USDA-ARS?s Scientific Manuscript database
This column continues the theme of "How Is It Processed?" with a focus on cheese. A fun fact is that it takes 10 pounds of milk to make one pound of cheese. Production of cheese is described in this column, as well as the effects of processing on the final properties of this popular food....
Oh, Sangnam; Park, Mi-Ri; Ryu, Sangdon; Maburutse, Brighton; Kim, Ji-Uk; Kim, Younghoon
2017-09-28
MicroRNAs (miRNAs) are abundant in bovine milk and milk derived from other livestock, and they have functional roles in infants and in the secretion process of mammary glands. However, few studies have evaluated miRNAs in dairy processes, such as during cheese making and ripening. Thus, we investigated the characteristics of milk-derived miRNAs during the manufacturing and ripening of Camembert cheese as well as the microbiota present using the quantitative reverse transcription polymer chain reaction (RT-qPCR) and 16S rRNA pyrosequencing, respectively. Pyrosequencing showed that the cheese microbiota changed dramatically during cheese processing, including during the pasteurization, starter culture, and ripening stages. Our results indicated that the RNA contents per 200 mg/200 μl of the sample increased significantly during cheese-making and ripening. The inner cheese fractions had higher RNA contents than the surfaces after 12 and 22 days of ripening in a timedependent manner (21.9 and 13.2 times higher in the inner and surface fractions than raw milk, respectively). We performed a comparative analysis of the miRNAs in each fraction by RT-qPCR. Large amounts of miRNAs ( miR-93, miR-106a, miR-130, miR-155, miR-181a , and miR- 223 ) correlated with immune responses and mammary glands were present in aged cheese, with the exception of miR-223 , which was not present on the surface. Considerable amounts of miRNAs were also detected in whey, which is usually disposed of during the cheese-making process. Unexpectedly, there were no significant correlations between immune-related miRNAs and the microbial populations during cheese processing. Taken together, these results show that various functional miRNAs are present in cheese during its manufacture and that they are dramatically increased in amount in ripened Camembert cheese, with differences according to depth.
A 100-Year Review: Cheese production and quality.
Johnson, M E
2017-12-01
In the beginning, cheese making in the United States was all art, but embracing science and technology was necessary to make progress in producing a higher quality cheese. Traditional cheese making could not keep up with the demand for cheese, and the development of the factory system was necessary. Cheese quality suffered because of poor-quality milk, but 3 major innovations changed that: refrigeration, commercial starters, and the use of pasteurized milk for cheese making. Although by all accounts cold storage improved cheese quality, it was the improvement of milk quality, pasteurization of milk, and the use of reliable cultures for fermentation that had the biggest effect. Together with use of purified commercial cultures, pasteurization enabled cheese production to be conducted on a fixed time schedule. Fundamental research on the genetics of starter bacteria greatly increased the reliability of fermentation, which in turn made automation feasible. Demand for functionality, machinability, application in baking, and more emphasis on nutritional aspects (low fat and low sodium) of cheese took us back to the fundamental principles of cheese making and resulted in renewed vigor for scientific investigations into the chemical, microbiological, and enzymatic changes that occur during cheese making and ripening. As milk production increased, cheese factories needed to become more efficient. Membrane concentration and separation of milk offered a solution and greatly enhanced plant capacity. Full implementation of membrane processing and use of its full potential have yet to be achieved. Implementation of new technologies, the science of cheese making, and the development of further advances will require highly trained personnel at both the academic and industrial levels. This will be a great challenge to address and overcome. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Preliminary study of ultrasonic structural quality control of Swiss-type cheese.
Eskelinen, J J; Alavuotunki, A P; Haeggström, E; Alatossava, T
2007-09-01
There is demand for a new nondestructive cheese-structure analysis method for Swiss-type cheese. Such a method would provide the cheese-making industry the means to enhance process control and quality assurance. This paper presents a feasibility study on ultrasonic monitoring of the structural quality of Swiss cheese by using a single-transducer 2-MHz longitudinal mode pulse-echo setup. A volumetric ultrasonic image of a cheese sample featuring gas holes (cheese-eyes) and defects (cracks) in the scan area is presented. The image is compared with an optical reference image constructed from dissection images of the same sample. The results show that the ultrasonic method is capable of monitoring the gas-solid structure of the cheese during the ripening process. Moreover, the method can be used to detect and to characterize cheese-eyes and cracks in ripened cheese. Industrial application demands were taken into account when conducting the measurements.
Prevalence of Listeria monocytogenes in Idiazabal cheese.
Arrese, E; Arroyo-Izaga, M
2012-01-01
Raw-milk cheese has been identified in risk assessment as a food of greater concern to public health due to listeriosis. To determine the prevalence and levels of Listeria monocytogenes in semi-hard Idiazabal cheese manufactured by different producers in the Basque Country at consumer level. A total of 51 Idiazabal cheese samples were obtained from 10 separate retail establishments, chosen by stratified random sampling. Samples were tested using the official standard ISO procedure 11290-1 for detection and enumeration methods. All cheese samples tested negative for L. monocytogenes. However, 9.8% tested positive for Listeria spp., different from L. monocytogenes. Positive samples came from two brands, two were natural and three were smoked. The presence of Listeria spss. suggests that the cheese making process and the hygiene whether at milking or during cheese making could be insufficient.
Overview of a Surface-Ripened Cheese Community Functioning by Meta-Omics Analyses
Teissandier, Aurélie; Onésime, Djamila; Loux, Valentin; Monnet, Christophe; Irlinger, Françoise; Landaud, Sophie; Leclercq-Perlat, Marie-Noëlle; Bento, Pascal; Fraud, Sébastien; Gibrat, Jean-François; Aubert, Julie; Fer, Frédéric; Guédon, Eric; Pons, Nicolas; Kennedy, Sean; Beckerich, Jean-Marie; Swennen, Dominique; Bonnarme, Pascal
2015-01-01
Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a long time on surface-ripened cheeses, but only limited knowledge has been acquired about its in situ metabolic activities. We applied metagenomic, metatranscriptomic and biochemical analyses to an experimental surface-ripened cheese composed of nine microbial species during four weeks of ripening. By combining all of the data, we were able to obtain an overview of the cheese maturation process and to better understand the metabolic activities of the different community members and their possible interactions. Furthermore, differential expression analysis was used to select a set of biomarker genes, providing a valuable tool that can be used to monitor the cheese-making process. PMID:25867897
Cuevas-González, Paúl F; Heredia-Castro, Priscilia Y; Méndez-Romero, José I; Hernández-Mendoza, Adrián; Reyes-Díaz, Ricardo; Vallejo-Cordoba, Belinda; González-Córdova, Aarón F
2017-10-01
The objective of this study was to explore and document the production process of artisanal Cocido cheese and to determine its chemical composition and microbiological quality, considering samples from six dairies and four retailers. Cocido cheese is a semi-hard (506-555 g kg -1 of moisture), medium fat (178.3-219.1 g kg -1 ), pasta filata-type cheese made from raw whole cow's milk. The production process is not standardized and therefore the chemical and microbiological components of the sampled cheeses varied. Indicator microorganisms significantly decreased (P < 0.05) during the processing of Cocido cheese. Salmonella spp. were not found during the production process, and both Listeria monocytogenes and staphylococcal enterotoxin were absent in the final cheeses. This study provides more information on one of the most popular artisanal cheeses with high cultural value and economic impact in northwestern Mexico. In view of the foregoing, good manufacturing practices need to be implemented for the manufacture of Cocido cheese. Also, it is of utmost importance to make sure that the heat treatment applied for cooking the curd ensures a phosphatase-negative test, otherwise it would be necessary to pasteurize milk. Nevertheless, since Cocido cheese is a non-ripened, high-moisture product, it is a highly perishable product that could present a health risk if not properly handled. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Manuelian, C L; Currò, S; Penasa, M; Cassandro, M; De Marchi, M
2017-05-01
Cheese provides essential nutrients for human nutrition and health, such as minerals and fatty acids (FA). Its composition varies according to milk origin (e.g., species and breed), rearing conditions (e.g., feeding and management), and cheese-making technology (e.g., coagulation process, addition of salt, ripening period). In recent years, cheese production has increased worldwide. Italy is one of the main producers and exporters of cheese. This study aimed to describe mineral, FA, and cholesterol content of 133 samples from 18 commercial cheeses from 4 dairy species (buffalo, cow, goat, and sheep) and from 3 classes of moisture content (hard, <35% moisture; semi-hard, 35-45%; and soft, >45%). Mineral concentrations of cheese samples were determined by inductively coupled plasma optical emission spectrometry, and FA and cholesterol contents were determined by gas chromatography. Moisture and species had a significant effect on almost all traits: the highest levels of Na, Ca, and Fe were found in cheeses made from sheep milk; the greatest level of Cu was found in cow milk cheese, the lowest amount of K was found in buffalo milk cheese, and the lowest amount of Zn was found in goat cheeses. In all samples, Cr and Pb were not detected (below the level of detection). In general, total fat, protein, and minerals significantly increased when the moisture decreased. Buffalo and goat cheeses had the highest saturated FA content, and sheep cheeses showed the highest content of unsaturated and polyunsaturated FA, conjugated linoleic acid, and n-3 FA. Goat and sheep cheeses achieved higher proportions of minor FA than did cow and buffalo cheeses. Buffalo cheese exhibited the lowest cholesterol level. Our results confirm that cheese mineral content is mainly affected by the cheese-making process, whereas FA profile mainly reflects the FA composition of the source milk. This study allowed the characterization of mineral and FA composition and cholesterol content and revealed large variability among different commercial cheeses. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Residue behavior of organochlorine pesticides during the production process of yogurt and cheese.
Duan, Jing; Cheng, Zheng; Bi, Jiawei; Xu, Yangguang
2018-04-15
The presence of organochlorine pesticides (OCPs) in dairy products can lead to human exposure. This study investigated the behavior of OCP residues in milk during yogurt and cheese production. Gas chromatography with electron-capture detection (GC-ECD) was used to detect α-hexachlorocyclohexane (HCH), hexachlorobenzene (HCB), γ-HCH, g-chlordane, and α-chlordane in fresh milk, yogurt, and cheese. The results showed that fermentation reduced the residual concentration of OCPs in yogurt, with processing factors (PFs) ranging from 0.42 to 0.64. The reductions in residue levels during fermentation were due to the activity of the starter. The cheese making process increased the residual concentration of OCPs in cheese compared to raw milk, with PFs ranging from 2.37 to 4.93. Additionally, milk, yogurt, and cheese samples were purchased from local markets and OCP levels were analyzed. The target OCPs ranged from ND to 16.50 μg/kg in these samples. Copyright © 2017 Elsevier Ltd. All rights reserved.
Short communication: Assessing antihypertensive activity in native and model Queso Fresco cheeses.
Paul, M; Van Hekken, D L
2011-05-01
Hispanic-style cheeses are one of the fastest growing varieties in the United States, making up approximately 2% of the total cheese production in this country. Queso Fresco is one of most popular Hispanic-style cheeses. Protein extracts from several varieties of Mexican Queso Fresco and model Queso Fresco were analyzed for potential antihypertensive activity. Many Quesos Frescos obtained from Mexico are made from raw milk and therefore the native microflora is included in the cheese-making process. Model Queso Fresco samples were made from pasteurized milk and did not utilize starter cultures. Water-soluble protein extracts from 6 Mexican Quesos Frescos and 12 model cheeses were obtained and assayed for their ability to inhibit angiotensin-converting enzyme, implying potential as foods that can help to lower blood pressure. All model cheeses displayed antihypertensive activity, but mainly after 8 wk of aging when they were no longer consumable, whereas the Mexican samples did display some angiotensin-converting enzyme inhibitory action after minimal aging. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
[Microbiological assessment of the Gouda-type cheese-making process in a Venezuelan industry].
Dáivila, Jacqueline; Reyes, Genara; Corzo, Otoniel
2006-03-01
The adoption of the Hazard Analysis and Critical Control Point (HACCP) system is necessary to assure the safety of the product in the cheese-making industry. The compliment of pre-requisite programs as Good Manufacture Practices (GMPs) and Sanitation Standard Operating Procedures (SSOPs) are required before the implementation of the HACCP plan. GMPs are the standards related to equipments, tools, personnel, etc. SSOPs are the procedures related to hygiene and sanitation of the plant and workers. The aim of this study was to assess the compliment of the pre-requisite programs and the microbiological conditions of the Gouda type cheese-making process in a Venezuelan processing plant before designing a HACCP plan. Samples were: (a) raw milk, pasteurized milk, curd and ripened cheese, (b) water, (c) environment of the production areas and ripening premises, (d) equipments before and after sanitation, (e) food handlers. Microbiological analyses were done according to COVENIN standards. This study showed that even though pasteurization process was effective to kill pathogen bacteria of the raw milk and the water was safe, however there are deficient manufacture practices in the hygiene as well as in sanitation of the plant and food handlers. Prerequisite programs (GMP-SSOP) of this industry need to be well established, controlled and evaluated.
Kozlovsky, A G; Zhelifonova, V P; Antipova, T V; Baskunov, B P; Ivanushkina, N E; Ozerskaya, S M
2014-01-01
Data were obtained on the species composition of mycelial fungi isolated from the air of workrooms and production premises in cheese-making and meat-processing plants. The strains studied were shown to be capable of producing various low molecular weight compounds. Many of them are mycotoxins such as α-cyclopiazonic acid (CPA), mycophenolic acid (MPA), citrinin, cladosporin, roquefortine and ergot alkaloids. The profiles of the secondary metabolites were used to elucidate the species' names of the isolated strains.
Development of parmesan cheese production from local cow milk
NASA Astrophysics Data System (ADS)
Aliwarga, Lienda; Christianti, Elisabeth Novi; Lazarus, Chrisella
2017-05-01
Parmesan cheese is one of the dairy products which is used in various foods, such as pasta, bakery product, and pizza. It has a hard texture due to aging process for at least two years. Long aging period inhibited the production of parmesan cheese while consumer demands were increasing gradually. This research was conducted to figure out the effect of starter culture and rennet dose to the production of parmesan cheese. This research consists of (1) pasteurization of 1,500 ml milk at 73°C; and (2) main cheese making process that comprised of fermentation process and the addition of rennet. In latter stage, milk was converted into curd. Variations were made for the dose of bacteria culture and rennet. Both variables correlated to the fermentation time and characteristics of the produced cheese. The analysis of the produced cheese during testing stage included measured protein and cheese yield, whey pH, water activity, and moisture content. Moreover, an organoleptic test was done in a qualitative manner. The results showed that the dose of bacteria culture has a significant effect to the fermentation time, protein yield, and cheese yield. Meanwhile, rennet dose significantly affected cheese yield, pH of whey, and water activity. The highest protein yield (93.1%) was obtained at 0.6 ml of culture and 0.5 ml of rennet while the maximum cheese yield (6.81%) was achieved at 0.4 ml of culture and 0.1 ml of rennet. The water activity of produced cheeses was lower compared to the water activity of common parmesan cheese (ca. 0.6). For the organoleptic test, 0.4 ml of bacterial culture and 0.5 ml of rennet produced the most preferred cheese flavor compared to other variations.
Invited review: Artisanal Mexican cheeses.
González-Córdova, Aarón F; Yescas, Carlos; Ortiz-Estrada, Ángel Martín; De la Rosa-Alcaraz, María de Los Ángeles; Hernández-Mendoza, Adrián; Vallejo-Cordoba, Belinda
2016-05-01
The objective of this review is to present an overview of some of the most commonly consumed artisanal Mexican cheeses, as well as those cheeses that show potential for a protected designation of origin. A description is given for each of these cheeses, including information on their distinguishing characteristics that makes some of them potential candidates for achieving a protected designation of origin status. This distinction could help to expand their frontiers and allow them to become better known and appreciated in other parts of the world. Due to the scarcity of scientific studies concerning artisanal Mexican cheeses, which would ultimately aid in the standardization of manufacturing processes and in the establishment of regulations related to their production, more than 40 varieties of artisanal cheese are in danger of disappearing. To preserve these cheeses, it is necessary to address this challenge by working jointly with government, artisanal cheesemaking organizations, industry, academics, and commercial partners on the implementation of strategies to protect and preserve their artisanal means of production. With sufficient information, official Mexican regulations could be established that would encompass and regulate the manufacture of Mexican artisanal cheeses. Finally, as many Mexican artisanal cheeses are produced from raw milk, more scientific studies are required to show the role of the lactic acid bacteria and their antagonistic effect on pathogenic microorganisms during aging following cheese making. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wenzel, J; Fuentes, L; Cabezas, A; Etchebehere, C
2017-06-01
An important pollutant produced during the cheese making process is cheese whey which is a liquid by-product with high content of organic matter, composed mainly by lactose and proteins. Hydrogen can be produced from cheese whey by dark fermentation but, organic matter is not completely removed producing an effluent rich in volatile fatty acids. Here we demonstrate that this effluent can be further used to produce energy in microbial fuel cells. Moreover, current production was not feasible when using raw cheese whey directly to feed the microbial fuel cell. A maximal power density of 439 mW/m 2 was obtained from the reactor effluent which was 1000 times more than when using raw cheese whey as substrate. 16S rRNA gene amplicon sequencing showed that potential electroactive populations (Geobacter, Pseudomonas and Thauera) were enriched on anodes of MFCs fed with reactor effluent while fermentative populations (Clostridium and Lactobacillus) were predominant on the MFC anode fed directly with raw cheese whey. This result was further demonstrated using culture techniques. A total of 45 strains were isolated belonging to 10 different genera including known electrogenic populations like Geobacter (in MFC with reactor effluent) and known fermentative populations like Lactobacillus (in MFC with cheese whey). Our results show that microbial fuel cells are an attractive technology to gain extra energy from cheese whey as a second stage process during raw cheese whey treatment by dark fermentation process.
Cipolat-Gotet, C; Cecchinato, A; De Marchi, M; Bittante, G
2013-01-01
Cheese yield (CY) is the most important technological trait of milk, because cheese-making uses a very high proportion of the milk produced worldwide. Few studies have been carried out at the level of individual milk-producing animals due to a scarcity of appropriate procedures for model-cheese production, the complexity of cheese-making, and the frequent use of the fat and protein (or casein) contents of milk as a proxy for cheese yield. Here, we report a high-throughput cheese manufacturing process that mimics all phases of cheese-making, uses 1.5-L samples of milk from individual animals, and allows the simultaneous processing of 15 samples per run. Milk samples were heated (35°C for 40 min), inoculated with starter culture (90 min), mixed with rennet (51.2 international milk-clotting units/L of milk), and recorded for gelation time. Curds were cut twice (10 and 15 min after gelation), separated from the whey, drained (for 30 min), pressed (3 times, 20 min each, with the wheel turned each time), salted in brine (for 60 min), weighed, and sampled. Whey was collected, weighed, and sampled. Milk, curd, and whey samples were analyzed for pH, total solids, fat content, and protein content, and energy content was estimated. Three measures of percentage cheese yield (%CY) were calculated: %CY(CURD), %CY(SOLIDS), and %CY(WATER), representing the ratios between the weight of fresh curd, the total solids of the curd, and the water content of the curd, respectively, and the weight of the milk processed. In addition, 3 measures of daily cheese yield (dCY, kg/d) were defined, considering the daily milk yield. Three measures of nutrient recovery (REC) were computed: REC(FAT), REC(PROTEIN), and REC(SOLIDS), which represented the ratio between the weights of the fat, protein, and total solids in the curd, respectively, and the corresponding components in the milk. Energy recovery, REC(ENERGY), represented the energy content of the cheese compared with that in the milk. This procedure was used to process individual milk samples obtained from 1,167 Brown Swiss cows reared in 85 herds of the province of Trento (Italy). The assessed traits exhibited almost normal distributions, with the exception of REC(FAT). The average values (± SD) were as follows: %CY(CURD)=14.97±1.86, %CY(SOLIDS)=7.18±0.92, %CY(WATER)=7.77±1.27, dCY(CURD)=3.63±1.17, dCY(SOLIDS)=1.74±0.57, dCY(WATER)=1.88±0.63, REC(FAT)=89.79±3.55, REC(PROTEIN)=78.08±2.43, REC(SOLIDS)=51.88±3.52, and REC(ENERGY)=67.19±3.29. All traits were highly influenced by herd-test-date and days in milk of the cow, moderately influenced by parity, and weakly influenced by the utilized vat. Both %CY(CURD) and dCY(CURD) depended not only on the fat and protein (casein) contents of the milk, but also on their proportions retained in the curd; the water trapped in curd presented an higher variability than that of %CY(SOLIDS). All REC traits were variable and affected by days in milk and parity of the cows. The described model cheese-making procedure and the results obtained provided new insight into the phenotypic variation of cheese yield and recovery traits at the individual level. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Insights into Penicillium roqueforti Morphological and Genetic Diversity
Gillot, Guillaume; Jany, Jean-Luc; Coton, Monika; Le Floch, Gaétan; Debaets, Stella; Ropars, Jeanne; López-Villavicencio, Manuela; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana; Coton, Emmanuel
2015-01-01
Fungi exhibit substantial morphological and genetic diversity, often associated with cryptic species differing in ecological niches. Penicillium roqueforti is used as a starter culture for blue-veined cheeses, being responsible for their flavor and color, but is also a common spoilage organism in various foods. Different types of blue-veined cheeses are manufactured and consumed worldwide, displaying specific organoleptic properties. These features may be due to the different manufacturing methods and/or to the specific P. roqueforti strains used. Substantial morphological diversity exists within P. roqueforti and, although not taxonomically valid, several technological names have been used for strains on different cheeses (e.g., P. gorgonzolae, P. stilton). A worldwide P. roqueforti collection from 120 individual blue-veined cheeses and 21 other substrates was analyzed here to determine (i) whether P. roqueforti is a complex of cryptic species, by applying the Genealogical Concordance Phylogenetic Species Recognition criterion (GC-PSR), (ii) whether the population structure assessed using microsatellite markers correspond to blue cheese types, and (iii) whether the genetic clusters display different morphologies. GC-PSR multi-locus sequence analyses showed no evidence of cryptic species. The population structure analysis using microsatellites revealed the existence of highly differentiated populations, corresponding to blue cheese types and with contrasted morphologies. This suggests that the population structure has been shaped by different cheese-making processes or that different populations were recruited for different cheese types. Cheese-making fungi thus constitute good models for studying fungal diversification under recent selection. PMID:26091176
Major advances in concentrated and dry milk products, cheese, and milk fat-based spreads.
Henning, D R; Baer, R J; Hassan, A N; Dave, R
2006-04-01
Advances in dairy foods and dairy foods processing since 1981 have influenced consumers and processors of dairy products. Consumer benefits include dairy products with enhanced nutrition and product functionality for specific applications. Processors convert raw milk to finished product with improved efficiencies and have developed processing technologies to improve traditional products and to introduce new products for expanding the dairy foods market. Membrane processing evolved from a laboratory technique to a major industrial process for milk and whey processing. Ultra-filtration and reverse osmosis have been used extensively in fractionation of milk and whey components. Advances in cheese manufacturing methods have included mechanization of the making process. Membrane processing has allowed uniform composition of the cheese milk and starter cultures have become more predictable. Cheese vats have become larger and enclosed as well as computer controlled. Researchers have learned to control many of the functional properties of cheese by understanding the role of fat and calcium distribution, as bound or unbound, in the cheese matrix. Processed cheese (cheese, foods, spreads, and products) maintain their importance in the industry as many product types can be produced to meet market needs and provide stable products for an extended shelf life. Cheese delivers concentrated nutrients of milk and bio-active peptides to consumers. The technologies for the production of concentrated and dried milk and whey products have not changed greatly in the last 25 yr. The size and efficiencies of the equipment have increased. Use of reverse osmosis in place of vacuum condensing has been proposed. Modifying the fatty acid composition of milkfat to alter the nutritional and functional properties of dairy spread has been a focus of research in the last 2 decades. Conjugated linoleic acid, which can be increased in milkfat by alteration of the cow's diet, has been reported to have anticancer, anti-atherogenic, antidiabetic, and antiobesity effects for human health. Separating milk fat into fractions has been accomplished to provide specific fractions to improve butter spreadability, modulate chocolate meltability, and provide texture for low-fat cheeses.
Start-up and operating costs for artisan cheese companies.
Bouma, Andrea; Durham, Catherine A; Meunier-Goddik, Lisbeth
2014-01-01
Lack of valid economic data for artisan cheese making is a serious impediment to developing a realistic business plan and obtaining financing. The objective of this study was to determine approximate start-up and operating costs for an artisan cheese company. In addition, values are provided for the required size of processing and aging facilities associated with specific production volumes. Following in-depth interviews with existing artisan cheese makers, an economic model was developed to predict costs based on input variables such as production volume, production frequency, cheese types, milk types and cost, labor expenses, and financing. Estimated values for start-up cost for processing and aging facility ranged from $267,248 to $623,874 for annual production volumes of 3,402 kg (7,500 lb) and 27,216 kg (60,000 lb), respectively. First-year production costs ranged from $65,245 to $620,094 for the above-mentioned production volumes. It is likely that high start-up and operating costs remain a significant entry barrier for artisan cheese entrepreneurs. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Phage inactivation of Staphylococcus aureus in fresh and hard-type cheeses.
Bueno, Edita; García, Pilar; Martínez, Beatriz; Rodríguez, Ana
2012-08-01
Bacteriophages are regarded as natural antibacterial agents in food since they are able to specifically infect and lyse food-borne pathogenic bacteria without disturbing the indigenous microbiota. Two Staphylococcus aureus obligately lytic bacteriophages (vB_SauS-phi-IPLA35 and vB_SauS-phi-SauS-IPLA88), previously isolated from the dairy environment, were evaluated for their potential as biocontrol agents against this pathogenic microorganism in both fresh and hard-type cheeses. Pasteurized milk was contaminated with S. aureus Sa9 (about 10(6) CFU/mL) and a cocktail of the two lytic phages (about 10(6) PFU/mL) was also added. For control purposes, cheeses were manufactured without addition of phages. In both types of cheeses, the presence of phages resulted in a notorious decrease of S. aureus viable counts during curdling. In test fresh cheeses, a reduction of 3.83 log CFU/g of S. aureus occurred in 3h compared with control cheese, and viable counts were under the detection limits after 6h. The staphylococcal strain was undetected in both test and control cheeses at the end of the curdling process (24 h) and, of note, no re-growth occurred during cold storage. In hard cheeses, the presence of phages resulted in a continuous reduction of staphylococcal counts. In curd, viable counts of S. aureus were reduced by 4.64 log CFU/g compared with the control cheeses. At the end of ripening, 1.24 log CFU/g of the staphylococcal strain was still detected in test cheeses whereas 6.73log CFU/g was present in control cheeses. Starter strains were not affected by the presence of phages in the cheese making processes and cheeses maintained their expected physico-chemical properties. Copyright © 2012 Elsevier B.V. All rights reserved.
Ferragina, A; Cipolat-Gotet, C; Cecchinato, A; Bittante, G
2013-01-01
Cheese yield is an important technological trait in the dairy industry in many countries. The aim of this study was to evaluate the effectiveness of Fourier-transform infrared (FTIR) spectral analysis of fresh unprocessed milk samples for predicting cheese yield and nutrient recovery traits. A total of 1,264 model cheeses were obtained from 1,500-mL milk samples collected from individual Brown Swiss cows. Individual measurements of 7 new cheese yield-related traits were obtained from the laboratory cheese-making procedure, including the fresh cheese yield, total solid cheese yield, and the water retained in curd, all as a percentage of the processed milk, and nutrient recovery (fat, protein, total solids, and energy) in the curd as a percentage of the same nutrient contained in the milk. All individual milk samples were analyzed using a MilkoScan FT6000 over the spectral range from 5,000 to 900 wavenumber × cm(-1). Two spectral acquisitions were carried out for each sample and the results were averaged before data analysis. Different chemometric models were fitted and compared with the aim of improving the accuracy of the calibration equations for predicting these traits. The most accurate predictions were obtained for total solid cheese yield and fresh cheese yield, which exhibited coefficients of determination between the predicted and measured values in cross-validation (1-VR) of 0.95 and 0.83, respectively. A less favorable result was obtained for water retained in curd (1-VR=0.65). Promising results were obtained for recovered protein (1-VR=0.81), total solids (1-VR=0.86), and energy (1-VR=0.76), whereas recovered fat exhibited a low accuracy (1-VR=0.41). As FTIR spectroscopy is a rapid, cheap, high-throughput technique that is already used to collect standard milk recording data, these FTIR calibrations for cheese yield and nutrient recovery highlight additional potential applications of the technique in the dairy industry, especially for monitoring cheese-making processes and milk payment systems. In addition, the prediction models can be used to provide breeding organizations with information on new phenotypes for cheese yield and milk nutrient recovery, potentially allowing these traits to be enhanced through selection. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Johler, S; Zurfluh, K; Stephan, R
2016-05-01
Staphylococcal food poisoning is one of the most prevalent causes of foodborne intoxication worldwide. It is caused by ingestion of enterotoxins formed by Staphylococcus aureus during growth in the food matrix. Following a recall of barbecue cheese due to the detection of staphylococcal enterotoxins in Switzerland in July 2015, we analyzed the production process of the respective dairy. Although most cheese-making processes involve acidification to inhibit the growth of pathogenic bacteria, barbecue cheese has to maintain a pH >6.0 to prevent undesired melting of the cheese. In addition, the dairy decided to retain the traditional manual production process of the barbecue cheese. In this study, therefore, we aimed to (1) trace Staph. aureus along the barbecue cheese production process, and (2) develop a sustainable strategy to inhibit growth of Staph. aureus and decrease the risk of staphylococcal food poisoning without changing the traditional production process. To this end, we traced Staph. aureus in a step-wise blinded process analysis on 4 different production days using spa (Staphylococcus protein A gene) typing, DNA microarray profiling, and pulsed-field gel electrophoresis analysis. We subsequently selected a new starter culture and used a model cheese production including a challenge test assay to assess its antagonistic effect on Staph. aureus growth, as well as its sensory and technological implications. We detected Staph. aureus in 30% (37/124) of the collected samples taken from the barbecue cheese production at the dairy. This included detection of Staph. aureus in the final product on all 4 production days, either after enrichment or using quantitative detection. We traced 2 enterotoxigenic Staph. aureus strains (t073/CC45 and t282/CC45) colonizing the nasal cavity and the forearms of the cheesemakers to the final product. In the challenge test assay, we were able to show that the new starter culture inhibited growth of Staph. aureus while meeting the sensory and technological requirements of barbecue cheese production. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Evaluation of Hygiene and Safety Criteria in the Production of a Traditional Piedmont Cheese.
Astegiano, Sara; Bellio, Alberto; Adriano, Daniela; Bianchi, Daniela Manila; Gallina, Silvia; Gorlier, Alessandra; Gramaglia, Monica; Lombardi, Giampiero; Macori, Guerrino; Zuccon, Fabio; Decastelli, Lucia
2014-08-28
Traditional products and related processes must be safe to protect consumers' health. The aim of this study was to evaluate microbiological criteria of a traditional Piedmont cheese, made by two different cheese producers (A and B). Three batches of each cheese were considered. The following seven samples of each batch were collected: raw milk, milk at 38°C, curd, cheese at 7, 30, 60, 90 days of ripening. During cheese making process, training activities dealing with food safety were conducted. Analyses regarding food safety and process hygiene criteria were set up according to the EC Regulation 2073/2005. Other microbiological and chemical-physical analyses [lactic streptococci, lactobacilli, pH and water activity (A w )] were performed as well. Shiga-toxin Escherichia coli , aflatoxin M1 and antimicrobial substances were considered only for raw milk. All samples resulted negative for food safety criteria; Enterobacteriaceae , E.coli and coagulase-positive staphylococci (CPS) were high in the first phase of cheese production, however they decreased at the end of ripening. A high level of CPS in milk was found in producer A, likewise in some cheese samples a count of >5 Log CFU/g was reached; staphylococcal enterotoxins resulted negative. The pH and A w values decreased during the cheese ripening period. The competition between lactic flora and potential pathogen microorganisms and decreasing of pH and A w are considered positive factors in order to ensure safety of dairy products. Moreover, training activities play a crucial role to manage critical points and perform corrective action. Responsible application of good manufacturing practices are considered key factors to obtain a high hygienic level in dairy products.
7 CFR 58.418 - Automatic cheese making equipment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Automatic cheese making equipment. 58.418 Section 58.418 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING... Service 1 Equipment and Utensils § 58.418 Automatic cheese making equipment. (a) Automatic Curd Maker. The...
7 CFR 58.418 - Automatic cheese making equipment.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Automatic cheese making equipment. 58.418 Section 58.418 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING... Service 1 Equipment and Utensils § 58.418 Automatic cheese making equipment. (a) Automatic Curd Maker. The...
Ochi, H; Sakai, Y; Koishihara, H; Abe, F; Bamba, T; Fukusaki, E
2013-01-01
We proposed an application methodology that combines metabolic profiling with multiple appropriate multivariate analyses and verified it on the industrial scale of the ripening process of Cheddar cheese to make practical use of hydrophilic low-molecular-weight compound profiling using gas chromatography-mass spectrometry to design optimal conditions and quality monitoring of the cheese ripening process. Principal components analysis provided an overview of the effect of sodium chloride content and kind of lactic acid bacteria starter on the metabolic profile in the ripening process of Cheddar cheese and orthogonal partial least squares-discriminant analysis unveiled the difference in characteristic metabolites. When the sodium chloride contents were different (1.6 and 0.2%) but the same lactic acid bacteria starter was used, the 2 cheeses were classified by orthogonal partial least squares-discriminant analysis from their metabolic profiles, but were not given perfect discrimination. Not much difference existed in the metabolic profile between the 2 cheeses. Compounds including lactose, galactose, lactic acid, 4-aminobutyric acid, and phosphate were identified as contents that differed between the 2 cheeses. On the other hand, in the case of the same salt content of 1.6%, but different kinds of lactic acid bacteria starter, an excellent distinctive discrimination model was obtained, which showed that the difference of lactic acid bacteria starter caused an obvious difference in metabolic profiles. Compounds including lactic acid, lactose, urea, 4-aminobutyric acid, galactose, phosphate, proline, isoleucine, glycine, alanine, lysine, leucine, valine, and pyroglutamic acid were identified as contents that differed between the 2 cheeses. Then, a good sensory prediction model for "rich flavor," which was defined as "thick and rich, including umami taste and soy sauce-like flavor," was constructed based on the metabolic profile during ripening using partial least squares regression analysis. The amino acids proline, leucine, valine, isoleucine, pyroglutamic acid, alanine, glutamic acid, glycine, lysine, tyrosine, serine, phenylalanine, methionine, aspartic acid, and ornithine were extracted as ripening process markers. The present study is not limited to Cheddar cheese and can be applied to various maturation-type natural cheeses. This study provides the technical platform for designing optimal conditions and quality monitoring of the cheese ripening process. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Miszczycha, Stéphane D.; Perrin, Frédérique; Ganet, Sarah; Jamet, Emmanuel; Tenenhaus-Aziza, Fanny; Montel, Marie-Christine
2013-01-01
Shiga toxin-producing Escherichia coli (STEC) is an important cause of food-borne illness. The public health implication of the presence of STEC in dairy products remains unclear. Knowledge of STEC behavior in cheeses would help to evaluate the human health risk. The aim of our study was to observe the growth and survival of experimentally inoculated STEC strains in raw-milk cheeses manufactured and ripened according to five technological schemes: blue-type cheese, uncooked pressed cheese with long ripening and with short ripening steps, cooked cheese, and lactic cheese. Cheeses were contaminated with different STEC serotypes (O157:H7, O26:H11, O103:H2, and O145:H28) at the milk preparation stage. STEC growth and survival were monitored on selective media during the entire manufacturing process. STEC grew (2 to 3 log10 CFU · g−1) in blue-type cheese and the two uncooked pressed cheeses during the first 24 h of cheese making. Then, STEC levels progressively decreased in cheeses that were ripened for more than 6 months. In cooked cheese and in lactic cheese with a long acidic coagulation step (pH < 4.5), STEC did not grow. Their levels decreased after the cooking step in the cooked cheese and after the coagulation step in the lactic cheese, but STEC was still detectable at the end of ripening and storage. A serotype effect was found: in all cheeses studied, serotype O157:H7 grew less strongly and was less persistent than the others serotypes. This study improves knowledge of the behavior of different STEC serotypes in various raw-milk cheeses. PMID:23087038
21 CFR 133.169 - Pasteurized process cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized process cheese. 133.169 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.169 Pasteurized process cheese. (a)(1) Pasteurized process cheese is...
Kocaoglu-Vurma, N A; Harper, W J; Drake, M A; Courtney, P D
2008-08-01
The effect of nonstarter Lactobacillus adjunct cultures on the microbial, chemical, and sensory characteristics of Swiss cheese manufactured using the "kosher make procedure" was investigated. The kosher make procedure, which uses a lower cooking temperature than traditional Swiss cheese making, is used by many American cheese manufacturers to allow for kosher-certified whey. Cheeses were manufactured using a commercial starter culture combination and 1 of 3 non-starter Lactobacillus strains previously isolated from Swiss cheeses, Lactobacillus casei A26, L. casei B21, and Lactobacillus rhamnosus H2, as an adjunct. Control cheeses lacked the adjunct culture. Cheeses were analyzed during ripening for microbial and chemical composition. Adjunct strain L. casei A26, which utilized citrate most readily in laboratory medium, dominated the Lactobacillus population within 30 d, faster than the other adjunct cultures. There were no significant differences in Propionibacterium counts, Streptococcus thermophilus counts, protein, fat, moisture, salt, and pH among the cheeses. Free amino acid concentration ranged from 5 to 7 mmol/100 g of cheese at 90 d of ripening and was adjunct strain dependent. Lactic, acetic, and propionic acid concentrations were not significantly different among the cheeses after a 90-d ripening period; however differences in propionic acid concentrations were apparent at 60 d, with the cheeses made with L. casei adjuncts containing less propionic acid. Citric acid was depleted by the end of warm room ripening in cheeses manufactured with adjunct L. casei strains, but not with adjunct L. rhamnosus. Cheeses made with L. casei A26 were most similar to the control cheeses in diacetyl and butyric/isobutyric acid abundance as evaluated by electronic nose during the first 3 mo of ripening. The 4 cheese types differed in their descriptive sensory profiles at 8 mo of age, indicating an adjunct strain-dependent effect on particular flavor attributes. Adjunct Lactobacillus spp. affected the flavor profile and concentration of some flavor compounds in Swiss cheeses produced with the kosher make procedure. Use of adjunct Lactobacillus cultures provides Swiss cheese makers using a low cooking temperature with a means to control the dominant Lactobacillus strain during ripening, reduce citrate concentration, and modify cheese flavor.
Effect of Holstein Friesian and Brown Swiss breeds on quality of milk and cheese.
De Marchi, M; Bittante, G; Dal Zotto, R; Dalvit, C; Cassandro, M
2008-10-01
In Italy, more than 75% of milk is used for cheese making. For this reason, milk composition and coagulation traits and cheese quality represent the most important tools for the economic development of the dairy sector. In particular, cheese quality varies in relation to cheese-making technology and breed of cow. The aim of this study was to investigate the effect of 3 types of milk, originating from Holstein-Friesian (HF), Brown Swiss (BS), and mixed of both breeds, on vat milk characteristics, cheese yield, and quality in 3 different typical Italian cheese-making conditions (Casolet, Vezzena, and Grana Trentino). One hundred forty-four cows (66 HF and 78 BS) were involved, and a total of 24 vats of milk were evaluated. At maturity, 30, 21, and 16 wheels of Casolet, Vezzena, and Grana Trentino cheese were analyzed. Brown Swiss cows yielded 9% less milk per day than HF cows, but milk showed greater contents of protein, casein, titratable acidity, and better rennet coagulation time and curd firmness than HF milk. The chemical composition and cholesterol content of the 3 types of cheese were similar between breeds, whereas the cheese made with BS milk showed greater contents of monounsaturated and polyunsaturated fatty acids. Cheese made with BS milk had greater b* (yellow component) than HF. Cheese yield, recorded at different ripening times, demonstrated that BS milk yielded more cheese than HF. Mixed milk showed values, on average, intermediate to HF and BS milk characteristics, and this trend was confirmed in cheese yield at different ripening times.
The Microbiology of Traditional Hard and Semihard Cooked Mountain Cheeses.
Beuvier, Eric; Duboz, Gabriel
2013-10-01
Traditional cheeses originate from complex systems that confer on them specific sensory characteristics. These characteristics are linked to various factors of biodiversity such as animal feed, the use of raw milk and its indigenous microflora, the cheese technology, and the ripening conditions, all in conjunction with the knowledge of the cheesemaker and affineur. In Europe, particularly in France, the preservation of traditional cheesemaking processes, some of which have protected designation of origin, is vital for the farming and food industry in certain regions. Among these cheeses, some are made in the Alps or Jura Mountains, including Comté, Beaufort, Abondance, and Emmental, which are made from raw milk. The principle of hard or semihard cooked cheese, produced in the Alps and Jura Mountains, was to make a product during the summer-a period during which the animals feed more and milk production is high-with a shelf life of several months that could be consumed in winter. Today, these traditional cheeses are produced according to a specific approach combining science and tradition in order to better understand and preserve the elements that contribute to the distinctiveness of these cheeses. To address this complex problem, a global approach to the role of the raw milk microflora in the final quality of cheeses was initially chosen. The modifications resulting from the elimination of the raw milk microflora, either by pasteurization or by microfiltration, to the biochemistry of the ripening process and ultimately the sensory quality of the cheeses were evaluated. This approach was achieved mainly with experimental hard cooked cheeses. Other types of traditional cheese made with raw and pasteurized milk are also considered when necessary. Besides the native raw milk microflora, traditional lactic starters (natural or wild starters) also participate in the development of the characteristics of traditional hard and semihard cooked mountain cheeses. After an initial description, their roles are described, mainly for Comté.
21 CFR 133.171 - Pasteurized process pimento cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized process pimento cheese. 133.171... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.171 Pasteurized process pimento cheese. Pasteurized process...
21 CFR 133.171 - Pasteurized process pimento cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized process pimento cheese. 133.171... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.171 Pasteurized process pimento cheese. Pasteurized process...
ERIC Educational Resources Information Center
Therrien, Mona; Calder, Beth L.; Castonguay, Zakkary J.
2018-01-01
Students in the Didactic Program in Dietetics (DPD) at the University of Maine were exposed to the cheese-making process, within a lab setting of two hours, utilizing an accelerated recipe for a Queso Fresco-style cheese. The purpose of this project was to provide students with a novel, hands-on learning experience, which covered concepts of…
Characterization of microflora in Latin-style cheeses by next-generation sequencing technology.
Lusk, Tina S; Ottesen, Andrea R; White, James R; Allard, Marc W; Brown, Eric W; Kase, Julie A
2012-11-07
Cheese contamination can occur at numerous stages in the manufacturing process including the use of improperly pasteurized or raw milk. Of concern is the potential contamination by Listeria monocytogenes and other pathogenic bacteria that find the high moisture levels and moderate pH of popular Latin-style cheeses like queso fresco a hospitable environment. In the investigation of a foodborne outbreak, samples typically undergo enrichment in broth for 24 hours followed by selective agar plating to isolate bacterial colonies for confirmatory testing. The broth enrichment step may also enable background microflora to proliferate, which can confound subsequent analysis if not inhibited by effective broth or agar additives. We used 16S rRNA gene sequencing to provide a preliminary survey of bacterial species associated with three brands of Latin-style cheeses after 24-hour broth enrichment. Brand A showed a greater diversity than the other two cheese brands (Brands B and C) at nearly every taxonomic level except phylum. Brand B showed the least diversity and was dominated by a single bacterial taxon, Exiguobacterium, not previously reported in cheese. This genus was also found in Brand C, although Lactococcus was prominent, an expected finding since this bacteria belongs to the group of lactic acid bacteria (LAB) commonly found in fermented foods. The contrasting diversity observed in Latin-style cheese was surprising, demonstrating that despite similarity of cheese type, raw materials and cheese making conditions appear to play a critical role in the microflora composition of the final product. The high bacterial diversity associated with Brand A suggests it may have been prepared with raw materials of high bacterial diversity or influenced by the ecology of the processing environment. Additionally, the presence of Exiguobacterium in high proportions (96%) in Brand B and, to a lesser extent, Brand C (46%), may have been influenced by the enrichment process. This study is the first to define Latin-style cheese microflora using Next-Generation Sequencing. These valuable preliminary data will direct selective tailoring of agar formulations to improve culture-based detection of pathogens in Latin-style cheese.
Characterization of microflora in Latin-style cheeses by next-generation sequencing technology
2012-01-01
Background Cheese contamination can occur at numerous stages in the manufacturing process including the use of improperly pasteurized or raw milk. Of concern is the potential contamination by Listeria monocytogenes and other pathogenic bacteria that find the high moisture levels and moderate pH of popular Latin-style cheeses like queso fresco a hospitable environment. In the investigation of a foodborne outbreak, samples typically undergo enrichment in broth for 24 hours followed by selective agar plating to isolate bacterial colonies for confirmatory testing. The broth enrichment step may also enable background microflora to proliferate, which can confound subsequent analysis if not inhibited by effective broth or agar additives. We used 16S rRNA gene sequencing to provide a preliminary survey of bacterial species associated with three brands of Latin-style cheeses after 24-hour broth enrichment. Results Brand A showed a greater diversity than the other two cheese brands (Brands B and C) at nearly every taxonomic level except phylum. Brand B showed the least diversity and was dominated by a single bacterial taxon, Exiguobacterium, not previously reported in cheese. This genus was also found in Brand C, although Lactococcus was prominent, an expected finding since this bacteria belongs to the group of lactic acid bacteria (LAB) commonly found in fermented foods. Conclusions The contrasting diversity observed in Latin-style cheese was surprising, demonstrating that despite similarity of cheese type, raw materials and cheese making conditions appear to play a critical role in the microflora composition of the final product. The high bacterial diversity associated with Brand A suggests it may have been prepared with raw materials of high bacterial diversity or influenced by the ecology of the processing environment. Additionally, the presence of Exiguobacterium in high proportions (96%) in Brand B and, to a lesser extent, Brand C (46%), may have been influenced by the enrichment process. This study is the first to define Latin-style cheese microflora using Next-Generation Sequencing. These valuable preliminary data will direct selective tailoring of agar formulations to improve culture-based detection of pathogens in Latin-style cheese. PMID:23134566
Bergamaschi, Matteo; Bittante, Giovanni
2017-08-01
In this research two-dimensional GC was used to analyse, for the first time, the detailed fatty acid (FA) profiles of 11 dairy matrices: raw milk (evening whole, evening partially skimmed, morning whole, and vat milk), cream, fresh cheese, whey, ricotta, scotta, 6- and 12-month-ripened cheeses, obtained across artisanal cheese- and ricotta-making trials carried out during the summer period while cows were on highland pastures. Samples were collected during 7 cheese- and ricotta-making procedures carried out at 2-week intervals from bulk milk to study possible differences in the transfer and modification of FA. Compared with morning milk, evening milk had fewer de novo synthetised FA. The detailed FA profile of partially skimmed milk differed little from that of evening whole milk before skimming, but the cream obtained differed from partially skimmed milk and from fresh cheese in about half the FA, due mainly to higher contents of all de novo FA, and lower contents of n-3 and n-6 FA. Fresh cheese and whey had similar FA profiles. The ricotta manufacturing process affected the partition of FA between ricotta and scotta, the FA profile of the latter differing in terms of groups and individual FA from the former, whereas ricotta and fresh cheese had similar composition of FA. In general, there was an increase in medium-chain saturated FA, and a decrease in many polyunsaturated FA during the first 6 months of ripening, but not during the second 6 months. Two-dimensional GC yielded a very detailed and informative FA profile on all the 11 dairy products and by-products analysed.
21 CFR 133.179 - Pasteurized process cheese spread.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized process cheese spread. 133.179 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.179 Pasteurized process cheese spread. (a)(1) Pasteurized...
21 CFR 133.173 - Pasteurized process cheese food.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized process cheese food. 133.173 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.173 Pasteurized process cheese food. (a)(1) A pasteurized...
21 CFR 133.170 - Pasteurized process cheese with fruits, vegetables, or meats.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized process cheese with fruits, vegetables... AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.170 Pasteurized process cheese with...
21 CFR 133.170 - Pasteurized process cheese with fruits, vegetables, or meats.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized process cheese with fruits, vegetables... AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.170 Pasteurized process cheese with...
Zendri, Francesco; Ramanzin, Maurizio; Cipolat-Gotet, Claudio; Sturaro, Enrico
2017-02-01
This paper aimed at evaluating the effect of summer transhumance to mountain pastures of dairy cows of different breeds on cheese-making ability of milk. Data were from 649 dairy cows of specialized (Holstein Friesian and Brown Swiss) dual purpose (Simmental) and local (mostly Rendena and Alpine Grey) breeds. The Fourier-Transform Infra-Red Spectra (FTIRS) of their milk samples were collected before and after transhumance in 109 permanent dairy farms, and during transhumance in 14 summer farms (with multi-breeds herds) of the Trento Province, north-eastern Italy. A variety of 18 traits describing milk coagulation, curd firming, cheese yield and nutrients recovery in curd/loss in whey were predicted on the basis of FTIRS collected at the individual cow level. Moving the cows to summer farms improved curd firming traits but reduced cheese yields because of an increase of water and fat lost in the whey. During summer grazing, most of cheese-making traits improved, often non-linearly. The milk from summer farms supplementing cows with more concentrates showed better curd firming and cheese yield, because of lower fat lost in the whey. The breed of cows affected almost all the traits with a worst cheese-making ability for milk samples of Holsteins through all the trial, and interacted with concentrate supplementation because increasing compound feed tended to improve cheese-making traits for all breed, with the exception of local breeds for coagulation time and of Brown Swiss for curd firming time. In general, summer transhumance caused a favourable effect on cheese-making aptitude of milk, even though with some difference according to parity, initial days in milk, breed and concentrate supplementation of cows.
21 CFR 133.180 - Pasteurized process cheese spread with fruits, vegetables, or meats.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized process cheese spread with fruits... HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.180 Pasteurized process cheese spread...
21 CFR 133.174 - Pasteurized process cheese food with fruits, vegetables, or meats.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized process cheese food with fruits... HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.174 Pasteurized process cheese food...
21 CFR 133.174 - Pasteurized process cheese food with fruits, vegetables, or meats.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized process cheese food with fruits... HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.174 Pasteurized process cheese food...
21 CFR 133.180 - Pasteurized process cheese spread with fruits, vegetables, or meats.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized process cheese spread with fruits... HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.180 Pasteurized process cheese spread...
Sánchez-Macías, D; Laubscher, A; Castro, N; Argüello, A; Jiménez-Flores, R
2013-03-01
The consumer trend for healthier food choices and preferences for low-fat products has increased the interest in low-fat cheese and nutraceutical dairy products. However, consumer preference is still for delicious food. Low- and reduced-fat cheeses are not completely accepted because of their unappealing properties compared with full-fat cheeses. The method reported here provides another option to the conventional cheese-making process to obtain lower fat cheese. Using CO(2) as a supercritical fluid offers an alternative to reduce fat in cheese after ripening, while maintaining the initial characteristics and flavor. The aim of this experiment was to evaluate the effect of pressure (10, 20, 30, and 40 × 10(6) Pa) of supercritical CO(2) on the amount of fat extracted, microbial population, polar lipid profile, and microstructure of 2 varieties of goat cheese: Majorero, a protected denomination of origin cheese from Spain, and goat Gouda-type cheese. The amount of fat was reduced 50 to 57% and 48 to 55% for Majorero and goat Gouda-type cheeses, respectively. Higher contents (on a fat basis) of sphingomyelin and phosphatidylcholine were found in Majorero cheese compared with control and goat Gouda-type cheeses. The microbial population was reduced after supercritical fluid extraction in both cheeses, and the lethality was higher as pressure increased in Majorero cheese, most noticeably on lactococcus and lactobacillus bacteria. The Gouda-type cheese did not contain any lactobacilli. Micrographs obtained from confocal laser scanning microscopy showed a more open matrix and whey pockets in the Majorero control cheese. This could explain the ease of extracting fat and reducing the microbial counts in this cheese after treatment with supercritical CO(2). Supercritical fluid extraction with CO(2) has great potential in the dairy industry and in commercial applications. The Majorero cheese obtained after the supercritical fluid extraction treatment was an excellent candidate as a low-fat goat cheese, lower in triglycerides and cholesterol but still with all the health benefits inherent in goat milk. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Govindasamy-Lucey, S; Jaeggi, J J; Johnson, M E; Wang, T; Lucey, J A
2007-10-01
Pizza cheese was manufactured with milk (12.1% total solids, 3.1% casein, 3.1% fat) standardized with microfiltered (MF) and diafiltered retentates. Polymeric, spiral-wound MF membranes were used to process cold (<7 degrees C) skim milk, and diafiltration of MF retentates resulted in at least 36% removal of serum protein on a true protein basis. Cheese milks were obtained by blending the MF retentate (16.4% total solids, 11.0% casein, 0.4% fat) with whole milk (12.1% total solids, 2.4% casein, 3.4% fat). Control cheese was made with part-skim milk (10.9% total solids, 2.4% casein, 2.4% fat). Initial trials with MF standardized milk resulted in cheese with approximately 2 to 3% lower moisture (45%) than control cheese ( approximately 47 to 48%). Cheese-making procedures (cutting conditions) were then altered to obtain a similar moisture content in all cheeses by using a lower setting temperature, increasing the curd size, and lowering the wash water temperature during manufacture of the MF cheeses. Two types of MF standardized cheeses were produced, one with preacidification of milk to pH 6.4 (pH6.4MF) and another made from milk preacidified to pH 6.3 (pH6.3MF). Cheese functionality was assessed by dynamic low-amplitude oscillatory rheology, University of Wisconsin MeltProfiler, and performance on pizza. Nitrogen recoveries were significantly higher in MF standardized cheeses. Fat recoveries were higher in the pH6.3MF cheese than the control or pH6.4MF cheese. Moisture-adjusted cheese yield was significantly higher in the 2 MF-fortified cheeses compared with the control cheese. Maximum loss tangent (LT(max)) values were not significantly different among the 3 cheeses, suggesting that these cheeses had similar meltability. The LT(max) values increased during ripening. The temperature at which the LT(max) was observed was highest in control cheese and was lower in the pH6.3MF cheese than in the pH6.4MF cheese. The temperature of the LT(max) decreased with age for all 3 cheeses. Values of 12% trichloroacetic acid soluble nitrogen levels were similar in all cheeses. Performance on pizza was similar for all cheeses. The use of MF retentates derived with polymeric membranes was successful in increasing cheese yield, and cheese quality was similar in the control and MF standardized cheeses.
