polytetrafluoroethylene monocusps had reliable competence early after surgery but progressed to pulmonary incompetence. The bileaflet polytetrafluoroethylene (0.1-mm) valves have remained competent with regurgitant fractions of only 5% to 30% (magnetic resonance imaging angiography), and this has remained stable with time. The maximum follow-up for these valves is 5 years. No stenosis or peripheral emboli have been recognized, and no valves have been replaced to date. Hand-sewn bileaflet polytetrafluoroethylene valves in the right ventricular outlet can reliably provide competence and maintain function in the medium term. Their shape and size allow placement in young children with a reasonable expectation that they will remain competent with growth of the native annulus and not require replacement. Their durability is superior to the pericardial and polytetrafluoroethylene monocusp valves in this series.

  8. Effects on fatigue life of gate valves due to higher torque switch settings during operability testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richins, W.D.; Snow, S.D.; Miller, G.K.

    1995-12-01

    Some motor operated valves now have higher torque switch settings due to regulatory requirements to ensure valve operability with appropriate margins at design basis conditions. Verifying operability with these settings imposes higher stem loads during periodic inservice testing. These higher test loads increase stresses in the various valve internal parts which may in turn increase the fatigue usage factors. This increased fatigue is judged to be a concern primarily in the valve disks, seats, yokes, stems, and stem nuts. Although the motor operators may also have significantly increased loading, they are being evaluated by the manufacturers and are beyond themore » scope of this study. Two gate valves representative of both relatively weak and strong valves commonly used in commercial nuclear applications were selected for fatigue analyses. Detailed dimensional and test data were available for both valves from previous studies at the Idaho National Engineering Laboratory. Finite element models were developed to estimate maximum stresses in the internal parts of the valves and to identity the critical areas within the valves where fatigue may be a concern. Loads were estimated using industry standard equations for calculating torque switch settings prior and subsequent to the testing requirements of USNRC Generic Letter 89--10. Test data were used to determine both; (1) the overshoot load between torque switch trip and final seating of the disk during valve closing and (2) the stem thrust required to open the valves. The ranges of peak stresses thus determined were then used to estimate the increase in the fatigue usage factors due to the higher stem thrust loads. The usages that would be accumulated by 100 base cycles plus one or eight test cycles per year over 40 and 60 years of operation were calculated.« less

  9. Development of the transtibial prosthesis controlled pneumatically and electrically by microcomputer system.

    PubMed

    Shimada, Youichi; Terayama, Yukio

    2006-01-01

    This report represents the development of the prototype transtibial prosthesis to assist a smooth and comfortable walking for an unilateral amputee. This prosthesis is composed of two air cylinders, solenoid valves, portable and small air tank for compressed air storage, a multiple sensor system and a microprocessor. Two air cylinders are located around the rods to act as antagonistic and agonistic muscles. The system causes flexion and extension of the foot plate jointed at the ankle with compressed air, injected -or discharged via a solenoid or electromagnetic valves. The valves or solenoids are controlled with a microprocessor (Microchip Technology Inc., PIC16F876), the microprocessor generates control signals to the interface circuits for valve opening and closing consistent with the foot position during the walking phase. The control patterns generated in the microprocessor are modified with feedback from the touch sensor, ankle joint angle sensor and the two dimensional acceleration sensor. The primary walking pattern for an individual amputee should be developed through the gait analysis with video.

  10. Development of a micro-mechanical valve in a novel glaucoma implant.

    PubMed

    Siewert, Stefan; Schultze, Christine; Schmidt, Wolfram; Hinze, Ulf; Chichkov, Boris; Wree, Andreas; Sternberg, Katrin; Allemann, Reto; Guthoff, Rudolf; Schmitz, Klaus-Peter

