Science.gov

Sample records for chemical bath deposited

  1. Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition.

    PubMed

    Hodes, Gary

    2007-06-14

    Chemical bath deposition (CBD) has been used to deposit films of metal sulfides, selenides and oxides, together with some miscellaneous compounds, beginning nearly 140 years ago. While it is a well-known technique in a few specific areas (notably photoconductive lead salt detectors, photoelectrodes and more recently, thin film solar cells), it is by and large an under-appreciated technique. The more recent interest in all things 'nano' has provided a boost for CBD: since it is a low temperature, solution (almost always aqueous) technique, crystal size is often very small. This is evidenced by the existence of size quantization commonly found in CBD semiconductor films. The intention of this review is to provide readers, many of whom may not even be aware of the CBD technique, with an overview of how the technique has been used to fabricate nanocrystalline semiconductor (this terminology also includes oxides often classified as ceramics) films and some properties of these films. The review begins, after a short introduction, with a general description of the CBD method, designed to give the reader a basic knowledge of the technique. The rest of the review then focuses on nanocrystalline (or, in the few cases of amorphous deposits, nanoparticle) films. The various factors which determine crystal size are first discussed. This is followed by some of the many examples of size quantization observed in the films. Since CBD films are usually porous, surface effects can be very important, and various surface-dependent properties (light emission and surface states) as well as surface modification, are treated: (although some properties, like emission, can be strongly dependent on both surface and 'bulk'). Because of the fact that many CBD films have been made specifically for use as photoelectrodes in photoelectrochemical cells, there is next a chapter on this topic with a few examples of such photoelectrodes. Film structure and morphology follows with examples of

  2. SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques

    NASA Astrophysics Data System (ADS)

    Chaki, Sunil H.; Chaudhary, Mahesh D.; Deshpande, M. P.

    2016-05-01

    The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two temperatures: ambient and 70 °C. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.

  3. Effect of precursor concentration and bath temperature on the growth of chemical bath deposited tin sulphide thin films

    NASA Astrophysics Data System (ADS)

    Jayasree, Y.; Chalapathi, U.; Uday Bhaskar, P.; Sundara Raja, V.

    2012-01-01

    SnS is a promising candidate for a low-cost, non-toxic solar cell absorber layer. Tin sulphide thin films have been deposited by chemical bath deposition technique from a solution containing stannous chloride, thioacetamide, ammonia and triethanolamine (TEA). The effects of concentration of tin salt, triethanolamine and bath temperature on the growth of tin sulphide films have been investigated in order to optimize the growth conditions to obtain tin monosulphide (SnS) films. SnS films obtained under optimized conditions were found to be polycrystalline in nature with orthorhombic structure. The optical band gap of these films was found to be 1.5 eV.

  4. Comprehensive optical studies on SnS layers synthesized by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Gedi, Sreedevi; Minnam Reddy, Vasudeva Reddy; Park, Chinho; Chan-Wook, Jeon; Ramakrishna Reddy, K. T.

    2015-04-01

    A simple non-vacuum and cost effective wet chemical technique, chemical bath deposition was used to prepare tin sulphide (SnS) layers on glass substrates. The layers were formed by varying bath temperature in the range, 40-80 °C, keeping other deposition parameters as constant. An exhaustive investigation on their optical properties with bath temperature was made using the transmittance and reflectance measurements. The absorption coefficient was evaluated from the optical transmittance data utilizing Lambert's principle and is >104 cm-1 for all the as-prepared layers. The energy band gap of the layers was determined from the differential reflectance spectra that varied from 1.41 eV to 1.30 eV. Consequently, refractive index and extinction coefficient were obtained from Pankov relations and dispersion constants were calculated using Wemple-Didomenico method. In addition, other optical parameters such as the optical conductivity, dielectric constants, dissipation factor, high frequency dielectric constant and relaxation time were also calculated. Finally electrical parameters such as resistivity, carrier mobility and carrier density of as-prepared layers were estimated using optical data. A detailed analysis of the dependence of all above mentioned parameters on bath temperature is reported and discussed for a clean understanding of electronic characteristics of SnS layers.

  5. Nanocrystalline CuInSSe thin films by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Shrotriya, Vipin; Rajaram, P.

    2016-05-01

    Crystalline CuInSSe thin films have been deposited on glass substrate by chemical bath deposition technique. The CuCl2, InCl3, thiourea and SeO2 were used as source materials for the Cu2+, In3+, S2- and Se2- ions and the Cu/In ratio was kept at 1.0. EDC was used as a complexing agent. The XRD, Scanning Electron Microscope (SEM), Energy Dispersive Analysis of X-Ray (EDAX) and Optical transmission studies were used for structural analysis, surface morphology, elemental analysis and optical band gap, of the grown thin films respectively. The deposition parameters such as pH, deposition temperature and deposition time were optimized.

  6. Fabrication of ZnO nanorod using spray-pyrolysis and chemical bath deposition method

    SciTech Connect

    Ramadhani, Muhammad F. Pasaribu, Maruli A. H. Yuliarto, Brian Nugraha

    2014-02-24

    ZnO thin films with nanorod structure were deposited using Ultrasonic Spray Pyrolysis method for seed growth, and Chemical Bath Deposition (CBD) for nanorod growth. High purity Zn-hydrate and Urea are used to control Ph were dissolved in ethanol and aqua bidest in Ultrasonic Spray Pyrolysis process. Glass substrate was placed above the heater plate of reaction chamber, and subsequently sprayed with the range duration of 5, 10 and 20 minutes at the temperatures of 3500 C. As for the Chemical Bath Deposition, the glass substrate with ZnO seed on the surface was immerse to Zn-hydrate, HMTA (Hexa Methylene Tetra Amine) and deionized water solution for duration of 3, 5 and 7 hour and temperatures of 600 C, washed in distilled water, dried, and annealed at 3500 C for an hour. The characterization of samples was carried out to reveal the surface morphology using Scanning Electron Microscopy (SEM). From the data, the combination of 5 minutes of Ultrasonic Spray Pyrolysis process and 3 hour of CBD has showed the best structure of nanorod. Meanwhile the longer Spraying process and CBD yield the bigger nanorod structure that have been made, and it makes the films more dense which make the nanorod collide each other and as a result produce unsymetric nanorod structure.

  7. Annealing effect on structural and optical properties of chemical bath deposited MnS thin film

    NASA Astrophysics Data System (ADS)

    Ulutas, Cemal; Gumus, Cebrail

    2016-03-01

    MnS thin film was prepared by the chemical bath deposition (CBD) method on commercial microscope glass substrate deposited at 30 °C. The as-deposited film was given thermal annealing treatment in air atmosphere at various temperatures (150, 300 and 450 °C) for 1 h. The MnS thin film was characterized by using X-ray diffraction (XRD), UV-vis spectrophotometer and Hall effect measurement system. The effect of annealing temperature on the structural, electrical and optical properties such as optical constants of refractive index (n) and energy band gap (Eg) of the film was determined. XRD measurements reveal that the film is crystallized in the wurtzite phase and changed to tetragonal Mn3O4 phase after being annealed at 300 °C. The energy band gap of film decreased from 3.69 eV to 3.21 eV based on the annealing temperature.

  8. Chemical Bath Deposition of Aluminum Oxide Buffer on Curved Surfaces for Growing Aligned Carbon Nanotube Arrays.

    PubMed

    Wang, Haitao; Na, Chongzheng

    2015-07-01

    Direct growth of vertically aligned carbon nanotube (CNT) arrays on substrates requires the deposition of an aluminum oxide buffer (AOB) layer to prevent the diffusion and coalescence of catalyst nanoparticles. Although AOB layers can be readily created on flat substrates using a variety of physical and chemical methods, the preparation of AOB layers on substrates with highly curved surfaces remains challenging. Here, we report a new solution-based method for preparing uniform layers of AOB on highly curved surfaces by the chemical bath deposition of basic aluminum sulfate and annealing. We show that the thickness of AOB layer can be increased by extending the immersion time of a substrate in the chemical bath, following the classical Johnson-Mehl-Avrami-Kolmogorov crystallization kinetics. The increase of AOB thickness in turn leads to the increase of CNT length and the reduction of CNT curviness. Using this method, we have successfully synthesized dense aligned CNT arrays of micrometers in length on substrates with highly curved surfaces including glass fibers, stainless steel mesh, and porous ceramic foam. PMID:26053766

  9. Room temperature synthesis and characterization of CdO nanowires by chemical bath deposition (CBD) method

    NASA Astrophysics Data System (ADS)

    Dhawale, D. S.; More, A. M.; Latthe, S. S.; Rajpure, K. Y.; Lokhande, C. D.

    2008-03-01

    A chemical synthesis process for the fabrication of CdO nanowires is described. In the present work, transparent and conductive CdO films were synthesized on the glass substrate using chemical bath deposition (CBD) at room temperature. These films were annealed in air at 623 K and characterized for the structural, morphological, optical and electrical properties were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), optical and electrical resistivity. The XRD analysis showed that the as-deposited amorphous can be converted in to polycrystalline after annealing. Annealed CdO nanowires are 60-65 nm in diameter and length ranges typically from 2.5 to 3 μm. The optical properties revealed the presence of direct and indirect band gaps with energies 2.42 and 2.04 eV, respectively. Electrical resistivity measurement showed semiconducting behavior and thermoemf measurement showed n-type electrical conductivity.

  10. Chemical bath deposition of Cu3BiS3 thin films

    NASA Astrophysics Data System (ADS)

    Deshmukh S., G.; Panchal A., K.; Vipul, Kheraj

    2016-05-01

    First time, copper bismuth sulfide (Cu3BiS3) thin films were synthesized on the glass substrate using simple, low-cost chemical bath deposition (CBD) technique. The synthesized parameters such as temperature of bath, pH and concentration of precursors were optimized for the deposition of uniform, well adherent Cu3BiS3 thin films. The optical, surface morphology and structural properties of the Cu3BiS3 thin films were studied using UV-VIS-NIR spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The as- synthesized Cu3BiS3 film exhibits a direct band gap 1.56 to 1.58 eV having absorption coefficient of the order of 105 cm-1. The XRD declares the amorphous nature of the films. SEM images shows films were composed of close-packed fine spherical nanoparticles of 70-80 nm in diameter. The chemical composition of the film was almost stoichiometric. The optical study indicates that the Cu3BiS3 films can be applied as an absorber layer for thin film solar cells.

  11. Bismuth oxide thin films prepared by chemical bath deposition (CBD) method: annealing effect

    NASA Astrophysics Data System (ADS)

    Gujar, T. P.; Shinde, V. R.; Lokhande, C. D.; Mane, R. S.; Han, Sung-Hwan

    2005-08-01

    Bismuth oxide thin films have been deposited by room temperature chemical bath deposition (CBD) method and annealed at 623 K in air. They were characterized for structural, surface morphological, optical and electrical properties. From the X-ray diffraction patterns, it was found that after annealing a non-stoichiometric phase, Bi 2O 2.33, was removed and phase pure monoclinic Bi 2O 3 was obtained. Surface morphology of Bi 2O 3 film at lower magnification SEM showed rod-like structure, however, higher magnification showed a rectangular slice-like structure perpendicular to substrate, giving rise to microrods on the surface. The optical studies showed the decrease in band gap by 0.3 eV after annealing. The electrical resistivity variation showed semiconductor behavior and from thermoemf measurements, the electrical conductivity was found to be of n-type.

  12. Chemical bath deposition of cadmium sulfide on graphene-coated flexible glass substrate

    SciTech Connect

    Seo, Won-Oh; Jung, Younghun; Kim, Jihyun; Kim, Jiwan; Kim, Donghwan

    2014-03-31

    We demonstrate a flexible structure of cadmium sulfide (CdS) on graphene-coated glass substrate, where CdS was deposited by the chemical bath deposition method on defective tri-layer graphene. The defects in graphene, confirmed by micro-Raman spectroscopy, were created by a ultra-violet treatment with varying exposure time from 10 to 60 min. The number of defect sites in the graphene as a seed layer was related to the quality of the CdS thin films determined from the results from X-ray diffraction, optical transmittance, scanning electron microscopy, and room temperature micro-photoluminescence. Our film-on-substrate structure of CdS-graphene-on-glass was maintained up to a tensile strain of 0.3%, where graphene with a high failure strain was employed as a transparent conductive layer.

  13. Combinatorial Chemical Bath Deposition of CdS Contacts for Chalcogenide Photovoltaics.

    PubMed

    Mokurala, Krishnaiah; Baranowski, Lauryn L; de Souza Lucas, Francisco W; Siol, Sebastian; van Hest, Maikel F A M; Mallick, Sudhanshu; Bhargava, Parag; Zakutayev, Andriy

    2016-09-12

    Contact layers play an important role in thin film solar cells, but new material development and optimization of its thickness is usually a long and tedious process. A high-throughput experimental approach has been used to accelerate the rate of research in photovoltaic (PV) light absorbers and transparent conductive electrodes, however the combinatorial research on contact layers is less common. Here, we report on the chemical bath deposition (CBD) of CdS thin films by combinatorial dip coating technique and apply these contact layers to Cu(In,Ga)Se2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) light absorbers in PV devices. Combinatorial thickness steps of CdS thin films were achieved by removal of the substrate from the chemical bath, at regular intervals of time, and in equal distance increments. The trends in the photoconversion efficiency and in the spectral response of the PV devices as a function of thickness of CdS contacts were explained with the help of optical and morphological characterization of the CdS thin films. The maximum PV efficiency achieved for the combinatorial dip-coating CBD was similar to that for the PV devices processed using conventional CBD. The results of this study lead to the conclusion that combinatorial dip-coating can be used to accelerate the optimization of PV device performance of CdS and other candidate contact layers for a wide range of emerging absorbers. PMID:27479495

  14. Combinatorial Chemical Bath Deposition of CdS Contacts for Chalcogenide Photovoltaics.

    PubMed

    Mokurala, Krishnaiah; Baranowski, Lauryn L; de Souza Lucas, Francisco W; Siol, Sebastian; van Hest, Maikel F A M; Mallick, Sudhanshu; Bhargava, Parag; Zakutayev, Andriy

    2016-09-12

    Contact layers play an important role in thin film solar cells, but new material development and optimization of its thickness is usually a long and tedious process. A high-throughput experimental approach has been used to accelerate the rate of research in photovoltaic (PV) light absorbers and transparent conductive electrodes, however the combinatorial research on contact layers is less common. Here, we report on the chemical bath deposition (CBD) of CdS thin films by combinatorial dip coating technique and apply these contact layers to Cu(In,Ga)Se2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) light absorbers in PV devices. Combinatorial thickness steps of CdS thin films were achieved by removal of the substrate from the chemical bath, at regular intervals of time, and in equal distance increments. The trends in the photoconversion efficiency and in the spectral response of the PV devices as a function of thickness of CdS contacts were explained with the help of optical and morphological characterization of the CdS thin films. The maximum PV efficiency achieved for the combinatorial dip-coating CBD was similar to that for the PV devices processed using conventional CBD. The results of this study lead to the conclusion that combinatorial dip-coating can be used to accelerate the optimization of PV device performance of CdS and other candidate contact layers for a wide range of emerging absorbers.

  15. Comprehensive study of ZnO nanostructures grown using chemical bath deposition: from growth to application

    NASA Astrophysics Data System (ADS)

    Urgessa, Z. N.; Murape, D. M.; Oluwafemi, O. S.; Venter, A.; Wagner, M.; Botha, J. R.

    2011-12-01

    ZnO nanostructures were grown using a simple and environmentally friendly chemical bath deposition technique on pre-treated p-type silicon substrate at temperatures below 100°C. The effects of growth parameters like seed layer density, growth time, growth temperature, precursor concentration and annealing temperature on the structural, morphological, electrical and optical properties of ZnO nanorods were systematically studied using field emission scanning electron microscopy, X-ray diffraction, photoluminescence spectroscopy and current-voltage measurements. A variety of architectures is demonstrated, ranging from single crystalline nanoparticles and c-axis orientated nanorods to highly compact crystalline thin films. Post-growth annealing at different temperatures profoundly affects the optical properties of the nanorods by, for example, reducing hydrogen- and intrinsic defect-related emission. The rectifying properties of the ZnO/Si heterojunction are discussed.

  16. Superhydrophobic poly(vinylidene fluoride) film fabricated by alkali treatment enhancing chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Zheng, Zhenrong; Gu, Zhenya; Huo, Ruiting; Luo, Zhishan

    2010-01-01

    Based on the lotus effect principle, the superhydrophobic poly(vinylidene fluoride) (PVDF) film was successfully prepared by the method of alkali treatment enhancing chemical bath deposition. The surface of PVDF film prepared in this work was constructed by many smooth and regular microreliefs. Oxygen-containing functional groups were introduced in PVDF film by treatment with aqueous NaOH solution. The nano-scale peaks on the top of the microreliefs were implemented by the reaction between dimethyldichlorosilane/methyltrichlorosilane solution and the oxygen-containing functional groups of PVDF film. The micro- and nano-scale structures, similar to the lotus leaf, was clearly observed on PVDF film surface by scanning electronic microscopy (SEM) and atomic force microscope (AFM). The water contact angle and sliding angle on the fabricated lotus-leaf-like PVDF film surface were 157° and 1°, respectively, exhibiting superhydrophobic property and self-cleaning property.

  17. Surface characterization of ZnO nanorods grown by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Mbulanga, C. M.; Urgessa, Z. N.; Tankio Djiokap, S. R.; Botha, J. R.; Duvenhage, M. M.; Swart, H. C.

    2016-01-01

    The surface composition of as-grown and annealed ZnO nanorods (ZNs) grown by a two-step chemical bath deposition method is investigated by the following surface-sensitive techniques: Time-of-Flight Secondary Ion Mass Spectroscopy (TOF-SIMS), X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The presence of H on the surface and throughout the entire thickness of ZNs is confirmed by TOF-SIMS. Based on TOF-SIMS results, the O2 XPS peak mostly observable at ~531.5 is assigned to O bound to H. Furthermore, it is found that the near surface region of as-grown ZNs is Zn-rich, and annealing at high temperature (~850 °C) removes H-related defects from the surface of ZNs and affect the balance of zinc and oxygen concentrations.

  18. Study of Chemical Bath Deposition of ZnS Thin Films with Substrate Vibration

    NASA Astrophysics Data System (ADS)

    Bian, Z. Q.; Xu, X. B.; Chu, J. B.; Sun, Z.; Chen, Y. W.; Huang, S. M.

    An improved chemical bath deposition (CBD) technique has been provided to prepare zinc sulfide (ZnS) thin films on glass substrates deposited at 80-82°C using a mixed aqueous solution of zinc sulfate, ammonium sulfate, thiourea, hydrazine hydrate, and ammonia at the alkaline conditions. Both the traditional magnetic agitation and the substrates vibration by hand frequently were done simultaneously during the deposition. The substrates vibration reduced the formation and residence of gas bubbles on the glass substrates during growth and resulted in growth of clean ZnS thin films with high quality. Ammonia and hydrazine hydrate were used as complexing agents. It is found that hydrazine hydrate played an important role in growth of ZnS films. The structure and microstructure of ZnS films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-vis spectroscopic methods. The XRD showed a hexagonal structure. The formed ZnS films exhibited good optical properties with high transmittance in the visible region and the band gap value was estimated to be 3.5-3.70 eV.

  19. Synthesis of CdS nanostructures using template-assisted ammonia-free chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Preda, N.; Enculescu, M.; Gherendi, F.; Matei, E.; Toimil-Molares, M. E.; Enculescu, I.

    2012-09-01

    CdS micro- and nano-structures (micro/nanotubes and nanostructured films) were obtained by ammonia-free chemical bath deposition using polymer templates (ion track-etched polycarbonate membranes and poly(styrene-hydroxyethyl methacrylate) nanosphere arrays). The semiconductor structures were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), optical absorption, photoluminescence and electrical measurements. The diameters of CdS tubes are between 300 nm and few microns and the lengths are up to tens of micrometers. The SEM images prove that the CdS films are nanostructured due to the deposition on the polymer nanosphere arrays. For both CdS structures (tubes and films) the XRD patterns show a hexagonal phase. The optical studies reveal a band gap value of about 2.5-2.6 eV and a red luminescence at ˜1.77 eV. A higher increase of conductivity is observed for illuminating the CdS nanostructured film when compared to the simple semiconductor film. This is a consequence of the periodic patterning induced by the polymer nanosphere array.

  20. Effect of Reaction Temperature of CdS Buffer Layers by Chemical Bath Deposition Method.

    PubMed

    Kim, Hye Jin; Kim, Chae-Woong; Jung, Duk Young; Jeong, Chaehwan

    2016-05-01

    This study investigated CdS deposition on a Cu(In,Ga)Se2 (CIGS) film via chemical bath deposition (CBD) in order to obtain a high-quality optimized buffer layer. The thickness and reaction temperature (from 50 degrees C to 65 degrees C) were investigated, and we found that an increase in the reaction temperature during CBD, resulted in a thicker CdS layer. We obtained a thin film with a thickness of 50 nm at a reaction temperature of 60 degrees C, which also exhibited the highest photoelectric conversion efficiency for use in solar cells. Room temperature time-resolved photoluminescence (TR-PL) measurements were performed on the Cu(In,Ga)Se2 (CIGS) thin film and CdS/CIGS samples to determine the recombination process of the photo-generated minority carrier. The device performance was found to be dependent on the thickness of the CdS layer. As the thickness of the CdS increases, the fill factor and the series resistance increased to 61.66% and decreased to 8.35 Ω, respectively. The best condition was observed at a reaction temperature of 60 degrees C, and its conversion efficiency was 12.20%.

  1. Effect of Reaction Temperature of CdS Buffer Layers by Chemical Bath Deposition Method.

    PubMed

    Kim, Hye Jin; Kim, Chae-Woong; Jung, Duk Young; Jeong, Chaehwan

    2016-05-01

    This study investigated CdS deposition on a Cu(In,Ga)Se2 (CIGS) film via chemical bath deposition (CBD) in order to obtain a high-quality optimized buffer layer. The thickness and reaction temperature (from 50 degrees C to 65 degrees C) were investigated, and we found that an increase in the reaction temperature during CBD, resulted in a thicker CdS layer. We obtained a thin film with a thickness of 50 nm at a reaction temperature of 60 degrees C, which also exhibited the highest photoelectric conversion efficiency for use in solar cells. Room temperature time-resolved photoluminescence (TR-PL) measurements were performed on the Cu(In,Ga)Se2 (CIGS) thin film and CdS/CIGS samples to determine the recombination process of the photo-generated minority carrier. The device performance was found to be dependent on the thickness of the CdS layer. As the thickness of the CdS increases, the fill factor and the series resistance increased to 61.66% and decreased to 8.35 Ω, respectively. The best condition was observed at a reaction temperature of 60 degrees C, and its conversion efficiency was 12.20%. PMID:27483883

  2. Tuning the morphology of metastable MnS films by simple chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Dhandayuthapani, T.; Girish, M.; Sivakumar, R.; Sanjeeviraja, C.; Gopalakrishnan, R.

    2015-10-01

    In the present investigation, we have prepared the spherical particles, almond-like, and cauliflower-like morphological structures of metastable MnS films on glass substrate by chemical bath deposition technique at low temperature without using any complexing or chelating agent. The morphological change of MnS films with molar ratio may be due to the oriented aggregation of adjacent particles. The compositional purity of deposited film was confirmed by the EDAX study. X-ray diffraction and micro-Raman studies confirm the sulfur source concentration induced enhancement in the crystallization of films with metastable MnS phase (zinc-blende β-MnS, and wurtzite γ-MnS). The shift in PL emission peak with molar ratio may be due to the change in optical energy band gap of the MnS, which was further confirmed by the optical absorbance study. The paramagnetic behavior of the sample was confirmed by the M-H plot.

  3. Chemical bath deposition and characterization of electrochromic thin films of sodium vanadium bronzes

    SciTech Connect

    Najdoski, Metodija; Koleva, Violeta; Demiri, Sani

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We report a new chemical bath method for the deposition of vanadium bronze thin films. Black-Right-Pointing-Pointer The films are phase mixture of NaV{sub 6}O{sub 15} and Na{sub 1.1}V{sub 3}O{sub 7.9} with 10.58% lattice water. Black-Right-Pointing-Pointer The as-deposited vanadium bronze films exhibit two-step electrochromism. Black-Right-Pointing-Pointer They change their yellow-orange color to green and then from green to blue color. Black-Right-Pointing-Pointer The method allows the preparation of films on substrates with low melting point. -- Abstract: Thin yellow-orange films of sodium vanadium oxide bronzes have been prepared from a sodium-vanadium solution (1:1) at 75 Degree-Sign C and pH = 3. The composition, structure and morphology of the films have been studied by XRD, IR spectroscopy, TG and SEM-EDX analyses. It has been established that the prepared films are a phase mixture of hydrated NaV{sub 6}O{sub 15} (predominant component) and Na{sub 1.1}V{sub 3}O{sub 7.9} with total water content of 10.58%. The sodium vanadium bronze thin films exhibit two-step electrochromism followed by color change from yellow-orange to green, and then from green to blue. The cyclic voltammetry measurements on the as-deposited and annealed vanadium bronze films reveal the existence of different oxidation/reduction vanadium sites which make these films suitable for electrochromic devices. The annealing of the films at 400 Degree-Sign C changes the composition, optical and electrochemical properties.

  4. Study of the morphology of ZnS thin films deposited on different substrates via chemical bath deposition.

    PubMed

    Gómez-Gutiérrez, Claudia M; Luque, P A; Castro-Beltran, A; Vilchis-Nestor, A R; Lugo-Medina, Eder; Carrillo-Castillo, A; Quevedo-Lopez, M A; Olivas, A

    2015-01-01

    In this work, the influence of substrate on the morphology of ZnS thin films by chemical bath deposition is studied. The materials used were zinc acetate, tri-sodium citrate, thiourea, and ammonium hydroxide/ammonium chloride solution. The growth of ZnS thin films on different substrates showed a large variation on the surface, presenting a poor growth on SiO2 and HfO2 substrates. The thin films on ITO substrate presented a uniform and compact growth without pinholes. The optical properties showed a transmittance of about 85% in the visible range of 300-800 nm with band gap of 3.7 eV.

  5. Study of the morphology of ZnS thin films deposited on different substrates via chemical bath deposition.

    PubMed

    Gómez-Gutiérrez, Claudia M; Luque, P A; Castro-Beltran, A; Vilchis-Nestor, A R; Lugo-Medina, Eder; Carrillo-Castillo, A; Quevedo-Lopez, M A; Olivas, A

    2015-01-01

    In this work, the influence of substrate on the morphology of ZnS thin films by chemical bath deposition is studied. The materials used were zinc acetate, tri-sodium citrate, thiourea, and ammonium hydroxide/ammonium chloride solution. The growth of ZnS thin films on different substrates showed a large variation on the surface, presenting a poor growth on SiO2 and HfO2 substrates. The thin films on ITO substrate presented a uniform and compact growth without pinholes. The optical properties showed a transmittance of about 85% in the visible range of 300-800 nm with band gap of 3.7 eV. PMID:26011683

  6. Characteristics of Nanostructured CdO Films Prepared by Chemical Bath Deposition Technique

    NASA Astrophysics Data System (ADS)

    Asmial, Riad A.; Al-Samarai, Abdul-Majeed E.; Mohmed, Sabri J.; Ahmed, Hani H.

    2012-09-01

    Nanostructured CdO films were prepared by chemical bath deposition (CBD) technique. Cadmium nitrate salt was used as a source of cadmium ions (Cd+2). The effect of solution molarity on the structural, morphological, optical and electrical properties of nanostructured CdO films had been investigated. To obtain a good film stoichiometry, films were heated in a static air temperature of 673 K for 90 min. X-ray diffraction results showed the formation of polycrystalline cadmium oxide structure. The average grain size and root mean square of roughness values obtained from AFM investigation were 87 nm and 13 nm respectively for CdO film prepared with 0.03 M and 98 nm and 17 nm respectively for CdO film prepared with 0.1 M. The average transmittance of CdO films in the visible region was between 70-80% with a corresponding direct optical energy of 2.41-2.5 eV. The electrical resistivity of nanostructured CdO films at temperatures 300-500 K was measured.

  7. Direct assembly of ZnO nanostructures on glass substrates by chemical bath deposition through precipitation method

    NASA Astrophysics Data System (ADS)

    Saravana Kumar, R.; Sudhagar, P.; Sathyamoorthy, R.; Matheswaran, P.; Kang, Yong Soo

    2009-12-01

    In this work, spindle/flower-like zinc oxide (ZnO) nanostructured arrays have been directly grown on glass substrates using triethanolamine (TEA) as a complexing agent by chemical bath deposition (CBD). Control over the morphology of ZnO nanocrystallites was achieved by varying the concentration of the complexing agent in the bath solution. ZnO crystallites exhibited a hexagonal wurtzite structure with preferential orientation along the c-axis. The morphology of the ZnO crystallites with star or needle-like spindles was altered to flower like nanostructures by adjusting the complexing agent concentration. Compared to as-deposited films, films sintered at 300 ∘C exhibited a sharp UV emission due to a decrease in the defect density. A possible growth mechanism for obtaining ZnO nanoflower arrays without a seed layer on glass substrates has been discussed.

  8. Physical Property Characterization of Pb2+-Doped CdS Nanofilms Deposited by Chemical-Bath Deposition at Low Temperature

    NASA Astrophysics Data System (ADS)

    Díaz-Reyes, J.; Contreras-Rascón, J. I.; Galván-Arellano, M.; Arias-Cerón, J. S.; Gutiérrez-Arias, J. E. M.; Flores-Mena, J. E.; Morín-Castillo, M. M.

    2016-08-01

    Pb2 +-doped CdS nanofilms are prepared using the growth technique chemical bath deposition (CBD) under optimum conditions lead acetate at the reservoir temperature of 20 ± 2 °C. The Pb2+ molar concentration was in the range 0.0 ≤ x ≤ 0.19.67, which was determined by energy-dispersive X-ray spectroscopy (EDS). The X-ray diffraction results show that the films are of PbS-CdS composites with individual CdS and PbS planes. The X-ray diffraction (XRD) analysis and Raman scattering reveal that CdS-deposited films showed the zincblende (ZB) crystalline phase. The average grain size of the CdS films ranged from 1.21 to 6.67 nm that was determined by the Debye-Scherrer equation from ZB (111) direction, and it was confirmed by high-resolution transmission electron microscopy (HRTEM). Raman scattering shows that the lattice dynamics is characteristic of bimodal behaviour and the multipeaks adjust of the first optical longitudinal mode for the Pb2+-doped CdS denotes the Raman shift of the characteristic peak in the range of 305-298 cm-1 of the CdS crystals, which is associated with the lead ion incorporation. The films exhibit three direct bandgaps, ~2.44 eV attributed to CdS; the other varies continuously from 1.67 to 1.99 eV and another disappears as Pb2+ molar fraction increases.