Santiago-López, Lourdes; Aguilar-Toalá, Jose E; Hernández-Mendoza, Adrián; Vallejo-Cordoba, Belinda; Liceaga, Andrea M; González-Córdova, Aarón F
2018-05-01
Traditionally, cheese is manufactured by converting fluid milk to a semisolid mass through the use of a coagulating agent, such as rennet, acid, heat plus acid, or a combination thereof. Cheese can vary widely in its characteristics, including color, aroma, texture, flavor, and firmness, which can generally be attributed to the production technology, source of the milk, moisture content, and length of aging, in addition to the presence of specific molds, yeast, and bacteria. Among the most important bacteria, lactic acid bacteria (LAB) play a critical role during the cheese-making process. In general, LAB contain cell-envelope proteinases that contribute to the proteolysis of cheese proteins, breaking them down into oligopeptides that can be subsequently taken up by cells via specific peptide transport systems or further degraded into shorter peptides and amino acids through the collaborative action of various intracellular peptidases. Such peptides, amino acids, and their derivatives contribute to the development of texture and flavor in the final cheese. In vitro and in vivo assays have demonstrated that specific sequences of released peptides exhibit biological properties including antioxidant, antimicrobial, anti-inflammatory, immunomodulatory, and analgesic/opioid activity, in addition to angiotensin-converting enzyme inhibition and antiproliferative activity. Some LAB also produce functional lipids (e.g., conjugated linoleic acid) with anti-inflammatory and anticarcinogenic activity, synthesize vitamins and antimicrobial peptides (bacteriocins), or release γ-aminobutyric acid, a nonprotein amino acid that participates in physiological functions, such as neurotransmission and hypotension induction, with diuretic effects. This review provides an overview of the main bioactive components present or released during the ripening process of different types of cheese. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Castada, Hardy Z; Wick, Cheryl; Taylor, Kaitlyn; Harper, W James
2014-04-01
Splits/cracks are recurring product defects that negatively affect the Swiss cheese industry. Investigations to understand the biophysicochemical aspects of these defects, and thus determine preventive measures against their occurrence, are underway. In this study, selected-ion, flow tube mass spectrometry was employed to determine the volatile organic compound (VOC) profiles present in the headspace of split compared with nonsplit cheeses. Two sampling methodologies were employed: split compared with nonsplit cheese vat pair blocks; and comparison of blind, eye, and split segments within cheese blocks. The variability in VOC profiles was examined to evaluate the potential biochemical pathway chemistry differences within and between cheese samples. VOC profile inhomogeneity was most evident in cheeses between factories. Evaluation of biochemical pathways leading to the formation of key VOCs differentiating the split from the blind and eye segments within factories indicated release of additional carbon dioxide by-product. These results suggest a factory-dependent cause of split formation that could develop from varied fermentation pathways in the blind, eye, and split areas within a cheese block. The variability of VOC profiles within and between factories exhibit varied biochemical fermentation pathways that could conceivably be traced back in the making process to identify parameters responsible for split defect. © 2014 Institute of Food Technologists®
Stocco, G; Cipolat-Gotet, C; Gasparotto, V; Cecchinato, A; Bittante, G
2018-02-01
Little is known about cheese-making efficiency at the individual cow level, so our objective was to study the effects of herd productivity, individual herd within productivity class and breed of cow within herd by producing, then analyzing, 508 model cheeses from the milk of 508 cows of six different breeds reared in 41 multi-breed herds classified into two productivity classes (high v. low). For each cow we obtained six milk composition traits; four milk nutrient (fat, protein, solids and energy) recovery traits (REC) in curd; three actual % cheese yield traits (%CY); two theoretical %CYs (fresh cheese and cheese solids) calculated from milk composition; two overall cheese-making efficiencies (% ratio of actual to theoretical %CYs); daily milk yield (dMY); and three actual daily cheese yield traits (dCY). The aforementioned phenotypes were analyzed using a mixed model which included the fixed effects of herd productivity, parity, days in milk (DIM) and breed; the random effects were the water bath, vat, herd and residual. Cows reared in high-productivity herds yielded more milk with higher nutrient contents and more cheese per day, had greater theoretical %CY, and lower cheese-making efficiency than low-productivity herds, but there were no differences between them in terms of REC traits. Individual herd within productivity class was an intermediate source of total variation in REC, %CY and efficiency traits (10.0% to 17.2%), and a major source of variation in milk yield and dCY traits (43.1% to 46.3%). Parity of cows was an important source of variation for productivity traits, whereas DIM affected almost all traits. Breed within herd greatly affected all traits. Holsteins produced more milk, but Brown Swiss cows produced milk with higher actual and theoretical %CYs and cheese-making efficiency, so that the two large-framed breeds had the same dCY. Compared with the two large-framed breeds, the small Jersey cows produced much less milk, but with greater actual and theoretical %CYs, similar efficiencies and a slightly lower dCY. Compared with the average of the specialized dairy breeds, the three dual-purpose breeds (Simmental and the local Rendena and Alpine Grey) had, on average, similar dMY, lower actual and theoretical %CY, similar fat and protein REC, and slightly greater cheese-making efficiency.
Briggiler-Marcó, M; Capra, M L; Quiberoni, A; Vinderola, G; Reinheimer, J A; Hynes, E
2007-10-01
Nonstarter lactic acid bacteria are the main uncontrolled factor in today's industrial cheese making and may be the cause of quality inconsistencies and defects in cheeses. In this context, adjunct cultures of selected lactobacilli from nonstarter lactic acid bacteria origin appear as the best alternative to indirectly control cheese biota. The objective of the present work was to study the technological properties of Lactobacillus strains isolated from cheese by in vitro and in situ assays. Milk acidification kinetics and proteolytic and acidifying activities were assessed, and peptide mapping of trichloroacetic acid 8% soluble fraction of milk cultures was performed by liquid chromatography. In addition, the tolerance to salts (NaCl and KCl) and the phage-resistance were investigated. Four strains were selected for testing as adjunct cultures in cheese making experiments at pilot plant scale. In in vitro assays, most strains acidified milk slowly and showed weak to moderate proteolytic activity. Fast strains decreased milk pH to 4.5 in 8 h, and continued acidification to 3.5 in 12 h or more. This group consisted mostly of Lactobacillus plantarum and Lactobacillus rhamnosus strains. Approximately one-third of the slow strains, which comprised mainly Lactobacillus casei, Lactobacillus fermentum, and Lactobacillus curvatus, were capable to grow when milk was supplemented with glucose and casein hydrolysate. Peptide maps were similar to those of lactic acid bacteria considered to have a moderate proteolytic activity. Most strains showed salt tolerance and resistance to specific phages. The Lactobacillus strains selected as adjunct cultures for cheese making experiments reached 10(8) cfu/g in soft cheeses at 7 d of ripening, whereas they reached 10(9) cfu/g in semihard cheeses after 15 d of ripening. In both cheese varieties, the adjunct culture population remained at high counts during all ripening, in some cases overcoming or equaling primary starter. Overall, proximate composition of cheeses with and without added lactobacilli did not differ; however, some of the tested strains continued acidifying during ripening, which was mainly noticed in soft cheeses and affected overall quality of the products. The lactobacilli strains with low acidifying activity showed appropriate technological characteristics for their use as adjunct cultures in soft and semihard cheeses.
Repossi, Adele; Zironi, Elisa; Gazzotti, Teresa; Serraino, Andrea; Pagliuca, Giampiero
2017-01-01
Vitamin B12 (cobalamin) is a metal complex composed of a central cobalt ion bonded to six ligands. It is essential for major biological functions such as protein, fat and carbohydrate metabolism, the maintenance of the central nervous system, and the formation of red blood cells. Since mammals cannot synthesize cobalamin, dietary intake represents the only natural source for humans. Dairy products can provide significant levels of cobalamin; moreover, the European Food Safety Authority (EFSA) panel has set the recommended intake at 4 μg/day for adults. Vitamin B12 content was determined in milk and several matrices related to the process of transformation of the residual whey from Parmigiano Reggiano cheese-making to obtain ricotta cheese. In addition, vitamin B12 degradation during ricotta cheese shelf-life was studied. The analyses were performed using an ultra performance liquid chromatography-tandem mass spectrometry method. Results show that vitamin B12 amount in ricotta from dairy and experimental cheese-making brings respectively 1/8 to 1/4 of the adequate intake in adults established by EFSA. In addition, shelf-life experiment shows that cobalamine is fairly rapidly degraded in ricotta: light effect seems to be significant, even if the light exposure is short. The use of photoprotective packaging material increases B12 shelf-life in the early stage of storage. PMID:29564230
Gould, L. Hannah; Mungai, Elisabeth; Behravesh, Casey Barton
2015-01-01
Introduction The interstate commerce of unpasteurized fluid milk, also known as raw milk, is illegal in the United States, and intrastate sales are regulated independently by each state. However, U.S. Food and Drug Administration regulations allow the interstate sale of certain types of cheeses made from unpasteurized milk if specific aging requirements are met. We describe characteristics of these outbreaks, including differences between outbreaks linked to cheese made from pasteurized or unpasteurized milk. Methods We reviewed reports of outbreaks submitted to the Foodborne Disease Outbreak Surveillance System during 1998–2011 in which cheese was implicated as the vehicle. We describe characteristics of these outbreaks, including differences between outbreaks linked to cheese made from pasteurized versus unpasteurized milk. Results During 1998–2011, 90 outbreaks attributed to cheese were reported; 38 (42%) were due to cheese made with unpasteurized milk, 44 (49%) to cheese made with pasteurized milk, and the pasteurization status was not reported for the other eight (9%). The most common cheese–pathogen pairs were unpasteurized queso fresco or other Mexican-style cheese and Salmonella (10 outbreaks), and pasteurized queso fresco or other Mexican-style cheese and Listeria (6 outbreaks). The cheese was imported from Mexico in 38% of outbreaks caused by cheese made with unpasteurized milk. In at least five outbreaks, all due to cheese made from unpasteurized milk, the outbreak report noted that the cheese was produced or sold illegally. Outbreaks caused by cheese made from pasteurized milk occurred most commonly (64%) in restaurant, delis, or banquet settings where cross-contamination was the most common contributing factor. Conclusions In addition to using pasteurized milk to make cheese, interventions to improve the safety of cheese include limiting illegal importation of cheese, strict sanitation and microbiologic monitoring in cheese-making facilities, and controls to limit food worker contamination. PMID:24750119
Fate of ivermectin residues in ewes' milk and derived products.
Cerkvenik, Vesna; Perko, Bogdan; Rogelj, Irena; Doganoc, Darinka Z; Skubic, Valentin; Beek, Wim M J; Keukens, Henk J
2004-02-01
The fate of ivermectin (IVM) residues was studied throughout the processing of daily bulk milk from 30 ewes (taken up to 33 d following subcutaneous administration of 0.2 mg IVM/kg b.w.) in the following milk products: yoghurt made from raw and pasteurized milk; cheese after pressing; 30- and 60-day ripened cheese; and whey, secondary whey and whey proteins obtained after cheese-making (albumin cheese). The concentration of the H2B1a component of IVM was analysed in these dairy products using an HPLC method with fluorescence detection. The mean recovery of the method was, depending on the matrix, between 87 and 100%. Limits of detection in the order of only 0.1 microg H2B1a/kg of product were achieved. Maximum concentrations of IVM were detected mostly at 2 d after drug administration to the ewes. The highest concentration of IVM was found on day 2 in 60-day ripened cheese (96 microg H2B1a/kg cheese). Secondary whey was the matrix with the lowest concentration of IVM (<0.6 microg H2B1a/ kg). Residue levels fell below the limits of detection between day 5 (for secondary whey) and day 25 (for all cheese samples). In the matrices investigated, linear correlations between daily concentrations of IVM, milk fat and solid content were evident. During yoghurt production, fermentation and thermal stability of IVM was observed. During cheese production, approximately 35% of the IVM, present in the raw (bulk) milk samples, was lost. From the results it was concluded that the processing of ewes' milk did not eliminate the drug residues under investigation. The consequences of IVM in the human diet were discussed. Milk from treated animals should be excluded from production of fat products like cheese for longer after treatment with IVM than for lower fat products.
Settanni, L; Di Grigoli, A; Tornambé, G; Bellina, V; Francesca, N; Moschetti, G; Bonanno, A
2012-04-02
The present work was undertaken to evaluate the influence of the wooden dairy plant equipment on the microbiological characteristics of curd to be transformed into Caciocavallo Palermitano cheese. Traditional raw milk productions were performed concomitantly with standard cheese making trials carried out in stainless steel vat inoculated with a commercial starter. Milk from two different farms (A and B) was separately processed. The wooden vat was found to be a reservoir of lactic acid bacteria (LAB), while unwanted (spoilage and/or pathogenic) microorganisms were not hosted or were present at very low levels. All microbial groups were numerically different in bulk milks, showing higher levels for the farm B. LAB, especially thermophilic cocci, dominated the whole cheese making process of all productions. Undesired microorganisms decreased in number or disappeared during transformation, particularly after curd stretching. LAB were isolated from the wooden vat surface and from all dairy samples, subjected to phenotypic and genetic characterization and identification. Streptococcus thermophilus was the species found at the highest concentration in all samples analyzed and it also dominated the microbial community of the wooden vat. Fourteen other LAB species belonging to six genera (Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Weissella) were also detected. All S. thermophilus isolates were genetically differentiated and a consortium of four strains persisted during the whole traditional production process. As confirmed by pH and the total acidity after the acidification step, indigenous S. thermophilus strains acted as a mixed starter culture. Copyright © 2012 Elsevier B.V. All rights reserved.
Using milk and cheese to demonstrate food chemistry
USDA-ARS?s Scientific Manuscript database
Students usually do not realize how much chemistry is involved in making a food like cheese, and teachers may use milk and cheese to reveal interesting principles. Cheese is made by lowering the pH of milk, coagulating the protein with enzymes, and removing the whey with heat and pressure. Studies b...
7 CFR 58.736 - Pasteurized process cheese.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Pasteurized process cheese. 58.736 Section 58.736... Finished Products § 58.736 Pasteurized process cheese. Shall conform to the provisions of the Definitions and Standards of Identity for Pasteurized Process Cheese and Related Products, Food and Drug...
7 CFR 58.736 - Pasteurized process cheese.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Pasteurized process cheese. 58.736 Section 58.736... Finished Products § 58.736 Pasteurized process cheese. Shall conform to the provisions of the Definitions and Standards of Identity for Pasteurized Process Cheese and Related Products, Food and Drug...
Fu, Wei; Watanabe, Yurika; Inoue, Keita; Moriguchi, Natsumi; Fusa, Kazunao; Yanagisawa, Yuya; Mutoh, Takaaki; Nakamura, Takashi
2018-04-15
The effect of pre-cooked cheeses of different emulsifying conditions on the viscosities, mechanical properties, fat globules, and microstructure of processed cheese was investigated, and changes in protein network relating to the creaming effect and the occurrence of yielding point were discussed. The addition of pre-cooked cheeses with a short stirring time had no obvious impact on the fat globules and protein network. The random network brought low viscosities and a gradual increase in the fracture stress/strain curve. The addition of pre-cooked cheeses with the long stirring time caused protein network to become fine-stranded. The fine-stranded network caused creaming effect, and brought yielding points in the mechanical properties. The pre-cooked cheese with the small fat globules also caused fat globules to become smaller, and give the processed cheese more firmness. This study provides a potential solution to control the functional properties of processed cheese by using a variety of pre-cooked cheeses. Copyright © 2017 Elsevier Ltd. All rights reserved.
7 CFR 58.737 - Pasteurized process cheese food.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 3 2012-01-01 2012-01-01 false Pasteurized process cheese food. 58.737 Section 58.737... Finished Products § 58.737 Pasteurized process cheese food. Shall conform to the provisions of the Definitions and Standards of Identity for Pasteurized Process Cheese Food and Related Products, Food and Drug...
7 CFR 58.737 - Pasteurized process cheese food.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 3 2013-01-01 2013-01-01 false Pasteurized process cheese food. 58.737 Section 58.737... Finished Products § 58.737 Pasteurized process cheese food. Shall conform to the provisions of the Definitions and Standards of Identity for Pasteurized Process Cheese Food and Related Products, Food and Drug...
7 CFR 58.737 - Pasteurized process cheese food.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 3 2014-01-01 2014-01-01 false Pasteurized process cheese food. 58.737 Section 58.737... Finished Products § 58.737 Pasteurized process cheese food. Shall conform to the provisions of the Definitions and Standards of Identity for Pasteurized Process Cheese Food and Related Products, Food and Drug...
7 CFR 58.738 - Pasteurized process cheese spread and related products.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Pasteurized process cheese spread and related products... and Grading Service 1 Quality Specifications for Finished Products § 58.738 Pasteurized process cheese... of Identity for Pasteurized Process Cheese Spreads, Food and Drug Administration. The pH of...
7 CFR 58.737 - Pasteurized process cheese food.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Pasteurized process cheese food. 58.737 Section 58.737... Finished Products § 58.737 Pasteurized process cheese food. Shall conform to the provisions of the Definitions and Standards of Identity for Pasteurized Process Cheese Food and Related Products, Food and Drug...
40 CFR 405.60 - Applicability; description of the natural and processed cheese subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... natural and processed cheese subcategory. 405.60 Section 405.60 Protection of Environment ENVIRONMENTAL... CATEGORY Natural and Processed Cheese Subcategory § 405.60 Applicability; description of the natural and processed cheese subcategory. The provisions of this subpart are applicable to discharges resulting from the...
40 CFR 405.60 - Applicability; description of the natural and processed cheese subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... natural and processed cheese subcategory. 405.60 Section 405.60 Protection of Environment ENVIRONMENTAL... CATEGORY Natural and Processed Cheese Subcategory § 405.60 Applicability; description of the natural and processed cheese subcategory. The provisions of this subpart are applicable to discharges resulting from the...
7 CFR 58.738 - Pasteurized process cheese spread and related products.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Pasteurized process cheese spread and related products... and Grading Service 1 Quality Specifications for Finished Products § 58.738 Pasteurized process cheese... of Identity for Pasteurized Process Cheese Spreads, Food and Drug Administration. The pH of...
7 CFR 58.737 - Pasteurized process cheese food.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Pasteurized process cheese food. 58.737 Section 58.737... Finished Products § 58.737 Pasteurized process cheese food. Shall conform to the provisions of the Definitions and Standards of Identity for Pasteurized Process Cheese Food and Related Products, Food and Drug...
21 CFR 133.171 - Pasteurized process pimento cheese.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Pasteurized process pimento cheese. 133.171 Section 133.171 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Standardized Cheese and Related Products § 133.171 Pasteurized process pimento cheese. Pasteurized process...
Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi.
Ropars, Jeanne; Rodríguez de la Vega, Ricardo C; López-Villavicencio, Manuela; Gouzy, Jérôme; Sallet, Erika; Dumas, Émilie; Lacoste, Sandrine; Debuchy, Robert; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana
2015-10-05
Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1-5]. Few studies have focused on the domestication of fungi, with notable exceptions [6-11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making-P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13-15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Govaris, A; Roussi, V; Koidis, P A; Botsoglou, N A
2001-05-01
Telemes cheeses were produced using milk that was artificially-contaminated with aflatoxin M1 at the levels of 0.050 and 0.100 microg/l. The cheeses produced in the two cheese-making trials were allowed to ripen for 2 months and stored for an additional 4 months to simulate commercial production of Telemes cheese. Concentrations of aflatoxin M1 in whey, curd, brine, and the produced cheeses were determined at intervals by liquid chromatography and fluorometric detection coupled with immunoaffinity column extraction. Concentrations of aflatoxin M1 in the produced curds were found to be 3.9 and 4.4 times higher than those in milk, whereas concentrations in whey were lower than those in curd and milk. Aflatoxin M1 was present in cheese at higher concentrations at the beginning than at the end of the ripening/storage period, and it declined to concentrations 2.7 and 3.4 times higher than those initially present in milk by the end of the sixth month of storage. Concentrations of aflatoxin M1 in brine started low and increased by the end of the ripening/storage period but only a portion of the amounts of aflatoxin M1 lost from cheese was found in the brine. Results showed that Telemes cheeses produced from milk containing aflatoxin M1 at a concentration close to either the maximum acceptable level of 0.05 microg/l set by the European union (EU) or at double this value, will contain the toxin at a level that is much lower or slightly higher, respectively, than the maximum acceptable level of 0.250 microg of aflatoxin M1/kg cheese set by some countries.
Gonçalves Dos Santos, Maria Teresa P; Benito, María José; Córdoba, María de Guía; Alvarenga, Nuno; Ruiz-Moyano Seco de Herrera, Santiago
2017-12-04
This study investigated the yeast community present in the traditional Portuguese cheese, Serpa, by culture-dependent and -independent methods. Sixteen batches of Serpa cheeses from various regional industries registered with the Protected Designation of Origin (PDO) versus non-PDO registered, during spring and winter, were used. Irrespective of the producer, the yeast counts were around 5log CFU/g in winter and, overall, were lower in spring. The yeast species identified at the end of ripening (30days), using PCR-RFLP analysis and sequencing of the 26S rRNA, mainly corresponded to Debaryomyces hansenii and Kluyveromyces marxianus, with Candida spp. and Pichia spp. present to a lesser extent. The culture-independent results, obtained using high-throughput sequencing analysis, confirmed the prevalence of Debaryomyces spp. and Kluyveromyces spp. but, also, that Galactomyces spp. was relevant for three of the five producers, which indicates its importance during the early stages of the cheese ripening process, considering it was not found among the dominant viable yeast species. In addition, differences between the identified yeast isolated from cheeses obtained from PDO and non-PDO registered industries, showed that the lack of regulation of the cheese-making practice, may unfavourably influence the final yeast microbiota. The new knowledge provided by this study of the yeast diversity in Serpa cheese, could be used to modify the cheese ripening conditions, to favour desirable yeast species. Additionally, the prevalent yeast isolates identified, Debaryomyces hansenii and Kluyveromyces spp., may have an important role during cheese ripening and in the final sensorial characteristics. Thus, the study of their technological and functional properties could be relevant, in the development of an autochthonous starter culture, to ensure final quality and safety of the cheese. Copyright © 2017 Elsevier B.V. All rights reserved.
Licitra, G; Ogier, J C; Parayre, S; Pediliggieri, C; Carnemolla, T M; Falentin, H; Madec, M N; Carpino, S; Lortal, S
2007-11-01
Ragusano cheese is a "protected denomination of origin" cheese made in the Hyblean region of Sicily from raw milk using traditional wooden tools, without starter. To explore the Ragusano bacterial ecosystem, molecular fingerprinting was conducted at different times during the ripening and biofilms from the wooden vats called "tinas" were investigated. Raw milks collected at two farm sites, one on the mountain and one at sea level, were processed to produce Ragusano cheese. Raw milk, curd before and after cooking, curd at stretching time (cheese 0 time), and cheese samples (4 and 7 months) were analyzed by PCR-temporal temperature gel electrophoresis (PCR-TTGE) and by classical enumeration microbiology. With the use of universal primers, PCR-TTGE revealed many differences between the raw milk profiles, but also notable common bands identified as Streptococcus thermophilus, Lactobacillus lactis, Lactobacillus delbrueckii, and Enterococcus faecium. After the stretching, TTGE profiles revealed three to five dominant species only through the entire process of ripening. In the biofilms of the two tinas used, one to five species were detected, S. thermophilus being predominant in both. Biofilms from five other tinas were also analyzed by PCR-TTGE, PCR-denaturating gradient gel electrophoresis, specific PCR tests, and sequencing, confirming the predominance of lactic acid bacteria (S. thermophilus, L. lactis, and L. delbrueckii subsp. lactis) and the presence of a few high-GC-content species, like coryneform bacteria. The spontaneous acidification of raw milks before and after contact with the five tinas was followed in two independent experiments. The lag period before acidification can be up to 5 h, depending on the raw milk and the specific tina, highlighting the complexity of this natural inoculation system.
Innocente, N; Biasutti, M
2013-02-01
Montasio cheese is a typical Italian semi-hard, semi-cooked cheese produced in northeastern Italy from unpasteurized (raw or thermised) cow milk. The Protected Designation of Origin label regulations for Montasio cheese require that local milk be used from twice-daily milking. The number of farms milking with automatic milking systems (AMS) has increased rapidly in the last few years in the Montasio production area. The objective of this study was to evaluate the effects of a variation in milking frequency, associated with the adoption of an automatic milking system, on milk quality and on the specific characteristics of Montasio cheese. Fourteen farms were chosen, all located in the Montasio production area, with an average herd size of 60 (Simmental, Holstein-Friesian, and Brown Swiss breeds). In 7 experimental farms, the cows were milked 3 times per day with an AMS, whereas in the other 7 control farms, cows were milked twice daily in conventional milking parlors (CMP). The study showed that the main components, the hygienic quality, and the cheese-making features of milk were not affected by the milking system adopted. In fact, the control and experimental milks did not reveal a statistically significant difference in fat, protein, and lactose contents; in the casein index; or in the HPLC profiles of casein and whey protein fractions. Milk from farms that used an AMS always showed somatic cell counts and total bacterial counts below the legal limits imposed by European Union regulations for raw milk. Finally, bulk milk clotting characteristics (clotting time, curd firmness, and time to curd firmness of 20mm) did not differ between milk from AMS and milk from CMP. Montasio cheese was made from milk collected from the 2 groups of farms milking either with AMS or with CMP. Three different cheese-making trials were performed during the year at different times. As expected, considering the results of the milk analysis, the moisture, fat, and protein contents of the experimental and control cheeses were comparable. The milking system was not seen to significantly affect the biochemical processes associated with ripening. In fact, all cheeses showed a normal proteolysis trend and a characteristic volatile compound profile during aging. Therefore, the milking system does not appear to modify the distinctive characteristics of this cheese that remain dependent on the area and methodology of production. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
7 CFR 58.416 - Cheese vats, tanks and drain tables.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Cheese vats, tanks and drain tables. 58.416 Section 58... Service 1 Equipment and Utensils § 58.416 Cheese vats, tanks and drain tables. (a) The vats, tanks and drain tables used for making cheese should be of metal construction with adequate jacket capacity for...
Who Moved My Cheese? Adjusting to Age-Related Changes
ERIC Educational Resources Information Center
Langer, Nieli
2012-01-01
The popular book, Who Moved My Cheese? (Johnson, 1998) is a metaphor for change. This parable-like story has particular resonance with older adults who face many potential life-altering changes. The four characters in the book are looking for their cheese in a maze. Cheese represents whatever makes people happy. How each character adjusts to the…
7 CFR 58.416 - Cheese vats, tanks and drain tables.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Cheese vats, tanks and drain tables. 58.416 Section 58... Service 1 Equipment and Utensils § 58.416 Cheese vats, tanks and drain tables. (a) The vats, tanks and drain tables used for making cheese should be of metal construction with adequate jacket capacity for...
Blue cheese-making has shaped the population genetic structure of the mould Penicillium roqueforti
Ropars, Jeanne; López-Villavicencio, Manuela; Snirc, Alodie; Lacoste, Sandrine; Giraud, Tatiana
2017-01-01
Background Penicillium roqueforti is a filamentous fungus used for making blue cheeses worldwide. It also occurs as a food spoiler and in silage and wood. Previous studies have revealed a strong population genetic structure, with specific traits associated with the different populations. Here, we used a large strain collection from worldwide cheeses published recently to investigate the genetic structure of P. roqueforti. Principal findings We found a genetic population structure in P. roqueforti that was consistent with previous studies, with two main genetic clusters (W+C+ and W-C-, i.e., with and without horizontal gene transferred regions CheesyTer and Wallaby). In addition, we detected a finer genetic subdivision that corresponded to the environment and to protected designation of origin (PDO), namely the Roquefort PDO. We indeed found evidence for eight genetic clusters, one of the cluster including only strains from other environments than cheeses, and another cluster encompassing only strains from the Roquefort PDO. The W-C- and W+C+ cheese clusters were not the most closely related ones, suggesting that there may have been two independent domestication events of P. roqueforti for making blue cheeses. Significance The additional population structure revealed here may be relevant for cheese-makers and for understanding the history of domestication in P. roqueforti. PMID:28248964
Blue cheese-making has shaped the population genetic structure of the mould Penicillium roqueforti.
Ropars, Jeanne; López-Villavicencio, Manuela; Snirc, Alodie; Lacoste, Sandrine; Giraud, Tatiana
2017-01-01
Penicillium roqueforti is a filamentous fungus used for making blue cheeses worldwide. It also occurs as a food spoiler and in silage and wood. Previous studies have revealed a strong population genetic structure, with specific traits associated with the different populations. Here, we used a large strain collection from worldwide cheeses published recently to investigate the genetic structure of P. roqueforti. We found a genetic population structure in P. roqueforti that was consistent with previous studies, with two main genetic clusters (W+C+ and W-C-, i.e., with and without horizontal gene transferred regions CheesyTer and Wallaby). In addition, we detected a finer genetic subdivision that corresponded to the environment and to protected designation of origin (PDO), namely the Roquefort PDO. We indeed found evidence for eight genetic clusters, one of the cluster including only strains from other environments than cheeses, and another cluster encompassing only strains from the Roquefort PDO. The W-C- and W+C+ cheese clusters were not the most closely related ones, suggesting that there may have been two independent domestication events of P. roqueforti for making blue cheeses. The additional population structure revealed here may be relevant for cheese-makers and for understanding the history of domestication in P. roqueforti.
7 CFR 58.735 - Quality specifications for raw materials.
Code of Federal Regulations, 2014 CFR
2014-01-01
... specifications of the finished product. (b) Swiss. Swiss cheese used in the manufacture of pasteurized process... Swiss cheese. (d) Cream cheese, Neufchatel cheese. Mixed with other foods, or used for spreads and dips... Service 1 Requirements for Processed Cheese Products Bearing Usda Official Identification § 58.735 Quality...
7 CFR 58.735 - Quality specifications for raw materials.
Code of Federal Regulations, 2013 CFR
2013-01-01
... specifications of the finished product. (b) Swiss. Swiss cheese used in the manufacture of pasteurized process... Swiss cheese. (d) Cream cheese, Neufchatel cheese. Mixed with other foods, or used for spreads and dips... Service 1 Requirements for Processed Cheese Products Bearing Usda Official Identification § 58.735 Quality...
7 CFR 58.735 - Quality specifications for raw materials.
Code of Federal Regulations, 2012 CFR
2012-01-01
... specifications of the finished product. (b) Swiss. Swiss cheese used in the manufacture of pasteurized process... Swiss cheese. (d) Cream cheese, Neufchatel cheese. Mixed with other foods, or used for spreads and dips... Service 1 Requirements for Processed Cheese Products Bearing Usda Official Identification § 58.735 Quality...
7 CFR 58.723 - Basis for selecting cheese for processing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Basis for selecting cheese for processing. 58.723... Service 1 Operations and Operating Procedures § 58.723 Basis for selecting cheese for processing. A... vat of cheese shall have been examined to determine the suitability of the vat for use in process...
7 CFR 58.723 - Basis for selecting cheese for processing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Basis for selecting cheese for processing. 58.723... Service 1 Operations and Operating Procedures § 58.723 Basis for selecting cheese for processing. A... vat of cheese shall have been examined to determine the suitability of the vat for use in process...
Code of Federal Regulations, 2011 CFR
2011-04-01
... of pasteurized blended cheese, pasteurized process cheese, cheese food, cheese spread, and related... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS General Provisions § 133.10 Notice to manufacturers, packers, and distributors of pasteurized blended cheese, pasteurized...
Code of Federal Regulations, 2010 CFR
2010-04-01
... of pasteurized blended cheese, pasteurized process cheese, cheese food, cheese spread, and related... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS General Provisions § 133.10 Notice to manufacturers, packers, and distributors of pasteurized blended cheese, pasteurized...
Gatti, Monica; Bottari, Benedetta; Lazzi, Camilla; Neviani, Erasmo; Mucchetti, Germano
2014-02-01
The robustness of the starter culture during cheese fermentation is enhanced by the presence of a rich consortium of microbes. Natural starters are consortia of microbes undoubtedly richer than selected starters. Among natural starters, natural whey starters (NWS) are the most common cultures currently used to produce different varieties of cheeses. Undefined NWS are typically used for Italian cooked, long-ripened, extra-hard, raw milk cheeses, such as Parmigiano Reggiano and Grana Padano. Together with raw milk microbiota, NWS are responsible for most cheese characteristics. The microbial ecology of these 2 cheese varieties is based on a complex interaction among starter lactic acid bacteria (SLAB) and nonstarter lactic acid bacteria (NSLAB), which are characterized by their different abilities to grow in a changing substrate. This review aims to summarize the latest findings on Parmigiano Reggiano and Grana Padano to better understand the dynamics of SLAB, which mainly arise from NWS, and NSLAB, which mainly arise from raw milk, and their possible role in determining the characteristics of these cheeses. The review is presented in 4 main sections. The first summarizes the main microbiological and chemical properties of the ripened cheese as determined by cheese-making process variables, as these variables may affect microbial growth. The second describes the microbiota of raw milk as affected by specific milk treatments, from milking to the filling of the cheese milk vat. The third describes the microbiota of NWS, and the fourth reviews the knowledge available on microbial dynamics from curd to ripened cheese. As the dynamics and functionality of complex undefined NWS is one of the most important areas of focus in current food microbiology research, this review may serve as a good starting point for implementing future studies on microbial diversity and functionality of undefined cheese starter cultures. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ropars, Jeanne; Lo, Ying‐Chu; Dumas, Emilie; Snirc, Alodie; Begerow, Dominik; Rollnik, Tanja; Lacoste, Sandrine; Dupont, Joëlle; Giraud, Tatiana; López‐Villavicencio, Manuela
2016-01-01
Genetic differentiation occurs when gene flow is prevented, due to reproductive barriers or asexuality. Investigating the early barriers to gene flow is important for understanding the process of speciation. Here, we therefore investigated reproductive isolation between different genetic clusters of the fungus Penicillium roqueforti, used for maturing blue cheeses, and also occurring as food spoiler or in silage. We investigated premating and postmating fertility between and within three genetic clusters (two from cheese and one from other substrates), and we observed sexual structures under scanning electron microscopy. All intercluster types of crosses showed some fertility, suggesting that no intersterility has evolved between domesticated and wild populations despite adaptation to different environments and lack of gene flow. However, much lower fertility was found in crosses within the cheese clusters than within the noncheese cluster, suggesting reduced fertility of cheese strains, which may constitute a barrier to gene flow. Such degeneration may be due to bottlenecks during domestication and/or to the exclusive clonal replication of the strains in industry. This study shows that degeneration has occurred rapidly and independently in two lineages of a domesticated species. Altogether, these results inform on the processes and tempo of degeneration and speciation. PMID:27470007
Microbe Phobia and Kitchen Microbiology.
ERIC Educational Resources Information Center
Williams, Robert P.; Gillen, Alan L.
1991-01-01
The authors present an exercise designed to help students overcome the misconception that most microbes make people sick. The activity helps students of all ages understand the important benefits of microbes such as in making bread, soy sauce, cheese, and wine. The role of microorganisms in processing cocoa and coffee and growing plants is also…
Assimakopoulos, P A; Ioannides, K G; Pakou, A A; Papadopoulou, C V; Paradopoulou, C V
1987-07-01
The transport of radiation contamination from milk to products of the cheese making process has been studied. The concentration of radioactive iodine and cesium in samples of sheep milk and cheese (Gruyère) products was measured for 10 consecutive production d. Milk with concentration 100 Bq/L in each of the radionuclides 131I, 134Cs, and 137Cs cheese with concentration 82.2 +/- 3.9 Bq/kg in iodine and an average of 42.3 +/- 2.3 Bq/kg in the cesium isotopes is produced. The corresponding concentrations in cream extracted from the same milk are 26.7 +/- 2.8 Bq/kg (131I) and 18.6 +/- 1.9 Bq/kg (134Cs, 137Cs).
Recent patents on microbial proteases for the dairy industry.
Feijoo-Siota, Lucía; Blasco, Lucía; Rodríguez-Rama, José Luis; Barros-Velázquez, Jorge; Miguel, Trinidad de; Sánchez-Pérez, Angeles; Villa, Tomás G
2014-01-01
This paper reviews the general characteristics of exo and endopeptidases of microbial origin currently used in the milk industry. It also includes recent patents developed either to potentiate the enzymatic activity or to improve the resulting milk derivatives. The main application of these proteases is in the cheese-making industry. Although this industry preferentially uses animal rennets, and in particular genetically engineered chymosins, it also utilizes milk coagulants of microbial origin. Enzymes derived from Rhizomucor miehei, Rhizomucor pusillus and Cryphonectria parasitica are currently used to replace the conventional milk-clotting enzymes. In addition, the dairy industry uses microbial endo and exoproteases for relatively new applications, such as debittering and flavor generation in cheese, accelerated cheese ripening, manufacture of protein hydrolysates with improved functional properties, and production of enzyme-modified cheeses. Lactic acid bacteria play an essential role in these processes, hence these bacteria and the proteases they produce are currently being investigated by the dairy industry and are the subject of many of their patent applications.
Černíková, Michaela; Nebesářová, Jana; Salek, Richardos Nikolaos; Popková, Romana; Buňka, František
2018-04-01
The aim of this work was to add various amounts of rework (0.0 to 20.0% wt/wt) to processed cheeses with a dry matter content of 36% (wt/wt) and fat with a dry matter content of 45% (wt/wt). The effect of the rework addition on the viscoelastic properties and microstructure of the processed cheeses was observed. The addition of rework (in this case, to processed cheese with a spreadable consistency) in the amounts of 2.5, 5.0, and 10.0% (wt/wt) increased the firmness of the processed cheese. With the further addition of rework, the consistency of the processed cheeses no longer differed significantly. The conclusions obtained by the measurement of viscoelastic properties were supported by cryo-scanning electron microscopy, where fat droplets in samples with added rework of over 10.0% (wt/wt) were smaller than fat droplets in processed cheeses with lower additions of rework. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Di Grigoli, Antonino; Francesca, Nicola; Gaglio, Raimondo; Guarrasi, Valeria; Moschetti, Marta; Scatassa, Maria Luisa; Settanni, Luca; Bonanno, Adriana
2015-04-01
The influence of the wooden equipment used for the traditional cheese manufacturing from raw milk was evaluated on the variations of chemico-physical characteristics and microbial populations during the ripening of Caciocavallo Palermitano cheese. Milk from two farms (A, extensive; B, intensive) was processed in traditional and standard conditions. Chemical and physical traits of cheeses were affected by the farming system and the cheese making technology, and changed during ripening. Content in NaCl and N soluble was lower, and paste consistency higher in cheese from the extensive farm and traditional technology, whereas ripening increased the N soluble and the paste yellow and consistency. The ripening time decreased the number of all lactic acid bacteria (LAB) groups, except enterococci detected at approximately constant levels (10(4) and 10(5) cfu g(-1) for standard and traditional cheeses, respectively), till 120 d of ripening. In all productions, at each ripening time, the levels detected for enterococci were lower than those for the other LAB groups. The canonical discriminant analysis of chemical, physical and microbiological data was able to separate cheeses from different productions and ripening time. The dominant LAB were isolated, phenotypically characterised and grouped, genetically differentiated at strain level and identified. Ten species of LAB were found and the strains detected at the highest levels were Pediococcus acidilactici and Lactobacillus casei. Ten strains, mainly belonging to Lactobacillus rhamnosus and Lactobacillus fermentum showed an antibacterial activity. The comparison of the polymorphic profiles of the LAB strains isolated from the wooden vat with those of the strains collected during maturation, showed the persistence of three enterococci in traditional cheeses, with Enterococcus faecalis found at dominant levels over the Enterococcus population till 120 d; the absence of these strains in the standard productions evidenced the contribution of vat LAB during Caciocavallo Palermitano cheese ripening. Copyright © 2014 Elsevier Ltd. All rights reserved.
Probiotic cheese production using Lactobacillus casei cells immobilized on fruit pieces.
Kourkoutas, Y; Bosnea, L; Taboukos, S; Baras, C; Lambrou, D; Kanellaki, M
2006-05-01
Lactobacillus casei cells were immobilized on fruit (apple and pear) pieces and the immobilized biocatalysts were used separately as adjuncts in probiotic cheese making. In parallel, cheese with free L. casei cells and cheese only from renneted milk were prepared. The produced cheeses were ripened at 4 to 6 degrees C and the effect of salting and ripening time on lactose, lactic acid, ethanol concentration, pH, and lactic acid bacteria viable counts were investigated. Fat, protein, and moisture contents were in the range of usual levels of commercial cheeses. Reactivation in whey of L. casei cells immobilized on fruit pieces after 7 mo of ripening showed a higher rate of pH decrease and lower final pH value compared with reactivation of samples withdrawn from the remaining mass of the cheese without fruit pieces, from cheese with free L. casei, and rennet cheese. Preliminary sensory evaluation revealed the fruity taste of the cheeses containing immobilized L. casei cells on fruit pieces. Commercial Feta cheese was characterized by a more sour taste, whereas no significant differences concerning cheese flavor were reported by the panel between cheese containing free L. casei and rennet cheese. Salted cheeses scored similar values to commercial Feta cheese, whereas unsalted cheese scores were significantly lower, but still acceptable to the sensory panelists.
21 CFR 133.173 - Pasteurized process cheese food.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Pasteurized process cheese food. 133.173 Section 133.173 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific...
21 CFR 133.173 - Pasteurized process cheese food.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Pasteurized process cheese food. 133.173 Section 133.173 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific...
21 CFR 133.173 - Pasteurized process cheese food.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Pasteurized process cheese food. 133.173 Section 133.173 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific...
Awad, Rezik Azab; Salama, Wafaa Mohammed; Farahat, Azza Mahmoud
2014-01-01
Healthy foods have been met with marked success in the last two decades. Lupine flours, protein concentrates, and isolates can be applied as a substance for enriching different kinds of food systems such as bakery products, lupine pasta, ice cream, milk substitutes. Imitation processed cheese is made from mixtures of dairy and/or non dairy proteins and fat/oils and is variously labeled analogue, artificial, extruded, synthetic and/or filled. Processed cheese can be formulated using different types of cheese with different degree of maturation, flavorings, emulsifying, salts, and/or several ingredients of non-dairy components. Non-dairy ingredients have been used in processed cheese for many dietary and economic reasons. In this study, lupine paste was used to substitute 25, 50, 75 and 100% of cheese in base formula of processed cheese analogue (PCA). Matured Ras cheese (3 months old) was manufactured using fresh cow milk. Soft cheese curd was manufactured using fresh buffalo skim milk. Emulsifying salts S9s and Unsalted butter were used. Lupine termis paste was prepared by soaking the seeds in tap water for week with changing the water daily, and then boiled in water for 2 hrs, cooled and peeled. The peeled seeds were minced, blended to get very fine paste and kept frozen until used. Lupine paste was used to substitute 25, 50, 75 and 100% of cheese in base formula of processed cheese analogue (PCA). The obtained PCA were analysed when fresh and during storage up to 3 months at 5±2°C for chemical composition, physical and sensory properties. The histopathological effect of lupines on alloxan diabetic albino rats and nutritional parameters were also investigated. Incorporation of lupine paste in PCA increased the ash and protein contents while meltability and penetration values of resultant products were decreased. Adding lupine in PSA formula had relatively increased the oil index and firmness of products. Feeding rats a balanced diet containing processed cheese enriched with lupine showed marked improvements in islets structure and lowered blood glucose compared to rats fed on basil diet (negative group). Springiness was greatly reduced with increasing the added ratio of lupine in the formula of cheese. All processed cheese produced were sensory acceptable but an overall acceptability was lowered by incorporating lupine in PCA formula. Body and texture score of PCA was the mostly affected by increasing lupine ratio in formula without significant difference up to 50% substitution of cheese base.
Short communication: jenny milk as an inhibitor of late blowing in cheese: a preliminary report.
Cosentino, C; Paolino, R; Freschi, P; Calluso, A M
2013-06-01
Late blowing on semihard and hard cheese may have an important economic effect on dairy production. Many studies have attempted to prevent this defect by physical treatment, the use of additives, and the use of bacteriocins. In this paper, we look at the effect of jenny milk as an inhibitor of blowing caused by clostridia and coliforms in ewe cheese making. Bulk ewe and jenny milk samples were collected in the morning by mechanical milking and were refrigerated at 4°C. On the collected samples, the count of somatic cells, coliforms, Clostridium butyricum, and Escherichia coli were determined. The bulk raw milk was divided in two 45-L vats: vat 1 was used as a control, whereas 0.5L of jenny milk was added to vat 2. Four semihard cheeses, weighing about 2 kg each, were made from each vat. Cheese making was replicated twice. After a ripening period of 60 d, the count of coliforms and of C. butyricum was determined. In the treated group, a significant inhibition of coliform bacteria was observed. The addition of jenny milk in cheese making may prove to be a useful and innovative approach for the inhibition of spore-forming clostridia strains. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
21 CFR 133.167 - Pasteurized blended cheese.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Pasteurized blended cheese. 133.167 Section 133... Cheese and Related Products § 133.167 Pasteurized blended cheese. Pasteurized blended cheese conforms to... ingredients, prescribed for pasteurized process cheese by § 133.169, except that: (a) In mixtures of two or...
21 CFR 133.175 - Pasteurized cheese spread.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Pasteurized cheese spread. 133.175 Section 133.175... Cheese and Related Products § 133.175 Pasteurized cheese spread. Pasteurized cheese spread is the food... statement of ingredients, prescribed for pasteurized process cheese spread by § 133.179, except that no...
USDA-ARS?s Scientific Manuscript database
The study of protein adsorption on the membrane surface is of great importance to cheese-making processors that use polymeric membrane-based processes to recover whey protein from the process waste streams. Quartz crystal microbalance with dissipation (QCM-D) is a lab-scale, fast analytical techniq...
Decision Processes Among the Elderly: Do They Differ?
ERIC Educational Resources Information Center
Goodchilds, Jacqueline D.; Bikson, Tora K.
Decision making processes among older adults were investigated within the context of grocery selection, using a stimulus array involving two product classes (bread and cheese) with 10 items per class. The sample (N=580) was stratified by sex, household status (living alone or with spouse), and age, employing three age groupings: 25-34 (young),…
Guo, Tingting; Xin, YongPing; Zhang, Chenchen; Ouyang, Xudong; Kong, Jian
2016-04-01
Phage endolysins have received increased attention in recent times as potential antibacterial agents and the biopreservatives in food production processes. Staphylococcus aureus is one of the most common pathogens in bacterial food poisoning outbreaks. In this study, the endolysin Lysdb, one of the two-component cell lysis cassette of Lactobacillus delbrueckii phage phiLdb, was shown to possess a muramidase domain and catalytic sites with homology to Chalaropsis-type lysozymes. Peptidoglycan hydrolytic bond specificity determination revealed that Lysdb was able to cleave the 6-O-acetylated peptidoglycans present in the cell walls of S. aureus. Turbidity reduction assays demonstrated that Lysdb could effectively lyse the S. aureus live cells under acidic and mesothermal conditions. To further evaluate the ability of Lysdb as a potential antibacterial agent against S. aureus in cheese manufacture, Lactobacillus casei BL23 was engineered to constitutively deliver active Lysdb to challenge S. aureus in lab-scale cheese making from raw milk. Compared with the raw milk, the viable counts of S. aureus were reduced by 10(5)-fold in the cheese inoculated with the engineered L. casei strain during the fermentation process, and the pathogenic bacterial numbers remained at a low level (10(4) CFU/g) after 6 weeks of ripening at 10 °C. Taken together, all results indicated that the Lysdb has the function as an effective tool for combating S. aureus during cheese manufacture from raw milk.
Rashid, Abdul Ahid; Huma, Nuzhat; Zahoor, Tahir; Asgher, Muhammad
2017-02-01
The recovery of milk constituents from cheese whey is affected by various processing conditions followed during production of Ricotta cheese. The objective of the present investigation was to optimize the temperature (60-90 °C), pH (3-7) and CaCl2 concentration (2·0-6·0 mm) for maximum yield/recovery of milk constituents. The research work was carried out in two phases. In 1st phase, the influence of these processing conditions was evaluated through 20 experiments formulated by central composite design (CCD) keeping the yield as response factor. The results obtained from these experiments were used to optimize processing conditions for maximum yield using response surface methodology (RSM). The three best combinations of processing conditions (90 °C, pH 7, CaCl2 6 mm), (100 °C, pH 5, CaCl2 4 mm) and (75 °C, pH 8·4, CaCl2 4 mm) were exploited in the next phase for Ricotta cheese production from a mixture of Buffalo cheese whey and skim milk (9 : 1) to determine the influence of optimized conditions on the cheese composition. Ricotta cheeses were analyzed for various physicochemical (moisture, fat, protein, lactose, total solids, pH and acidity indicated) parameters during storage of 60 d at 4 ± 2 °C after every 15 d interval. Ricotta cheese prepared at 90 °C, pH 7 and CaCl2 6 mm exhibited the highest cheese yield, proteins and total solids, while high fat content was recorded for cheese processed at 100 °C, pH 5 and 4 mm CaCl2 concentration. A significant storage-related increase in acidity and NPN was recorded for all cheese samples.
Quantitative Microbial Risk Assessment for Clostridium perfringens in Natural and Processed Cheeses
Lee, Heeyoung; Lee, Soomin; Kim, Sejeong; Lee, Jeeyeon; Ha, Jimyeong; Yoon, Yohan
2016-01-01
This study evaluated the risk of Clostridium perfringens (C. perfringens) foodborne illness from natural and processed cheeses. Microbial risk assessment in this study was conducted according to four steps: hazard identification, hazard characterization, exposure assessment, and risk characterization. The hazard identification of C. perfringens on cheese was identified through literature, and dose response models were utilized for hazard characterization of the pathogen. For exposure assessment, the prevalence of C. perfringens, storage temperatures, storage time, and annual amounts of cheese consumption were surveyed. Eventually, a simulation model was developed using the collected data and the simulation result was used to estimate the probability of C. perfringens foodborne illness by cheese consumption with @RISK. C. perfringens was determined to be low risk on cheese based on hazard identification, and the exponential model (r = 1.82×10−11) was deemed appropriate for hazard characterization. Annual amounts of natural and processed cheese consumption were 12.40±19.43 g and 19.46±14.39 g, respectively. Since the contamination levels of C. perfringens on natural (0.30 Log CFU/g) and processed cheeses (0.45 Log CFU/g) were below the detection limit, the initial contamination levels of natural and processed cheeses were estimated by beta distribution (α1 = 1, α2 = 91; α1 = 1, α2 = 309)×uniform distribution (a = 0, b = 2; a = 0, b = 2.8) to be −2.35 and −2.73 Log CFU/g, respectively. Moreover, no growth of C. perfringens was observed for exposure assessment to simulated conditions of distribution and storage. These data were used for risk characterization by a simulation model, and the mean values of the probability of C. perfringens foodborne illness by cheese consumption per person per day for natural and processed cheeses were 9.57×10−14 and 3.58×10−14, respectively. These results indicate that probability of C. perfringens foodborne illness by consumption cheese is low, and it can be used to establish microbial criteria for C. perfringens on natural and processed cheeses. PMID:26954204
Durham, Catherine A; Bouma, Andrea; Meunier-Goddik, Lisbeth
2015-12-01
Artisan cheese makers lack access to valid economic data to help them evaluate business opportunities and make important business decisions such as determining cheese pricing structure. The objective of this study was to utilize an economic model to evaluate the net present value (NPV), internal rate of return, and payback period for artisan cheese production at different annual production volumes. The model was also used to determine the minimum retail price necessary to ensure positive NPV for 5 different cheese types produced at 4 different production volumes. Milk type, cheese yield, and aging time all affected variable costs. However, aged cheeses required additional investment for aging space (which needs to be larger for longer aging times), as did lower yield cheeses (by requiring larger-volume equipment for pasteurization and milk handling). As the volume of milk required increased, switching from vat pasteurization to high-temperature, short-time pasteurization was necessary for low-yield cheeses before being required for high-yield cheeses, which causes an additional increase in investment costs. Because of these differences, high-moisture, fresh cow milk cheeses can be sold for about half the price of hard, aged goat milk cheeses at the largest production volume or for about two-thirds the price at the lowest production volume examined. For example, for the given model assumptions, at an annual production of 13,608kg of cheese (30,000 lb), a fresh cow milk mozzarella should be sold at a minimum retail price of $27.29/kg ($12.38/lb), whereas a goat milk Gouda needs a minimum retail price of $49.54/kg ($22.47/lb). Artisan cheese makers should carefully evaluate annual production volumes. Although larger production volumes decrease average fixed cost and improve production efficiency, production can reach volumes where it becomes necessary to sell through distributors. Because distributors might pay as little as 35% of retail price, the retail price needs to be higher to compensate. An artisan cheese company that has not achieved the recognition needed to achieve a premium price may not find distribution through distributors profitable. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Serrano, J; Velazquez, G; Lopetcharat, K; Ramírez, J A; Torres, J A
2004-10-01
A moderate high-pressure processing (HPP) treatment is proposed to accelerate the shredability of Cheddar cheese. High pressure processing (345 and 483 MPa for 3 and 7 min) applied to unripened (1 d old) stirred-curd Cheddar cheese yielded microstructure changes that differed with pressure level and processing time. Untreated and pressure-treated cheese shredded at d 27 and 1, respectively, shared similar visual and tactile sensory properties. The moderate (345 MPa) and the higher (483 MPa) pressure treatments reduced the presence of crumbles, increased mean shred particle length, improved length uniformity, and enhanced surface smoothness in shreds produced from unripened cheese. High-pressure processing treatments did not affect the mechanical properties of ripened cheese or the proteolytic susceptibility of milk protein. It was concluded that a moderate HPP treatment could allow processors to shred Cheddar cheese immediately after block cooling, reducing refrigerated storage costs, with expected savings of over 15 US dollars/1000 lb cheese, and allowing fewer steps in the handling of cheese blocks produced for shredding.
Engineering a cardosin B-derived rennet for sheep and goat cheese manufacture.
Almeida, Carla Malaquias; Gomes, David; Faro, Carlos; Simões, Isaura
2015-01-01
Different sheep and goat cheeses with world-renowned excellence are produced using aqueous extracts of Cynara cardunculus flowers as coagulants. However, the use of this vegetable rennet is mostly limited to artisanal scale production, and no effective solutions to large-scale industrial applications have been reported so far. In this sense, the development of a synthetic rennet based on the most abundant cardoon milk-clotting enzymes (cardosins) would emerge as a solution for scalability of production and for application of these proteases as alternative rennets in dairy industry. In this work, we report the development of a new cardosin B-derived rennet produced in the generally regarded as safe (GRAS) yeast Kluyveromyces lactis. Using a stepwise optimization strategy-consisting of culture media screening, complemented with a protein engineering approach with removal of the plant-specific domain, and a codon optimization step-we successfully improved cardosin B production yield (35×) in K. lactis. We demonstrated that the secreted enzyme displays similar proteolytic properties, such as casein digestion profiles as well as optimum pH (pH 4.5) and temperature (40 °C), with those of native cardosin B. From this optimization process resulted the rennet preparation Vegetable Rennet (VRen), requiring no downstream protein purification steps. The effectiveness of VRen in cheese production was demonstrated by manufacturing sheep, goat, and cow cheeses. Interestingly, the use of VRen resulted in a higher cheese yield for all three types of cheese when compared with synthetic chymosin. Altogether, these results clearly position VRen as an alternative/innovative coagulant for the cheese-making industry.