    2012-10-01

    This paper describes methods for design, manufacturing and characterization of a micro-mechanical valve for a novel glaucoma implant. The implant is designed to drain aqueous humour from the anterior chamber of the eye into the suprachoroidal space in case of an elevated intraocular pressure (IOP). In contrast to any existing glaucoma drainage device (GDD), the valve mechanism is located in the anterior chamber and there, surrounded by aqueous humour, immune to fibrosis induced failure. For the prevention of hypotony the micro-mechanical valve is designed to open if the physiological pressure difference between the anterior chamber and the suprachoroidal space in the range of 0.8 mmHg to 3.7 mmHg is exceeded. In particular the work includes: (i) manufacturing and morphological characterization of polymer tubing, (ii) mechanical material testing as basis for (iii) the design of micro-mechanical valves using finite element analysis (FEA), (iv) manufacturing of microstent prototypes including micro-mechanical valves by femtosecond laser micromachining and (v) the experimental fluid-mechanical characterization of the manufactured microstent prototypes with regard to valve opening pressure. The considered materials polyurethane (PUR) and silicone (SIL) exhibit low elastic modulus and high extensibility. The unique valve design enables a low opening pressure of micro-mechanical valves. An ideal valve design for PUR and SIL with an experimentally determined opening pressure of 2 mmHg and 3.7 mmHg is identified. The presented valve approach is suitable for the inhibition of hypotony as a major limitation of today's GDD and will potentially improve the minimally invasive treatment of glaucoma.

  11. Tricuspid regurgitation after successful mitral valve surgery

    PubMed Central

    Katsi, Vasiliki; Raftopoulos, Leonidas; Aggeli, Constantina; Vlasseros, Ioannis; Felekos, Ioannis; Tousoulis, Dimitrios; Stefanadis, Christodoulos; Kallikazaros, Ioannis

    2012-01-01

    The tricuspid valve (TV) is inseparably connected with the mitral valve (MV) in terms of function. Any pathophysiological condition concerning the MV is potentially a threat for the normal function of the TV as well. One of the most challenging cases is functional tricuspid regurgitation (TR) after surgical MV correction. In the past, TR was considered to progressively revert with time after left-sided valve restoration. Nevertheless, more recent studies showed that TR could develop and evolve postoperatively over time, as well as being closely associated with a poorer prognosis in terms of morbidity and mortality. Pressure and volume overload are usually the underlying pathophysiological mechanisms; structural alterations, like tricuspid annulus dilatation, increased leaflet tethering and right ventricular remodelling are almost always present when regurgitation develops. The most important risk factors associated with a higher probability of late TR development involve the elderly, female gender, larger left atrial size, atrial fibrillation, right chamber dilatation, higher pulmonary artery systolic pressures, longer times from the onset of MV disease to surgery, history of rheumatic heart disease, ischaemic heart disease and prosthetic valve malfunction. The time of TR manifestation can be up to 10 years or more after an MV surgery. Echocardiography, including the novel 3D Echo techniques, is crucial in the early diagnosis and prognosis of future TV disease development. Appropriate surgical technique and timing still need to be clarified. PMID:22457188

  12. Biomechanical Behavior of Bioprosthetic Heart Valve Heterograft Tissues: Characterization, Simulation, and Performance

    PubMed Central

    Soares, Joao S.; Feaver, Kristen R.; Zhang, Will; Kamensky, David; Aggarwal, Ankush; Sacks, Michael S.

    2017-01-01

    The use of replacement heart valves continues to grow due to the increased prevalence of valvular heart disease resulting from an ageing population. Since bioprosthetic heart valves (BHVs) continue to be the preferred replacement valve, there continues to be a strong need to develop better and more reliable BHVs through and improved the general understanding of BHV failure mechanisms. The major technological hurdle for the lifespan of the BHV implant continues to be the durability of the constituent leaflet biomaterials, which if improved can lead to substantial clinical impact. In order to develop improved solutions for BHV biomaterials, it is critical to have a better understanding of the inherent biomechanical behaviors of the leaflet biomaterials, including chemical treatment technologies, the impact of repetitive mechanical loading, and the inherent failure modes. This review seeks to provide a comprehensive overview of these issues, with a focus on developing insight on the mechanisms of BHV function and failure. Additionally, this review provides a detailed summary of the computational biomechanical simulations that have been used to inform and develop a higher level of understanding of BHV tissues and their failure modes. Collectively, this information should serve as a tool not only to infer reliable and dependable prosthesis function, but also to instigate and facilitate the design of future bioprosthetic valves and clinically impact cardiology. PMID:27507280

  13. Fluid-Structure Model of Lymphatic Valve and Vessel

    NASA Astrophysics Data System (ADS)