  9. Structure and composition of Zn(x)Cd(1-xS) films synthesized through chemical bath deposition.

    PubMed

    Tosun, B Selin; Pettit, Chelsea; Campbell, Stephen A; Aydil, Eray S

    2012-07-25

    Zinc cadmium sulfide (ZnxCd1-xS) thin films grown through chemical bath deposition are used in chalcopyrite solar cells as the buffer layer between the n-type zinc oxide and the p-type light absorbing chalcopyrite film. To optimize energetic band alignment and optical absorption, advanced solar cell architectures require the ability to manipulate x as a function of distance from the absorber-ZnCdS interface. Herein, we investigate the fundamental factors that govern the evolution of the composition as a function of depth in the film. By changing the initial concentrations of Zn and Cd salts in the bath, the entire range of overall compositions ranging from primarily cubic ZnS to primarily hexagonal CdS could be deposited. However, films are inhomogeneous and x varies significantly as function of distance from the film-substrate interface. Films with high overall Zn concentration (x > 0.5) exhibit a Cd-rich layer near the film-substrate interface because Cd is more reactive than Zn. This layer is typically beneath a nearly pure ZnS film that forms after the Cd-rich layers are deposited and Cd is depleted in the bath. In films with high overall Cd concentration (x < 0.5) the Zn concentration rises towards the film's surface. Fortunately, these gradients are favorable for solar cells based on low band gap chalcopyrite films.

  10. The electrochemistry of transparent quantum size rutile nanowire thin films prepared by one-step low temperature chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Lana-Villarreal, Teresa; Monllor-Satoca, Damián; Gómez, Roberto

    2007-10-01

    We performed a spectro- and photoelectrochemical study of electrodes consisting of oriented rutile TiO 2 nanowires with a diameter of ˜2 nm prepared directly by chemical bath deposition on conducting glass. A significant increase (around 0.25 eV with respect to bulk rutile) of the band gap energy for the nanowire film is observed and attributed to quantum size effects, pointing to the presence of individual monocrystalline nanowires with no significant electronic communication among them. This allows for the investigation of morphologically well defined electrodes in the two dimensional quantum confinement regime, which are characterized by particularly good photoelectrocatalytic and electrochromic properties.

  11. Synthesis and characterization Bi2O2S thin film via chemical bath deposition at low pH

    NASA Astrophysics Data System (ADS)

    KARİPER, İ. Afşin

    2016-06-01

    Bismuth oxysulfide thin film was prepared using Bi(NO3)3 and Na2S as reactive. Since bismuth in the form of bismuth oxide is dissolved into water, bismuth and sulfide concentration of the chemical bath is very important. Bismuth oxysulfide (Bi2O2S) thin films were produced below pH 2. Tested bismuth and sulfide concentrations are as follows: 2 × 10- 1 M, 2 × 10- 2 M, 2 × 10- 3 M, 2 × 10- 4 M bismuth and 1 × 10- 1 M, 1 × 10- 2 M, 1 × 10- 3 M, 1 × 10- 4 M sulfide. The structure of the films was examined via X-ray diffraction (XRD). Optical properties, such as transmission and absorbance were measured with Ultra violet-visible spectrum, and then refractive index and reflectivity were calculated. The pH of chemical bath was stabilized below pH of 2 using 13.85 mL concentrated nitric acid. Deposition time and temperature of the baths were 4 h and 30 °C. It has been found that bismuth and sulfide concentrations affected the structure and thickness of the film. Also, optical band gap of the films varied with concentration, parallel to the change of the structure and film thickness.

  12. Synthesis and characterization Bi2O2S thin film via chemical bath deposition at low pH.

    PubMed

    Kariper, I Afşin

    2016-06-15

    Bismuth oxysulfide thin film was prepared using Bi(NO3)3 and Na2S as reactive. Since bismuth in the form of bismuth oxide is dissolved into water, bismuth and sulfide concentration of the chemical bath is very important. Bismuth oxysulfide (Bi2O2S) thin films were produced below pH2. Tested bismuth and sulfide concentrations are as follows: 2×10(-1)M, 2×10(-2)M, 2×10(-3)M, 2×10(-4)M bismuth and 1×10(-1)M, 1×10(-2)M, 1×10(-3)M, 1×10(-4)M sulfide. The structure of the films was examined via X-ray diffraction (XRD). Optical properties, such as transmission and absorbance were measured with Ultra violet-visible spectrum, and then refractive index and reflectivity were calculated. The pH of chemical bath was stabilized below pH of 2 using 13.85mL concentrated nitric acid. Deposition time and temperature of the baths were 4h and 30°C. It has been found that bismuth and sulfide concentrations affected the structure and thickness of the film. Also, optical band gap of the films varied with concentration, parallel to the change of the structure and film thickness. PMID:27043873

  13. Fabrication and morphology control of BaWO{sub 4} thin films by microwave assisted chemical bath deposition

    SciTech Connect

    Wang Rui; Liu Chen; Zeng Jia; Li KunWei; Wang Hao

    2009-04-15

    Highly crystallized barium tungstate (BaWO{sub 4}) thin films with dumbbell-like, kernel-like, bowknot-like and cauliflower-like microstructure were synthesized from an aqueous solution containing barium nitrate, ethylenediamine tetraacetate acid disodium and sodium tungstate, via mild microwave assisted chemical bath deposition process. The resulting BaWO{sub 4} films with different morphologies were characterized by X-ray diffraction spectrum, scanning electron microscope, Raman and photoluminescence spectra. The results indicate that the morphologies of final products significantly depend on the reaction conditions including the reaction time, the initial concentration of precursor reagent and the physicochemical characteristics of the substrates. Furthermore, the oriented aggregation mechanism is proposed as a possible formation mechanism of the films with specific morphologies. - Graphical abstract: Highly crystallized BaWO{sub 4} thin films with controllable morphologies have been synthesized via mild microwave assisted chemical bath deposition. The oriented aggregation mechanism has been proposed as the possible formation mechanism of specific films.

  14. Study of the crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution

    NASA Astrophysics Data System (ADS)

    Sandoval-Paz, M. G.; Rodríguez, C. A.; Porcile-Saavedra, P. F.; Trejo-Cruz, C.

    2016-07-01

    Copper (I) selenide thin films with orthorhombic and cubic structure were deposited on glass substrates by using the chemical bath deposition technique. The effects of the solution pH on the films growth and subsequently the structural, optical and electrical properties of the films were studied. Films with orthorhombic structure were obtained from baths wherein both metal complex and hydroxide coexist; while films with cubic structure were obtained from baths where the metal hydroxide there is no present. The structural modifications are accompanied by changes in bandgap energy, morphology and electrical resistivity of the films.

  15. Synthesis of nanostructured and microstructured ZnO and Zn(OH)2 on activated carbon cloth by hydrothermal and microwave-assisted chemical bath deposition methods

    NASA Astrophysics Data System (ADS)

    Mosayebi, Elham; Azizian, Saeid; Hajian, Ali

    2015-05-01

    Nanostructured and microstructured ZnO and Zn(OH)2 loaded on activated carbon cloth were synthesized by microwave-assisted chemical bath deposition and hydrothermal methods. By hydrothermal method the deposited sample on carbon fiber is pure ZnO with dandelion-like nanostructures. By microwave-assisted chemical bath method the structure and composition of deposited sample depends on solution pH. At pH = 9.8 the deposited sample on carbon fiber is pure ZnO with flower-like microstructure; but at pH = 10.8 the sample is a mixture of ZnO and Zn(OH)2 with flower-like and rhombic microstructures, respectively. The mechanism of crystal grow by microwave-assisted chemical bath method was investigated by SEM method at both pH.

  16. Fabrication of nanocrystalline CdS electrode via chemical bath deposition technique for application to cholesterol sensor

    NASA Astrophysics Data System (ADS)

    Dhyani, Hemant; Srivastava, Saurabh; Azahar Ali, Md; Malhotra, B. D.; Sen, Prasenjit

    2012-04-01

    A nanocystalline CdS electrode has been fabricated by chemical bath deposition (CBD) technique onto hydrolyzed indium tin oxide (ITO) coated glass substrate at 78°C for the immobilization of cholesterol oxidase (ChOx). The prepared Nano-CdS based electrode has been characterized using UV-visible, X-ray diffraction (XRD), Fourier transform-infrared (FTIR) and scanning electron microscopy (SEM). The ChOx/Nano-CdS/ITO bioelectrode shows the detection range of cholesterol from 50 to 400 mg/dl with improved sensitivity of 1.35 μA/mgdl-1/cm2, low detection limit (6.1 mg/dl) and low Km (0.45mM) value indicating strong enzyme (cholesterol oxidase)-matrix (CdS) affinity.

  17. Planar heterojunction type perovskite solar cells based on TiOx compact layer fabricated by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Taima, Tetsuya; Shahiduzzaman, Md.; Yamamoto, Kouhei; Furumoto, Yoshikazu; Kuwabara, Takayuki; Takahashi, Kohshin

    2016-02-01

    Perovskite (CH3NH3PbI3) solar cell (PSC) have been recently emerged as a promising cost and energy efficient light absorber material for photovoltaic applications. In this paper, we fabricated planar heterojunction (PHJ) perovskite solar cells using chemical bath deposited low temperature titanium oxide (TiOx) compact layer as an electron collection layer. The devices modified by fullerene (C60) with the thickness of 7nm show very significant improvement in photovoltaic performances compared to without modified devices leading to efficiencies as high as 9.0%. This is due to enhanced electrons more efficiently at the CH3NH3PbI3 /compact-TiOx interface from the C60 leading to improved photocurrent densities and fill factors.

  18. Structural Properties and Electrochemical Performance of ZnO Nanosheets Grown Directly on Al substrate by Chemical Bath Deposition Techniques

    NASA Astrophysics Data System (ADS)

    Al-Asadi, Ahmed; Ferrera, Roberto; Henley, Luke; Lopez, Nestor; Carozo, Victor; Lin, Zhong; Terrones, Mauricio; Talapatra, Saikat

    We will report on the synthesis & electrochemical characterization of 2-dimentional zinc oxide grown directly on Al substrate by a simple chemical bath deposition method at low temperature (below 1000C). Detail structural characterizations of the synthesized ZnO sheets will be presented and discussed. The electrochemical performances of electrochemical double layer capacitors (EDLC) on electrodes fabricated using these materials were evaluated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy using various electrolytes. We found that high specific capacitance values (greater than 300 F/g) could be achieved using an aqueous electrolyte. The aforementioned results indicates the possibly for using 2-D ZnO architectures fabricated by this simple and cost efficient technique for future electrochemical energy storage devices.

  19. Structural and optical properties of Ni-doped CdS thin films prepared by chemical bath deposition method

    SciTech Connect

    Premarani, R.; Saravanakumar, S. Chandramohan, R.; Mahalingam, T.

    2015-06-24

    The structural and optical behavior of undoped Cadmiun Sulphide (CdS) and Ni-doped CdS thinfilms prepared by Chemical Bath Deposition (CBD) technique is reported. The crystallite sizes of the thinfilms have been characterized by X-ray diffraction pattern (XRD). The particle sizes increase with the increase of Ni content in the CdS thinfilms. Scanning Electron Microscope (SEM) results indicated that CdS thinfilms is made up of aggregate of spherical-like particles. The composition was estimated by Energy Dispersive Analysis of X-ray (EDX) and reported. Spectroscopic studies revealed considerable improvement in transmission and the band gap of the films changes with addition of Ni dopant that is associated with variation in crystallite sizes in the nano regime.

  20. Effect of Thermal Annealing on the Band GAP and Optical Properties of Chemical Bath Deposited ZnSe Thin Films

    NASA Astrophysics Data System (ADS)

    Ezema, F. I.; Ekwealor, A. B. C.; Osuji, R. U.

    2006-05-01

    Zinc selenide (ZnSe) thin films were deposited on glass substrate using the chemical bath deposition method at room temperature from aqueous solutions of zinc sulphate and sodium selenosulfate in which sodium hydroxide was employed as complexing agents. The `as-deposited' ZnSe thin films are red in color and annealed in oven at 473 K for 1 hour and on a hot plate in open air at 333 K for 5 minutes, affecting the morphological and optical properties. Optical properties such as absorption coefficient a and extinction coefficient k, were determined using the absorbance and transmission measurement from Unico UV-2102 PC spectrophotometer, at normal incidence of light in the wavelength range of 200-1000 nm. The films have transmittance in VIS-NIR regions that range between 26 and 87%. From absorbance and transmittance spectra, the band gap energy determined ranged between 1.60 eV and 1.75 for the `as deposited' samples, and the annealed samples exhibited a band gap shift of 0.15 eV. The high transmittance of the films together with its large band gap made them good materials for selective coatings for solar cells.

  1. Role of the conducting layer substrate on TiO2 nucleation when using microwave activated chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Zumeta, I.; Espinosa, R.; Ayllón, J. A.; Vigil, E.

    2002-12-01

    Nanostructured TiO2 is used in novel dye sensitized solar cells. Because of their interaction with light, thin TiO2 films are also used as coatings for self-cleaning glasses and tiles. Microwave activated chemical bath deposition represents a simple and cost-effective way to obtain nanostructured TiO2 films. It is important to study, in this technique, the role of the conducting layer used as the substrate. The influence of microwave-substrate interactions on TiO2 deposition is analysed using different substrate positions, employing substrates with different conductivities, and also using different microwave radiation powers for film deposition. We prove that a common domestic microwave oven with a large cavity and inhomogeneous radiation field can be used with equally satisfactory results. The transmittance spectra of the obtained films were studied and used to analyse film thickness and to obtain gap energy values. The results, regarding different indium-tin oxide resistivities and different substrate positions in the oven cavity, show that the interaction of the microwave field with the conducting layer is determinant in layer deposition. It has also been found that film thickness increases with the power of the applied radiation while the gap energies of the TiO2 films decrease approaching the 3.2 eV value reported for bulk anatase. This indicates that these films are not crystalline and it agrees with x-ray spectra that do not reveal any peak.

  2. Surface modification of cadmium sulfide thin film honey comb nanostructures: Effect of in situ tin doping using chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Wilson, K. C.; Basheer Ahamed, M.

    2016-01-01

    Even though nanostructures possess large surface to volume ratio compared to their thin film counterpart, the complicated procedure that demands for the deposition on a substrate kept them back foot in device fabrication techniques. In this work, a honey comb like cadmium sulfide (CdS) thin films nanostructure are deposited on glass substrates using simple chemical bath deposition technique at 65 °C. Energy band gaps, film thickness and shell size of the honey comb nanostructures are successfully controlled using tin (Sn) doping and number of shells per unit area is found to be maximum for 5% Sn doped (in the reaction mixture) sample. X-ray diffraction and optical absorption analysis showed that cadmium sulfide and cadmium hydroxide coexist in the samples. TEM measurements showed that CdS nanostructures are embedded in cadmium hydroxide just like "plum pudding". Persistent photoconductivity measurements of the samples are also carried out. The decay constants found to be increased with increases in Sn doping.

  3. Mimicry of sputtered i-ZnO thin films using chemical bath deposition for solution-processed solar cells.

    PubMed

    Della Gaspera, Enrico; van Embden, Joel; Chesman, Anthony S R; Duffy, Noel W; Jasieniak, Jacek J

    2014-12-24

    Solution processing provides a versatile and inexpensive means to prepare functional materials with specifically designed properties. The current challenge is to mimic the structural, optical, and/or chemical properties of thin films fabricated by vacuum-based techniques using solution-based approaches. In this work we focus on ZnO to show that thin films grown using a simple, aqueous-based, chemical bath deposition (CBD) method can mimic the properties of sputtered coatings, provided that the kinetic and thermodynamic reaction parameters are carefully tuned. The role of these parameters toward growing highly oriented and dense ZnO thin films is fully elucidated through detailed microscopic and spectroscopic investigations. The prepared samples exhibit bulk-like optical properties, are intrinsic in their electronic characteristics, and possess negligible organic contaminants, especially when compared to ZnO layers deposited by sol-gel or from nanocrystal inks. The efficacy of our CBD-grown ZnO thin films is demonstrated through the effective replacement of sputtered ZnO buffer layers within high efficiency solution processed Cu2ZnSnS4xSe4(1-x) solar cells. PMID:25506738

  4. ZnO/CdS/CuInSe 2 photovoltaic cells fabricated using chemical bath deposited CdS buffer layer

    NASA Astrophysics Data System (ADS)

    Qiu, S. N.; Lam, W. W.; Qiu, C. X.; Shih, I.

    1997-04-01

    CdS thin films have been prepared by using chemical bath deposition. The effects of bath temperature and concentration of NH 4OH were studied. Optimum deposition conditions were established. The resulted CdS thin films exhibit optical transmissions in excess of 90% over the majority of the solar spectrum. ZnO/CdS/CuInSe 2 solar cells were fabricated on electrodeposited CuInSe 2 thin films. A conversion efficiency of 6.3% was obtained with an active area of 7.8 mm 2 (no AR coating).

  5. Some physical effects of reaction rate on PbS thin films obtained by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Altıokka, Barış; Baykul, Mevlana Celalettin; Altıokka, Mehmet Rıza

    2013-12-01

    Thin films of polycrystalline lead sulfide (PbS) have been deposited on glass substrates at 303±1 K using chemical bath deposition (CBD). The precipitation of PbS on solid surfaces under four different reaction conditions was performed using a sodium sulfite (Na2SO3) compound as an inhibitor. The kinetics model for the reaction between Pb2+ and S2- was developed according to the amounts of Pb2+ concentrations measured by atomic absorption spectroscopy (AAS) during the precipitation of PbS. The surface morphologies of PbS thin films were studied with a Scanning Electron Microscope (SEM). It was found that the precipitation rate effects the formation of pinhole. To obtain a good quality of thin films the optimum concentration of lead nitrate (Pb(NO3)2), sodium hydroxide (NaOH), thiourea (CS(NH2)2) and Na2SO3 in the final solution was determined to be 0.0089, 0.1460, 0.510 and 0.00023 M, respectively. The film structures were characterized by X-ray diffractometer (XRD). The XRD results showed that the films formed galena cubic structures which represent the natural mineral of PbS. The crystallite sizes of the films were found to be between 23 and 37 nm.

  6. Controllable vertically aligned ZnO nanorods on flexible polyethylene naphthalate (PEN) substrate using chemical bath deposition synthesis

    NASA Astrophysics Data System (ADS)

    Shabannia, R.; Abu Hassan, H.

    2014-02-01

    Zinc oxide (ZnO) nanorods were successfully grown on polyethylene naphthalate substrates with a seed layer using a wet chemical bath deposition method at a low temperature. Using various precursor concentrations, the diameter, length, and density of the ZnO nanorods were controlled, and their optical and crystallinity properties were investigated. X-ray diffraction and field emission scanning electron microscopy were used to examine the structure and morphology of the ZnO nanorods. The obtained ZnO nanorods were hexagonal and grew vertically from the substrate in the (002) direction along the c-axis. The low compressive strain values confirmed the high-quality crystal structure of the synthesized ZnO nanorods. A 0.050 M precursor concentration resulted in nanorods with a uniform diameter along their entire length and diameters ranging from 10 nm to 40 nm. The photoluminescence results indicated that the ZnO nanorods grown using a 0.050 M precursor concentration exhibited the sharpest and most intense PL peaks in the UV range compared with the other samples. Therefore, the precursor concentration considerably influenced the growth of the ZnO nanorods. These ZnO nanorods can be greatly applied for the development of flexible, elastic electronic, and optoelectronic devices.

  7. Characterization of annealed Eu3+-doped ZnO flower-like morphology synthesized by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Koao, L. F.; Dejene, B. F.; Swart, H. C.; Motloung, S. V.; Motaung, T. E.

    2016-10-01

    Undoped and europium ion (Eu3+) doped ZnO nanostructures were synthesized via the chemical bath deposition method and annealed afterwards in air at 700 °C. The X-ray diffraction measurements confirmed the hexagonal wurtzite structure for all samples. The scanning electron microscopy (SEM) revealed that the nanopowder samples were assembled in flower-like shapes for undoped and hexagonal-shaped for Eu3+-doped ZnO. Elemental energy dispersive (EDS) analysis mapping conducted on the samples revealed homogeneous distribution of Zn, O, and Eu ions. The Ultraviolet-visible (UV-vis) diffusion reflectance spectroscopy showed a decrease in the band gap with an increasing Eu3+ concentration. The photoluminescence (PL) results showed that by exciting Eu3+ (4 mol%) doped ZnO with different excitation wavelength the highest luminescence intensity was observed at an excitation wavelength of 395 nm but no emissions were observed from Eu3+. By exciting further with 465 nm the Eu3+ emissions were observed and emission from undoped ZnO was found for the first time.

  8. Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition of TbCl{sub 3}

    SciTech Connect

    Guo, Shuai Zhang, Xiaofeng; Ding, Guangfei; Chen, Renjie; Yan, Aru; Lee, Don

    2014-05-07

    The chemical bath deposition (CBD) and the grain boundary diffusion method were combined to diffuse the heavy rare earth for obtain the thick magnets with high coercivity and low heavy rare earth. The jet mill powders were soaked into the alcohol solution of 0.2 wt. % TbCl{sub 3}. A thin layer of TbCl{sub 3} was wrapped to the surface of (PrNd){sub 2}Fe{sub 14}B powder particles. The coercivity of magnet is increased from 11.89 kOe to 14.72 kOe without significant reduction of remanence after grain boundary diffusion in the sintering and the annealing processes. The temperature coefficients of the remanence and the coercivity are improved by the substitution of PrNd by Tb in the surface of grains. The highly accelerated temperature/humidity stress test (HAST) results indicate that the CBD magnet has poor corrosion resistance, attributing to the present of Cl atoms in the grain boundaries.

  9. Growth of CdS thin films on indium coated glass substrates via chemical bath deposition and subsequent air annealing

    NASA Astrophysics Data System (ADS)

    Ghosh, Biswajit; Kumar, Kamlesh; Singh, Balwant Kr; Banerjee, Pushan; Das, Subrata

    2014-11-01

    In the present work attempts were made to synthesize indium doped CdS films by fabricating In/CdS bilayers using CBD-CdS on vacuum evaporated In thin films and subsequent air annealing. 135 nm CdS films were grown onto 20 nm and 35 nm indium coated glass substrate employing chemical bath deposition technique. The In/CdS bilayers thus formed were subjected to heat treatment at the temperatures between 200 and 400 °C for 4 min in the muffle furnace to facilitate indium to diffuse into the CdS films. XRD pattern ascertained no noticeable shift in lattice constant implying grain boundary metal segregation, while secondary ion mass spectrometry indicated the diffusion profile of indium into CdS matrices. Mass spectrometry results showed that substantial diffusion of indium had been taken place within CdS at 400 °C. Dark and photocurrent with different illumination time were measured to ascertain the photosensitivity of pure and composite CdS films.

  10. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    SciTech Connect

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-28

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  11. Studies on growth and characterization of ternary CdS 1- xSe x alloy thin films deposited by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Chaudhari, J. B.; Deshpande, N. G.; Gudage, Y. G.; Ghosh, A.; Huse, V. B.; Sharma, Ramphal

    2008-08-01

    Ternary alloyed CdS 1- xSe x thin films of variable composition ' x' were grown by the simple and economical chemical bath deposition technique. The as-grown thin films were characterized for structural, compositional, surface morphological, optical and electrical studies. The X-ray diffraction (XRD) patterns of the sample indicated that all the samples were polycrystalline in nature with hexagonal structure. Scanning electron microscopy (SEM) micrographs showed uniform morphology with spherical shaped grains distributed over entire glass substrate. EDAX studies confirmed that the CdS 1- xSe x films were having approximately same stoichiometry initially as well as finally. Room temperature optical measurements showed that band gap engineering could be realized in CdS 1- xSe x thin films via modulation in composition ' x'. Electrical resistivity of CdS 1- xSe x thin films for various compositions was found to be low. The broad and fine tunable band gap properties of ternary CdS 1- xSe x thin films have potential applications in opto-electronic devices.

  12. Effect of deposition temperature on the structural and optical properties of CdSe thin films synthesised by chemical bath deposition

    SciTech Connect

    Mohammed, Mudhafer Ali

    2013-12-16

    Cadmium selenide thin films were synthesized on glass substrates using chemical bath technique (CBD) at temperatures 320K, 330K, 340K,and 350K. The polycrystalline nature of the material was confirmed by X-ray diffraction technique and various structural parameters such as lattice parameters, grain size, dislocation density, and micro strain. The root mean square (RMS) roughness was obtained by using atomic force microscopy(AFM), which indicated a decreasing average roughness with the decrease of the bath temperature. Optical properties were carried out by UV-Visible transmittance spectra, and the band gap energy was determined.

  13. A chemical bath deposition route to facet-controlled Ag3PO4 thin films with improved visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Gunjakar, Jayavant L.; Jo, Yun Kyung; Kim, In Young; Lee, Jang Mee; Patil, Sharad B.; Pyun, Jae.-Chul.; Hwang, Seong-Ju

    2016-08-01

    A facile, economic, and reproducible chemical bath deposition (CBD) method is developed for the fabrication of facet-controlled Ag3PO4 thin films with enhanced visible light photocatalytic activity. The fine-control of bath temperature, precursor, complexing agent, substrate, and solution pH is fairly crucial in preparing the facet-selective thin film of Ag3PO4 nanocrystal. The change of precursor from silver nitrate to silver acetate makes possible the tailoring of the crystal shape of Ag3PO4 from cube to rhombic dodecahedron and also the bandgap tuning of the deposited films. The control of [Ag+]/[phosphate] ratio enables to maximize the loading amount of Ag3PO4 crystals per the unit area of the deposited film. All the fabricated Ag3PO4 thin films show high photocatalytic activity for visible light-induced degradation of organic molecules, which can be optimized by tailoring the crystal shape of the deposited crystals. This CBD method is also useful in preparing the facet-controlled hybrid film of Ag3PO4-ZnO photocatalyst. The present study clearly demonstrates the usefulness of the present CBD method for fabricating facet-controlled thin films of metal oxosalt and its nanohybrid.

  14. In Situ X-ray Absorption Near-Edge Structure Spectroscopy of ZnO Nanowire Growth During Chemical Bath Deposition

    SciTech Connect

    McPeak, Kevin M.; Becker, Matthew A.; Britton, Nathan G.; Majidi, Hasti; Bunker, Bruce A.; Baxter, Jason B.

    2010-12-03

    Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. Here we report the first use of in situ X-ray absorption spectroscopy during CBD, enabling detailed investigation of both reaction mechanisms and kinetics of ZnO nanowire growth from zinc nitrate and hexamethylenetetramine (HMTA) precursors. Time-resolved X-ray absorption near-edge structure (XANES) spectra were used to quantify Zn(II) speciation in both solution and solid phases. ZnO crystallizes directly from [Zn(H{sub 2}O){sub 6}]{sup 2+} without long-lived intermediates. Using ZnO nanowire deposition as an example, this study establishes in situ XANES spectroscopy as an excellent quantitative tool to understand CBD of nanomaterials.

  15. Performance and Loss Analyses of High-Efficiency Chemical Bath Deposition (CBD)-ZnS/Cu(In1-xGax)Se2 Thin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Pudov, Alexei; Sites, James; Nakada, Tokio

    2002-06-01

    Chemically deposited ZnS has been investigated as a buffer layer alternative to cadmium sulfide (CdS) in polycrystalline thin-film Cu(In1-xGax)Se2 (CIGS) solar cells. Cells with efficiency of up to 18.1% based on chemical bath deposition (CBD)-ZnS{\\slash}CIGS heterostructures have been fabricated. This paper presents the performance and loss analyses of these cells based on the current-voltage (J-V) and spectral response curves, as well as comparisons with high efficiency CBD-CdS/CIGS and crystalline silicon counterparts. The CBD-ZnS/CIGS devices have effectively reached the efficiency of the current record CBD-CdS/CIGS cell. The effects of the superior current of the CBD-ZnS/CIGS cell and the superior junction quality of the CBD-CdS/CIGS cell on overall performance nearly cancel each other.

  16. The photoluminescence and phase composition of lead sulphide–cadmium sulphide layers obtained by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Maraeva, E. V.; Shupta, A. A.; Bobkov, A. A.; Levitskii, V. S.; Maximov, A. I.; Moshnikov, V. A.

    2016-08-01

    The study concerns optical properties and phase composition studies of the layers based on cadmium sulfide–lead sulfide synthesized by the hydro-chemical deposition. The presence of two peaks in the photoluminescence spectra presumably correspond to two different CdS modifications, i.e. the cubic structure of zinc blende and hexagonal structure (wurtzite type). X-ray phase analysis (XRPA) confirmes the presence of both types of crystallites.

  17. In Situ Localized Surface Plasmon Resonance (LSPR) Spectroscopy to Investigate Kinetics of Chemical Bath Deposition of CdS Thin Films

    SciTech Connect

    Kalyanaraman, Ramki; Taz, Humaira; Ruther, Rose E.; Nanda, Jagjit

    2015-02-11

    Techniques that can characterize the early stages of thin film deposition from liquid phase processes can aid greatly in our understanding of mechanistic aspects of chemical bath deposition (CBD). Here we have used localized surface plasmon resonance (LSPR) spectroscopy to monitor in-situ the kinetics of early-stage growth of cadmium sulfide (CdS) thin films on Ag nanoparticle on quartz substrates. Real-time shift during CdS deposition showed that the LSPR wavelength red shifted rapidly due to random deposition of CdS on the substrate, but saturated at longer times. LSPR modeling showed that these features could be interpreted as an initial deposition of CdS islands followed by preferential deposition onto itself. The CdS also showed significantly enhanced Raman signals up to 170 times due to surface enhanced raman scattering (SERS) from the CdS/Ag NP regions. The ex-situ SERS effect supported the LSPR shift suggesting that these techniques could be used to understand nucleation and growth phenomena from the liquid phase.

  18. In Situ Localized Surface Plasmon Resonance (LSPR) Spectroscopy to Investigate Kinetics of Chemical Bath Deposition of CdS Thin Films

    DOE PAGESBeta

    Kalyanaraman, Ramki; Taz, Humaira; Ruther, Rose E.; Nanda, Jagjit

    2015-02-11

    Techniques that can characterize the early stages of thin film deposition from liquid phase processes can aid greatly in our understanding of mechanistic aspects of chemical bath deposition (CBD). Here we have used localized surface plasmon resonance (LSPR) spectroscopy to monitor in-situ the kinetics of early-stage growth of cadmium sulfide (CdS) thin films on Ag nanoparticle on quartz substrates. Real-time shift during CdS deposition showed that the LSPR wavelength red shifted rapidly due to random deposition of CdS on the substrate, but saturated at longer times. LSPR modeling showed that these features could be interpreted as an initial deposition ofmore » CdS islands followed by preferential deposition onto itself. The CdS also showed significantly enhanced Raman signals up to 170 times due to surface enhanced raman scattering (SERS) from the CdS/Ag NP regions. The ex-situ SERS effect supported the LSPR shift suggesting that these techniques could be used to understand nucleation and growth phenomena from the liquid phase.« less

  19. Room temperature chemical bath deposition of cadmium selenide, cadmium sulfide and cadmium sulfoselenide thin films with novel nanostructures

    NASA Astrophysics Data System (ADS)

    VanderHyde, Cephas A.; Sartale, S. D.; Patil, Jayant M.; Ghoderao, Karuna P.; Sawant, Jitendra P.; Kale, Rohidas B.