7 CFR 6.37 - Supersedure of Import Regulation 1, Revision 7.
Code of Federal Regulations, 2013 CFR
2013-01-01
...,064 13,064 SWISS OR EMMENTHALER CHEESE OTHER THAN WITH EYE FORMATION, GRUYERE-PROCESS CHEESE AND... ofAppendix 1&2 Appendix 3 Tokyo R. Uruguay R. Harmonized tariff schedule NON-CHEESE ARTICLES BUTTER...: NON-CHEESE ARTICLES 4,737,167 17,127,614 21,864,781 21,864,781 CHEESE ARTICLES CHEESE AND SUBSTITUTES...
21 CFR 133.174 - Pasteurized process cheese food with fruits, vegetables, or meats.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., vegetables, or meats. 133.174 Section 133.174 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Requirements for Specific Standardized Cheese and Related Products § 133.174 Pasteurized process cheese food... cheese food by § 133.173, except that: (1) Its milk fat content is not less than 22 percent. (2) It...
Sahan, Nuray; Yasar, Kurban; Hayaloglu, Ali A; Karaca, Oya B; Kaya, Ahmet
2008-02-01
Changes in chemical composition, proteolysis, lipolysis, texture, melting and sensory properties of low-fat Kashar cheese made with three different fat replacers (Simplesse D-100, Avicel Plus CM 2159 or beta-glucan) were investigated throughout ripening. The low-fat cheeses made with fat replacers were compared with full- and low-fat counterparts as controls. Reduction of fat caused increases in moisture and protein contents and decreases in moisture-in-non fat substance and yield values in low-fat cheeses. The use of fat replacers in the manufacture of low-fat Kashar cheese increased water binding capacity and improved overall quality of the cheeses. Use of fat replacer in low-fat cheese making has enhanced cheese proteolysis. All samples underwent lipolysis during ripening and low-fat cheeses with fat replacers had higher level of total free fatty acid than full- or low-fat control cheeses. Texture attributes and meltability significantly increased with addition of fat replacers. Sensory scores showed that the full-fat cheese was awarded best in all stages of ripening and low-fat variant of Kashar cheeses have inferior quality. However, fat replacers except beta-glucan improved the appearance, texture and flavour attributes of low-fat cheeses. When the fat replacers are compared, the low-fat cheese with Avicel Plus CM 2159 was highly acceptable and had sensory attributes closest to full-fat Kashar cheese.
Cipolat-Gotet, C; Cecchinato, A; Drake, M A; Marangon, A; Martin, B; Bittante, G
2018-07-01
Milk samples were taken once from a total of 1,224 Brown Swiss cows from 83 herds, and 1,500 mL of raw full-fat milk from each cow was processed according to a laboratory-scale model-cheese-making procedure. A sensory panel was assembled and the members trained to evaluate the sensory profile of individual model cheeses. The protocol scorecard was composed of 7 main sensory descriptors related to smell intensity, flavor intensity, taste (salt and sour), and texture (elasticity, firmness, and moisture), and 40 sensory attributes describing smell and flavor profiles. Sensory data were analyzed using a mixed model that included random effects of herd, animal, and panelist, as well as fixed effects of dairy system, days in milk, parity, and order of cheese presentation, and covariates for cheese weight and fat:protein ratio. The sensory profile was not much affected by the dairy farming systems included in the trial, but it was affected by farm within dairy system: cheeses from traditional dairy farms had a greater wood/humus attribute of both smell and flavor than those from modern farm. Of the modern farms, cheeses from those using total mixed rations including silages had a more intense smell of sour milk and a firmer, less moist texture than those using total mixed rations without silages. Moreover, for all the sensory traits, we found less variance related to herd and animals than that related to the panelists and the residuals. Stage of lactation was found to be the most important, whereas parity was not relevant. In particular, cheese smell intensity (and some related attributes) exhibited a quadratic trend with lower values in mid-lactation, whereas flavor and salt descriptors were more intense in the last period of lactation. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Faccia, Michele; Mastromatteo, Marianna; Conte, Amalia; Del Nobile, Matteo Alessandro
2012-11-01
In this work the effects of addition of different amounts of sodium chloride, during cheese making, on shelf life of mozzarella cheese were evaluated. The mozzarella cheese quality decay was assessed during storage at 9 °C by monitoring microbiological, sensory and physico-chemical changes in the product. Results showed that Pseudomonas spp. growth was responsible for cheese unacceptability, whereas the sensory quality did not limit cheese shelf life. In particular, the highest shelf life values were obtained for mozzarella without salt and with the lowest salt concentration (0·23 g NaCl), and amounted to about 5 and 4 d, respectively. On the contrary, high salt concentrations affected product shelf life, probably as a consequence of progressive solubilisation of cheese casein, due to the phenomenon of 'salting in'.
Dadousis, C; Cipolat-Gotet, C; Bittante, G; Cecchinato, A
2018-02-01
We studied the genetics of cheese-related latent variables (factors; Fs) for application in dairy cattle breeding. In total, 26 traits, recorded in 1264 Brown Swiss cows, were analyzed through multivariate factor analysis (MFA). Traits analyzed were descriptors of milk quality and yield (including protein fractions) and measures of coagulation, curd firmness (CF), cheese yields (%CY) and nutrient recoveries in the curd (REC). A total of 10 Fs (mutual orthogonal with a varimax rotation) were obtained. To assess the practical use of the Fs into breeding, we inferred their genetic parameters using single and bivariate animal models under a Bayesian framework. Heritability estimates (intra-herd) varied between 0.11 and 0.72 (F3: Yield and F7: κ-β-CN, respectively). The Fs underlined basic characteristics of the cheese-making process, milk components and udder health, while retaining 74% of the original variability. The first two Fs were indicators of the CY percentage (F1: %CY) and the CF process (F2: CF t ), and presented similar heritability estimates: 0.268 and 0.295, respectively. The third factor was associated with the yield of milk and solids (F3: Yield) characterized by a low heritability (0.108) and the fourth with the cheese nitrogen (N) (F4: Cheese N) that conversely appeared to be characterized by a high heritability (0.618). Three Fs were associated with the proportion of the basic milk caseins on total milk protein (F5: as1-β-CN, F7: κ-β-CN, F8: as2-CN), also highly heritable (0.565, 0.723 and 0.397, respectively) and 1 factor with the phosphorylated form of the as1-CN (F9: as1-CN-Ph; 0.318). Moreover, 1 factor was linked to the whey protein α-LA (F10: α-LA; 0.147). An indicator factor of a cow's udder health (F6: Udder health) was also obtained and showed a moderate heritability (0.204). Although the Fs were phenotypically uncorrelated, considerable additive genetic correlations existed among them, with highest values observed between F10: α-LA and F6: Udder health (-0.67) as well as between F9: as1-CN-Ph and F3: Yield (-0.60). Our results show the usefulness of MFA in dairy cattle breeding. The ability to replace a large number of variables with a few latent indicators of the same biological meaning marks MFA as a valuable tool for developing breeding strategies to improve cow's cheese-related traits.
[Formation of nitrosamines in cheese products].
Klein, D; Keshavarz, A; Lafont, P; Hardy, J; Debry, G
1980-01-01
Several strains of micromycetes used as fermentation agents in the cheese industry or having led to accidents during cheese making are able to favor the formation of nitrosamines in 60% of the cases. The concentrations observed are similar to those found by other authors with other microorganisms. The results obtained in a semi-synthetic medium are checked during the ripening of experimental camembert type cheese made from milk containing nitrates and cultured with a strain of Penicillium camemberti, which favors very much the synthesis of nitrosamines. The amount of nitrosodimethylamine formed in this cheese increases from 5 to 20 ppb during ripening. A tentative explanation of the mechanism of formation is outlined.
Biotechnology, Industry Study, Spring 2009
2009-01-01
roots to zymotechnology ( fermentation ), practiced by the Sumerians and Babylonians as early as 6,000 B.C.3 This core technology expanded to other...applications, including using yeast to make bread, bacteria to derive yogurt , and molds to make cheeses.4 Early biotechnology endeavors included...alcohol or ethanol. This first generation process uses the fermentation of sugars or starches to produce ethanol but is dependent upon corn, a
Bellio, A; Bianchi, D M; Vitale, N; Vernetti, L; Gallina, S; Decastelli, L
2018-06-01
This study was conducted to describe the cheese-making procedure of Fontina Protected Designation of Origin (PDO) cheese and to evaluate the behavior of Escherichia coli O157:H7 during cheese manufacture and ripening. The study was divided into 2 phases: the production of Fontina PDO cheese was monitored at 3 different dairies in the Aosta Valley and an E. coli O157 challenge was conducted at a fourth dairy. The dairies employ different commercial starter cultures for cheese making. The growth of lactic acid bacilli (LAB) and the decrease in pH were slower in the first hours and the LAB concentrations were overall higher in dairy A than in the other 2 dairies. The pH remained substantially unchanged during ripening (range 5.2 to 5.4) in all dairies. Water activity remained constant at around 0.98 until d 21, when it decreased to around 0.97 until d 80 in dairies A and B and 0.95 in dairy E. Whole raw cow milk was used for making Fontina cheese according to the standard procedure. For the experimental production, the milk was inoculated with E. coli O157:H7 at a concentration of approximately 5 log 10 cfu/mL and commercial starter cultures were used according to the Fontina PDO regulation. An increase of 2.0 log 10 cfu/g in E. coli O157:H7 was observed during the first 9.5 h of cheese making, followed by a decrease at 46 h when pH decreased to 5.4 in all trials. Fresh cheeses were salted and held at 10°C for ripening for 80 d. Water activity was decreased to 0.952 at the end of the ripening stage. The LAB concentrations declined gradually; this trend was more marked for the lactobacilli than either the thermophilic or the mesophilic lactococci. The increase in LAB count and the decrease in pH in the first hours did not seem to affect E. coli O157 growth. Ripening was found to inhibit pathogen survival, however, as seen in the reduction of 3 log 10 from the maximum concentration measured during the earlier stages of production. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Microstructure and Composition of Full Fat Cheddar Cheese Made with Ultrafiltered Milk Retentate
Ong, Lydia; Dagastine, Raymond R.; Kentish, Sandra E.; Gras, Sally L.
2013-01-01
Milk protein is often standardised prior to cheese-making using low concentration factor ultrafiltration retentate (LCUFR) but the effect of LCUFR addition on the microstructure of full fat gel, curd and Cheddar cheese is not known. In this work, Cheddar cheeses were made from cheese-milk with or without LCUFR addition using a protein concentration of 3.7%–5.8% w/w. The fat lost to sweet whey was higher in cheese made from cheese-milk without LCUFR or from cheese-milk with 5.8% w/w protein. At 5.8% w/w protein concentration, the porosity of the gel increased significantly and the fat globules within the gel and curd tended to pool together, which possibly contributed to the higher fat loss in the sweet whey. The microstructure of cheese from cheese-milk with a higher protein concentration was more compact, consistent with the increased hardness, although the cohesiveness was lower. These results highlight the potential use of LCUFR for the standardization of protein concentration in cheese-milk to 4%–5% w/w (equivalent to a casein to total protein ratio of 77%–79% w/w) to increase yield. Beyond this concentration, significant changes in the gel microstructure, cheese texture and fat loss were observed. PMID:28239117
Survival of foot-and-mouth disease virus in cheese.
Blackwell, J H
1976-09-01
Persistence of foot-and-mouth disease virus during the manufacture of Cheddar, Mozzarella, Camembert cheese prepared from milk of cows experimentally infected with the virus was studied. Cheese samples were made on a laboratory scale with commercial lactic acid starter cultures and the microbial protease MARZYME as a coagulant. Milk was heated at different temperatures for different intervals before it was made into cheese. Food-and-mouth disease virus survived the acidic conditions of Cheddar and Camembert cheese processing but not that of Mozzarella. Foot-and-mouth disease virus survived processing but not curing for 30 days in Cheddar cheese preparaed from heated milk. However, the virus survived curing for 60 days but not for 120 days in cheese (pH 5) prepared from unheated milk. Foot-and-mouth disease virus survived in Camembert cheese (pH 5) for 21 days at 2 C but not for 35 days.
7 CFR 58.711 - Cheddar, colby, washed or soaked curd, granular or stirred curd cheese.
Code of Federal Regulations, 2011 CFR
2011-01-01
... stirred curd cheese. 58.711 Section 58.711 Agriculture Regulations of the Department of Agriculture... soaked curd, granular or stirred curd cheese. Cheese, used in the manufacture of pasteurized process cheese products should possess a pleasing and desirable taste and odor consistent with the age of the...
7 CFR 58.711 - Cheddar, colby, washed or soaked curd, granular or stirred curd cheese.
Code of Federal Regulations, 2010 CFR
2010-01-01
... stirred curd cheese. 58.711 Section 58.711 Agriculture Regulations of the Department of Agriculture... soaked curd, granular or stirred curd cheese. Cheese, used in the manufacture of pasteurized process cheese products should possess a pleasing and desirable taste and odor consistent with the age of the...
Sicard, M; Perrot, N; Leclercq-Perlat, M-N; Baudrit, C; Corrieu, G
2011-01-01
Modeling the cheese ripening process remains a challenge because of its complexity. We still lack the knowledge necessary to understand the interactions that take place at different levels of scale during the process. However, information may be gathered from expert knowledge. Combining this expertise with knowledge extracted from experimental databases may allow a better understanding of the entire ripening process. The aim of this study was to elicit expert knowledge and to check its validity to assess the evolution of organoleptic quality during a dynamic food process: Camembert cheese ripening. Experiments on a pilot scale were carried out at different temperatures and relative humidities to obtain contrasting ripening kinetics. During these experiments, macroscopic evolution was evaluated from an expert's point of view and instrumental measurements were carried out to simultaneously monitor microbiological, physicochemical, and biochemical kinetics. A correlation of 76% was established between the microbiological, physicochemical, and biochemical data and the sensory phases measured according to expert knowledge, highlighting the validity of the experts' measurements. In the future, it is hoped that this expert knowledge may be integrated into food process models to build better decision-aid systems that will make it possible to preserve organoleptic qualities by linking them to other phenomena at the microscopic level. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
7 CFR Appendices 1-3 to Subpart - Dairy Tariff-Rate Import Quota Licensing
Code of Federal Regulations, 2013 CFR
2013-01-01
...,064 13,064 SWISS OR EMMENTHALER CHEESE OTHER THAN WITH EYE FORMATION, GRUYERE-PROCESS CHEESE AND...-CHEESE ARTICLES BUTTER (G-NOTE 6) 4,733,992 2,243,008 6,977,000 6,977,000 EU-25 75,000 21,161 96,161 New...,080,500 TOTAL: NON-CHEESE ARTICLES 4,737,167 17,127,614 21,864,781 21,864,781 CHEESE ARTICLES CHEESE...
Traditional cheeses: rich and diverse microbiota with associated benefits.
Montel, Marie-Christine; Buchin, Solange; Mallet, Adrien; Delbes-Paus, Céline; Vuitton, Dominique A; Desmasures, Nathalie; Berthier, Françoise
2014-05-02
The risks and benefits of traditional cheeses, mainly raw milk cheeses, are rarely set out objectively, whence the recurrent confused debate over their pros and cons. This review starts by emphasizing the particularities of the microbiota in traditional cheeses. It then describes the sensory, hygiene, and possible health benefits associated with traditional cheeses. The microbial diversity underlying the benefits of raw milk cheese depends on both the milk microbiota and on traditional practices, including inoculation practices. Traditional know-how from farming to cheese processing helps to maintain both the richness of the microbiota in individual cheeses and the diversity between cheeses throughout processing. All in all more than 400 species of lactic acid bacteria, Gram and catalase-positive bacteria, Gram-negative bacteria, yeasts and moulds have been detected in raw milk. This biodiversity decreases in cheese cores, where a small number of lactic acid bacteria species are numerically dominant, but persists on the cheese surfaces, which harbour numerous species of bacteria, yeasts and moulds. Diversity between cheeses is due particularly to wide variations in the dynamics of the same species in different cheeses. Flavour is more intense and rich in raw milk cheeses than in processed ones. This is mainly because an abundant native microbiota can express in raw milk cheeses, which is not the case in cheeses made from pasteurized or microfiltered milk. Compared to commercial strains, indigenous lactic acid bacteria isolated from milk/cheese, and surface bacteria and yeasts isolated from traditional brines, were associated with more complex volatile profiles and higher scores for some sensorial attributes. The ability of traditional cheeses to combat pathogens is related more to native antipathogenic strains or microbial consortia than to natural non-microbial inhibitor(s) from milk. Quite different native microbiota can protect against Listeria monocytogenes in cheeses (in both core and surface) and on the wooden surfaces of traditional equipment. The inhibition seems to be associated with their qualitative and quantitative composition rather than with their degree of diversity. The inhibitory mechanisms are not well elucidated. Both cross-sectional and cohort studies have evidenced a strong association of raw-milk consumption with protection against allergic/atopic diseases; further studies are needed to determine whether such association extends to traditional raw-milk cheese consumption. In the future, the use of meta-omics methods should help to decipher how traditional cheese ecosystems form and function, opening the way to new methods of risk-benefit management from farm to ripened cheese. Published by Elsevier B.V.
Forgrave, R; Donaghy, J A; Fisher, A; Rowe, M T
2014-10-01
Reports have highlighted the absence of contemporary peer reviewed publications pertaining to Mycobacterium bovis culture from raw milk and cheese. By replicating traditional methods, cheese-making methodology and equipment were devised to produce Cheddar (n = 6) and Caerphilly (n = 3) artificially contaminated with M. bovis (three genotypes) under stringent laboratory-containment guidelines for handling hazardous microbiological material. Middlebrook 7H11, modified for M. bovis isolation, was assessed for capacity to enumerate M. bovis despite changing cheese microflora and prolonged M. bovis exposure to the cheese matrix using maturing cheese test portions (n = 63; up to 16 weeks). Malachite green (MG) containing media isolated M. bovis at significantly (P < 0·05) lower levels than unmodified Middlebrook 7H11 agar despite MG being a common adjunct of Middlebrook 7H11 agar modified for M. bovis growth. Subsequently, a selective MG-free Middlebrook 7H11 agar modified using haemolysed red cells and calf serum was demonstrated as the best performing (P < 0·05) medium for recovery of M. bovis from typical UK cheese types, Cheddar and Caerphilly. Significance and impact of the study: Following increased M. bovis infection of UK cattle, the risk posed to consumers from consumption of unpasteurized milk and dairy products has changed. Furthermore, published methods for the culture and molecular detection of M. bovis in raw milk products are limited. Cheese-making protocols and M. bovis culture media reported here provide tools for further investigation of M. bovis survival during all stages of cheese manufacture and could inform future assessment of the risk to consumers from M. bovis contamination of unpasteurized dairy products. © 2014 The Society for Applied Microbiology.
Neocleous, M; Barbano, D M; Rudan, M A
2002-10-01
The effect of microfiltration (MF) on the composition of Cheddar cheese, fat, crude protein (CP), calcium, total solids recovery, and Cheddar cheese yield efficiency (i.e., composition adjusted yield divided by theoretical yield) was determined. Raw skim milk was microfiltered twofold using a 0.1-microm ceramic membrane at 50 degrees C. Four vats of cheese were made in one day using milk at lx, 1.26x, 1.51x, and 1.82x concentration factor (CF). An appropriate amount of cream was added to achieve a constant casein (CN)-to-fat ratio across treatments. Cheese manufacture was repeated on four different days using a randomized complete block design. The composition of the cheese was affected by MF. Moisture content of the cheese decreased with increasing MF CF. Standardization of milk to a constant CN-to-fat ratio did not eliminate the effect of MF on cheese moisture content. Fat recovery in cheese was not changed by MF. Separation of cream prior to MF, followed by the recombination of skim or MF retentate with cream resulted in lower fat recovery in cheese for control and all treatments and higher fat loss in whey when compared to previous yield experiments, when control Cheddar cheese was made from unseparated milk. Crude protein, calcium, and total solids recovery in cheese increased with increasing MF CF, due to partial removal of these components prior to cheese making. Calcium and calcium as a percentage of protein increased in the cheese, suggesting an increase in calcium retention in the cheese with increasing CF. While the actual and composition adjusted cheese yields increased with increasing MF CF, as expected, there was no effect of MF CF on cheese yield efficiency.
Use of potassium chloride and flavor enhancers in low sodium Cheddar cheese.
Grummer, J; Bobowski, N; Karalus, M; Vickers, Z; Schoenfuss, T
2013-03-01
We investigated use of potassium chloride (KCl) to maintain both the salty flavor and to replace the preservative effects of salt when reducing the sodium content in natural cheese. Because salt replacers can affect flavor because of inherent off-flavors, such as bitter and metallic, we examined the use of flavor enhancers for their ability to modulate some of these undesirable sensory effects. Stirred-curd Cheddar-style cheese was manufactured using 2 cheese-making procedures (different curd knife sizes and target salting titratable acidities), in duplicate. Curd was salted with sodium chloride (NaCl) or 60% reduced sodium blends of NaCl and KCl (2 different sources). Curd was also salted at a 60% reduced sodium rate with NaCl and KCl with added flavor enhancers. A hydrolyzed vegetable protein/yeast extract blend, a natural "potassium-blocking type" flavor, disodium inosinate, or disodium guanylate were each blended with the reduced sodium salt blend and added to curd at the salting step. The resulting blocks of cheese were aged for 5 mo and evaluated monthly for chemical, microbial, and sensory differences. At 5 mo of aging, we measured liking for the cheeses using a consumer panel. Overall, cheeses were well liked by the consumer panel, and the scores of reduced sodium cheese with 2 different KCl sources were not different from those of the full-sodium control. The addition of flavor enhancers to Cheddar curd had mixed results, with one improving the consumer flavor liking only slightly over KCl, and one (disodium inosinate) significantly reducing consumer flavor liking scores, presumably due to the amount of umami flavor it contributed. Potassium chloride replacement salts sourced from different manufacturers affected the chemical and flavor properties of cheese, and changes to pH and temperature targets may be necessary to yield cheese with the moisture and pH targets desired. The cheese-making procedure used also influenced flavors observed, which resulted in higher levels of brothy flavor in cheese made with smaller curd knives and a higher target salting titratable acidity. This effect resulted in lower consumer liking scores. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Vinderola, G; Prosello, W; Molinari, F; Ghiberto, D; Reinheimer, J
2009-10-31
The growth capacity of probiotic Lactobacillus paracasei A13, Bifidobacterium bifidum A1 and L. acidophilus A3 in a probiotic fresh cheese commercialized in Argentina since 1999 was studied during its manufacture and refrigerated storage at 5 degrees C and 12 degrees C for 60 days. Additionally, viable cell counts for probiotic bacteria in the commercial product are reported for batch productions over the last 9 years. L. paracasei A13 grew a half log order at 43 degrees C during the manufacturing process of probiotic cheese and another half log order during the first 15 days of storage at 5 degrees C, without negative effects on sensorial properties of the product. However, a negative impact on sensorial characteristics was observed when cheeses were stored at 12 degrees C for 60 days. Colony counts in the commercial product showed variations from batch to batch over the last 9 years. However, colony counts for each probiotic bacterium were always above the minimum suggested. Growth capacity of L. paracasei A13 in cheese during manufacturing and storage, mainly at temperatures commonly found in retail display cabinets in supermarkets (12 degrees C or more), would make it necessary to re-evaluate its role as possible probiotic starter and the consequences on food sensorial characteristics if storage temperature during commercial shelf life is not tightly controlled.
Factors that contribute to the botulinal safety of reduced-fat and fat-free process chesse products.
Glass, Kathleen A; Johnson, Eric A
2004-08-01
The effects of fat, type of natural cheese, and adjunct process cheese ingredients were evaluated to determine factors that contribute to the botulinal safety of reduced-fat (RF) process cheese products stored at 30 degrees C. In the first set of experiments, pasteurized process cheese products (PPCPs) were formulated using full-fat (FF) Cheddar, 30% RF Cheddar, or skim milk (SM) cheese as cheese-base types and were standardized to 59% moisture, pH 5.75, 2.8 or 3.2% total salts, and 15 to 19% fat. Subsequent trials evaluated the effect of fat levels and adjunct ingredients in PPCPs made with SM, RF, and FF cheese (final fat levels, less than 1, 13, and 24%, respectively). When fat levels of PPCPs were comparable (15.1, 19.1, and 16.2 for product manufactured with SC, RE and FF cheese, respectively), botulinal toxin production was delayed for up to 2 days in PPCPs formulated with SM compared with RF or FF cheese; however, the effect was not statistically significant. When fat levels were reduced to less than 1% in SM PPCPs, toxin production was delayed 2 weeks in products made with SM compared with RF or FF cheese manufactured with 13 or 24% fat, respectively. The antibotulinal effect of adjunct ingredients varied among the products manufactured with different fat levels. Sodium lactate significantly delayed toxin production (P < 0.05) for all fat levels tested, whereas beta-glucan fat replacer did not delay toxin production. An enzyme-modified cheese used as a flavor enhancer significantly delayed toxin production (P < 0.05) in SM (less than 1% fat) products but had little to no inhibitory effect in RF (13% fat) and FF (24% fat) cheese products. Similarly, monolaurin increased the time to detectable toxin in SM products but was ineffective in RF or FF cheese products. These results verify that RF PPCPs exhibit greater safety than FF products and that safety may be enhanced by using certain adjunct ingredients as antimicrobials.
Suitability of a new mixed-strain starter for manufacturing uncooked raw ewe's milk cheeses.
Feutry, Fabienne; Torre, Paloma; Arana, Ines; Garcia, Susana; Pérez Elortondo, Francisco J; Berthier, Françoise
2016-06-01
Most raw milk Ossau-Iraty cheeses are currently manufactured on-farm using the same commercial streptococcal-lactococcal starter (S1). One way to enhance the microbial diversity that gives raw milk its advantages for cheese-making is to formulate new starters combining diverse, characterized strains. A new starter (OI) combining 6 raw milk strains of lactococci, recently isolated and characterized, was tested in parallel with the current starter by making 12 Ossau-Iraty raw milk cheeses at 3 farmhouses under the conditions prevailing at each farm. Compliance of the sensory characteristics with those expected by the Ossau-Iraty professionals, physicochemical parameters and coliforms were quantified at key manufacturing steps. The new starter OI gave cheeses having proper compliance but having lower compliance than the S1 cheeses under most manufacturing conditions, while managing coliform levels equally well as starter S1. This lower compliance relied more on the absence of Streptococcus thermophilus in starter OI, than on the nature of the lactoccocal strains present in starter OI. The study also shows that variations in 5 technological parameters during the first day of manufacture, within the range of values applied in the 3 farmhouses, are powerful tools for diversifying the scores for the sensory characteristics investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Queso Fresco (QF), a popular high-moisture, high-pH Hispanic-style cheese sold in the U.S., underwent high-pressure processing (HPP), which has the potential to improve the safety of cheese, to determine the effects of this process on quality traits of the cheese. Starter-free rennet-set QF (manufa...
Occurrence of Propionibacterium freudenreichii bacteriophages in swiss cheese.
Gautier, M; Rouault, A; Sommer, P; Briandet, R
1995-01-01
We isolated bacteriophages active against Propionibacterium freudenreichii from 16 of 32 swiss cheese samples. Bacteriophage concentrations ranged from 14 to 7 x 10(5) PFU/g, depending on the sample and the sensitive strain used for detection. Only a few strains, 8 of the 44 strains of P. freudenreichii in our collection, were sensitive. We observed that multiplication of bacteriophages occurred in the cheese loaf during multiplication of propionibacteria in a warm curing room, but it seems that these bacteriophages have no adverse effect on the development of the propionic flora. We also found that sensitive cells, originating from either the starter or the cheese-making milk, were present at a high level (10(9) CFU/g) in the cheese. PMID:7618869
Banville, V; Morin, P; Pouliot, Y; Britten, M
2013-08-01
The effect of manufacturing factors on the shreddability and meltability of pizza Mozzarella cheese was studied. Four experimental cheeses were produced with 2 concentrations of denatured whey protein added to milk (0 or 0.25%) and 2 renneting pH values (6.4 or 6.5). The cheeses were aged 8, 22, or 36d before testing. Shreddability was assessed by the presence of fines, size of the shreds, and adhesion to the blade after shredding at 4, 13, or 22°C. A semi-empirical method was developed to measure the matting behavior of shreds by simulating industrial bulk packaging. Rheological measurements were performed on cheeses with and without a premelting treatment to assess melt and postmelt cheese physical properties. Lowering the pH of milk at renneting and aging the cheeses generally decreased the fines production during shredding. Adding whey protein to the cheeses also altered the fines production, but the effect varied depending on the renneting and aging conditions. The shred size distribution, adhesion to the blade, and matting behavior of the cheeses were adversely affected by increased temperature at shredding. The melting profiles obtained by rheological measurements showed that better meltability can be achieved by lowering the pH of milk at renneting or aging the cheese. The premelted cheeses were found to be softer at low temperatures (<40°C) and harder at high temperatures (>50°C) compared with the cheeses that had not undergone the premelting treatment. Understanding and controlling milk standardization, curd acidification, and cheese aging are essential for the production of Mozzarella cheese with desirable shreddability and meltability. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Modeling of Helicopter Pilot Misperception During Overland Navigation
2012-03-01
into obstacles in the terrain. The Navy Safety Center has adopted James Reason’s Swiss cheese model for understanding the underlying process that...results in mishaps (Reason, 2000). The Swiss cheese model relates a system to a stack of slices of Swiss cheese . Each slice of cheese is a layer of
21 CFR 133.169 - Pasteurized process cheese.
Code of Federal Regulations, 2012 CFR
2012-04-01
... of the following: A vinegar, lactic acid, citric acid, acetic acid, and phosphoric acid, in such... paragraph (d) of this section may be used. (2) During its preparation, pasteurized process cheese is heated... determined by the methods prescribed in § 133.5(a), (b), and (d). (6) The weight of each variety of cheese in...
21 CFR 133.169 - Pasteurized process cheese.
Code of Federal Regulations, 2013 CFR
2013-04-01
... of the following: A vinegar, lactic acid, citric acid, acetic acid, and phosphoric acid, in such... paragraph (d) of this section may be used. (2) During its preparation, pasteurized process cheese is heated... determined by the methods prescribed in § 133.5(a), (b), and (d). (6) The weight of each variety of cheese in...
21 CFR 133.169 - Pasteurized process cheese.
Code of Federal Regulations, 2014 CFR
2014-04-01
... of the following: A vinegar, lactic acid, citric acid, acetic acid, and phosphoric acid, in such... paragraph (d) of this section may be used. (2) During its preparation, pasteurized process cheese is heated... determined by the methods prescribed in § 133.5(a), (b), and (d). (6) The weight of each variety of cheese in...
Nucleic acid-based approaches to investigate microbial-related cheese quality defects
O'Sullivan, Daniel J.; Giblin, Linda; McSweeney, Paul L. H.; Sheehan, Jeremiah J.; Cotter, Paul D.
2012-01-01
The microbial profile of cheese is a primary determinant of cheese quality. Microorganisms can contribute to aroma and taste defects, form biogenic amines, cause gas and secondary fermentation defects, and can contribute to cheese pinking and mineral deposition issues. These defects may be as a result of seasonality and the variability in the composition of the milk supplied, variations in cheese processing parameters, as well as the nature and number of the non-starter microorganisms which come from the milk or other environmental sources. Such defects can be responsible for production and product recall costs and thus represent a significant economic burden for the dairy industry worldwide. Traditional non-molecular approaches are often considered biased and have inherently slow turnaround times. Molecular techniques can provide early and rapid detection of defects that result from the presence of specific spoilage microbes and, ultimately, assist in enhancing cheese quality and reducing costs. Here we review the DNA-based methods that are available to detect/quantify spoilage bacteria, and relevant metabolic pathways in cheeses and, in the process, highlight how these strategies can be employed to improve cheese quality and reduce the associated economic burden on cheese processors. PMID:23346082
Comparison of the cariogenicity of some processed cheeses.
Drummond, B K; Chandler, N P; Meldrum, A M
2002-12-01
Cheeses have been investigated for their potential cariogenicity in several studies and have been shown to produce little change in the resting pH in dental plaque and little or no demineralisation of enamel in most intra-oral cariogenicity studies. The aim of the present study was to investigate the cariogenicity of four processed cheese formulations. Enamel demineralisation was measured intra-orally in bovine enamel, and aliquots of 10g of each test cheese were used to assess plaque pH using the plaque harvesting technique after the San Antonio criteria. In a second experiment, the same cheeses were assessed for their effects on enamel using the intra-oral cariogenicity test (ICT) with bovine enamel. None of the four cheeses caused pH drops below the critical pH and two of the cheeses raised the pH slightly. The effects on pH were all significantly different from those of the sucrose saliva control. None of the cheeses produced microhardness changes that were statistically significantly different from the saliva control. None of these cheeses as tested were found to lead to acidogenicity and by inference to be cariogenic. They were therefore deemed to be safe for teeth when used as a food.
Johler, Sophia; Weder, Delphine; Bridy, Claude; Huguenin, Marie-Claude; Robert, Luce; Hummerjohann, Jörg; Stephan, Roger
2015-05-01
On October 1, 2014, children and staff members at a Swiss boarding school consumed Tomme, a soft cheese produced from raw cow milk. Within the following 7h, all 14 persons who ingested the cheese fell ill, including 10 children and 4 staff members. Symptoms included abdominal pain and violent vomiting, followed by severe diarrhea and fever. We aim to present this food poisoning outbreak and characterize the causative agent. The duration of the incubation period was dependent of the age of the patient: 2.5h in children under 10 yr of age, 3.5h in older children and teenagers, and 7h in adults. The soft cheese exhibited low levels of staphylococcal enterotoxin (SE) A (>6ng of SEA/g of cheese) and high levels of staphylococcal enterotoxin D (>200ng of SED/g of cheese). Counts of 10(7) cfu of coagulase-positive staphylococci per gram of cheese were detected, with 3 different Staphylococcus aureus strains being present at levels >10(6) cfu/g. The 3 strains were characterized using spa typing and a DNA microarray. An enterotoxin-producing strain exhibiting sea and sed was identified as the source of the outbreak. The strain was assigned to spa type tbl 3555 and clonal complex 8, and it exhibited genetic criteria consistent with the characteristics of a genotype B strain. This genotype comprises bovine Staph. aureus strains exclusively associated with very high within-herd prevalence of mastitis and has been described as a major contaminant in Swiss raw milk cheese. It is therefore highly likely that the raw milk used for Tomme production was heavily contaminated with Staph. aureus and that levels further increased due to growth of the organism and physical concentration effects during the cheese-making process. Only a few staphylococcal food poisoning outbreaks involving raw milk products have been described. Still, in view of this outbreak and the possible occurrence of other foodborne pathogens in bovine milk, consumption of raw milk and soft cheese produced from raw milk constitutes a health risk, particularly when young children or other members of sensitive populations are involved. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kowalska, Małgorzata; Janas, Sławomir; Woźniak, Magdalena
2018-04-01
The aim of this work was the presentation of an alternative method of determination of the total dry mass content in processed cheese. The authors claim that the presented method can be used in industry's quality control laboratories for routine testing and for quick in-process control. For the test purposes both reference method of determination of dry mass in processed cheese and moisture analyzer method were used. The tests were carried out for three different kinds of processed cheese. In accordance with the reference method, the sample was placed on a layer of silica sand and dried at the temperature of 102 °C for about 4 h. The moisture analyzer test required method validation, with regard to drying temperature range and mass of the analyzed sample. Optimum drying temperature of 110 °C was determined experimentally. For Hochland cream processed cheese sample, the total dry mass content, obtained using the reference method, was 38.92%, whereas using the moisture analyzer method, it was 38.74%. An average analysis time in case of the moisture analyzer method was 9 min. For the sample of processed cheese with tomatoes, the reference method result was 40.37%, and the alternative method result was 40.67%. For the sample of cream processed cheese with garlic the reference method gave value of 36.88%, and the alternative method, of 37.02%. An average time of those determinations was 16 min. Obtained results confirmed that use of moisture analyzer is effective. Compliant values of dry mass content were obtained for both of the used methods. According to the authors, the fact that the measurement took incomparably less time for moisture analyzer method, is a key criterion of in-process control and final quality control method selection.
21 CFR 133.170 - Pasteurized process cheese with fruits, vegetables, or meats.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., or meats. 133.170 Section 133.170 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... Requirements for Specific Standardized Cheese and Related Products § 133.170 Pasteurized process cheese with... by § 133.169, except that: (1) Its moisture content may be 1 percent more, and the milk fat content...
21 CFR 133.180 - Pasteurized process cheese spread with fruits, vegetables, or meats.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., vegetables, or meats. 133.180 Section 133.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Requirements for Specific Standardized Cheese and Related Products § 133.180 Pasteurized process cheese spread... spread by § 133.179, except that: (1) It contains one or any mixture of two or more of the following: Any...
Distribution of Radiostrontium and Radiocesium in Milk and Milk Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lengemann, F W
1962-04-01
A study was conducted to determine whether radioactive milk manufactured into butter, cheddar cheese, and cottage cheese would produce a less contaminated food. The results show a low degree of transfer of strontium and cesium from whole milk to butter. In the case of cheddar cheese and cottage cheese no marked reduction in the transfer of strontium was noted. On the other hand, the transfer of cesium was markedly reduced in both cheddar and cottage cheese. It is concluded that manufacturing techniques can be developed making it possible to utilize most of the potential food value of radioactive contaminated milkmore » in a form lower in radionuclide content than the parent raw milk. (Public Health Eng. Abstr., 42: No. 9, Sept. 1962)« less
Galmarini, Mara V; Loiseau, Anne-Laure; Visalli, Michel; Schlich, Pascal
2016-10-01
Though the gastronomic sector recommends certain wine-cheese associations, there is little sensory evidence on how cheese influences the perception of wine. It was the aim of this study to dynamically characterize 4 wines as they would be perceived when consumed with and without cheese. The tasting protocol was based on multi-intake temporal dominance of sensations (TDS) coupled with hedonic rating. In the 1st session, 31 French wine and cheese consumers evaluated the wines (Pacherenc, Sancerre, Bourgogne, and Madiran) over 3 consecutive sips. In the following sessions, they performed the same task, but eating small portions of cheese (Epoisses, Comté, Roquefort, Crottin de Chavignol) between sips. All cheeses were tasted with all wines over 4 sessions. TDS data were mainly analyzed in terms of each attribute's duration of dominance by analysis of variance, multivariate analysis of variance, and canonical variate analysis. Results showed that cheese consumption had an impact (P < 0.1) on dominance duration of attributes and on preference for most wines. For example, in Madiran, all cheeses reduced dominance duration (P < 0.01) of astringency and sourness and increased duration of red fruit aroma. Although the number of consumers was small to make extended general conclusions on wine's preference, significant changes were observed before and after cheese intake. © 2016 Institute of Food Technologists®.
Evaluation of freeze-dried kefir coculture as starter in feta-type cheese production.
Kourkoutas, Y; Kandylis, P; Panas, P; Dooley, J S G; Nigam, P; Koutinas, A A
2006-09-01
The use of freeze-dried kefir coculture as a starter in the production of feta-type cheese was investigated. Maturation of the produced cheese at 4 degrees C was monitored for up to 70 days, and the effects of the starter culture, the salting method, and the ripening process on quality characteristics were studied. The use of kefir coculture as a starter led to increased lactic acid concentrations and decreased pH values in the final product associated with significantly higher conversion rates compared to salted rennet cheese. Determination of bacterial diversity at the end of the ripening process in salted kefir and rennet cheeses by denaturing gradient gel electrophoresis technology, based on both DNA and RNA analyses, suggested a potential species-specific inhibition of members of the genera Staphylococcus and Psychrobacter by kefir coculture. The main active microbial associations in salted kefir cheese appeared to be members of the genera Pseudomonas and Lactococcus, while in salted rennet cheese, Oxalobacteraceae, Janthinobacterium, Psychrobacter, and Pseudomonas species were noted. The effect of the starter culture on the production of aroma-related compounds responsible for cheese flavor was also studied by the solid-phase microextraction-gas chromatography-mass spectrometry technique. Kefir coculture also appeared to extend the shelf life of unsalted cheese. Spoilage of kefir cheese was observed on the 9th and 20th days of preservation at 10 and 5 degrees C, respectively, while spoilage in the corresponding rennet cheese was detected on the 7th and 16th days. Microbial counts during preservation of both types of unsalted cheese increased steadily and reached similar levels, with the exception of staphylococci, which were significantly lower in unsalted kefir cheese. All types of cheese produced with kefir as a starter were approved and accepted by the panel during the preliminary sensory evaluation compared to commercial feta-type cheese.
Producing specific milks for speciality cheeses.
Bertoni, G; Calamari, L; Maianti, M G
2001-05-01
Protected denomination of origin (PDO) cheeses have distinctive sensorial characteristics. They can be made only from raw milk possessing specific features, which is processed through the 'art' of the cheesemaker. In general, the distinctive sensorial traits of PDO cheese cannot be achieved under different environmental-production conditions for two main reasons: (1) some milk features are linked to specific animal production systems; (2) cheese ripening is affected by the interaction between milk (specific) and the traditional technology applied to the transformation process (non-specific). Also, the environment for a good ripening stage can be quite specific and not reproducible. With reference to milk, factors of typicality are species and/or breed, pedoclimatic conditions, animal management system and feeding. Other factors that influence cheese quality are milk treatments, milk processing and the ripening procedures. The technology applied to most cheeses currently known as PDO utilizes only raw milk, rennet and natural lactic acid bacteria, so that milk must be, at its origin, suitable for processing. The specific milk characteristics that ensure a high success rate for PDO cheeses are high protein content and good renneting properties, appropriate fat content with appropriate fatty acid composition and the presence of chemical flavours originating from local feeds. Moreover, an appropriate microflora is also of major importance. The factors that contribute to achieving milk suitable for transformation into PDO cheese are genetics, age, lactation stage, season and climate, general management and health conditions, milking and particularly feeding, which affect nutrient availability, endocrine response and health status, and also the presence of microbes and chemical substances which enrich or reduce the milk-cheese quality. Many of these factors are regulated by the Producer Associations. However, the secret of the success of PDO cheeses is the combination of modern technology and tradition, with the objective of adapting the product to market demand, without losing specificity, originality and authenticity.
Bonanno, A; Tornambè, G; Bellina, V; De Pasquale, C; Mazza, F; Maniaci, G; Di Grigoli, A
2013-01-01
Caciocavallo Palermitano is a typical stretched-curd cheese that has been produced over the centuries in Sicily according to traditional cheesemaking technology and using raw milk from autochthonous cow breeds reared at pasture. The objective of this experiment was to evaluate the effects of the farming system and processing technology on the characteristics of Caciocavallo Palermitano cheese, with particular regard to the fatty acid profile. The farming system was either extensive, using autochthonous cows fed a pasture-based diet, or intensive, with specialized dairy cow breeds fed mainly hay and concentrate. The cheese-processing technology was either artisanal, using traditional wooden tools and endemic lactic bacteria, or advanced, using modern steel equipment and selected lactic bacteria. Twelve Caciocavallo Palermitano cheeses, 3 from each of the 4 experimental theses (2 farming systems × 2 cheesemaking technologies), were obtained and aged for 1, 30, 60, and 120 d. Milk of origin and cheeses were analyzed for the main chemical and rheological parameters. Fatty acids were methylated in lyophilized cheese and analyzed by gas chromatography. Sensory analysis was carried out by trained panelists. The PROC GLM of SAS 9.1.2 (SAS Institute Inc., Cary, NY) was used for the statistical analysis. The physical, chemical, and sensory characteristics of Caciocavallo Palermitano cheese were influenced more by the farming system than by the cheesemaking technology. Compared with cheese produced through intensive farming, cheese from extensive farming was richer in polyunsaturated, n-3, and odd- and branched-chain fatty acids, as well as in conjugated linoleic acid (cis-9,trans-11 C18:2), with accompanying improved human health benefits. The cheesemaking technology produced variation in the evolution of proteolysis during aging, due presumably to the different active microflora, which influenced the sensory profile of the resulting cheese. Indeed, cheese produced by artisanal manufacturing was described as less "bitter" and more "piquant" than cheese produced through the advanced process. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Prabhakar, V; Kocaoglu-Vurma, N; Harper, J; Rodriguez-Saona, L
2011-09-01
The acceptability of Swiss cheese largely depends on the flavor profile, and strain variations of cheese cultures will affect the final quality. Conventional biochemical methods to identify the cultures at the strain level are time-consuming and expensive, and require skilled labor. Our objective was to develop rapid classification methods of starter cultures at the strain level by using a combination of hydrophobic grid membrane filters and Fourier transform infrared (FTIR) spectroscopy. Forty-four pulsed-field gel electrophoresis-verified strains of starter and nonstarter cultures including Streptococcus thermophilus, Propionibacterium freudenreichii, and Lactobacillus spp. were analyzed. The strains were grown on their respective agar media, transferred to broth media, and incubated. Then, cultures were centrifuged and the pellets were resuspended in saline solution (10 μL). Aliquots (2 μL) of the suspended bacterial solution were placed onto a grid of the hydrophobic grid membrane filters, having 6 grids per each strain analyzed. The dried filters were read by FTIR microspectroscopy fitted with an attenuated total reflectance probe. Collected spectra were statistically analyzed by a soft independent modeling of class analogy (SIMCA) for pattern recognition. Classification models were developed for Streptococcus thermophilus, Propionibacterium freudenreichii, and Lactobacillus spp. strains. The models showed major discrimination in the spectral region from 1,200 to 900 cm(-1) associated with signals from phosphate-containing compounds and various polysaccharides in the cell wall. The developed method allowed for rapid classification of several Swiss cheese starter and nonstarter cultures at the strain level. This information provides a detailed overview of microbiological status, which would enable corrective measures to be taken early in the cheese making process, limiting production of inferior quality cheese and minimizing defects. This method could be an effective tool to identify and monitor activity of cheese and other dairy starter cultures. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Toward A Fail-Safe Air Force Culture: Creating a Resilient Future While Avoiding Past Mistakes
2012-10-01
process often uses the “ Swiss cheese ” model to evaluate accidents. The image of holes in the protective cheese layers (proactive and reactive measures...minimize the number and size of holes in each slice of cheese . More importantly, however, a HRO’s 16 focus is on “the process of the slices lining up as
Delcenserie, V; Taminiau, B; Delhalle, L; Nezer, C; Doyen, P; Crevecoeur, S; Roussey, D; Korsak, N; Daube, G
2014-10-01
Herve cheese is a Belgian soft cheese with a washed rind, and is made from raw or pasteurized milk. The specific microbiota of this cheese has never previously been fully explored and the use of raw or pasteurized milk in addition to starters is assumed to affect the microbiota of the rind and the heart. The aim of the study was to analyze the bacterial microbiota of Herve cheese using classical microbiology and a metagenomic approach based on 16S ribosomal DNA pyrosequencing. Using classical microbiology, the total counts of bacteria were comparable for the 11 samples of tested raw and pasteurized milk cheeses, reaching almost 8 log cfu/g. Using the metagenomic approach, 207 different phylotypes were identified. The rind of both the raw and pasteurized milk cheeses was found to be highly diversified. However, 96.3 and 97.9% of the total microbiota of the raw milk and pasteurized cheese rind, respectively, were composed of species present in both types of cheese, such as Corynebacterium casei, Psychrobacter spp., Lactococcus lactis ssp. cremoris, Staphylococcus equorum, Vagococcus salmoninarum, and other species present at levels below 5%. Brevibacterium linens were present at low levels (0.5 and 1.6%, respectively) on the rind of both the raw and the pasteurized milk cheeses, even though this bacterium had been inoculated during the manufacturing process. Interestingly, Psychroflexus casei, also described as giving a red smear to Raclette-type cheese, was identified in small proportions in the composition of the rind of both the raw and pasteurized milk cheeses (0.17 and 0.5%, respectively). In the heart of the cheeses, the common species of bacteria reached more than 99%. The main species identified were Lactococcus lactis ssp. cremoris, Psychrobacter spp., and Staphylococcus equorum ssp. equorum. Interestingly, 93 phylotypes were present only in the raw milk cheeses and 29 only in the pasteurized milk cheeses, showing the high diversity of the microbiota. Corynebacterium casei and Enterococcus faecalis were more prevalent in the raw milk cheeses, whereas Psychrobacter celer was present in the pasteurized milk cheeses. However, this specific microbiota represented a low proportion of the cheese microbiota. This study demonstrated that Herve cheese microbiota is rich and that pasteurized milk cheeses are microbiologically very close to raw milk cheeses, probably due to the similar manufacturing process. The characterization of the microbiota of this particular protected designation of origin cheese was useful in enabling us to gain a better knowledge of the bacteria responsible for the character of this cheese. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Rico, Carlos; Muñoz, Noelia; Rico, José Luis
2015-01-01
Mesophilic anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure was investigated with the aim of determining the treatment limits in terms of the cheese whey fraction in feed and the organic loading rate. The results of a continuous stirred tank reactor that was operated with a hydraulic retention time of 15.6 days showed that the co-digestion process was possible with a cheese whey fraction as high as 85% in the feed. The efficiency of the process was similar within the range of the 15-85% cheese whey fraction. To study the effect of the increasing loading rate, the HRT was progressively shortened with the 65% cheese whey fraction in the feed. The reactor efficiency dropped as the HRT decreased but enabled a stable operation over 8.7 days of HRT. At these operating conditions, a volumetric methane production rate of 1.37 m(3) CH4 m(-3) d(-1) was achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.
Protect Your Unborn Baby or Newborn from Infections
... following these guidelines: Avoid eating cheese made from raw (unpasteurized) milk. Soft cheeses made with pasteurized milk, including commercial ... Listeria during processing. This could occur again. Avoid raw (unpasteurized) milk and products made from it, such as cheese, ...
Genualdi, Susan; Jeong, Nahyun; DeJager, Lowri
2018-04-01
Nitrites and nitrates can be present in dairy products from both endogenous and exogenous sources. In the European Union (EU), 150 mg kg - 1 of nitrates are allowed to be added to the cheese milk during the manufacturing process. The CODEX General Standard for Food Additives has a maximum permitted level of 50 mg kg - 1 residue in cheese, while in the United States (U.S.) nitrates are unapproved for use as food additives in cheese. In order to be able to investigate imported cheeses for nitrates intentionally added as preservatives and the endogenous concentrations of nitrates and nitrites present in cheeses in the U.S. marketplace, a method was developed and validated using ion chromatography with conductivity detection. A market sampling of cheese samples purchased in the Washington DC metro area was performed. In 64 samples of cheese, concentrations ranged from below the method detection limit (MDL) to 26 mg kg - 1 for nitrates and no concentrations of nitrites were found in any of the cheese samples above the MDL of 0.1 mg kg - 1 . A majority of the samples (93%) had concentrations below 10 mg kg - 1 , which indicate the presence of endogenous nitrates. The samples with concentrations above 10 mg kg - 1 were mainly processed cheese spread, which can contain additional ingredients often of plant-based origin. These ingredients are likely the cause of the elevated nitrate concentrations. The analysis of 12 additional cheese samples that are liable to the intentional addition of nitrates, 9 of which were imported, indicated that in this limited study, concentrations of nitrate in the U.S.-produced cheeses did not differ from those in imported samples.
Extra Cheese, Please! Mozzarella's Journey from Cow to Pizza [and] Teaching Guide.
ERIC Educational Resources Information Center
Peterson, Chris
This book traces Annabelle the dairy cow's milk from the farm to the top of a Friday night pizza. The book relates that when Annabelle gives birth to her calf she also begins to produce milk; the milk is then processed into cheese, and from the cheese, pizza is made (recipe included). The book features color photographs of the entire process which…
[Appearance of aflatoxin M1 during the manufacture of Camembert cheese].
Frémy, J M; Roiland, J C
1979-01-01
Several classic cheese making of camembert are made from raw milk spiked with Aflatoxin M1. Three Aflatoxin levels 7.5 microgram/l, 3 microgram/l are used. In respective curds 35.6, 47.1 and 57.7% of Aflatoxin M1 are recovered and 64.4, 52.9 and 42.3% in respective whey. During the first 15 days of storage the Aflatoxin M1 content of different cheeses decrease respectively 25, 55, 75%. A similar experience is made with a milk contamined in Aflatoxin M1 C14 labelled. Same results are recovered, except about behaviour of Aflatoxin M1 in cheese: a same C14 activity is recovered during storage for 30 days.
Engel, E; Nicklaus, S; Septier, C; Salles, C; Le Quéré, J L
2001-06-01
The objective of this study was to characterize the effect of ripening on the taste of a typically bitter Camembert cheese. The first step was to select a typically bitter cheese among several products obtained by different processes supposed to enhance this taste defect. Second, the evolution of cheese taste during ripening was characterized from a sensory point of view. Finally, the relative impact of fat, proteins, and water-soluble molecules on cheese taste was determined by using omission tests performed on a reconstituted cheese. These omission tests showed that cheese taste resulted mainly from the gustatory properties of water-soluble molecules but was modulated by a matrix effect due to fat, proteins, and cheese structure. The evolution of this matrix effect during ripening was discussed for each taste characteristic.
7 CFR Appendices 1-3 to Subpart - Dairy Tariff-Rate Import Quota Licensing
Code of Federal Regulations, 2014 CFR
2014-01-01
... 13,064 13,064 13,064 SWISS OR EMMENTHALER CHEESE OTHER THAN WITH EYE FORMATION, GRUYERE-PROCESS.... Uruguay R. Grand total HTS Chapter4/2010 NON-CHEESE ARTICLES: BUTTER (NOTE 6) 4,618,233 2,358,767 6,977...,500 TOTAL: NON-CHEESE ARTICLES 4,621,408 17,243,373 21,864,781 21,864,781 21,864,781 CHEESE ARTICLES...