    Wolf, Ki; Ballard, Matthew; Nepiyushchikh, Zhanna; Razavi, Mohammad; Dixon, Brandon; Alexeev, Alexander

    The lymphatic system is a part of the circulatory system that performs a range of important functions such as transportation of interstitial fluid, fatty acid, and immune cells. The lymphatic vessels are composed of contractile walls to pump lymph against adverse pressure gradient and lymphatic valves that prevent back flow. Despite the importance of lymphatic system, the contribution of mechanical and geometric changes of lymphatic valves and vessels in pathologies of lymphatic dysfunction, such as lymphedema, is not well understood. We developed a coupled fluid-solid computational model to simultaneously simulate a lymphatic vessel, valve, and flow. A lattice Boltzmann model is used to represent the fluid component, while lattice spring model is used for the solid component of the lymphatic vessel, whose mechanical properties are derived experimentally. Behaviors such as lymph flow pattern and lymphatic valve performance against backflow and adverse pressure gradient under varied parameters of lymphatic valve and vessel geometry and mechanical properties are investigated to provide a better insight into the dynamics of lymphatic vessels, valves, and system and give insight into how they might fail in disease. NSF CMMI-1635133.

  14. Massive Gas Injection Valve Development for NSTX-U

    DOE Data Explorer

    Raman, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Plunkett, G. J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Way, W.-S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-05-01

    NSTX-U research will offer new insight by studying gas assimilation efficiencies for MGI injection from different poloidal locations using identical gas injection systems. In support of this activity, an electromagnetic MGI valve has been built and tested. The valve operates by repelling two conductive disks due to eddy currents induced on them by a rapidly changing magnetic field created by a pancake disk solenoid positioned beneath the circular disk attached to a piston. The current is driven in opposite directions in the two solenoids, which creates a cancelling torque when the valve is operated in an ambient magnetic field, as would be required in a tokamak installation. The valve does not use ferromagnetic materials. Results from the operation of the valve, including tests conducted in 1 T external magnetic fields, are described. The pressure rise in the test chamber is measured directly using a fast time response baratron gauge. At a plenum pressure of just 1.38 MPa (~200 psig), the valve injects 27 Pa.m^3 (~200 Torr.L) of nitrogen with a pressure rise time of 3 ms.

  15. Stem thrust prediction model for W-K-M double wedge parallel expanding gate valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldiwany, B.; Alvarez, P.D.; Wolfe, K.

    1996-12-01

    An analytical model for determining the required valve stem thrust during opening and closing strokes of W-K-M parallel expanding gate valves was developed as part of the EPRI Motor-Operated Valve Performance Prediction Methodology (EPRI MOV PPM) Program. The model was validated against measured stem thrust data obtained from in-situ testing of three W-K-M valves. Model predictions show favorable, bounding agreement with the measured data for valves with Stellite 6 hardfacing on the disks and seat rings for water flow in the preferred flow direction (gate downstream). The maximum required thrust to open and to close the valve (excluding wedging andmore » unwedging forces) occurs at a slightly open position and not at the fully closed position. In the nonpreferred flow direction, the model shows that premature wedging can occur during {Delta}P closure strokes even when the coefficients of friction at different sliding surfaces are within the typical range. This paper summarizes the model description and comparison against test data.« less

  16. Numerical simulation of compressible fluid flow in an ultrasonic suction pump.

    PubMed

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2016-08-01

    Characteristics of an ultrasonic suction pump that uses a vibrating piston surface and a pipe are numerically simulated and compared with experimental results. Fluid analysis based on the finite-difference time-domain (FDTD) routine is performed, where the nonlinear term and the moving fluid-surface boundary condition are considered. As a result, the suction mechanism of the pump is found to be similar to that of a check valve, where the gap is open during the inflow phase, and it is nearly closed during the outflow phase. The effects of Reynolds number, vibration amplitude and gap thickness on the pump performance are analyzed. The calculated result is in good agreement with the previously measured results. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Pretest analysis document for Test S-FS-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, D.G.