    2015-10-01

    A simple, convenient and low cost chemical synthesis route has been used to deposit nanostructured cadmium sulfide, selenide and sulfoselenide thin films at room temperature. The films were deposited on glass substrates, using cadmium acetate as cadmium ion and sodium selenosulfate/thiourea as a selenium/sulfur ion sources. Aqueous ammonia was used as a complex reagent and also to adjust the pH of the final solution. The as-deposited films were uniform, well adherent to the glass substrate, specularly reflective and red/yellow in color depending on selenium and sulfur composition. The X-ray diffraction pattern of deposited cadmium selenide thin film revealed the nanocrystalline nature with cubic phase; cadmium sulfide revealed mixture of cubic along with hexagonal phase and cadmium sulfoselenide thin film were grown with purely hexagonal phase. The morphological observations revealed the growth and formation of interesting one, two and three-dimensional nanostructures. The band gap of thin films was calculated and the results are reported.

  20. Evolution of structural and optical properties of rutile TiO2 thin films synthesized at room temperature by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Mayabadi, A. H.; Waman, V. S.; Kamble, M. M.; Ghosh, S. S.; Gabhale, B. B.; Rondiya, S. R.; Rokade, A. V.; Khadtare, S. S.; Sathe, V. G.; Pathan, H. M.; Gosavi, S. W.; Jadkar, S. R.

    2014-02-01

    Nanocrystalline thin films of TiO2 were prepared on glass substrates from an aqueous solution of TiCl3 and NH4OH at room temperature using the simple and cost-effective chemical bath deposition (CBD) method. The influence of deposition time on structural, morphological and optical properties was systematically investigated. TiO2 transition from a mixed anatase-rutile phase to a pure rutile phase was revealed by low-angle XRD and Raman spectroscopy. Rutile phase formation was confirmed by FTIR spectroscopy. Scanning electron micrographs revealed that the multigrain structure of as-deposited TiO2 thin films was completely converted into semi-spherical nanoparticles. Optical studies showed that rutile thin films had a high absorption coefficient and a direct bandgap. The optical bandgap decreased slightly (3.29-3.07 eV) with increasing deposition time. The ease of deposition of rutile thin films at low temperature is useful for the fabrication of extremely thin absorber (ETA) solar cells, dye-sensitized solar cells, and gas sensors.

  1. Optimization of the ZnS Buffer Layer by Chemical Bath Deposition for Cu(In,Ga)Se2 Solar Cells.

    PubMed

    Jeon, Dong-Hwan; Hwang, Dae-Kue; Kim, Dae-Hwan; Kang, Jin-Kyu; Lee, Chang-Seop

    2016-05-01

    We evaluated a ZnS buffer layer prepared using a chemical bath deposition (CBD) process for application in cadmium-free Cu(In,Ga)Se2 (CIGS) solar cells. The ZnS buffer layer showed good transmittance (above 90%) in the spectral range from 300 to 800 nm and was non-toxic compared with the CdS buffer layers normally used in CIGS solar cells. The CBD process was affected by several deposition conditions. The deposition rate was dependent on the ammonia concentration (complexing agent). When the ammonia concentration was either too high or low, a decrease in the deposition rate was observed. In addition, post heat treatments at high temperatures had detrimental influences on the ZnS buffer layers because portions of the ZnS thin films were transformed into ZnO. With optimized deposition conditions, a CIGS solar cell with a ZnS buffer layer showed an efficiency of 14.18% with a 0.23 cm2 active area under 100 mW/cm2 illumination.

  2. Optimization of the ZnS Buffer Layer by Chemical Bath Deposition for Cu(In,Ga)Se2 Solar Cells.

    PubMed

    Jeon, Dong-Hwan; Hwang, Dae-Kue; Kim, Dae-Hwan; Kang, Jin-Kyu; Lee, Chang-Seop

    2016-05-01

    We evaluated a ZnS buffer layer prepared using a chemical bath deposition (CBD) process for application in cadmium-free Cu(In,Ga)Se2 (CIGS) solar cells. The ZnS buffer layer showed good transmittance (above 90%) in the spectral range from 300 to 800 nm and was non-toxic compared with the CdS buffer layers normally used in CIGS solar cells. The CBD process was affected by several deposition conditions. The deposition rate was dependent on the ammonia concentration (complexing agent). When the ammonia concentration was either too high or low, a decrease in the deposition rate was observed. In addition, post heat treatments at high temperatures had detrimental influences on the ZnS buffer layers because portions of the ZnS thin films were transformed into ZnO. With optimized deposition conditions, a CIGS solar cell with a ZnS buffer layer showed an efficiency of 14.18% with a 0.23 cm2 active area under 100 mW/cm2 illumination. PMID:27483938

  3. Preparation and characterization of copper telluride thin films by modified chemical bath deposition (M-CBD) method

    NASA Astrophysics Data System (ADS)

    Pathan, H. M.; Lokhande, C. D.; Amalnerkar, D. P.; Seth, T.

    2003-09-01

    Copper telluride thin films were deposited using modified chemical method using copper(II) sulphate; pentahydrate [CuSO 4·5H 2O] and sodium tellurite [Na 2TeO 3] as cationic and anionic sources, respectively. Modified chemical method is based on the immersion of the substrate into separately placed cationic and anionic precursors. The preparative conditions such as concentration, pH, immersion time, immersion cycles, etc. were optimized to get good quality copper telluride thin films at room temperature. The films have been characterized for structural, compositional, optical and electrical transport properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Rutherford back scattering (RBS), optical absorption/transmission, electrical resistivity and thermoemf measurement techniques.

  4. Chemical bath deposition growth and characterization of zinc oxide nanostructures on plain and platinum-coated glass substrates for hydrogen peroxide gas sensor application

    NASA Astrophysics Data System (ADS)

    Jamasali, Y. D. J.; Alguno, A. C.

    2015-06-01

    Growth of zinc oxide on plain and Pt-coated glass substrate via chemical bath deposition technique (CBD) were studied. Aqueous solutions of ammonium hydroxide (NH4OH) and zinc sulfate (ZnSO4) were used as the precursor substances in the synthesis. Ultraviolet-visible spectroscopy (UV-Vis) was performed to determine the energy band gap and X-ray diffraction (XRD) to examine crystallinity. Sensitivity measurements were carried out in order to examine its potential to be fabricated as hydrogen peroxide (H2O2) gas sensor. Experimental results in the sensitivity experiment show that in the presence of H2O2 gas, the resistance of ZnOincrease which can be used as the basis for H2O-2 detection. UV-Vis showed variation of energy band gap values but were all near the generally accepted value. XRD spectra further verify that ZnOwere indeed synthesized.

  5. Chemical bath deposition of textured and compact zinc oxide thin films on vinyl-terminated polystyrene brushes.

    PubMed

    Blumenstein, Nina J; Hofmeister, Caroline G; Lindemann, Peter; Huang, Cheng; Baier, Johannes; Leineweber, Andreas; Walheim, Stefan; Wöll, Christof; Schimmel, Thomas; Bill, Joachim

    2016-01-01

    In this study we investigated the influence of an organic polystyrene brush on the deposition of ZnO thin films under moderate conditions. On a non-modified SiO x surface, island growth is observed, whereas the polymer brush induces homogeneous film growth. A chemical modification of the polystyrene brushes during the mineralization process occurs, which enables stronger interaction between the then polar template and polar ZnO crystallites in solution. This may lead to oriented attachment of the crystallites so that the observed (002) texture arises. Characterization of the templates and the resulting ZnO films were performed with ζ-potential and contact angle measurements as well as scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). Infrared spectroscopy (IR) measurements were used to investigate the polystyrene brushes before and after modification.

  6. Chemical bath deposition of textured and compact zinc oxide thin films on vinyl-terminated polystyrene brushes

    PubMed Central

    Blumenstein, Nina J; Hofmeister, Caroline G; Lindemann, Peter; Huang, Cheng; Baier, Johannes; Leineweber, Andreas; Wöll, Christof; Schimmel, Thomas

    2016-01-01

    Summary In this study we investigated the influence of an organic polystyrene brush on the deposition of ZnO thin films under moderate conditions. On a non-modified SiOx surface, island growth is observed, whereas the polymer brush induces homogeneous film growth. A chemical modification of the polystyrene brushes during the mineralization process occurs, which enables stronger interaction between the then polar template and polar ZnO crystallites in solution. This may lead to oriented attachment of the crystallites so that the observed (002) texture arises. Characterization of the templates and the resulting ZnO films were performed with ζ-potential and contact angle measurements as well as scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). Infrared spectroscopy (IR) measurements were used to investigate the polystyrene brushes before and after modification. PMID:26925358

  7. Chemical bath deposition of textured and compact zinc oxide thin films on vinyl-terminated polystyrene brushes.

    PubMed

    Blumenstein, Nina J; Hofmeister, Caroline G; Lindemann, Peter; Huang, Cheng; Baier, Johannes; Leineweber, Andreas; Walheim, Stefan; Wöll, Christof; Schimmel, Thomas; Bill, Joachim

    2016-01-01

    In this study we investigated the influence of an organic polystyrene brush on the deposition of ZnO thin films under moderate conditions. On a non-modified SiO x surface, island growth is observed, whereas the polymer brush induces homogeneous film growth. A chemical modification of the polystyrene brushes during the mineralization process occurs, which enables stronger interaction between the then polar template and polar ZnO crystallites in solution. This may lead to oriented attachment of the crystallites so that the observed (002) texture arises. Characterization of the templates and the resulting ZnO films were performed with ζ-potential and contact angle measurements as well as scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). Infrared spectroscopy (IR) measurements were used to investigate the polystyrene brushes before and after modification. PMID:26925358

  8. Structural, Optical and Electrical Properties of p-CuS:Cu(+)and n-CuS:Sn(4+) Films Deposited with a Chemical Bath Deposition.

    PubMed

    He, Haiyan; Huang, Jianfeng; Fei, Jie; Lu, Jing

    2015-01-01

    This work presents the manufacturing and potential application of the CuS films in recent literature and patents and then focus on the chemical bath depostion of p-CuS: Cu(+)and n-CuS: Sn(4+) filmsat room temperature by controlling S/Cu molar ratio in the bath solution and doping Cu(+) and Sn(4+) cations, respectively. The CuS:Cu(+)and CuS:Sn(4+) films with S/Cu molar ratio larger and less than the stoichiometric ratio showed p-type and n-type electrical conduction, respectively, and low electrical resistivity of~1.31×10(-3) Ω·cm and ~0.73-0.80×10(-3) Ω·cm, respectively. Moreover, the films had the average transmittance of ~20.1-30.1 % in 290-1100 nm. The direct allowed band gaps and indirect allowed optical band gap energies of the films were estimated to be in the ranges of ~2.58-2.63 eV and ~1.6-1.78 eV, respectively. The extinction coefficient, refractive index, dielectric constant, and optical conductivity of the films were calculated with the transmittance and reflectance spectra.

  9. Photovoltaic p-n structure of MoSb2-xCuxSe4/CdS absorber films obtained via chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Vijila, J. J. J.; Mohanraj, K.; Sivakumar, G.

    2016-07-01

    In this work, a novel mixed metal chalcogenide MoSb2-xCuxSe4 nanocrystalline thin film was deposited for different copper concentrations (x = 0.0 M, 0.1 M, 0.2 M & 0.3 M) on glass substrate by chemical bath deposition method at room temperature. XRD patterns revealed the incorporation of copper content by the conversion of orthorhombic Sb2Se3 into Cu3SbSe3 with a shift to lower angles. Average crystallite was found to be 69 nm, 17 nm, 10 nm and 9 nm for the deposited films. FTIR spectra confirm the presence of functional groups of Trisodium citrate (TSC) and the metal oxide vibrations. FESEM analysis depicted the morphological changes with the addition of Cu content. UV-vis analysis shows higher absorption in the visible region and the band gap values are found to be 2.16-1.76 eV. Hall effect analysis confirms the p-type nature of the material. The photo-current analysis shows higher photo-conversion efficiency of 1.86% for 0.3 M copper content.

  10. Role of ZnO thin film in the vertically aligned growth of ZnO nanorods by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Son, Nguyen Thanh; Noh, Jin-Seo; Park, Sungho

    2016-08-01

    The effect of ZnO thin film on the growth of ZnO nanorods was investigated. ZnO thin films were sputter-deposited on Si substrate with varying the thickness. ZnO nanorods were grown on the thin film using a chemical bath deposition (CBD) method at 90 °C. The ZnO thin films showed granular structure and vertical roughness on the surface, which facilitated the vertical growth of ZnO nanorods. The average grain size and the surface roughness of ZnO film increased with an increase in film thickness, and this led to the increase in both the average diameter and the average length of vertically grown ZnO nanorods. In particular, it was found that the average diameter of ZnO nanorods was very close to the average grain size of ZnO thin film, confirming the role of ZnO film as a seed layer for the vertical growth of ZnO nanorods. The CBD growth on ZnO seed layers may provide a facile route to engineering vertically aligned ZnO nanorod arrays.

  11. Microstructure, optical and structural characterization of Cd0.98Fe0.02S thin films co-doped with Zn by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Pitchaimani, K.; Amalraj, L.; Muthukumaran, S.

    2016-04-01

    Fe-doped CdS (Cd0.98Fe0.02S) and Fe, Zn co-doped CdS (Cd0.98-xZnxFe0.02S (x=0.02, 0.04, and 0.06)) thin films have been successfully deposited on glass substrate by chemical bath deposition technique using aqueous ammonia solution at pH = 9.5. Phase purity of the samples having cubic structure with (111) as the preferential orientation was confirmed by X-ray diffraction technique. Shift of X-ray diffraction peak position towards higher angle side and decrease of lattice parameters, volume and crystallite size confirmed the proper incorporation of Zn into Cd-Fe-S except Zn=6%. The compositional analysis (EDX) showed that Cd, Fe, Zn and S are present in the films. The enhanced band gap and higher transmittance observed in Cd0.94Zn0.04Fe0.02S films are the effective way to use solar energy and enhance its photocatalytic activity under visible light. The enhanced green band emission than blue band by Zn-doping evidenced the existence of higher defect states.

  12. Low-Temperature Growth of Well-Aligned ZnO Nanorod Arrays by Chemical Bath Deposition for Schottky Diode Application

    NASA Astrophysics Data System (ADS)

    Yuan, Zhaolin

    2015-04-01

    A well-aligned ZnO nanorod array (ZNRA) was successfully grown on an indium tin oxide (ITO) substrate by chemical bath deposition at low temperature. The morphology, crystalline structure, transmittance spectrum and photoluminescence spectrum of as-grown ZNRA were investigated by field emission scanning electron microscopy, x-ray diffraction, ultraviolet-visible spectroscopy and spectrophotometer, respectively. The results of these measurements showed that the ZNRA contained densely packed, aligned nanorods with diameters from 30 nm to 40 nm and a wurtzite structure. The ZNRA exhibited good optical transparency within the visible spectral range, with >80% transmission. Gold (Au) was deposited on top of the ZNRA, and the current-voltage characteristics of the resulting ITO/ZNRA/Au device in the dark were evaluated in detail. The ITO/ZNRA/Au device acted as a Schottky barrier diode with rectifying behaviour, low turn-on voltage (0.6 V), small reverse-bias saturation current (3.73 × 10-6 A), a high ideality factor (3.75), and a reasonable barrier height (0.65 V) between the ZNRA and Au.

  13. Chemical Bath Deposition of p-Type Transparent, Highly Conducting (CuS)x:(ZnS)1-x Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells.

    PubMed

    Xu, Xiaojie; Bullock, James; Schelhas, Laura T; Stutz, Elias Z; Fonseca, Jose J; Hettick, Mark; Pool, Vanessa L; Tai, Kong Fai; Toney, Michael F; Fang, Xiaosheng; Javey, Ali; Wong, Lydia Helena; Ager, Joel W

    2016-03-01

    P-type transparent conducting films of nanocrystalline (CuS)x:(ZnS)1-x were synthesized by facile and low-cost chemical bath deposition. Wide angle X-ray scattering (WAXS) and high resolution transmission electron microscopy (HRTEM) were used to evaluate the nanocomposite structure, which consists of sub-5 nm crystallites of sphalerite ZnS and covellite CuS. Film transparency can be controlled by tuning the size of the nanocrystallites, which is achieved by adjusting the concentration of the complexing agent during growth; optimal films have optical transmission above 70% in the visible range of the spectrum. The hole conductivity increases with the fraction of the covellite phase and can be as high as 1000 S cm(-1), which is higher than most reported p-type transparent materials and approaches that of n-type transparent materials such as indium tin oxide (ITO) and aluminum doped zinc oxide (AZO) synthesized at a similar temperature. Heterojunction p-(CuS)x:(ZnS)1-x/n-Si solar cells were fabricated with the nanocomposite film serving as a hole-selective contact. Under 1 sun illumination, an open circuit voltage of 535 mV was observed. This value compares favorably to other emerging heterojunction Si solar cells which use a low temperature process to fabricate the contact, such as single-walled carbon nanotube/Si (370-530 mV) and graphene/Si (360-552 mV). PMID:26855162

  14. Preparation of highly photocatalytic active CdS/TiO2 nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Li, Li; Wang, Lili; Hu, Tianyu; Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi

    2014-10-01

    CdS/TiO2 nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N2 adsorption-desorption measurements. The results show that the CdS/TiO2 nanocomposites were composed of anatase TiO2 and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer-Emmett-Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO2 (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO2 nanocomposites. The CdS/TiO2 (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO2 nanocomposites, controlled experiments were performed by adding different radical scavengers.

  15. Effect of band-aligned double absorber layers on photovoltaic characteristics of chemical bath deposited PbS/CdS thin film solar cells

    NASA Astrophysics Data System (ADS)

    Ho Yeon, Deuk; Chandra Mohanty, Bhaskar; Lee, Seung Min; Soo Cho, Yong

    2015-09-01

    Here we report the highest energy conversion efficiency and good stability of PbS thin film-based depleted heterojunction solar cells, not involving PbS quantum dots. The PbS thin films were grown by the low cost chemical bath deposition (CBD) process at relatively low temperatures. Compared to the quantum dot solar cells which require critical and multistep complex procedures for surface passivation, the present approach, leveraging the facile modulation of the optoelectronic properties of the PbS films by the CBD process, offers a simpler route for optimization of PbS-based solar cells. Through an architectural modification, wherein two band-aligned junctions are stacked without any intervening layers, an enhancement of conversion efficiency by as much as 30% from 3.10 to 4.03% facilitated by absorption of a wider range of solar spectrum has been obtained. As an added advantage of the low band gap PbS stacked over a wide gap PbS, the devices show stability over a period of 10 days.

  16. Effect of band-aligned double absorber layers on photovoltaic characteristics of chemical bath deposited PbS/CdS thin film solar cells

    PubMed Central

    Ho Yeon, Deuk; Chandra Mohanty, Bhaskar; Lee, Seung Min; Soo Cho, Yong

    2015-01-01

    Here we report the highest energy conversion efficiency and good stability of PbS thin film-based depleted heterojunction solar cells, not involving PbS quantum dots. The PbS thin films were grown by the low cost chemical bath deposition (CBD) process at relatively low temperatures. Compared to the quantum dot solar cells which require critical and multistep complex procedures for surface passivation, the present approach, leveraging the facile modulation of the optoelectronic properties of the PbS films by the CBD process, offers a simpler route for optimization of PbS-based solar cells. Through an architectural modification, wherein two band-aligned junctions are stacked without any intervening layers, an enhancement of conversion efficiency by as much as 30% from 3.10 to 4.03% facilitated by absorption of a wider range of solar spectrum has been obtained. As an added advantage of the low band gap PbS stacked over a wide gap PbS, the devices show stability over a period of 10 days. PMID:26394761

  17. Effect of band-aligned double absorber layers on photovoltaic characteristics of chemical bath deposited PbS/CdS thin film solar cells.

    PubMed

    Ho Yeon, Deuk; Chandra Mohanty, Bhaskar; Lee, Seung Min; Soo Cho, Yong

    2015-09-23

    Here we report the highest energy conversion efficiency and good stability of PbS thin film-based depleted heterojunction solar cells, not involving PbS quantum dots. The PbS thin films were grown by the low cost chemical bath deposition (CBD) process at relatively low temperatures. Compared to the quantum dot solar cells which require critical and multistep complex procedures for surface passivation, the present approach, leveraging the facile modulation of the optoelectronic properties of the PbS films by the CBD process, offers a simpler route for optimization of PbS-based solar cells. Through an architectural modification, wherein two band-aligned junctions are stacked without any intervening layers, an enhancement of conversion efficiency by as much as 30% from 3.10 to 4.03% facilitated by absorption of a wider range of solar spectrum has been obtained. As an added advantage of the low band gap PbS stacked over a wide gap PbS, the devices show stability over a period of 10 days.

  18. Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route

    NASA Astrophysics Data System (ADS)

    Fang, Cheng; Zhang, Dengsong; Cai, Sixiang; Zhang, Lei; Huang, Lei; Li, Hongrui; Maitarad, Phornphimon; Shi, Liyi; Gao, Ruihua; Zhang, Jianping

    2013-09-01

    Nanoflaky MnOx on carbon nanotubes (nf-MnOx@CNTs) was in situ synthesized by a facile chemical bath deposition route for low-temperature selective catalytic reduction (SCR) of NO with NH3. This catalyst was mainly characterized by the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD). The SEM, TEM, XRD results and N2 adsorption-desorption analysis indicated that the CNTs were surrounded by nanoflaky MnOx and the obtained catalyst exhibited a large surface area as well. Compared with the MnOx/CNT and MnOx/TiO2 catalysts prepared by an impregnation method, the nf-MnOx@CNTs presented better NH3-SCR activity at low temperature and a more extensive operating temperature window. The XPS results showed that a higher atomic concentration of Mn4+ and more chemisorbed oxygen species existed on the surface of CNTs for nf-MnOx@CNTs. The H2-TPR and NH3-TPD results demonstrated that the nf-MnOx@CNTs possessed stronger reducing ability, more acid sites and stronger acid strength than the other two catalysts. Based on the above mentioned favourable properties, the nf-MnOx@CNT catalyst has an excellent performance in the low-temperature SCR of NO to N2 with NH3. In addition, the nf-MnOx@CNT catalyst also presented favourable stability and H2O resistance.Nanoflaky MnOx on carbon nanotubes (nf-MnOx@CNTs) was in situ synthesized by a facile chemical bath deposition route for low-temperature selective catalytic reduction (SCR) of NO with NH3. This catalyst was mainly characterized by the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature

  19. Low-temperature selective catalytic reduction of NO with NH₃ over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route.

    PubMed

    Fang, Cheng; Zhang, Dengsong; Cai, Sixiang; Zhang, Lei; Huang, Lei; Li, Hongrui; Maitarad, Phornphimon; Shi, Liyi; Gao, Ruihua; Zhang, Jianping

    2013-10-01

    Nanoflaky MnO(x) on carbon nanotubes (nf-MnO(x)@CNTs) was in situ synthesized by a facile chemical bath deposition route for low-temperature selective catalytic reduction (SCR) of NO with NH₃. This catalyst was mainly characterized by the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N₂ adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), H₂ temperature-programmed reduction (H₂-TPR) and NH₃ temperature-programmed desorption (NH₃-TPD). The SEM, TEM, XRD results and N₂ adsorption-desorption analysis indicated that the CNTs were surrounded by nanoflaky MnO(x) and the obtained catalyst exhibited a large surface area as well. Compared with the MnO(x)/CNT and MnO(x)/TiO₂ catalysts prepared by an impregnation method, the nf-MnO(x)@CNTs presented better NH₃-SCR activity at low temperature and a more extensive operating temperature window. The XPS results showed that a higher atomic concentration of Mn(4+) and more chemisorbed oxygen species existed on the surface of CNTs for nf-MnO(x)@CNTs. The H₂-TPR and NH₃-TPD results demonstrated that the nf-MnO(x)@CNTs possessed stronger reducing ability, more acid sites and stronger acid strength than the other two catalysts. Based on the above mentioned favourable properties, the nf-MnO(x)@CNT catalyst has an excellent performance in the low-temperature SCR of NO to N₂ with NH₃. In addition, the nf-MnO(x)@CNT catalyst also presented favourable stability and H₂O resistance.

  20. Enhancing the photovoltaic performance and stability of QDSSCs using surface reinforced Pt nanostructures with controllable morphology and superior electrocatalysis via cost-effective chemical bath deposition.

    PubMed

    Rao, S Srinivasa; Durga, Ikkurthi Kanaka; Kang, Tae-Su; Kim, Soo-Kyoung; Punnoose, Dinah; Gopi, Chandu V V M; Eswar Reddy, Araveeti; Krishna, T N V; Kim, Hee-Je

    2016-02-28

    To make quantum-dot sensitized solar cells (QDSSCs) competitive, photovoltaic parameters such as the power conversion efficiency (PCE) and fill factor (FF) must become comparable to those of other emerging solar cell technologies. In the present study, a novel strategy has been successfully developed for a highly efficient surface-modified platinum (Pt) counter electrode (CE) with high catalytic activity and long-term stability in a polysulfide redox electrolyte. The reinforcement of the Pt surface was performed using a thin passivating layer of CuS, NiS, or CoS by simple chemical bath deposition techniques. This method was a more efficient method for reducing the electron recombination in QDSSCs. The optimized Pt/CuS CE shows a very low charge transfer resistance of 37.01 Ω, which is an order of magnitude lower than those of bare Pt (86.32 Ω), Pt/NiS (53.83 Ω), and Pt/CoS (73.51 Ω) CEs. Therefore, the Pt/CuS CEs show much greater catalytic activity in the polysulfide redox electrolyte than Pt, Pt/NiS and Pt/CoS CEs. As a result, under one-sun illumination (AM 1.5G, 100 mW cm(-2)), the Pt/CuS CE exhibits a PCE of 4.32%, which is higher than the values of 1.77%, 2.95%, and 3.25% obtained with bare Pt, Pt/CoS, and Pt/NiS CEs, respectively. The performance of the Pt/CuS CE was enhanced by the improved current density, Cu vacancies with increased S composition, and surface morphology, which enable rapid electron transport and lower the electron recombination rate for the polysulfide electrolyte redox couple. Electrochemical impedance spectroscopy and Tafel polarization revealed that the hybrid CEs reduce interfacial recombination and exhibit better electrochemical and photovoltaic performance compared with a bare Pt CE. The Pt/CuS CE also shows superior stability in the polysulfide electrolyte in a working state for over 10 h, resulting in a long-term electrode stability than Pt CE. PMID:26796086

  1. Preparation of highly photocatalytic active CdS/TiO{sub 2} nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    SciTech Connect

    Li, Li; Wang, Lili; Hu, Tianyu; Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi

    2014-10-15

    CdS/TiO{sub 2} nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N{sub 2} adsorption–desorption measurements. The results show that the CdS/TiO{sub 2} nanocomposites were composed of anatase TiO{sub 2} and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer–Emmett–Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO{sub 2} (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO{sub 2} nanocomposites. The CdS/TiO{sub 2} (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO{sub 2} nanocomposites, controlled experiments were performed by adding different radical scavengers. - Graphical abstract: CdS/TiO{sub 2} nanocomposites were prepared using CTAB by CBD combined with MAHS method. In addition, with increasing microwave irradiation time, the morphology of CdS/TiO{sub 2} changed from popcorn-like to wedge-like structure. - Highlights: • The CdS/TiO{sub 2} was prepared by CBD combined with MAHS two-step method under CTAB. • The morphologies of as-samples were different with the time of

  2. Enhancing the photovoltaic performance and stability of QDSSCs using surface reinforced Pt nanostructures with controllable morphology and superior electrocatalysis via cost-effective chemical bath deposition.

    PubMed

    Rao, S Srinivasa; Durga, Ikkurthi Kanaka; Kang, Tae-Su; Kim, Soo-Kyoung; Punnoose, Dinah; Gopi, Chandu V V M; Eswar Reddy, Araveeti; Krishna, T N V; Kim, Hee-Je

    2016-02-28

    To make quantum-dot sensitized solar cells (QDSSCs) competitive, photovoltaic parameters such as the power conversion efficiency (PCE) and fill factor (FF) must become comparable to those of other emerging solar cell technologies. In the present study, a novel strategy has been successfully developed for a highly efficient surface-modified platinum (Pt) counter electrode (CE) with high catalytic activity and long-term stability in a polysulfide redox electrolyte. The reinforcement of the Pt surface was performed using a thin passivating layer of CuS, NiS, or CoS by simple chemical bath deposition techniques. This method was a more efficient method for reducing the electron recombination in QDSSCs. The optimized Pt/CuS CE shows a very low charge transfer resistance of 37.01 Ω, which is an order of magnitude lower than those of bare Pt (86.32 Ω), Pt/NiS (53.83 Ω), and Pt/CoS (73.51 Ω) CEs. Therefore, the Pt/CuS CEs show much greater catalytic activity in the polysulfide redox electrolyte than Pt, Pt/NiS and Pt/CoS CEs. As a result, under one-sun illumination (AM 1.5G, 100 mW cm(-2)), the Pt/CuS CE exhibits a PCE of 4.32%, which is higher than the values of 1.77%, 2.95%, and 3.25% obtained with bare Pt, Pt/CoS, and Pt/NiS CEs, respectively. The performance of the Pt/CuS CE was enhanced by the improved current density, Cu vacancies with increased S composition, and surface morphology, which enable rapid electron transport and lower the electron recombination rate for the polysulfide electrolyte redox couple. Electrochemical impedance spectroscopy and Tafel polarization revealed that the hybrid CEs reduce interfacial recombination and exhibit better electrochemical and photovoltaic performance compared with a bare Pt CE. The Pt/CuS CE also shows superior stability in the polysulfide electrolyte in a working state for over 10 h, resulting in a long-term electrode stability than Pt CE.

  3. Effect of deposition parameters and strontium doping on characteristics of nanostructured ZnO thin film by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Sheeba, N. H.; Naduvath, J.; Abraham, A.; Weiss, M. P.; Diener, Z. J.; Remillard, S. K.; DeYoung, P. A.; Philip, R. R.

    2014-10-01

    Polycrystalline thin films of ZnO and Sr-doped ZnO (ZnO:Sr) on ultrasonically cleaned soda lime glass substrates are synthesized through successive ionic layer adsorption and reaction. The XRD profiles of ZnO and ZnO:Sr films prepared at different number of deposition cycles exhibit hexagonal wurtzite structure with preferred orientation along (002) direction. The crystallites are found to be nano sized, having variation in size with the increase in number of depositions cycles and also with Sr doping. Optical absorbance studies reveal a systematically controllable blueshift in band gap of Sr-doped ZnO films. SEM images indicate enhanced assembling of crystallites to form elongated rods as number of dips increased in Sr doped ZnO. The films are found to be n-type with the Sr doping having little effect on the electrical properties.