Shakeel-ur-Rehman; Drake, M A; Farkye, N Y
2008-01-01
Traditionally, Cheddar cheese is made by the milled-curd method. However, because of the mechanization of cheese making and time constraints, the stirred-curd method is more commonly used by many large-scale commercial manufacturers. This study was undertaken to evaluate quality differences during ripening (at 2 and 8 degrees C) of Cheddar cheese made by the milled-curd and stirred-curd methods, using 4 different commercial starters. Twenty-four vats (4 starters x 2 methods x 3 replicates) were made, with approximately 625 kg of pasteurized (72 degrees C x 16 s) whole milk in each vat. Fat, protein, and salt contents of the cheeses were not affected by the starter. Starter cell densities in cheese were not affected by the method of manufacture. Nonstarter lactic acid bacteria counts at 90, 180, and 270 d were influenced by the manufacturing method, with a higher trend in milled-curd cheeses. Proteolysis in cheese (percentage of water-soluble N) was influenced by the starter and manufacturing method (270 d). Sensory analysis by a trained descriptive panel (n = 8) revealed differences in cooked, whey, sulfur, brothy, milk fat, umami, and bitter attributes caused by the starter, whereas only brothy flavor was influenced by storage temperature. The method of manufacture influenced diacetyl, sour, and salty flavors.
[Sanitary and technologic evaluation of the rural processing of fresh goat cheese in Chile].
Camacho, L; Sierra, C
1988-12-01
A sanitary and technological diagnosis of the goat cheese rural process was carried out. The purpose was to obtain more information for the planning of a program aimed to the improvement of this small agroindustry. Samples of milk, curdle, dry abomasum, rennet, water and cheese of 10% of the small industries of two rural villages in two agricultural seasons, were taken. Moreover, dilutions of the utensils and goat udders were prepared. The samples were subjected to microbiological analysis of mesophilic aerobic bacteria count, most probable number of total and fecal coliforms, and detection of Staphylococcus aureus coagulase (+), Salmonella typhi and Brucella melitensis. Proximate chemical analysis and determinations of sodium chloride and titratible acidity in milk, cheese, dry abomasum and rennet, were carried out. Goat milk was also subjected to analysis of density. It was found that significant sanitary failures are present during th whole goat cheese process, although the highest bacteria contamination occurred at the milking, curdling and filling stages. These are characterized by excessive handling and absolute lack of hygiene. The pathogen B. melitensis was absent; therefore the causes of poisoning were attributed to the toxin produced by S. aureus and to the significant count of fecal coliforms found in the goat cheese. Even though the goats are fed under a poor feeding system, the milk presented a normal physical and chemical composition. Nevertheless, protein and fat matter losses occur during cheese preparation, as a result of handling practices and lack of process control.
Growth of Listeria monocytogenes in Camembert and other soft cheeses at refrigeration temperatures.
Back, J P; Langford, S A; Kroll, R G
1993-08-01
Listeria monocytogenes survived and, under most conditions, multiplied when inoculated directly into the cheese milk of laboratory made Camembert cheeses. The rate and extent of growth was reduced at lower storage temperatures. Significantly higher rates of growth occurred at the surface compared with the centre of the cheeses, and these were probably associated with increased pH and proteolysis at the cheese surface due to the mould ripening process. Similar results were obtained with Camenbert cheeses surface inoculated after manufacture. There was also temperature-dependent growth of List. monocytogenes on a range of inoculated commercially manufactured soft cheeses. Significant growth occurred in Cambazola, French and English Brie, blue and white Lymeswold, French Camembert and Brie with garlic. Little if any growth occurred in blue and white Stilton, Mycella, Chaume and full fat soft cheese with garlic and herbs at the temperatures examined.
Cheese flavors: chemical origin and detection
USDA-ARS?s Scientific Manuscript database
The hundreds of flavor compounds found in cheese arise from the proteins, lipids, and carbohydrates it contains. Flavor compounds are products of diverse reactions that occur in milk during processing, in curd during manufacture, and in cheese during storage, and are detected by a number of methods...
Upreti, P; Metzger, L E
2006-02-01
Eight Cheddar cheeses with 2 levels of calcium (Ca) and phosphorus (P), residual lactose, and salt-to-moisture ratio (S/M) were manufactured. All cheeses were made using a stirred-curd procedure and were replicated 3 times. Treatments with a high level of Ca and P were produced by setting the milk and drawing the whey at a higher pH (6.6 and 6.3, respectively) compared with the treatments with a low level of Ca and P (pH of 6.2 and 5.7, respectively). The lactose content in the cheeses was varied by adding lactose (2.5% by weight of milk) to the milk for high lactose cheeses, and washing the curd for low lactose cheeses. The difference in S/M was obtained by dividing the curds into halves, weighing each half, and salting at 3.5 and 2.25% of the weight of the curd for high and low S/M, respectively. All cheeses were salted at a pH of 5.4. Modifications in cheese-making protocols produced cheeses with desired differences in Ca and P, residual lactose, and S/M. Average Ca and P in the high Ca and P cheeses was 0.68 and 0.48%, respectively, vs. 0.53 and 0.41% for the low Ca and P cheeses. Average lactose content of the high lactose treatments at d 1 was 1.48% compared with 0.30% for the low lactose treatments. The S/M for the high and low S/M cheeses was 6.68 and 4.77%, respectively. Mean moisture, fat, and protein content of the cheeses ranged from 32.07 to 37.57%, 33.32 to 35.93%, and 24.46 to 26.40%, respectively. The moisture content differed among the treatments, whereas fat and protein content on dry basis was similar.
Galmarini, Mara V; Loiseau, Anne-Laure; Debreyer, Doëtte; Visalli, Michel; Schlich, Pascal
2017-11-01
Even if wine and cheese have long been consumed together, there is little sensory evidence on how wine can influence the perception of cheese. In this work 4 cheeses were dynamically characterized in terms of dominant sensations without and with wine consumption in between intakes. The tasting protocol was based on multi-intake temporal dominance of sensations (TDS) coupled with hedonic rating. Frequent wine and cheese consumers (n = 31) evaluated 4 cheeses (Epoisses, Chaource, and 2 different Comté) over 3 consecutive bites. In the following sessions they performed the same task, but taking sips of wine (rosé Riceys, white Burgundy, red Burgundy, and red Beaujolais) between bites. All cheese-wine combinations were tasted over 4 sessions. TDS data were analyzed in terms of attribute duration of dominance by ANOVA, MANOVA, and canonical variate analysis. Results showed that wine consumption had an impact (P < 0.1) on dominance duration of attributes of cheeses, particularly on salty and some aromatic notes. But, as opposed to a previous work done by the same team, wine had no impact on the preference of cheese; this stayed constant under all the evaluating conditions. This paper aims to validate an innovative protocol on dynamic sensory data acquisition in which consumers evaluate the impact of a beverage (wine) on a solid food (cheese). This protocol is complementary to a previous one presented in this journal, where the effect of cheese was tested on wine. Together they make up an interesting approach towards developing a new tool for the food sector to better understand the impact of one food product on another. This could lead to a better description of a whole meal, something which is still missing in sensory science. © 2017 Institute of Food Technologists®.
González, Lorena; Zárate, Victoria
2015-05-01
Bacteriocins produced by lactic acid bacteria are of great interest to the food-processing industry as natural preservatives. This work aimed to investigate the efficacy of bacteriocin-producing Lactobacillus plantarum TF711, isolated from artisanal Tenerife cheese, in controlling Clostridium sporogenes during cheese ripening. Cheeses were made from pasteurised milk artificially contaminated with 10(4) spores m/l C. sporogenes. Experimental cheeses were manufactured with Lb. plantarum TF711 added at 1% as adjunct to commercial starter culture. Cheeses made under the same conditions but without Lb. plantarum TF711 served as controls. Evolution of microbiological parameters, pH and NaCl content, as well as bacteriocin production was studied throughout 45 d of ripening. Addition of Lb. plantarum TF711 did not bring about any significant change in starter culture counts, NaCl content and pH, compared with control cheese. In contrast, clostridial spore count in experimental cheeses were significantly lower than in control cheeses from 7 d onwards, reaching a maximum reduction of 2·2 log units on day 21. Inhibition of clostridia found in experimental cheeses was mainly attributed to plantaricin activity, which in fact was recovered from these cheeses.
Schutyser, M A I; Straatsma, J; Keijzer, P M; Verschueren, M; De Jong, P
2008-11-30
In the framework of a cooperative EU research project (MILQ-QC-TOOL) a web-based modelling tool (Websim-MILQ) was developed for optimisation of thermal treatments in the dairy industry. The web-based tool enables optimisation of thermal treatments with respect to product safety, quality and costs. It can be applied to existing products and processes but also to reduce time to market for new products. Important aspects of the tool are its user-friendliness and its specifications customised to the needs of small dairy companies. To challenge the web-based tool it was applied for optimisation of thermal treatments in 16 dairy companies producing yoghurt, fresh cream, chocolate milk and cheese. Optimisation with WebSim-MILQ resulted in concrete improvements with respect to risk of microbial contamination, cheese yield, fouling and production costs. In this paper we illustrate the use of WebSim-MILQ for optimisation of a cheese milk pasteurisation process where we could increase the cheese yield (1 extra cheese for each 100 produced cheeses from the same amount of milk) and reduced the risk of contamination of pasteurised cheese milk with thermoresistent streptococci from critical to negligible. In another case we demonstrate the advantage for changing from an indirect to a direct heating method for a UHT process resulting in 80% less fouling, while improving product quality and maintaining product safety.
Hot cheese: a processed Swiss cheese model.
Li, Y; Thimbleby, H
2014-01-01
James Reason's classic Swiss cheese model is a vivid and memorable way to visualise how patient harm happens only when all system defences fail. Although Reason's model has been criticised for its simplicity and static portrait of complex systems, its use has been growing, largely because of the direct clarity of its simple and memorable metaphor. A more general, more flexible and equally memorable model of accident causation in complex systems is needed. We present the hot cheese model, which is more realistic, particularly in portraying defence layers as dynamic and active - more defences may cause more hazards. The hot cheese model, being more flexible, encourages deeper discussion of incidents than the simpler Swiss cheese model permits.
Behavior of 14C aflatoxin M1 during camembert cheese making.
Fremy, J M; Roiland, J C; Gaymard, A
1990-01-01
Camembert cheeses are made from raw milk spiked with aflatoxin M1. Three aflatoxin M1 levels (7.5 micrograms/L, 3 micrograms/L, and 0.3 micrograms/L) are used. In curds 35.6, 47.1, and 57.7% of aflatoxin M1, respectively, are recovered, and in wheys 64.4, 52.9, and 42.3%, respectively, are recovered. During the first 15 days of storage, the aflatoxin M1 content of different cheeses decreases 25, 55, and 75%, respectively. A similar experiment is made with milk contaminated with 14C labeled aflatoxin M1. The same results are obtained, except for the behavior of aflatoxin M1 in cheese; the same 14C activity is recovered during storage for 30 days.
Sensory Profile and Consumers’ Liking of Functional Ovine Cheese
Santillo, Antonella; Albenzio, Marzia
2015-01-01
The present research was undertaken to evaluate the sensory profile and consumers’ liking of functional ovine cheese containing probiotic cultures. Ovine cheese was made from ewe’s milk by animals reared in extensive conditions; cheesemaking trials were performed by using rennet paste containing probiotic cells. Experimental cheeses were denoted: cheese manufactured using lamb rennet paste without probiotic (C), cheese manufactured using lamb rennet paste containing a mix of Bifidobacterium lactis and Bifidobacterium longum (BB), and cheese manufactured using lamb rennet paste containing Lactobacillus acidophilus (LA). Ovine cheese containing probiotic strains highlighted a more intense proteolysis and a greater level of short chain free fatty acids and conjugated linoleic acid due to the metabolic activity of the adjunct microflora. The sensorial profile of ovine cheese showed lower humidity and gumminess in cheeses containing probiotics as a consequence of differences in the maturing process; furthermore, probiotic cheeses scored higher ratings for salty and pungent attributes. An interaction effect of probiotic, gender, and age of the consumers was detected in the perceived and the expected liking. The higher rate of expected liking in all experimental cheeses is attributed to the information given, regarding not only the presence of probiotic strains but also the farming conditions and cheesemaking technology. PMID:28231229
Construction of a lactose-assimilating strain of baker's yeast.
Adam, A C; Prieto, J A; Rubio-Texeira, M; Polaina, J
1999-09-30
A recombinant strain of baker's yeast has been constructed which can assimilate lactose efficiently. This strain has been designed to allow its propagation in whey, the byproduct resulting from cheese-making. The ability to metabolize lactose is conferred by the functional expression of two genes from Kluyveromyces lactis, LAC12 and LAC4, which encode a lactose permease and a beta-galactosidase, respectively. To make the recombinant strain more acceptable for its use in bread-making, the genetic transformation of the host baker's yeast was carried out with linear fragments of DNA of defined sequence, carrying as the only heterologous material the coding regions of the two K. lactis genes. Growth of the new strain on cheese whey affected neither the quality of bread nor the yeast gassing power. The significance of the newly developed strain is two-fold: it affords a cheap alternative to the procedure generally used for the propagation of baker's yeast, and it offers a profitable use for cheese whey. Copyright 1999 John Wiley & Sons, Ltd.
Survival of cheese-ripening microorganisms in a dynamic simulator of the gastrointestinal tract.
Adouard, Nadège; Magne, Laurent; Cattenoz, Thomas; Guillemin, Hervé; Foligné, Benoît; Picque, Daniel; Bonnarme, Pascal
2016-02-01
A mixture of nine microorganisms (six bacteria and three yeasts) from the microflora of surface-ripened cheeses were subjected to in vitro digestive stress in a three-compartment "dynamic gastrointestinal digester" (DIDGI). We studied the microorganisms (i) grown separately in culture medium only (ii) grown separately in culture medium and then mixed, (iii) grown separately in culture medium and then included in a rennet gel and (iv) grown together in smear-ripened cheese. The yeasts Geotrichum candidum, Kluyveromyces lactis and Debaryomyces hansenii, were strongly resistant to the whole DIDGI process (with a drop in viable cell counts of less than <1 log CFU mL(-1)) and there were no significant differences between lab cultures and cheese-grown cultures. Ripening bacteria such as Hafnia alvei survived gastric stress less well when grown in cheese (with no viable cells after 90 min of exposure of the cheese matrix, compared with 6 CFU mL(-1) in lab cultures). The ability of Corynebacterium casei and Staphylococcus equorum to withstand digestive stress was similar for cheese and pure culture conditions. When grow in a cheese matrix, Brevibacterium aurantiacum and Arthrobacter arilaitensis were clearly more sensitive to the overall digestive process than when grown in pure cultures. Lactococcus lactis displayed poorer survival in gastric and duodenal compartments when it had been grown in cheese. In vivo experiments in BALB/c mice agreed with the DIDGI experiments and confirmed the latter's reliability. Copyright © 2015. Published by Elsevier Ltd.
Montet, M P; Jamet, E; Ganet, S; Dizin, M; Miszczycha, S; Dunière, L; Thevenot, D; Vernozy-Rozand, C
2009-01-01
Growth and survival of acid-resistant (AR) and non-acid-resistant (NAR) Shiga-toxin-producing Escherichia coli (STEC) strains were investigated during the manufacture and ripening of microfiltered milk Camembert cheeses. The induction of acid resistance of the STEC strains in cheeses was also studied. Six different mixtures of AR and/or NAR STEC strains were inoculated separately into microfiltered milk at a level of 10(3) CFU mL(-1). The STEC counts (AR and NAR) initially increased by 1 to 2 log(10) CFU g(-1) during cheese-making. Thereafter, the populations stabilized during salting/drying and then decreased during the early stages of ripening. Exposing the STEC strains in artificially inoculated cheeses to simulated gastric fluid (SGF - pH: 2.0) reduced the number of NAR strains to undetectable levels within 40 minutes, versus 120 minutes for the AR STEC strains. AR and NAR STEC were able to survive during the manufacture and ripening of Camembert cheese prepared from microfiltered milk with no evidence of induced acid tolerance in NAR STEC strains.
Code of Federal Regulations, 2014 CFR
2014-01-01
....712 Swiss. Swiss cheese used in the manufacture of pasteurized process cheese and related products should be equivalent to U.S. Grade B or better, except that the cheese may be blind or possess finish... 7 Agriculture 3 2014-01-01 2014-01-01 false Swiss. 58.712 Section 58.712 Agriculture Regulations...
Code of Federal Regulations, 2012 CFR
2012-01-01
....712 Swiss. Swiss cheese used in the manufacture of pasteurized process cheese and related products should be equivalent to U.S. Grade B or better, except that the cheese may be blind or possess finish... 7 Agriculture 3 2012-01-01 2012-01-01 false Swiss. 58.712 Section 58.712 Agriculture Regulations...
Code of Federal Regulations, 2013 CFR
2013-01-01
....712 Swiss. Swiss cheese used in the manufacture of pasteurized process cheese and related products should be equivalent to U.S. Grade B or better, except that the cheese may be blind or possess finish... 7 Agriculture 3 2013-01-01 2013-01-01 false Swiss. 58.712 Section 58.712 Agriculture Regulations...
Code of Federal Regulations, 2010 CFR
2010-01-01
....712 Swiss. Swiss cheese used in the manufacture of pasteurized process cheese and related products should be equivalent to U.S. Grade B or better, except that the cheese may be blind or possess finish... 7 Agriculture 3 2010-01-01 2010-01-01 false Swiss. 58.712 Section 58.712 Agriculture Regulations...
Code of Federal Regulations, 2011 CFR
2011-01-01
....712 Swiss. Swiss cheese used in the manufacture of pasteurized process cheese and related products should be equivalent to U.S. Grade B or better, except that the cheese may be blind or possess finish... 7 Agriculture 3 2011-01-01 2011-01-01 false Swiss. 58.712 Section 58.712 Agriculture Regulations...
The xylooligosaccharide addition and sodium reduction in requeijão cremoso processed cheese.
Ferrão, Luana L; Ferreira, Marcus Vinícius S; Cavalcanti, Rodrigo N; Carvalho, Ana Flávia A; Pimentel, Tatiana C; Silva, Hugo L A; Silva, Ramon; Esmerino, Erick A; Neto, Roberto P C; Tavares, Maria Inês B; Freitas, Mônica Q; Menezes, Jaqueline C V; Cabral, Lúcio M; Moraes, Jeremias; Silva, Márcia C; Mathias, Simone P; Raices, Renata S L; Pastore, Gláucia M; Cruz, Adriano G
2018-05-01
The addition of xylooligosaccharide (XOS), sodium reduction and flavor enhancers (arginine and yeast extract) on the manufacture of requeijão cremoso processed cheese was investigated. The addition of XOS resulted in a denser and compact structure, with increased apparent viscosity, elasticity (G') and firmness (G*). The addition of XOS and yeast extract improved the rheological and physicochemical properties (decrease in viscosity and particle size and increase in melting rate) and sensory characteristics (improvement in salty and acid taste, greater homogeneity, and lower bitter taste). In addition, a positive effect of arginine was observed in the sensory characteristics of the requeijão cremoso processed cheese, but without improvements in the physicochemical and rheological characteristics. Overall, the XOS addition and sodium reduction proportionated the development of a healthier processed cheese formulation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Franciosi, Elena; Carafa, Ilaria; Nardin, Tiziana; Schiavon, Silvia; Poznanski, Elisa; Cavazza, Agostino; Larcher, Roberto; Tuohy, Kieran M
2015-01-01
"Nostrano-cheeses" are traditional alpine cheeses made from raw cow's milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of "Nostrano-cheeses" and evaluated their potential to produce γ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n = 97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was a Sc. thermophilus.
Gaglio, Raimondo; Couto, Natacha; Marques, Cátia; de Fatima Silva Lopes, Maria; Moschetti, Giancarlo; Pomba, Constança; Settanni, Luca
2016-11-07
Forty enterococci isolated along the production chains of three traditional cheeses (PDO Pecorino Siciliano, PDO Vastedda della Valle del Belìce, and Caciocavallo Palermitano) made in Sicily (southern Italy) were studied for the assessment of their antibiotic resistance and virulence by a combined phenotypic/genotypic approach. A total of 31 Enterococcus displayed resistance to at least one or more of the antimicrobials tested. The strains exhibited high percentages of resistance to erythromycin (52.5%), ciprofloxacin (35.0%), quinupristin-dalfopristin (20.0%), tetracycline (17.5%), and high-level streptomycin (5.0%). The presence of tet(M), cat(pC221), and aadE genes for resistance to tetracycline, chloramphenicol, and streptomycin, respectively, was registered in all strains with resistance phenotype. The erm(B) gene was not detected in any erythromycin-resistant strain. The Enterococcus strains were further tested by PCR for the presence of virulence genes, namely, gelE, asa1, efaA, ace, and esp. Twenty strains were positive for all virulence genes tested. Among the enterococci isolated from final cheeses, three strains (representing 33.3% of total cheese strains) were sensible to all antimicrobials tested and did not carry any virulence factor. Although this study confirmed that the majority of dairy enterococci are vectors for the dissemination of antimicrobial resistance and virulence genes, only two strains showed a high resistance to aminoglycosides, commonly administered to combat enterococci responsible for human infections. Furthermore, the presence of the strains E. casseliflavus FMAC163, E. durans FMAC134B, and E. faecium PON94 without risk determinants, found at dominating levels over the Enterococcus populations in the processed products, stimulates further investigations for their future applications in cheese making. All strains devoid of the undesired traits were isolated from stretched cheeses. Thus, this cheese typology represents an interesting environment to deepen the studies on the risk/benefit role of enterococci in fermented foods for their qualified presumption of safety (QPS) assessment. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, G; Kocaoglu-Vurma, N A; Harper, W J; Rodriguez-Saona, L E
2009-08-01
Improved cheese flavor has been attributed to the addition of adjunct cultures, which provide certain key enzymes for proteolysis and affect the dynamics of starter and nonstarter cultures. Infrared microspectroscopy provides unique fingerprint-like spectra for cheese samples and allows for rapid monitoring of cheese composition during ripening. The objective was to use infrared microspectroscopy and multivariate analysis to evaluate the effect of adjunct cultures on Swiss cheeses during ripening. Swiss cheeses, manufactured using a commercial starter culture combination and 1 of 3 adjunct Lactobacillus spp., were evaluated at d 1, 6, 30, 60, and 90 of ripening. Cheese samples (approximately 20 g) were powdered with liquid nitrogen and homogenized using water and organic solvents, and the water-soluble components were separated. A 3-microL aliquot of the extract was applied onto a reflective microscope slide, vacuum-dried, and analyzed by infrared microspectroscopy. The infrared spectra (900 to 1,800 cm(-1)) produced specific absorption profiles that allowed for discrimination among different cheese samples. Cheeses manufactured with adjunct cultures showed more uniform and consistent spectral profiles, leading to the formation of tight clusters by pattern-recognition analysis (soft independent modeling of class analogy) as compared with cheeses with no adjuncts, which exhibited more spectral variability among replicated samples. In addition, the soft independent modeling of class analogy discriminating power indicated that cheeses were differentiated predominantly based on the band at 1,122 cm(-1), which was associated with S-O vibrations. The greatest changes in the chemical profile of each cheese occurred between d 6 and 30 of warm-room ripening. The band at 1,412 cm(-1), which was associated with acidic AA, had the greatest contribution to differentiation, indicating substantial changes in levels of proteolysis during warm-room ripening in addition to propionic acid, acetic acid, and eye formation. A high-throughput infrared microspectroscopy technique was developed that can further the understanding of biochemical changes occurring during the ripening process and provide insight into the role of adjunct nonstarter lactic acid bacteria on the complex process of flavor development in cheeses.
Behavior of sup 14 C aflatoxin M1 during camembert cheese making
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fremy, J.M.; Roiland, J.C.; Gaymard, A.
Camembert cheeses are made from raw milk spiked with aflatoxin M1. Three aflatoxin M1 levels (7.5 micrograms/L, 3 micrograms/L, and 0.3 micrograms/L) are used. In curds 35.6, 47.1, and 57.7% of aflatoxin M1, respectively, are recovered, and in wheys 64.4, 52.9, and 42.3%, respectively, are recovered. During the first 15 days of storage, the aflatoxin M1 content of different cheeses decreases 25, 55, and 75%, respectively. A similar experiment is made with milk contaminated with {sup 14}C labeled aflatoxin M1. The same results are obtained, except for the behavior of aflatoxin M1 in cheese; the same 14C activity is recoveredmore » during storage for 30 days.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-17
... critical use included ``processed food, cheese, herbs and spices, and spaces and equipment in associated... inadequately justified and recommended only cheese storage facilities for consideration by the Parties as a... include only ``Members of the National Pest Management Association treating cheese storage facilities...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-20
... (NPMA) post harvest fumigations. Past critical uses for NPMA included ``processed food, cheese, herbs... cheese storage facilities for consideration by the Parties as a critical use. MBTOC's comments can be... NPMA critical use to include only ``Members of the National Pest Management Association treating cheese...
Tayel, Ahmed A; Hussein, Heba; Sorour, Noha M; El-Tras, Wael F
2015-12-01
Cheese contaminations with foodborne bacterial pathogens, and their health outbreaks, are serious worldwide problems that could happen from diverse sources during cheese production or storage. Plants, and their derivatives, were always regarded as the potential natural and safe antimicrobial alternatives for food preservation and improvement. The extracts from many plants, which are commonly used as spices and flavoring agents, were evaluated as antibacterial agents against serious foodborne pathogens, for example Listeria monocytogenes, Salmonella Typhimurium, Staphylococcus aureus, and Escherichia coli O157:H7, using qualitative and quantitative assaying methods. Dairy-based media were also used for evaluating the practical application of plant extracts as antimicrobial agents. Most of the examined plant extracts exhibited remarkable antibacterial activity; the extracts of cinnamon, cloves, garden cress, and lemon grass were the most powerful, either in synthetic or in dairy-based media. Flavoring processed cheese with plant extracts resulted in the enhancement of cheese sensory attributes, for example odor, taste, color, and overall quality, especially in flavored samples with cinnamon, lemon grass, and oregano. It can be concluded that plant extracts are strongly recommended, as powerful and safe antibacterial and flavoring agents, for the preservation and sensory enhancement of processed cheese. © 2015 Institute of Food Technologists®
Whey cheese: membrane technology to increase yields.
Riera, Francisco; González, Pablo; Muro, Claudia
2016-02-01
Sweet cheese whey has been used to obtain whey cheese without the addition of milk. Pre-treated whey was concentrated by nanofiltration (NF) at different concentration ratios (2, 2.5 and 2.8) or by reverse osmosis (RO) (2-3 times). After the concentration, whey was acidified with lactic acid until a final pH of 4.6-4.8, and heated to temperatures between 85 and 90 °C. The coagulated fraction (supernatant) was collected and freely drained over 4 h. The cheese-whey yield and protein, fat, lactose and ash recoveries in the final product were calculated. The membrane pre-concentration step caused an increase in the whey-cheese yield. The final composition of products was compared with traditional cheese-whey manufacture products (without membrane concentration). Final cheese yields found were to be between 5 and 19.6%, which are higher than those achieved using the traditional 'Requesón' process.
Technical note: Vitamin D-fortified Cheddar type cheese produced from concentrated milk.
Boivin-Piché, Jonathan; Vuillemard, Jean-Christophe; St-Gelais, Daniel
2016-06-01
The technological challenge related to cheese fortification with vitamin D is the loss of a large proportion of vitamin D during the wheying-off step. The use of ultrafiltration (UF) to concentrate the milk before vitamin D enrichment and cheese manufacturing could be a way to reduce the volume of whey and consequently the vitamin D losses in cheese whey. Control (1.0×) and concentrated milks (1.4× and 1.8×) were fortified with vitamin D at a concentration of 450 IU per gram of milk. The 1.8× cheese milk concentration reduced slightly the vitamin D loss during the draining step (19.8%) compared with the control cheese (25.5%) and vitamin D remained stable during Cheddar cheese processing and ripening. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Towards a Fail-Safe Air Force Culture: Creating a Resilient Future While Avoiding Past Mistakes
2011-02-16
for either preventing catastrophic failures or in the event they occur. The Air Force Safety process often uses the ― Swiss Cheese ‖ model to...evaluate accidents. The image of holes in the protective cheese layers (proactive and reactive measures) lining up in such a way as to allow an accident is... cheese . More importantly, however, a HRO‘s focus is on ―the process of the slices lining up as each moment where one hole aligns with another
Becker, K M; Parsons, R L; Kolodinsky, J; Matiru, G N
2007-05-01
This study examines the economic feasibility of 50- and 500-cow dairy processing facilities for fluid milk, yogurt, and cheese. Net present value and internal rate of return calculations for projected costs and returns over a 10-yr period indicate that larger yogurt and cheese processing plants offer the most profitable prospects, whereas a smaller yogurt plant would break even. A smaller cheese plant would have insufficient returns to cover the cost of capital, and fluid milk processing at either scale is economically infeasible. Economic success in processing is greatly contingent upon individual business, financial management, and marketing skills.
Maiorchino Cheese: Physico-Chemical, Hygienic and Safety Characteristics
Ravidà, Andrea; Mandanici, Alessandro; Ferrantelli, Vincenzo; Chetta, Michele; Verzera, Antonella
2015-01-01
This study assessed the physical, chemical, and microbiological characteristics of traditional Maiorchino cheese (Italy) made from raw ewe’s milk or from a mixture with goat’s milk. Cheese samples from the same batch were analyzed after 20 days and 6, 8, 12, 17 and 24 months of ripening. A decrease in moisture level lead to progressive total solids concentration (fat, total nitrogen, total solids and chloride) during ripening. Aw values decreased from 0.97 (day 20) to 0.85 (month 24), while pH increased from 4.99 to 5.41 (6 months) followed a by reduction until 4.85 (month 24). In samples analysed 20 days after cheesemaking, aerobic mesophilic count was 1.8•107 CFU/g, Enterobacteriaceae were 2.7•106 CFU/g, Staphylococcus spp. were 1.8•104 CFU/g, and yeasts 4.5•105 CFU/g. Sulphite reducing bacteria were not found. Lactic bacteria count at 30°C (LAB30) and 42°C (LAB42) was about 108 CFU/g (day 20); LAB30 reduced until month 8; LAB 42 reduced until month 12; both were not detectable at months 17 and 24. Cheese-making process does not consider commercial starter cultures and LAB group is heterogeneous because of its natural microflora. Yeasts were considered as typical microflora of Maiorchino. Volatile compounds were examined at 6, 12 and 24 months of ripening; 54 components were identified. Statistical analysis showed that the seasoning period of 12 months was the best for Maiorchino flavour attributes. The characterisation of Maiorchino traditional cheese may be considered as significant for this old traditional product, with the aim of obtaining the PDO certification. PMID:27800379
Technological optimization of manufacture of probiotic whey cheese matrices.
Madureira, Ana R; Brandão, Teresa; Gomes, Ana M; Pintado, Manuela E; Malcata, F Xavier
2011-03-01
In attempts to optimize their manufacture, whey cheese matrices obtained via thermal processing of whey (leading to protein precipitation) and inoculated with probiotic cultures were tested. A central composite, face-centered design was followed, so a total of 16 experiments were run using fractional addition of bovine milk to feedstock whey, homogenization time, and storage time of whey cheese as processing parameters. Probiotic whey cheese matrices were inoculated with Lactobacillus casei LAFTIL26 at 10% (v/v), whereas control whey cheese matrices were added with skim milk previously acidified with lactic acid to the same level. All whey cheeses were stored at 7 °C up to 14 d. Chemical and sensory analyses were carried out for all samples, as well as rheological characterization by oscillatory viscometry and textural profiling. As expected, differences were found between control and probiotic matrices: fractional addition of milk and storage time were the factors accounting for the most important effects. Estimation of the best operating parameters was via response surface analysis: milk addition at a rate of 10% to 15% (v/v), and homogenization for 5 min led to the best probiotic whey cheeses in terms of texture and organoleptic properties, whereas the best time for consumption was found to be by 9 d of storage following manufacture.
NASA Astrophysics Data System (ADS)
Nasiri, Farshid; Aghbashlo, Mortaza; Rafiee, Shahin
2017-02-01
In this study, a detailed exergy analysis of an industrial-scale ultrafiltrated (UF) cheese production plant was conducted based on actual operational data in order to provide more comprehensive insights into the performance of the whole plant and its main subcomponents. The plant included four main subsystems, i.e., steam generator (I), above-zero refrigeration system (II), Bactocatch-assisted pasteurization line (III), and UF cheese production line (IV). In addition, this analysis was aimed at quantifying the exergy destroyed in processing a known quantity of the UF cheese using the mass allocation method. The specific exergy destruction of the UF cheese production was determined at 2330.42 kJ/kg. The contributions of the subsystems I, II, III, and IV to the specific exergy destruction of the UF cheese production were computed as 1337.67, 386.18, 283.05, and 323.51 kJ/kg, respectively. Additionally, it was observed through the analysis that the steam generation system had the largest contribution to the thermodynamic inefficiency of the UF cheese production, accounting for 57.40 % of the specific exergy destruction. Generally, the outcomes of this survey further manifested the benefits of applying exergy analysis for design, analysis, and optimization of industrial-scale dairy processing plants to achieve the most cost-effective and environmentally-benign production strategies.
Salek, R N; Černíková, M; Maděrová, S; Lapčík, L; Buňka, F
2016-05-01
The scope of this work was to investigate the dependence of selected textural (texture profile analysis, TPA) and viscoelastic properties of processed cheese on the composition of ternary mixtures of emulsifying salts [disodium hydrogenphosphate, DSP; tetrasodium diphosphate, TSPP; sodium salt of polyphosphate (with mean length n ≈ 20), P20; and trisodium citrate, TSC] during a 60-d storage period (6±2°C). The processed cheese samples [40% wt/wt dry matter (DM) content, 50% wt/wt fat in DM content] were manufactured using Swiss-type cheese (as the main raw material) with 4 different maturity degrees (4, 8, 12, and 16 wk of ripening). Moreover, the pH of the samples was adjusted (the target values within the range of 5.60-5.80), corresponding to the standard pH values of spreadable processed cheese. With respect to the individual application of emulsifying salts (regardless of the maturity degree of the Swiss-type cheese applied), the samples prepared with P20 were the hardest, followed by those prepared with TSPP, TSC, and DSP. Furthermore, a specific ratio of DSP:TSPP (1:1) led to a significant increase in the hardness of the samples. On the whole, the hardness of all processed cheese samples increased with the prolonging storage period, whereas their hardness significantly dropped with the rising ripening stage of the raw material utilized. In all of the cases, the trends of hardness development remained analogous, and only the absolute values differed significantly. Moreover, the findings of TPA were in accordance with those of the rheological analysis. In particular, the specific ratio of DSP:TSPP (1:1) resulted in the highest gel strength and interaction factor values, followed by P20, TSPP, TSC, and DSP (used individually), reporting the same trend which was demonstrated by TPA. The monitored values of the gel strength and interaction factor decreased with the increasing maturity degree of the Swiss-type cheese used. The intensity of the rigidity of the samples showed an analogous relationship to the intensity of the gel strength; the higher the gel strength of the sample, the more inflexible the product is expected to be. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
77 FR 29543 - Natamycin; Exemption From the Requirement of a Tolerance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-18
... for use as a fungistat to suppress mold on cheese, meats and sausage. In the United States, natamycin... inhibition of mold and yeast on the surface of cheeses (21CFR 172.155) and as an additive to the feed and... of ``powdered natamycin'' in cheese processing plants (presumably as a preservative), expressed the...
Microbiological aspects of the biofilm on wooden utensils used to make a Brazilian artisanal cheese.
Galinari, Éder; da Nóbrega, Juliana Escarião; de Andrade, Nélio José; de Luces Fortes Ferreira, Célia Lúcia
2014-01-01
The artisanal Minas cheese is produced from raw cow's milk and wooden utensils were employed in its manufacture, which were replaced by other materials at the request of local laws. This substitution caused changes in the traditional characteristics of cheese. Due to the absence of scientific studies indicating the microbial composition of biofilms formed on wooden forms, tables and shelves used in these cheese production, the present work evaluated the counts of Staphylococcus aureus, Escherichia coli, coliforms at 32 °C, yeasts, presumptive mesophilic Lactobacillus spp. and Lactococcus spp. in these biofilms, milk, whey endogenous culture and ripened cheese in two traditional regions: Serro and Serra da Canastra. Also, we checked for the presence of Salmonella sp. and Listeria monocytogenes in the ripened cheeses. The ultra structure of the biofilms was also assessed. Counts above legislation (> 2 log cfu/mL) for the pathogens evaluated were found in milk samples from both regions. Only one shelf and one form from Serro were above limits proposed (5 cfu/cm(2) for S. aureus and E. coli and 25 cfu/cm(2) for coliforms) in this study for contaminants evaluated. In Canastra, few utensils presented safe counting of pathogens. There was no Salmonella sp. and Listeria monocytogenes in the cheeses after ripening. Thus, the quality of the cheese is related to improving the microbiological quality of milk, implementation and maintenance of good manufacturing practices, correct cleaning of wooden utensils, and not its replacement.
Almeida, Mathieu; Hébert, Agnès; Abraham, Anne-Laure; Rasmussen, Simon; Monnet, Christophe; Pons, Nicolas; Delbès, Céline; Loux, Valentin; Batto, Jean-Michel; Leonard, Pierre; Kennedy, Sean; Ehrlich, Stanislas Dusko; Pop, Mihai; Montel, Marie-Christine; Irlinger, Françoise; Renault, Pierre
2014-12-13
Microbial communities of traditional cheeses are complex and insufficiently characterized. The origin, safety and functional role in cheese making of these microbial communities are still not well understood. Metagenomic analysis of these communities by high throughput shotgun sequencing is a promising approach to characterize their genomic and functional profiles. Such analyses, however, critically depend on the availability of appropriate reference genome databases against which the sequencing reads can be aligned. We built a reference genome catalog suitable for short read metagenomic analysis using a low-cost sequencing strategy. We selected 142 bacteria isolated from dairy products belonging to 137 different species and 67 genera, and succeeded to reconstruct the draft genome of 117 of them at a standard or high quality level, including isolates from the genera Kluyvera, Luteococcus and Marinilactibacillus, still missing from public database. To demonstrate the potential of this catalog, we analysed the microbial composition of the surface of two smear cheeses and one blue-veined cheese, and showed that a significant part of the microbiota of these traditional cheeses was composed of microorganisms newly sequenced in our study. Our study provides data, which combined with publicly available genome references, represents the most expansive catalog to date of cheese-associated bacteria. Using this extended dairy catalog, we revealed the presence in traditional cheese of dominant microorganisms not deliberately inoculated, mainly Gram-negative genera such as Pseudoalteromonas haloplanktis or Psychrobacter immobilis, that may contribute to the characteristics of cheese produced through traditional methods.
Montet, M. P.; Jamet, E.; Ganet, S.; Dizin, M.; Miszczycha, S.; Dunière, L.; Thevenot, D.; Vernozy-Rozand, C.
2009-01-01
Growth and survival of acid-resistant (AR) and non-acid-resistant (NAR) Shiga-toxin-producing Escherichia coli (STEC) strains were investigated during the manufacture and ripening of microfiltered milk Camembert cheeses. The induction of acid resistance of the STEC strains in cheeses was also studied. Six different mixtures of AR and/or NAR STEC strains were inoculated separately into microfiltered milk at a level of 103 CFU mL−1. The STEC counts (AR and NAR) initially increased by 1 to 2 log10 CFU g−1 during cheese-making. Thereafter, the populations stabilized during salting/drying and then decreased during the early stages of ripening. Exposing the STEC strains in artificially inoculated cheeses to simulated gastric fluid (SGF - pH: 2.0) reduced the number of NAR strains to undetectable levels within 40 minutes, versus 120 minutes for the AR STEC strains. AR and NAR STEC were able to survive during the manufacture and ripening of Camembert cheese prepared from microfiltered milk with no evidence of induced acid tolerance in NAR STEC strains. PMID:20016668
Govindasamy-Lucey, S; Lin, T; Jaeggi, J J; Martinelli, C J; Johnson, M E; Lucey, J A
2007-06-01
Sweet cream buttermilk (SCB) is a rich source of phospholipids (PL). Most SCB is sold in a concentrated form. This study was conducted to determine if different concentration processes could affect the behavior of SCB as an ingredient in cheese. Sweet cream buttermilk was concentrated by 3 methods: cold ( < 7 degrees C) UF, cold reverse osmosis (RO), and evaporation (EVAP). A washed, stirred-curd pizza cheese was manufactured using the 3 different types of concentrated SCB as an ingredient in standardized milk. Cheesemilks of casein:fat ratio of 1.0 and final casein content approximately 2.7% were obtained by blending ultrafiltered (UF)-SCB retentate (19.9% solids), RO-SCB retentate (21.9% solids), or EVAP-SCB retentate (36.6% solids) with partially skimmed milk (11.2% solids) and cream (34.6% fat). Control milk (11.0% solids) was standardized by blending partially skimmed milk with cream. Cheese functionality was assessed using dynamic low-amplitude oscillatory rheology, UW Meltprofiler (degree of flow after heating to 60 degrees C), and performance of cheese on pizza. Initial trials with SCB-fortified cheeses resulted in approximately 4 to 5% higher moisture (51 to 52%) than control cheese (approximately 47%). In subsequent trials, procedures were altered to obtain similar moisture content in all cheeses. Fat recoveries were significantly lower in RO- and EVAP-SCB cheeses than in control or UF-SCB cheeses. Nitrogen recoveries were not significantly different but tended to be slightly lower in control cheeses than the various SCB cheeses. Total PL recovered in SCB cheeses ( approximately 32 to 36%) were lower than control ( approximately 41%), even though SCB is high in PL. From the rheology test, the loss tangent curves at temperatures > 40 degrees C increased as cheese aged up to a month and were significantly lower in SCB cheeses than the control, indicating lower meltability. Degree of flow in all the cheeses was similar regardless of the treatment used, and as cheese ripened, it increased for all cheeses. Trichloroacetic acid-soluble N levels were similar in the control and SCB-fortified cheese. On baked pizza, cheese made from milk fortified with UF-SCB tended to have the lowest amount of free oil, but flavor attributes of all cheeses were similar. Addition of concentrated SCB to standardize cheesemilk for pizza cheese did not adversely affect functional properties of cheese but increased cheese moisture without changes in manufacturing procedure.
2014-01-01
Background Camembert-type cheese ripening is driven mainly by fungal microflora including Geotrichum candidum and Penicillium camemberti. These species are major contributors to the texture and flavour of typical bloomy rind cheeses. Biochemical studies showed that G. candidum reduces bitterness, enhances sulphur flavors through amino acid catabolism and has an impact on rind texture, firmness and thickness, while P. camemberti is responsible for the white and bloomy aspect of the rind, and produces enzymes involved in proteolysis and lipolysis activities. However, very little is known about the genetic determinants that code for these activities and their expression profile over time during the ripening process. Results The metatranscriptome of an industrial Canadian Camembert-type cheese was studied at seven different sampling days over 77 days of ripening. A database called CamemBank01was generated, containing a total of 1,060,019 sequence tags (reads) assembled in 7916 contigs. Sequence analysis revealed that 57% of the contigs could be affiliated to molds, 16% originated from yeasts, and 27% could not be identified. According to the functional annotation performed, the predominant processes during Camembert ripening include gene expression, energy-, carbohydrate-, organic acid-, lipid- and protein- metabolic processes, cell growth, and response to different stresses. Relative expression data showed that these functions occurred mostly in the first two weeks of the ripening period. Conclusions These data provide further advances in our knowledge about the biological activities of the dominant ripening microflora of Camembert cheese and will help select biological markers to improve cheese quality assessment. PMID:24670012
Lessard, Marie-Hélène; Viel, Catherine; Boyle, Brian; St-Gelais, Daniel; Labrie, Steve
2014-03-26
Camembert-type cheese ripening is driven mainly by fungal microflora including Geotrichum candidum and Penicillium camemberti. These species are major contributors to the texture and flavour of typical bloomy rind cheeses. Biochemical studies showed that G. candidum reduces bitterness, enhances sulphur flavors through amino acid catabolism and has an impact on rind texture, firmness and thickness, while P. camemberti is responsible for the white and bloomy aspect of the rind, and produces enzymes involved in proteolysis and lipolysis activities. However, very little is known about the genetic determinants that code for these activities and their expression profile over time during the ripening process. The metatranscriptome of an industrial Canadian Camembert-type cheese was studied at seven different sampling days over 77 days of ripening. A database called CamemBank01 was generated, containing a total of 1,060,019 sequence tags (reads) assembled in 7916 contigs. Sequence analysis revealed that 57% of the contigs could be affiliated to molds, 16% originated from yeasts, and 27% could not be identified. According to the functional annotation performed, the predominant processes during Camembert ripening include gene expression, energy-, carbohydrate-, organic acid-, lipid- and protein- metabolic processes, cell growth, and response to different stresses. Relative expression data showed that these functions occurred mostly in the first two weeks of the ripening period. These data provide further advances in our knowledge about the biological activities of the dominant ripening microflora of Camembert cheese and will help select biological markers to improve cheese quality assessment.
An Application of Specific Sensors For The Monitoring of NaCl in Soft Cheeses
NASA Astrophysics Data System (ADS)
Lvova, Larisa; Mielle, Patrick; Salles, Christian; Denis, Sylvain; Vergoignan, Catherine; Barra, Aurélien; Di Natale, Corrado; Paolesse, Roberto; Temple-Boyer, Pierre; Feron, Gilles
2011-09-01
The commercial sensors and prototype ISEs array (Ion Selective Electrodes array) were utilized for NaCl concentration measurements in soft cheeses, in particular in vitro gut process and in commercial Italian mozzarella cheeses. The values obtained from the sensors were compared with HPLC analysis. The results showed the feasibility of the ISE array application to monitor NaCl in soft cheese during the breakdown in the digester. The best results were obtained with the use of ISEs array combining, in particular, Cl- and Na+ detections. The salinity of commercial mozzarella cheese samples and the originally utilized milk type (cow or buffalo) were also satisfactory determined with the developed ISE array.
Biocheese: A Food Probiotic Carrier
Castro, J. M.; Tornadijo, M. E.; Fresno, J. M.; Sandoval, H.
2015-01-01
This review describes some aspects related to the technological barriers encountered in the development and stability of probiotic cheeses. Aspects concerning the viability of probiotic cultures in this matrix are discussed and the potential of cheese as a biofunctional food carrier is analyzed, outlying some points related to health and safety. In general, the manufacture of probiotic cheese should have little change when compared with the elaboration of cheese in the traditional way. The physicochemical and technological parameters influencing the quality of these products have also to be measured so as to obtain a process optimization. PMID:25802862
7 CFR 6.37 - Supersedure of Import Regulation 1, Revision 7.
Code of Federal Regulations, 2011 CFR
2011-01-01
...,000 Other Countries 13,064 SWISS OR EMMENTHALER CHEESE OTHER THAN WITH EYE FORMATION, GRUYERE-PROCESS...,290,723 Israel 50,000 New Zealand 1,000,000 Other Countries 1 SWISS OR EMMENTHALER CHEESE WITH EYE... Appendix 3 Tokyo Round Uruguay Round NON-CHEESE ARTICLES BUTTER (NOTE 6) 5,217,229 1,759,771 EU-25 75,000...
Hilario, Mario Cuchillo; Wrage, Nicole; Pérez-Gil R., Fernando
2010-01-01
The objective of this study was to evaluate the effect of foraging on local scrubby rangeland versus stable feeding with high-protein concentrate as well as the compulsory pasteurization process on goats’ milk and artisan soft cheese quality in terms of chemical composition and fatty acid profile. The results indicated that there were no significant differences in the energy, fat, or ash content of milk and cheese due to feeding; however, a significant influence of feeding on cheese protein and fatty acids in both milk and cheese was detected. Feeding on scrubby rangeland tended to increase the amounts of major polyunsaturated fatty acids in milk and cheese from goats. Pasteurization, which is mandatory in Mexico, did not alter the fatty acid concentrations in milk or cheese. Small goat-keepers using rangeland resources might claim better economical returns for products recognized as healthier. Further investigations to assure ecosystem sustainability of shrubby rangeland joined with economical evaluations and best animal management to avoid deleterious effects are recommended. PMID:20229357
USDA-ARS?s Scientific Manuscript database
High pressure processing (HPP) is a non-thermal post-packaging process with the potential to improve cheese safety and shelf life because of its lethality to bacteria (spoilage and pathogens) and ability to inactivate many enzymes. Queso Fresco (QF), a high moisture Hispanic-style cheese popular in ...
Peng, Silvio; Tasara, Taurai; Hummerjohann, Jörg; Stephan, Roger
2011-05-01
The ability of foodborne pathogens to survive in certain foods mainly depends on stress response mechanisms. Insight into molecular properties enabling pathogenic bacteria to survive in food is valuable for improvement of the control of pathogens during food processing. Raw milk cheeses are a potential source for human infections with Shiga toxin-producing Escherichia coli (STEC). In this review, we focused on the stress response mechanisms important for allowing STEC to survive raw milk cheese production processes. The major components and regulation pathways for general, acid, osmotic, and heat shock stress responses in E. coli and the implications of these responses for the survival of STEC in raw milk cheeses are discussed.
Sensory quality of Camembert-type cheese: Relationship between starter cultures and ripening molds.
Galli, Bruno Domingues; Martin, José Guilherme Prado; da Silva, Paula Porrelli Moreira; Porto, Ernani; Spoto, Marta Helena Fillet
2016-10-03
Starter cultures and ripening molds used in the manufacture of moldy cheese aimed at obtaining characteristic flavors and textures considerably differ among dairy industries. Thus, the study of variables inherent to the process and their influence on sensory patterns in cheese can improve the standardization and control of the production process. The aim of this work was to study the influence of three different variables on the sensory quality of Camembert-type cheese: type of lactic bacteria, type of ripener molds and inoculation method. Batches of Camembert-type cheese were produced using O or DL-type mesophilic starter culture, ripened with Penicillium camemberti or Penicillium candidum and mold inoculation was made directly into the milk or by spraying. All batches were sensorially evaluated using Quantitative Descriptive Analysis (QDA) with panelists trained for various attributes. Among the combinations analyzed, those resulting in more typical Camembert-type cheese were those using O-type mesophilic starter culture and P. candidum maturation mold directly applied into the milk or sprayed and those using DL-type mesophilic starter and P. camemberti ripener mold applied by surface spraying. These results demonstrate, therefore, that the combination of different ripener molds, inoculation methods and starter cultures directly influences the sensory quality of Camembert-type cheese, modifying significantly its texture, appearance, aroma and taste. Copyright © 2016 Elsevier B.V. All rights reserved.
O' Callaghan, Karen A M; Papkovsky, Dmitri B; Kerry, Joseph P
2016-06-20
The establishment and control of oxygen levels in packs of oxygen-sensitive food products such as cheese is imperative in order to maintain product quality over a determined shelf life. Oxygen sensors quantify oxygen concentrations within packaging using a reversible optical measurement process, and this non-destructive nature ensures the entire supply chain can be monitored and can assist in pinpointing negative issues pertaining to product packaging. This study was carried out in a commercial cheese packaging plant and involved the insertion of 768 sensors into 384 flow-wrapped cheese packs (two sensors per pack) that were flushed with 100% carbon dioxide prior to sealing. The cheese blocks were randomly assigned to two different storage groups to assess the effects of package quality, packaging process efficiency, and handling and distribution on package containment. Results demonstrated that oxygen levels increased in both experimental groups examined over the 30-day assessment period. The group subjected to a simulated industrial distribution route and handling procedures of commercial retailed cheese exhibited the highest level of oxygen detected on every day examined and experienced the highest rate of package failure. The study concluded that fluctuating storage conditions, product movement associated with distribution activities, and the possible presence of cheese-derived contaminants such as calcium lactate crystals were chief contributors to package failure.
O’ Callaghan, Karen A.M.; Papkovsky, Dmitri B.; Kerry, Joseph P.
2016-01-01
The establishment and control of oxygen levels in packs of oxygen-sensitive food products such as cheese is imperative in order to maintain product quality over a determined shelf life. Oxygen sensors quantify oxygen concentrations within packaging using a reversible optical measurement process, and this non-destructive nature ensures the entire supply chain can be monitored and can assist in pinpointing negative issues pertaining to product packaging. This study was carried out in a commercial cheese packaging plant and involved the insertion of 768 sensors into 384 flow-wrapped cheese packs (two sensors per pack) that were flushed with 100% carbon dioxide prior to sealing. The cheese blocks were randomly assigned to two different storage groups to assess the effects of package quality, packaging process efficiency, and handling and distribution on package containment. Results demonstrated that oxygen levels increased in both experimental groups examined over the 30-day assessment period. The group subjected to a simulated industrial distribution route and handling procedures of commercial retailed cheese exhibited the highest level of oxygen detected on every day examined and experienced the highest rate of package failure. The study concluded that fluctuating storage conditions, product movement associated with distribution activities, and the possible presence of cheese-derived contaminants such as calcium lactate crystals were chief contributors to package failure. PMID:27331815
Effect of freezing on the rheological, chemical and colour properties of Serpa cheese.
Alvarenga, Nuno; Canada, João; Sousa, Isabel
2011-02-01
The effect of freezing on the properties of a raw ewes'-milk semi-soft cheese (Serpa cheese) was studied using small amplitude oscillatory (SAOS) and texture measurements, colour and chemical parameters. The freezing was introduced at three different stages of the ripening process (28, 35 and 42 days), and the cheeses were maintained frozen for 12 months. Cheeses were submitted to a slow or fast freezing method, and to different storage temperatures: -10 and -20°C (three replicates for each set conditions). Chemical data showed that only the proteolysis indicators exhibited differences between frozen and non-frozen samples; frozen samples showed higher values of NPN than the non-frozen samples, indicating that the freezing process did not prevent the secondary proteolysis of cheese. Frozen samples showed a significantly (P<0·05) stronger structure than the non-frozen, as indicated by hardness. However, the differences between the frozen and non-frozen samples were not significantly for storage modulus (G' 1Hz) and loss tangent (tan δ 1Hz) (P>0·05). Freezing affected mainly colour parameters: frozen samples were more luminous, and more yellow-green. The results allowed us to conclude that the damages caused by freezing to cheese properties could be minimized if this type of storage is introduced at the end of ripening (42 d) using a freezing temperature of -20°C.
ERIC Educational Resources Information Center
Rowat, Amy C.; Rosenberg, Daniel; Hollar, Kathryn A.; Stone, Howard A.