    This report documents the pretest calculations completed for Semiscale Test S-FS-7. This test will simulate a transient initiated by a 14.3% break in a steam generator bottom feedwater line downstream of the check valve. The initial conditions represent normal operating conditions for a C-E System 80 nuclear power plant. Predictions of transients resulting from feedwater line breaks in these plants have indicated that significant primary system overpressurization may occur. The results of a RELAP5/MOD2/CY21 code calculation indicate that the test objectives for Test S-FS-7 can be achieved. The primary system overpressurization will occur but pose no threat to personnel ormore » to plant integrity. 3 refs., 15 figs., 5 tabs.« less

  18. Pretest analysis document for Test S-FS-11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, D.G.; Shaw, R.A.

    This report documents the pretest calculations completed for Semiscale Test S-FS-11. This test will simulate a transient initiated by a 50% break in a steam generator bottom feedwater line downstream of the check valve. The initial conditions represents normal operating conditions for a C-E System 80 nuclear plant. Prediction of transients resulting from feedwater line breaks in these plants have indicated that significant primary system overpressurization may occur. The results of a RELAP5/MOD2/CY21 code calculation indicate that the test objectives for Test S-FS-11 can be achieved. The primary system overpressurization will occur but pose no threat to personnel or plantmore » integrity. 3 refs., 15 figs., 5 tabs.« less

  19. Functional Heart Valve Scaffolds Obtained by Complete Decellularization of Porcine Aortic Roots in a Novel Differential Pressure Gradient Perfusion System

    PubMed Central

    Sierad, Leslie Neil; Shaw, Eliza Laine; Bina, Alexander; Brazile, Bryn; Rierson, Nicholas; Patnaik, Sourav S.; Kennamer, Allison; Odum, Rebekah; Cotoi, Ovidiu; Terezia, Preda; Branzaniuc, Klara; Smallwood, Harrison; Deac, Radu; Egyed, Imre; Pavai, Zoltan; Szanto, Annamaria; Harceaga, Lucian; Suciu, Horatiu; Raicea, Victor; Olah, Peter; Simionescu, Agneta; Liao, Jun; Movileanu, Ionela

    2015-01-01

    There is a great need for living valve replacements for patients of all ages. Such constructs could be built by tissue engineering, with perspective of the unique structure and biology of the aortic root. The aortic valve root is composed of several different tissues, and careful structural and functional consideration has to be given to each segment and component. Previous work has shown that immersion techniques are inadequate for whole-root decellularization, with the aortic wall segment being particularly resistant to decellularization. The aim of this study was to develop a differential pressure gradient perfusion system capable of being rigorous enough to decellularize the aortic root wall while gentle enough to preserve the integrity of the cusps. Fresh porcine aortic roots have been subjected to various regimens of perfusion decellularization using detergents and enzymes and results compared to immersion decellularized roots. Success criteria for evaluation of each root segment (cusp, muscle, sinus, wall) for decellularization completeness, tissue integrity, and valve functionality were defined using complementary methods of cell analysis (histology with nuclear and matrix stains and DNA analysis), biomechanics (biaxial and bending tests), and physiologic heart valve bioreactor testing (with advanced image analysis of open–close cycles and geometric orifice area measurement). Fully acellular porcine roots treated with the optimized method exhibited preserved macroscopic structures and microscopic matrix components, which translated into conserved anisotropic mechanical properties, including bending and excellent valve functionality when tested in aortic flow and pressure conditions. This study highlighted the importance of (1) adapting decellularization methods to specific target tissues, (2) combining several methods of cell analysis compared to relying solely on histology, (3) developing relevant valve-specific mechanical tests, and (4) in vitro testing of valve functionality. PMID:26467108

  20. Computational analysis of an aortic valve jet

    NASA Astrophysics Data System (ADS)

    Shadden, Shawn C.; Astorino, Matteo; Gerbeau, Jean-Frédéric

    2009-11-01

    In this work we employ a coupled FSI scheme using an immersed boundary method to simulate flow through a realistic deformable, 3D aortic valve model. This data was used to compute Lagrangian coherent structures, which revealed flow separation from the valve leaflets during systole, and correspondingly, the boundary between the jet of ejected fluid and the regions of separated, recirculating flow. Advantages of computing LCS in multi-dimensional FSI models of the aortic valve are twofold. For one, the quality and effectiveness of existing clinical indices used to measure aortic jet size can be tested by taking advantage of the accurate measure of the jet area derived from LCS. Secondly, as an ultimate goal, a reliable computational framework for the assessment of the aortic valve stenosis could be developed.

Top