  4. Effect of deposition parameters and strontium doping on characteristics of nanostructured ZnO thin film by chemical bath deposition method

    SciTech Connect

    Sheeba, N. H.; Naduvath, J.; Abraham, A. Philip, R. R.; Weiss, M. P. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu; Diener, Z. J. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu; Remillard, S. K. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu; DeYoung, P. A. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu

    2014-10-15

    Polycrystalline thin films of ZnO and Sr-doped ZnO (ZnO:Sr) on ultrasonically cleaned soda lime glass substrates are synthesized through successive ionic layer adsorption and reaction. The XRD profiles of ZnO and ZnO:Sr films prepared at different number of deposition cycles exhibit hexagonal wurtzite structure with preferred orientation along (002) direction. The crystallites are found to be nano sized, having variation in size with the increase in number of depositions cycles and also with Sr doping. Optical absorbance studies reveal a systematically controllable blueshift in band gap of Sr-doped ZnO films. SEM images indicate enhanced assembling of crystallites to form elongated rods as number of dips increased in Sr doped ZnO. The films are found to be n-type with the Sr doping having little effect on the electrical properties.

  5. Effect of particle size and inter-electrode distance on the field-emission properties of nanocrystalline CdS thin films grown in a polymer matrix by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Ghosh, P. K.; Jana, S.; Maity, U. N.; Chattopadhyay, K. K.

    2006-10-01

    The field-emission property of transparent nanocrystalline CdS thin films, grown by chemical bath deposition (CBD) within the pores of polyvinyl alcohol (PVA) on Si and glass substrates, has been studied. X-ray diffraction and transmission electron microscopy studies confirmed the nanocrystalline nature of the CdS particles with sizes lying in the range 6-12 nm. The Fowler-Nordhiem plots of the emission current from the nano-CdS/PVA thin films are almost straight line. The turn-on fields of the grown nano-CdS/PVA thin films are found to be in the range of 3.6-6.6 V/μm. The turn-on field decreases with the decrease of particle size. Only PVA thin film and bulk CdS/PVA composite thin film grown on Si substrates have not showed field-emission property under the same conditions.

  6. Large-scale self-assembled epitaxial growth of highly-ordered three-dimensional micro/nano single-crystalline PbSe pyramid arrays by selective chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Qiu, Jijun; Weng, Binbin; Li, Lin; Li, Xiaomin; Shi, Zhisheng

    2015-05-01

    Highly ordered three-dimensional micro- and nano- PbSe pyramid arrays were synthesized by using selective epitaxial self-assembled chemical bath deposition method. Each pyramid consists of a very sharp (111) tip with six smooth equivalent {100} facets. Every (100) facet forms an angle of about 54.7° with respect to the (111) facet. The structural features including pyramidal size and period could be precisely tailored by pre-patterned Au mask and etching time. Pyramids are self-assembled on the confined positions by the dual functions of one-dimensional and two-dimensional oriented attachment mechanisms along [110] directions on the (111) surface, following the Gibbs-Curie-Wulff minimum energy principle. This method could effectively create large, bottom-up 3D pyramidal surface patterns in a cost-effective and time-saving manner, which has potential applications in infrared photoconductors, solar cells and light emitting enhancement for display, etc.

  7. A study on the structural and mechanical properties of nanocrystalline CuS thin films grown by chemical bath deposition technique

    SciTech Connect

    Mukherjee, Nillohit; Sinha, Arijit; Khan, Gobinda Gopal; Chandra, Debraj; Bhaumik, Asim; Mondal, Anup

    2011-01-15

    We report a chemical route for the deposition of nanocrystalline thin films of CuS, using aqueous solutions of Cu(CH{sub 3}COO){sub 2}, SC(NH{sub 2}){sub 2} and N(CH{sub 2}CH{sub 2}OH){sub 3} [triethanolamine, i.e. TEA] in proper concentrations and ratios. The films were structurally characterized using X-ray diffraction technique (XRD), field emission scanning electron microscopy (FESEM) and optical analysis [both photo luminescence (PL) and ultraviolet-visible (UV-vis)]. Optical studies showed a large blue shift in the band gap energy of the films due to quantum confinement effect exerted by the nanocrystals. From both XRD and FESEM analyses, formation of CuS nanocrystals with sizes within 10-15 nm was evident. A study on the mechanical properties was carried out using nanoindentation and nanoscratch techniques, which showed good mechanical stability and high adherence of the films with the bottom substrate. Such study on the mechanical properties of the CuS thin films is being reported here for the first time. Current-voltage (I-V) measurements were also carried out for the films, which showed p-type conductivity.

  8. Synthesis of ZnS films on Si(100) wafers by using chemical bath deposition assisted by the complexing agent ethylenediamine

    NASA Astrophysics Data System (ADS)

    Zhu, He-Jie; Wang, Xue-Mei; Gao, Xiao-Yong

    2015-07-01

    Low-cost synthesis of high-quality ZnS films on silicon wafers is of much importance to the ZnSbased heterojunction blue light-emitting device integrated with silicon. Thus, a series of ZnS films were chemically synthesized at low cost on Si(100) wafers at 353 K under a mixed acidic solution with a pH of 4 with zinc acetate and thioacetamide as precursors and with ethylenediamine and hydrochloric acid as the complexing agent and the pH value modifier, respectively. The effects of the ethylenediamine concentration on the crystallization, surface morphology, and optical properties of the ZnS films were investigated by using X-ray diffractometry, scanning electron microscopy, spectrophotometry, and fluorescence spectroscopy. A mechanism for the formation of ZnS film under an acidic condition was also proposed. All of the ZnS films were polycrystalline in nature, with a dominant cubic phase and a small amounts of hexagonal phases. The crystallization and the surface pattern of the films were clearly improved with increasing ethylenediamine concentration due to its enhanced complexing role. The absorption edge of the films almost underwent a blue shift with increasing ethylenediamine concentration, which was largely attributed to the quantum confinement effects caused by the small particle size of the polycrystalline ZnS films. Defect species and the corresponding strengths of the ZnS films were strongly affected by the ethylenediamine concentration.

  9. Enhanced photovoltaic performance and time varied controllable growth of a CuS nanoplatelet structured thin film and its application as an efficient counter electrode for quantum dot-sensitized solar cells via a cost-effective chemical bath deposition.

    PubMed

    Thulasi-Varma, Chebrolu Venkata; Rao, S Srinivasa; Kumar, Challa Shesha Sai Pavan; Gopi, Chandu V V M; Durga, I Kanaka; Kim, Soo-Kyoung; Punnoose, Dinah; Kim, Hee-Je

    2015-11-28

    For the first time we report a simple synthetic strategy to prepare copper sulfide counter electrodes on fluorine-doped tin oxide (FTO) substrates using the inexpensive chemical bath deposition method in the presence of hydrochloric acid (HCl) at different deposition times. CuS nanoplatelet structures were uniformly grown on the FTO substrate with a good dispersion and optimized conditions. The growth process of the CuS nanoplatelets can be controlled by changing the deposition time in the presence of HCl. HCl acts as a complexing agent as well as improving S(2-) concentration against S atoms in this one-step preparation. The photovoltaic performance was significantly improved in terms of the power conversion efficiency (PCE), short-circuit density (J(sc)), open-circuit voltage (V(oc)), and the fill factor (FF). The optimized deposition time of CuS 60 min resulted in a higher PCE of 4.06%, J(sc) of 12.92 mA cm(-2), V(oc) of 0.60 V, and a FF of 0.52 compared to CuS 50 min, CuS 70 min, and a Pt CE. The superior performance of the 60 min sample is due to the greater electrocatalytic activity and low charge transfer resistance at the interface of the CE and the polysulfide electrolyte. The concentration of Cu/S also had an important role in the formation of the CuS nanoplatelet structures. The optical bandgaps for the CuS with different morphologies were measured to be in the range of 1.98-2.28 eV. This improved photovoltaic performance is mainly attributed to the greater number of active reaction sites created by the CuS layer on the FTO substrate, which results large specific surface, superior electrical conductivity, low charge transfer resistance, and faster electron transport in the presence of HCl. Cyclic voltammetry, electrochemical impedance spectroscopy and Tafel-polarization measurements were used to investigate the electrocatalytic activity of the CuS and Pt CEs. This synthetic procedure not only provides high electrocatalytic activity for QDSSCs but could

  10. Enhanced photovoltaic performance and time varied controllable growth of a CuS nanoplatelet structured thin film and its application as an efficient counter electrode for quantum dot-sensitized solar cells via a cost-effective chemical bath deposition.

    PubMed

    Thulasi-Varma, Chebrolu Venkata; Rao, S Srinivasa; Kumar, Challa Shesha Sai Pavan; Gopi, Chandu V V M; Durga, I Kanaka; Kim, Soo-Kyoung; Punnoose, Dinah; Kim, Hee-Je

    2015-11-28

    For the first time we report a simple synthetic strategy to prepare copper sulfide counter electrodes on fluorine-doped tin oxide (FTO) substrates using the inexpensive chemical bath deposition method in the presence of hydrochloric acid (HCl) at different deposition times. CuS nanoplatelet structures were uniformly grown on the FTO substrate with a good dispersion and optimized conditions. The growth process of the CuS nanoplatelets can be controlled by changing the deposition time in the presence of HCl. HCl acts as a complexing agent as well as improving S(2-) concentration against S atoms in this one-step preparation. The photovoltaic performance was significantly improved in terms of the power conversion efficiency (PCE), short-circuit density (J(sc)), open-circuit voltage (V(oc)), and the fill factor (FF). The optimized deposition time of CuS 60 min resulted in a higher PCE of 4.06%, J(sc) of 12.92 mA cm(-2), V(oc) of 0.60 V, and a FF of 0.52 compared to CuS 50 min, CuS 70 min, and a Pt CE. The superior performance of the 60 min sample is due to the greater electrocatalytic activity and low charge transfer resistance at the interface of the CE and the polysulfide electrolyte. The concentration of Cu/S also had an important role in the formation of the CuS nanoplatelet structures. The optical bandgaps for the CuS with different morphologies were measured to be in the range of 1.98-2.28 eV. This improved photovoltaic performance is mainly attributed to the greater number of active reaction sites created by the CuS layer on the FTO substrate, which results large specific surface, superior electrical conductivity, low charge transfer resistance, and faster electron transport in the presence of HCl. Cyclic voltammetry, electrochemical impedance spectroscopy and Tafel-polarization measurements were used to investigate the electrocatalytic activity of the CuS and Pt CEs. This synthetic procedure not only provides high electrocatalytic activity for QDSSCs but could

  11. Characterization of CdTe Films Deposited at Various Bath Temperatures and Concentrations Using Electrophoretic Deposition

    PubMed Central

    Daud, Mohd Norizam Md; Zakaria, Azmi; Jafari, Atefeh; Ghazali, Mohd Sabri Mohd; Abdullah, Wan Rafizah Wan; Zainal, Zulkarnain

    2012-01-01

    CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111) orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the CdTe film increased with the increase of CdTe concentration. The optical energy band gap of film decreased with the increase of CdTe concentration, and with the increase of isothermal bath temperature. The film thickness increased with respect to the increase of CdTe concentration and bath temperature, and following, the numerical expression for the film thickness with respect to these two variables has been established. PMID:22754325

  12. Characterization of ZnS thin films synthesized through a non-toxic precursors chemical bath

    SciTech Connect

    Rodríguez, C.A.; Sandoval-Paz, M.G.; Cabello, G.; Flores, M.; Fernández, H.; Carrasco, C.

    2014-12-15

    Highlights: • High quality ZnS thin films have been deposited by chemical bath deposition technique from a non-toxic precursor’s solution. • Nanocrystalline ZnS thin films with large band gap energy were synthesized without using ammonia. • Evidence that the growing of the thin films is carried out by means of hydroxide mechanism was found. • The properties of these ZnS thin films are similar and in some cases better than the corresponding ones produced using toxic precursors such as ammonia. - Abstract: In solar cells, ZnS window layer deposited by chemical bath technique can reach the highest conversion efficiency; however, precursors used in the process normally are materials highly volatile, toxic and harmful to the environment and health (typically ammonia and hydrazine). In this work the characterization of ZnS thin films deposited by chemical bath in a non-toxic alkaline solution is reported. The effect of deposition technique (growth in several times) on the properties of the ZnS thin film was studied. The films exhibited a high percentage of optical transmission (greater than 80%); as the deposition time increased a decreasing in the band gap values from 3.83 eV to 3.71 eV was observed. From chemical analysis, the presence of ZnS and Zn(OH){sub 2} was identified and X-ray diffraction patterns exhibited a clear peak corresponding to ZnS hexagonal phase (1 0 3) plane, which was confirmed by electron diffraction patterns. From morphological studies, compact samples with well-defined particles, low roughness, homogeneous and pinhole-free in the surface were observed. From obtained results, it is evident that deposits of ZnS–CBD using a non-toxic solution are suitable as window layer for TFSC.

  13. Synthesis of CuFeS2 thin films from acidic chemical baths

    NASA Astrophysics Data System (ADS)

    Tonpe, Dipak; Gattu, Ketan; More, Ganesh; Upadhye, Deepak; Mahajan, Sandip; Sharma, Ramphal

    2016-05-01

    The growth of Copper iron sulfide nanocrystalline thin films onto glass substrates has been achieved by chemical bath deposition at acidic values of pH. The deposited thin films were characterized for their optoelectronic properties using Raman, UV-Vis spectroscopy. The Raman analysis confirms the formation of CuFeS2 thin film. The thin film with nanosized crystallites of CuFeS2 showed a bandgap of 0.7eV from UV-vis absorption spectroscopy.

  14. Effects of Sodium Citrate Concentration on Electroless Ni-Fe Bath Stability and Deposition

    NASA Astrophysics Data System (ADS)

    Jung, Myung-Won; Kang, Sung K.; Lee, Jae-Ho

    2014-01-01

    In this research, electroless Ni-Fe bath stability and deposition characteristics were investigated for various sodium citrate concentrations. Complexing agents such as sodium citrate are one of the main components of such electroless plating baths. Since they could play various roles such as maintaining pH stability, preventing precipitation of metal salts, and reducing the concentrations of free metal ions, the concentration of complexing agents in the plating bath is an important parameter for electroless deposition processes. In this research, unstable baths were obtained for insufficient sodium citrate concentrations, and these phenomena were analyzed with ChemEQL. Moreover, the deposition characteristics of electroless Ni-Fe for under bump metallurgy diffusion barriers were also investigated using energy-dispersive spectroscopy and field-emission scanning electron microscopy.

  15. Ammonia free growth of CdS thin films by Chemical Bath Technique

    NASA Astrophysics Data System (ADS)

    Jaber, A.; Alamri, S. N.; Aida, M. S.

    2011-10-01

    CdS thin films were deposited by a chemical bath deposition technique (CBD). The bath solution is composed of CdCl2 (0.1 M) salt as a source for Cd and thiourea (0.1M) as a source of sulphur (S). To avoid the toxicity and volatility of the commonly used ammonia, ethanolamine (ETA ) is used as complexing agent. Films were deposited with different times from 30 to 120 minutes in order to study the films growth mechanism. The solution temperature was fixed at 60°C. The structural and morphological films characterizations were carried by XRD analysis and AFM observations. From the XRD analysis we inferred that obtained CdS films have a pure hexagonal structure with the preferential orientation along the plane (101). The pure hexagonal structure is highly recommended for the realization of CdTe/ CdS or CuInSe/CdS solar cells. The presence of the hexagonal structure and the low growth rate in order of 1nm/min suggest that the growth mechanism is achieved through the ion by ion process. The optical characterization result indicates that the obtained films have a high transparency from 80 to 60 % in the visible range. In conclusion we inferred that CBD ammonia free CdS thin films deposition enables the production of films suitable for photovoltaic applications.

  16. Equilibrium characteristics of tartrate and EDTA-based electroless copper deposition baths

    SciTech Connect

    Ramasubramanian, M.; Popov, B.N.; White, R.E.; Chen, K.S.

    1997-08-01

    Electroless deposition of copper is being used for a variety of applications, one of them being the development of seed metallic layers on non-metals, which are widely used in electronic circuitry. Solution equilibrium characteristics of two electroless copper baths containing EDTA and tartrate as the complexing agents were studied as functions of pH, chelating agent and metal ion concentrations. Equilibrium diagrams were constructed for both cu-tartrate and Cu-EDTA systems. It was determined that copper is chiefly complexed as Cu(OH){sub 2}L{sub 2}{sup {minus}4} in the tartrate bath, and as CuA{sup {minus}2} in the EDTA bath, where L and A are the complexing tartrate and EDTA ligands, respectively. The operating ranges for electroless copper deposition were identified for both baths. Dependence of Cu(OH){sub 2} precipitation on the pH and species concentrations was also studied for these systems.

  17. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    A chemical vapor deposition (CVD) reactor system with a vertical deposition chamber was used for the growth of Si films on glass, glass-ceramic, and polycrystalline ceramic substrates. Silicon vapor was produced by pyrolysis of SiH4 in a H2 or He carrier gas. Preliminary deposition experiments with two of the available glasses were not encouraging. Moderately encouraging results, however, were obtained with fired polycrystalline alumina substrates, which were used for Si deposition at temperatures above 1,000 C. The surfaces of both the substrates and the films were characterized by X-ray diffraction, reflection electron diffraction, scanning electron microscopy optical microscopy, and surface profilometric techniques. Several experiments were conducted to establish baseline performance data for the reactor system, including temperature distributions on the sample pedestal, effects of carrier gas flow rate on temperature and film thickness, and Si film growth rate as a function of temperature.

  18. Chemical Safety: Molten Salt Baths Cited as Lab Hazards.

    ERIC Educational Resources Information Center

    Baum, Rudy

    1982-01-01

    Discusses danger of explosions with molten salts baths, commonly used as heat-transfer media. One such explosion involved use of a bath containing 3-lb sodium nitrite and 1-lb potassium thiocyanate. Although most commercially available mixtures for heat transfer contain oxidizers, a reducer (thiocyanate) was included which possibly triggered the…

  19. Investigation of electroless tin deposition from acidic thiourea-type bath

    NASA Astrophysics Data System (ADS)

    Araźna, A.; Bieliński, J.

    2006-10-01

    The constant tendency of miniaturization in electronic products and developments in surface assembly techniques creates requirement to prepare new techniques and processes also in the range of metallic coatings. An additional factor which influences the evolution of preservatives coatings technology is the necessity to adapt Polish law to European directive. From 1 st July 2006 there will be an obligatory RoHS directive banning applying lead in electronics. Electroless tin deposition is one of an alternative for Sn/Pb lead free preservative films on copper surface in PCB technology. Electroless deposition of tin coatings on copper can be made in two ways: from an alkaline bath - the process disproportionation of Sn(II) compounds and from acidic bath contain complex compound such as thiourea - the displacement of copper by tin in Sn(II). Alkaline baths are not used in printed circuit board technology because it has destructive influence on resists. Besides acidic baths complex compounds contain additional stability solution composition which modify structure of obtained tin film. Quality and thickness tin layer are fundamental parameters which determine its protective character. The research test were done in thiourea-type electroless tin bath. The influence of different parameters on n rate of tin deposition and thickness of Sn coating were determined: temperature of the bath, Sn(II)-salt, thiourea and HCl concentration. Tin layers were depositioned on electrolytical copper foil. The thickness of Sn coating was determined by coulometry in 2M HCl. The rate deposition process depends mainly on the thiourea and HCl concentrations in solution. The temperature is also a very important parameter. The thickness of tin layer grows when the temperature increase. Although above 70°C appear undesirable thiourea decomposition. The results of the investigation show that further investigations are necessary for this solution.

  20. Chemical vapor deposition sciences

    SciTech Connect

    1992-12-31

    Chemical vapor deposition (CVD) is a widely used method for depositing thin films of a variety of materials. Applications of CVD range from the fabrication of microelectronic devices to the deposition of protective coatings. New CVD processes are increasingly complex, with stringent requirements that make it more difficult to commercialize them in a timely fashion. However, a clear understanding of the fundamental science underlying a CVD process, as expressed through computer models, can substantially shorten the time required for reactor and process development. Research scientists at Sandia use a wide range of experimental and theoretical techniques for investigating the science of CVD. Experimental tools include optical probes for gas-phase and surface processes, a range of surface analytic techniques, molecular beam methods for gas/surface kinetics, flow visualization techniques and state-of-the-art crystal growth reactors. The theoretical strategy uses a structured approach to describe the coupled gas-phase and gas-surface chemistry, fluid dynamics, heat and mass transfer of a CVD process. The software used to describe chemical reaction mechanisms is easily adapted to codes that model a variety of reactor geometries. Carefully chosen experiments provide critical information on the chemical species, gas temperatures and flows that are necessary for model development and validation. This brochure provides basic information on Sandia`s capabilities in the physical and chemical sciences of CVD and related materials processing technologies. It contains a brief description of the major scientific and technical capabilities of the CVD staff and facilities, and a brief discussion of the approach that the staff uses to advance the scientific understanding of CVD processes.

  1. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    The chemical vapor deposition (CVD) method for the growth of Si sheet on inexpensive substrate materials is investigated. The objective is to develop CVD techniques for producing large areas of Si sheet on inexpensive substrate materials, with sheet properties suitable for fabricating solar cells meeting the technical goals of the Low Cost Silicon Solar Array Project. Specific areas covered include: (1) modification and test of existing CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using standard and near-standard processing techniques.

  2. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Campbell, A. G.; Johnson, R. E.; Kenty, J. L.; Moudy, L. A.; Shaw, G. L.; Simpson, W. I.; Yang, J. J.

    1978-01-01

    The objective was to investigate and develop chemical vapor deposition (CVD) techniques for the growth of large areas of Si sheet on inexpensive substrate materials, with resulting sheet properties suitable for fabricating solar cells that would meet the technical goals of the Low Cost Silicon Solar Array Project. The program involved six main technical tasks: (1) modification and test of an existing vertical-chamber CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using impurity diffusion and other standard and near-standard processing techniques supplemented late in the program by the in situ CVD growth of n(+)/p/p(+) sheet structures subsequently processed into experimental cells.

  3. Effect of Bath ph on Electroless Ni-P Coating Deposited on Open-Cell Aluminum Foams

    NASA Astrophysics Data System (ADS)

    Liu, Jiaan; Si, Fujian; Li, Dong; Liu, Yan; Cao, Zheng; Wang, Guoyong

    2015-09-01

    Different electroless Ni-P coatings were deposited on open-cell aluminum foams at various bath pH. The effect of bath pH on the morphology, structure, components, phases and corrosion resistance of the Ni-P coating was studied by scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), immersion test and electrochemical polarization measurement, respectively. The experimental results show that the bath pH not only changed the reactivity of the bath, but also had a influence on the microstructure and anticorrosive property of electroless Ni-P coating. The high pH bath raises the thickness of Ni-P coating but decreases the content of phosphorus element in the Ni-P coating. The corrosion resistance of the coated aluminum foams increases when the bath pH rises.

  4. Structure of as-deposited and heat-treated iron-zinc coatings from chloride bath

    SciTech Connect

    Drewien, C.A.; Goldstein, J.I.; Marder, A.R.

    1993-09-01

    The iron content, phase constitution, and microstructure of electrodeposited iron-zinc alloy (EZA) coatings, deposited from chloride baths, is described for as-deposited and heat-treated conditions of coatings containing bulk iron contents of 6, 8, 10, and 13 w/o. The observed influence of current density upon iron content, which in turn influences the phase constitution and microstructure of the coatings, is reported. The microstructure, composed of non-equilibrium phases that have nanometer grain sizes, is illustrated and described with respect to iron content, crystallography, and morphology. As-deposited {eta} phase coatings undergo transformations through a sequence of metastable phases when heated. The sequence of phase transformations varies with iron content, but the mechanisms of phase transformation from the as-deposited eta phase to the metastable G phase was found to be similar in 6, 8, and 10 w/o Fe coatings. Microstructural, compositional, and crystallographic changes associated with this phase transformation are discussed.

  5. Dynamics of surface evolution in semiconductor thin films grown from a chemical bath.

    PubMed

    Gupta, Indu; Mohanty, Bhaskar Chandra

    2016-01-01

    Dynamics of surface evolution in CdS thin films grown by chemical bath deposition technique has been studied from time sequence of atomic force micrographs. Detailed scaling analysis of surface fluctuation in real and Fourier space yielded characteristic exponents αloc = 0.78 ± 0.07, α = 2.20 ± 0.08, αs = 1.49 ± 0.22, β = 0.86 ± 0.05 and βloc = 0.43 ± 0.10, which are very different from those predicted by the local growth models and are not related to any known universality classes. The observed anomalous scaling pattern, characterized by power law scaling dependence of interface width on deposition time differently at local and global scale, with rapid roughening of the growth front has been discussed to arise as a consequence of a nonlocal effect in the form of diffusional instability. PMID:27615367

  6. Dynamics of surface evolution in semiconductor thin films grown from a chemical bath

    NASA Astrophysics Data System (ADS)

    Gupta, Indu; Mohanty, Bhaskar Chandra

    2016-09-01

    Dynamics of surface evolution in CdS thin films grown by chemical bath deposition technique has been studied from time sequence of atomic force micrographs. Detailed scaling analysis of surface fluctuation in real and Fourier space yielded characteristic exponents αloc = 0.78 ± 0.07, α = 2.20 ± 0.08, αs = 1.49 ± 0.22, β = 0.86 ± 0.05 and βloc = 0.43 ± 0.10, which are very different from those predicted by the local growth models and are not related to any known universality classes. The observed anomalous scaling pattern, characterized by power law scaling dependence of interface width on deposition time differently at local and global scale, with rapid roughening of the growth front has been discussed to arise as a consequence of a nonlocal effect in the form of diffusional instability.

  7. Dynamics of surface evolution in semiconductor thin films grown from a chemical bath

    PubMed Central

    Gupta, Indu; Mohanty, Bhaskar Chandra

    2016-01-01

    Dynamics of surface evolution in CdS thin films grown by chemical bath deposition technique has been studied from time sequence of atomic force micrographs. Detailed scaling analysis of surface fluctuation in real and Fourier space yielded characteristic exponents αloc = 0.78 ± 0.07, α = 2.20 ± 0.08, αs = 1.49 ± 0.22, β = 0.86 ± 0.05 and βloc = 0.43 ± 0.10, which are very different from those predicted by the local growth models and are not related to any known universality classes. The observed anomalous scaling pattern, characterized by power law scaling dependence of interface width on deposition time differently at local and global scale, with rapid roughening of the growth front has been discussed to arise as a consequence of a nonlocal effect in the form of diffusional instability. PMID:27615367

  8. Deposited atmospheric chemicals

    SciTech Connect

    Schell, W.R.

    1986-09-01

    A mountaintop bog in western Pennsylvania serves as a reservoir for materials deposited from the atmosphere. Biological activity in the bog decomposes plant matter, which becomes humified and mineralized at increasing depths. Little or no mixing of elements occurs below the active root zone. Radionuclides produced by natural means and by nuclear weapons have been used to measure the ages of the layers deposited during the growing season of each year. The upper layers of the bog indicate that the deposition of total sulfur is at least 20 times and that of nitrogen is 45 times the value estimated prior to cutting the forest, with a doubling time for each of 25-35 yr. Bromine deposition also doubles every 35 yr. The pattern of mass and element deposition illustrates the changes in land use and industrial effluents that were sources for the material deposited on the bog. The decrease in atmospheric particle removal shows up in the 1960 and later layers. Compared with terrestrial abundances, the relative enrichments over time for chlorine, nitrogen, sulfur, and bromine are more than 100 times those calculated for 1817; lead, calcium, and antimony are 10 to 40 times greater.

  9. [Polishing of titanium prosthetics (Part 6). The chemical polishing baths containing hydrofluoric acid and nitric acid].

    PubMed

    Tamaki, Y; Miyazaki, T; Suzuki, E; Miyaji, T

    1989-01-01

    Titanium was polished using several chemical polishing baths containing different ratios of hydrofluoric acid and nitric acid. The meltage, surface roughness, and surface texture of titanium samples after chemical polishing were affected by the ratio of hydrofluoric acid and nitric acid. Generally the meltage increased and surface roughness decreased when the mole concentration of hydrofluoric acid was high and that of nitric acid was low. For example the chemical polishing bath containing 5 mole hydrofluoric acid and 5 mole nitric acid improved the surface texture in one minute, but SEM observation revealed a partially rough surface caused by the excessive solution. The chemical polishing bath containing 1 mole hydrofluoric acid and 5 mole nitric acid did not improve the surface texture in a short time because of low solubility, but improved the surface texture gradually with the extension of the immersion time and a good surface texture was observed by SEM. The chemical polishing using the chemical polishing bath with low solubility and immersion of the prosthetics for a rather long time were considered useful procedures to obtain a smooth surface of titanium prosthetics while maintaining their accuracy.

  10. Continuous High-Aligned Polyacrylonitrile Electrospun Nanofibers Yarns via Circular Deposition on Water Bath.

    PubMed

    Bin, Yu; Hao, Yu; Zhu, Meifang; Wang, Hongzhi

    2016-06-01

    A novel strategy for preparing high-aligned continuous Polyacrylonitrile (PAN) electrospun nanofibers yarns is introduced. The yarn is rolled up from circular deposition, which can be changed by controlling the humidity of spinning environment. High-aligned yarn is obtained with the rolling speed of 57 m/min. Very few defects are found in the received yarn. Also the as-spun yarn is drawn in hot water bath to improve its mechanical properties further. The mechanical properties and X-Ray Diffraction (XRD) tests are systematically investigated. The tensile strength of the as-spun yarn rolled with 57 m/min can reach 240 MPa, close to that of as-spun fibers from wet spinning. Furthermore, after drawn of 5 ratios, tensile strength of yarn comes to 580 MPa, which broaden the applied fields of electrospun nanofibers. In addition, the forming mechanism of yarn in the water bath is analyzed and compared with the previous work. Actually, it can be testified experimentally that PAN nanofibers yarn has the same mechanical properties as that prepared with the other approaches with the same testing conditions in this work. The continuous high-aligned electrospun nanofibers PAN yarn via circular deposition in this paper is capable of meeting the requirement of the more applications needing of high mechanical properties and alignment degree. PMID:27427608

  11. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Johnson, R. E.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    A laboratory type CVD reactor system with a vertical deposition chamber and sample pedestal heated by an external RF coil has been extensively modified by installation of mass flow controllers, automatic process sequence timers, and special bellows-sealed air-operated valves for overall improved performance. Various film characterization procedures, including classical metallography, SEM analyses, X ray diffraction analyses, surface profilometry, and electrical measurements (resistivity, carrier concentration, mobility, spreading resistance profiles, and minority-carrier lifetime by the C-V-t method) area used to correlate Si sheet properties with CVD parameters and substrate properties. Evaluation procedures and measurements are given. Experimental solar cell structures were made both in epitaxial Si sheet (on sapphire substrates) and in polycrystalline material on alumina substrates, the former to provide an indication of what might be an upper limit on performance of the latter. Preliminary results are given, as obtained in cell structures not specially designed to allow for the unique properties of the sheet material, and fabricated in material known to be far from optimum for photovoltaic performance. Low power conversion efficiencies have been obtained in the epitaxial as well as the polycrystalline Si sheet.