2010-01-01
We describe a presentation on the science of pizza, which is designed for the general public including children ages 6 and older. The presentation focuses on the science of making and digesting cheese and bread. We highlight 4 major scientific themes: (1) how macromolecules such as carbohydrates and proteins are composed of atoms and small…
Fuka, Mirna Mrkonjić; Wallisch, Stefanie; Engel, Marion; Welzl, Gerhard; Havranek, Jasmina; Schloter, Michael
2013-01-01
Microbial communities play an important role in cheese ripening and determine the flavor and taste of different cheese types to a large extent. However, under adverse conditions human pathogens may colonize cheese samples during ripening and may thus cause severe outbreaks of diarrhoea and other diseases. Therefore in the present study we investigated the bacterial community structure of three raw ewe's milk cheese types, which are produced without the application of starter cultures during ripening from two production sites based on fingerprinting in combination with next generation sequencing of 16S rRNA gene amplicons. Overall a surprisingly high diversity was found in the analyzed samples and overall up to 213 OTU97 could be assigned. 20 of the major OTUs were present in all samples and include mostly lactic acid bacteria (LAB), mainly Lactococcus, and Enterococcus species. Abundance and diversity of these genera differed to a large extent between the 3 investigated cheese types and in response to the ripening process. Also a large number of non LAB genera could be identified based on phylogenetic alignments including mainly Enterobacteriaceae and Staphylococcacae. Some species belonging to these two families could be clearly assigned to species which are known as potential human pathogens like Staphylococcus saprophyticus or Salmonella spp. However, during cheese ripening their abundance was reduced. The bacterial genera, namely Lactobacillus, Streptococcus, Leuconostoc, Bifidobacterium, Brevibacterium, Corynebacterium, Clostridium, Staphylococcus, Thermoanerobacterium, E. coli, Hafnia, Pseudomonas, Janthinobacterium, Petrotoga, Kosmotoga, Megasphaera, Macrococcus, Mannheimia, Aerococcus, Vagococcus, Weissella and Pediococcus were identified at a relative low level and only in selected samples. Overall the microbial composition of the used milk and the management of the production units determined the bacterial community composition for all cheese types to a large extend, also at the late time points of cheese ripening.
2011-01-01
Background Corynebacterium variabile is part of the complex microflora on the surface of smear-ripened cheeses and contributes to the development of flavor and textural properties during cheese ripening. Still little is known about the metabolic processes and microbial interactions during the production of smear-ripened cheeses. Therefore, the gene repertoire contributing to the lifestyle of the cheese isolate C. variabile DSM 44702 was deduced from the complete genome sequence to get a better understanding of this industrial process. Results The chromosome of C. variabile DSM 44702 is composed of 3, 433, 007 bp and contains 3, 071 protein-coding regions. A comparative analysis of this gene repertoire with that of other corynebacteria detected 1, 534 predicted genes to be specific for the cheese isolate. These genes might contribute to distinct metabolic capabilities of C. variabile, as several of them are associated with metabolic functions in cheese habitats by playing roles in the utilization of alternative carbon and sulphur sources, in amino acid metabolism, and fatty acid degradation. Relevant C. variabile genes confer the capability to catabolize gluconate, lactate, propionate, taurine, and gamma-aminobutyric acid and to utilize external caseins. In addition, C. variabile is equipped with several siderophore biosynthesis gene clusters for iron acquisition and an exceptional repertoire of AraC-regulated iron uptake systems. Moreover, C. variabile can produce acetoin, butanediol, and methanethiol, which are important flavor compounds in smear-ripened cheeses. Conclusions The genome sequence of C. variabile provides detailed insights into the distinct metabolic features of this bacterium, implying a strong adaption to the iron-depleted cheese surface habitat. By combining in silico data obtained from the genome annotation with previous experimental knowledge, occasional observations on genes that are involved in the complex metabolic capacity of C. variabile were integrated into a global view on the lifestyle of this species. PMID:22053731
Brucella melitensis survival during manufacture of ripened goat cheese at two temperatures.
Méndez-González, Karla Y; Hernández-Castro, Rigoberto; Carrillo-Casas, Erika M; Monroy, Jorge F; López-Merino, Ahide; Suárez-Güemes, Francisco
2011-12-01
The aim of the current work was to assess the influence of two temperatures, 4°C and 24°C, on pH and water activity and their association with Brucella melitensis survival during the traditional manufacture of ripened goat cheese. Raw milk from a brucellosis-free goat herd was used for the manufacture of ripened cheese. The cheese was inoculated with 5×10(9) of the B. melitensis 16M strain during the tempering stage. The cheeses were matured for 5, 20, and 50 days at both temperatures. To assess Brucella survival, the pH and a(w) were recorded at each stage of the process (curd cutting, draining whey, immersion in brine, ripening I, ripening II, and ripening III). B. melitensis was detected at ripening stage III (1×10(3) colony-forming unit [CFU]/mL) from cheeses matured at 4°C with a pH of 5.0 and a(w) of 0.90, and at a ripening stage II (1×10(4) CFU/mL) from cheeses ripened at 24°C with a pH of 4.0 and a(w) of 0.89. The remaining stages were free from the inoculated pathogen. In addition, viable B. melitensis was recovered in significant amounts (1-2×10(6) CFU/mL) from the whey fractions of both types of cheese ripened at 24°C and 4°C. These results revealed the effects of high temperature (24°C vs. 4°C) on the low pH (4) and a(w) (0.89) that appeared to be associated with the suppression of B. melitensis at the early stages of cheese ripening. In the ripened goat cheeses, B. melitensis survived under a precise combination of temperature during maturation, ripening time, and a(w) in the manufacturing process.
Fuka, Mirna Mrkonjić; Wallisch, Stefanie; Engel, Marion; Welzl, Gerhard; Havranek, Jasmina; Schloter, Michael
2013-01-01
Microbial communities play an important role in cheese ripening and determine the flavor and taste of different cheese types to a large extent. However, under adverse conditions human pathogens may colonize cheese samples during ripening and may thus cause severe outbreaks of diarrhoea and other diseases. Therefore in the present study we investigated the bacterial community structure of three raw ewe's milk cheese types, which are produced without the application of starter cultures during ripening from two production sites based on fingerprinting in combination with next generation sequencing of 16S rRNA gene amplicons. Overall a surprisingly high diversity was found in the analyzed samples and overall up to 213 OTU97 could be assigned. 20 of the major OTUs were present in all samples and include mostly lactic acid bacteria (LAB), mainly Lactococcus, and Enterococcus species. Abundance and diversity of these genera differed to a large extent between the 3 investigated cheese types and in response to the ripening process. Also a large number of non LAB genera could be identified based on phylogenetic alignments including mainly Enterobacteriaceae and Staphylococcacae. Some species belonging to these two families could be clearly assigned to species which are known as potential human pathogens like Staphylococcus saprophyticus or Salmonella spp. However, during cheese ripening their abundance was reduced. The bacterial genera, namely Lactobacillus, Streptococcus, Leuconostoc, Bifidobacterium, Brevibacterium, Corynebacterium, Clostridium, Staphylococcus, Thermoanerobacterium, E. coli, Hafnia, Pseudomonas, Janthinobacterium, Petrotoga, Kosmotoga, Megasphaera, Macrococcus, Mannheimia, Aerococcus, Vagococcus, Weissella and Pediococcus were identified at a relative low level and only in selected samples. Overall the microbial composition of the used milk and the management of the production units determined the bacterial community composition for all cheese types to a large extend, also at the late time points of cheese ripening. PMID:24278315
Use of immobilised biocatalysts in the processing of cheese whey.
Kosseva, Maria R; Panesar, Parmjit S; Kaur, Gurpreet; Kennedy, John F
2009-12-01
Food processing industry operations need to comply with increasingly more stringent environmental regulations related to the disposal or utilisation of by-products and wastes. These include growing restrictions on land spraying with agro-industrial wastes, and on disposal within landfill operations, and the requirements to produce end products that are stabilised and hygienic. Much of the material generated as wastes by the dairy processing industries contains components that could be utilised as substrates and nutrients in a variety of microbial/enzymatic processes, to give rise to added-value products. A good example of a waste that has received considerable attention as a source of added-value products is cheese whey. The carbohydrate reservoir of lactose (4-5%) in whey and the presence of other essential nutrients make it a good natural medium for the growth of microorganisms and a potential substrate for bioprocessing through microbial fermentation. Immobilised cell and enzyme technology has also been applied to whey bioconversion processes to improve the economics of such processes. This review focuses upon the elaboration of a range of immobilisation techniques that have been applied to produce valuable whey-based products. A comprehensive literature survey is also provided to illustrate numerous immobilisation procedures with particular emphasis upon lactose hydrolysis, and ethanol and lactic acid production using immobilised biocatalysts.
Leclercq-Perlat, M-N; Sicard, M; Perrot, N; Trelea, I C; Picque, D; Corrieu, G
2015-02-01
Ripening descriptors are the main factors that determine consumers' preferences of soft cheeses. Six descriptors were defined to represent the sensory changes in Camembert cheeses: Penicillium camemberti appearance, cheese odor and rind color, creamy underrind thickness and consistency, and core hardness. To evaluate the effects of the main process parameters on these descriptors, Camembert cheeses were ripened under different temperatures (8, 12, and 16°C) and relative humidity (RH; 88, 92, and 98%). The sensory descriptors were highly dependent on the temperature and RH used throughout ripening in a ripening chamber. All sensory descriptor changes could be explained by microorganism growth, pH, carbon substrate metabolism, and cheese moisture, as well as by microbial enzymatic activities. On d 40, at 8°C and 88% RH, all sensory descriptors scored the worst: the cheese was too dry, its odor and its color were similar to those of the unripe cheese, the underrind was driest, and the core was hardest. At 16°C and 98% RH, the odor was strongly ammonia and the color was dark brown, and the creamy underrind represented the entire thickness of the cheese but was completely runny, descriptors indicative of an over ripened cheese. Statistical analysis showed that the best ripening conditions to achieve an optimum balance between cheese sensory qualities and marketability were 13±1°C and 94±1% RH. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Composition of Ragusano cheese during aging.
Licitra, G; Campo, P; Manenti, M; Portelli, G; Scuderi, S; Carpino, S; Barbano, D M
2000-03-01
Ragusano cheese is a brine-salted pasta filata cheese. Composition changes during 12 mo of aging were determined. Historically, Ragusano cheese has been aged in caves at 14 to 16 degrees C with about 80 to 90% relative humidity. Cheeses (n = 132) included in our study of block-to-block variation were produced by 20 farmhouse cheese makers in the Hyblean plain region of the Province of Ragusa in Sicily. Mean initial cheese block weight was about 14 kg. The freshly formed blocks of cheese before brine salting contained about 45.35% moisture, 25.3% protein, and 25.4% fat, with a pH of 5.25. As result of the brining and aging process, a natural rind forms. After 12 mo of aging, the cheese contained about 33.6% moisture, 29.2% protein, 30.0% fat, and 4.4% salt with a pH of 5.54, but block-to-block variation was large. Both soluble nitrogen content and free fatty acid (FFA) content increased with age. The pH 4.6 acetate buffer and 12% TCA-soluble nitrogen as a percentage of total nitrogen were 16 and 10.7%, respectively, whereas the FFA content was about 643 mg/100 g of cheese at 180 d. Five blocks of cheese were selected at 180 d for a study of variation within block. Composition variation within block was large; the center had higher moisture and lower salt in moisture content than did the outside. Composition variation within blocks favored more proteolysis and softer texture in the center.
Le Boucher, Clémentine; Gagnaire, Valérie; Briard-Bion, Valérie; Jardin, Julien; Maillard, Marie-Bernadette; Dervilly-Pinel, Gaud; Le Bizec, Bruno; Lortal, Sylvie; Jeanson, Sophie; Thierry, Anne
2016-01-01
In cheese, lactic acid bacteria are immobilized at the coagulation step and grow as colonies. The spatial distribution of bacterial colonies is characterized by the size and number of colonies for a given bacterial population within cheese. Our objective was to demonstrate that different spatial distributions, which lead to differences in the exchange surface between the colonies and the cheese matrix, can influence the ripening process. The strategy was to generate cheeses with the same growth and acidification of a Lactococcus lactis strain with two different spatial distributions, big and small colonies, to monitor the production of the major ripening metabolites, including sugars, organic acids, peptides, free amino acids, and volatile metabolites, over 1 month of ripening. The monitored metabolites were qualitatively the same for both cheeses, but many of them were more abundant in the small-colony cheeses than in the big-colony cheeses over 1 month of ripening. Therefore, the results obtained showed that two different spatial distributions of L. lactis modulated the ripening time course by generating moderate but significant differences in the rates of production or consumption for many of the metabolites commonly monitored throughout ripening. The present work further explores the immobilization of bacteria as colonies within cheese and highlights the consequences of this immobilization on cheese ripening. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Abu Ghraib Dairy, Abu Ghraib, Iraq
2010-01-14
products, especially milk. Traditionally, a young population consumes a large amount of dairy products, such as milk, yogurt , and processed cheese...security situation and electrical capacity in Iraq continue to improve, there will be a further increase in the demand for milk, yogurt , and cheese. Dairy...based products, such as bottled milk, yogurt , cheese, cream, and butter. The State Company for Dairy Products is a holding company with three
Abu Ghraib Dairy, Abu Ghraib, Iraq
2009-01-14
especially milk. Traditionally, a young population consumes a large amount of dairy products, such as milk, yogurt , and processed cheese. However...and electrical capacity in Iraq continue to improve, there will be a further increase in the demand for milk, yogurt , and cheese. Dairy products...such as bottled milk, yogurt , cheese, cream, and butter. The State Company for Dairy Products is a holding company with three factories/plants
USDA-ARS?s Scientific Manuscript database
Development of low-fat goat cheeses that appeal to health conscious consumers requires information on how the reduction of fat affects the quality traits of the cheese, such as its proteolysis and rheology. Goat milk samples containing 3.6, 2.0, 1.0, and <0.5% fat were processed into full-fat (F...
Survival of bioluminescent Listeria monocytogenes and Escherichia coli O157:H7 in soft cheeses.
Ramsaran, H; Chen, J; Brunke, B; Hill, A; Griffiths, M W
1998-07-01
Pasteurized and raw milks that had been inoculated at 10(4) cfu/ml with bioluminescent strains of Listeria monocytogenes and Escherichia coli O157:H7 were used in the manufacture of Camembert and Feta cheeses with or without nisin-producing starter culture. Survival of both organisms was determined during the manufacture and storage of Camembert and Feta cheeses at 2 +/- 1 degree C for 65 and 75 d, respectively. Bacterial bioluminescence was used as an indicator to enumerate the colonies plated on selective Listeria agar and on MacConkey agar. Escherichia coli O157:H7 survived the manufacturing process of both cheeses and was present at the end of the storage period in greater numbers than in the initial inoculum. At the end of 75 d of storage, E. coli O157:H7 was found in the brine of Feta cheese. The counts of L. monocytogenes increased as the pH of the Camembert cheese increased, and there were significant differences between the counts from samples taken from the inside and the counts from samples obtained near the surface of the cheese. The Feta cheese that contained nisin was the only cheese in which L. monocytogenes was at the level of the initial inoculum after 75 d of storage.
Marcellino, S N; Benson, D R
1992-11-01
St. Nectaire cheese is a semisoft cheese of French origin that, along with Brie and Camembert cheeses, belongs to the class of surface mold-ripened cheese. The surface microorganisms that develop on the cheese rind during ripening impart a distinctive aroma and flavor to this class of cheese. We have documented the sequential appearance of microorganisms on the cheese rind and in the curd over a 60-day ripening period. Scanning electron microscopy was used to visualize the development of surface fungi and bacteria. Light microscopy of stained paraffin sections was used to study cross sections through the rind. We also monitored the development of bacterial and yeast populations in and the pH of the curd and rind. The earliest stage of ripening (0 to 2 days) is dominated by the lactic acid bacterium Streptococcus cremoris and multilateral budding yeasts, primarily Debaryomyces and Torulopsis species. Geotrichum candidum follows closely, and then zygomycetes of the genus Mucor develop at day 4 of ripening. At day 20, the deuteromycete Trichothecium roseum appears. From day 20 until the end of the ripening process, coryneforms of the genera Brevibacterium and Arthrobacter can be seen near the surface of the cheese rind among fungal hyphae and yeast cells.
The Neural Bases of Disgust for Cheese: An fMRI Study
Royet, Jean-Pierre; Meunier, David; Torquet, Nicolas; Mouly, Anne-Marie; Jiang, Tao
2016-01-01
The study of food aversion in humans by the induction of illness is ethically unthinkable, and it is difficult to propose a type of food that is disgusting for everybody. However, although cheese is considered edible by most people, it can also be perceived as particularly disgusting to some individuals. As such, the perception of cheese constitutes a good model to study the cerebral processes of food disgust and aversion. In this study, we show that a higher percentage of people are disgusted by cheese than by other types of food. Functional magnetic resonance imaging then reveals that the internal and external globus pallidus and the substantia nigra belonging to the basal ganglia are more activated in participants who dislike or diswant to eat cheese (Anti) than in other participants who like to eat cheese, as revealed following stimulation with cheese odors and pictures. We suggest that the aforementioned basal ganglia structures commonly involved in reward are also involved in the aversive motivated behaviors. Our results further show that the ventral pallidum, a core structure of the reward circuit, is deactivated in Anti subjects stimulated by cheese in the wanting task, highlighting the suppression of motivation-related activation in subjects disgusted by cheese. PMID:27799903
Esteban-Torres, M; Mancheño, J M; de las Rivas, B; Muñoz, R
2014-11-01
Lactobacillus plantarum is a lactic acid bacterium that can be found during cheese ripening. Lipolysis of milk triacylglycerols to free fatty acids during cheese ripening has fundamental consequences on cheese flavor. In the present study, the gene lp_1760, encoding a putative esterase or lipase, was cloned and expressed in Escherichia coli BL21 (DE3) and the overproduced Lp_1760 protein was biochemically characterized. Lp_1760 hydrolyzed p-nitrophenyl esters of fatty acids from C2 to C16, with a preference for p-nitrophenyl butyrate. On triglycerides, Lp_1760 showed higher activity on tributyrin than on triacetin. Although optimal conditions for activity were 45°C and pH 7, Lp_1760 retains activity under conditions commonly found during cheese making and ripening. The Lp_1760 showed more than 50% activity at 5°C and exhibited thermal stability at high temperatures. Enzymatic activity was strongly inhibited by sodium dodecyl sulfate and phenylmethylsulfonyl fluoride. The Lp_1760 tributyrin esterase showed high activity in the presence of NaCl, lactic acid, and calcium chloride. The results suggest that Lp_1760 might be a useful tributyrin esterase to be used in cheese manufacturing. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Use of cheese whey for biomass production and spray drying of probiotic lactobacilli.
Lavari, Luisina; Páez, Roxana; Cuatrin, Alejandra; Reinheimer, Jorge; Vinderola, Gabriel
2014-08-01
The double use of cheese whey (culture medium and thermoprotectant for spray drying of lactobacilli) was explored in this study for adding value to this wastewater. In-house formulated broth (similar to MRS) and dairy media (cheese and ricotta whey and whey permeate) were assessed for their capacity to produce biomass of Lactobacillus paracasei JP1, Lb. rhamnosus 64 and Lb. gasseri 37. Simultaneously, spray drying of cheese whey-starch solution (without lactobacilli cells) was optimised using surface response methodology. Cell suspensions of the lactobacilli, produced in in house-formulated broth, were spray-dried in cheese whey-starch solution and viability monitored throughout the storage of powders for 2 months. Lb. rhamnosus 64 was able to grow satisfactorily in at least two of the in-house formulated culture media and in the dairy media assessed. It also performed well in spray drying. The performance of the other strains was less satisfactory. The growth capacity, the resistance to spray drying in cheese whey-starch solution and the negligible lost in viability during the storage (2 months), makes Lb. rhamnosus 64 a promising candidate for further technological studies for developing a probiotic dehydrated culture for foods, utilising wastewaters of the dairy industry (as growth substrate and protectant) and spray drying (a low-cost widely-available technology).
Giello, Marina; La Storia, Antonietta; Masucci, Felicia; Di Francia, Antonio; Ercolini, Danilo; Villani, Francesco
2017-05-01
Traditional Caciocavallo of Castelfranco is a semi-hard "pasta-filata" cheese produced from raw cows' milk in Campania region. The aim of the present research is mainly focused on the study, by 16S rRNA gene pyrosequencing and viable counts, of the dynamics of bacterial communities during manufacture and ripening of traditional Caciocavallo cheese. Moreover, the possible correlation between cheese microbiota and cows' feeding based on silage or hay was also evaluated. In general, except for enterococci, the technological process significantly affected all the microbial groups. According to 16S rRNA, raw cows' milk was dominated by Streptococcus thermophilus, L. lactis and Pseudomonas sp. in hay cheese production, whereas Lactococcus lactis and Acinetobacter sp. dominated silage production. Differences in the taxonomic structure of the milk's microbiota within diet groups were not related to silage and hay cows' feeding. Moreover, S. thermophilus was the unique species that dominate from raw milks to fermented intermediates and cheese in both hay and silage cheese productions. Feeding and ripening time influenced significantly sensory characteristics of the cheeses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bergamaschi, M; Cipolat-Gotet, C; Stocco, G; Valorz, C; Bazzoli, I; Sturaro, E; Ramanzin, M; Bittante, G
2016-12-01
Summer transhumance of dairy cows to high Alpine pastures is still practiced in many mountainous areas. It is important for many permanent dairy farms because the use of highland pastures increases milk production and high-priced typical local dairy products often boost farm income. As traditional cheese- and ricotta-making procedures in Alpine pastures are central to this dairy system, the objective of this study was to characterize the quality and efficiency of products and their relationships with the quality and availability of grass during the grazing season. The milk from 148 cows from 12 permanent farms reared on a temporary farm located in Alpine pastures was processed every 2wk during the summer (7 cheesemakings from late June to early September). During each processing, 11 dairy products (4 types of milk, 2 by-products, 3 fresh products, and 2 ripened cheeses) were sampled and analyzed. In addition, 8 samples of fresh forage from the pasture used by the cows were collected and analyzed. At the beginning of the pasture season the cows were at 233±90d in milk, 2.4±1.7 parities, and produced 23.6±5.7kg/d of milk. The milk yield decreased with the move from permanent to temporary farms and during the entire summer transhumance, but partly recovered after the cows returned to the permanent farms. Similar trends were observed for the daily yields of fat, protein, casein, lactose, and energy, as we found no large variations in the quality of the milk, with the exception of the first period of Alpine pasture. The somatic cell counts of milk increased during transhumance, but this resulted from a concentration of cells in a lower quantity of milk rather than an increase in the total number of cells ejected daily from the udder. We noted a quadratic trend in availability of forage (fresh and dry matter weight per hectare), with a maximum in late July. The quality of forage also varied during the summer with a worsening of chemical composition. The evening milk (before and after natural creaming), the whole morning milk, and the mixed vat milk had different chemical compositions, traditional coagulation properties, and curd-firming modeling parameters. These variations over the pasture season were similar to the residual variations with respect to chemical composition, and much lower with respect to coagulation and curd-firming traits. Much larger variations were noted in cream, cheese, and ricotta yields, as well as in nutrient recoveries in curd during the pasture season. The protein content of forage was correlated with some of the coagulation and curd-firming traits, the ether extract of forage was positively correlated with milk fat content and cheese yields, and fiber fractions of forage were unfavorably correlated with some of the chemical and technological traits. Traditional cheese- and ricotta-making procedures showed average cream, cheese, and ricotta yields of 6.3, 14.2, and 4.9%, respectively, and an overall recovery of almost 100% of milk fat, 88% of milk protein, and 60% of total milk solids. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Although Queso Fresco (QF), a popular high moisture Hispanic-style cheese sold in the U.S., is made from pasteurized milk it is subject to post pasteurization bacterial contamination. High pressure processing (HPP) of cheese is being considered because of its lethality to bacteria and potential to ...
Rodrigues, Marjory Xavier; Silva, Nathália Cristina Cirone; Trevilin, Júlia Hellmeister; Cruzado, Melina Mary Bravo; Mui, Tsai Siu; Duarte, Fábio Rodrigo Sanches; Castillo, Carmen J Contreras; Canniatti-Brazaca, Solange Guidolin; Porto, Ernani
2017-07-01
The aim of this research paper was to characterize coagulase-positive and coagulase-negative staphylococci from raw milk, Minas cheese, and production lines of Minas cheese processing. One hundred isolates from 3 different cheese producers were characterized using molecular approaches, such as PCR, molecular typing, and DNA sequencing. Staphylococcus aureus (88% of the isolates) was the most abundant followed by Staphylococcus epidermidis, Staphylococcus hyicus, and Staphylococcus warneri. Among the 22 enterotoxin genes tested, the most frequent was seh (62% of the isolates), followed by selx and ser. Hemolysin genes were widely distributed across isolates, and Panton-Valentine leukocidin and toxic shock syndrome toxin genes were also identified. Methicillin-resistant S. aureus were staphylococcal cassette chromosome mec III, IVa, IVd, and others nontypeable. In the phenotypic antibiotic resistance, multiresistant isolates were detected and resistance to penicillin was the most observed. Using spa typing, we identified several types and described a new one, t14969, isolated from cheese. These findings suggest that antibiotic resistance and potentially virulent strains from different sources can be found in the Brazilian dairy processing environment. Further research should be conducted with collaboration from regulatory agencies to develop programs of prevention of virulent and resistant strain dissemination in dairy products and the processing environment. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Aziza, Fanny; Mettler, Eric; Daudin, Jean-Jacques; Sanaa, Moez
2006-06-01
Cheese smearing is a complex process and the potential for cross-contamination with pathogenic or undesirable microorganisms is critical. During ripening, cheeses are salted and washed with brine to develop flavor and remove molds that could develop on the surfaces. Considering the potential for cross-contamination of this process in quantitative risk assessments could contribute to a better understanding of this phenomenon and, eventually, improve its control. The purpose of this article is to model the cross-contamination of smear-ripened cheeses due to the smearing operation under industrial conditions. A compartmental, dynamic, and stochastic model is proposed for mechanical brush smearing. This model has been developed to describe the exchange of microorganisms between compartments. Based on the analytical solution of the model equations and on experimental data collected with an industrial smearing machine, we assessed the values of the transfer parameters of the model. Monte Carlo simulations, using the distributions of transfer parameters, provide the final number of contaminated products in a batch and their final level of contamination for a given scenario taking into account the initial number of contaminated cheeses of the batch and their contaminant load. Based on analytical results, the model provides indicators for smearing efficiency and propensity of the process for cross-contamination. Unlike traditional approaches in mechanistic models, our approach captures the variability and uncertainty inherent in the process and the experimental data. More generally, this model could represent a generic base to use in modeling similar processes prone to cross-contamination.
Early lysis of Lactobacillus helveticus CNRZ 303 in Swiss cheese is not prophage-related.
Deutsch, Stéphanie Marie; Neveu, Anthony; Guezenec, Stéphane; Ritzenthaler, Paul; Lortal, Sylvie
2003-03-15
Lactobacillus helveticus is mainly used as starter in Swiss-type cheeses. Often, lysogenic strains are eliminated because of the risk of early lysis and acidification failure due to phage expression. On the other hand, L. helveticus lysis was shown to positively influence cheese proteolysis during ripening. In order to better assess the relationship between lysis and lysogeny, a prophage-cured derivative of L. helveticus CNRZ 303 was isolated (LH 303-G11) and relysogenised (LH 303-G11R), as demonstrated by hybridisation using the whole phage DNA as probe. The growth, lysis in buffered solutions and lytic activities in zymogram using either Micrococcus luteus or L. helveticus as substrate were identical between the mother strain and its cured derivatives. Only morphological differences were observed by scanning electron microscopy: the cells of the cured derivative were shorter in length. The mother strain and its cured and relysogenised derivatives were assayed in triplicate in experimental Swiss cheeses (scale 1:100). No differences were noted during the cheese making: the three strains exhibited identical kinetics of acidification, leading to similar cheeses at day 1 in terms of gross composition and pH. Phages were detected only in the cheeses made with the mother strain and the relysogenised derivative. The lysis of L. helveticus, estimated by viability decrease and release of the intracellular marker D-lactate deshydrogenase, started early before brining and continued during the cold room ripening. No obvious differences of lysis extent were observed. These results demonstrated for the first time that, in the case of LH 303, the extensive lysis observed in cheese is mainly due to autolysin activity and not to prophage induction.
Randazzo, C L; De Luca, S; Todaro, A; Restuccia, C; Lanza, C M; Spagna, G; Caggia, C
2007-08-01
The aim of this work was to preliminary characterize wild lactic acid bacteria (LAB), previously isolated during artisanal Pecorino Siciliano (PS) cheese-making for technological and flavour formation abilities in a model cheese system. Twelve LAB were studied for the ability to grow at 10 and 45 degrees C, to coagulate and acidify both reconstituted skim milk and ewe's milk. Moreover, the capacity of the strains to generate aroma compounds was evaluated in a model cheese system at 30- and 60-day ripening. Flavour compounds were screened by sensory analysis and throughout gas chromatography (GC)-mass spectrometry (MS). Most of the strains were able to grow both at 10 and 45 degrees C and exhibited high ability to acidify and coagulate ewes' milk. Sensory evaluation revealed that the wild strains produced more significant flavour attributes than commercial strains in the 60-day-old model cheese system. GC-MS data confirmed the results of sensory evaluations and showed the ability of wild lactobacilli to generate key volatile compounds. Particularly, three wild lactobacilli strains, belonging to Lactobacillus casei, Lb. rhamnosus and Lb. plantarum species, generated both in 60- and 30-day-old model cheeses system, the 3-methyl butan(al)(ol) compound, which is associated with fruity taste. The present work preliminarily demonstrated that the technological and flavour formation abilities of the wild strains are strain-specific and that wild lactobacilli, which produced key flavour compounds during ripening, could be used as tailor-made starters. This study reports the technological characterization and flavour formation ability of wild LAB strains isolated from artisanal Pecorino cheese and highlights that the catabolic activities were highly strain dependent. Hence, wild lactobacilli could be selected as tailor-made starter cultures for the PS cheese manufacture.
Canellada, Fernando; Laca, Amanda; Laca, Adriana; Díaz, Mario
2018-09-01
The environmental performance of a small-scale cheese factory sited in a NW Spanish region has been analysed by Life Cycle Assessment (LCA) as representative of numerous cheese traditional factories that are scattered through the European Union, especially in the southern countries. Inventory data were directly obtained from this facility corresponding to one-year operation, and the main subsystems involved in cheese production were included, i.e. raw materials, water, electricity, energy, cleaning products, packaging materials, transports, solid and liquid wastes and gas emissions. Results indicated that the environmental impacts derived from cheese making were mainly originated from raw milk production and the natural land transformation was the most affected of the considered categories. On the contrary, the manufacturing of packaging material and other non-dairy ingredients barely influenced on the total impact. Additionally, an average carbon footprint of the cheeses produced in the analysed facility has also been calculated, resulting milk production and pellet boiler emissions the most contributing subsystems. Furthermore, it was notable the positive environmental effect that entailed the direct use of whey as animal feed, which was considered in this study as avoided fodder. Finally, a revision of published works regarding the environmental performance of cheese production worldwide was provided and compared to results found in the present work. According to the analysed data, it is clear that the content of fat and dry extract are determinant factors for the carbon footprint of cheeses, whereas the cheesemaking scale and the geographical area have a very low effect. Copyright © 2018. Published by Elsevier B.V.
Bland, J H; Bailey, A P; Grandison, A S; Fagan, C C
2015-03-01
Partial budgeting was used to estimate the net benefit of blending Jersey milk in Holstein-Friesian milk for Cheddar cheese production. Jersey milk increases Cheddar cheese yield. However, the cost of Jersey milk is also higher; thus, determining the balance of profitability is necessary, including consideration of seasonal effects. Input variables were based on a pilot plant experiment run from 2012 to 2013 and industry milk and cheese prices during this period. When Jersey milk was used at an increasing rate with Holstein-Friesian milk (25, 50, 75, and 100% Jersey milk), it resulted in an increase of average net profit of 3.41, 6.44, 8.57, and 11.18 pence per kilogram of milk, respectively, and this additional profit was constant throughout the year. Sensitivity analysis showed that the most influential input on additional profit was cheese yield, whereas cheese price and milk price had a small effect. The minimum increase in yield, which was necessary for the use of Jersey milk to be profitable, was 2.63, 7.28, 9.95, and 12.37% at 25, 50, 75, and 100% Jersey milk, respectively. Including Jersey milk did not affect the quantity of whey butter and powder produced. Although further research is needed to ascertain the amount of additional profit that would be found on a commercial scale, the results indicate that using Jersey milk for Cheddar cheese making would lead to an improvement in profit for the cheese makers, especially at higher inclusion rates. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Thermus and the Pink Discoloration Defect in Cheese
Quigley, Lisa; O’Sullivan, Daniel J.; Daly, David; O’Sullivan, Orla; Burdikova, Zuzana; Vana, Rostislav; Beresford, Tom P.; Ross, R. Paul; Fitzgerald, Gerald F.; McSweeney, Paul L. H.; Giblin, Linda
2016-01-01
ABSTRACT A DNA sequencing-based strategy was applied to study the microbiology of Continental-type cheeses with a pink discoloration defect. The basis for this phenomenon has remained elusive, despite decades of research. The bacterial composition of cheese containing the defect was compared to that of control cheese using 16S rRNA gene and shotgun metagenomic sequencing as well as quantitative PCR (qPCR). Throughout, it was apparent that Thermus, a carotenoid-producing genus, was present at higher levels in defect-associated cheeses than in control cheeses. Prompted by this finding and data confirming the pink discoloration to be associated with the presence of a carotenoid, a culture-based approach was employed, and Thermus thermophilus was successfully cultured from defect-containing cheeses. The link between Thermus and the pinking phenomenon was then established through the cheese defect equivalent of Koch’s postulates when the defect was recreated by the reintroduction of a T. thermophilus isolate to a test cheese during the manufacturing process. IMPORTANCE Pink discoloration in cheese is a defect affecting many cheeses throughout the world, leading to significant financial loss for the dairy industry. Despite decades of research, the cause of this defect has remained elusive. The advent of high-throughput, next-generation sequencing has revolutionized the field of food microbiology and, with respect to this study, provided a means of testing a possible microbial basis for this defect. In this study, a combined 16S rRNA, whole-genome sequencing, and quantitative PCR approach was taken. This resulted in the identification of Thermus, a carotenoid-producing thermophile, in defect-associated cheeses and the recreation of the problem in cheeses to which Thermus was added. This finding has the potential to lead to new strategies to eliminate this defect, and our method represents an approach that can be employed to investigate the role of microbes in other food defects of unknown origin. PMID:27822529
Fluorometric determination of histamine in cheese.
Chambers, T L; Staruszkiewicz, W F
1978-09-01
Thirty-one samples of cheese obtained from retail outlets were analyzed for histamine, using an official AOAC fluorometric method. The types of cheese analyzed and the ranges of histamine found were: colby, 0.3--2.8; camembert, 0.4--4.2; cheddar, 1.2--5.8; gouda, 1.3--2.4; provolone, 2.0--23.5; roquefort, 1.0--16.8; mozzarella 1.6--5.0; and swiss, 0.4--250 mg histamine/100 g. Ten of the 12 samples of swiss cheese contained less than 16 mg histamine/100 g. The remaining 2 samples which contained 116 and 250 mg histamine/100 g were judged organoleptically to be of poor quality. An investigation of one processing facility showed that the production of histamine in swiss cheese may have been a result of a hydrogen peroxide/low temperature treatment of the milk supply. Recovery of histamine added to methanol extracts of cheese ranged from 93 to 105%. Histamine content was confirmed by high pressure liquid chromatographic analysis of the methanol extracts.
Alegría-Lertxundi, Iker; Rocandio Pablo, Ana; Arroyo-Izaga, Marta
2014-02-01
Studies have reported a negative association between dairy product consumption and weight status. However, not as much research has focused on cheese; therefore, the aim of this study was to study the association between cheese intake and overweight and obesity in a representative Basque adult population. A food frequency questionnaire (FFQ) was obtained from a random sample of 1081 adults (530 males and 551 females, 17-96 years old). Cheese consumption data were expressed as g/1000 kcal/day. The prevalence of overweight/obesity was higher in men (55.1%) than in women (35.4%) (p < 0.001). Participants with low or moderate intake of fresh and processed cheese demonstrated a higher prevalence of excess weight, compared with those with higher consumption. The confounding variables selected in multivariate analysis were: occupational status and age in both genders; and place of residence in men. In conclusion, negative associations were found between consumption of some types of cheese and overweight and obesity in this population.
Delgado, Francisco José; Delgado, Jonathan; González-Crespo, José; Cava, Ramón; Ramírez, Rosario
2013-12-01
The effect of high-pressure treatment (400 or 600 MPa for 7 min) on microbiology, proteolysis, texture and sensory parameters was investigated in a mature raw goat milk cheese. At day 60 of analysis, Mesophilic aerobic, Enterobacteriaceae, lactic acid bacteria and Listeria spp. were inactivated after high-pressure treatment at 400 or 600 MPa. At day 90, mesophilic aerobic, lactic acid bacteria and Micrococacceae counts were significantly lower in high-pressure-treated cheeses than in control ones. In general, nitrogen fractions were significantly modified after high-pressure treatment on day 60 at 600 MPa compared with control cheeses, but this effect was not found in cheeses after 30 days of storage (day 90). On the other hand, high-pressure treatment caused a significant increase of some texture parameters. However, sensory analysis showed that neither trained panellists nor consumers found significant differences between control and high-pressure-treated cheeses.
Characteristics of Gouda Cheese Supplemented with Chili Pepper Extract Microcapsules
Nam, Myoung Soo; Bae, Hyoung Churl
2017-01-01
In this study, the physicochemical and sensory properties of Gouda cheese supplemented with microcapsules of chili pepper extract were evaluated. Microcapsules of pepper extract were prepared by coacervation technique using gum acacia-gelatin wall and chili pepper oil core. Changes in pH, lactic acid bacteria (LAB) population, and free amino acid (FAA) content after supplementation of Gouda cheese with chili pepper capsules were monitored during ripening. Texture and sensory characteristics of the Gouda cheese ripened for 6 months were evaluated. The supplementation of pepper extract microcapsules (0.5% or 1%, w/w) did not influence the pH values and LAB content of the Gouda cheese (p<0.05) during the ripening period. While the content of total FAA increased with the ripening process in all the cheese groups (p<0.05), no significant difference (p<0.05) in the content of total FAA was observed among the sample groups at each time point. The addition of pepper extract microcapsules (1%, w/w) to Gouda cheese significantly decreased hardness (p<0.05) and negatively affected sensory attributes in terms of taste and texture (p<0.05). The results demonstrated that supplementation with 0.5% pepper extract microcapsules could provide additional bioactive ingredients, along with maintenance of the quality of Gouda cheese. PMID:29725204
Cao-Hoang, Lan; Chaine, Aline; Grégoire, Lydie; Waché, Yves
2010-10-01
A sodium caseinate film containing nisin (1000 IU/cm(2)) was produced and used to control Listeria innocua in an artificially contaminated cheese. Mini red Babybel cheese was chosen as a model semi-soft cheese. L. innocua was both surface- and in-depth inoculated to investigate the effectiveness of the antimicrobial film as a function of the distance from the surface in contact with the film. The presence of the active film resulted in a 1.1 log CFU/g reduction in L. innocua counts in surface-inoculated cheese samples after one week of storage at 4 degrees C as compared to control samples. With regard to in-depth inoculated cheese samples, antimicrobial efficiency was found to be dependent on the distance from the surface in contact with the active films to the cheese matrix. The inactivation rates obtained were 1.1, 0.9 and 0.25 log CFU/g for distances from the contact surface of 1 mm, 2 mm and 3 mm, respectively. Our study demonstrates the potential application of sodium caseinate films containing nisin as a promising method to overcome problems associated with post-process contamination, thereby extending the shelf life and possibly enhancing the microbial safety of cheeses. 2010 Elsevier Ltd. All rights reserved.
Leong, Wan Mei; Geier, Renae; Engstrom, Sarah; Ingham, Steve; Ingham, Barbara; Smukowski, Marianne
2014-08-01
Potentially hazardous foods require time/temperature control for safety. According to the U.S. Food and Drug Administration Food Code, most cheeses are potentially hazardous foods based on pH and water activity, and a product assessment is required to evaluate safety of storage >6 h at 21°C. We tested the ability of 67 market cheeses to support growth of Listeria monocytogenes (LM), Salmonella spp. (SALM), Escherichia coli O157:H7 (EC), and Staphylococcus aureus (SA) over 15 days at 25°C. Hard (Asiago and Cheddar), semi-hard (Colby and Havarti), and soft cheeses (mozzarella and Mexican-style), and reduced-sodium or reduced-fat types were tested. Single-pathogen cocktails were prepared and individually inoculated onto cheese slices (∼10(5) CFU/g). Cocktails were 10 strains of L. monocytogenes, 6 of Salmonella spp., or 5 of E. coli O157:H7 or S. aureus. Inoculated slices were vacuum packaged and stored at 25°C for ≤ 15 days, with surviving inocula enumerated every 3 days. Percent salt-in-the-moisture phase, percent titratable acidity, pH, water activity, and levels of indigenous/starter bacteria were measured. Pathogens did not grow on 53 cheeses, while 14 cheeses supported growth of SA, 6 of SALM, 4 of LM, and 3 of EC. Of the cheeses supporting pathogen growth, all supported growth of SA, ranging from 0.57 to 3.08 log CFU/g (average 1.70 log CFU/g). Growth of SALM, LM, and EC ranged from 1.01 to 3.02 log CFU/g (average 2.05 log CFU/g), 0.60 to 2.68 log CFU/g (average 1.60 log CFU/g), and 0.41 to 2.90 log CFU/g (average 1.69 log CFU/g), respectively. Pathogen growth varied within cheese types or lots. Pathogen growth was influenced by pH and percent salt-in-the-moisture phase, and these two factors were used to establish growth/no-growth boundary conditions for safe, extended storage (≤25°C) of pasteurized milk cheeses. Pathogen growth/no-growth could not be predicted for Swiss-style cheeses, mold-ripened or bacterial surface-ripened cheeses, and cheeses made with nonbovine milk, as insufficient data were gathered. This challenge study data can support science-based decision making in a regulatory framework.
Migliorati, Luciano; Boselli, Leonardo; Pirlo, Giacomo; Moschini, Maurizio; Masoero, Francesco
2017-08-01
Considering that water availability for agricultural needs is being restricted, an alternative to corn in animal nutrition should be explored in the Po Valley. The present study aimed to evaluate the effects of either a partial (Trial I) or a total (Trial II) corn silage substitution with barley silage in dairy cows' diet on milk yield and composition, its coagulation properties, cheese yield and the sensorial profile of 16-month-aged Grana Padano cheese. A partial or a total substitution of corn silage with barley silage had no effect on milk yield. Milk fat content in Trial I and milk urea content in both trials were higher with barley silage based diets than in corn silage based diets. No effects were observed concerning the lactodinamographic profile for milk aptitude to cheese-making, cheese yield and its organoleptic traits between feed treatments in Trials I and II. In both trials, hardness, friability and solubility scores were generally lower than reference values, whereas deformability, elasticity and stickiness scores were generally higher than reference values. A partial or a total substitution of corn silage with barley silage in diets for dairy cows did not induce any negative effects on animal performance, nor on milk-quality traits, cheese quality and yield. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Reduction of Environmental Listeria Using Gaseous Ozone in a Cheese Processing Facility.
Eglezos, Sofroni; Dykes, Gary A
2018-05-01
A cheese processing facility seeking to reduce environmental Listeria colonization initiated a regime of ozonation across all production areas as an adjunct to its sanitation regimes. A total of 360 environmental samples from the facility were tested for Listeria over a 12-month period. A total of 15 areas before and 15 areas after ozonation were tested. Listeria isolations were significantly ( P < 0.001) reduced from 15.0% in the preozonation samples to 1.67% in the postozonation samples in all areas. No deleterious effects of ozonation were noted on the wall paneling, seals, synthetic floors, or cheese processing equipment. The ozonation regime was readily incorporated by sanitation staff into the existing good manufacturing practice program. The application of ozone may result in a significant reduction in the prevalence of Listeria in food processing facilities.
Hystead, E; Diez-Gonzalez, F; Schoenfuss, T C
2013-10-01
Sodium chloride (NaCl) in cheese contributes to flavor and texture directly and by its effect on microbial and enzymatic activity. The salt-to-moisture ratio (S/M) is used to gauge if conditions for producing good-quality cheese have been met. Reductions in salt that deviate from the ideal S/M range could result in changing culture acidification profiles during cheese making. Lactococcus lactis ssp. lactis or Lc. lactis ssp. cremoris are both used as cultures in Cheddar cheese manufacture, but Lc. lactis ssp. lactis has a higher salt and pH tolerance than Lc. lactis ssp. cremoris. Both salt and pH are used to control growth and survival of Listeria monocytogenes and salts such as KCl are commonly used to replace the effects of NaCl in food when NaCl is reduced. The objectives of this project were to determine the effects of sodium reduction, KCl use, and the subspecies of Lc. lactis used on L. monocytogenes survival in stirred-curd Cheddar cheese. Cheese was manufactured with either Lc. lactis ssp. lactis or Lc. lactis ssp. cremoris. At the salting step, curd was divided and salted with a concentration targeted to produce a final cheese with 600 mg of sodium/100 g (control), 25% reduced sodium (450 mg of sodium/100 g; both with and without KCl), and low sodium (53% sodium reduction or 280 mg of sodium/100 g; both with and without KCl). Potassium chloride was added on a molar equivalent to the NaCl it replaced to maintain an equivalent S/M. Cheese was inoculated with a 5-strain cocktail of L. monocytogenes at different times during aging to simulate postprocessing contamination, and counts were monitored over 27 or 50 d, depending on incubation temperature (12 or 5 °C, respectively). In cheese inoculated with 4 log₁₀ cfu of L. monocytogenes/g 2 wk after manufacture, viable counts declined by more than 3 log₁₀ cfu/g in all treatments over 60 d. When inoculated with 5 log₁₀ cfu/g at 3mo of cheese age, L. monocytogenes counts in Cheddar cheese were also reduced during storage, but by less than 1.5 log10 cfu/g after 50 d. However, cheese with a 50% reduction in sodium without KCl had higher counts than full-sodium cheese at the end of 50 d of incubation at 4 °C when inoculated at 3 mo. When inoculated at 8 mo postmanufacture, this trend was only observed in 50% reduced sodium with KCl, for cheese manufactured with both cultures. This enhanced survival for 50% reduced-sodium cheese was not seen when a higher incubation temperature (12 °C) was used when cheese was inoculated at 3 mo of age and monitored for 27 d (no difference in treatments was observed at this incubation temperature). In the event of postprocessing contamination during later stages of ripening, L. monocytogenes was capable of survival in Cheddar cheese regardless of which culture was used, whether or not sodium had been reduced by as much as 50% from standard concentrations, or if KCl had been added to maintain the effective S/M of full-sodium Cheddar cheese. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Monnet, Christophe; Dugat-Bony, Eric; Swennen, Dominique; Beckerich, Jean-Marie; Irlinger, Françoise; Fraud, Sébastien; Bonnarme, Pascal
2016-01-01
The microbial communities in cheeses are composed of varying bacteria, yeasts, and molds, which contribute to the development of their typical sensory properties. In situ studies are needed to better understand their growth and activity during cheese ripening. Our objective was to investigate the activity of the microorganisms used for manufacturing a surface-ripened cheese by means of metatranscriptomic analysis. The cheeses were produced using two lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), one ripening bacterium (Brevibacterium aurantiacum), and two yeasts (Debaryomyces hansenii and Geotrichum candidum). RNA was extracted from the cheese rinds and, after depletion of most ribosomal RNA, sequencing was performed using a short-read sequencing technology that generated ~75 million reads per sample. Except for B. aurantiacum, which failed to grow in the cheeses, a large number of CDS reads were generated for the inoculated species, making it possible to investigate their individual transcriptome over time. From day 5 to 35, G. candidum accounted for the largest proportion of CDS reads, suggesting that this species was the most active. Only minor changes occurred in the transcriptomes of the lactic acid bacteria. For the two yeasts, we compared the expression of genes involved in the catabolism of lactose, galactose, lactate, amino acids, and free fatty acids. During ripening, genes involved in ammonia assimilation and galactose catabolism were down-regulated in the two species. Genes involved in amino acid catabolism were up-regulated in G. candidum from day 14 to day 35, whereas in D. hansenii, they were up-regulated mainly at day 35, suggesting that this species catabolized the cheese amino acids later. In addition, after 35 days of ripening, there was a down-regulation of genes involved in the electron transport chain, suggesting a lower cellular activity. The present study has exemplified how metatranscriptomic analyses provide insight into the activity of cheese microbial communities for which reference genome sequences are available. In the future, such studies will be facilitated by the progress in DNA sequencing technologies and by the greater availability of the genome sequences of cheese microorganisms. PMID:27148224
Succinic Acid Production from Cheese Whey using Actinobacillus succinogenes 130 Z
NASA Astrophysics Data System (ADS)
Wan, Caixia; Li, Yebo; Shahbazi, Abolghasem; Xiu, Shuangning
Actinobacillus succinogenes 130 Z was used to produce succinic acid from cheese whey in this study. At the presence of external CO2 supply, the effects of initial cheese whey concentration, pH, and inoculum size on the succinic acid production were studied. The by-product formation during the fermentation process was also analyzed. The highest succinic acid yield of 0.57 was obtained at initial cheese whey concentration of 50 g/L, while the highest succinic acid productivity of 0.58 g h-1 L-1 was obtained at initial cheese whey concentration of 100 g/L. Increase in pH and inoculum size caused higher succinic acid yield and productivity. At the preferred fermentation condition of pH 6.8, inoculum size of 5% and initial cheese whey concentration of 50 g/L, succinic acid yield of 0.57, and productivity of 0.44 g h-1 L-1 were obtained. Acetic acid and formic acid were the main by-products throughout the fermentation run of 48 h. It is feasible to produce succinic acid using lactose from cheese whey as carbon resource by A. succinogenes 130 Z.
Proteolysis in goat "coalho" cheese supplemented with probiotic lactic acid bacteria.
Bezerra, Taliana Kênia Alves; de Araujo, Ana Rita Ribeiro; do Nascimento, Edilza Santos; de Matos Paz, José Eduardo; Gadelha, Carlos Alberto; Gadelha, Tatiane Santi; Pacheco, Maria Teresa Bertoldo; do Egypto Queiroga, Rita de Cássia Ramos; de Oliveira, Maria Elieidy Gomes; Madruga, Marta Suely
2016-04-01
This study aimed to analyse the proteolytic effects of adding isolated and combined probiotic strains to goat "coalho" cheese. The cheeses were: QS - with culture Start, composed by Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris (R704); QLA - with Lactobacillus acidophilus (LA-5); QLP - with Lactobacillus paracasei subsp. paracasei (L. casei 01); QB - with Bifidobacterium animalis subsp. lactis (BB 12); and QC, co-culture with the three probiotic microorganisms. The cheeses were analysed during 28 days of storage at 10°C. The probiotic cell count was higher than 6.5 and 7 log colony-forming units (CFU) g(-1) of cheese at the 1st and 28th days of storage, respectively. The addition of co-culture influenced (p<0.01) proteolysis in the cheese and resulted in a higher content of soluble protein and release of amino acids at the 1st day after processing. However, over all 28 days, the cheese supplemented with Bifidobacterium lactis in its isolated form showed the highest proteolytic activity, particularly in the hydrolysis of the alpha-s2 and kappa-casein fractions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nguyen, Hanh T H; Ong, Lydia; Lopez, Christelle; Kentish, Sandra E; Gras, Sally L
2017-12-01
Mozzarella cheese is a classical dairy product but most research to date has focused on low moisture products. In this study, the microstructure and physicochemical properties of both laboratory and commercially produced high moisture buffalo Mozzarella cheeses were investigated and compared to high moisture bovine products. Buffalo and bovine Mozzarella cheeses were found to significantly differ in their microstructure, chemical composition, organic acid and proteolytic profiles but had similar hardness and meltability. The buffalo cheeses exhibited a significantly higher ratio of fat to protein and a microstructure containing larger fat patches and a less dense protein network. Liquid chromatography mass spectrometry detected the presence of only β-casein variant A2 and a single β-lactoglobulin variant in buffalo products compared to the presence of both β-casein variants A1 and A2 and β-lactoglobulin variants A and B in bovine cheese. These differences arise from the different milk composition and processing conditions. The differences in microstructure and physicochemical properties observed here offer a new approach to identify the sources of milk used in commercial cheese products. Copyright © 2017 Elsevier Ltd. All rights reserved.
D'Amico, Dennis J; Druart, Marc J; Donnelly, Catherine W
2010-12-01
This study was conducted to examine the fate of Escherichia coli O157:H7 during the manufacture and aging of Gouda and stirred-curd Cheddar cheeses made from raw milk. Cheeses were manufactured from unpasteurized milk experimentally contaminated with one of three strains of E. coli O157:H7 at an approximate population level of 20 CFU/ml. Samples of milk, whey, curd, and cheese were collected for enumeration of bacteria throughout the manufacturing and aging process. Overall, bacterial counts in both cheese types increased almost 10-fold from initial inoculation levels in milk to approximately 145 CFU/g found in cheeses on day 1. From this point, counts dropped significantly over 60 days to mean levels of 25 and 5 CFU/g in Cheddar and Gouda, respectively. Levels of E. coli O157:H7 fell and stayed below 5 CFU/g after an average of 94 and 108 days in Gouda and Cheddar, respectively, yet remained detectable after selective enrichment for more than 270 days in both cheese types. Changes in pathogen levels observed throughout manufacture and aging did not significantly differ by cheese type. In agreement with results of previous studies, our results suggest that the 60-day aging requirement alone is insufficient to completely eliminate levels of viable E. coli O157:H7 in Gouda or stirred-curd Cheddar cheese manufactured from raw milk contaminated with low levels of this pathogen.
40 CFR 405.51 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Specialized definitions. 405.51 Section 405.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Cottage Cheese and Cultured Cream Cheese...
40 CFR 405.51 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Specialized definitions. 405.51 Section 405.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Cottage Cheese and Cultured Cream Cheese...
Characteristics of food using Queso Fresco cheese as an example
USDA-ARS?s Scientific Manuscript database
Processing and aging affect food characteristics, such as rheology, functional properties, microstructure, and sensory traits. These effects are discussed using Queso Fresco, a popular Hispanic cheese variety, as an example. Gas chromatography-mass spectrometry data indicated that lipolysis occurr...
Picque, D; Leclercq-Perlat, M-N; Corrieu, G
2006-08-01
Respiratory activity, weight loss, and appearance of Camembert-type cheeses were studied during chamber ripening in relation to atmospheric composition. Cheese ripening was carried out in chambers under continuously renewed, periodically renewed, or nonrenewed gaseous atmospheres or under a CO(2) concentration kept constant at either 2 or 6% throughout the chamber-ripening process. It was found that overall atmospheric composition, and especially CO(2) concentration, of the ripening chamber affected respiratory activity. When CO(2) was maintained at either 2 or 6%, O(2) consumption and CO(2) production (and their kinetics) were higher compared with ripening trials carried out without regulating CO(2) concentration over time. Global weight loss was maximal under continuously renewed atmospheric conditions. In this case, the airflow increased exchanges between cheeses and the atmosphere. The ratio between water evaporation and CO(2) release also depended on atmospheric composition, especially CO(2) concentration. The thickening of the creamy underrind increased more quickly when CO(2) was present in the chamber from the beginning of the ripening process. However, CO(2) concentrations higher than 2% negatively influenced the appearance of the cheeses.