  12. Simple Chemical Vapor Deposition Experiment

    ERIC Educational Resources Information Center

    Pedersen, Henrik

    2014-01-01

    Chemical vapor deposition (CVD) is a process commonly used for the synthesis of thin films for several important technological applications, for example, microelectronics, hard coatings, and smart windows. Unfortunately, the complexity and prohibitive cost of CVD equipment makes it seldom available for undergraduate chemistry students. Here, a…

  13. Mixed ether bath for electrodeposition of aluminum

    NASA Technical Reports Server (NTRS)

    Lui, K.

    1969-01-01

    Anisole added to the bath mixture improves Brenner aluminum plating bath technique. Mixture has lower bath vapor-pressure and the electro-deposits obtained have greater physical strength than deposits from the Brenner bath.

  14. Effect of complexing agent on the photoelectrochemical properties of bath deposited CdS thin films

    NASA Astrophysics Data System (ADS)

    Patil, S. B.; Singh, A. K.

    2010-02-01

    In the present paper photoelectrochemical (PEC) performance of bath deposited CdS thin films based on complexing agents i.e. ammonia and triethanolamine (TEA) has been discussed. Effect of annealing has also been analyzed. The as-deposited and annealed (at 523 K for 1 h in air) films were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) absorption spectroscopy, SEM, electrochemical impedance spectroscopy (EIS), and PEC properties. XRD studies revealed that the films were nanocrystalline in nature with mixed hexagonal and cubic phases. TEA complex resulted in better crystallinity. Further improvement in the crystallinity of the films was observed after air annealing. The marigold flower-like structure, in addition to flakes morphology, was observed with TEA complex, whereas for ammonia complex only flakes morphology was observed. The UV-vis absorption studies revealed that the optical absorption edge for the films with ammonia and TEA complex was around 475 nm and 500 nm, respectively. Annealing of the films resulted in red shift in the UV-vis absorption. The PEC cell performance of CdS films was found to be strongly affected by crystallinity and morphology of the films resulted due to complexing agent and annealing. The air annealed film deposited using TEA complex showed maximum short circuit current density ( Jsc) and open circuit voltage ( Voc) i.e. 99 μA/cm 2 and 376 mV respectively, under 10 mW/cm 2 of illumination. The films deposited using TEA complex showed good stability under PEC cell conditions.

  15. [Analysis of formaldehyde in various chemical products for household use and in shampoos and bath liquids].

    PubMed

    Piekacz, H; Kiss, E

    1989-01-01

    In the years 1987-1988 in cooperation with 34 Province Sanitary-Epidemiological Stations 938 samples of shampoos and bathing fluids were investigated, among them 40 imported shampoos, besides that 829 samples of chemical products for household use were analysed for the presence of formaldehyde. In the products which should not contain formaldehyde this compound was found in amounts from 0 to 50 mg/kg in 84.75% of shampoos and bathing fluids (77.18% of the samples contained no formaldehyde), 87.03% of fluids for washing of vessels, rinsing and softening of fabrics, and for washing or refrigerators (in 75.13% of these products formaldehyde was not found). The authors suggest that the permissible formaldehyde level for these products should be 50 mg/kg and should be accepted as contamination. In these products in which the permitted formaldehyde level was 0.1% already 99.12% of the samples was below that value.

  16. Chemical vapor deposition of sialon

    DOEpatents

    Landingham, R.L.; Casey, A.W.

    A laminated composite and a method for forming the composite by chemical vapor deposition are described. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200/sup 0/C; and impinging a gas containing N/sub 2/, SiCl/sub 4/, and AlCl/sub 3/ on the surface.

  17. Chemical vapor deposition of sialon

    DOEpatents

    Landingham, Richard L.; Casey, Alton W.

    1982-01-01

    A laminated composite and a method for forming the composite by chemical vapor deposition. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200.degree. C.; and impinging a gas containing in a flowing atmosphere of air N.sub.2, SiCl.sub.4, and AlCl.sub.3 on the surface.

  18. Optical Characterization Of Chemically Deposited Nanostructured CdS Films

    NASA Astrophysics Data System (ADS)

    Goswami, Y. C.; Kansal, Archana

    2009-06-01

    Newly modified hot chemical deposition method was used to grow Cadmium sulfide films. Substrates were kept at relatively higher temperature than the bath using local heating. The bath was consisting of aqueous solutions of Cadmium chloride, Thiourea and complexed by TEA. The Ph of the bath was maintained around 8-10 by adding ammonia solution. The soda lime glass slides were used as substrates. Good thick films were obtained few minutes. Air annealing was used to study the effect of heat treatment on quality of the films. All films were analyzed using optical spectrophotometer. The step like nature in transmission spectra and band gap curves could be due to discrete energy levels, which exist in nanomaterials. Blue shift is observed in samples. Band gap shift from higher value to lower value suggest that films are either of thickness of few nanometer range and/or grain size is of the nanometer range. This paper includes details about new modified dipping technique and optical, structural studies of these films.

  19. Chemically Deposited Thin-Film Solar Cell Materials

    NASA Technical Reports Server (NTRS)

    Raffaelle, R.; Junek, W.; Gorse, J.; Thompson, T.; Harris, J.; Hehemann, D.; Hepp, A.; Rybicki, G.

    2005-01-01

    We have been working on the development of thin film photovoltaic solar cell materials that can be produced entirely by wet chemical methods on low-cost flexible substrates. P-type copper indium diselenide (CIS) absorber layers have been deposited via electrochemical deposition. Similar techniques have also allowed us to incorporate both Ga and S into the CIS structure, in order to increase its optical bandgap. The ability to deposit similar absorber layers with a variety of bandgaps is essential to our efforts to develop a multi-junction thin-film solar cell. Chemical bath deposition methods were used to deposit a cadmium sulfide (CdS) buffer layers on our CIS-based absorber layers. Window contacts were made to these CdS/CIS junctions by the electrodeposition of zinc oxide (ZnO). Structural and elemental determinations of the individual ZnO, CdS and CIS-based films via transmission spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy and energy dispersive spectroscopy will be presented. The electrical characterization of the resulting devices will be discussed.

  20. Chemical vapor deposition of epitaxial silicon

    DOEpatents

    Berkman, Samuel

    1984-01-01

    A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.

  1. Flexural strength of acrylic resin repairs processed by different methods: water bath, microwave energy and chemical polymerization

    PubMed Central

    ARIOLI FILHO, João Neudenir; BUTIGNON, Luís Eduardo; PEREIRA, Rodrigo de Paula; LUCAS, Matheus Guilherme; MOLLO JUNIOR, Francisco de Assis

    2011-01-01

    Denture fractures are common in daily practice, causing inconvenience to the patient and to the dentists. Denture repairs should have adequate strength, dimensional stability and color match, and should be easily and quickly performed as well as relatively inexpensive. Objective The aim of this study was to evaluate the flexural strength of acrylic resin repairs processed by different methods: warm water-bath, microwave energy, and chemical polymerization. Material and methods Sixty rectangular specimens (31x10x2.5 mm) were made with warm water-bath acrylic resin (Lucitone 550) and grouped (15 specimens per group) according to the resin type used to make repair procedure: 1) specimens of warm water-bath resin (Lucitone 550) without repair (control group); 2) specimens of warm water-bath resin repaired with warm water-bath; 3) specimens of warm water-bath resin repaired with microwave resin (Acron MC); 4) specimens of warm water-bath resin repaired with autopolymerized acrylic resin (Simplex). Flexural strength was measured with the three-point bending in a universal testing machine (MTS 810 Material Test System) with load cell of 100 kgf under constant speed of 5 mm/min. Data were analyzed statistically by Kruskal-Wallis test (p<0.05). Results The control group showed the best result (156.04±1.82 MPa). Significant differences were found among repaired specimens and the results were decreasing as follows: group 3 (43.02±2.25 MPa), group 2 (36.21±1.20 MPa) and group 4 (6.74±0.85 MPa). Conclusion All repaired specimens demonstrated lower flexural strength than the control group. Repairs with autopolymerized acrylic resin showed the lowest flexural strength. PMID:21625742

  2. Research and Analysis on the Physical and Chemical Properties of Molten Bath with Bottom-Blowing in EAF Steelmaking Process

    NASA Astrophysics Data System (ADS)

    Wei, Guangsheng; Zhu, Rong; Dong, Kai; Ma, Guohong; Cheng, Ting

    2016-10-01

    Bottom-blowing technology is widely adopted in electric arc furnace (EAF) steelmaking to promote the molten bath fluid flow, accelerate the metallurgical reaction, and improve the quality of molten steel. In this study, a water model experiment and a computational fluid dynamics model were established to investigate the effects of bottom-blowing gas flow rate on the fluid flow characteristics in the EAF molten bath. The results show that the interaction among the bottom-blowing gas streams influences the molten bath flow field, and increasing the bottom-blowing gas flow rate can accelerate the fluid flow and decrease the volume of the dead zone. Based on industrial application research, the physical and chemical properties of the molten bath with bottom-blowing were analyzed. Compared with traditional melting conditions without bottom-blowing, bottom-blowing technology demonstrates obvious advantages in promoting the heat transfer and metallurgical reactions in the molten bath. With the bottom-blowing arrangement, the dephosphorization and decarburization rates are accelerated, the contents of FeO and T. Fe in endpoint slag are decreased, and the endpoint carbon-oxygen equilibrium of molten steel is improved.

  3. Research and Analysis on the Physical and Chemical Properties of Molten Bath with Bottom-Blowing in EAF Steelmaking Process

    NASA Astrophysics Data System (ADS)

    Wei, Guangsheng; Zhu, Rong; Dong, Kai; Ma, Guohong; Cheng, Ting

    2016-06-01

    Bottom-blowing technology is widely adopted in electric arc furnace (EAF) steelmaking to promote the molten bath fluid flow, accelerate the metallurgical reaction, and improve the quality of molten steel. In this study, a water model experiment and a computational fluid dynamics model were established to investigate the effects of bottom-blowing gas flow rate on the fluid flow characteristics in the EAF molten bath. The results show that the interaction among the bottom-blowing gas streams influences the molten bath flow field, and increasing the bottom-blowing gas flow rate can accelerate the fluid flow and decrease the volume of the dead zone. Based on industrial application research, the physical and chemical properties of the molten bath with bottom-blowing were analyzed. Compared with traditional melting conditions without bottom-blowing, bottom-blowing technology demonstrates obvious advantages in promoting the heat transfer and metallurgical reactions in the molten bath. With the bottom-blowing arrangement, the dephosphorization and decarburization rates are accelerated, the contents of FeO and T. Fe in endpoint slag are decreased, and the endpoint carbon-oxygen equilibrium of molten steel is improved.

  4. Laser Induced Chemical Liquid Phase Deposition (LCLD)

    SciTech Connect

    Nanai, Laszlo; Balint, Agneta M.

    2012-08-17

    Laser induced chemical deposition (LCLD) of metals onto different substrates attracts growing attention during the last decade. Deposition of metals onto the surface of dielectrics and semiconductors with help of laser beam allows the creation of conducting metal of very complex architecture even in 3D. In the processes examined the deposition occurs from solutions containing metal ions and reducing agents. The deposition happens in the region of surface irradiated by laser beam (micro reactors). Physics -chemical reactions driven by laser beam will be discussed for different metal-substrate systems. The electrical, optical, mechanical properties of created interfaces will be demonstrated also including some practical-industrial applications.

  5. Chemical enhancement of surface deposition

    DOEpatents

    Patch, Keith D.; Morgan, Dean T.

    1997-07-29

    A method and apparatus for increasing the deposition of ions onto a surface, such as the adsorption of uranium ions on the detecting surface of a radionuclide detector. The method includes the step of exposing the surface to a complexing agent, such as a phosphate ion solution, which has an affinity for the dissolved species to be deposited on the surface. This provides, for example, enhanced sensitivity of the radionuclide detector.

  6. Chemical enhancement of surface deposition

    DOEpatents

    Patch, K.D.; Morgan, D.T.

    1997-07-29

    A method and apparatus are disclosed for increasing the deposition of ions onto a surface, such as the adsorption of uranium ions on the detecting surface of a radionuclide detector. The method includes the step of exposing the surface to a complexing agent, such as a phosphate ion solution, which has an affinity for the dissolved species to be deposited on the surface. This provides, for example, enhanced sensitivity of the radionuclide detector. 16 figs.

  7. Modeling the transport of organic chemicals between polyethylene passive samplers and water in finite and infinite bath conditions.

    PubMed

    Tcaciuc, A Patricia; Apell, Jennifer N; Gschwend, Philip M

    2015-12-01

    Understanding the transfer of chemicals between passive samplers and water is essential for their use as monitoring devices of organic contaminants in surface waters. By applying Fick's second law to diffusion through the polymer and an aqueous boundary layer, the authors derived a mathematical model for the uptake of chemicals into a passive sampler from water, in finite and infinite bath conditions. The finite bath model performed well when applied to laboratory observations of sorption into polyethylene (PE) sheets for various chemicals (polycyclic aromatic hydrocarbons, polychlorinated biphenyls [PCBs], and dichlorodiphenyltrichloroethane [DDT]) and at varying turbulence levels. The authors used the infinite bath model to infer fractional equilibration of PCB and DDT analytes in field-deployed PE, and the results were nearly identical to those obtained using the sampling rate model. However, further comparison of the model and the sampling rate model revealed that the exchange of chemicals was inconsistent with the sampling rate model for partially or fully membrane-controlled transfer, which would be expected in turbulent conditions or when targeting compounds with small polymer diffusivities and small partition coefficients (e.g., phenols, some pesticides, and others). The model can be applied to other polymers besides PE as well as other chemicals and in any transfer regime (membrane, mixed, or water boundary layer-controlled). Lastly, the authors illustrate practical applications of this model such as improving passive sampler design and understanding the kinetics of passive dosing experiments. PMID:26109238

  8. Structural, optical and electric properties of nanocrystalline MgSe thin films deposited by chemical route using triethanolamine as a complexing agent

    NASA Astrophysics Data System (ADS)

    Ubale, Ashok U.; Sakhare, Y. S.; Ibrahim, S. G.; Belkhedkar, M. R.

    2013-09-01

    Semiconducting nanocrystalline thin films of magnesium selenide have been prepared using economic chemical bath deposition technique onto glass substrates at room temperature. The deposition bath consists of magnesium chloride, triethanolamine, hydrazine hydrate and selenium dioxide. The quantity of triethanolamine in the deposition bath was varied to study its effect on growth process as well as on physical properties of MgSe. The deposited films were characterized using X-ray diffraction, scanning electron microscopy and atomic force microscopy techniques. The effect of complexing agent (TEA) on optical and electrical properties is reported. It was found that as the triethanolamine in deposition bath increases, optical band-gap and electrical resistivity decreases. The thermo-emf measurement shows p-type nature of MgSe.

  9. Chemical-vapor-deposition reactor

    NASA Technical Reports Server (NTRS)

    Chern, S.

    1979-01-01

    Reactor utilizes multiple stacked trays compactly arranged in paths of horizontally channeled reactant gas streams. Design allows faster and more efficient deposits of film on substrates, and reduces gas and energy consumption. Lack of dead spots that trap reactive gases reduces reactor purge time.

  10. Chemical vapor deposition of mullite coatings

    DOEpatents

    Sarin, Vinod; Mulpuri, Rao

    1998-01-01

    This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

  11. Numerical modeling tools for chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Jasinski, Thomas J.; Childs, Edward P.

    1992-01-01

    Development of general numerical simulation tools for chemical vapor deposition (CVD) was the objective of this study. Physical models of important CVD phenomena were developed and implemented into the commercial computational fluid dynamics software FLUENT. The resulting software can address general geometries as well as the most important phenomena occurring with CVD reactors: fluid flow patterns, temperature and chemical species distribution, gas phase and surface deposition. The physical models are documented which are available and examples are provided of CVD simulation capabilities.

  12. Occult chemical deposition to a Maritime forest

    SciTech Connect

    Vong, R.J.; Kowalski, A.S.

    1996-12-31

    Studies of chemical fluxes from the atmosphere to vegetated surfaces have suggested that, along with conventional wet and dry processes, an additional chemical input occurs when wind-blown cloud droplets are directly intercepted by vegetation. This cloud water deposition process has been sometimes termed {open_quote}occult deposition{close_quote} because the water fluxes cannot ordinarily be observed using rain gauges. Such occult deposition of cloud water has rarely been measured directly, in part because of the complexity of the governing turbulent transfer process. However, reviews by the National Acidic Precipitation Assessment Program (NAPAP SoS/T-2,6) have suggested that the chemical flux to be forest decline in the eastern USA. This paper presents direct field measurements occult chemical fluxes to a silver fir forest located in complex terrain on the Olympic Peninsula near the coast of Washington State, USA.

  13. Quantitative study on the chemical solution deposition of zinc oxysulfide

    DOE PAGESBeta

    Reinisch, Michael; Perkins, Craig L.; Steirer, K. Xerxes

    2015-11-21

    Zinc Oxysulfide (ZnOS) has demonstrated potential in the last decade to replace CdS as a buffer layer material since it is a wide-band-gap semiconductor with performance advantages over CdS (Eg = 2.4 eV) in the near UV-range for solar energy conversion. However, questions remain on the growth mechanisms of chemical bath deposited ZnOS. In this study, a detailed model is employed to calculate solubility diagrams that describe simple conditions for complex speciation control using only ammonium hydroxide without additional base. For these conditions, ZnOS is deposited via aqueous solution deposition on a quartz crystal microbalance in a continuous flow cell.more » Data is used to analyze the growth rate dependence on temperature and also to elucidate the effects of dimethylsulfoxide (DMSO) when used as a co-solvent. Activation energies (EA) of ZnOS are calculated for different flow rates and solution compositions. As a result, the measured EA relationships are affected by changes in the primary growth mechanism when DMSO is included.« less

  14. Quantitative study on the chemical solution deposition of zinc oxysulfide

    SciTech Connect

    Reinisch, Michael; Perkins, Craig L.; Steirer, K. Xerxes

    2015-11-21

    Zinc Oxysulfide (ZnOS) has demonstrated potential in the last decade to replace CdS as a buffer layer material since it is a wide-band-gap semiconductor with performance advantages over CdS (Eg = 2.4 eV) in the near UV-range for solar energy conversion. However, questions remain on the growth mechanisms of chemical bath deposited ZnOS. In this study, a detailed model is employed to calculate solubility diagrams that describe simple conditions for complex speciation control using only ammonium hydroxide without additional base. For these conditions, ZnOS is deposited via aqueous solution deposition on a quartz crystal microbalance in a continuous flow cell. Data is used to analyze the growth rate dependence on temperature and also to elucidate the effects of dimethylsulfoxide (DMSO) when used as a co-solvent. Activation energies (EA) of ZnOS are calculated for different flow rates and solution compositions. As a result, the measured EA relationships are affected by changes in the primary growth mechanism when DMSO is included.

  15. Laser Velocimetry of Chemical Vapor Deposition Flows

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Laser velocimetry (LV) is being used to measure the gas flows in chemical vapor deposition (CVD) reactors. These gas flow measurements can be used to improve industrial processes in semiconductor and optical layer deposition and to validate numerical models. Visible in the center of the picture is the graphite susceptor glowing orange-hot at 600 degrees C. It is inductively heated via the copper cool surrounding the glass reactor.

  16. Chemical-Vapor-Deposited Diamond Film

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This chapter describes the nature of clean and contaminated diamond surfaces, Chemical-vapor-deposited (CVD) diamond film deposition technology, analytical techniques and the results of research on CVD diamond films, and the general properties of CVD diamond films. Further, it describes the friction and wear properties of CVD diamond films in the atmosphere, in a controlled nitrogen environment, and in an ultra-high-vacuum environment.

  17. AFM investigation and optical band gap study of chemically deposited PbS thin films

    NASA Astrophysics Data System (ADS)

    Zaman, S.; Mansoor, M.; Abubakar; Asim, M. M.

    2016-08-01

    The interest into deposition of nanocrystalline PbS thin films, the potential of designing and tailoring both the topographical features and the band gap energy (Eg) by controlling growth parameters, has significant technological importance. Nanocrystalline thin films of lead sulfide were grown onto glass substrates by chemical bath deposition (CBD) method. The experiments were carried out by varying deposition temperature. We report on the modification of structural and optical properties as a function of deposition temperature. The morphological changes of the films were analyzed by using SEM and AFM. AFM was also used to calculate average roughness of the films. XRD spectra indicated preferred growth of cubic phase of PbS films in (200) direction with increasing deposition time. Optical properties have been studied by UV-Spectrophotometer. From the diffused reflectance spectra we have calculated the optical Eg shift from 0.649-0.636 eV with increasing deposition time.

  18. Low-pressure, chemical vapor deposition polysilicon

    NASA Technical Reports Server (NTRS)

    Gallagher, B. D.; Crotty, G. C.

    1986-01-01

    The low-pressure chemical vapor deposition (LPCVD) of polycrystalline silicon was investigted. The physical system was described, as was the controlling process parameters and requirements for producing films for use as an integral portion of the solar cell contact system.

  19. Automated semiconductor vacuum chemical vapor deposition facility

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A semiconductor vacuum chemical vapor deposition facility (totally automatic) was developed. Wafers arrived on an air track, automatically loaded into a furnace tube, processed, returned to the track, and sent on to the next operation. The entire process was controlled by a computer.

  20. Chemical effect on ozone deposition over seawater

    EPA Science Inventory

    Surface layer resistance plays an important role in determining ozone deposition velocity over seawater. Recent studies suggest that surface layer resistance over sea-water is influenced by wind-speed and chemical interaction at the air-water interface. Here, we investigate the e...

  1. Chemical vapor deposition coating for micromachines

    SciTech Connect

    MANI,SEETHAMBAL S.; FLEMING,JAMES G.; SNIEGOWSKI,JEFFRY J.; DE BOER,MAARTEN P.; IRWIN,LAWRENCE W.; WALRAVEN,JEREMY A.; TANNER,DANELLE M.; DUGGER,MICHAEL T.

    2000-04-21

    Two major problems associated with Si-based MEMS devices are stiction and wear. Surface modifications are needed to reduce both adhesion and friction in micromechanical structures to solve these problems. In this paper, the authors will present a process used to selectively coat MEMS devices with tungsten using a CVD (Chemical Vapor Deposition) process. The selective W deposition process results in a very conformal coating and can potentially solve both stiction and wear problems confronting MEMS processing. The selective deposition of tungsten is accomplished through silicon reduction of WF{sub 6}, which results in a self-limiting reaction. The selective deposition of W only on polysilicon surfaces prevents electrical shorts. Further, the self-limiting nature of this selective W deposition process ensures the consistency necessary for process control. Selective tungsten is deposited after the removal of the sacrificial oxides to minimize process integration problems. This tungsten coating adheres well and is hard and conducting, requirements for device performance. Furthermore, since the deposited tungsten infiltrates under adhered silicon parts and the volume of W deposited is less than the amount of Si consumed, it appears to be possible to release stuck parts that are contacted over small areas such as dimples. Results from tungsten deposition on MEMS structures with dimples will be presented. The effect of wet and vapor phase cleanings prior to the deposition will be discussed along with other process details. The W coating improved wear by orders of magnitude compared to uncoated parts. Tungsten CVD is used in the integrated-circuit industry, which makes this approach manufacturable.

  2. Chemical vapor deposition of group IIIB metals

    DOEpatents

    Erbil, Ahmet

    1989-01-01

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula (I) ##STR1## where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula I is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula I and a heat decomposable tellurium compound under nonoxidizing conditions.

  3. Chemical vapor deposition of group IIIB metals

    DOEpatents

    Erbil, A.

    1989-11-21

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  4. Chemical deposition methods using supercritical fluid solutions

    DOEpatents

    Sievers, Robert E.; Hansen, Brian N.

    1990-01-01

    A method for depositing a film of a desired material on a substrate comprises dissolving at least one reagent in a supercritical fluid comprising at least one solvent. Either the reagent is capable of reacting with or is a precursor of a compound capable of reacting with the solvent to form the desired product, or at least one additional reagent is included in the supercritical solution and is capable of reacting with or is a precursor of a compound capable of reacting with the first reagent or with a compound derived from the first reagent to form the desired material. The supercritical solution is expanded to produce a vapor or aerosol and a chemical reaction is induced in the vapor or aerosol so that a film of the desired material resulting from the chemical reaction is deposited on the substrate surface. In an alternate embodiment, the supercritical solution containing at least one reagent is expanded to produce a vapor or aerosol which is then mixed with a gas containing at least one additional reagent. A chemical reaction is induced in the resulting mixture so that a film of the desired material is deposited.

  5. Advanced deposition model for thermal activated chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  6. Origin and chemical composition of evaporite deposits

    USGS Publications Warehouse

    Moore, George William

    1960-01-01

    A comparative study of marine evaporite deposits forming at the present time along the pacific coast of central Mexico and evaporite formations of Permian age in West Texas Basin was made in order to determine if the modern sediments provide a basis for understanding environmental conditions that existed during deposition of the older deposits. The field work was supplemented by investigations of artificial evaporite minerals precipitated in the laboratory and by study of the chemical composition of halite rock of different geologic ages. The environment of deposition of contemporaneous marine salt deposits in Mexico is acidic, is strongly reducing a few centimeters below the surface, and teems with microscopic life. Deposition of salt, unlike that of many other sediments, is not wholly a constructional phenomenon. Permanent deposits result only if a favorable balance exists between deposition in the dry season and dissolution in the wet season. Evaporite formations chosen for special study in the West Texas Basin are, in ascending order, the Castile, Salado, and Rustler formations, which have a combined thickness of 1200 meters. The Castile formation is largely composed of gypsum rock, the Salado, halite rock, and the Rustler, quartz and carbonate sandstone. The lower part of the Castile formation is bituminous and contains limestone laminae. The Castile and Rustler formations thicken to the south at the expense of salt of the intervening Salado formation. The clastic rocks of the Rustler formation are interpreted as the deposits of a series of barrier islands north of which halite rock of the Salado was deposited. The salt is believed to have formed in shallow water of uniform density that was mixed by the wind. Where water depth exceeded the depth of the wind mixing, density stratification developed, and gypsum was deposited. Dense water of high salinity below the density discontinuity was overlain by less dense, more normally saline water which was derived from

  7. Radiative transfer modeling of surface chemical deposits

    NASA Astrophysics Data System (ADS)

    Reichardt, Thomas A.; Kulp, Thomas J.

    2016-05-01

    Remote detection of a surface-bound chemical relies on the recognition of a pattern, or "signature," that is distinct from the background. Such signatures are a function of a chemical's fundamental optical properties, but also depend upon its specific morphology. Importantly, the same chemical can exhibit vastly different signatures depending on the size of particles composing the deposit. We present a parameterized model to account for such morphological effects on surface-deposited chemical signatures. This model leverages computational tools developed within the planetary and atmospheric science communities, beginning with T-matrix and ray-tracing approaches for evaluating the scattering and extinction properties of individual particles based on their size and shape, and the complex refractive index of the material itself. These individual-particle properties then serve as input to the Ambartsumian invariant imbedding solution for the reflectance of a particulate surface composed of these particles. The inputs to the model include parameters associated with a functionalized form of the particle size distribution (PSD) as well as parameters associated with the particle packing density and surface roughness. The model is numerically inverted via Sandia's Dakota package, optimizing agreement between modeled and measured reflectance spectra, which we demonstrate on data acquired on five size-selected silica powders over the 4-16 μm wavelength range. Agreements between modeled and measured reflectance spectra are assessed, while the optimized PSDs resulting from the spectral fitting are then compared to PSD data acquired from independent particle size measurements.

  8. Physical-chemical conditions of ore deposition

    USGS Publications Warehouse

    Barton, P.B.

    1981-01-01

    Ore deposits form under a wide range of physical and chemical conditions, but those precipitating from hot, aqueous fluids-i.e. the hydrothermal deposits-form generally below 700??C and at pressures of only 1 or 2 kbar or less. Natural aqueous fluids in rocks may extract metal and sulfur from a variety of rock types or may acquire them as a residual heritage from a crystallizing silicate magma. Ore-forming hydrothermal fluids never appear as hot springs (except in deep, submarine situations) because they boil, mix with surface waters, and cool, thereby losing their ore-bearing ability before reaching the surface. Mineral systems function as chemical buffers and indicators just as buffers and indicators function in a chemical laboratory. By reading the record written in the buffer/indicator assemblages of minerals one can reconstruct many aspects of the former chemical environment. By studying the record of changing conditions one may deduce information regarding the processes functioning to create the succession of chemical environments and the ore deposits they represent. The example of the OH vein at Creede, Colorado, shows a pH buffered by the K-feldspar + muscovite + quartz assemblage and the covariation of S2 and O2 buffered by the assemblage chlorite + pyrite + quartz. Boiling of the ore fluid led to its oxidation to hematite-bearing assemblages and simultaneously produced an intensely altered, sericitic capping over the vein in response to the condensation of vapors bearing acidic components. The solubility of metals as calculated from experimental and theoretical studies of mineral solubility appears too low by at least one or two powers of ten to explain the mineralization at Creede. In contrast to Creede where the mineral stabilities all point to a relatively consistent chemistry, the Mississippi Valley type deposits present a puzzle of conflicting chemical clues that are impossible to reconcile with any single equilibrium situation. Thus we must

  9. Physical-chemical conditions of ore deposition

    NASA Astrophysics Data System (ADS)

    Barton, Paul B.

    Ore deposits form under a wide range of physical and chemical conditions, but those precipitating from hot, aqueous fluids-i.e. the hydrothermal deposits-form generally below 700°C and at pressures of only 1 or 2 kbar or less. Natural aqueous fluids in rocks may extract metal and sulfur from a variety of rock types or may acquire them as a residual heritage from a crystallizing silicate magma. Ore-forming hydrothermal fluids never appear as hot springs (except in deep, submarine situations) because they boil, mix with surface waters, and cool, thereby losing their ore-bearing ability before reaching the surface. Mineral systems function as chemical buffers and indicators just as buffers and indicators function in a chemical laboratory. By reading the record written in the buffer/indicator assemblages of minerals one can reconstruct many aspects of the former chemical environment. By studying the record of changing conditions one may deduce information regarding the processes functioning to create the succession of chemical environments and the ore deposits they represent. The example of the OH vein at Creede, Colorado, shows a pH buffered by the K-feldspar + muscovite + quartz assemblage and the covariation of S 2 and O 2 buffered by the assemblage chlorite + pyrite + quartz. Boiling of the ore fluid led to its oxidation to hematite-bearing assemblages and simultaneously produced an intensely altered, sericitic capping over the vein in response to the condensation of vapors bearing acidic components. The solubility of metals as calculated from experimental and theoretical studies of mineral solubility appears too low by at least one or two powers of ten to explain the mineralization at Creede. In contrast to Creede where the mineral stabilities all point to a relatively consistent chemistry, the Mississippi Valley type deposits present a puzzle of conflicting chemical clues that are impossible to reconcile with any single equilibrium situation. Thus we must

  10. Chemical weathering within high mountain depositional structures

    NASA Astrophysics Data System (ADS)

    Emberson, R.; Hovius, N.; Hsieh, M.; Galy, A.

    2013-12-01

    Material eroded from active mountain belts can spend extended periods in depositional structures within the mountain catchments before reaching its final destination. This can be in the form of colluvial fills, debris fans, or alluvial valley fills and terraces. The existence of these landforms is testament to the catastrophic nature of the events that lead to their formation. Sourced by landslides or debris flows, the material that forms them is in many cases either unweathered or incompletely weathered (e.g. Hsieh and Chyi 2010). Due to their porosity and permeability, these deposits likely serve as locations for extensive chemical weathering within bedrock landscapes. Recent studies considering the weathering flux from active mountain belts (e.g. Calmels et al. 2011) have distinguished between shallow and deep groundwater in terms of the contribution to the solute budget from a catchment; in this study we have attempted to more tightly constrain the sources of these groundwater components in the context of the previously mentioned depositional structures. We have collected water samples from a large number of sites within the Chen-you-lan catchment (370 km2) in central west Taiwan to elucidate the location of chemical weathering as well as how the sourcing of weathering products varies depending on the meteorological conditions. Central Taiwan has good attributes for this work considering both the extremely active tectonics and tropical climate, (including extensive cyclonic activity) which stimulate both extensive physical erosion (Dadson et al. 2003) and chemical weathering (Calmels et al. 2011). The Chen-you-lan catchment in particular contains some of the largest alluvial deposits inside the Taiwan mountain belt (Hsieh and Chyi 2010). Our preliminary results suggest that weathering within intramontane deposits may be a significant source of solutes, with the hyporheic systems within mountain rivers of particular import. This input of solutes occurs over

  11. Chemical vapor deposition of copper films

    NASA Astrophysics Data System (ADS)

    Borgharkar, Narendra Shamkant

    We have studied the kinetics of copper chemical vapor deposition (CVD) for interconnect metallization using hydrogen (Hsb2) reduction of the Cu(hfac)sb2 (copper(II) hexafluoroacetylacetonate) precursor. Steady-state deposition rates were measured using a hot-wall microbalance reactor. For base case conditions of 2 Torr Cu(hfac)sb2, 40 Torr Hsb2, and 300sp°C, a growth rate of 0.5 mg cmsp{-2} hrsp{-1} (ca. 10 nm minsp{-1}) is observed. Reaction order experiments suggest that the deposition rate passes through a maximum at partial pressure of 2 Torr of Cu(hfac)sb2. The deposition rate has an overall half-order dependence on Hsb2 partial pressure. A Langmuir-Hinshelwood rate expression is used to describe the observed kinetic dependencies on Cu(hfac)sb2, Hsb2, and H(hfac). Based on the rate expression a mechanism is proposed in which the overall rate is determined by the surface reaction of adsorbed Cu(hfac)sb2 and H species. Additionally, the role of alcohols in enhancing the deposition rate has been investigated. Addition of isopropanol results in a six fold enhancement to yield a deposition rate of 3.3 mg cmsp{-2} hrsp{-1} (ca. 60 nm minsp{-1}) at 5 Torr of isopropanol, 0.4 Torr Cu(hfac)sb2, 40 Torr Hsb2, and 300sp°C. Ethanol and methanol give lower enhancements of 1.75 and 1.1 mg cmsp{-2} hrsp{-1}, respectively. A mechanism based on the ordering of the aqueous pKsba values of the alcohols is proposed to explain the observed results. Lastly, we have built a warm-wall Pedestal reactor apparatus to demonstrate copper CVD on TiN/Si substrates. The apparatus includes a liquid injection system for transport of isopropanol-diluted precursor solutions. At optimized conditions of precursor and substrate pre-treatments, we have deposited uniform films of copper on TiN/Si substrates at an average deposition rate of 3.0 mg cmsp{-2} hrsp{-1} (ca. 60 nm minsp{-1}).

  12. Graphene sheets via microwave chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yuan, G. D.; Zhang, W. J.; Yang, Y.; Tang, Y. B.; Li, Y. Q.; Wang, J. X.; Meng, X. M.; He, Z. B.; Wu, C. M. L.; Bello, I.; Lee, C. S.; Lee, S. T.

    2009-01-01

    High-quality graphene sheets (GS) were synthesized on stainless steel substrates at ˜500 °C by microwave plasma chemical vapor deposition (CVD) in an atmosphere of methane/hydrogen mixture. The GS product was characterized to contain mostly 1- or 2-3-layers using scanning electron microscopy, transmission electron microscopy/selective area electron diffraction, atomic force microscopy, and Raman spectroscopy. The present CVD approach is capable of producing graphenes with high yield and high purity with no carbon impurities such as carbon nanotubes.

  13. Biocompatibility of chemical-vapour-deposited diamond.

    PubMed

    Tang, L; Tsai, C; Gerberich, W W; Kruckeberg, L; Kania, D R

    1995-04-01

    The biocompatibility of chemical-vapour-deposited (CVD) diamond surfaces has been assessed. Our results indicate that CVD diamond is as biocompatible as titanium (Ti) and 316 stainless steel (SS). First, the amount of adsorbed and 'denatured' fibrinogen on CVD diamond was very close to that of Ti and SS. Second, both in vitro and in vivo there appears to be less cellular adhesion and activation on the surface of CVD diamond surfaces compared to Ti and SS. This evident biocompatibility, coupled with the corrosion resistance and notable mechanical integrity of CVD diamond, suggests that diamond-coated surfaces may be highly desirable in a number of biomedical applications. PMID:7654876

  14. Preventing Chemical-Vapor Deposition In Selected Areas

    NASA Technical Reports Server (NTRS)

    Keeley, Joseph T.; Goela, Jitendra Singh; Pickering, Michael A.; Taylor, Raymond L.

    1991-01-01

    Method for prevention of chemical-vapor deposition of material in selected areas developed. Gas shroud isolates specific area from rest of deposition system. Inert gas flowing from beneath substrate prevents deposition between substrate and outer ring. Method extremely successful in selective deposition of SiC in chemical-vapor-deposition reactor. Used in deposition of SiC mirror blanks in Large Mirror Substrate and Lidar Mirror programs. Critical element in overall chemical-vapor-deposition process for producing large, lightweight mirrors.

  15. Synthesis and characterization of chemically deposited CdS thin films without toxic precursors.

    NASA Astrophysics Data System (ADS)

    Fernández-Pérez, A.; Sandoval-Paz, M. G.

    2016-05-01

    Al doped and undoped CdS thin films (CdS:Al) were deposited on glass, copper and bronze substrates by chemical bath deposition technique in an ammonia-free cadmium-sodium citrate system. The structural and optical properties of the CdS films were determined by X-ray diffraction (XRD), scanning electron microscope (SEM), and simultaneous transmission- reflection spectroscopy. It was found that the properties of the films depend on the amount of Al in the growth solutions and deposition time. The increase in Al content in the reaction solution led to a smaller crystallite size and higher energy band gap that varies in the range 2.42 eV - 2.59 eV depending on the Al content.

  16. Chemical Vapor Deposition Of Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony; Larkin, David J.; Matus, Lawrence G.; Petit, Jeremy B.

    1993-01-01

    Large single-crystal SiC boules from which wafers of large area cut now being produced commerically. Availability of wafers opens door for development of SiC semiconductor devices. Recently developed chemical vapor deposition (CVD) process produces thin single-crystal SiC films on SiC wafers. Essential step in sequence of steps used to fabricate semiconductor devices. Further development required for specific devices. Some potential high-temperature applications include sensors and control electronics for advanced turbine engines and automobile engines, power electronics for electromechanical actuators for advanced aircraft and for space power systems, and equipment used in drilling of deep wells. High-frequency applications include communication systems, high-speed computers, and microwave power transistors. High-radiation applications include sensors and controls for nuclear reactors.

  17. Chemical Vapor Deposition of Polybenzoxazole Precursors

    NASA Astrophysics Data System (ADS)

    Anthamatten, Mitchell

    2005-03-01

    Polybenzoxazoles are well known for their outstanding thermal and mechanical properties. We will describe a new solventless, chemical vapor deposition approach to fabricating films of high strength polybenzoxazoles. Advantages of such an approach are: 1) control of film thickness, 2) conformal coating onto substrates, and 3) potential improvement of in-plane mechanical properties. Our process involves the vacuum evaporation of two monomers: a hydroxyl-functionalized diamine (DHB) and a dianhydride (PMDA). The resulting films appear uniform and contain poly(amic acid) linkages. FTIR experiments show that the poly(amic acid) converts to a polyimide material upon curing at 150 to 200 degrees C. At higher temperatures there is evidence that benzoxazole linkages form, though, interestingly, we also observe a concomitant decrease in the film's mass. Our current studies aim at understanding these high-temperature processes and how they impact the polymer's crystallinity and mechanical properties.

  18. Characterization of Metalorganic Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Jesser, W. A.

    1998-01-01

    A series of experimental and numerical investigations to develop a more complete understanding of the reactive fluid dynamics of chemical vapor deposition were conducted. In the experimental phases of the effort, a horizontal CVD reactor configuration was used for the growth of InP at UVA and for laser velocimetry measurements of the flow fields in the reactor at LaRC. This horizontal reactor configuration was developed for the growth of III-V semiconductors and has been used by our research group in the past to study the deposition of both GaAs and InP. While the ultimate resolution of many of the heat and mass transport issues will require access to a reduced-gravity environment, the series of groundbased research makes direct contributions to this area while attempting to answer the design questions for future experiments of how low must gravity be reduced and for how long must this gravity level be maintained to make the necessary measurements. It is hoped that the terrestrial experiments will be useful for the design of future microgravity experiments which likely will be designed to employ a core set of measurements for applications in the microgravity environment such as HOLOC, the Fluid Physics/Dynamics Facility, or the Schlieren photography, the Laser Imaging Velocimetry and the Laser Doppler Velocimetry instruments under development for the Advanced Fluids Experiment Module.

  19. The effects of Mg2+, Mn2+, Zn2+, and Al3+ on the nickel deposit during electrowinning from sulfate bath

    NASA Astrophysics Data System (ADS)

    Gogia, S. K.; Das, S. C.

    1988-12-01

    The presence of impurities like Mg2+, Mn2+, Zn2+, and Al3+ during electrowinning of nickel shows several effects. The effects include current efficiency, deposit quality, purity, crystallographic orientation, surface morphology, and polarization behavior. Addition of the impurities did not change the current efficiency significantly but did change the quality and purity of the electrodeposited nickel. Based on the quality of the deposits obtained, the tolerance limits of these impurities in nickel bath were obtained. Although no deviation of nickel structure from fee was observed, the peak height values for different orientations changed with all of the impurities and the values varied with impurity concentration. The surface morphologies of electrodeposited nickel in the presence of impurities also showed changes. The potentiodynamic scan curves for nickel deposition showed deviations in the presence of all the impurities studied. Based on the results, an attempt was made to correlate the various effects.

  20. Surface chemical deposition of advanced electronic materials

    NASA Astrophysics Data System (ADS)

    Bjelkevig, Cameron

    The focus of this work was to examine the direct plating of Cu on Ru diffusion barriers for use in interconnect technology and the substrate mediated growth of graphene on boron nitride for use in advanced electronic applications. The electrodeposition of Cu on Ru(0001) and polycrystalline substrates (with and without pretreatment in an iodine containing solution) has been studied by cyclic voltammetry (CV), current--time transient measurements (CTT), in situ electrochemical atomic force microscopy (EC-AFM), and X-ray photoelectron spectroscopy (XPS). The EC-AFM data show that at potentials near the OPD/UPD threshold, Cu crystallites exhibit pronounced growth anisotropy, with lateral dimensions greatly exceeding vertical dimensions. XPS measurements confirmed the presence and stability of adsorbed I on the Ru surface following pre-treatment in a KI/H2SO4 solution and following polarization to at least -200 mV vs. Ag/AgCl. CV data of samples pre-reduced in I-containing electrolyte exhibited a narrow Cu deposition peak in the overpotential region and a UPD peak. The kinetics of the electrodeposited Cu films was investigated by CTT measurements and applied to theoretical models of nucleation. The data indicated that a protective I adlayer may be deposited on an airexposed Ru electrode as the oxide surface is electrochemically reduced, and that this layer will inhibit reformation of an oxide during the Cu electroplating process. A novel method for epitaxial graphene growth directly on a dielectric substrate of systematically variable thickness was studied. Mono/multilayers of BN(111) were grown on Ru(0001) by atomic layer deposition (ALD), exhibiting a flat (non-nanomesh) R30(✓3x✓3) structure. BN(111) was used as a template for growth of graphene by chemical vapor deposition (CVD) of C2H4 at 1000 K. Characterization by LEED, Auger, STM/STS and Raman indicate the graphene is in registry with the BN substrate, and exhibits a HOPG-like 0 eV bandgap density

  1. Influence of bath PH value on microstructure and corrosion resistance of phosphate chemical conversion coating on sintered Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Ding, Xia; Xue, Long-fei; Wang, Xiu-chun; Ding, Kai-hong; Cui, Sheng-li; Sun, Yong-cong; Li, Mu-sen

    2016-10-01

    The effect of bath PH value on formation, microstructure and corrosion resistance of the phosphate chemical conversion (PCC) coatings as well as the effect on the magnetic property of the magnets is investigated in this paper. The results show that the coating mass and thickness increase with the decrease of the bath PH value. Scanning electron microscopy observation demonstrates that the PCC coatings are in a blocky structure with different grain size. Transmission electron microscope and X-ray diffractometer tests reveal the coatings are polycomponent and are mainly composed of neodymium phosphate hydrate and praseodymium phosphate hydrate. The electrochemical analysis and static immersion corrosion test show the corrosion resistance of the PCC coatings prepared at bath PH value of 0.52 is worst. Afterwards the corrosion resistance increases first and then decreases with the increasing of the bath PH values. The magnetic properties of all the samples with PCC treatment are decreased. The biggest loss is occurred when the bath PH value is 0.52. Taken together, the optimum PH range of 1.00-1.50 for the phosphate solution has been determined.

  2. Chemical vapor deposition of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Hussain, Ashfaq

    Developments in the field of nanotechnology are causing a revolution in the world of materials science and engineering. Carbon nanomaterial thin films like nanocrystalline diamond films and carbon nanotubes are among the most prominent materials at the forefront of the nanotechnology revolution. Chief methods for synthesizing these materials have involved chemical vapor deposition (CVD) growth by catalysis from substrates. So far, these methods of synthesis have presented problems of cost and scalability because they have either employed multi-step, extensive substrate surface preparation procedures or used expensive CVD methods to achieve the desired growth. This research work presents the successful results of achieving the synthesis of nanocrystalline diamond thin films and high quality carbon nanotubes by a method which is both low cost and scalable. Specifically, this research program has employed the low cost and scalable method of hot filament chemical vapor deposition (HFCVD) in combination with very simple substrate surface preparation procedures and the CVD variables method of shaping carbon nanostructures to achieve the desired growth of carbon nanomaterial thin films. The CVD variables method, uniquely refined as a carbon nanotube shaping tool in this research work, consists of variation of CVD parameters like precursor gas composition, pressure, and temperature to change nanostructure morphology. The precursor gas mixture used contained variable proportions of the gases methane, hydrogen, and argon. Using this methodology, synthesis of nanocrystalline diamond was achieved on polished silicon substrates at a CVD precursor gas mixture composition in which argon to hydrogen ratio played a decisive role. By the same approach, optimum conditions for growth of carbon nanotubes on Fe-Ni and ferric sulfate coated silicon substrates were determined, leading to the growth of high purity carbon nanotubes of random and vertical orientation. The structures of

  3. Survival of the faucet snail after chemical disinfection, pH extremes, and heated water bath treatments

    USGS Publications Warehouse

    Mitchell, A.J.; Cole, R.A.

    2008-01-01

    The faucet snail Bithynia tentaculata, a nonindigenous aquatic snail from Eurasia, was introduced into Lake Michigan in 1871 and has spread to the mid-Atlantic states, the Great Lakes region, Montana, and most recently, the Mississippi River. The faucet snail serves as intermediate host for several trematodes that have caused large-scale mortality among water birds, primarily in the Great Lakes region and Montana. It is important to limit the spread of the faucet snail; small fisheries equipment can serve as a method of snail distribution. Treatments with chemical disinfection, pH extremes, and heated water baths were tested to determine their effectiveness as a disinfectant for small fisheries equipment. Two treatments eliminated all test snails: (1) a 24-h exposure to Hydrothol 191 at a concentration of at least 20 mg/L and (2) a treatment with 50??C heated water for 1 min or longer. Faucet snails were highly resistant to ethanol, NaCl, formalin, Lysol, potassium permanganate, copper sulfate, Baquacil, Virkon, household bleach, and pH extremes (as low as 1 and as high as 13).

  4. Effects of Buffer Salt Concentration on the Dominated Deposition Mechanism and Optical Characteristics of Chemically Deposited Cadmium Sulfide Thin Films

    NASA Astrophysics Data System (ADS)

    Kakhaki, Z. Makhdoumi; Youzbashi, A.; Sangpour, P.; Kazemzadeh, A.; Naderi, N.; Bazargan, A. M.

    2016-02-01

    Effects of buffer salt concentration on the rate of deposition, dominated deposition mechanism and subsequently the structural, morphological, and optical properties of cadmium sulfide (CdS) thin films deposited by chemical bath deposition (CBD) on glass substrate were investigated. The precursors were chosen to be cadmium chloride (CdCl2) as the cadmium source, thiourea (CS(NH2)2) as the sulfur source, ammonium nitrate (NH4NO3) as the buffer salt and ammonia as the complexing agent and the pH controller. The influence of the NH4NO3 concentration on the structure, morphology, film uniformity, stoichiometry and optical properties of CdS thin films was also studied by X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray (EDX) spectroscope, uv-visible and photoluminescence (PL) spectroscopes. The XRD studies revealed that all the deposited films exhibited a (002)h/(111)c preferred orientation. The crystallite size was increased from 20nm to 30nm by the increase of concentration of NH4NO3 from 0.5M to 2.5M. The morphology of CdS thin films were agglomerated spherical particles consisted of smaller particles. The surface of thin films deposited at the NH4NO3 concentration of 0.5M was compact and smooth. The increase of the concentration of NH4NO3 decreased the packing density of the films. The optical band gap was in the range of 2.25-2.4eV, which was decreased by the decrement of packing density. The PL spectra showed two peaks centered at 400nm and 500nm which are attributed to violet and band-to-band emissions, respectively.

  5. Variation in chemical wet deposition with meteorological conditions

    NASA Astrophysics Data System (ADS)

    Raynor, Gilbert S.; Hayes, Janet V.

    Analysis of hourly sequential precipitation samples collected at Brookhaven National Laboratory over a 4-y period shows systematic relationships between amounts of chemicals deposited in precipitation and meteorological conditions. Samples were taken by an automatic, sequential sampler and measured for pH, conductivity and the concentrations of major ions. Concurrent measurements and observations were made of the synoptic situation, precipitation type and rate, wind speed and direction, and temperature. Deposition per unit area was computed for subsets of the data classified by meteorological and time parameters. Results demonstrate that precipitation amount alone is not an adequate predictor of chemical wet deposition because of the variability of concentration in precipitation which is a complex function of emission rates and atmospheric processes. Results, however, document those conditions under which most material is deposited and those circumstances in which deposition occurs at the greatest rate. When classified by season, hydrogen and sulfate ion deposition are greatest in the summer when precipitation is lowest and least in the winter when precipitation is greatest. Nitrogen in both nitrate and ammonium has a similar but less extreme pattern. By synoptic type, all chemicals are deposited most heavily in warm front precipitation but the fraction of hydrogen and sulfate deposited in cold front and squall line hours is greater than the fraction of precipitation. All chemicals are deposited most heavily in steady rain when examined by precipitation type but thundershowers deposit chemicals of anthropogenic origin in amounts disproportionate to precipitation amounts. Results are also presented from data classified by other parameters.

  6. Combustion chemical vapor deposition: A novel thin-film deposition technique

    SciTech Connect

    Hunt, A.T.; Carter, W.B.; Cochran, J.K. Jr. )

    1993-07-12

    A new open-atmosphere chemical vapor deposition (CVD) technique has been developed that we term combustion chemical vapor deposition (CCVD). During CCVD a flame provides the necessary environment for the deposition of a dense film whose elemental constituents are derived from solution, vapor, or gas sources. Ag, YSZ, BaTiO[sub 3], YIG, YBa[sub 2]Cu[sub 3]O[sub [ital x

  7. Elimination of a pollution associated with chromic acid during the electro-deposition of Cr(III) using appropriate anodic and membrane materials in a double film bath.

    PubMed

    Jiang, Xiaojun; Chen, Wenchao; Xu, Hongbo

    2009-01-01

    A method using trivalent chromium has been used to replace hexavalent chromium for the electro-deposition of chromium. Using a tri-chamber bath system various anodic materials and membranes were evaluated to minimize the production of environmentally and health damaging chromic acid. By measuring the absorbance of Cr(VI) at 640 nm, the results indicate that the use of a titanium plated ruthenium (Ti-Ru) anode produces the least amount of chromic acid byproduct compared to lead-gold alloy and graphite anodes. The concentration of Cr(VI) in the immediate vicinity of the Ti-Ru anode decreased from 0.389 mg/L to 0 during a 40-min deposition period. The use of a Nafion(TM) quaternary cation exchange membrane portioning the buffer and anode selectively prevented Cr(III) from entering the anode compartment whilst allowing the migration of H(+) to maintain overall voltaic continuity. It has been demonstrated that the use of a Ti-Ru anode with a Nafion(TM) membrane can eliminate the production of chromic acid associated with the electro-deposition of chromium plate thereby preventing its health damaging exposure to plant operators and preventing discharge of Cr(VI) into the environment. Addition of a surfactant improved current efficiency by 34.7%.

  8. Improved environmental stability for plasma enhanced chemical vapor deposition SiO2 waveguides using buried channel designs

    NASA Astrophysics Data System (ADS)

    Wall, Thomas A.; Chu, Roger P.; Parks, Joshua W.; Ozcelik, Damla; Schmidt, Holger; Hawkins, Aaron R.

    2016-04-01

    Ridge and buried channel waveguides (BCWs) made using plasma-enhanced chemical vapor deposition SiO2 were fabricated and tested after being subjected to long 85°C water baths. The water bath was used to investigate the effects of any water absorption in the ridge and BCWs. Optical mode spreading and power throughput were measured over a period of three weeks. The ridge waveguides quickly absorbed water within the critical guiding portion of the waveguide. This caused a nonuniformity in the refractive index profile, leading to poor modal confinement after only seven days. The BCWs possessed a low index top cladding layer of SiO2, which caused an increase in the longevity of the waveguides, and after 21 days, the BCW samples still maintained ˜20% throughput, much higher than the ridge waveguides, which had a throughput under 5%.

  9. Chemical vapor deposition of graphene single crystals.

    PubMed

    Yan, Zheng; Peng, Zhiwei; Tour, James M

    2014-04-15

    As a two-dimensional (2D) sp(2)-bonded carbon allotrope, graphene has attracted enormous interest over the past decade due to its unique properties, such as ultrahigh electron mobility, uniform broadband optical absorption and high tensile strength. In the initial research, graphene was isolated from natural graphite, and limited to small sizes and low yields. Recently developed chemical vapor deposition (CVD) techniques have emerged as an important method for the scalable production of large-size and high-quality graphene for various applications. However, CVD-derived graphene is polycrystalline and demonstrates degraded properties induced by grain boundaries. Thus, the next critical step of graphene growth relies on the synthesis of large graphene single crystals. In this Account, we first discuss graphene grain boundaries and their influence on graphene's properties. Mechanical and electrical behaviors of CVD-derived polycrystalline graphene are greatly reduced when compared to that of exfoliated graphene. We then review four representative pathways of pretreating Cu substrates to make millimeter-sized monolayer graphene grains: electrochemical polishing and high-pressure annealing of Cu substrate, adding of additional Cu enclosures, melting and resolidfying Cu substrates, and oxygen-rich Cu substrates. Due to these pretreatments, the nucleation site density on Cu substrates is greatly reduced, resulting in hexagonal-shaped graphene grains that show increased grain domain size and comparable electrical properties as to exfoliated graphene. Also, the properties of graphene can be engineered by its shape, thickness and spatial structure. Thus, we further discuss recently developed methods of making graphene grains with special spatial structures, including snowflakes, six-lobed flowers, pyramids and hexagonal graphene onion rings. The fundamental growth mechanism and practical applications of these well-shaped graphene structures should be interesting topics and

  10. The chemical/physical and microbiological characteristics of typical bath and laundry waste waters. [waste water reclamation during manned space flight

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    Chemical/physical and microbiological characteristics are studied of typical bath and laundry waters collected during a 12 day test in which the untreated waste waters were reused for toilet flush. Most significant changes were found for ammonia, color, methylene blue active substances, phosphates, sodium, sulfates, total organic carbon, total solids, and turbidity in comparison with tap water baseline. The mean total number of microorganisms detected in the waste waters ranged from 1 million to 10 to the 7th power cells/m1 and the mean number of possible coliforms ranged from 10 to the 5th power to 1 million. An accumulation of particulates and an objectible odor were detected in the tankage used during the 12 day reuse of the untreated waste waters. The combined bath and laundry waste waters from a family of four provided 91 percent of the toilet flush water for the same family.

  11. Chemical Vapor Deposition Epitaxy an Patternless and Patterned Substrates.

    ERIC Educational Resources Information Center

    Takoudis, Christos G.

    1990-01-01

    Discusses chemical vapor deposition epitaxy on patternless and patterned substrates for an electronic materials processing course. Describes the processs types and features of epitaxy. Presents some potential problems of epitaxy. Lists 38 references. (YP)

  12. Chemical vapor deposition of aluminum oxide

    DOEpatents

    Gordon, Roy; Kramer, Keith; Liu, Xinye

    2000-01-01

    An aluminum oxide film is deposited on a heated substrate by CVD from one or more alkylaluminum alkoxide compounds having composition R.sub.n Al.sub.2 (OR').sub.6-n, wherein R and R' are alkyl groups and n is in the range of 1 to 5.

  13. Chemical vapor deposition for automatic processing of integrated circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1980-01-01

    Chemical vapor deposition for automatic processing of integrated circuits including the wafer carrier and loading from a receiving air track into automatic furnaces and unloading on to a sending air track is discussed. Passivation using electron beam deposited quartz is also considered.

  14. Chemical Vapor Deposition of Silicon from Silane Pyrolysis

    NASA Technical Reports Server (NTRS)

    Praturi, A. K.; Lutwack, R.; Hsu, G.

    1977-01-01

    The four basic elements in the chemical vapor deposition (CVD) of silicon from silane are analytically treated from a kinetic standpoint. These elements are mass transport of silane, pyrolysis of silane, nucleation of silicon, and silicon crystal growth. Rate expressions that describe the various steps involved in the chemical vapor deposition of silicon were derived from elementary principles. Applications of the rate expressions for modeling and simulation of the silicon CVD are discussed.

  15. Combustion chemical vapor deposition - A novel thin-film deposition technique

    NASA Astrophysics Data System (ADS)

    Hunt, A. T.; Carter, W. B.; Cochran, J. K., Jr.

    1993-07-01

    A new open-atmosphere chemical vapor deposition (CVD) technique has been developed that we term combustion chemical vapor deposition (CCVD). During CCVD a flame provides the necessary environment for the deposition of a dense film whose elemental constituents are derived from solution, vapor, or gas sources. Ag, YSZ, BaTiO3, YIG, YBa2Cu3O(x), and Y2BaCuO5 have been deposited via CCVD with the combustion of a sprayed, cation-containing, organic solution as the sole heat source. CCVD could, for some applications, be less expensive and more flexible than conventional CVD.

  16. Atmospheric Transport and Deposition of Agricultural Chemicals

    NASA Astrophysics Data System (ADS)

    Majewski, M. S.; Vogel, J. R.; Capel, P. D.

    2006-05-01

    Concentrations of more than 80 pesticides and select transformation products were measured in atmospheric deposition during two growing seasons in five agricultural areas across the United States. Rainfall samples were collected at study areas in California, Indiana, Maryland, and Nebraska. In the arid Yakima Valley of Washington, dry deposition for the same compounds was estimated using air concentration measurements and depositional models. In the predominantly corn, soybean, and alfalfa growing region of Nebraska, Indiana, and Maryland, the herbicides acetochlor, alachlor, atrazine, and metolachlor where the predominant pesticides detected, and the highest concentrations ranged from 0.64 microgram per liter (ug/L) for metolachlor in a small, predominantly dairy use dominated watershed in Maryland to 6.6 ug/L and 19 ug/L for atrazine in Indiana and Nebraska, respectively. California showed a different seasonal occurrence pattern and suite of detected pesticides because the rainy season occurs during the winter months and a wide variety of crops are grown throughout the year. With the exception of metolachlor (0.23 ug/L, max.), the corn and soybean herbicides were not used to any great extent in the California study area and were not detected. The insecticides diazinon (1.21 ug/L, max.) and chlorpyrifos (0.12 ug/L, max.) were detected in nearly every sample taken in California. The Washington study area was similar to California in terms of the variety of crops grown and the pesticides use, but it receives very little rainfall. Dry deposition was estimated at this site from air concentrations and particle settling velocities. The results of these studies show the importance of the atmosphere as an additional source of pesticide loading to agricultural watersheds.

  17. Aerosol assisted chemical vapour deposition control parameters for selective deposition of tungsten oxide nanostructures.

    PubMed

    Vallejos, S; Umek, P; Blackman, C

    2011-09-01

    Tungsten oxide films were deposited via Aerosol Assisted Chemical Vapour Deposition (AACVD) from the single-source precursor W(OPh)6. Film morphology and optimum deposition temperatures for formation of quasi-one-dimensional structures is influenced by the solvent 'carrier' used for deposition of the films with bulk porous films and nanostructured needles, hollow tubes and fibres obtained dependent on the solvent used and the deposition temperature. This influence of solvent could be exploited for the synthesis of other nanomaterials, and so provide a new and versatile route to develop and integrate nanostructured materials for device applications. PMID:22097557

  18. Chemical deposition and characterization of copper indium disulphide thin films

    NASA Astrophysics Data System (ADS)

    Pathan, H. M.; Lokhande, C. D.

    2004-12-01

    A simple chemical deposition method was used to prepare copper indium disulphide thin films. The method is based on sequential immersion of substrate into different cationic and anionic precursor solutions and rinsing before every immersion with double distilled water. In the present investigation, CuInS 2 films have been deposited using chemical deposition method. These films were characterized for their structural, surface morphological, compositional and electrical properties by using X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Rutherford back scattering (RBS), electrical resistivity and thermoemf measurement techniques.

  19. Chemical characterization of combustion deposits by TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Sjövall, P.; Lausmaa, J.; Tullin, C.; Högberg, J.

    2003-01-01

    We have investigated the potential usefulness of TOF-SIMS for chemical analysis of deposits formed in combustion reactors. By using TOF-SIMS, it was possible to (i) identify inorganic chemical compounds in the deposits, (ii) semi-quantitatively estimate the relative concentrations of the main constituents and (iii) obtain images showing the lateral distribution of the main constituents, on the surface and in cross-sections of deposit samples. It was found that the main components in the deposit samples were KCl and K 2SO 4, while K 2CO 3, NaCl, Na 2SO 4, Ca(OH) 2 and CaCl 2 were present in smaller concentrations. In addition, deposits from combustion of recycled wood chips contained considerable amounts of ZnCl 2, PbCl 2, ZnO and PbO. Large variations in the chemical composition were observed for different samples and throughout the cross-section of a single sample. The chlorides, in particular NaCl, were present mainly as particles, while the sulfates were more homogeneously distributed in the deposit. The results from this study show that TOF-SIMS analysis of combustion deposits can contribute significantly to an increased understanding of the formation and growth of deposits in combustion reactors.