Staphylococcus aureus Entrance into the Dairy Chain: Tracking S. aureus from Dairy Cow to Cheese
Kümmel, Judith; Stessl, Beatrix; Gonano, Monika; Walcher, Georg; Bereuter, Othmar; Fricker, Martina; Grunert, Tom; Wagner, Martin; Ehling-Schulz, Monika
2016-01-01
Staphylococcus aureus is one of the most important contagious mastitis pathogens in dairy cattle. Due to its zoonotic potential, control of S. aureus is not only of great economic importance in the dairy industry but also a significant public health concern. The aim of this study was to decipher the potential of bovine udder associated S. aureus as reservoir for S. aureus contamination in dairy production and processing. From 18 farms, delivering their milk to an alpine dairy plant for the production of smeared semi-hard and hard cheese. one thousand hundred seventy six one thousand hundred seventy six quarter milk (QM) samples of all cows in lactation (n = 294) and representative samples form bulk tank milk (BTM) of all farms were surveyed for coagulase positive (CPS) and coagulase negative Staphylococci (CNS). Furthermore, samples from different steps of the cheese manufacturing process were tested for CPS and CNS. As revealed by chemometric-assisted FTIR spectroscopy and molecular subtyping (spa typing and multi locus sequence typing), dairy cattle represent indeed an important, yet underreported, entrance point of S. aureus into the dairy chain. Our data clearly show that certain S. aureus subtypes are present in primary production as well as in the cheese processing at the dairy plant. However, although a considerable diversity of S. aureus subtypes was observed in QM and BTM at the farms, only certain S. aureus subtypes were able to enter and persist in the cheese manufacturing at the dairy plant and could be isolated from cheese until day 14 of ripening. Farm strains belonging to the FTIR cluster B1 and B3, which show genetic characteristics (t2953, ST8, enterotoxin profile: sea/sed/sej) of the recently described S. aureus genotype B, most successfully contaminated the cheese production at the dairy plant. Thus, our study fosters the hypothesis that genotype B S. aureus represent a specific challenge in control of S. aureus in the dairy chain that requires effective clearance strategies and hygienic measures already in primary production to avoid a potential transfer of enterotoxic strains or enterotoxins into the dairy processing and the final retail product. PMID:27790200
CrossTalk: The Journal of Defense Software Engineering. Volume 23, Number 1, Jan/Feb 2010
2010-02-01
during implementation have been minimal, but Warren and Abler’s method may change that. by Ron Abler and Ted Warren CMMI, Swiss Cheese , and Pareto...Corbin’s case study of a CMMI appraisal preparation—including Alan Lakein’s “ Swiss Cheese Method” and the Pareto Principle—shows a way other...Stealth CPI: Managing Work Products to Achieve Continuous Process Improvement. Darrell Corbin’s CMMI, Swiss Cheese , and Pareto comes to us from an
De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; Gilbert, Jack A.; Ercolini, Danilo
2016-01-01
Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipid catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. The results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality. PMID:26911915
Gan, Heng Hui; Yan, Bingnan; Linforth, Robert S.T.; Fisk, Ian D.
2016-01-01
Headspace techniques have been extensively employed in food analysis to measure volatile compounds, which play a central role in the perceived quality of food. In this study atmospheric pressure chemical ionisation-mass spectrometry (APCI-MS), coupled with gas chromatography–mass spectrometry (GC–MS), was used to investigate the complex mix of volatile compounds present in Cheddar cheeses of different maturity, processing and recipes to enable characterisation of the cheeses based on their ripening stages. Partial least squares-linear discriminant analysis (PLS-DA) provided a 70% success rate in correct prediction of the age of the cheeses based on their key headspace volatile profiles. In addition to predicting maturity, the analytical results coupled with chemometrics offered a rapid and detailed profiling of the volatile component of Cheddar cheeses, which could offer a new tool for quality assessment and accelerate product development. PMID:26212994
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true [Reserved] 405.53 Section 405.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Cottage Cheese and Cultured Cream Cheese Subcategory § 405.53...
Effect of Incubation Time and Sucrose Addition on the Characteristics of Cheese Whey Yoghurt
NASA Astrophysics Data System (ADS)
Nurhartadi, E.; Utami, R.; Nursiwi, A.; Sari, A. M.; Widowati, E.; Sanjaya, A. P.; Esnadewi, E. A.
2017-04-01
The effect of incubation time and concentration of sucrose addition on the characteristics of cheese whey yogurt (lactic acid content, pH, total lactic acid bacteria, antioxidant activity, viscosity) and sensory characteristics (color, odor, flavor, consistency, and overalls) were investigated. The cheese whey yogurt fermentation process was carried out for 24h and 36h with the addition of sucrose 8, 10, and 12% (w/w) of total solid, respectively. The results showed that the lactic acid content, total lactic acid bacteria, antioxidant activity, and viscosity of cheese whey yogurt were affected by the incubation time and sucrose addition. The level of pH of yogurt which was incubated at 24h and 36h were relatively in the same levels, which were 4.51 up to 4.63. Due the sensory characteristic of cheese whey yogurt the panellists gave the high score for the cheese whey yogurt which was incubated at 24h and sucrose addition 12% (w/w) of total solid. The cheese whey yogurt has 0.41% lactic acid content; pH 4.51; 7.09 log total lactic acid bacteria cells / ml; 5.78% antioxidant activity; and 5.97 cP viscosity. The best sensory and physico-chemical characteristic of cheese whey yogurt was achieved by 24h incubation time and 12% concentration of sucrose addition.
Proteomic analysis of the adaptative response of Mucor spp. to cheese environment.
Morin-Sardin, Stéphanie; Jany, Jean-Luc; Artigaud, Sébastien; Pichereau, Vianney; Bernay, Benoît; Coton, Emmanuel; Madec, Stéphanie
2017-02-10
In the cheese industry context, Mucor species exhibit an ambivalent behavior as some species are essential "technological" organisms of some cheeses while others can be spoiling agents. Previously, we observed that cheese "technological" species exhibited higher optimal growth rates on cheese related matrices than on synthetic media. This growth pattern combined with morphological differences raise the question of their adaptation to cheese. In this study, using a comparative proteomic approach, we described the metabolic pathways of three Mucor strains considered as "technological" or "contaminant" in the cheese environment (M. lanceolatus UBOCC-A-109153, M. racemosus UBOCC-A-109155, M. circinelloides CBS 277-49) as well as a non-cheese related strain (M. endophyticus CBS 385-95). Overall, 15.8 to 19.0% of the proteomes showed a fold change ≥1.6 in Potato Dextrose Agar (PDA) versus Cheese Agar (CA), a cheese mimicking-medium. The 289 differentially expressed proteins identified by LC MS-MS analysis were mostly assigned to energy and amino-acid metabolisms in PDA whereas a higher diversity of biological processes was observed for cheese related strains in CA. Surprisingly, the vast majority (72.9%) of the over-accumulated proteins were different according to the considered medium and strain. These results strongly suggest that the observed better adaptative response of "technological" strains to cheese environment is mediated by species-specific proteins. The Mucor genus consists of a multitude of poorly known species. In the food context, few species are known for their positive role in the production of various food products, including cheese, while others are spoiling agents. The present study focused on the analysis of morphological and proteome differences of various Mucor spp. representative strains known as either positively (hereafter referred as "technological") or negatively (hereafter referred as "contaminant") associated with cheese or non-related to cheese (endophyte) on two different media, a synthetic medium and a cheese-mimicking medium. The main goal was to assess if adaptative traits of "technological" strains to the cheese environment could be identified. This work was based on observations we did in a recently published physiological study (Morin-Sardin et al., 2016). One of the important innovative aspects lies in the use for the first time of an extensive 2-DE approach to compare proteome variations for 4 strains on two different media. Results obtained offered an insight in the metabolic mechanisms associated with growth on a given medium and showed that adaptation to cheese environment is probably supported by species-specific proteins. The obtained data represent an essential step point for more targeted studies at the genomic and transcriptomic levels. Copyright © 2016 Elsevier B.V. All rights reserved.
Differences among total and in vitro digestible phosphorus content of meat and milk products.
Karp, Heini; Ekholm, Päivi; Kemi, Virpi; Hirvonen, Tero; Lamberg-Allardt, Christel
2012-05-01
Meat and milk products are important sources of dietary phosphorus (P) and protein. The use of P additives is common both in processed cheese and meat products. Measurement of in vitro digestible phosphorus (DP) content of foods may reflect absorbability of P. The objective of this study was to measure both total phosphorus (TP) and DP contents of selected meat and milk products and to compare amounts of TP and DP and the proportion of DP to TP among different foods. TP and DP contents of 21 meat and milk products were measured by inductively coupled plasma optical emission spectrometry (ICP-OES). In DP analysis, samples were digested enzymatically, in principle, in the same way as in the alimentary canal before the analyses. The most popular national brands of meat and milk products were chosen for analysis. The highest TP and DP contents were found in processed and hard cheeses; the lowest, in milk and cottage cheese. TP and DP contents in sausages and cold cuts were lower than those in cheeses. Chicken, pork, beef, and rainbow trout contained similar amounts of TP, but slightly more variation was found in their DP contents. Foods containing P additives have a high content of DP. Our study confirms that cottage cheese and unenhanced meats are better choices than processed or hard cheeses, sausages, and cold cuts for chronic kidney disease patients, based on their lower P-to-protein ratios and sodium contents. The results support previous findings of better P absorbability in foods of animal origin than in, for example, legumes. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Modeling the growth of Listeria monocytogenes in mold-ripened cheeses.
Lobacz, Adriana; Kowalik, Jaroslaw; Tarczynska, Anna
2013-06-01
This study presents possible applications of predictive microbiology to model the safety of mold-ripened cheeses with respect to bacteria of the species Listeria monocytogenes during (1) the ripening of Camembert cheese, (2) cold storage of Camembert cheese at temperatures ranging from 3 to 15°C, and (3) cold storage of blue cheese at temperatures ranging from 3 to 15°C. The primary models used in this study, such as the Baranyi model and modified Gompertz function, were fitted to growth curves. The Baranyi model yielded the most accurate goodness of fit and the growth rates generated by this model were used for secondary modeling (Ratkowsky simple square root and polynomial models). The polynomial model more accurately predicted the influence of temperature on the growth rate, reaching the adjusted coefficients of multiple determination 0.97 and 0.92 for Camembert and blue cheese, respectively. The observed growth rates of L. monocytogenes in mold-ripened cheeses were compared with simulations run with the Pathogen Modeling Program (PMP 7.0, USDA, Wyndmoor, PA) and ComBase Predictor (Institute of Food Research, Norwich, UK). However, the latter predictions proved to be consistently overestimated and contained a significant error level. In addition, a validation process using independent data generated in dairy products from the ComBase database (www.combase.cc) was performed. In conclusion, it was found that L. monocytogenes grows much faster in Camembert than in blue cheese. Both the Baranyi and Gompertz models described this phenomenon accurately, although the Baranyi model contained a smaller error. Secondary modeling and further validation of the generated models highlighted the issue of usability and applicability of predictive models in the food processing industry by elaborating models targeted at a specific product or a group of similar products. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ayala-Bribiesca, Erik; Turgeon, Sylvie L; Britten, Michel
2017-04-01
Calcium plays an important role in intestinal lipid digestion by increasing the lipolysis rate, but also limits fatty acid bioaccessibility by producing insoluble Ca soaps with long-chain fatty acids at intestinal pH conditions. The aim of this study was to better understand the effect of Ca on the bioaccessibility of milk fat from Cheddar-type cheeses. Three anhydrous milk fats (AMF) with different fatty acid profiles (olein, stearin, or control AMF) were used to prepare Cheddar-type cheeses, which were then enriched or not with Ca using CaCl 2 during the salting step. The cheeses were digested in vitro, and their disintegration and lipolysis rates were monitored during the process. At the end of digestion, lipids were extracted under neutral and acidic pH conditions to compare free fatty acids under intestinal conditions in relation to total fatty acids released during the digestion process. The cheeses prepared with the stearin (the AMF with the highest ratio of long-chain fatty acids) were more resistant to disintegration than the other cheeses, owing to the high melting temperature of that AMF. The Ca-enriched cheeses had faster lipolysis rates than the regular Ca cheeses. Chromatographic analysis of the digestion products showed that Ca interacted with long-chain fatty acids, producing Ca soaps, whereas no interaction with shorter fatty acids was detected. Although higher Ca levels resulted in faster lipolysis rates, driven by the depletion of reaction products as Ca soaps, such insoluble compounds are expected to reduce the bioavailability of fatty acids by hindering their absorption. These effects on lipid digestion and absorption are of interest for the design of food matrices for the controlled release of fat-soluble nutrients or bioactive molecules. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Hyun-Joo; Ham, Jun-Sang; Lee, Ju-Woon; Kim, Keehyuk; Ha, Sang-Do; Jo, Cheorun
2010-06-01
The objective of this study was to identify the efficacy of gamma and electron beam irradiation of the food-borne pathogens ( Listeria monocytogenes and Staphylococcus aureus) in sliced and pizza cheeses commercially available in the Korean market. Total aerobic bacteria and yeast/mold in the cheeses ranged from 10 2 to 10 3 Log CFU/g. Irradiation of 1 kGy for sliced cheese and 3 kGy for pizza cheese were sufficient to lower the total aerobic bacteria to undetectable levels (10 1 CFU/g). Pathogen inoculation test revealed that gamma irradiation was more effective than electron beam irradiation at the same absorbed dose, and the ranges of the D 10 values were from 0.84 to 0.93 kGy for L. monocytogenes and from 0.60 to 0.63 kGy for S. aureus. Results suggest that a low dose irradiation can improve significantly the microbial quality and reduce the risk of contamination of sliced and pizza cheeses by the food-borne pathogens which can potentially occur during processing.
Cunha, Joana T; Ribeiro, Tânia I B; Rocha, João B; Nunes, João; Teixeira, José A; Domingues, Lucília
2016-11-15
Serra da Estrela Protected Designation of Origin (PDO) cheese is the most famous Portuguese cheese and has a high commercial value. However, the adulteration of production with cheaper/lower-quality milks from non-autochthones ovine breeds compromises the quality of the final product and undervalues the original PDO cheese. A Randomly Amplified Polymorphic DNA (RAPD) method was developed for efficient detection of adulterant breeds in milk mixtures used for fraudulent production of this cheese. Furthermore, Sequence Characterized Amplified Region (SCAR) markers were designed envisioning the detection of milk adulteration in processed dairy foods. The RAPD-SCAR technique is here described, for the first time, to be potentially useful for detection of milk origin in dairy products. In this sense, our findings will play an important role on the valorization of Serra da Estrela cheese, as well as on other high-quality dairy products prone to adulteration, contributing to the further development of the dairy industry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bittante, G; Ferragina, A; Cipolat-Gotet, C; Cecchinato, A
2014-10-01
Cheese yield is an important technological trait in the dairy industry. The aim of this study was to infer the genetic parameters of some cheese yield-related traits predicted using Fourier-transform infrared (FTIR) spectral analysis and compare the results with those obtained using an individual model cheese-producing procedure. A total of 1,264 model cheeses were produced using 1,500-mL milk samples collected from individual Brown Swiss cows, and individual measurements were taken for 10 traits: 3 cheese yield traits (fresh curd, curd total solids, and curd water as a percent of the weight of the processed milk), 4 milk nutrient recovery traits (fat, protein, total solids, and energy of the curd as a percent of the same nutrient in the processed milk), and 3 daily cheese production traits per cow (fresh curd, total solids, and water weight of the curd). Each unprocessed milk sample was analyzed using a MilkoScan FT6000 (Foss, Hillerød, Denmark) over the spectral range, from 5,000 to 900 wavenumber × cm(-1). The FTIR spectrum-based prediction models for the previously mentioned traits were developed using modified partial least-square regression. Cross-validation of the whole data set yielded coefficients of determination between the predicted and measured values in cross-validation of 0.65 to 0.95 for all traits, except for the recovery of fat (0.41). A 3-fold external validation was also used, in which the available data were partitioned into 2 subsets: a training set (one-third of the herds) and a testing set (two-thirds). The training set was used to develop calibration equations, whereas the testing subsets were used for external validation of the calibration equations and to estimate the heritabilities and genetic correlations of the measured and FTIR-predicted phenotypes. The coefficients of determination between the predicted and measured values in cross-validation results obtained from the training sets were very similar to those obtained from the whole data set, but the coefficient of determination of validation values for the external validation sets were much lower for all traits (0.30 to 0.73), and particularly for fat recovery (0.05 to 0.18), for the training sets compared with the full data set. For each testing subset, the (co)variance components for the measured and FTIR-predicted phenotypes were estimated using bivariate Bayesian analyses and linear models. The intraherd heritabilities for the predicted traits obtained from our internal cross-validation using the whole data set ranged from 0.085 for daily yield of curd solids to 0.576 for protein recovery, and were similar to those obtained from the measured traits (0.079 to 0.586, respectively). The heritabilities estimated from the testing data set used for external validation were more variable but similar (on average) to the corresponding values obtained from the whole data set. Moreover, the genetic correlations between the predicted and measured traits were high in general (0.791 to 0.996), and they were always higher than the corresponding phenotypic correlations (0.383 to 0.995), especially for the external validation subset. In conclusion, we herein report that application of the cross-validation technique to the whole data set tended to overestimate the predictive ability of FTIR spectra, give more precise phenotypic predictions than the calibrations obtained using smaller data sets, and yield genetic correlations similar to those obtained from the measured traits. Collectively, our findings indicate that FTIR predictions have the potential to be used as indicator traits for the rapid and inexpensive selection of dairy populations for improvement of cheese yield, milk nutrient recovery in curd, and daily cheese production per cow. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Bove, Claudio Giorgio; De Dea Lindner, Juliano; Lazzi, Camilla; Gatti, Monica; Neviani, Erasmo
2011-01-05
Parmigiano Reggiano (PR) is an Italian cooked, long-ripened cheese made with unheated cow's milk and natural whey starter. The microflora is involved in the manufacturing of this cheese, arising from the natural whey starter, the raw milk and the environment. Molecular studies have shown that mesophilic non-starter lactic acid bacteria (NSLAB) are the dominant microflora present during the ripening of PR. In this study, a characterisation of Lactobacillus rhamnosus isolated from a single PR manufacturing and ripening process is reported, using a combination of genotypic fingerprinting techniques (RAPD-PCR and REP-PCR). The intraspecies heterogeneity evidenced for 66 strains is correlated to their abilities to adapt to specific environmental and technological conditions. The detection of biotypes that correlate with specific moments in cheese ripening or differential development throughout this process suggests that these strains may have specific roles closely linked to their peculiar technological properties. Copyright © 2010 Elsevier B.V. All rights reserved.
Modelling the Maillard reaction during the cooking of a model cheese.
Bertrand, Emmanuel; Meyer, Xuân-Mi; Machado-Maturana, Elizabeth; Berdagué, Jean-Louis; Kondjoyan, Alain
2015-10-01
During processing and storage of industrial processed cheese, odorous compounds are formed. Some of them are potentially unwanted for the flavour of the product. To reduce the appearance of these compounds, a methodological approach was employed. It consists of: (i) the identification of the key compounds or precursors responsible for the off-flavour observed, (ii) the monitoring of these markers during the heat treatments applied to the cheese medium, (iii) the establishment of an observable reaction scheme adapted from a literature survey to the compounds identified in the heated cheese medium (iv) the multi-responses stoichiokinetic modelling of these reaction markers. Systematic two-dimensional gas chromatography time-of-flight mass spectrometry was used for the semi-quantitation of trace compounds. Precursors were quantitated by high-performance liquid chromatography. The experimental data obtained were fitted to the model with 14 elementary linked reactions forming a multi-response observable reaction scheme. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nardin, Tiziana; Schiavon, Silvia; Cavazza, Agostino; Larcher, Roberto; Tuohy, Kieran M.
2015-01-01
“Nostrano-cheeses” are traditional alpine cheeses made from raw cow's milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of “Nostrano-cheeses” and evaluated their potential to produce γ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n = 97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was a Sc. thermophilus. PMID:25802859
Feutry, Fabienne; Oneca, María; Berthier, Françoise; Torre, Paloma
2012-02-01
The biodiversity and growth dynamics of Lactic Acid Bacteria (LAB) in farm-house Ossau-Iraty cheeses were investigated from vat milk to 180 days of ripening in six independent batches made from six raw ewe's milks using five typical cheese-making methods. Commercial starter S1 was used for three batches, starter S1 combined with S2 for one batch and no starter for two batches. Up to ten LAB species from five genera and up to two strains per species were identified per milk; up to eleven species from five genera and up to three strains per species were identified per cheese. Lactococcus lactis, Lactobacillus paracasei, Enterococcus faecalis, Enterococcus faecium, Enterococcus durans, and Leuconostoc mesenteroides were detected in all cheeses. Lactococci reached the highest counts irrespective of the milk and starter used. Lactococci and enterococci increased during manufacture, and mesophilic lactobacilli increased during ripening. Strain and species numbers, the percentage of isolates originating from the raw milk, maximum counts of each genus/species and time for reaching them, all varied according to whether or not a starter was used and the composition of the starter. The genotypes of strains within species varied according to the raw milk used. This generated distinct LAB microbiotas throughout manufacture and ripening that will certainly impact on the characteristics of the ripened cheeses. Copyright © 2011 Elsevier Ltd. All rights reserved.
Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi
Ropars, Jeanne; Rodríguez de la Vega, Ricardo C.; López-Villavicencio, Manuela; Gouzy, Jérôme; Sallet, Erika; Dumas, Émilie; Lacoste, Sandrine; Debuchy, Robert; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana
2015-01-01
Summary Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1–5]. Few studies have focused on the domestication of fungi, with notable exceptions [6–11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making—P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13–15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes. PMID:26412136
McAuliffe, Lisa N; Kilcawley, Kieran N; Sheehan, Jeremiah J; McSweeney, Paul L H
2016-10-25
Liposome-encapsulated ethylenediaminetetraacetic acid (EDTA) was incorporated into a model miniature Gouda-type cheese (20 g) in order to assess its effect on rennet gelation, starter viability, pH, and moisture content. EDTA was encapsulated within 2 different food-grade proliposome preparations, Pro-Lipo Duo and Pro-Lipo C (50% and 40% unsaturated soybean phospholipids and 50% and 60% aqueous medium, respectively), using the following high-shear technologies: Ultra-Turrax (5000 rpm), 2-stage homogenization (345 bar), or microfluidization (690 bar). Liposome size distribution was affected by the high-shear technology employed with the proportion of large vesicles (>100 nm) decreasing in the order microfluidization < 2-stage homogenization < Ultra-Turrax. All EDTA-containing liposomes were stable during 28 d refrigerated storage, with no significant (P ≤ 0.05) change in size distribution or EDTA entrapment efficiency (%EE). Liposome composition affected the entrapment of EDTA, with Pro-Lipo C having a significantly greater %EE than Pro-Lipo Duo, 63% and 54%, respectively. For this reason, Pro-Lipo C EDTA liposomes, with and without EDTA, were incorporated into model miniature Gouda-type cheese. Addition of liposome-encapsulated EDTA to milk during cheese making did not impact pH or rennet gel formation. No differences in composition or pH were evident in liposome-treated cheeses. The results of this study show that the incorporation of liposome-encapsulated EDTA into milk during cheese manufacture did not affect milk fermentation, moisture content, or pH, suggesting that this approach may be suitable for studying the effects of calcium equilibrium on the texture of brine-salted cheeses. © 2016 Institute of Food Technologists®.
Spus, Maciej; Liu, Hua; Wels, Michiel; Abee, Tjakko; Smid, Eddy J
2017-01-16
Lactobacillus helveticus is widely used in dairy fermentations and produces a range of enzymes, which upon cell lysis can be released into the cheese matrix and impact degradation of proteins, peptides and lipids. In our study we set out to explore the potential of Lb. helveticus DSM 20075 for increased autolytic capacity triggered by conditions such as low pH and high salt concentrations encountered in cheese environments. Lb. helveticus DSM 20075 was subjected to varied incubation temperatures (ranging from 37 to 50°C). High-temperature incubation (in the range of 45 to 50°C) allowed us to obtain a collection of six variant strains (V45-V50), which in comparison to the wild-type strain, showed higher growth rates at elevated temperatures (42°C-45°C). Moreover, variant strain V50 showed a 4-fold higher, in comparison to wild type, autolytic capacity in cheese-like conditions. Next, strain V50 was used as an adjunct in lab-scale cheese making trials to measure its impact on aroma formation during ripening. Specifically, in cheeses made with strain V50, the relative abundance of benzaldehyde increased 3-fold compared to cheeses made with the wild-type strain. Analysis of the genome sequence of strain V50 revealed multiple mutations in comparison to the wild-type strain DSM 20075 including a mutation found in a gene coding for a metal ion transporter, which can potentially be linked to intracellular accumulation of Mn 2+ and benzaldehyde formation. The approach of high-temperature incubation can be applied in dairy industry for the selection of (adjunct) cultures targeted at accelerated cheese ripening and aroma formation. Copyright © 2016 Elsevier B.V. All rights reserved.
Ojala, Teija; Laine, Pia K S; Ahlroos, Terhi; Tanskanen, Jarna; Pitkänen, Saara; Salusjärvi, Tuomas; Kankainen, Matti; Tynkkynen, Soile; Paulin, Lars; Auvinen, Petri
2017-01-16
Propionibacterium freudenreichii is a commercially important bacterium that is essential for the development of the characteristic eyes and flavor of Swiss-type cheeses. These bacteria grow actively and produce large quantities of flavor compounds during cheese ripening at warm temperatures but also appear to contribute to the aroma development during the subsequent cold storage of cheese. Here, we advance our understanding of the role of P. freudenreichii in cheese ripening by presenting the 2.68-Mbp annotated genome sequence of P. freudenreichii ssp. shermanii JS and determining its global transcriptional profiles during industrial cheese-making using transcriptome sequencing. The annotation of the genome identified a total of 2377 protein-coding genes and revealed the presence of enzymes and pathways for formation of several flavor compounds. Based on transcriptome profiling, the expression of 348 protein-coding genes was altered between the warm and cold room ripening of cheese. Several propionate, acetate, and diacetyl/acetoin production related genes had higher expression levels in the warm room, whereas a general slowing down of the metabolism and an activation of mobile genetic elements was seen in the cold room. A few ripening-related and amino acid catabolism involved genes were induced or remained active in cold room, indicating that strain JS contributes to the aroma development also during cold room ripening. In addition, we performed a comparative genomic analysis of strain JS and 29 other Propionibacterium strains of 10 different species, including an isolate of both P. freudenreichii subspecies freudenreichii and shermanii. Ortholog grouping of the predicted protein sequences revealed that close to 86% of the ortholog groups of strain JS, including a variety of ripening-related ortholog groups, were conserved across the P. freudenreichii isolates. Taken together, this study contributes to the understanding of the genomic basis of P. freudenreichii and sheds light on its activities during cheese ripening. Copyright © 2016 Elsevier B.V. All rights reserved.
Wilcott, Lynn; Naus, Monika
2015-01-01
Soft ripened cheese (SRC) caused over 130 foodborne illnesses in British Columbia (BC), Canada, during two separate listeriosis outbreaks. Multiple agencies investigated the events that lead to cheese contamination with Listeria monocytogenes (L.m.), an environmentally ubiquitous foodborne pathogen. In both outbreaks pasteurized milk and the pasteurization process were ruled out as sources of contamination. In outbreak A, environmental transmission of L.m. likely occurred from farm animals to personnel to culture solutions used during cheese production. In outbreak B, birds were identified as likely contaminating the dairy plant's water supply and cheese during the curd-washing step. Issues noted during outbreak A included the risks of operating a dairy plant in a farm environment, potential for transfer of L.m. from the farm environment to the plant via shared toilet facilities, failure to clean and sanitize culture spray bottles, and cross-contamination during cheese aging. L.m. contamination in outbreak B was traced to wild swallows defecating in the plant's open cistern water reservoir and a multibarrier failure in the water disinfection system. These outbreaks led to enhanced inspection and surveillance of cheese plants, test and release programs for all SRC manufactured in BC, improvements in plant design and prevention programs, and reduced listeriosis incidence. PMID:25918702
Duthoit, Frédérique; Godon, Jean-Jacques; Montel, Marie-Christine
2003-01-01
Microbial dynamics during processing and ripening of traditional cheeses such as registered designation of origin Salers cheese, an artisanal cheese produced in France, play an important role in the elaboration of sensory qualities. The aim of the present study was to obtain a picture of the dynamics of the microbial ecosystem of RDO Salers cheese by using culture-independent methods. This included DNA extraction, PCR, and single-strand conformation polymorphism (SSCP) analysis. Bacterial and high-GC% gram-positive bacterial primers were used to amplify V2 or V3 regions of the 16S rRNA gene. SSCP patterns revealed changes during the manufacturing of the cheese. Patterns of the ecosystems of cheeses that were provided by three farmers were also quite different. Cloning and sequencing of the 16S rRNA gene revealed sequences related to lactic acid bacteria (Lactococcus lactis, Streptococcus thermophilus, Enterococcus faecium, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Lactobacillus plantarum, and Lactobacillus pentosus), which were predominant during manufacturing and ripening. Bacteria belonging to the high-GC% gram-positive group (essentially corynebacteria) were found by using specific primers. The present molecular approach can effectively describe the ecosystem of artisanal dairy products. PMID:12839752
Biodiversity of bacterial ecosystems in traditional Egyptian Domiati cheese.
El-Baradei, Gaber; Delacroix-Buchet, Agnès; Ogier, Jean-Claude
2007-02-01
Bacterial biodiversity occurring in traditional Egyptian soft Domiati cheese was studied by PCR-temporal temperature gel electrophoresis (TTGE) and PCR-denaturing gradient gel electrophoresis (DGGE). Bands were identified using a reference species database (J.-C. Ogier et al., Appl. Environ. Microbiol. 70:5628-5643, 2004); de novo bands having nonidentified migration patterns were identified by DNA sequencing. Results reveal a novel bacterial profile and extensive bacterial biodiversity in Domiati cheeses, as reflected by the numerous bands present in TTGE and DGGE patterns. The dominant lactic acid bacteria (LAB) identified were as follows: Leuconostoc mesenteroides, Lactococcus garvieae, Aerococcus viridans, Lactobacillus versmoldensis, Pediococcus inopinatus, and Lactococcus lactis. Frequent non-LAB species included numerous coagulase-negative staphylococci, Vibrio spp., Kocuria rhizophila, Kocuria kristinae, Kocuria halotolerans, Arthrobacter spp./Brachybacterium tyrofermentans. This is the first time that the majority of these species has been identified in Domiati cheese. Nearly all the dominant and frequent bacterial species are salt tolerant, and several correspond to known marine bacteria. As Domiati cheese contains 5.4 to 9.5% NaCl, we suggest that these bacteria are likely to have an important role in the ripening process. This first systematic study of the microbial composition of Domiati cheeses reveals great biodiversity and evokes a role for marine bacteria in determining cheese type.
McIntyre, Lorraine; Wilcott, Lynn; Naus, Monika
2015-01-01
Soft ripened cheese (SRC) caused over 130 foodborne illnesses in British Columbia (BC), Canada, during two separate listeriosis outbreaks. Multiple agencies investigated the events that lead to cheese contamination with Listeria monocytogenes (L.m.), an environmentally ubiquitous foodborne pathogen. In both outbreaks pasteurized milk and the pasteurization process were ruled out as sources of contamination. In outbreak A, environmental transmission of L.m. likely occurred from farm animals to personnel to culture solutions used during cheese production. In outbreak B, birds were identified as likely contaminating the dairy plant's water supply and cheese during the curd-washing step. Issues noted during outbreak A included the risks of operating a dairy plant in a farm environment, potential for transfer of L.m. from the farm environment to the plant via shared toilet facilities, failure to clean and sanitize culture spray bottles, and cross-contamination during cheese aging. L.m. contamination in outbreak B was traced to wild swallows defecating in the plant's open cistern water reservoir and a multibarrier failure in the water disinfection system. These outbreaks led to enhanced inspection and surveillance of cheese plants, test and release programs for all SRC manufactured in BC, improvements in plant design and prevention programs, and reduced listeriosis incidence.
Induction of sexual reproduction and genetic diversity in the cheese fungus Penicillium roqueforti
Ropars, Jeanne; López-Villavicencio, Manuela; Dupont, Joëlle; Snirc, Alodie; Gillot, Guillaume; Coton, Monika; Jany, Jean-Luc; Coton, Emmanuel; Giraud, Tatiana
2014-01-01
The emblematic fungus Penicillium roqueforti is used throughout the world as a starter culture in the production of blue-veined cheeses. Like other industrial filamentous fungi, P. roqueforti was thought to lack a sexual cycle. However, an ability to induce recombination is of great economic and fundamental importance, as it would make it possible to transform and improve industrial strains, promoting the creation of novel phenotypes and eliminating the deleterious mutations that accumulate during clonal propagation. We report here, for the first time, the induction of the sexual structures of P. roqueforti — ascogonia, cleistothecia and ascospores. The progeny of the sexual cycle displayed clear evidence of recombination. We also used the recently published genome sequence for this species to develop microsatellite markers for investigating the footprints of recombination and population structure in a large collection of isolates from around the world and from different environments. Indeed, P. roqueforti also occurs in silage, wood and human-related environments other than cheese. We found tremendous genetic diversity within P. roqueforti, even within cheese strains and identified six highly differentiated clusters that probably predate the use of this species for cheese production. Screening for phenotypic and metabolic differences between these populations could guide future development strategies. PMID:24822078
Ribeiro, S C; Coelho, M C; Todorov, S D; Franco, B D G M; Dapkevicius, M L E; Silva, C C G
2014-03-01
Evaluate technologically relevant properties from bacteriocin-producing strains to use as starter/adjunct cultures in cheese making. Eight isolates obtained from Pico cheese produced in Azores (Portugal) were found to produce bacteriocins against Listeria monocytogenes and three isolates against Clostridium perfringens. They were identified as Lactococcus lactis and Enterococcus faecalis and submitted to technological tests: growth at different conditions of temperature and salt, acid production, proteolysis, lipolysis, coexistence, enzymatic profile and autolytic capacity. Safety evaluation was performed by evaluating haemolytic, gelatinase and DNase activity, resistance to antibiotics and the presence of virulence genes. Some isolates presented good technological features such as high autolytic activity, acid and diacetyl production. Lactococcus lactis was negative for all virulence genes tested and inhibit the growth of all Lactic acid bacteria (LAB) isolates. Enterococci were positive for the presence of some virulence genes, but none of the isolates were classified as resistant to important antibiotics. The bacteriocin-producing Lc. lactis present good potential for application in food as adjunct culture in cheese production. The study also reveals good technological features for some Enterococcus isolates. Bacteriocin-producing strains presented important technological properties to be exploited as new adjunct culture for the dairy industry, influencing flavour development and improve safety. © 2013 The Society for Applied Microbiology.
MOLECULES TO MOZZARELLA: THE CHEMISTRY OF CHEESE
USDA-ARS?s Scientific Manuscript database
Almost ten billion pounds of cheese are produced in the US each year, and chemistry is involved in every step of the manufacturing process. The milk coagulates into a curd when starter culture bacteria digest lactose and rennet enzyme destabilizes casein micelles. Cooking and piling the curd force...
Diaz, Maria; Del Rio, Beatriz; Sanchez-Llana, Esther; Ladero, Victor; Redruello, Begoña; Fernández, María; Martin, M Cruz; Alvarez, Miguel A
2016-10-01
The consumption of food containing large amounts of histamine can lead to histamine poisoning. Cheese is one of the most frequently involved foods. Histamine, one of the biogenic amines (BAs) exhibiting the highest safety risk, accumulates in food contaminated by microorganisms with histidine decarboxylase activity. The origin of these microorganisms may be very diverse with contamination likely occurring during post-ripening processing, but the microorganisms involved during this manufacturing step have never been identified. The present work reports the isolation of 21 histamine-producing Lactobacillus parabuchneri strains from a histamine-containing grated cheese. PCR revealed that every isolate carried the histidine decarboxylase gene (hdcA). Eight lineages were identified based on the results of genome PFGE restriction analysis plus endonuclease restriction profile analysis of the carried plasmids. Members of all lineages were able to form biofilms on polystyrene and stainless steel surfaces. L. parabuchneri is therefore an undesirable species in the dairy industry; the biofilms it can produce on food processing equipment represent a reservoir of histamine-producing bacteria and thus a source of contamination of post-ripening-processed cheeses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bergamaschi, Matteo; Cecchinato, Alessio; Biasioli, Franco; Gasperi, Flavia; Martin, Bruno; Bittante, Giovanni
2016-11-16
Volatile organic compounds determine important quality traits in cheese. The aim of this work was to infer genetic parameters of the profile of volatile compounds in cheese as revealed by direct-injection mass spectrometry of the headspace gas from model cheeses that were produced from milk samples from individual cows. A total of 1075 model cheeses were produced using raw whole-milk samples that were collected from individual Brown Swiss cows. Single spectrometry peaks and a combination of these peaks obtained by principal component analysis (PCA) were analysed. Using a Bayesian approach, we estimated genetic parameters for 240 individual spectrometry peaks and for the first ten principal components (PC) extracted from them. Our results show that there is some genetic variability in the volatile compound fingerprint of these model cheeses. Most peaks were characterized by a substantial heritability and for about one quarter of the peaks, heritability (up to 21.6%) was higher than that of the best PC. Intra-herd heritability of the PC ranged from 3.6 to 10.2% and was similar to heritabilities estimated for milk fat, specific fatty acids, somatic cell count and some coagulation parameters in the same population. We also calculated phenotypic correlations between PC (around zero as expected), the corresponding genetic correlations (from -0.79 to 0.86) and correlations between herds and sampling-processing dates (from -0.88 to 0.66), which confirmed that there is a relationship between cheese flavour and the dairy system in which cows are reared. This work reveals the existence of a link between the cow's genetic background and the profile of volatile compounds in cheese. Analysis of the relationships between the volatile organic compound (VOC) content and the sensory characteristics of cheese as perceived by the consumer, and of the genetic basis of these relationships could generate new knowledge that would open up the possibility of controlling and improving the sensory properties of cheese through genetic selection of cows. More detailed investigations are necessary to connect VOC with the sensory properties of cheese and gain a better understanding of the significance of these new phenotypes.
The Lactose and Galactose Content of Cheese Suitable for Galactosaemia: New Analysis.
Portnoi, P A; MacDonald, A
2016-01-01
The UK Medical Advisory Panel of the Galactosaemia Support Group report the lactose and galactose content of 5 brands of mature Cheddar cheese, Comte and Emmi Emmental fondue mix from 32 cheese samples. The Medical Advisory Panel define suitable cheese in galactosaemia to have a lactose and galactose content consistently below 10 mg/100 g. A total of 32 samples (5 types of mature Cheddar cheese, Comte and "Emmi Swiss Fondue", an emmental fondue mix) were analysed by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) technology used to perform lactose and galactose analysis. Cheddar cheese types: Valley Spire West Country, Parkham, Lye Cross Vintage, Lye Cross Mature, Tesco West Country Farmhouse Extra Mature and Sainsbury's TTD West Country Farmhouse Extra Mature had a lactose and galactose content consistently below 10 mg/100 g (range <0.05 to 12.65 mg). All Comte samples had a lactose content below the lower limit of detection (<0.05 mg) with galactose content from <0.05 to 1.86 mg/100 g; all samples of Emmi Swiss Fondue had lactose below the lower limit of detection (<0.05 mg) and galactose between 2.19 and 3.04 mg/100 g. All of these cheese types were suitable for inclusion in a low galactose diet for galactosaemia. It is possible that the galactose content of cheese may change over time depending on its processing, fermentation time and packaging techniques.
Meyrand, A; Boutrand-Loei, S; Ray-Gueniot, S; Mazuy, C; Gaspard, C E; Jaubert, G; Perrin, G; Lapeyre, C; Vernozy-Rozand, C
1998-09-01
Tests were carried out to determine the effect of manufacturing procedures for a Camembert-type cheese from raw goats' milk on the growth and survival of Staphylococcus aureus organisms added to milk at the start of the process, and to study the possible presence of staphylococcal enterotoxin A in these cheeses. The initial staphylococcal counts were, respectively, 2, 3, 4, 5 and 6 log cfu ml-1. Cheese was prepared following the industrial specifications and ripened for 41 d. Detection of enterotoxins was done by the Vidas SET test and by an indirect double-sandwich ELISA technique using antienterotoxin monoclonal antibodies. Generally, numbers of microbes increased at a similar rate during manufacture in all cheeses until salting. During the ripening period, the aerobic plate count population and Staph. aureus levels remained stable and high. There was an approximately 1 log reduction of Staph. aureus in cheeses made with an initial inoculum of Staph. aureus greater than 10(3) cfu ml-1 at the end of the ripening period (41 d) compared with the count at 22 h. The level of staphylococcal enterotoxin A recovered varied from 1 to 3.2 ng g-1 of cheese made with an initial population of 10(3)-10(6) cfu ml-1. No trace of enterotoxin A was detected in cheeses made with the lowest Staph. aureus inoculum used in this study.
48 CFR 52.232-25 - Prompt payment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... edible fresh or frozen poultry meat, any perishable poultry meat food product, fresh eggs, and any...) For fresh or frozen fish, as defined in section 204(3) of the Fish and Seafood Promotion Act of 1986..., cheese, certain processed cheese products, butter, yogurt, ice cream, mayonnaise, salad dressings, and...
48 CFR 552.232-25 - Prompt Payment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... further defined in Pub. L. 98-181, including any edible fresh or frozen poultry meat, any perishable... later than, the 7th day after product delivery. (B) For fresh or frozen fish, as defined in section 204... invoice has been received. Liquid milk, cheese, certain processed cheese products, butter, yogurt, ice...
48 CFR 52.232-25 - Prompt payment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... edible fresh or frozen poultry meat, any perishable poultry meat food product, fresh eggs, and any...) For fresh or frozen fish, as defined in section 204(3) of the Fish and Seafood Promotion Act of 1986..., cheese, certain processed cheese products, butter, yogurt, ice cream, mayonnaise, salad dressings, and...
48 CFR 52.232-25 - Prompt payment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... edible fresh or frozen poultry meat, any perishable poultry meat food product, fresh eggs, and any...) For fresh or frozen fish, as defined in section 204(3) of the Fish and Seafood Promotion Act of 1986..., cheese, certain processed cheese products, butter, yogurt, ice cream, mayonnaise, salad dressings, and...
48 CFR 552.232-25 - Prompt Payment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... further defined in Pub. L. 98-181, including any edible fresh or frozen poultry meat, any perishable... later than, the 7th day after product delivery. (B) For fresh or frozen fish, as defined in section 204... invoice has been received. Liquid milk, cheese, certain processed cheese products, butter, yogurt, ice...
48 CFR 552.232-25 - Prompt Payment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... further defined in Pub. L. 98-181, including any edible fresh or frozen poultry meat, any perishable... later than, the 7th day after product delivery. (B) For fresh or frozen fish, as defined in section 204... invoice has been received. Liquid milk, cheese, certain processed cheese products, butter, yogurt, ice...
48 CFR 32.904 - Determining payment due dates.
Code of Federal Regulations, 2011 CFR
2011-10-01
... section 111(e) of the Dairy Production Stabilization Act of 1983 (7 U.S.C. 4502(e)), edible fats or oils, and food products prepared from edible fats or oils. Liquid milk, cheese, certain processed cheese products, butter, yogurt, ice cream, mayonnaise, salad dressings, and other similar products fall within...
48 CFR 32.904 - Determining payment due dates.
Code of Federal Regulations, 2010 CFR
2010-10-01
... section 111(e) of the Dairy Production Stabilization Act of 1983 (7 U.S.C. 4502(e)), edible fats or oils, and food products prepared from edible fats or oils. Liquid milk, cheese, certain processed cheese products, butter, yogurt, ice cream, mayonnaise, salad dressings, and other similar products fall within...
Kinetic Behavior of Escherichia coli on Various Cheeses under Constant and Dynamic Temperature.
Kim, K; Lee, H; Gwak, E; Yoon, Y
2014-07-01
In this study, we developed kinetic models to predict the growth of pathogenic Escherichia coli on cheeses during storage at constant and changing temperatures. A five-strain mixture of pathogenic E. coli was inoculated onto natural cheeses (Brie and Camembert) and processed cheeses (sliced Mozzarella and sliced Cheddar) at 3 to 4 log CFU/g. The inoculated cheeses were stored at 4, 10, 15, 25, and 30°C for 1 to 320 h, with a different storage time being used for each temperature. Total bacteria and E. coli cells were enumerated on tryptic soy agar and MacConkey sorbitol agar, respectively. E. coli growth data were fitted to the Baranyi model to calculate the maximum specific growth rate (μ max; log CFU/g/h), lag phase duration (LPD; h), lower asymptote (log CFU/g), and upper asymptote (log CFU/g). The kinetic parameters were then analyzed as a function of storage temperature, using the square root model, polynomial equation, and linear equation. A dynamic model was also developed for varying temperature. The model performance was evaluated against observed data, and the root mean square error (RMSE) was calculated. At 4°C, E. coli cell growth was not observed on any cheese. However, E. coli growth was observed at 10°C to 30°C with a μ max of 0.01 to 1.03 log CFU/g/h, depending on the cheese. The μ max values increased as temperature increased, while LPD values decreased, and μ max and LPD values were different among the four types of cheese. The developed models showed adequate performance (RMSE = 0.176-0.337), indicating that these models should be useful for describing the growth kinetics of E. coli on various cheeses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale
Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipidmore » catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. Finally, the results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality.« less
De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; ...
2016-02-25
Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipidmore » catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. Finally, the results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality.« less
Xu, Yi; Kong, Jian
2013-07-01
The rapid release of intracellular enzymes into the curd by the autolysis of lactic acid bacteria starters is universally recognized as a critical biological process to accelerate cheese ripening. Lactobacillus casei is typically the dominant nonstarter lactic acid bacterium in the ripening cheese. In this study, two controlled autolytic systems were established in L. casei BL23, based on the exploitation of the autolysins sourced from Lactococcus lactis (AcmA) and Enterococcus faecalis (AtlA). The lysis abilities of the systems were demonstrated both in broth and a model cheese, in which a fivefold increase in lactate dehydrogenase activity was detected in the curd with sufficient viable starter cells being maintained, indicating that they could lead to the timely release of intracellular enzymes.
The Swiss cheese model of safety incidents: are there holes in the metaphor?
Perneger, Thomas V
2005-01-01
Background Reason's Swiss cheese model has become the dominant paradigm for analysing medical errors and patient safety incidents. The aim of this study was to determine if the components of the model are understood in the same way by quality and safety professionals. Methods Survey of a volunteer sample of persons who claimed familiarity with the model, recruited at a conference on quality in health care, and on the internet through quality-related websites. The questionnaire proposed several interpretations of components of the Swiss cheese model: a) slice of cheese, b) hole, c) arrow, d) active error, e) how to make the system safer. Eleven interpretations were compatible with this author's interpretation of the model, 12 were not. Results Eighty five respondents stated that they were very or quite familiar with the model. They gave on average 15.3 (SD 2.3, range 10 to 21) "correct" answers out of 23 (66.5%) – significantly more than 11.5 "correct" answers that would expected by chance (p < 0.001). Respondents gave on average 2.4 "correct" answers regarding the slice of cheese (out of 4), 2.7 "correct" answers about holes (out of 5), 2.8 "correct" answers about the arrow (out of 4), 3.3 "correct" answers about the active error (out of 5), and 4.1 "correct" answers about improving safety (out of 5). Conclusion The interpretations of specific features of the Swiss cheese model varied considerably among quality and safety professionals. Reaching consensus about concepts of patient safety requires further work. PMID:16280077
1993-01-01
Larry I.. 1edxrh, MUM&i WnoIUn, WU: D6101QOOO DiET. B. RVW1I, SLMa I. DaWy, Jdim II. ibid II, HUT Ow-ia Thau **, ion~ i)1ldc 7. PERFORMING ORGANIZATION...existing chains of command make the present assignment strategy the clear method of choice under the conditions imposed by military structure and field...Bread (White) Caramels Potato Sticks Orange Beverage Base** Cheese Spread Menu 9 Cheese Pizza Lemon Pound Cake Peaches/Pears (Dehydrated) Strawberry
Thorning, Tanja K; Raziani, Farinaz; Bendsen, Nathalie T; Astrup, Arne; Tholstrup, Tine; Raben, Anne
2015-09-01
Heart associations recommend limited intake of saturated fat. However, effects of saturated fat on low-density lipoprotein (LDL)-cholesterol concentrations and cardiovascular disease risk might depend on nutrients and specific saturated fatty acids (SFAs) in food. We explored the effects of cheese and meat as sources of SFAs or isocaloric replacement with carbohydrates on blood lipids, lipoproteins, and fecal excretion of fat and bile acids. The study was a randomized, crossover, open-label intervention in 14 overweight postmenopausal women. Three full-diet periods of 2-wk duration were provided separated by 2-wk washout periods. The isocaloric diets were as follows: 1) a high-cheese (96-120-g) intervention [i.e., intervention containing cheese (CHEESE)], 2) a macronutrient-matched nondairy, high-meat control [i.e., nondairy control with a high content of high-fat processed and unprocessed meat in amounts matching the saturated fat content from cheese in the intervention containing cheese (MEAT)], and 3) a nondairy, low-fat, high-carbohydrate control (i.e., nondairy low-fat control in which the energy from cheese fat and protein was isocalorically replaced by carbohydrates and lean meat (CARB). The CHEESE diet caused a 5% higher high-density lipoprotein (HDL)-cholesterol concentration (P = 0.012), an 8% higher apo A-I concentration (P < 0.001), and a 5% lower apoB:apo A-I ratio (P = 0.008) than did the CARB diet. Also, the MEAT diet caused an 8% higher HDL-cholesterol concentration (P < 0.001) and a 4% higher apo A-I concentration (P = 0.033) than did the CARB diet. Total cholesterol, LDL cholesterol, apoB, and triacylglycerol were similar with the 3 diets. Fecal fat excretion was 1.8 and 0.9 g higher with the CHEESE diet than with CARB and MEAT diets (P < 0.001 and P = 0.004, respectively) and 0.9 g higher with the MEAT diet than with the CARB diet (P = 0.005). CHEESE and MEAT diets caused higher fecal bile acid excretion than did the CARB diet (P < 0.05 and P = 0.006, respectively). The dominant type of bile acids excreted differed between CHEESE and MEAT diets. Diets with cheese and meat as primary sources of SFAs cause higher HDL cholesterol and apo A-I and, therefore, appear to be less atherogenic than is a low-fat, high-carbohydrate diet. Also, our findings confirm that cheese increases fecal fat excretion. This trial was registered at clinicaltrials.gov as NCT01739153. © 2015 American Society for Nutrition.
48 CFR 552.232-25 - Prompt Payment.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., edible fats or oils, and food products prepared from edible fats or oils are— (A) For meat or meat food... Stabilization Act of 1983 (7 U.S.C. 4502(e)), edible fats or oils, and food products prepared from edible fats... invoice has been received. Liquid milk, cheese, certain processed cheese products, butter, yogurt, ice...
48 CFR 552.232-25 - Prompt Payment.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., edible fats or oils, and food products prepared from edible fats or oils are— (A) For meat or meat food... Stabilization Act of 1983 (7 U.S.C. 4502(e)), edible fats or oils, and food products prepared from edible fats... invoice has been received. Liquid milk, cheese, certain processed cheese products, butter, yogurt, ice...
5 CFR 1315.4 - Prompt payment standards and required notices to vendors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... minimum, liquid milk, cheese, certain processed cheese products, butter, yogurt, and ice cream, edible fats or oils, and food products prepared from edible fats or oils (including, at a minimum, mayonnaise... commodities, dairy products, edible fats or oils and food products prepared from edible fats or oils), the...
5 CFR 1315.4 - Prompt payment standards and required notices to vendors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... minimum, liquid milk, cheese, certain processed cheese products, butter, yogurt, and ice cream, edible fats or oils, and food products prepared from edible fats or oils (including, at a minimum, mayonnaise... commodities, dairy products, edible fats or oils and food products prepared from edible fats or oils), the...
21 CFR 133.179 - Pasteurized process cheese spread.
Code of Federal Regulations, 2012 CFR
2012-04-01
... consisting of one or any mixture of two or more of the following: A vinegar, lactic acid, citric acid, acetic... more of the optional dairy ingredients prescribed in paragraph (d) of this section, with one or more of... used, alone or in combination with each other, as the cheese ingredient. (d) The optional dairy...
21 CFR 133.179 - Pasteurized process cheese spread.
Code of Federal Regulations, 2013 CFR
2013-04-01
... consisting of one or any mixture of two or more of the following: A vinegar, lactic acid, citric acid, acetic... more of the optional dairy ingredients prescribed in paragraph (d) of this section, with one or more of... used, alone or in combination with each other, as the cheese ingredient. (d) The optional dairy...
21 CFR 133.179 - Pasteurized process cheese spread.
Code of Federal Regulations, 2014 CFR
2014-04-01
... consisting of one or any mixture of two or more of the following: A vinegar, lactic acid, citric acid, acetic... more of the optional dairy ingredients prescribed in paragraph (d) of this section, with one or more of... used, alone or in combination with each other, as the cheese ingredient. (d) The optional dairy...
... Many are helpful. Some bacteria help to digest food, destroy disease-causing cells, and give the body ... vitamins. Bacteria are also used in making healthy foods like yogurt and cheese. But infectious bacteria can ...
... this page: https://medlineplus.gov/recipe/pastaprimavera.html Pasta Primavera To use the sharing features on this ... Total time: 25 minutes Number of Servings: 4 Pasta, vegetables, and a sprinkle of cheese make this ...