  20. Chemical Vapor Deposition of Turbine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Haven, Victor E.

    1999-01-01

    Ceramic thermal barrier coatings extend the operating temperature range of actively cooled gas turbine components, therefore increasing thermal efficiency. Performance and lifetime of existing ceram ic coatings are limited by spallation during heating and cooling cycles. Spallation of the ceramic is a function of its microstructure, which is determined by the deposition method. This research is investigating metalorganic chemical vapor deposition (MOCVD) of yttria stabilized zirconia to improve performance and reduce costs relative to electron beam physical vapor deposition. Coatings are deposited in an induction-heated, low-pressure reactor at 10 microns per hour. The coating's composition, structure, and response to the turbine environment will be characterized.

  1. The chemical vapor deposition of zirconium carbide onto ceramic substrates

    SciTech Connect

    Glass, John A, Jr.; Palmisiano, Nick, Jr.; Welsh, R. Edward

    1999-07-01

    Zirconium carbide is an attractive ceramic material due to its unique properties such as high melting point, good thermal conductivity, and chemical resistance. The controlled preparation of zirconium carbide films of superstoichiometric, stoichiometric, and substoichiometric compositions has been achieved utilizing zirconium tetrachloride and methane precursor gases in an atmospheric pressure high temperature chemical vapor deposition system.

  2. Light-induced chemical vapour deposition painting with titanium dioxide

    NASA Astrophysics Data System (ADS)

    Halary-Wagner, E.; Bret, T.; Hoffmann, P.

    2003-03-01

    Light-induced chemical vapour deposits of titanium dioxide are obtained from titanium tetra-isopropoxide (TTIP) in an oxygen and nitrogen atmosphere with a long pulse (250 ns) 308 nm XeCl excimer laser using a mask projection set-up. The demonstrated advantages of this technique are: (i) selective area deposition, (ii) precise control of the deposited thickness and (iii) low temperature deposition, enabling to use a wide range of substrates. A revolving mask system enables, in a single reactor load, to deposit shapes of controlled heights, which overlap to build up a complex pattern. Interferential multi-coloured deposits are achieved, and the process limitations (available colours and resolution) are discussed.

  3. Bubble bath soap poisoning

    MedlinePlus

    ... medlineplus.gov/ency/article/002762.htm Bubble bath soap poisoning To use the sharing features on this page, please enable JavaScript. Bubble bath soap poisoning occurs when someone swallows bubble bath soap. ...

  4. Chemical vapor deposition reactor. [providing uniform film thickness

    NASA Technical Reports Server (NTRS)

    Chern, S. S.; Maserjian, J. (Inventor)

    1977-01-01

    An improved chemical vapor deposition reactor is characterized by a vapor deposition chamber configured to substantially eliminate non-uniformities in films deposited on substrates by control of gas flow and removing gas phase reaction materials from the chamber. Uniformity in the thickness of films is produced by having reactive gases injected through multiple jets which are placed at uniformally distributed locations. Gas phase reaction materials are removed through an exhaust chimney which is positioned above the centrally located, heated pad or platform on which substrates are placed. A baffle is situated above the heated platform below the mouth of the chimney to prevent downdraft dispersion and scattering of gas phase reactant materials.

  5. Synthesis of Diamond by Plasma-Enhanced Chemical Vapor Deposition.

    NASA Astrophysics Data System (ADS)

    Chang, Jan-Jue

    Diamond possesses many desirable properties, e.g. high thermal conductivity, high electrical resistivity, high breakdown voltage, high resistance to chemical and radiation damage, high transparency over a wide range of optical spectrum, and extreme hardness. Thus diamond have high potential applicability in the fields of semiconductors, optical emitting materials, optical coating materials, abrasion, and high power and high frequency devices. To extend the range of applications, large-area uniformity and low temperature growth of diamond thin films has to be achieved. Low pressure deposition is one solution to the small area and nonuniformity problems of current diamond deposition methods. By decreasing the pressure, the mean free path of electrons becomes larger and the plasma covers a larger area. Low temperature deposition gives a smaller crystalline size of diamond, and hence improves the surface morphology of deposited films. To satisfy the supersaturation condition of diamond crystallization, low temperature growth should be performed at low pressure. This study experimentally investigates optimization of diamond growth at low pressure and low temperature by comparing three deposition systems (i.e. hot filament assisted, microwave induced plasma, and electron cyclotron resonance plasma chemical vapor deposition). The deposition system is designed to clearly show the effects of each experimental parameter on grown films. Thin diamond films were deposited on silicon substrates over a wide range of deposition parameters (e.g. CH _4 concentration 0-10%, substrate temperature 490-850^circC, total pressure 2-50 Torr, microwave power 0-1200 W). In addition, the effects of oxygen addition and substrate bias were studied. The diamond films were characterized by Raman spectroscopy and scanning electron microscopy, and the plasma was characterized by optical emission spectroscopy. Crystalline diamond was successfully deposited on silicon wafers at pressures as low as 2

  6. Growth and properties of W-B-N diffusion barriers deposited by chemical vapor deposition

    SciTech Connect

    Fleming, J.G.; Roherty-Osmun, E.; Custer, J.; Smith, P.M.; Reid, J.S.; Nicolet, M.A.

    1995-10-01

    The authors have used chemical vapor deposition to grow ternary tungsten-based diffusion barriers to determine if they exhibit properties similar to those of sputter-deposited ternaries. A range of different W-B-N compositions in a band of compositions roughly between 20 and 40% W were produced. The deposition temperature was low, 350 C, and the precursors used are well accepted by the industry. Deposition rates are high for a diffusion barrier application. Resistivities range from 200 to 20,000 {micro}{Omega}-cm, the films with the best barrier properties having {approximately}1,000 {micro}{Omega}-cm resistivities. Adhesion to oxides is sufficient to allow these films to be used as the adhesion layer in a tungsten chemical mechanical polishing plug application. The films are x-ray amorphous as-deposited and have crystallization temperatures of up to 900 C. Barrier performance against Cu has been tested using diode test structures. A composition of W{sub .23}B{sub .49}N{sub .28} was able to prevent diode failure up to a 700 C, 30 minute anneal. These materials, deposited by CVD, display properties similar to those deposited by physical deposition techniques.

  7. Chemical Vapor Deposition of Aluminum Oxide Thin Films

    ERIC Educational Resources Information Center

    Vohs, Jason K.; Bentz, Amy; Eleamos, Krystal; Poole, John; Fahlman, Bradley D.

    2010-01-01

    Chemical vapor deposition (CVD) is a process routinely used to produce thin films of materials via decomposition of volatile precursor molecules. Unfortunately, the equipment required for a conventional CVD experiment is not practical or affordable for many undergraduate chemistry laboratories, especially at smaller institutions. In an effort to…

  8. A novel induction heater for chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ong, C. W.; Wong, H. K.; Sin, K. S.; Yip, S. T.; Chik, K. P.

    1989-06-01

    We report how an induction cooker for household use can be modified for heating substrate or heating gases to high temperature in a chemical vapor deposition system. Only minor changes of the cooker are necessary. Stable substrate temperature as high as 900 °C was achieved with input power of about 1150 W.

  9. Chemical-vapor deposition of silicon from silane

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.; Lutwack, R.; Praturi, A. K.

    1979-01-01

    Report lists tables of standard free-energy change, equilibrium constant, and heat of reaction for chemical vapor deposition (CVD) of silicon from silane over temperature range of 100 to 1000 K. Data indicates silicon CVD may be a commercially economical process for production of silicon for solar arrays and other applications.

  10. Chemical vapour deposition of zeolitic imidazolate framework thin films

    NASA Astrophysics Data System (ADS)

    Stassen, Ivo; Styles, Mark; Grenci, Gianluca; Gorp, Hans Van; Vanderlinden, Willem; Feyter, Steven De; Falcaro, Paolo; Vos, Dirk De; Vereecken, Philippe; Ameloot, Rob

    2016-03-01

    Integrating metal-organic frameworks (MOFs) in microelectronics has disruptive potential because of the unique properties of these microporous crystalline materials. Suitable film deposition methods are crucial to leverage MOFs in this field. Conventional solvent-based procedures, typically adapted from powder preparation routes, are incompatible with nanofabrication because of corrosion and contamination risks. We demonstrate a chemical vapour deposition process (MOF-CVD) that enables high-quality films of ZIF-8, a prototypical MOF material, with a uniform and controlled thickness, even on high-aspect-ratio features. Furthermore, we demonstrate how MOF-CVD enables previously inaccessible routes such as lift-off patterning and depositing MOF films on fragile features. The compatibility of MOF-CVD with existing infrastructure, both in research and production facilities, will greatly facilitate MOF integration in microelectronics. MOF-CVD is the first vapour-phase deposition method for any type of microporous crystalline network solid and marks a milestone in processing such materials.

  11. Modified chemical route for deposition of molybdenum disulphide thin films

    SciTech Connect

    Vyas, Akshay N. Sartale, S. D.

    2014-04-24

    Molybdenum disulphide (MoS{sub 2}) thin films were deposited on quartz substrates using a modified chemical route. Sodium molybdate and sodium sulphide were used as precursors for molybdenum and sulphur respectively. The route involves formation of tetrathiomolybdate ions (MoS{sub 4}{sup 2−}) and further reduction by sodium borohydride to form MoS{sub 2}. The deposition was performed at room temperature. The deposited films were annealed in argon atmosphere at 1073 K for 1 hour to improve its crystallinity. The deposited films were characterized using scanning electron microscopy (SEM) for morphology, UV-Vis absorption spectroscopy for optical studies and X-ray diffraction (XRD) for structure determination.

  12. Chemically deposited thin films of sulfides and selenides of antimony and bismuth as solar energy materials

    NASA Astrophysics Data System (ADS)

    Nair, M. T.; Nair, Padmanabhan K.; Garcia, V. M.; Pena, Y.; Arenas, O. L.; Garcia, J. C.; Gomez-Daza, O.

    1997-10-01

    Chemical bath deposition techniques for bismuth sulfide, bismuth selenide, antimony sulfide, and antimony selenide thin films of about 0.20 - 0.25 micrometer thickness are reported. All these materials may be considered as solar absorber films: strong optical absorption edges, with absorption coefficient, (alpha) , greater than 104 cm-1, are located at 1.31 eV for Bi2Se3, 1.33 eV for Bi2S3, 1.8 eV for Sb2S3, and 1.35 eV for Sb2Se3. As deposited, all the films are nearly amorphous. However, well defined crystalline peaks matching bismuthinite (JCPDS 17- 0320), paraguanajuatite (JCPDS 33-0214), and stibnite (JCPDS 6-0474) and antimony selenide (JCPDS 15-0861) for Bi2S3, Bi2Se3, Sb2S3 and Sb2Se3 respectively, are observed when the films are annealed in nitrogen at 300 degrees Celsius. This is accompanied by a substantial modification of the electrical conductivity in the films: from 10-7 (Omega) -1 cm-1 (in as prepared films) to 10 (Omega) -1 cm-1 in the case of bismuth sulfide and selenide films, and enhancement of photosensitivity in the case of antimony sulfide films. The chemical deposition of a CuS/CuxSe film on these Vx- VIy films and subsequent annealing at 300 degrees Celsius for 1 h at 1 torr of nitrogen leads to the formation of p-type films (conductivity of 1 - 100 (Omega) -1 cm-1) of multinary composition. Among these, the formation of Cu3BiS3 (JCPDS 9-0488) and Cu3SbS4 (JCPDS 35- 0581), CuSbS2 (JCPDS 35-0413) have been clearly detected. Solar energy applications of these films are suggested.

  13. Finite-Size Bath in Qubit Thermodynamics

    NASA Astrophysics Data System (ADS)

    Pekola, J. P.; Suomela, S.; Galperin, Y. M.

    2016-09-01

    We discuss a qubit weakly coupled to a finite-size heat bath (calorimeter) from the point of view of quantum thermodynamics. The energy deposited to this environment together with the state of the qubit provides a basis to analyze the heat and work statistics of this closed combined system. We present results on two representative models, where the bath is composed of two-level systems or harmonic oscillators, respectively. Finally, we derive results for an open quantum system composed of the above qubit plus finite-size bath, but now the latter is coupled to a practically infinite bath of the same nature of oscillators or two-level systems.

  14. Chemical vapor deposition and atomic layer deposition of metal oxide and nitride thin films

    NASA Astrophysics Data System (ADS)

    Barton, Jeffrey Thomas

    Processes for depositing thin films with various electronic, optical, mechanical, and chemical properties are indispensable in many industries today. Of the many deposition methods available, chemical vapor deposition (CVD) has proved over time to be one of the most flexible, efficient, and cost-effective. Atomic layer deposition (ALD) is a newer process that is gaining favor as a method for depositing films with excellent properties and unparalleled precision. This work describes the development of novel CVD and ALD processes to deposit a variety of materials. Hafnium oxide and zirconium oxide show promise as replacements for SiO 2 as gate dielectrics in future-generation transistors. These high-k materials would provide sufficient capacitance with layers thick enough to avoid leakage from tunneling. An ALD method is presented here for depositing conformal hafnium oxide from tetrakis-(diethylamido)hafnium and oxygen gas. A CVD method for depositing zirconium oxide from tetrakis-(dialkylamido)zirconium and either oxygen gas or water vapor is also described. The use of copper for interconnects in integrated circuits requires improved diffusion barrier materials, given its high diffusivity compared to the previously-used aluminum and tungsten. Tungsten nitride has a low resistivity among barrier materials, and can be deposited in amorphous films that are effective diffusion barriers in layers as thin as a few nanometers. Here we demonstrate CVD and plasma-enhanced CVD methods to deposit tungsten nitride films from bis-(dialkylamido)bis-( tert-butylimido)tungsten precursors and ammonia gas. Recent findings had shown uniform copper growth on tantalum silicate films, without the dewetting that usually occurs on oxide surfaces. Tantalum and tungsten silicates were deposited by a CVD reaction from the reaction of either tris-(diethylamido)ethylimido tantalum or bis-(ethylmethylamido)-bis-( tert-butylimido)tungsten with tris-(tert-butoxy)silanol. The ability of evaporated

  15. Analysis And Control Of Copper Plating Bath Additives And By-Products

    NASA Astrophysics Data System (ADS)

    Newton, Beverly; Kaiser, Edward

    2003-09-01

    New copper plating bath chemisties are being developed to meet the emerging need of plating copper into submicron features on semiconductor wafers. These chemistries are designed to provide a fast, efficient, fill for even the most challenging wafer terrain. It has been found that maintaining the concentration of the additives in these plating baths at certain levels is critical to the performance of the bath. Plating technology for semiconductor applications requires rigid bath control and disciplined methodology. Establishing correlations between what is found in the plated film and bath chemistry control parameters is fundamental in producing interconnects that are consistent and reliable. To establish these correlations, it is important to have a clear understanding of the chemical composition of the bath. It is theorized that the "suppressor" bath components help moderate the deposition rate of the copper fill and the "leveler" additives improve the topology of the copper overfill. Too much or too little of these components in the bath can be detrimental to the quality of the copper deposition and may result in "fill failure" leading to a higher than necessary scrap rate for the wafers. Indirect bath measurements, such as Cyclic Voltammetric Stripping (CVS), tell an incomplete story as these techniques only measures the combined effect of the additives and by-products on the plating quality. High Performance Liquid (HPLC) and Ion Chromatography are analytical techniques which provide important information on the concentration, chemical balance and trend measurement of major constituents such as additives, brighteners, boosters, stabilizers, carriers, levelers, inhibitors, accelerators, transition metals, metal complexes and contaminants in the plating bath. This information provides for improved device quality, reduced scrap rate and reduced costs of bath maintenance. This, however, is not the end of the story. In addition to additives, copper plating baths

  16. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    SciTech Connect

    Hampikian, J.M.; Carter, W.B.

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  17. Chemical and Magnetic Order in Vapor-Deposited Metal Films

    NASA Astrophysics Data System (ADS)

    Rooney, Peter Wiliam

    1995-01-01

    A stochastic Monte Carlo model of vapor deposition and growth of a crystalline, binary, A_3 B metallic alloy with a negative energy of mixing has been developed which incorporates deposition and surface diffusion in a physically correct manner and allows the simulation of deposition rates that are experimentally realizable. The effects of deposition rate and growth temperature on the development of short range order (SRO) in vapor-deposited films have been examined using this model. SRO in the simulated films increases with growth temperature up to the point at which the temperature corresponds to the energy of mixing, but we see no corresponding development of anisotropic SRO (preferential ordering of A-B pairs along the growth direction). Epitaxial (100) and (111) CoPt_3 films have been deposited over a range of growth temperatures from -50^circ C to 800^circC. Curie temperature (T_{rm c}) and saturation magnetization are dramatically enhanced in those films grown near 400^circ C over the values expected for the chemically homogeneous alloy. Magnetization data indicates that the high T _{rm c} films are inhomogeneous. These phenomena are interpreted as evidence of a previously unobserved magnetically driven miscibility gap in the Co-Pt phase diagram. Films grown near 400^circ C exhibit large uniaxial perpendicular magnetic anisotropy that cannot be accounted for by strain. The observed anisotropy coincides with the chemical phase separation and it seems likely that these two phenomena are related. Long range order (LRO) in the as-deposited films peaks at a growth temperature of 630^circC and then decreases with decreasing growth temperature. The decrease in LRO is either due to kinetic frustration or to competition from magnetically induced Co clustering. Theoretical phase diagrams based on the appropriate Blume-Emery-Griffiths Hamiltonian suggest the latter.

  18. Stress control of silicon nitride films deposited by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Li, Dong-ling; Feng, Xiao-fei; Wen, Zhi-yu; Shang, Zheng-guo; She, Yin

    2016-07-01

    Stress controllable silicon nitride (SiNx) films deposited by plasma enhanced chemical vapor deposition (PECVD) are reported. Low stress SiNx films were deposited in both high frequency (HF) mode and dual frequency (HF/LF) mode. By optimizing process parameters, stress free (-0.27 MPa) SiNx films were obtained with the deposition rate of 45.5 nm/min and the refractive index of 2.06. Furthermore, at HF/LF mode, the stress is significantly influenced by LF ratio and LF power, and can be controlled to be 10 MPa with the LF ratio of 17% and LF power of 150 W. However, LF power has a little effect on the deposition rate due to the interaction between HF power and LF power. The deposited SiNx films have good mechanical and optical properties, low deposition temperature and controllable stress, and can be widely used in integrated circuit (IC), micro-electro-mechanical systems (MEMS) and bio-MEMS.

  19. Development and study of chemical vapor deposited tantalum base alloys

    NASA Technical Reports Server (NTRS)

    Meier, G. H.; Bryant, W. A.

    1976-01-01

    A technique for the chemical vapor deposition of alloys was developed. The process, termed pulsing, involves the periodic injection of reactant gases into a previously-evacuated reaction chamber where they blanket the substrate almost instantaneously. Formation of alternating layers of the alloy components and subsequent homogenization allows the formation of an alloy of uniform composition with the composition being determined by the duration and relative numbers of the various cycles. The technique has been utilized to produce dense alloys of uniform thickness and composition (Ta- 10 wt % W) by depositing alternating layers of Ta and W by the hydrogen reduction of TaCl5 and WCl6. A similar attempt to deposit a Ta - 8 wt % W - 2 wt% Hf alloy was unsuccessful because of the difficulty in reducing HfCl4 at temperatures below those at which gas phase nucleation of Ta and W occurred.

  20. CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED CONDUCTORS

    SciTech Connect

    Paranthaman, Mariappan Parans

    2011-01-01

    We have reviewed briefly the growth of buffer and high temperature superconducting oxide thin films using a chemical solution deposition (CSD) method. In the Rolling-Assisted Biaxially Textured Substrates (RABiTS) process, developed at Oak Ridge National Laboratory, utilizes the thermo mechanical processing to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited epitaxially on the textured nickel alloy substrates. The starting substrate serves as a template for the REBCO layer, which has substantially fewer weak links. Buffer layers play a major role in fabricating the second generation REBCO wire technology. The main purpose of the buffer layers is to provide a smooth, continuous and chemically inert surface for the growth of the REBCO film, while transferring the texture from the substrate to the superconductor layer. To achieve this, the buffer layers need to be epitaxial to the substrate, i.e. they have to nucleate and grow in the same bi-axial texture provided by the textured metal foil. The most commonly used RABiTS multi-layer architectures consist of a starting template of biaxially textured Ni-5 at.% W (Ni-W) substrate with a seed (first) layer of Yttrium Oxide (Y2O3), a barrier (second) layer of Yttria Stabilized Zirconia (YSZ), and a Cerium Oxide (CeO2) cap (third) layer. These three buffer layers are generally deposited using physical vapor deposition (PVD) techniques such as reactive sputtering. On top of the PVD template, REBCO film is then grown by a chemical solution deposition. This article reviews in detail about the list of oxide buffers and superconductor REBCO films grown epitaxially on single crystal and/or biaxially textured Ni-W substrates using a CSD method.

  1. Self-organization and nanostructure formation in chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Walgraef, Daniel

    2013-10-01

    When thin films are grown on a substrate by chemical vapor deposition, the evolution of the first deposited layers may be described, on mesoscopic scales, by dynamical models of the reaction-diffusion type. For monatomic layers, such models describe the evolution of atomic coverage due to the combined effect of reaction terms representing adsorption-desorption and chemical processes and nonlinear diffusion terms that are of the Cahn-Hilliard type. This combination may lead, below a critical temperature, to the instability of uniform deposited layers. This instability triggers the formation of nanostructures corresponding to regular spatial variations of substrate coverage. Patterns wavelengths and symmetries are selected by dynamical variables and not by variational arguments. According to the balance between reaction- and diffusion-induced nonlinearities, a succession of nanostructures including hexagonal arrays of dots, stripes, and localized structures of various types may be obtained. These structures may initiate different growth mechanisms, including Volmer-Weber and Frank-Van der Merwe types of growth. The relevance of this approach to the study of deposited layers of different species is discussed.

  2. Self-organization and nanostructure formation in chemical vapor deposition.

    PubMed

    Walgraef, Daniel

    2013-10-01

    When thin films are grown on a substrate by chemical vapor deposition, the evolution of the first deposited layers may be described, on mesoscopic scales, by dynamical models of the reaction-diffusion type. For monatomic layers, such models describe the evolution of atomic coverage due to the combined effect of reaction terms representing adsorption-desorption and chemical processes and nonlinear diffusion terms that are of the Cahn-Hilliard type. This combination may lead, below a critical temperature, to the instability of uniform deposited layers. This instability triggers the formation of nanostructures corresponding to regular spatial variations of substrate coverage. Patterns wavelengths and symmetries are selected by dynamical variables and not by variational arguments. According to the balance between reaction- and diffusion-induced nonlinearities, a succession of nanostructures including hexagonal arrays of dots, stripes, and localized structures of various types may be obtained. These structures may initiate different growth mechanisms, including Volmer-Weber and Frank-Van der Merwe types of growth. The relevance of this approach to the study of deposited layers of different species is discussed. PMID:24229187

  3. Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals.

    PubMed

    Rabeau, J R; Stacey, A; Rabeau, A; Prawer, S; Jelezko, F; Mirza, I; Wrachtrup, J

    2007-11-01

    Nanodiamond crystals containing single color centers have been grown by chemical vapor deposition (CVD). The fluorescence from individual crystallites was directly correlated with crystallite size using a combined atomic force and scanning confocal fluorescence microscope. Under the conditions employed, the optimal size for single optically active nitrogen-vacancy (NV) center incorporation was measured to be 60-70 nm. The findings highlight a strong dependence of NV incorporation on crystal size, particularly with crystals less than 50 nm in size.

  4. Research on chemical vapor deposition processes for advanced ceramic coatings

    NASA Technical Reports Server (NTRS)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  5. Modeling and Simulation of Plasma Enhanced Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Smith, Aaron; Bett, Dominic; Cunningham, Monisha; Sen, Sudip

    2015-04-01

    Plasma Enhanced Chemical Vapor Deposition (PECVD) is a process used to deposit thin films from a gas state (vapor) to a solid state on a substrate. Recent study from the X-ray diffraction spectra of SnO2 films deposited as a function of RF power apparently indicates that RF power is playing a stabilizing role and hence in the better deposition. The results show that the RF power results in smoother morphology, improved crystallinity, and lower sheet resistance value in the PECVD process. The PECVD processing allows deposition at lower temperatures, which is often critical in the manufacture of semiconductors. In this talk we will address two aspects of the problem, first to develop a model to study the mechanism of how the PECVD is effected by the RF power, and second to actually simulate the effect of RF power on PECVD. As the PECVD is a very important component of the plasma processing technology with many applications in the semiconductor technology and surface science, the research proposed here has the prospect to revolutionize the plasma processing technology through the stabilizing role of the RF power.

  6. A high temperature, plasma-assisted chemical vapor deposition system

    SciTech Connect

    Brusasco, R.M.; Britten, J.A.; Thorsness, C.B.; Scrivener, M.S.; Unites, W.G.; Campbell, J.H. ); Johnson, W.L. )

    1990-02-01

    We have designed and built a high-temperature, plasma-assisted, chemical vapor deposition system to deposit multilayer optical coatings of SiO{sub 2} and doped-SiO{sub 2} flat substrates. The coater concept and design is an outgrowth of our recent work with Schott Glasswerke demonstrating the use of plasma assisted CVD to prepare very high damage threshold optical coatings. The coater is designed to deposit up to several thousand alternating quarterwave layers of SiO{sub 2} and doped SiO{sub 2} substrate at deposition rates up to several microns per minute. The substrate is resistively heated to about 1000{degree}C during the deposition phase of the process. The plasma is driven by a 13.56 MHz RF unit capable of producing power densities of up to 140 W cm{sup {minus}3} in the reaction zone. The coater is designed to be adaptable to microwave generated plasmas, as well as RF. Reactant gas flow rates of up to 10 slm can be achieved at a 10 tar operating pressure. Reactants consist of O{sub 2}, SiCl{sub 4} and a volatile halogenated dopant. These gases react in the plasma volume producing SiO{sub 2} with dopant concentrations of up to a few percent. A variable dopant concentration is used to produce index differences between adjacent optical layers.

  7. Deposition of Silicon-Based Dielectrics by Remote Plasma-Enhanced Chemical Vapor Deposition.

    NASA Astrophysics Data System (ADS)

    Tsu, David Vincent

    1989-03-01

    This thesis discusses the deposition of amorphous silicon-based thin-film dielectrics, including silicon dioxide (SiO_2), silicon nitride (Si_3N_4) and silicon oxynitride (SiO_{rm x}N_{rm y} ), by the remote plasma-enhanced chemical vapor -deposition (Remote PECVD) technique. It is possible to deposit these films at low substrate temperatures (100 ^circC-500^ circC) without exposing the film and substrate to energetic plasma species. The oxides produced in this way have been shown to be of "gate" quality. Two issues are addressed, the atomic structure and composition of the deposited films, and the deposition mechanism. The thin films were analyzed by infrared and Auger electron spectroscopies, and the gas phase species during deposition were analyzed in a Deposition/Analysis System which includes mass spectrometry (MS) and optical emission spectroscopy (OES). A description of the deposition system is given as well as how this technique differs from the widely used Direct PECVD process. In the Direct process, all of the reactant gases are plasma excited and the substrate is exposed to the plasma. In the Remote process, the gases are selectively excited and the substrate is remote from the plasma region. We show that these differences in the Remote process, as compared to the Direct process, results in a significant increase in the ability to control both the film stoichiometry and the level of incorporated impurities, in particular bonded hydrogen. The Remote process is a four step process: (1) plasma excitation of a mixture of one of the reactant gases (e.g., either NH_3 or O _2, respectively, for nitrides and oxides) with He or Ar; (2) extraction of the activated species out of the plasma region into the deposition chamber; (3) mixing, or interacting, with the other reactant gas (SiH _4), which is injected into the chamber below the plasma region; and (4) deposition on a heated substrate. It had initially been proposed that in the mixing step, precursors were

  8. Lattice Matched Iii-V IV Semiconductor Heterostructures: Metalorganic Chemical Vapor Deposition and Remote Plasma Enhanced Chemical Vapor Deposition.

    NASA Astrophysics Data System (ADS)

    Choi, Sungwoo

    1992-01-01

    This thesis describes the growth and characterization of wide gap III-V compound semiconductors such as aluminum gallium arsenide (Al_{rm x} Ga_{rm 1-x}As), gallium nitride (GaN), and gallium phosphide (GaP), deposited by the metalorganic chemical vapor deposition (MOCVD) and remote plasma enhanced chemical vapor deposition (Remote PECVD). In the first part of the thesis, the optimization of GaAs and Al_{rm x}Ga _{rm 1-x}As hetero -epitaxial layers on Ge substrates is described in the context of the application in the construction of cascade solar cells. The emphasis on this study is on the trade-offs in the choice of the temperature related to increasing interdiffusion/autodoping and increasing perfection of the epilayer with increasing temperature. The structural, chemical, optical, and electrical properties of the heterostructures are characterized by x-ray rocking curve measurement, scanning electron microscopy (SEM), electron beam induced current (EBIC), cross-sectional transmission electron microscopy (X-TEM), Raman spectroscopy, secondary ion mass spectrometry (SIMS), and steady-state and time-resolved photoluminescence (PL). Based on the results of this work the optimum growth temperature is 720^circC. The second part of the thesis describes the growth of GaN and GaP layers on silicon and sapphire substrates and the homoepitaxy of GaP by remote PECVD. I have designed and built an ultra high vacuum (UHV) deposition system which includes: the gas supply system, the pumping system, the deposition chamber, the load-lock chamber, and the waste disposal system. The work on the deposition of GaN on Si and sapphire focuses onto the understanding of the growth kinetics. In addition, Auger electron spectroscopy (AES) for surface analysis, x-ray diffraction methods and microscopic analyses using SEM and TEM for structural characterization, infrared (IR) and ultraviolet (UV) absorption measurements for optical characterization, and electrical characterization results

  9. Passivation properties of aluminum oxide films deposited by mist chemical vapor deposition for solar cell applications

    NASA Astrophysics Data System (ADS)

    Miki, Shohei; Iguchi, Koji; Kitano, Sho; Hayakashi, Koki; Hotta, Yasushi; Yoshida, Haruhiko; Ogura, Atsushi; Satoh, Shin-ichi; Arafune, Koji

    2015-08-01

    Aluminum oxide (AlOx) films were deposited by mist chemical vapor deposition (MCVD) in air for p-type crystalline silicon, and the effects of the deposition temperature (Tdep) and AlOx film thickness on the maximum surface recombination velocities (Smax) were evaluated. It was found that Smax was improved with increasing Tdep. The AlOx film deposited at 400 °C exhibited the best Smax value of 2.8 cm/s, and the passivation quality was comparable to that of AlOx deposited by other vacuum-based techniques. Smax was also improved with increasing film thickness. When the film thickness was above 10 nm, Smax was approximately 10 cm/s. From the Fourier transform infrared spectra, it was found that the AlOx films deposited by MCVD consisted of an AlOx layer and a Si-diffused AlOx layer. In addition, it is important for the layers to be thick enough to obtain high-quality passivation.