Cipolat-Gotet, C; Cecchinato, A; Stocco, G; Bittante, G
2016-02-01
The aim of this study was to propose and test a new laboratory cheesemaking procedure [9-mL milk cheesemaking assessment (9-MilCA)], which records 15 traits related to milk coagulation, curd firming, syneresis, cheese yield, and curd nutrients recovery or whey loss. This procedure involves instruments found in many laboratories (i.e., heaters and lacto-dynamographs), with an easy modification of the sample rack for the insertion of 10-mL glass tubes. Four trials were carried out to test the 9-MilCA procedure. The first trial compared 8 coagulation and curd firming traits obtained using regular or modified sample racks to process milk samples from 60 cows belonging to 5 breeds and 3 farms (480 tests). The obtained patterns exhibited significant but irrelevant between-procedure differences, with better repeatability seen for 9-MilCA. The second trial tested the reproducibility and repeatability of the 7 cheesemaking traits obtained using the 9-MilCA procedure on individual samples from 60 cows tested in duplicate in 2 instruments (232 tests). The method yielded very repeatable outcomes for all 7 tested cheese yield and nutrient recovery traits (repeatability >98%), with the exception of the fresh cheese yield (84%), which was affected by the lower repeatability (67%) of the water retained in the curd. In the third trial (96 tests), we found that using centrifugation in place of curd cooking and draining (as adopted in several published studies) reduced the efficiency of whey separation, overestimated all traits, and worsened the repeatability. The fourth trial compared 9-MilCA with a more complex model cheese-manufacturing process that mimics industry practices, using 1,500-mL milk samples (72 cows, 216 tests). The average results obtained from 9-MilCA were similar to those obtained from the model cheeses, with between-method correlations ranging from 78 to 99%, except for the water retained in the curd (r=54%). Our results indicate that new 9-MilCA method is a powerful research tool that allows the rapid, inexpensive, and partly automated analysis processing 40 samples per day with 2 replicates each, using 1 lacto-dynamograph, 2 heaters, and 3 modified sample racks, and yields a complete picture of the cheesemaking process (e.g., milk gelation, curd firming, syneresis, and whey expulsion) as well as the cheese yield and the efficiency of energy or nutrients retention in the cheese or loss in the whey. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Cheeses § 6.43 Determinations. (a) Making determinations. Not later than 30 days after receiving an... determination as to the validity of the allegation. In making such determination, the following shall apply: (1) The “domestic wholesale market” shall be one or more of the three major U.S. market areas, viz., New...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Cheeses § 6.43 Determinations. (a) Making determinations. Not later than 30 days after receiving an... determination as to the validity of the allegation. In making such determination, the following shall apply: (1) The “domestic wholesale market” shall be one or more of the three major U.S. market areas, viz., New...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Cheeses § 6.43 Determinations. (a) Making determinations. Not later than 30 days after receiving an... determination as to the validity of the allegation. In making such determination, the following shall apply: (1) The “domestic wholesale market” shall be one or more of the three major U.S. market areas, viz., New...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Cheeses § 6.43 Determinations. (a) Making determinations. Not later than 30 days after receiving an... determination as to the validity of the allegation. In making such determination, the following shall apply: (1) The “domestic wholesale market” shall be one or more of the three major U.S. market areas, viz., New...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Cheeses § 6.43 Determinations. (a) Making determinations. Not later than 30 days after receiving an... determination as to the validity of the allegation. In making such determination, the following shall apply: (1) The “domestic wholesale market” shall be one or more of the three major U.S. market areas, viz., New...
Govindasamy-Lucey, S; Jaeggi, J J; Martinelli, C; Johnson, M E; Lucey, J A
2011-06-01
Fortification of cheesemilk with membrane retentates is often practiced by cheesemakers to increase yield. However, the higher casein (CN) content can alter coagulation characteristics, which may affect cheese yield and quality. The objective of this study was to evaluate the effect of using ultrafiltration (UF) retentates that were processed at low temperatures on the properties of Swiss cheese. Because of the faster clotting observed with fortified milks, we also investigated the effects of altering the coagulation conditions by reducing the renneting temperature (from 32.2 to 28.3°C) and allowing a longer renneting time before cutting (i.e., giving an extra 5min). Milks with elevated total solids (TS; ∼13.4%) were made by blending whole milk retentates (26.5% TS, 7.7% CN, 11.5% fat) obtained by cold (<7°C) UF with part skim milk (11.4% TS, 2.5% CN, 2.6% fat) to obtain milk with CN:fat ratio of approximately 0.87. Control cheeses were made from part-skim milk (11.5% TS, 2.5% CN, 2.8% fat). Three types of UF fortified cheeses were manufactured by altering the renneting temperature and renneting time: high renneting temperature=32.2°C (UFHT), low renneting temperature=28.3°C (UFLT), and a low renneting temperature (28.3°C) plus longer cutting time (+5min compared to UFLT; UFLTL). Cutting times, as selected by a Wisconsin licensed cheesemaker, were approximately 21, 31, 35, and 32min for UFHT, UFLT, UFLTL, and control milks, respectively. Storage moduli of gels at cutting were lower for the UFHT and UFLT samples compared with UFLTL or control. Yield stress values of gels from the UF-fortified milks were higher than those of control milks, and decreasing the renneting temperature reduced the yield stress values. Increasing the cutting time for the gels made from the UF-fortified milks resulted in an increase in yield stress values. Yield strain values were significantly lower in gels made from control or UFLTL milks compared with gels made from UFHT or UFLT milks. Cheese composition did not differ except for fat content, which was lower in the control compared with the UF-fortified cheeses. No residual lactose or galactose remained in the cheeses after 2 mo of ripening. Fat recoveries were similar in control, UFHT, and UFLTL but lower in UFLT cheeses. Significantly higher N recoveries were obtained in the UF-fortified cheeses compared with control cheese. Because of higher fat and CN contents, cheese yield was significantly higher in UF-fortified cheeses (∼11.0 to 11.2%) compared with control cheese (∼8.5%). A significant reduction was observed in volume of whey produced from cheese made from UF-fortified milk and in these wheys, the protein was a higher proportion of the solids. During ripening, the pH values and 12% trichloroacetic acid-soluble N levels were similar for all cheeses. No differences were observed in the sensory properties of the cheeses. The use of UF retentates improved cheese yield with no significant effect on ripening or sensory quality. The faster coagulation and gel firming can be decreased by altering the renneting conditions. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Yield of acid curd cheese produced from cow's milk from different lactation periods.
Salamończyk, Ewa; Młynek, Krzysztof; Guliński, Piotr; Zawadzka, Wiesława
2017-01-01
Milk production intensification has led in many countries, including Poland, to increased milk yields per cow. A higher milk yield resulted in changes in cow productivity, including extended lactations. There is a paucity of information on the quality of milk harvested during the last months of lactations exceed- ing 10 months. Production capacity cheese (“cheese expenditure”) is an important parameter of providing a recovery as much as the possible components of the milk processed are dry substances, which in turn af- fects the economics of production. The aim of the study was to determine the influence of the lactation period (from standard lactation; extended lactation phase) on the performance of the acid curd cheese. the relation- ship between total protein content and acidity of fresh milk collected in two separate periods of lactation on the yield of acid cheese was also evaluated. The study included 1384 samples of milk collected from Polish Holstein-Friesian cows, the Black-White variety. The basic chemical composition of fresh milk and acid-curd cheese produced in the laboratory were analyzed. The cheese milk yield was evaluated on the basis of the quantity of the re- sulting curd mass. According to our estimates, under laboratory conditions an average of 100 kg of milk per cow in population produced an estimated 20.1 kg of curd cheese. The basic chemical composition of raw milk, which was diverse in terms of the period of lactation, showed a higher dry matter, fat and protein content in milk acquired during the extension phase of lactation compared to the milk of standard lactation. It has been found that the lower titratable acidity of fresh milk appeared with a higher yield of cheese curd. This difference was between 1.76 kg (with milk from cows milked during the extended lactation phase) to 2.72 kg from 100 kg of cheese milk (milk with the standard lactation). Thus, the optimum level of titratable acidity of milk for cheese yield is 6.0–7.5°SH. Most samples with the highest yields of acid curd cheese (>20%) were obtained from the milk from collected in the period from day 306 till the end of lactation (60.54%).
21 CFR 133.155 - Mozzarella cheese and scamorza cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Mozzarella cheese and scamorza cheese. 133.155... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.155 Mozzarella cheese and scamorza cheese. (a) Description. (1...
21 CFR 133.153 - Monterey cheese and monterey jack cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Monterey cheese and monterey jack cheese. 133.153... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.153 Monterey cheese and monterey jack cheese. (a) Description...
21 CFR 133.153 - Monterey cheese and monterey jack cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Monterey cheese and monterey jack cheese. 133.153... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.153 Monterey cheese and monterey jack cheese. (a) Description...
2011-01-01
Background The contamination of raw milk cheeses (St-Marcellin and Brie) from two plants in France was studied at several steps of production (raw milk, after addition of rennet - St-Marcellin - or after second maturation - Brie -, after removal from the mold and during ripening) using bifidobacteria as indicators of fecal contamination. Results Bifidobacterium semi-quantitative counts were compared using PCR-RFLP and real-time PCR. B. pseudolongum were detected in 77% (PCR-RFLP; 1.75 to 2.29 log cfu ml-1) and 68% (real-time PCR; 2.19 to 2.73 log cfu ml-1) of St-Marcellin samples and in 87% (PCR-RFLP; 1.17 to 2.40 log cfu ml-1) of Brie cheeses samples. Mean counts of B. pseudolongum remained stable along both processes. Two other populations of bifidobacteria were detected during the ripening stage of St-Marcellin, respectively in 61% and 18% of the samples (PCR-RFLP). The presence of these populations explains the increase in total bifidobacteria observed during ripening. Further characterization of these populations is currently under process. Forty-eight percents (St-Marcellin) and 70% (Brie) of the samples were B. pseudolongum positive/E. coli negative while only 10% (St-Marcellin) and 3% (Brie) were B. pseudolongum negative/E. coli positive. Conclusions The increase of total bifidobacteria during ripening in Marcellin's process does not allow their use as fecal indicator. The presence of B. pseudolongum along the processes defined a contamination from animal origin since this species is predominant in cow dung and has never been isolated in human feces. B. pseudolongum was more sensitive as an indicator than E. coli along the two different cheese processes. B. pseudolongum should be used as fecal indicator rather than E. coli to assess the quality of raw milk and raw milk cheeses. PMID:21816092
Bonanno, A; Di Grigoli, A; Mazza, F; De Pasquale, C; Giosuè, C; Vitale, F; Alabiso, M
2016-12-01
Sulla (Sulla coronarium L.) forage is valued for its positive impact on ruminant production, in part due to its moderate content of condensed tannin (CT). The duration of daily grazing is a factor affecting the feed intake and milk production of ewes. In this study, the effects of grazing sulla pasture compared with annual ryegrass, and the extension of grazing from 8 to 22 h/day, were evaluated with regard to ewe forage intake and milk production, as well as the physicochemical properties and fatty acid (FA) composition of cheese. During 42 days in the spring, 28 ewes of the Comisana breed were divided into four groups (S8, S22, R8 and R22) that grazed sulla (S) or ryegrass (R) for 8 (0800 to 1600 h) or 22 h/day, and received no feeding supplement. In six cheese-making sessions, cheeses were manufactured from the 48 h bulk milk of each group. Compared with ewes grazing ryegrass, those grazing sulla had higher dry matter (DM) intake, intake rate and milk yield, and produced milk that was lower in fat and higher in casein. Ewes grazing for 22 h spent more time eating, which reduced the intake rate, increased DM and nutrient intake and milk yield, and reduced milk fat. Due to the ability of CT to inhibit the complete ruminal biohydrogenation of polyunsaturated fatty acids (PUFA), the FA composition of sulla cheese was more beneficial for consumer health compared with ryegrass cheese, having lower levels of saturated fatty acids and higher levels of PUFA and n-3 FA. The FA profile of S8 cheese was better than that of S22 cheese, as it was higher in branched-chain FA, monounsaturated FA, PUFA, rumenic acid (c9,t11-C18:2), and had a greater health-promoting index. The effect of short grazing time on sulla was attributed to major inhibition of PUFA biohydrogenating ruminal bacteria, presumably stimulated by the higher accumulation of sulla CT in the rumen, which is related to a higher intake rate over a shorter eating time. Thus, grazing sulla improved the performance of ewes, thereby increasing, especially with short grazing time, the nutritional properties of cheese fat.
Review: elimination of bacteriophages in whey and whey products
Atamer, Zeynep; Samtlebe, Meike; Neve, Horst; J. Heller, Knut; Hinrichs, Joerg
2013-01-01
As the cheese market faces strong international competition, the optimization of production processes becomes more important for the economic success of dairy companies. In dairy productions, whey from former cheese batches is frequently re-used to increase the yield, to improve the texture and to increase the nutrient value of the final product. Recycling of whey cream and particulated whey proteins is also routinely performed. Most bacteriophages, however, survive pasteurization and may re-enter the cheese manufacturing process. There is a risk that phages multiply to high numbers during the production. Contamination of whey samples with bacteriophages may cause problems in cheese factories because whey separation often leads to aerosol-borne phages and thus contamination of the factory environment. Furthermore, whey cream or whey proteins used for recycling into cheese matrices may contain thermo-resistant phages. Drained cheese whey can be contaminated with phages as high as 109 phages mL-1. When whey batches are concentrated, phage titers can increase significantly by a factor of 10 hindering a complete elimination of phages. To eliminate the risk of fermentation failure during recycling of whey, whey treatments assuring an efficient reduction of phages are indispensable. This review focuses on inactivation of phages in whey by thermal treatment, ultraviolet (UV) light irradiation, and membrane filtration. Inactivation by heat is the most common procedure. However, application of heat for inactivation of thermo-resistant phages in whey is restricted due to negative effects on the functional properties of native whey proteins. Therefore an alternative strategy applying combined treatments should be favored – rather than heating the dairy product at extreme temperature/time combinations. By using membrane filtration or UV treatment in combination with thermal treatment, phage numbers in whey can be reduced sufficiently to prevent subsequent phage accumulations. PMID:23882262
Biodiversity of Bacterial Ecosystems in Traditional Egyptian Domiati Cheese▿
El-Baradei, Gaber; Delacroix-Buchet, Agnès; Ogier, Jean-Claude
2007-01-01
Bacterial biodiversity occurring in traditional Egyptian soft Domiati cheese was studied by PCR-temporal temperature gel electrophoresis (TTGE) and PCR-denaturing gradient gel electrophoresis (DGGE). Bands were identified using a reference species database (J.-C. Ogier et al., Appl. Environ. Microbiol. 70:5628-5643, 2004); de novo bands having nonidentified migration patterns were identified by DNA sequencing. Results reveal a novel bacterial profile and extensive bacterial biodiversity in Domiati cheeses, as reflected by the numerous bands present in TTGE and DGGE patterns. The dominant lactic acid bacteria (LAB) identified were as follows: Leuconostoc mesenteroides, Lactococcus garvieae, Aerococcus viridans, Lactobacillus versmoldensis, Pediococcus inopinatus, and Lactococcus lactis. Frequent non-LAB species included numerous coagulase-negative staphylococci, Vibrio spp., Kocuria rhizophila, Kocuria kristinae, Kocuria halotolerans, Arthrobacter spp./Brachybacterium tyrofermentans. This is the first time that the majority of these species has been identified in Domiati cheese. Nearly all the dominant and frequent bacterial species are salt tolerant, and several correspond to known marine bacteria. As Domiati cheese contains 5.4 to 9.5% NaCl, we suggest that these bacteria are likely to have an important role in the ripening process. This first systematic study of the microbial composition of Domiati cheeses reveals great biodiversity and evokes a role for marine bacteria in determining cheese type. PMID:17189434
Albenzio, Marzia; Santillo, Antonella; Caroprese, Mariangela; Marino, Rosaria; Centoducati, Pasquale; Sevi, Agostino
2005-11-01
The influence of three different ventilation regimens on air pollution in sheep houses and on the quality of ewe milk and of Canestrato Pugliese cheese was investigated during the summer season. The experimental treatments were low ventilation regimen (VR=35 m3/h per ewe) split in 30-min ventilation cycles (LOV-30); moderate ventilation regimen (VR=70 m3/h per ewe) split in 30-min ventilation cycles (MOV-30); moderate ventilation regimen (VR=70 m3/h per ewe) split in 60-min ventilation cycles (MOV-60). The LOV-30 milk had higher microbial load and bulk milk somatic cell count (BMSCC) and resulted in a weaker casein matrix in the curd compared with the MOV-30 and MOV-60 treatments. At 45 d of ripening, the LOV-30 cheeses had a lower casein content and higher non-casein nitrogen (NCN) and water-soluble nitrogen (WSN) contents than the MOV-30 and MOV-60 cheeses. Urea-polyacrylamide gel electrophoresis (urea-PAGE) of the pH 4.6-soluble N extract showed that the MOV-60 cheeses had fewer bands derived from casein (CN) hydrolysis than the LOV-30 or MOV-30 cheeses, despite its having exhibited the highest plasmin (PL) activity levels. Our results suggest that the ventilation regimen is critical in dairy sheep housing for optimizing the hygienic quality of ewe milk and the proteolytic processes occurring in Canestrato Pugliese cheese during ripening.
Loudiyi, M; Aït-Kaddour, A
2018-03-21
Chemical composition, sensory characteristics, textural and functional properties are among the most important characteristics, which directly relates to the global quality of cheese and to consumer acceptability. A number of factors including milk composition, processing conditions and salt content, influences these properties. The past decades many investigations were performed on the possibilities to reduce salt content of cheese due to its adverse health effects, the current lifestyle and the awareness of the consumers for nutrition quality products. Due to the multiple potential effects of reducing NaCl (simple reduction or substitution) on cheese attributes, it is of utmost importance to identify and understand those effects in order to control the global quality and safety of the final product. In the present review a collection of the different results and conclusions drawn after studying the effect of salts by conventional (e.g. wet chemistry) and instrumental (e.g. spectral) methods on chemical, structural, textural, sensory and heating properties of cheese are presented.
Immobilized rennin in TC/SG composite in cheese production.
Barouni, Eleftheria; Petsi, Theano; Kolliopoulos, Dionysios; Vasileiou, Dimitrios; Panas, Panagiotis; Bekatorou, Argyro; Kanellaki, Maria; Koutinas, Athanasios A
2016-06-01
The object of the current study was to develop a new process for continuous Feta-type cheese production using a biocatalyst consisting of immobilized rennin on a tubular cellulose/starch gel (TC/SG) composite, which has been proven to be an appropriate carrier for enzyme immobilization. Different methodologies were used in order to prepare four biocatalysts. The most effective was selected for cheese production in a 1L continuous system, providing two economically useful results for the dairy industries: (i) increase of productivity by the continuous coagulation of milk, and (ii) saving of the rennin enzyme expenses of the batch coagulation of milk. The criteria used to choose the appropriate biocatalyst was based on the time of coagulation in successive batches, the concentration of immobilized rennin combined with the filter efficiency and its application in the continuous system. Physicochemical analyses of the cheeses at various stages of the ripening were performed. No significant differences compared to cheeses prepared with the traditional method were found. Aroma compounds were determined by SPME GC-MS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Samelis, John; Giannou, Eleni; Lianou, Alexandra
2009-11-01
The current microbiological regulatory criteria in the European Union specify a maximum Listeria monocytogenes population of 100 CFU/g allowable in ready-to-eat foods provided the product will not exceed this limit throughout its shelf life. The aim of this study was to validate the manufacturing method for traditional Greek Graviera cheese produced from thermized milk. Initial challenge experiments evaluated the fate of inoculated L. monocytogenes (ca. 4 log CFU/ml, three-strain cocktail) in thermized Graviera cheese milk (TGCM; 63 degrees C for 30 s) in the presence and absence of a product-specific starter culture (SC) in vitro. Milk samples were incubated for 6 h at 37 degrees C and then for 66 h at 18 degrees C. Experiments were conducted to evaluate the fate of a cocktail of three nonpathogenic L. monocytogenes and L. innocua indicator strains inoculated (ca. 3 log CFU/g) in Graviera cheeses commercially manufactured from TGCM+SC. Cheeses were brined, ripened at 18 degrees C and 90% relative humidity for 20 days, and stored at 4 degrees C for up to day 60 under vacuum. In TGCM, L. monocytogenes increased by ca. 2 log units, whereas in TGCM+SC L. monocytogenes growth was retarded (P < 0.05) after a ca. 1-log increase within 6 h at 37 degrees C. Populations of Listeria indicator strains did not grow in TGCM+SC cheeses at any stage; they declined 10-fold in fresh cheeses within 5 days and then survived with little death thereafter. Thus, growth inhibition but not inactivation of potent natural Listeria contaminants at levels below 100 CFU/g occurs in the core of traditional Greek Graviera cheese during fermentation, ripening, and storage.
ERIC Educational Resources Information Center
Miles, C. L., Ed.
1974-01-01
Describes an approach wherein the student selects a single type of simple item and uses it as the basis for making a physics demonstration. Provides an example that uses a cheese dish in eighteen different demonstrations. (GS)
Cystic Fibrosis: Diet and Nutrition
... strong bones. Milk, yogurt, cheese, and calcium-fortified juices are rich in calcium. Salt . Kids with CF ... small intestine (say: in-TES-tun). It makes juices containing enzymes that help the small intestine digest ...
21 CFR 133.190 - Spiced cheeses.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Spiced cheeses. 133.190 Section 133.190 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.190 Spiced cheeses. (a) Description. (1) Spiced cheeses are cheeses for which specifically...
21 CFR 133.133 - Cream cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cream cheese. 133.133 Section 133.133 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.133 Cream cheese. (a) Description. (1) Cream cheese is the soft, uncured cheese prepared by...
21 CFR 133.165 - Parmesan and reggiano cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Parmesan and reggiano cheese. 133.165 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.165 Parmesan and reggiano cheese. (a) Parmesan cheese, reggiano cheese...
Code of Federal Regulations, 2011 CFR
2011-07-01
... cottage cheese and cultured cream cheese subcategory. 405.50 Section 405.50 Protection of Environment... SOURCE CATEGORY Cottage Cheese and Cultured Cream Cheese Subcategory § 405.50 Applicability; description of the cottage cheese and cultured cream cheese subcategory. The provisions of this subpart are...
Code of Federal Regulations, 2010 CFR
2010-07-01
... cottage cheese and cultured cream cheese subcategory. 405.50 Section 405.50 Protection of Environment... SOURCE CATEGORY Cottage Cheese and Cultured Cream Cheese Subcategory § 405.50 Applicability; description of the cottage cheese and cultured cream cheese subcategory. The provisions of this subpart are...
21 CFR 133.128 - Cottage cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cottage cheese. 133.128 Section 133.128 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.128 Cottage cheese. (a) Cottage cheese is the soft uncured cheese prepared by mixing cottage...
21 CFR 133.128 - Cottage cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cottage cheese. 133.128 Section 133.128 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.128 Cottage cheese. (a) Cottage cheese is the soft uncured cheese prepared by mixing cottage...
21 CFR 133.133 - Cream cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cream cheese. 133.133 Section 133.133 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.133 Cream cheese. (a) Description. (1) Cream cheese is the soft, uncured cheese prepared by...
Seshia, Shashi S; Bryan Young, G; Makhinson, Michael; Smith, Preston A; Stobart, Kent; Croskerry, Pat
2018-02-01
Although patient safety has improved steadily, harm remains a substantial global challenge. Additionally, safety needs to be ensured not only in hospitals but also across the continuum of care. Better understanding of the complex cognitive factors influencing health care-related decisions and organizational cultures could lead to more rational approaches, and thereby to further improvement. A model integrating the concepts underlying Reason's Swiss cheese theory and the cognitive-affective biases plus cascade could advance the understanding of cognitive-affective processes that underlie decisions and organizational cultures across the continuum of care. Thematic analysis, qualitative information from several sources being used to support argumentation. Complex covert cognitive phenomena underlie decisions influencing health care. In the integrated model, the Swiss cheese slices represent dynamic cognitive-affective (mental) gates: Reason's successive layers of defence. Like firewalls and antivirus programs, cognitive-affective gates normally allow the passage of rational decisions but block or counter unsounds ones. Gates can be breached (ie, holes created) at one or more levels of organizations, teams, and individuals, by (1) any element of cognitive-affective biases plus (conflicts of interest and cognitive biases being the best studied) and (2) other potential error-provoking factors. Conversely, flawed decisions can be blocked and consequences minimized; for example, by addressing cognitive biases plus and error-provoking factors, and being constantly mindful. Informed shared decision making is a neglected but critical layer of defence (cognitive-affective gate). The integrated model can be custom tailored to specific situations, and the underlying principles applied to all methods for improving safety. The model may also provide a framework for developing and evaluating strategies to optimize organizational cultures and decisions. The concept is abstract, the model is virtual, and the best supportive evidence is qualitative and indirect. The proposed model may help enhance rational decision making across the continuum of care, thereby improving patient safety globally. © 2017 The Authors. Journal of Evaluation in Clinical Practice published by John Wiley & Sons, Ltd.
Gating the holes in the Swiss cheese (part I): Expanding professor Reason's model for patient safety
Bryan Young, G.; Makhinson, Michael; Smith, Preston A.; Stobart, Kent; Croskerry, Pat
2017-01-01
Abstract Introduction Although patient safety has improved steadily, harm remains a substantial global challenge. Additionally, safety needs to be ensured not only in hospitals but also across the continuum of care. Better understanding of the complex cognitive factors influencing health care–related decisions and organizational cultures could lead to more rational approaches, and thereby to further improvement. Hypothesis A model integrating the concepts underlying Reason's Swiss cheese theory and the cognitive‐affective biases plus cascade could advance the understanding of cognitive‐affective processes that underlie decisions and organizational cultures across the continuum of care. Methods Thematic analysis, qualitative information from several sources being used to support argumentation. Discussion Complex covert cognitive phenomena underlie decisions influencing health care. In the integrated model, the Swiss cheese slices represent dynamic cognitive‐affective (mental) gates: Reason's successive layers of defence. Like firewalls and antivirus programs, cognitive‐affective gates normally allow the passage of rational decisions but block or counter unsounds ones. Gates can be breached (ie, holes created) at one or more levels of organizations, teams, and individuals, by (1) any element of cognitive‐affective biases plus (conflicts of interest and cognitive biases being the best studied) and (2) other potential error‐provoking factors. Conversely, flawed decisions can be blocked and consequences minimized; for example, by addressing cognitive biases plus and error‐provoking factors, and being constantly mindful. Informed shared decision making is a neglected but critical layer of defence (cognitive‐affective gate). The integrated model can be custom tailored to specific situations, and the underlying principles applied to all methods for improving safety. The model may also provide a framework for developing and evaluating strategies to optimize organizational cultures and decisions. Limitations The concept is abstract, the model is virtual, and the best supportive evidence is qualitative and indirect. Conclusions The proposed model may help enhance rational decision making across the continuum of care, thereby improving patient safety globally. PMID:29168290
Case of Contamination by Listeria Monocytogenes in Mozzarella Cheese
Tolli, Rita; Bossù, Teresa; Rodas, Eda Maria Flores; Di Giamberardino, Fabiola; Di Sirio, Alessandro; Vita, Silvia; De Angelis, Veronica; Bilei, Stefano; Sonnessa, Michele; Gattuso, Antonietta; Lanni, Luigi
2014-01-01
Following a Listeria monocytogenes detection in a mozzarella cheese sampled at a dairy plant in Lazio Region, further investigations have been conducted both by the competent Authority and the food business operatordairy factory (as a part of dairy factory HACCP control). In total, 90 dairy products, 7 brine and 64 environmental samples have been tested. The prevalence of Listeria monocytogenes was 24.4% in mozzarella cheese, and 9.4% in environmental samples, while brines were all negatives. Forty-seven strains of L. monocytogenes have been isolated, all belonging to 4b/4e serotype. In 12 of these, the macrorestriction profile has been determined by means of pulsed field gel electrophoresis. The profiles obtained with AscI enzyme showed a 100% similarity while those obtained with ApaI a 96.78% similarity. These characteristics of the isolated strains jointly with the production process of mozzarella cheese has allowed to hypothesise an environmental contamination. PMID:27800317
21 CFR 133.123 - Cold-pack and club cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cold-pack and club cheese. 133.123 Section 133.123... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.123 Cold-pack and club cheese. (a)(1) Cold-pack cheese, club cheese, is...
Biochemical patterns in ovine cheese: influence of probiotic strains.
Albenzio, M; Santillo, A; Caroprese, M; Marino, R; Trani, A; Faccia, M
2010-08-01
This study was undertaken to evaluate the effect of lamb rennet paste containing probiotic strains on proteolysis, lipolysis, and glycolysis of ovine cheese manufactured with starter cultures. Cheeses included control cheese made with rennet paste, cheese made with rennet paste containing Lactobacillus acidophilus culture (LA-5), and cheese made with rennet paste containing a mix of Bifidobacterium lactis (BB-12) and Bifidobacterium longum (BB-46). Cheeses were sampled at 1, 7, 15, and 30 d of ripening. Starter cultures coupled with probiotics strains contained in rennet paste affected the acidification and coagulation phases leading to the lowest pH in curd and cheese containing probiotics during ripening. As consequence, maturing cheese profiles were different among cheese treatments. Cheeses produced using rennet paste containing probiotics displayed higher percentages of alpha(S1)-I-casein fraction than traditional cheese up to 15 d of ripening. This result could be an outcome of the greater hydrolysis of alpha-casein fraction, attributed to higher activity of the residual chymosin. Further evidence for this trend is available in chromatograms of water-soluble nitrogen fractions, which indicated a more complex profile in cheeses made using lamb paste containing probiotics versus traditional cheese. Differences can be observed for the peaks eluted in the highly hydrophobic zone being higher in cheeses containing probiotics. The proteolytic activity of probiotic bacteria led to increased accumulation of free amino acids. Their concentrations in cheese made with rennet paste containing Lb. acidophilus culture and cheese made with rennet paste containing a mix of B. lactis and B. longum were approximately 2.5 and 3.0 times higher, respectively, than in traditional cheese. Principal component analysis showed a more intense lipolysis in terms of both free fatty acids and conjugated linoleic acid content in probiotic cheeses; in particular, the lipolytic pattern of cheeses containing Lb. acidophilus is distinguished from the other cheeses on the basis of highest content of health-promoting molecules. The metabolic activity of the cheese microflora was also monitored by measuring acetic, lactic, and citric acids during cheese ripening. Cheese acceptability was expressed for color, smell, taste, and texture perceived during cheese consumption. Use of probiotics in trial cheeses did not adversely affect preference or acceptability; in fact, panelists scored probiotic cheeses higher in preference over traditional cheese, albeit not significantly. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
76 FR 14777 - National Dairy Promotion and Research Program; Final Rule on Amendments to the Order
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
... Ratios for the Dairy Program was 5.49 (nonfat solids basis) and 7.07 (milk fat basis) from 1998 through... produced and marketed commercially, and the disposition or final usage of the raw milk is not a fact in..., milk powders, dairy fat spreads, whey cheeses, processed cheeses, and numerous varieties of natural...
Cheese whey management: a review.
Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier
2012-11-15
Cheese whey is simultaneously an effluent with nutritional value and a strong organic and saline content. Cheese whey management has been focused in the development of biological treatments without valorization; biological treatments with valorization; physicochemical treatments and direct land application. In the first case, aerobic digestion is reported. In the second case, six main processes are described in the literature: anaerobic digestion, lactose hydrolysis, fermentation to ethanol, hydrogen or lactic acid and direct production of electricity through microbial fuel cells. Thermal and isoelectric precipitation, thermocalcic precipitation, coagulation/flocculation, acid precipitation, electrochemical and membrane technologies have been considered as possible and attractive physicochemical processes to valorize or treat cheese whey. The direct land application is a common and longstanding practice, although some precautions are required. In this review, these different solutions are analyzed. The paper describes the main reactors used, the influence of the main operating variables, the microorganisms or reagents employed and the characterizations of the final effluent principally in terms of chemical oxygen demand. In addition, the experimental conditions and the main results reported in the literature are compiled. Finally, the comparison between the different treatment alternatives and the presentation of potential treatment lines are postulated. Copyright © 2012 Elsevier Ltd. All rights reserved.
A new study of the kinetics of curd production in the process of cheese manufacture.
Muñoz, Susana Vargas; Torres, Maykel González; Guerrero, Francisco Quintanilla; Talavera, Rogelio Rodríguez
2017-11-01
We studied the role played by temperature and rennet concentration in the coagulation process for cheese manufacture and the evaluation of their kinetics. We concluded that temperature is the main factor that determines the kinetics. The rennet concentration was unimportant probably due to the fast action of the enzyme chymosin. The Dynamic light scattering technique allowed measuring the aggregate's size and their formation kinetics. The volume fraction of solids was determined from viscosity measurements, showing profiles that are in agreement with the size profiles. The results indicate that the formation of the aggregates for rennet cheese is strongly dependent on temperature and rennet concentration. The results revealed that at 35·5 °C the volume fraction of solids has the maximum slope, indicating that at this temperature the curd is formed rapidly. The optimal temperature throughout the process was established. Second-order kinetics were obtained for the process. We observed a quadratic dependence between the rennet volume and the volume fraction of solids (curd), thereby indicating that the kinetics of the curd production should be of order two.
7 CFR 58.446 - Quality requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Monterey (Monterey Jack) Cheese. (d) Swiss cheese, Emmentaler cheese. The quality requirements for Swiss cheese, Emmentaler cheese shall be in accordance with the U.S. Standards for Grades for Swiss Cheese... Products Bearing Usda Official Identification § 58.446 Quality requirements. (a) Cheddar cheese. The...
7 CFR 58.446 - Quality requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Monterey (Monterey Jack) Cheese. (d) Swiss cheese, Emmentaler cheese. The quality requirements for Swiss cheese, Emmentaler cheese shall be in accordance with the U.S. Standards for Grades for Swiss Cheese... Products Bearing Usda Official Identification § 58.446 Quality requirements. (a) Cheddar cheese. The...
7 CFR 58.446 - Quality requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Monterey (Monterey Jack) Cheese. (d) Swiss cheese, Emmentaler cheese. The quality requirements for Swiss cheese, Emmentaler cheese shall be in accordance with the U.S. Standards for Grades for Swiss Cheese... Products Bearing Usda Official Identification § 58.446 Quality requirements. (a) Cheddar cheese. The...
7 CFR 58.446 - Quality requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Monterey (Monterey Jack) Cheese. (d) Swiss cheese, Emmentaler cheese. The quality requirements for Swiss cheese, Emmentaler cheese shall be in accordance with the U.S. Standards for Grades for Swiss Cheese... Products Bearing Usda Official Identification § 58.446 Quality requirements. (a) Cheddar cheese. The...
Industrial Biotechnology: Discovery to Delivery
NASA Astrophysics Data System (ADS)
Chotani, Gopal K.; Dodge, Timothy C.; Gaertner, Alfred L.; Arbige, Michael V.
Fermentation products have penetrated almost every sector of our daily lives. They are used in ethical and generic drugs, clinical and home diagnostics, defense products, nutritional supplements, personal care products, food and animal feed ingredients, cleaning and textile processing, and in industrial applications such as fuel ethanol production. Even before knowing about the existence of microorganisms, for thousands of years ancient people routinely used them for making cheese, soy sauces, yogurt, and bread. Although humans have used fermentation as the method of choice for manufacturing for a long time, it is only now being recognized for its potential towards sustainable industrial development.
21 CFR 133.109 - Brick cheese for manufacturing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Brick cheese for manufacturing. 133.109 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.109 Brick cheese for manufacturing. Brick cheese for...
21 CFR 133.167 - Pasteurized blended cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized blended cheese. 133.167 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.167 Pasteurized blended cheese. Pasteurized blended cheese conforms to...
21 CFR 133.196 - Swiss cheese for manufacturing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Swiss cheese for manufacturing. 133.196 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.196 Swiss cheese for manufacturing. Swiss cheese for...
21 CFR 133.145 - Granular cheese for manufacturing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Granular cheese for manufacturing. 133.145 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for...
21 CFR 133.175 - Pasteurized cheese spread.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized cheese spread. 133.175 Section 133.175... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.175 Pasteurized cheese spread. Pasteurized cheese spread is the food...
21 CFR 133.141 - Gorgonzola cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Gorgonzola cheese. 133.141 Section 133.141 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.141 Gorgonzola cheese. (a) Description. (1) Gorgonzola cheese is the food prepared...
21 CFR 133.111 - Caciocavallo siciliano cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Caciocavallo siciliano cheese. 133.111 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.111 Caciocavallo siciliano cheese. (a) Caciocavallo siciliano cheese is...
21 CFR 133.162 - Neufchatel cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Neufchatel cheese. 133.162 Section 133.162 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.162 Neufchatel cheese. (a) Description. (1) Neufchatel cheese is the soft uncured...
21 CFR 133.109 - Brick cheese for manufacturing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Brick cheese for manufacturing. 133.109 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.109 Brick cheese for manufacturing. Brick cheese for...
21 CFR 133.114 - Cheddar cheese for manufacturing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cheddar cheese for manufacturing. 133.114 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.114 Cheddar cheese for manufacturing. Cheddar cheese for...
21 CFR 133.145 - Granular cheese for manufacturing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Granular cheese for manufacturing. 133.145 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for...
21 CFR 133.167 - Pasteurized blended cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized blended cheese. 133.167 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.167 Pasteurized blended cheese. Pasteurized blended cheese conforms to...
21 CFR 133.196 - Swiss cheese for manufacturing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Swiss cheese for manufacturing. 133.196 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.196 Swiss cheese for manufacturing. Swiss cheese for...
21 CFR 133.114 - Cheddar cheese for manufacturing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cheddar cheese for manufacturing. 133.114 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.114 Cheddar cheese for manufacturing. Cheddar cheese for...
21 CFR 133.119 - Colby cheese for manufacturing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Colby cheese for manufacturing. 133.119 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.119 Colby cheese for manufacturing. Colby cheese for...
21 CFR 133.119 - Colby cheese for manufacturing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Colby cheese for manufacturing. 133.119 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.119 Colby cheese for manufacturing. Colby cheese for...
21 CFR 133.141 - Gorgonzola cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Gorgonzola cheese. 133.141 Section 133.141 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.141 Gorgonzola cheese. (a) Description. (1) Gorgonzola cheese is the food prepared...
21 CFR 133.162 - Neufchatel cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Neufchatel cheese. 133.162 Section 133.162 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.162 Neufchatel cheese. (a) Description. (1) Neufchatel cheese is the soft uncured...
21 CFR 133.175 - Pasteurized cheese spread.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized cheese spread. 133.175 Section 133.175... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.175 Pasteurized cheese spread. Pasteurized cheese spread is the food...
Spray-dried adjunct cultures of autochthonous non-starter lactic acid bacteria.
Peralta, Guillermo H; Bergamini, Carina V; Audero, Gabriela; Páez, Roxana; Wolf, I Verónica; Perotti, M Cristina; Hynes, Erica R
2017-08-16
Spray-drying of lactic cultures provides direct-to-vat starters, which facilitate their commercialization and use. However, this process may alter the metabolic activity and deteriorate technological features. In this work, we assessed the influence of spray-drying on the survival and aroma production of two strains of mesophilic lactobacilli: Lactobacillus paracasei 90 and Lactobacillus plantarum 91, which have already been characterized as good adjunct cultures. The spray-drying was carried out using a laboratory scale spray and the dried cultures were monitored during the storage for the survival rate. The dried cultures were applied to two cheese models: sterile cheese extract and miniature soft cheese. The influence on the carbohydrate metabolism and the production of organic acids and volatile compounds was determined. Both strains retained high levels of viable counts in the powder after drying and during the storage at 5°C for twelve months. In addition, they also remained at high level in both cheese models during incubation or ripening. Similar profiles of carbohydrate fermentation and bioformation of volatile compounds were observed in the cheese extracts for each of the strains when tested as both fresh and dried cultures. In addition, the ability of Lb. paracasei 90 to increase the production of acetoin and diacetyl remarkably in cheese models was also confirmed for the spray-dried culture. Copyright © 2017 Elsevier B.V. All rights reserved.
Life cycle assessment of cheese production process in a small-sized dairy industry in Brazil.
Santos, Hudson Carlos Maia; Maranduba, Henrique Leonardo; de Almeida Neto, José Adolfo; Rodrigues, Luciano Brito
2017-02-01
Current research identifies, analyzes, and suggests improvements for minimizing environmental impacts in the manufacture of cheese using the life cycle assessment. Data collection and development of the inventory were performed in a small-sized dairy industry in Brazil. A cradle-to-gate approach was conducted based on the primary data from cheese production and secondary data from databases. The ReCiPe method was used for the impact assessment, considering the categories climate change, ozone depletion, terrestrial acidification, freshwater eutrophication, photochemical oxidant formation, particulate matter formation, water depletion, and fossil depletion. A sensitivity analysis was performed including evaluations of different fuels for generating thermal energy, strategies for cleaning of dairy plant and utensils, variations in the way of cheese production based on the fat content, and production percentage changes. The results showed that the skimmed milk and thermal energy productions, electricity usage, and water consumptions were the main elementary flows. The pallet residues showed the best to be used as fuel for thermal energy. Detergent combinations did not influence the impact categories. There was a direct relationship between fat content range (20 to 30%) and the contribution in six impact categories. Changes from 20% in cheese allocation factor influenced the impact assessment results. LCA allowed identifying the main elementary flow of cheese production, providing valuable information with the potential to verify opportunities for on-site improvements.
Production of pyroglutamic acid by thermophilic lactic acid bacteria in hard-cooked mini-cheeses.
Mucchetti, G; Locci, F; Massara, P; Vitale, R; Neviani, E
2002-10-01
Pyroglutamic acid is present in high amounts (0.5g/ 100g) in many cheese varieties-and particularly in extensively ripened Italian cheeses such as Grana Padano and Parmigiano Reggiano. An in vivo model system for cooked mini-cheese production and ripening acceleration was set up to demonstrate the ability of thermophilic lactic acid bacteria, used as a starter, to produce pyroglutamic acid (pGlu). In mini-cheeses stored at 38 and 30 degrees C for up to 45 d, all starters tested produced different amounts of pGlu. In descending order of pGlu production, the bacteria analyzed were: Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactobacillus delbrueckii subsp. lactis. Evidence for the presence of glutamine to pGlu cyclase activity in lactic acid bacteria was provided. Cell lysates obtained from cultures of L. helveticus, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, and S. thermophilus showed the ability to cyclize glutamine to pGlu, resulting in processing yields from 1.4 to 30.3%, depending on the subspecies. Formation of pGlu from free glutamine appeared to be similar to that observed using a glutamine-glutamine dipeptide substrate. Under the experimental conditions applied, pGlu aminopeptidase activity was only detected in L. helveticus. Thus, pGlu formation in long-ripened cooked cheese may depend on the activity of thermophilic lactic acid bacteria.
21 CFR 133.108 - Brick cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Brick cheese. 133.108 Section 133.108 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.108 Brick cheese. (a) Description. (1) Brick cheese is the food prepared from dairy...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Blue cheese. 133.106 Section 133.106 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.106 Blue cheese. (a) Description. (1) Blue cheese is the food prepared by the procedure set...
21 CFR 133.137 - Washed curd cheese for manufacturing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Washed curd cheese for manufacturing. 133.137... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.137 Washed curd cheese for manufacturing. Washed curd cheese for...
21 CFR 133.147 - Grated American cheese food.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Grated American cheese food. 133.147 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.147 Grated American cheese food. (a)(1) Grated American cheese food is...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Edam cheese. 133.138 Section 133.138 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.138 Edam cheese. (a) Description. (1) Edam cheese is the food prepared by the procedure set...
21 CFR 133.146 - Grated cheeses.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Grated cheeses. 133.146 Section 133.146 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.146 Grated cheeses. (a) Description. Grated cheeses is the class of foods prepared by...
21 CFR 133.103 - Asiago medium cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Asiago medium cheese. 133.103 Section 133.103 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.103 Asiago medium cheese. Asiago medium cheese conforms to the definition and...
21 CFR 133.116 - Low sodium cheddar cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Low sodium cheddar cheese. 133.116 Section 133.116... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.116 Low sodium cheddar cheese. Low sodium cheddar cheese is the food...
21 CFR 133.104 - Asiago old cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Asiago old cheese. 133.104 Section 133.104 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.104 Asiago old cheese. Asiago old cheese conforms to the definition and standard of...
7 CFR 58.714 - Cream cheese, Neufchatel cheese.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Cream cheese, Neufchatel cheese. 58.714 Section 58.714 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.714 Cream cheese, Neufchatel cheese. These cheeses when mixed with other foods, or used for...
21 CFR 133.137 - Washed curd cheese for manufacturing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Washed curd cheese for manufacturing. 133.137... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.137 Washed curd cheese for manufacturing. Washed curd cheese for...
21 CFR 133.103 - Asiago medium cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Asiago medium cheese. 133.103 Section 133.103 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.103 Asiago medium cheese. Asiago medium cheese conforms to the definition and...
21 CFR 133.191 - Part-skim spiced cheeses.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Part-skim spiced cheeses. 133.191 Section 133.191... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.191 Part-skim spiced cheeses. Part-skim spiced cheeses conform to the...
21 CFR 133.195 - Swiss and emmentaler cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Swiss and emmentaler cheese. 133.195 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.195 Swiss and emmentaler cheese. (a) Description. (1) Swiss cheese...
21 CFR 133.160 - Muenster and munster cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Muenster and munster cheese. 133.160 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.160 Muenster and munster cheese. (a) Description. (1) Muenster cheese...
21 CFR 133.188 - Semisoft part-skim cheeses.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Semisoft part-skim cheeses. 133.188 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.188 Semisoft part-skim cheeses. (a) The cheeses for which definitions...
21 CFR 133.152 - Limburger cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Limburger cheese. 133.152 Section 133.152 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.152 Limburger cheese. (a) Description. (1) Limburger cheese is the food prepared by one of...
21 CFR 133.121 - Low sodium colby cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Low sodium colby cheese. 133.121 Section 133.121... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.121 Low sodium colby cheese. Low sodium colby cheese is the food...
21 CFR 133.150 - Hard cheeses.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Hard cheeses. 133.150 Section 133.150 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.150 Hard cheeses. (a) The cheeses for which definitions and standards of identity are...
21 CFR 133.160 - Muenster and munster cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Muenster and munster cheese. 133.160 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.160 Muenster and munster cheese. (a) Description. (1) Muenster cheese...
21 CFR 133.108 - Brick cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Brick cheese. 133.108 Section 133.108 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.108 Brick cheese. (a) Description. (1) Brick cheese is the food prepared from dairy...
21 CFR 133.185 - Samsoe cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Samsoe cheese. 133.185 Section 133.185 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.185 Samsoe cheese. (a) Description. (1) Samsoe cheese is the food prepared by the procedure...
21 CFR 133.187 - Semisoft cheeses.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Semisoft cheeses. 133.187 Section 133.187 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.187 Semisoft cheeses. (a) The cheeses for which definitions and standards of identity are...
21 CFR 133.182 - Soft ripened cheeses.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Soft ripened cheeses. 133.182 Section 133.182 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.182 Soft ripened cheeses. (a) The cheeses for which definitions and standards of...
21 CFR 133.152 - Limburger cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Limburger cheese. 133.152 Section 133.152 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.152 Limburger cheese. (a) Description. (1) Limburger cheese is the food prepared by one of...
21 CFR 133.147 - Grated American cheese food.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Grated American cheese food. 133.147 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.147 Grated American cheese food. (a)(1) Grated American cheese food is...
21 CFR 133.113 - Cheddar cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cheddar cheese. 133.113 Section 133.113 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.113 Cheddar cheese. (a) Description. (1) Cheddar cheese is the food prepared by the...
21 CFR 133.149 - Gruyere cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Gruyere cheese. 133.149 Section 133.149 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.149 Gruyere cheese. (a) Description. (1) Gruyere cheese is the food prepared by the...
21 CFR 133.189 - Skim milk cheese for manufacturing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Skim milk cheese for manufacturing. 133.189... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.189 Skim milk cheese for manufacturing. (a) Skim milk cheese for...
21 CFR 133.164 - Nuworld cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Nuworld cheese. 133.164 Section 133.164 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.164 Nuworld cheese. (a) Description. (1) Nuworld cheese is the food prepared by the...
21 CFR 133.142 - Gouda cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Gouda cheese. 133.142 Section 133.142 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.142 Gouda cheese. Gouda cheese conforms to the definition and standard of identity and...
21 CFR 133.149 - Gruyere cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Gruyere cheese. 133.149 Section 133.149 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.149 Gruyere cheese. (a) Description. (1) Gruyere cheese is the food prepared by the...
21 CFR 133.127 - Cook cheese, koch kaese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cook cheese, koch kaese. 133.127 Section 133.127... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.127 Cook cheese, koch kaese. (a) Description. (1) Cook cheese, koch...
21 CFR 133.116 - Low sodium cheddar cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Low sodium cheddar cheese. 133.116 Section 133.116... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.116 Low sodium cheddar cheese. Low sodium cheddar cheese is the food...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Blue cheese. 133.106 Section 133.106 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.106 Blue cheese. (a) Description. (1) Blue cheese is the food prepared by the procedure set...
21 CFR 133.118 - Colby cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Colby cheese. 133.118 Section 133.118 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.118 Colby cheese. (a) Colby cheese is the food prepared from milk and other ingredients...
7 CFR 58.714 - Cream cheese, Neufchatel cheese.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Cream cheese, Neufchatel cheese. 58.714 Section 58.714 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.714 Cream cheese, Neufchatel cheese. These cheeses when mixed with other foods, or used for...
21 CFR 133.185 - Samsoe cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Samsoe cheese. 133.185 Section 133.185 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.185 Samsoe cheese. (a) Description. (1) Samsoe cheese is the food prepared by the procedure...
21 CFR 133.140 - Gammelost cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Gammelost cheese. 133.140 Section 133.140 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.140 Gammelost cheese. (a) Description. (1) Gammelost cheese is the food prepared from nonfat...
21 CFR 133.104 - Asiago old cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Asiago old cheese. 133.104 Section 133.104 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.104 Asiago old cheese. Asiago old cheese conforms to the definition and standard of...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Edam cheese. 133.138 Section 133.138 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.138 Edam cheese. (a) Description. (1) Edam cheese is the food prepared by the procedure set...
21 CFR 133.140 - Gammelost cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Gammelost cheese. 133.140 Section 133.140 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.140 Gammelost cheese. (a) Description. (1) Gammelost cheese is the food prepared from nonfat...
21 CFR 133.148 - Hard grating cheeses.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Hard grating cheeses. 133.148 Section 133.148 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.148 Hard grating cheeses. (a) The cheeses for which definitions and standards of...
21 CFR 133.113 - Cheddar cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cheddar cheese. 133.113 Section 133.113 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.113 Cheddar cheese. (a) Description. (1) Cheddar cheese is the food prepared by the...
21 CFR 133.154 - High-moisture jack cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false High-moisture jack cheese. 133.154 Section 133.154... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.154 High-moisture jack cheese. High-moisture jack cheese conforms to...
21 CFR 133.142 - Gouda cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Gouda cheese. 133.142 Section 133.142 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.142 Gouda cheese. Gouda cheese conforms to the definition and standard of identity and...
21 CFR 133.121 - Low sodium colby cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Low sodium colby cheese. 133.121 Section 133.121... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.121 Low sodium colby cheese. Low sodium colby cheese is the food...
21 CFR 133.191 - Part-skim spiced cheeses.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Part-skim spiced cheeses. 133.191 Section 133.191... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.191 Part-skim spiced cheeses. Part-skim spiced cheeses conform to the...
21 CFR 133.195 - Swiss and emmentaler cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Swiss and emmentaler cheese. 133.195 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.195 Swiss and emmentaler cheese. (a) Description. (1) Swiss cheese...
21 CFR 133.127 - Cook cheese, koch kaese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cook cheese, koch kaese. 133.127 Section 133.127... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.127 Cook cheese, koch kaese. (a) Description. (1) Cook cheese, koch...
21 CFR 133.164 - Nuworld cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Nuworld cheese. 133.164 Section 133.164 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.164 Nuworld cheese. (a) Description. (1) Nuworld cheese is the food prepared by the...
21 CFR 133.154 - High-moisture jack cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false High-moisture jack cheese. 133.154 Section 133.154... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.154 High-moisture jack cheese. High-moisture jack cheese conforms to...
7 CFR 6.37 - Supersedure of Import Regulation 1, Revision 7.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16,572,178 CHEESE ARTICLES CHEESE AND SUBSTITUTES FOR CHEESE (EXCEPT: SOFT RIPENED COW'S MILK CHEESE; CHEESE NOT CONTAINING COW'S MILK; CHEESE (EXCEPT COTTAGE CHEESE) CONTAINING 0.5 PERCENT OR LESS BY WEIGHT... MILK, (ROMANO MADE FROM COW'S MILK, REGGIANO, PARMESAN, PROVOLONE, PROVOLETTI, SBRINZ, AND GOYA—NOT IN...
Functional properties of Mozzarella cheese for its end use application.
Ah, Jana; Tagalpallewar, Govind P
2017-11-01
Cheese is an extremely versatile food product that has a wide range of flavor, textures and end uses. The vast majority of cheese is eaten not by itself, but as part of another food. As an ingredient in foods, cheese is required to exhibit functional characteristics in the raw as well as cooked forms. Melting, stretching, free-oil formation, elasticity and browning are the functional properties considered to be significant for Mozzarella cheese. When a cheese is destined for its end use, some of its unique characteristics play a significant role in the products acceptability. For instance pH of cheese determines the cheese structure which in turn decides the cheese shredability and meltability properties. The residual galactose content in cheese mass determines the propensity of cheese to brown during baking. Development of 'tailor-made cheese' involves focusing on manipulation of such unique traits of cheese in order to obtain the desired characteristics for its end use application suiting the varied consumer's whims and wishes. This comprehensive review paper will provide an insight to the cheese maker regarding the factors determining the functional properties of cheese and also for the pizza manufacturers to decide which age of cheese to be used which will perform well in baking applications.
Garabal, J I; Rodríguez-Alonso, P; Franco, D; Centeno, J A
2010-05-01
Two batches of smoked, semi-hard (ripened for 45 d) San Simón da Costa cow's milk cheeses with Protected Designation of Origin were used to investigate the chemical, biochemical, and sensorial parameters that may be affected by modified-atmosphere packaging. Cheeses were packaged for 45 d as follows: vacuum packaging, packaging in 100% N(2), packaging in a gas mixture of 20% CO(2)/80% N(2), and packaging in a gas mixture of 50% CO(2)/50% N(2). The San Simón da Costa cheeses were characterized by high contents of lactic, oxalic, and citric organic acids. The main free amino acids found were isoleucine, phenylalanine, serine, valine, lysine, and glutamic acid, and the most abundant volatile compounds included ethanol, diacetyl, 2-butanol, isopropyl alcohol, furfural, acetaldehyde, 2-butanone, acetone, and 2-methylfuran. Modified atmospheres appeared to alter the ripening processes by affecting lipolysis, as indicated by the lower concentrations of butyric and propionic acids compared with control cheeses. In addition, modified-atmosphere packaging altered the proteolysis processes, yielding higher amounts of branched-chain alcohols. The results revealed that storage under modified atmosphere contributes to the accumulation of several compounds probably derived from smoke, including aldehydes such as 2-furancarboxaldehyde (furfural), alcohols such as 2-methoxyphenol (guaiacol), ketones such as 2-cyclopenten-1-one, and esters such as methyl furancarboxylate, which were negatively correlated with flavor. Vacuum packaging was the most useful technique in terms of preserving the sensory quality of San Simón da Costa Protected Designation of Origin cheeses. Considering the current demands for packaged portions of food at the distribution and retail levels and the potential health risks associated with some smoke-derived compounds usually present in some smoked foods, the results obtained in this study may be of special interest to the cheese industry. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Pais, Vânia F.; Oliveira, João A. B. P.; Gomes, Maria Teresa S. R.
2012-01-01
An electronic nose based on coated piezoelectric quartz crystals was used to distinguish cheese made from ewes’ milk, and to distinguish cheese varieties. Two sensors coated with Nafion and Carbowax could certify half the ewes’ cheese samples, exclude 32 cheeses made from cow’s milk and to classify half of the ewes’ cheese samples as possibly authentic. Two other sensors, coated with polyvinylpyrrolidone and triethanolamine clearly distinguished between Flamengo, Brie, Gruyère and Mozzarella cheeses. Brie cheeses were further separated according to their origin, and Mozzarella grated cheese also appeared clearly separated from non-grated Mozzarella. PMID:22438717
21 CFR 133.134 - Cream cheese with other foods.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cream cheese with other foods. 133.134 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.134 Cream cheese with other foods. (a) Description. Cream cheese with...
21 CFR 133.124 - Cold-pack cheese food.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cold-pack cheese food. 133.124 Section 133.124... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.124 Cold-pack cheese food. (a)(1) Cold-pack cheese food is the food...
21 CFR 133.186 - Sap sago cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Sap sago cheese. 133.186 Section 133.186 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.186 Sap sago cheese. (a) Description. (1) Sap sago cheese is the food prepared by the...
21 CFR 133.102 - Asiago fresh and asiago soft cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Asiago fresh and asiago soft cheese. 133.102... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.102 Asiago fresh and asiago soft cheese. (a) Asiago fresh cheese...
21 CFR 133.134 - Cream cheese with other foods.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cream cheese with other foods. 133.134 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.134 Cream cheese with other foods. (a) Description. Cream cheese with...
21 CFR 133.129 - Dry curd cottage cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Dry curd cottage cheese. 133.129 Section 133.129... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.129 Dry curd cottage cheese. (a) Cottage cheese dry curd is the soft...
21 CFR 133.186 - Sap sago cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Sap sago cheese. 133.186 Section 133.186 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.186 Sap sago cheese. (a) Description. (1) Sap sago cheese is the food prepared by the...
21 CFR 133.183 - Romano cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Romano cheese. 133.183 Section 133.183 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.183 Romano cheese. (a) Romano cheese is the food prepared from cow's milk or sheep's milk or...
Cheese Classification, Characterization, and Categorization: A Global Perspective.
Almena-Aliste, Montserrat; Mietton, Bernard
2014-02-01
Cheese is one of the most fascinating, complex, and diverse foods enjoyed today. Three elements constitute the cheese ecosystem: ripening agents, consisting of enzymes and microorganisms; the composition of the fresh cheese; and the environmental conditions during aging. These factors determine and define not only the sensory quality of the final cheese product but also the vast diversity of cheeses produced worldwide. How we define and categorize cheese is a complicated matter. There are various approaches to cheese classification, and a global approach for classification and characterization is needed. We review current cheese classification schemes and the limitations inherent in each of the schemes described. While some classification schemes are based on microbiological criteria, others rely on descriptions of the technologies used for cheese production. The goal of this review is to present an overview of comprehensive and practical integrative classification models in order to better describe cheese diversity and the fundamental differences within cheeses, as well as to connect fundamental technological, microbiological, chemical, and sensory characteristics to contribute to an overall characterization of the main families of cheese, including the expanding world of American artisanal cheeses.
Estimation of the protein content of US imports of milk protein concentrates.
Bailey, K W
2003-12-01
Recent declines in milk prices in the United States have sparked renewed concern that imports of milk protein concentrates (MPC) are increasingly entering the United States with very low tariff rates and is having an adverse impact on the US dairy industry. Milk protein concentrates are used in the United States in many different products, including the starter culture of cheese, or in nonstandard cheeses such as baker's cheese, ricotta, Feta and Hispanic cheese, processed cheese foods, and nutritional products. One of the difficult aspects of trying to assess the impact of MPC imports on the US dairy industry is to quantify the protein content of these imports. The protein content of MPC imports typically ranges from 40 to 88%. The purpose of this study is to develop a methodology that can be used to estimate the protein content of MPC on a country by country basis. Such an estimate would not only provide information regarding the quantity of protein entering the United States, but would also provide a profile of low- and high-value MPC importers. This is critical for market analysis, since it is the lower valued MPC imports that more directly displaces US-produced skim milk powder.
Albenzio, M; Santillo, A; Caroprese, M; Ruggieri, D; Napolitano, F; Sevi, A
2013-05-01
The present study was undertaken to produce functional Scamorza cheese from Gentile di Puglia ewe milk by incorporating probiotic strains into the cheese matrix and to evaluate the physicochemical characteristics of Scamorza ewe milk cheese. Gentile di Puglia ewe bulk milk was used for Scamorza cheese production. Cheeses were denoted S-CO for control Scamorza cheese, S-BB for Scamorza cheese made using a mix of Bifidobacterium longum and Bifidobacterium lactis, and S-LA for Scamorza cheese made using Lactobacillus acidophilus as probiotic strain. Cheeses were analyzed at 1, 7, and 15 d of ripening. Probiotic cell recovery in cheese was 7.55 ± 0.07 log10 cfu/g and 9.09 ± 0.04 log10 cfu/g in S-LA and S-BB cheese, respectively; probiotic cheeses also displayed the highest levels of lactic microflora. Reverse-phase HPLC chromatograms of the water-soluble nitrogen fraction showed a more complex profile in S-BB, with distinctive peaks in the early-eluting zone. The matured Scamorza cheese containing the mix of B. longum and B. lactis was characterized by significantly higher levels of Gln, Ser, Arg, Ile, and Leu, whereas cheese containing Lb. acidophilus was characterized by higher levels of Tyr and Met. Total FFA content was the highest in S-LA, intermediate in S-BB, and the lowest in S-CO cheese; in particular, Scamorza cheese containing Lb. acidophilus showed the highest level of vaccenic acid, oleic acid, and total conjugated linoleic acid. Probiotic bacteria survived through the technological phases of pasta filata cheese production, maintained their specific metabolic pathways, and conferred functional properties to Scamorza ewe milk cheese. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Batool, Maryam; Nadeem, Muhammad; Imran, Muhammad; Gulzar, Nabila; Shahid, Muhammad Qamar; Shahbaz, Muhammad; Ajmal, Muhammad; Khan, Imran Taj
2018-04-11
Ripening of cheddar cheese is a time taking process, duration of the ripening may be as long as one year. Long ripening time is a big hindrance in the popularity of cheese in developing countries. Further, energy resources in these countries are either insufficient or very expensive. Therefore, those methods of cheese ripening should be discovered which can significantly reduce the ripening time without compromising the quality characteristics of cheddar cheese. In accelerated ripening, cheese is usually ripened at higher temperature than traditional ripening temperatures. Ripening of cheddar cheese at high temperature with the addition of vitamin E and selenium is not previously studied. This investigation aimed to study the antioxidant activity of selenium and vitamin E in accelerated ripening using cheddar cheese as an oxidation substrate. The ripening of cheddar cheese was performed at 18 °C and to prevent lipid oxidation, vitamin E and selenium were used alone and in combination. The treatments were as: cheddar cheese without any addition of vitamin E and selenium (T1), cheddar cheese added with 100 mg/kg vitamin E (T 2 ), 200 mg/kg vitamin E (T 3 ), 800 μg/kg selenium (T 4 ), 1200 μg/kg selenium (T 5 ), vitamin E 100 mg/kg + 800 μg/kg selenium (T 6 ) and vitamin E 200 mg/kg + 1200 μg/kg selenium (T 7 ). Traditional cheddar cheese ripne ripened at 4-6 °C for 9 months was used as positive control. Cheese samples were ripened at 18 °C for a period of 12 weeks and analyzed for chemical and oxidative stability characteristics at 0, 6 and 12 weeks of storage. All these treatments were compared with a cheddar cheese without vitamin E, selenium and ripened at 4 °C or 12 weeks. Vacuum packaged cheddar cheese was ripened 18 °C for a period of 12 weeks and analyzed for chemical and oxidative stability characteristics at 0, 4 and 8 weeks of storage period. Addition of Vitamin E and selenium did not have any effect on moisture, fat and protein content of cheddar cheese. After 6 weeks of ripening, total antioxidant capacity of T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 and standard cheese were 29.61%, 44.7%, 53.6%, 42.5%, 41.4%, 64.1%, 85.1% and 25.4%. After 6 weeks of ripening, reducing power of T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 and SC cheese were 14.7%, 18.1%, 26.3%, 19.2%, 25.3%, 33.4%, 40.3% and 11.6%. After 6 weeks of ripening, 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity of T 6 and T 7 were 54.2% and 66.9%. While, DPPH free radical scavenging activity of T 1 and standard cheese after 6 weeks of ripening were, 19.1 and 18.5%, respectively. Free fatty acids of vitamin E and selenium supplemented, non-supplemented and standard cheese were not significantly influenced from each other in 0, 6 and 12 weeks old cheddar cheese. Peroxide values of T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 and standard cheese after 6 weeks of accelerated ripening were 1.19, 1.05, 0.88, 1.25, 0.29, 0.25, 0.24 and 0.28 (MeqO 2 /kg). After 6 weeks of ripening, anisidine value of T 6 and T 7 were 6.55 and 6.14. Conjugated dienes of T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 and standard cheese, after 6 weeks of accelerated ripening were 0.61, 0.55, 0.42, 0.77, 0.65, 0.17, 0.15 and 0.19. After 6 weeks of accelerated ripening, concentrations unsaturated fatty acids in T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 and standard cheese decreased by18.19%, 17.45%, 16.82%, 16.19%, 12.71%, 8.48%, 6.92% and 14.71%. After 12 weeks of accelerated ripening, concentration of unsaturated fatty acids in T 1 , T 2 , T 3 , T 4 , T 5 , T 6 and T 7 and standard cheese decreased by 26.2%, 21.2%, 18.7%, 14.2%, 10.4%, 4.84%, 1.03% and 6.78%. Cheddar cheese samples added with vitamin E, selenium and their combinations produced more organic acids during the ripening period of 12 weeks. After 6 and 12 weeks of ripening, flavor score of T 6 and T 7 was better than standard ripened cheddar cheese. After 6 weeks of accelerated ripening, sensory characteristics of T 6 and T 7 were similar to cheddar cheese that was ripened at 4 °C for 9 months. Ripening time of cheddar cheese may be reduced to 6 weeks by elevated temperature (18 °C) using vitamin E and selenium as antioxidants at T 6 and T 7 levels.
Multiple recent horizontal transfers of a large genomic region in cheese making fungi.
Cheeseman, Kevin; Ropars, Jeanne; Renault, Pierre; Dupont, Joëlle; Gouzy, Jérôme; Branca, Antoine; Abraham, Anne-Laure; Ceppi, Maurizio; Conseiller, Emmanuel; Debuchy, Robert; Malagnac, Fabienne; Goarin, Anne; Silar, Philippe; Lacoste, Sandrine; Sallet, Erika; Bensimon, Aaron; Giraud, Tatiana; Brygoo, Yves
2014-01-01
While the extent and impact of horizontal transfers in prokaryotes are widely acknowledged, their importance to the eukaryotic kingdom is unclear and thought by many to be anecdotal. Here we report multiple recent transfers of a huge genomic island between Penicillium spp. found in the food environment. Sequencing of the two leading filamentous fungi used in cheese making, P. roqueforti and P. camemberti, and comparison with the penicillin producer P. rubens reveals a 575 kb long genomic island in P. roqueforti--called Wallaby--present as identical fragments at non-homologous loci in P. camemberti and P. rubens. Wallaby is detected in Penicillium collections exclusively in strains from food environments. Wallaby encompasses about 250 predicted genes, some of which are probably involved in competition with microorganisms. The occurrence of multiple recent eukaryotic transfers in the food environment provides strong evidence for the importance of this understudied and probably underestimated phenomenon in eukaryotes.
Multiple recent horizontal transfers of a large genomic region in cheese making fungi
Cheeseman, Kevin; Ropars, Jeanne; Renault, Pierre; Dupont, Joëlle; Gouzy, Jérôme; Branca, Antoine; Abraham, Anne-Laure; Ceppi, Maurizio; Conseiller, Emmanuel; Debuchy, Robert; Malagnac, Fabienne; Goarin, Anne; Silar, Philippe; Lacoste, Sandrine; Sallet, Erika; Bensimon, Aaron; Giraud, Tatiana; Brygoo, Yves
2014-01-01
While the extent and impact of horizontal transfers in prokaryotes are widely acknowledged, their importance to the eukaryotic kingdom is unclear and thought by many to be anecdotal. Here we report multiple recent transfers of a huge genomic island between Penicillium spp. found in the food environment. Sequencing of the two leading filamentous fungi used in cheese making, P. roqueforti and P. camemberti, and comparison with the penicillin producer P. rubens reveals a 575 kb long genomic island in P. roqueforti—called Wallaby—present as identical fragments at non-homologous loci in P. camemberti and P. rubens. Wallaby is detected in Penicillium collections exclusively in strains from food environments. Wallaby encompasses about 250 predicted genes, some of which are probably involved in competition with microorganisms. The occurrence of multiple recent eukaryotic transfers in the food environment provides strong evidence for the importance of this understudied and probably underestimated phenomenon in eukaryotes. PMID:24407037
Consumer preferences for mild cheddar cheese flavors.
Drake, S L; Gerard, P D; Drake, M A
2008-11-01
Flavor is an important factor in consumer selection of cheeses. Mild Cheddar cheese is the classification used to describe Cheddar cheese that is not aged extensively and has a "mild" flavor. However, there is no legal definition or age limit for Cheddar cheese to be labeled mild, medium, or sharp, nor are the flavor profiles or flavor expectations of these cheeses specifically defined. The objectives of this study were to document the distinct flavor profiles among commercially labeled mild Cheddar cheeses, and to characterize if consumer preferences existed for specific mild Cheddar cheese flavors or flavor profiles. Flavor descriptive sensory profiles of a representative array of commercial Cheddar cheeses labeled as mild (n= 22) were determined using a trained sensory panel and an established cheese flavor sensory language. Nine representative Cheddar cheeses were selected for consumer testing. Consumers (n= 215) assessed the cheeses for overall liking and other consumer liking attributes. Internal preference mapping, cluster analysis, and discriminant analysis were conducted. Mild Cheddar cheeses were diverse in flavor with many displaying flavors typically associated with more age. Four distinct consumer clusters were identified. The key drivers of liking for mild Cheddar cheese were: color, cooked/milky, whey and brothy flavors, and sour taste. Consumers have distinct flavor and color preferences for mild Cheddar cheese. These results can help manufacturers understand consumer preferences for mild Cheddar cheese.
Itoi, S; Yuasa, K; Washio, S; Abe, T; Ikuno, E; Sugita, H
2009-09-01
We compared phenotypic characteristics of Lactococcus lactis subsp. lactis derived from different sources including the intestinal tract of marine fish and freshwater fish, and cheese starter culture. In the phylogenetic analysis based on partial 16S rRNA gene nucleotide sequences (1371 bp), freshwater fish-, marine fish- and cheese starter culture-derived strains were identical to that of L. lactis subsp. lactis previously reported. Fermentation profiles determined using the API 50 CH system were similar except for fermentation of several sugars including l-arabinose, mannitol, amygdalin, saccharose, trehalose, inulin and gluconate. The strains did have distinct levels of halotolerance: marine fish-derived strains > cheese starter-derived strain > freshwater fish-derived isolate. Lactococcus lactis subsp. lactis showed extensive diversity in phenotypic adaptation to various environments. The phenotypic properties of these strains suggested that L. lactis subsp. lactis strains from fish intestine have additional functions compared with the cheese starter-derived strain that has previously described. The unique phenotypic traits of the fish intestinal tract-derived L. lactis subsp. lactis might make them useful as a probiotics in aquaculture, and contribute to the development of functional foods and novel food additives, since the strains derived from fish intestines might have additional functions such as antibacterial activity.
NASA Astrophysics Data System (ADS)
Díaz, L.; Reales, J.; Torres, C.
2017-01-01
In Colombia, especially in the Atlantic Coast it is produced and marketed the costeño cheese, an indigenous product of the gastronomy of this region, but the prolonged exposure of this product to the environment leads to microbial contamination and non-enzymatic rancidity. For this reason the transmittance of an edible coating based in aloe vera gel and cassava starch to preserve costeño cheese was evaluated using trifurcated optical fibers. The results become a tool for the selection of treatments in making edible films and their subsequent use in coatings for various types of food products.
Cheese Microbial Risk Assessments — A Review
Choi, Kyoung-Hee; Lee, Heeyoung; Lee, Soomin; Kim, Sejeong; Yoon, Yohan
2016-01-01
Cheese is generally considered a safe and nutritious food, but foodborne illnesses linked to cheese consumption have occurred in many countries. Several microbial risk assessments related to Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli infections, causing cheese-related foodborne illnesses, have been conducted. Although the assessments of microbial risk in soft and low moisture cheeses such as semi-hard and hard cheeses have been accomplished, it has been more focused on the correlations between pathogenic bacteria and soft cheese, because cheese-associated foodborne illnesses have been attributed to the consumption of soft cheeses. As a part of this microbial risk assessment, predictive models have been developed to describe the relationship between several factors (pH, Aw, starter culture, and time) and the fates of foodborne pathogens in cheese. Predictions from these studies have been used for microbial risk assessment as a part of exposure assessment. These microbial risk assessments have identified that risk increased in cheese with high moisture content, especially for raw milk cheese, but the risk can be reduced by preharvest and postharvest preventions. For accurate quantitative microbial risk assessment, more data including interventions such as curd cooking conditions (temperature and time) and ripening period should be available for predictive models developed with cheese, cheese consumption amounts and cheese intake frequency data as well as more dose-response models. PMID:26950859
Activity of selected essential oils on spoiling fungi cultured from Marzolino cheese.
Nardoni, Simona; D'Ascenzi, Carlo; Caracciolo, Irene; Mannaioni, Gaia; Papini, Roberto Amerigo; Pistelli, Luisa; Najar, Basma; Mancianti, Francesca
2018-06-20
Microscopic fungi can be present on a variety of foodstuff, including cheese. They can be responsible for fungal spoilage, causing sensory changes making food unacceptable for human consumption, and posing severe health concerns. Furthermore, some of these organisms are able to resist antimicrobial preservatives provided for by law. Antifungal activity of 15 chemically defined EOs, alone and in mixture, were checked by a microdilution test against isolates of Penicillium funiculosum and Mucor racemosus cultured from rinds of Marzolino, a typical Italian fresh pecorino cheese. Origanum vulgare yielded the lowest MIC values, followed by Salvia sclarea, Ocimum basilicum and Cymbopogon citratus, while Citrus paradisi and Citrus limon were not active. All mixtures showed antifungal activity at lower concentration with respect to MIC values of each EO component, when not in combination. This study is the first to describe the setting up of EOs mixtures to limit spoiling moulds.
Hayaloglu, A A; Cakmakci, S; Brechany, E Y; Deegan, K C; McSweeney, P L H
2007-03-01
Tulum cheeses were manufactured from raw ewe's milk and ripened in goat's skin bags (tulums) or plastic containers to understand the effect of ripening container on the chemical composition, biochemistry, microbiology, and volatile composition of Tulum cheeses during 150 d of ripening. Chemical compositions of the cheeses ripened in tulums were significantly different and the moisture contents decreased rapidly in those cheeses because of the porous structure of the tulum. Higher microbial counts were detected in the cheeses ripened in plastic than in cheeses ripened in tulums. Differences in nitrogenous compounds and total free AA of the cheeses were not significant. Total concentrations of free AA in cheeses increased with age and Glu, Ala, Val, Leu, and Phe were the most abundant AA in the cheeses. Urea-PAGE of pH 4.6-insoluble fractions of the cheeses during ripening showed similar degradation patterns in all cheeses. Peptide profiles by reversed-phase HPLC of pH 4.6- and ethanol-soluble or ethanol-insoluble fractions of the cheeses revealed only minor differences in the concentrations of some peptides among the cheeses; however, age-related changes in peptide concentrations were significantly different among the cheeses. Cheeses were analyzed at 90 d of ripening for volatile compounds by solid-phase microextraction gas chromatography-mass spectrometry. One hundred volatile components were identified, including 11 acids, 16 esters, 12 methyl ketones, 7 aldehydes, 22 alcohols, 7 sulfur compounds, 6 terpenes, and 19 miscellaneous compounds. The main components were short-chain fatty acids, 2-butanone, diacetyl, and primary alcohols. Quantitative differences in several volatile compounds were evident among the cheeses. Cheeses ripened in tulums or plastic had similar aroma patterns, but the concentrations of some components were different.
Schrama, D; Helliwell, N; Neto, L; Faleiro, M L
2013-06-01
The aim of this study was to evaluate the effect of the acid and salt adaptation in a cheese-based medium on the virulence potential of Listeria monocytogenes strains isolated from cheese and dairy processing environment using the Galleria mellonella model. Four L. monocytogenes strains were exposed to a cheese-based medium in conditions of induction of an acid tolerance response and osmotolerance response (pH 5·5 and 3·5% w/v NaCl) and injected in G. mellonella insects. The survival of insects and the L. monocytogenes growth kinetics in insects were evaluated. The gene expression of hly, actA and inlA genes was determined by real-time PCR. The adapted cells of two dairy strains showed reduced insect mortality (P < 0·05) in comparison with nonadapted cells. Listeria monocytogenes Scott A was the least virulent, whereas the cheese isolate C882 caused the highest insect mortality, and no differences (P > 0·05) was found between adapted and nonadapted cells. The gene expression results evidenced an overexpression of virulence genes in cheese-based medium, but not in simulated insect-induced conditions. Our results suggest that adaptation to low pH and salt in a cheese-based medium can affect the virulence of L. monocytogenes, but this effect is strain dependent. In this study, the impact of adaptation to low pH and salt in a cheese-based medium on L. monocytogenes virulence was tested using the Wax Moth G. mellonella model. This model allowed the differentiation of the virulence potential between the L. monocytogenes strains. The effect of adaptation on virulence is strain dependent. The G. mellonella model revealed to be a prompt method to test food-related factors on L. monocytogenes virulence. © 2013 The Society for Applied Microbiology.
Survival of Escherichia coli O157:H7 during manufacture and storage of white brined cheese.
Osaili, Tareq M; Al-Nabulsi, Anas A; Olaimat, Amin N; Shaker, Reyad R; Taha, Mohammad; Holley, Richard A
2014-09-01
Escherichia coli O157:H7 is a major foodborne pathogen that causes severe disease in humans. Survival of E. coli O157:H7 during processing and storage of white brined cheese was investigated. Cheeses were prepared using pasteurized milk inoculated with a 4 strain E. coli O157:H7 cocktail (7 log(10) CFU/g) with or without yogurt starter culture (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus salivarius ssp. thermophilus) and stored in 10% or 15% NaCl brine at 10 and 21 ºC for 28 d. NaCl concentration, water activity (a(w)), pH, and numbers of E. coli O157:H7 and lactic acid bacteria (LAB) were determined in cheese and brine. E. coli O157:H7 was able to survive in cheese stored in both brines at 10 and 21 ºC regardless of the presence of starter LAB, although the latter significantly enhanced E. coli O157:H7 reduction in cheese or its brine at 10 ºC. E. coli O157:H7 numbers were reduced by 2.6 and 3.4 log(10) CFU/g in cheese stored in 10% and 15% NaCl brine, respectively, in the presence of starter LAB and by 1.4 and 2.3 log(10) CFU/g, respectively, in the absence of starter LAB at 10 ºC. The pathogen survived, but at lower numbers in the brines. The salt concentration of cheese stored in 10% brine remained about 5% during ripening, but in 15% brine, the NaCl level increased 1.6% to 8.1% (w/w) by 28 d. Values of pH and a(w) slightly decreased 1 d after exposure to brine and reached 5.5 to 6.6 and 0.88 to 0.94, respectively, in all treatments. © 2014 Institute of Food Technologists®
Scarano, Christian; Giacometti, Federica; Manfreda, Gerardo; Lucchi, Alex; Pes, Emanuela; Spanu, Carlo; De Santis, Enrico Pietro Luigi; Serraino, Andrea
2014-11-01
This study aimed to evaluate Arcobacter species contamination of industrial sheep ricotta cheese purchased at retail and to establish if the dairy plant environment may represent a source of contamination. A total of 32 sheep ricotta cheeses (1.5 kg/pack) packed in a modified atmosphere were purchased at retail, and 30 samples were collected in two sampling sessions performed in the cheese factory from surfaces in contact with food and from surfaces not in contact with food. Seven out of 32 samples (21.9%) of ricotta cheese collected at retail tested positive for Arcobacter butzleri at cultural examination; all positive samples were collected during the same sampling and belonged to the same batch. Ten surface samples (33.3%) collected in the dairy plant were positive for A. butzleri. Cluster analysis identified 32 pulsed-field gel electrophoresis (PFGE) patterns. The same PFGE pattern was isolated from more than one ricotta cheese sample, indicating a common source of contamination, while more PFGE patterns could be isolated in single samples, indicating different sources of contamination. The results of the environmental sampling showed that A. butzleri may be commonly isolated from the dairy processing plant investigated and may survive over time, as confirmed by the isolation of the same PFGE pattern in different industrial plant surface samples. Floor contamination may represent a source of A. butzleri spread to different areas of the dairy plant, as demonstrated by isolation of the same PFGE pattern in different production areas. Isolation of the same PFGE pattern from surface samples in the dairy plant and from ricotta cheese purchased at retail showed that plant surfaces may represent a source of A. butzleri postprocessing contamination in cheeses produced in industrial dairy plants. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Ryssel, Mia; Johansen, Pernille; Al-Soud, Waleed Abu; Sørensen, Søren; Arneborg, Nils; Jespersen, Lene
2015-12-23
Microbial successions on the surface and in the interior of surface ripened semi-hard Danish Danbo cheeses were investigated by culture-dependent and -independent techniques. Culture-independent detection of microorganisms was obtained by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing, using amplicons of 16S and 26S rRNA genes for prokaryotes and eukaryotes, respectively. With minor exceptions, the results from the culture-independent analyses correlated to the culture-dependent plating results. Even though the predominant microorganisms detected with the two culture-independent techniques correlated, a higher number of genera were detected by pyrosequencing compared to DGGE. Additionally, minor parts of the microbiota, i.e. comprising <10.0% of the operational taxonomic units (OTUs), were detected by pyrosequencing, resulting in more detailed information on the microbial succession. As expected, microbial profiles of the surface and the interior of the cheeses diverged. During cheese production pyrosequencing determined Lactococcus as the dominating genus on cheese surfaces, representing on average 94.7%±2.1% of the OTUs. At day 6 Lactococcus spp. declined to 10.0% of the OTUs, whereas Staphylococcus spp. went from 0.0% during cheese production to 75.5% of the OTUs at smearing. During ripening, i.e. from 4 to 18 weeks, Corynebacterium was the dominant genus on the cheese surface (55.1%±9.8% of the OTUs), with Staphylococcus (17.9%±11.2% of the OTUs) and Brevibacterium (10.4%±8.3% of the OTUs) being the second and third most abundant genera. Other detected bacterial genera included Clostridiisalibacter (5.0%±4.0% of the OTUs), as well as Pseudoclavibacter, Alkalibacterium and Marinilactibacillus, which represented <2% of the OTUs. At smearing, yeast counts were low with Debaryomyces being the dominant genus accounting for 46.5% of the OTUs. During ripening the yeast counts increased significantly with Debaryomyces being the predominant genus, on average accounting for 96.7%±4.1% of the OTUs. The interior of the cheeses was dominated by Lactococcus spp. comprising on average 93.9%±7.8% of the OTUs throughout the cheese processing. The microbial dynamics described at genus level in this study add to a comprehensive understanding of the complex microbiota existing especially on surface ripened semi-hard cheeses. Copyright © 2015 Elsevier B.V. All rights reserved.
Microorganisms in inorganic chemical analysis.
Godlewska-Zyłkiewicz, Beata
2006-01-01
There are innumerable strains of microbes (bacteria, yeast and fungi) that degrade or transform chemicals and compounds into simpler, safer or less toxic substances. These bioprocesses have been used for centuries in the treatment of municipal wastes, in wine, cheese and bread making, and in bioleaching and metal recovery processes. Recent literature shows that microorganisms can be also used as effective sorbents for solid phase extraction procedures. This review reveals that fundamental nonanalytical studies on the parameters and conditions of biosorption processes and on metal-biomass interactions often result in efficient analytical procedures and biotechnological applications. Some selected examples illustrate the latest developments in the biosorption of metals by microbial biomass, which have opened the door to the application of microorganisms to analyte preconcentration, matrix separation and speciation analysis.
Ong, L; Dagastine, R R; Kentish, S E; Gras, S L
2010-04-01
Confocal laser scanning microscopy (CLSM) was successfully used to observe the effect of milk processing on the size and the morphology of the milk fat globule in raw milk, raw ultrafiltered milk, and standardized and pasteurized milk prepared for cheese manufacture (cheese-milk) and commercial pasteurized and homogenized milk. Fat globule size distributions for the milk preparations were analyzed using both image analysis and light scattering and both measurements produced similar data trends. Changes to the native milk fat globule membrane (MFGM) were tracked using a MFGM specific fluorescent stain that allowed MFGM proteins and adsorbed proteins to be differentiated on the fat globule surface. Sodium dodecyl sulfate polyacrylamide gel electrophoresis confirmed the identity of native MFGM proteins isolated from the surface of fat globules within raw, UF retentate, and cheese-milk preparations, whereas only casein was detected on the surface of fat globules in homogenized milk. The microstructure, porosity, and gel strength of the rennet induced gel made from raw milk and cheese-milk was also found to be comparable and significantly different to that made from homogenized milk. Our results highlight the potential use of CLSM as a tool to observe the structural details of the fat globule and associated membrane close to its native environment.
Prazeres, Ana R; Rivas, Javier; Paulo, Úrsula; Ruas, Filipa; Carvalho, Fátima
2016-07-01
Raw cheese whey wastewater (CWW) has been treated by means of FeCl3 coagulation-flocculation, NaOH precipitation, and Ca(OH)2 precipitation. Three different types of CWW were considered: without cheese whey recovery (CWW0), 60 % cheese whey recovery (CWW60), and 80 % cheese whey recovery (CWW80). Cheese whey recovery significantly influenced the characteristics of the wastewater to be treated: organic matter, solids, turbidity, conductivity, sodium, chloride, calcium, nitrogen, potassium, and phosphorus. Initial organic load was reduced to values in the interval of 60-70 %. Application of FeCl3, NaOH, or Ca(OH)2 involved additional chemical oxygen demand (COD) depletions regardless of the CWW used. Under optimum conditions, the combination of 80 % cheese whey recovery and lime application led to 90 % reduction in COD. Turbidity (99.8%), total suspended solids (TSS) (98-99 %), oils and fats (82-96 %), phosphorus (98-99 %), potassium (96-97 %), and total coliforms (100 %) were also reduced. Sludge generated in the latter process showed excellent settling properties. This solid after filtration and natural evaporation can be used as fertilizer with limitations due to its saline nature. In an innovative, low-cost, and environmentally friendly technology, supernatant coming from the Ca(OH)2 addition was naturally neutralized in 4-6 days by atmospheric CO2 absorption without reagent addition. Consequently, a final aerobic biodegradation step can be applied for effluent polishing. This technology also allows for some atmospheric CO2 mitigation. Time requirement for the natural carbonation depends on the effluent characteristics. A precipitate rich in organic matter and nutrients and depletions of solids, sodium, phosphorus, magnesium, Kjeldahl, and ammoniacal nitrogen were also achieved during the natural carbonation.
Panseri, Sara; Chiesa, Luca Maria; Zecconi, Alfonso; Soncini, Gabriella; De Noni, Ivano
2014-06-25
Nowadays food wrapping assures attractive presentation and simplifies self-service shopping. Polyvinylchloride (PVC)- and polyethylene (PE)-based cling-films are widely used worldwide for wrapping cheeses. For this purpose, films used in retail possess suitable technical properties such as clinginess and unrolling capacity, that are achieved by using specific plasticizers during their manufacturing process. In the present study, the main VOCs of three cling-films (either PVC-based or PE-based) for retail use were characterized by means of Solid-Phase Micro-Extraction and GC/MS. In addition, the effects of cling film type and contact time on the migration of VOCs from the films to four different PDO Italian cheeses during cold storage under light or dark were also investigated. Among the VOCs isolated from cling-films, PVC released 2-ethylhexanol and triacetin. These compounds can likely be considered as a "non-intentionally added substance". These same compounds were also detected in cheeses wrapped in PVC films with the highest concentration found after 20 days storage. The PE cling-film was shown to possess a simpler VOC profile, lacking some molecules peculiar to PVC films. The same conclusions can be drawn for cheeses wrapped in the PE cling-film. Other VOCs found in wrapped cheeses were likely to have been released either by direct transfer from the materials used for the manufacture of cling-films or from contamination of the films. Overall, HS-SPME is shown to be a rapid and solvent free technique to screen the VOCs profile of cling-films, and to detect VOCs migration from cling-films to cheese under real retail storage conditions.
Geary, Una; Lopez-Villalobos, Nicolas; O'Brien, Bernadette; Garrick, Dorian J; Shalloo, Laurence
2014-05-01
The impact of mastitis on milk value per litre independent of the effect of mastitis on milk volume, was quantified for Ireland using a meta-analysis and a processing sector model. Changes in raw milk composition, cheese processing and composition associated with increased bulk milk somatic cell count (BMSCC) were incorporated into the model. Processing costs and market values were representative of current industry values. It was assumed that as BMSCC increased (i) milk fat and milk protein increased and milk lactose decreased, (ii) fat and protein recoveries decreased, (iii) cheese protein decreased and cheese moisture increased. Five BMSCC categories were examined from ⩽100 000 to >400 000 cells/ml. The analysis showed that as BMSCC increased the production quantities reduced. An increase in BMSCC from 100 000 to >400 000 cells/ml saw a reduction in net revenue of 3·2% per annum (€51·3 million) which corresponded to a reduction in the value of raw milk of €0·0096 cents/l.
Fractionation of sheep cheese whey by a scalable method to sequentially isolate bioactive proteins.
Pilbrow, Jodi; Bekhit, Alaa El-Din A; Carne, Alan
2016-07-15
This study reports a procedure for the simultaneous purification of glyco(caseino)macropeptide, immunoglobulin, lactoperoxidase, lactoferrin, α-lactalbumin and β-lactoglobulin from sheep cheese sweet whey, an under-utilized by-product of cheese manufacture generated by an emerging sheep dairy industry in New Zealand. These proteins have recognized value in the nutrition, biomedical and health-promoting supplements industries. A sequential fractionation procedure using economical anion and cation exchange chromatography on HiTrap resins was evaluated. The whey protein fractionation is performed under mild conditions, requires only the adjustment of pH between ion exchange chromatography steps, does not require buffer exchange and uses minimal amounts of chemicals. The purity of the whey protein fractions generated were analyzed by reversed phase-high performance liquid chromatography and the identity of the proteins was confirmed by mass spectrometry. This scalable procedure demonstrates that several proteins of recognized value can be fractionated in reasonable yield and purity from sheep cheese whey in one streamlined process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sequencing of the Cheese Microbiome and Its Relevance to Industry.
Yeluri Jonnala, Bhagya R; McSweeney, Paul L H; Sheehan, Jeremiah J; Cotter, Paul D
2018-01-01
The microbiota of cheese plays a key role in determining its organoleptic and other physico-chemical properties. It is essential to understand the various contributions, positive or negative, of these microbial components in order to promote the growth of desirable taxa and, thus, characteristics. The recent application of high throughput DNA sequencing (HTS) facilitates an even more accurate identification of these microbes, and their functional properties, and has the potential to reveal those microbes, and associated pathways, responsible for favorable or unfavorable characteristics. This technology also facilitates a detailed analysis of the composition and functional potential of the microbiota of milk, curd, whey, mixed starters, processing environments, and how these contribute to the final cheese microbiota, and associated characteristics. Ultimately, this information can be harnessed by producers to optimize the quality, safety, and commercial value of their products. In this review we highlight a number of key studies in which HTS was employed to study the cheese microbiota, and pay particular attention to those of greatest relevance to industry.
21 CFR 133.193 - Spiced, flavored standardized cheeses.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Spiced, flavored standardized cheeses. 133.193... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.193 Spiced, flavored standardized cheeses. (a) Except as...
Ability of 3 tanniferous forage legumes to modify quality of milk and Gruyère-type cheese.
Girard, M; Dohme-Meier, F; Wechsler, D; Goy, D; Kreuzer, M; Bee, G
2016-01-01
Condensed tannins (CT) may affect ruminal biohydrogenation of dietary polyunsaturated fatty acids. A feeding experiment was conducted with 24 Holstein cows to evaluate whether diets containing CT from different forage legumes can increase polyunsaturated fatty acids, especially n-3 fatty acid content in milk and cheese, without affecting negatively their physicochemical and sensorial properties. Cows were assigned to 4 treatment groups (n=6) for 52 d, divided into 2 periods: a control period (CoP) and an experimental period (ExP). During the CoP, cows received a basal diet composed of hay, corn silage, ExtruLin (Trinova Handel & Marketing AG, Wangen, Switzerland), concentrate, and alfalfa (AF) in a ratio of 45:25:5:7:18. In the ExP, in 3 of the 4 groups AF was replaced by either sainfoin (SF; 19% CT in dry matter) or 1 of 2 cultivars of birdsfoot trefoil [Polom (BP), 3% CT; Bull (BB), 5% CT]. At the end of each period, milk was collected on 3 consecutive days and analyzed for milk gross composition and fatty acid profile and was processed to Gruyère-type cheese. A trained panel assessed the sensory quality of raw milk and cheese using discriminative and descriptive tests. This experimental design consisting of AF in both the CoP and ExP allowed us to quantify effects due to lactation stage and experimental diets. In both the CoP and ExP, dry matter intake and milk yield did not differ among treatment groups. From the CoP to the ExP, milk urea content was reduced by 23% with SF, remained unchanged with BP, and tended to increase with AF and BB. The odor of the raw BB milk was judged to be different from AF milk. With SF, switching from the CoP to the ExP resulted in a 17% increase of the 18:3n-3 proportion in milk and cheese lipids. In BP cheese, the increase was 3%, whereas it tended to decrease in BB cheese. Additionally, the 20:5n-3 and 22:5n-3 proportions tended to increase in SF cheese from the CoP to the ExP. Compared with the AF cheeses, cheeses from cows fed CT-containing legumes were judged harder and tended to be less adhesive to the palate. In addition, SF and BP cheeses had less rind. In conclusion, feeding SF compared with BB and BP increased the content of 18:3n-3 in the milk and the cheese without a negative effect on flavor of the cheese. Despite a similar CT content, the 2 birdsfoot trefoil cultivars had opposite effects on milk urea and 18:3n-3 deposition, suggesting that, besides the content, the chemical structure may have had an important effect on the CT efficacy. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
21 CFR 133.196 - Swiss cheese for manufacturing.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Swiss cheese for manufacturing. 133.196 Section... Standardized Cheese and Related Products § 133.196 Swiss cheese for manufacturing. Swiss cheese for manufacturing conforms to the definition and standard of identity prescribed for swiss cheese by § 133.195...
21 CFR 133.196 - Swiss cheese for manufacturing.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Swiss cheese for manufacturing. 133.196 Section... Standardized Cheese and Related Products § 133.196 Swiss cheese for manufacturing. Swiss cheese for manufacturing conforms to the definition and standard of identity prescribed for swiss cheese by § 133.195...
21 CFR 133.196 - Swiss cheese for manufacturing.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Swiss cheese for manufacturing. 133.196 Section... Standardized Cheese and Related Products § 133.196 Swiss cheese for manufacturing. Swiss cheese for manufacturing conforms to the definition and standard of identity prescribed for swiss cheese by § 133.195...
21 CFR 133.157 - Part-skim mozzarella and scamorza cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Part-skim mozzarella and scamorza cheese. 133.157... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.157 Part-skim mozzarella and scamorza cheese. Part-skim...
21 CFR 133.181 - Provolone cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Provolone cheese. 133.181 Section 133.181 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.181 Provolone cheese. (a) Description. (1) Provolone, a pasta filata or stretched curd-type...
21 CFR 133.181 - Provolone cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Provolone cheese. 133.181 Section 133.181 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.181 Provolone cheese. (a) Description. (1) Provolone, a pasta filata or stretched curd-type...
21 CFR 133.176 - Pasteurized cheese spread with fruits, vegetables, or meats.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized cheese spread with fruits, vegetables... AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.176 Pasteurized cheese spread with...
21 CFR 133.168 - Pasteurized blended cheese with fruits, vegetables, or meats.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized blended cheese with fruits, vegetables... AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.168 Pasteurized blended cheese with...
21 CFR 133.144 - Granular and stirred curd cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Granular and stirred curd cheese. 133.144 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.144 Granular and stirred curd cheese. (a) Description. (1...
21 CFR 133.161 - Muenster and munster cheese for manufacturing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Muenster and munster cheese for manufacturing. 133... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.161 Muenster and munster cheese for manufacturing...
21 CFR 133.156 - Low-moisture mozzarella and scamorza cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Low-moisture mozzarella and scamorza cheese. 133... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.156 Low-moisture mozzarella and scamorza cheese. (a...
21 CFR 133.157 - Part-skim mozzarella and scamorza cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Part-skim mozzarella and scamorza cheese. 133.157... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.157 Part-skim mozzarella and scamorza cheese. Part-skim...
21 CFR 133.161 - Muenster and munster cheese for manufacturing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Muenster and munster cheese for manufacturing. 133... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.161 Muenster and munster cheese for manufacturing...
21 CFR 133.168 - Pasteurized blended cheese with fruits, vegetables, or meats.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized blended cheese with fruits, vegetables... AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.168 Pasteurized blended cheese with...
21 CFR 133.178 - Pasteurized neufchatel cheese spread with other foods.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized neufchatel cheese spread with other... HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.178 Pasteurized neufchatel cheese spread...
21 CFR 133.178 - Pasteurized neufchatel cheese spread with other foods.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized neufchatel cheese spread with other... HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.178 Pasteurized neufchatel cheese spread...
21 CFR 133.176 - Pasteurized cheese spread with fruits, vegetables, or meats.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized cheese spread with fruits, vegetables... AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.176 Pasteurized cheese spread with...
21 CFR 133.144 - Granular and stirred curd cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Granular and stirred curd cheese. 133.144 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.144 Granular and stirred curd cheese. (a) Description. (1...
21 CFR 133.109 - Brick cheese for manufacturing.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Brick cheese for manufacturing. 133.109 Section... Standardized Cheese and Related Products § 133.109 Brick cheese for manufacturing. Brick cheese for manufacturing conforms to the definition and standard of identity for brick cheese prescribed by § 133.108...
21 CFR 133.109 - Brick cheese for manufacturing.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Brick cheese for manufacturing. 133.109 Section... Standardized Cheese and Related Products § 133.109 Brick cheese for manufacturing. Brick cheese for manufacturing conforms to the definition and standard of identity for brick cheese prescribed by § 133.108...
21 CFR 133.109 - Brick cheese for manufacturing.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Brick cheese for manufacturing. 133.109 Section... Standardized Cheese and Related Products § 133.109 Brick cheese for manufacturing. Brick cheese for manufacturing conforms to the definition and standard of identity for brick cheese prescribed by § 133.108...
Cichosz, Grażyna; Aljewicz, Marek; Nalepa, Beata
2014-06-01
The objective of this study was to determine the viability of the probiotic Lactobacillus rhamnosus HN001 in Swiss-type and Dutch-type cheese and cheese-like products (milk fat is substituted by stearin fraction of palm fat) during manufacture, ripening, and storage. The use of the probiotic L. rhamnosus HN001 in Dutch-type cheese and cheese-like products significantly (P = 0.1) changed their chemical composition (protein and fat content) and an insignificant increase (approximately 1.6% in cheese-like products and approximately 0.3% in cheese) in yield. L. rhamnosus HN001 did not affect the rate of changes in the pH of ripened cheese and cheese-like products. A minor increase in probiotic counts was observed in initial stages of production and were partially removed with whey. Ripened cheese and cheese-like products were characterized by high survival rates of probiotic bacteria which exceeded 8 log CFU/g after ripening. An insignificant reduction in the number of viable probiotic cells was noted during storage of Swiss-type and Dutch-type cheese, whereas a significant increase in probiotic cell counts was observed in cheese-like products during storage. © 2014 Institute of Food Technologists®
Galactose Is the Limiting Factor for the Browning or Discoloration of Cheese during Storage.
Igoshi, Asuka; Sato, Yui; Kameyama, Kumi; Murata, Masatsune
2017-01-01
The browning or discoloration of cheese is often observed during long-time ripening or aging. In the present study, we identified galactose as a limiting factor for the browning, and clarified the involvement of the Maillard reaction for the discoloration. A precursor of browning of Cheddar cheese was isolated by procedures of solvent extraction and chromatography. D-Galactose and D-lactose were identified as a precursor of browning of Cheddar cheese A and B, respectively. Cheddar cheese (A, B, and C), sugar-added cheese, and nine kinds of retail cheese were stored at 4 to 70ºC for 0 to 10 d, before the L*-, a*-, and b*-values and sugar contents of each sample were measured. Cheese to which galactose was added turned brown more intensively during storage than the non-added control and the other sugar-added cheese. The more galactose was added, the more intensive the browning of the cheese appeared. The decrease in galactose correlated with the ΔL*-, Δa*-, Δb*-, and ΔE-values indicating the browning or discoloration of cheese samples. The decrease in sugars of nine kinds of retail cheese during storage also correlated with the ΔL*-, Δa*-, and ΔE-values of these cheese samples. These results clearly indicate that sugars, especially galactose, in cheese are an important factor for the browning of cheese during storage. In general, a high amount of amino acids, peptides, and proteins exists in ripe or mature cheese. Therefore, sugars, especially galactose, were considered to be the limiting factor for the Maillard reaction causing the browning of ripe or mature cheese during storage.
Bittante, G; Cipolat-Gotet, C; Cecchinato, A
2013-01-01
Cheese yield (CY) is an important technological trait in the dairy industry, and the objective of this study was to estimate the genetic parameters of cheese yield in a dairy cattle population using an individual model-cheese production procedure. A total of 1,167 Brown Swiss cows belonging to 85 herds were sampled once (a maximum of 15 cows were sampled per herd on a single test day, 1 or 2 herds per week). From each cow, 1,500 mL of milk was processed according to the following steps: milk sampling and heating, culture addition, rennet addition, gelation-time recording, curd cutting, whey draining and sampling, wheel formation, pressing, salting in brine, weighing, and cheese sampling. The compositions of individual milk, whey, and curd samples were determined. Three measures of percentage cheese yield (%CY) were calculated: %CY(CURD), %CY(SOLIDS), and %CY(WATER), which represented the ratios between the weight of fresh curd, the total solids of the curd, and the water content of the curd, respectively, and the weight of the milk processed. In addition, 3 measures of daily cheese yield (dCY, kg/d) were defined, considering the daily milk yield. Three measures of nutrient recovery (REC) were computed: REC(FAT), REC(PROTEIN), and REC(SOLIDS), which represented the ratio between the weights of the fat, protein, and total solids in the curd, respectively, and the corresponding nutrient in the milk. Energy recovery, REC(ENERGY), represented the energy content of the cheese versus that in the milk. For statistical analysis, a Bayesian animal model was implemented via Gibbs sampling. The effects of parity (1 to ≥4), days in milk (6 classes), and laboratory vat (15 vats) were assigned flat priors; those of herd-test-date, animal, and residual were given Gaussian prior distributions. Intra-herd heritability estimates of %CY(CURD), %CY(SOLIDS), and %CY(WATER) ranged from 0.224 to 0.267; these were larger than the estimates obtained for milk yield (0.182) and milk fat content (0.122), and similar to that for protein content (0.275). Daily cheese yields showed heritability estimates similar to those of daily milk yield. The trait %CY(WATER) showed a highly positive genetic correlation with %CY(SOLIDS) (0.87), whereas their phenotypic correlation was moderate (0.37), and the fat and protein contents of milk showed high genetic correlations with %CY traits. The heritability estimates of REC(PROTEIN) and REC(FAT) were larger (0.490 and 0.208, respectively) than those obtained for the protein and fat contents of milk, and the genetic relationships between REC(PROTEIN) and REC(FAT) with milk protein and fat content were low or moderate; REC(PROTEIN) and REC(FAT) were moderately correlated with the %CY traits and highly correlated with REC(SOLIDS) and REC(ENERGY). Both REC(SOLIDS) and REC(ENERGY) were heritable (0.274 and 0.232), and showed high correlations with each other (0.96) and with the %CY traits (0.83 to 0.97). Together, these findings demonstrate the existence of economically important, genetically determined variability in cheese yield that does not depend solely upon the fat and protein contents of milk, but also relies on the ability of the coagulum to retain the highest possible proportions of the available protein, fat, and water. Exploitation of this interesting genetic variation does not seem to be feasible through direct measurement of the phenotype in cows at the population level. Instead, further research is warranted to examine possible means for indirect prediction, such as through assessing the mid-infrared spectra of milk samples. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Lee, Na-Kyoung; Mok, Bo Ram; Jeewanthi, Renda Kankanamge Chaturika; Yoon, Yoh Chang; Paik, Hyun-Dong
2015-01-01
The objective of this study was to develop yogurt-cheese using cow’s milk, ultrafiltrated cow’s milk, and soy milk. The addition of soy milk and ultrafiltrated milk increased the amount of protein in the yogurt-cheese. Yogurt-cheeses were made using cheese base using 10% and 20% soy milk with raw and ultrafiltrated cow’s milk, and stored at 4℃ during 2 wk. The yield of yogurt-cheeses made with added soy milk was decreased and the cutting point was delayed compared to yogurt-cheese made without soy milk. Yogurt-cheese made using ultrafiltrated cow’s milk showed the highest yield. However, yogurt-cheese made with added soy milk had higher protein content and titratable acidity than yogurt-cheese made using raw and ultrafiltrated cow’s milk. Fat and lactose contents in the yogurt-cheese made with added soy milk were lower. Yogurt-cheeses made with added soy milk contained several soy protein bands corresponding to the sizes of α2-, β-, and κ-casein band. Yogurt-cheese made with added soy milk had similar elasticity to yogurt-cheese made without soy milk but had lower cohesiveness. There was no significant difference in the number of lactic acid bacteria in the different cheeses, as all had over 8.0 Log CFU/g. Considering these data and the fact that proteins and fats of vegetable origin with high biological value were observed as well as unsaturated fats, yogurt-cheese made with added soy milk can be considered to be a functional food. PMID:26761829
Application of inulin in cheese as prebiotic, fat replacer and texturizer: a review.
Karimi, Reza; Azizi, Mohammad Hossein; Ghasemlou, Mehran; Vaziri, Moharam
2015-03-30
Inulin is a food ingredient that belongs to a class of carbohydrates known as fructans. Nutritionally it has functional properties and health-promoting effects that include reduced calorie value, dietary fiber and prebiotic effects. Inulin is increasingly used in industrially processed dairy and non-dairy products because it is a bulking agent for use in fat replacement, textural modification and organoleptic improvement. Addition of inulin to different kinds of cheese can be beneficial in the manufacture of a reduced- or low-fat, texturized, symbiotic product. This paper gives an overview of some aspects of the microstructural, textural, rheological, prebiotic and sensorial effects of inulin incorporated in cheese as fat replacer, prebiotic and texture modifier. Copyright © 2014 Elsevier Ltd. All rights reserved.
21 CFR 184.1157 - Benzoyl peroxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
....181), Romano cheese (§ 133.183), and Swiss and emmentaler cheese (§ 133.195) in part 133 of this...; milk used for production of Asiago fresh and Asiago soft cheese (§ 133.102), Asiago medium cheese (§ 133.103), Asiago old cheese (§ 133.104), Blue cheese (§ 133.106), Caciocavallo siciliano chesse (§ 133...
21 CFR 184.1157 - Benzoyl peroxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
....181), Romano cheese (§ 133.183), and Swiss and emmentaler cheese (§ 133.195) in part 133 of this...; milk used for production of Asiago fresh and Asiago soft cheese (§ 133.102), Asiago medium cheese (§ 133.103), Asiago old cheese (§ 133.104), Blue cheese (§ 133.106), Caciocavallo siciliano chesse (§ 133...
21 CFR 184.1157 - Benzoyl peroxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
....181), Romano cheese (§ 133.183), and Swiss and emmentaler cheese (§ 133.195) in part 133 of this...; milk used for production of Asiago fresh and Asiago soft cheese (§ 133.102), Asiago medium cheese (§ 133.103), Asiago old cheese (§ 133.104), Blue cheese (§ 133.106), Caciocavallo siciliano chesse (§ 133...
21 CFR 184.1157 - Benzoyl peroxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
....181), Romano cheese (§ 133.183), and Swiss and emmentaler cheese (§ 133.195) in part 133 of this...; milk used for production of Asiago fresh and Asiago soft cheese (§ 133.102), Asiago medium cheese (§ 133.103), Asiago old cheese (§ 133.104), Blue cheese (§ 133.106), Caciocavallo siciliano chesse (§ 133...
21 CFR 184.1157 - Benzoyl peroxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
....181), Romano cheese (§ 133.183), and Swiss and emmentaler cheese (§ 133.195) in part 133 of this...; milk used for production of Asiago fresh and Asiago soft cheese (§ 133.102), Asiago medium cheese (§ 133.103), Asiago old cheese (§ 133.104), Blue cheese (§ 133.106), Caciocavallo siciliano chesse (§ 133...
21 CFR 133.125 - Cold-pack cheese food with fruits, vegetables, or meats.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cold-pack cheese food with fruits, vegetables, or... HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.125 Cold-pack cheese food with fruits...
21 CFR 133.136 - Washed curd and soaked curd cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Washed curd and soaked curd cheese. 133.136... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.136 Washed curd and soaked curd cheese. (a) Description. (1...
21 CFR 133.136 - Washed curd and soaked curd cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Washed curd and soaked curd cheese. 133.136... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.136 Washed curd and soaked curd cheese. (a) Description. (1...