  10. Modeling of InP metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Black, Linda R.; Clark, Ivan O.; Kui, J.; Jesser, William A.

    1991-01-01

    The growth of InP by metalorganic chemical vapor deposition (MOCVD) in a horizontal reactor is being modeled with a commercially available computational fluid dynamics modeling code. The mathematical treatment of the MOCVD process has four primary areas of concern: 1) transport phenomena, 2) chemistry, 3) boundary conditions, and 4) numerical solution methods. The transport processes involved in CVD are described by conservation of total mass, momentum, energy, and atomic species. Momentum conservation is described by a generalized form of the Navier-Stokes equation for a Newtonian fluid and laminar flow. The effect of Soret diffusion on the transport of particular chemical species and on the predicted deposition rate is examined. Both gas-phase and surface chemical reactions are employed in the model. Boundary conditions are specified at the inlet and walls of the reactor for temperature, fluid flow and chemical species. The coupled set of equations described above is solved by a finite difference method over a nonuniform rectilinear grid in both two and three dimensions. The results of the 2-D computational model is presented for gravity levels of zero- and one-g. The predicted growth rates at one-g are compared to measured growth rates on fused silica substrates.

  11. Chemical vapor deposition modeling for high temperature materials

    NASA Technical Reports Server (NTRS)

    Goekoglu, Sueleyman

    1992-01-01

    The formalism for the accurate modeling of chemical vapor deposition (CVD) processes has matured based on the well established principles of transport phenomena and chemical kinetics in the gas phase and on surfaces. The utility and limitations of such models are discussed in practical applications for high temperature structural materials. Attention is drawn to the complexities and uncertainties in chemical kinetics. Traditional approaches based on only equilibrium thermochemistry and/or transport phenomena are defended as useful tools, within their validity, for engineering purposes. The role of modeling is discussed within the context of establishing the link between CVD process parameters and material microstructures/properties. It is argued that CVD modeling is an essential part of designing CVD equipment and controlling/optimizing CVD processes for the production and/or coating of high performance structural materials.

  12. What Are Bath Salts?

    MedlinePlus

    ... Are bath salts becoming more popular? Marsha Lopez Hi, Lauren. Nope! Actually quite the opposite! This family ... and how dangerous for your body? Michelle Rankin Hi ParkerPanella - Bath salts are drugs known as synthetic ...

  13. Characterization of nanocarbon deposited on insulator substrate by alcohol chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Marina; Murata, Hidenobu; Tachibana, Masaru

    2016-10-01

    Single-layer-graphene-like nanocarbon materials were directly deposited on c-plane sapphire substrates by thermal chemical vapor deposition with ethanol as a carbon source. Scanning electron microscopy (SEM) images show that the deposited materials have sheetlike grains of around 100 nm diameter. Most of them have “hills” with 32 nm diameter on the grains. According to atomic force microscopy (AFM) observation, the height of the sheetlike grains is below 1 nm, which is comparable to that of single-layer graphene, while the hills have a height of several nm. Raman spectra show that the material is similar to graphitic nanocarbon, which has a strong D band. This result implies that there are a number of defects in the nanocarbon materials.

  14. METAL COATING BATHS

    DOEpatents

    Robinson, J.W.

    1958-08-26

    A method is presented for restoring the effectiveness of bronze coating baths used for hot dip coating of uranium. Such baths, containing a high proportion of copper, lose their ability to wet uranium surfaces after a period of use. The ability of such a bath to wet uranium can be restored by adding a small amount of metallic aluminum to the bath, and skimming the resultant hard alloy from the surface.

  15. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, Kevin C.; Kodas, Toivo T.

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  16. Deposition of thermal and hot-wire chemical vapor deposition copper thin films on patterned substrates.

    PubMed

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    In this work we study the hot-wire chemical vapor deposition (HWCVD) of copper films on blanket and patterned substrates at high filament temperatures. A vertical chemical vapor deposition reactor was used in which the chemical reactions were assisted by a tungsten filament heated at 650 degrees C. Hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) vapors were used, directly injected into the reactor with the aid of a liquid injection system using N2 as carrier gas. Copper thin films grown also by thermal and hot-wire CVD. The substrates used were oxidized silicon wafers on which trenches with dimensions of the order of 500 nm were formed and subsequently covered with LPCVD W. HWCVD copper thin films grown at filament temperature of 650 degrees C showed higher growth rates compared to the thermally ones. They also exhibited higher resistivities than thermal and HWCVD films grown at lower filament temperatures. Thermally grown Cu films have very uniform deposition leading to full coverage of the patterned substrates while the HWCVD films exhibited a tendency to vertical growth, thereby creating gaps and incomplete step coverage. PMID:22097561

  17. Deposition of nanocrystalline SiC films using helicon wave plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lu, Wanbing; Yu, Wei; Ma, Luo; Wu, Liping; Fu, Guangsheng

    2008-11-01

    Hydrogenated nanocrystalline SiC films have been deposited by using helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) in H2, SiH4 and CH4 gas mixtures at different RF powers. Their structural and optical properties have been investigated by Fourier transform infrared absorption (FTIR), atomic force microscopy (AFM) and ultraviolet-visible (UV-VIS) transmission spectra. The results indicate that RF power has an important influence on properties of the deposited films. It is found that in a 300 °C low substrate temperature, only amorphous SiC can be deposited at the radio frequency (RF) power of lower than 400 W, while nanocrystalline SiC can be grown at the RF power of equal to or higher than 400 W. The analyses show that the high plasma density of helicon wave plasma source and the high hydrogen dilution condition are two key factors for depositing nanocrystalline SiC films at a low temperature.

  18. Characterisation of TiO 2 deposited by photo-induced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Kaliwoh, Never; Zhang, Jun-Ying; Boyd, Ian W.

    2002-01-01

    We report the deposition of thin TiO 2 films on crystalline Si and quartz by photo-induced chemical vapour deposition (CVD) using UV excimer lamps employing a dielectric barrier discharge in krypton chloride (KrCl ∗) to provide intense narrow band radiation at λ=222 nm. The precursor used was titanium isopropoxide (TTIP). Films from around 20-510 nm in thickness with refractive indices from 2.20 to 2.54 were grown at temperatures between 50 and 350 °C. The higher refractive index values compare favourably with the value of 2.58 recorded for the bulk material. The measured deposition rate was around 50 nm/min at 350 °C. Fourier transform infrared spectroscopy (FTIR) revealed the presence of TiO 2 through the observation of a Ti-O absorption peak and the absence of OH in films deposited at 250-350 °C indicated relatively good quality films. The phase of films deposited at 200-350 °C was anatase as determined by X-ray diffraction.

  19. Electrical and chemical characterization of FIB-deposited insulators

    SciTech Connect

    Campbell, A.N.; Tanner, D.M.; Soden, J.M.; Adams, E.; Gibson, M.; Abramo, M.; Doyle, A.; Stewart, D.K.

    1997-10-01

    The electrical and chemical properties of insulators produced by codeposition of siloxane compounds or TEOS with oxygen in a focused ion beam (FIB) system were investigated. Metal-insulator-metal capacitor structures were fabricated and tested. Specifically, leakage current and breakdown voltage were measured and used to calculate the effective resistance and breakdown field. Capacitance measurements were performed on a subset of the structures. It was found that the siloxane-based FIB-insulators had superior electrical properties to those based on TEOS. Microbeam Rutherford backscattering spectrometry analysis and Fourier transform infrared spectroscopy were used to characterize the films and to help understand the differences in electrical behavior as a function of gas chemistry and deposition conditions. Finally, a comparison is made between the results presented here, previous results for FIB-deposited insulators, and typical thermally-grown gate oxides and interlevel dielectric SiO{sub 2} insulators.

  20. Chemical vapor deposition of low reflective cobalt (II) oxide films

    NASA Astrophysics Data System (ADS)

    Amin-Chalhoub, Eliane; Duguet, Thomas; Samélor, Diane; Debieu, Olivier; Ungureanu, Elisabeta; Vahlas, Constantin

    2016-01-01

    Low reflective CoO coatings are processed by chemical vapor deposition from Co2(CO)8 at temperatures between 120 °C and 190 °C without additional oxygen source. The optical reflectivity in the visible and near infrared regions stems from 2 to 35% depending on deposition temperature. The combination of specific microstructural features of the coatings, namely a fractal "cauliflower" morphology and a grain size distribution more or less covering the near UV and IR wavelength ranges enhance light scattering and gives rise to a low reflectivity. In addition, the columnar morphology results in a density gradient in the vertical direction that we interpret as a refractive index gradient lowering reflectivity further down. The coating formed at 180 °C shows the lowest average reflectivity (2.9%), and presents an interesting deep black diffuse aspect.

  1. Synthesis of mullite coatings by chemical vapor deposition

    SciTech Connect

    Mulpuri, R.P.; Auger, M.; Sarin, V.K.

    1996-08-01

    Formation of mullite on ceramic substrates via chemical vapor deposition was investigated. Mullite is a solid solution of Al{sub 2}O{sub 3} and SiO{sub 2} with a composition of 3Al{sub 2}O{sub 3}{circ}2SiO{sub 2}. Thermodynamic calculations performed on the AlCl{sub 3}-SiCl{sub 4}-CO{sub 2}-H{sub 2} system were used to construct equilibrium CVD phase diagrams. With the aid of these diagrams and consideration of kinetic rate limiting factors, initial process parameters were determined. Through process optimization, crystalline CVD mullite coatings have been successfully grown on SiC and Si{sub 3}N{sub 4} substrates. Results from the thermodynamic analysis, process optimization, and effect of various process parameters on deposition rate and coating morphology are discussed.

  2. Optimization of chemical displacement deposition of copper on porous silicon.

    PubMed

    Bandarenka, Hanna; Redko, Sergey; Nenzi, Paolo; Balucani, Marco; Bondarenko, Vitaly

    2012-11-01

    Copper (II) sulfate was used as a source of copper to achieve uniform distribution of Cu particles deposited on porous silicon. Layers of the porous silicon were formed by electrochemical anodization of Si wafers in a mixture of HF, C3H7OH and deionized water. The well-known chemical displacement technique was modified to grow the copper particles of specific sizes. SEM and XRD analysis revealed that the outer surface of the porous silicon was covered with copper particles of the crystal orientation inherited from the planes of porous silicon skeleton. The copper crystals were found to have the cubic face centering elementary cell. In addition, the traces of Cu2O cubic primitive crystalline phases were identified. The dimensions of Cu particles were determined by the Feret's analysis of the SEM images. The sizes of the particles varied widely from a few to hundreds of nanometers. A phenomenological model of copper deposition was proposed.

  3. Chemical Vapor Deposited Zinc Sulfide. SPIE Press Monograph

    SciTech Connect

    McCloy, John S.; Tustison, Randal W.

    2013-04-22

    Zinc sulfide has shown unequaled utility for infrared windows that require a combination of long-wavelength infrared transparency, mechanical durability, and elevated-temperature performance. This book reviews the physical properties of chemical vapor deposited ZnS and their relationship to the CVD process that produced them. An in-depth look at the material microstructure is included, along with a discussion of the material's optical properties. Finally, because the CVD process itself is central to the development of this material, a brief history is presented.

  4. Plasma-enhanced chemical vapor deposition of multiwalled carbon nanofibers

    NASA Technical Reports Server (NTRS)

    Matthews, Kristopher; Cruden, Brett A.; Chen, Bin; Meyyappan, M.; Delzeit, Lance

    2002-01-01

    Plasma-enhanced chemical vapor deposition is used to grow vertically aligned multiwalled carbon nanofibers (MWNFs). The graphite basal planes in these nanofibers are not parallel as in nanotubes; instead they exhibit a small angle resembling a stacked cone arrangement. A parametric study with varying process parameters such as growth temperature, feedstock composition, and substrate power has been conducted, and these parameters are found to influence the growth rate, diameter, and morphology. The well-aligned MWNFs are suitable for fabricating electrode systems in sensor and device development.

  5. Microwave transmission properties of chemical vapor deposition graphene

    NASA Astrophysics Data System (ADS)

    Wu, Yunqiu; Xu, Yuehang; Wang, Zegao; Xu, Cao; Tang, Zongxi; Chen, Yuanfu; Xu, Ruimin

    2012-07-01

    In this letter, the microwave transmission properties of graphene grown by the chemical vapor deposition are studied by using a multiple-layer coplanar-waveguide transmission-line based measurement method. Remarkable energy loss and phase shift have been observed in graphene from the measured scattering parameters through vector network analyzer. The effective permittivity is deduced by partial-capacitance technique, and the complex permittivity of graphene are extracted in the frequency range of 500 MHz to 6 GHz. Different from conventional dielectric material, the permittivity of graphene shows frequency-dependent below 4 GHz and has an magnitude larger than 104 for both real and imaginary parts.

  6. Bathing a patient in bed

    MedlinePlus

    Bed bath; Sponge bath ... Some patients cannot safely leave their beds to bathe. For these people, daily bed baths can help keep their skin healthy, control odor, and increase comfort. If moving the ...

  7. ZnS nanoflakes deposition by modified chemical method

    SciTech Connect

    Desai, Mangesh A. Sartale, S. D.

    2014-04-24

    We report deposition of zinc sulfide nanoflakes on glass substrates by modified chemical method. The modified chemical method involves adsorption of zinc–thiourea complex on the substrate and its dissociation in presence of hydroxide ions to release sulfur ions from thiourea which react with zinc ions present in the complex to form zinc sulfide nanoflakes at room temperature. Influence of zinc salt and thiourea concentrations ratios on the morphology of the films was investigated by scanning electron microscope (SEM). The ratio of zinc and thiourea in the zinc–thiourea complex significantly affect the size of the zinc sulfide nanoflakes, especially width and density of the nanoflakes. The X-ray diffraction analysis exhibits polycrystalline nature of the zinc sulfide nanoflakes with hexagonal phase.

  8. Chemically deposited In2S3-Ag2S layers to obtain AgInS2 thin films by thermal annealing

    NASA Astrophysics Data System (ADS)

    Lugo, S.; Peña, Y.; Calixto-Rodriguez, M.; López-Mata, C.; Ramón, M. L.; Gómez, I.; Acosta, A.

    2012-12-01

    AgInS2 thin films were obtained by the annealing of chemical bath deposited In2S3-Ag2S layers at 400 °C in N2 for 1 h. According to the XRD and EDX results the chalcopyrite structure of AgInS2 has been obtained. These films have an optical band gap, Eg, of 1.86 eV and an electrical conductivity value of 1.2 × 10-3 (Ω cm)-1.

  9. Optimized chemical vapor deposition of borophosphosilicate glass films

    NASA Astrophysics Data System (ADS)

    Kern, W.; Kurylo, W. A.; Tino, C. J.

    1985-06-01

    The optimization of atmospheric-pressure chemical vapor deposition (APCVD) of borophosphosilicate glass (BPSG) to produce glass films with few particle containments is discussed. The tests that were conducted in order to determine the optimum deposition temperature and proper oxygen/hydride ratio are explained. A decrease in deposition temperature and an increase in the oxygen/hydride ratio maximized the APCVD reaction. The techniques used to analyze the composition of BPSG after densification are described; the tests revealed that the elemental composition of BPSG was not altered by APCVD. An explanation of the film profiling technique used to determine the stability of BPSG films during processing is provided; BPSG films remain stable if they are densified or fused prior to the application of wet treatments. A comparison of conventional tube-furnace heating with rapid isothermal heating for fusion flow of BPSG is presented; fusion tapering by rapid heating was attained in 30 seconds at 175 C versus 30 minutes for tube heating.

  10. Enhanced Deposition Efficiency of Epitaxial Si Film from SiHCl3 by Mesoplasma Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Wu, Sudong; Kambara, Makoto; Yoshida, Toyonobu

    Epitaxial Si thick films have been deposited by mesoplasma chemical vapor deposition with SiHCl3-H2-Ar gas mixtures at high efficiency. Addition of hydrogen has been revealed to increase the deposition efficiency by removing Cl as a form of HCl. It also promotes the surface migration of deposition precursors for the attainment of epitaxial Si films. As a result, epitaxial Si films with a production yield of about 60% and a deposition rate of 430 nm/s were deposited at a H2/TCS ratio of 2-3.

  11. Conversion Coatings for Aluminum Alloys by Chemical Vapor Deposition Mechanisms

    NASA Technical Reports Server (NTRS)

    Reye, John T.; McFadden, Lisa S.; Gatica, Jorge E.; Morales, Wilfredo

    2004-01-01

    With the rise of environmental awareness and the renewed importance of environmentally friendly processes, the United States Environmental Protection Agency has targeted surface pre-treatment processes based on chromates. Indeed, this process has been subject to regulations under the Clean Water Act as well as other environmental initiatives, and there is today a marked movement to phase the process out in the near future. Therefore, there is a clear need for new advances in coating technology that could provide practical options for replacing present industrial practices. Depending on the final application, such coatings might be required to be resistant to corrosion, act as chemically resistant coatings, or both. This research examined a chemical vapor deposition (CVD) mechanism to deposit uniform conversion coatings onto aluminum alloy substrates. Robust protocols based on solutions of aryl phosphate ester and multi-oxide conversion coating (submicron) films were successfully grown onto the aluminum alloy samples. These films were characterized by X-ray Photoelectron Spectroscopy (XPS). Preliminary results indicate the potential of this technology to replace aqueous-based chromate processes.

  12. Thin films of barium fluoride scintillator deposited by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kirlin, P. S.; Binder, R.; Winn, D. R.; O'Hare, J.; LaPierre, C.; Whitmore, M.

    1990-04-01

    We have used metal-organic chemical vapor deposition (MOCVD) technology to coat optical substrates with thin (˜1-10 μm thick) films of inorganic BaF 2 scintillator. Scanning electron microscope (SEM) photographs indicate that high-quality epitaxial crystalline film growth was achieved, with surface defects typically smaller than optical wavelengths. The scintillation light created by the deposition of ionizing radiation in the scintillating films was measured with a photomultiplier and shown to be similar to bulk melt-grown crystals. The results demonstrate the potential of these composite optical materials for planar and fiber scintillation radiation detectors in high energy and nuclear physics, synchrotron radiation research, and in radiation and X-ray imaging and monitoring.

  13. NASA evaluation of Type 2 chemical depositions. [effects of deicer deposition on aircraft tire friction performance

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Stubbs, Sandy M.; Howell, W. Edward; Webb, Granville L.

    1993-01-01

    Recent findings from NASA Langley tests to define effects of aircraft Type 2 chemical deicer depositions on aircraft tire friction performance are summarized. The Aircraft Landing Dynamics Facility (ALDF) is described together with the scope of the tire cornering and braking friction tests conducted up to 160 knots ground speed. Some lower speed 32 - 96 km/hr (20 - 60 mph) test run data obtained using an Instrumented Tire Test Vehicle (ITTV) to determine effects of tire bearing pressure and transverse grooving on cornering friction performance are also discussed. Recommendations are made concerning which parameters should be evaluated in future testing.

  14. Amorphous Carbon Deposited by a Novel Aerosol-Assisted Chemical Vapor Deposition for Photovoltaic Solar Cells

    NASA Astrophysics Data System (ADS)

    Ahmad, Nurfadzilah; Kamaruzzaman, Dayana; Rusop, Mohamad

    2012-06-01

    Amorphous carbon (a-C) solar cells were successfully prepared using a novel and self-designed aerosol-assisted chemical vapor deposition (AACVD) method using camphor oil as a precursor. The fabricated solar cell with the configuration of Au/p-C/n-Si/Au achieved an efficiency of 0.008% with a fill factor of 0.15 for the device deposited at 0.5 h. The current-voltage (I-V) graph emphasized on the linear graph (ohmic) for the a-C thin films, whereas for the p-n device structure, a rectifying curve was obtained. The rectifying curves signify the heterojunction between the p-type a-C film and the n-Si substrate and designate the generation of electron-hole pair of the samples under illumination. Photoresponse characteristics of the deposited a-C was highlighted when being illuminated (AM 1.5 illumination: 100 mW/cm2, 25 °C). Transmittance spectrum exhibit a large transmittance value (>85%) and absorption coefficient value of 103-104 cm-1 at the visible range of 390 to 790 nm. The atomization of a liquid precursor solution into fine sub-micrometre-sized aerosol droplets in AACVD induced the smooth surface of a-C films. To the best of our knowledge, fabrication of a-C solar cell using this AACVD method has not yet been reported.

  15. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor.

    PubMed

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnO(x)-CVD layers. PMID:24089868

  16. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor.

    PubMed

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnO(x)-CVD layers.

  17. Radio-frequency plasma chemical vapor deposition growth of diamond

    NASA Technical Reports Server (NTRS)

    Meyer, Duane E.; Dillon, Rodney O.; Woollam, John A.

    1989-01-01

    Plasma chemical vapor deposition (CVD) at 13.56 MHz has been used to produce diamond particles in two different inductively coupled systems with a mixture of methane and hydrogen. The effect of a diamondlike carbon (DLC) overcoating on silicon, niobium, and stainless-steel substrates has been investigated and in the case of silicon has been found to enhance particle formation as compared to uncoated polished silicon. In addition the use of carbon monoxide in hydrogen has been found to produce well-defined individual faceted particles as well as polycrystalline films on quartz and DLC coated silicon substrates. Plasma CVD is a competitive approach to production of diamond films. It has the advantage over microwave systems of being easily scaled to large volume and high power.

  18. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  19. Creep of chemically vapor deposited SiC fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1984-01-01

    The creep, thermal expansion, and elastic modulus properties for chemically vapor deposited SiC fibers were measured between 1000 and 1500 C. Creep strain was observed to increase logarithmically with time, monotonically with temperature, and linearly with tensile stress up to 600 MPa. The controlling activation energy was 480 + or - 20 kJ/mole. Thermal pretreatments near 1200 and 1450 C were found to significantly reduce fiber creep. These results coupled with creep recovery observations indicate that below 1400 C fiber creep is anelastic with neglible plastic component. This allowed a simple predictive method to be developed for describing fiber total deformation as a function of time, temperature, and stress. Mechanistic analysis of the property data suggests that fiber creep is the result of beta-SiC grain boundary sliding controlled by a small percent of free silicon in the grain boundaries.

  20. Low Temperature Chemical Vapor Deposition Of Thin Film Magnets

    DOEpatents

    Miller, Joel S.; Pokhodnya, Kostyantyn I.

    2003-12-09

    A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO).sub.6) and bis(benzene)vanalium (V(C.sub.6 H.sub.6).sub.2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90.degree. C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40.degree. C. and 70.degree. C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.

  1. Chemical vapor deposition fluid flow simulation modelling tool

    NASA Technical Reports Server (NTRS)

    Bullister, Edward T.

    1992-01-01

    Accurate numerical simulation of chemical vapor deposition (CVD) processes requires a general purpose computational fluid dynamics package combined with specialized capabilities for high temperature chemistry. In this report, we describe the implementation of these specialized capabilities in the spectral element code NEKTON. The thermal expansion of the gases involved is shown to be accurately approximated by the low Mach number perturbation expansion of the incompressible Navier-Stokes equations. The radiative heat transfer between multiple interacting radiating surfaces is shown to be tractable using the method of Gebhart. The disparate rates of reaction and diffusion in CVD processes are calculated via a point-implicit time integration scheme. We demonstrate the use above capabilities on prototypical CVD applications.

  2. Advanced titania buffer layer architectures prepared by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Kunert, J.; Bäcker, M.; Brunkahl, O.; Wesolowski, D.; Edney, C.; Clem, P.; Thomas, N.; Liersch, A.

    2011-08-01

    Chemical solution deposition (CSD) was used to grow high-quality (100) oriented films of SrTiO3 (STO) on CSD CaTiO3 (CTO), Ba0.1Ca0.9TiO3 (BCT) and STO seed and template layers. These template films bridge the lattice misfit between STO and the nickel-tungsten (NiW) substrate, assisting in dense growth of textured STO. Additional niobium (Nb) doping of the STO buffer layer reduces oxygen diffusion which is necessary to avoid undesired oxidation of the NiW. The investigated templates offer suitable alternatives to established standard buffer systems like La2Zr2O7 (LZO) and CeO2 for coated conductors.

  3. Characterization of Carbon Nanotubes Grown by Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Cochrane, J. C.; Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Since the superior properties of multi-wall carbon nanotubes (MWCNT) could improve numerous devices such as electronics and sensors, many efforts have been made in investigating the growth mechanism of MWCNT to synthesize high quality MWCNT. Chemical vapor deposition (CVD) is widely used for MWCNT synthesis, and scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) are useful methods for analyzing the structure, morphology and composition of MWCNT. Temperature and pressure are two important growth parameters for fabricating carbon nanotubes. In MWCNT growth by CVD, the plasma assisted method is normally used for low temperature growth. However a high temperature environment is required for thermal CVD. A systematic study of temperature and pressure-dependence is very helpful to understanding MWCNT growth. Transition metal particles are commonly used as catalysis in carbon nanotube growth. It is also interesting to know how temperature and pressure affect the interface of carbon species and catalyst particles

  4. Nano structured carbon nitrides prepared by chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Karuppannan, Ramesh; Prashantha, M.

    2010-08-01

    Nanostructured carbon nitride films were prepared by pyrolysis assisted chemical vapour deposition(CVD). A two zone furnace with a temperature profile having a uniform temperature over a length of 20 cm length has been designed and developed. The precursor Azabenzimidazole was taken in a quartz tube and evaporated at 400 0C. The dense vapours enter the pyrolysis zone kept at a desired temperature and deposit on the quartz substrates. The FTIR spectrum of the prepared samples shows peaks at 1272 cm-1 (C.N stretching) and 1600 cm-1 (C=N) confirms the bonding of nitrogen with carbon. Raman D and G peaks, are observed at 1360 cm-1 and 1576 cm-1 respectively. XPS core level spectra of C 1s and N 1s show the formation of π bonding between carbon and nitrogen atoms. The size of the nano crystals estimated from the SEM images and XRD is ~100 nm. In some regions of the sample a maximum of 57 atom % of nitrogen has been observed.

  5. Chemical vapor deposition coatings for oxidation protection of titanium alloys

    NASA Technical Reports Server (NTRS)

    Cunnington, G. R.; Robinson, J. C.; Clark, R. K.

    1991-01-01

    Results of an experimental investigation of the oxidation protection afforded to Ti-14Al-21Nb and Ti-14Al-23Nb-2V titanium aluminides and Ti-17Mo-3Al-3Nb titanium alloy by aluminum-boron-silicon and boron-silicon coatings are presented. These coatings are applied by a combination of physical vapor deposition (PVD) and chemical vapor deposition (CVD) processes. The former is for the application of aluminum, and the latter is for codeposition of boron and silicon. Coating thickness is in the range of 2 to 7 microns, and coating weights are 0.6 to 2.0 mg/sq cm. Oxidation testing was performed in air at temperatures to 1255 K in both static and hypersonic flow environments. The degree of oxidation protection provided by the coatings is determined from weight change measurements made during the testing and post test compositional analyses. Temperature-dependent total normal emittance data are also presented for four coating/substrate combinations. Both types of coatings provided excellent oxidation protection for the exposure conditions of this investigation. Total normal emittances were greater than 0.80 in all cases.

  6. Thirty Gigahertz Optoelectronic Mixing in Chemical Vapor Deposited Graphene.

    PubMed

    Montanaro, Alberto; Mzali, Sana; Mazellier, Jean-Paul; Bezencenet, Odile; Larat, Christian; Molin, Stephanie; Morvan, Loïc; Legagneux, Pierre; Dolfi, Daniel; Dlubak, Bruno; Seneor, Pierre; Martin, Marie-Blandine; Hofmann, Stephan; Robertson, John; Centeno, Alba; Zurutuza, Amaia

    2016-05-11

    The remarkable properties of graphene, such as broadband optical absorption, high carrier mobility, and short photogenerated carrier lifetime, are particularly attractive for high-frequency optoelectronic devices operating at 1.55 μm telecom wavelength. Moreover, the possibility to transfer graphene on a silicon substrate using a complementary metal-oxide-semiconductor-compatible process opens the ability to integrate electronics and optics on a single cost-effective chip. Here, we report an optoelectronic mixer based on chemical vapor-deposited graphene transferred on an oxidized silicon substrate. Our device consists in a coplanar waveguide that integrates a graphene channel, passivated with an atomic layer-deposited Al2O3 film. With this new structure, 30 GHz optoelectronic mixing in commercially available graphene is demonstrated for the first time. In particular, using a 30 GHz intensity-modulated optical signal and a 29.9 GHz electrical signal, we show frequency downconversion to 100 MHz. These results open promising perspectives in the domain of optoelectronics for radar and radio-communication systems. PMID:27043922

  7. Chemical Vapor Deposition of an Organic Magnet, Vanadium Tetracyanoethylene.

    PubMed

    Harberts, Megan; Lu, Yu; Yu, Howard; Epstein, Arthur J; Johnston-Halperin, Ezekiel

    2015-07-03

    Recent progress in the field of organic materials has yielded devices such as organic light emitting diodes (OLEDs) which have advantages not found in traditional materials, including low cost and mechanical flexibility. In a similar vein, it would be advantageous to expand the use of organics into high frequency electronics and spin-based electronics. This work presents a synthetic process for the growth of thin films of the room temperature organic ferrimagnet, vanadium tetracyanoethylene (V[TCNE]x, x~2) by low temperature chemical vapor deposition (CVD). The thin film is grown at <60 °C, and can accommodate a wide variety of substrates including, but not limited to, silicon, glass, Teflon and flexible substrates. The conformal deposition is conducive to pre-patterned and three-dimensional structures as well. Additionally this technique can yield films with thicknesses ranging from 30 nm to several microns. Recent progress in optimization of film growth creates a film whose qualities, such as higher Curie temperature (600 K), improved magnetic homogeneity, and narrow ferromagnetic resonance line-width (1.5 G) show promise for a variety of applications in spintronics and microwave electronics.

  8. Thirty Gigahertz Optoelectronic Mixing in Chemical Vapor Deposited Graphene.

    PubMed

    Montanaro, Alberto; Mzali, Sana; Mazellier, Jean-Paul; Bezencenet, Odile; Larat, Christian; Molin, Stephanie; Morvan, Loïc; Legagneux, Pierre; Dolfi, Daniel; Dlubak, Bruno; Seneor, Pierre; Martin, Marie-Blandine; Hofmann, Stephan; Robertson, John; Centeno, Alba; Zurutuza, Amaia

    2016-05-11

    The remarkable properties of graphene, such as broadband optical absorption, high carrier mobility, and short photogenerated carrier lifetime, are particularly attractive for high-frequency optoelectronic devices operating at 1.55 μm telecom wavelength. Moreover, the possibility to transfer graphene on a silicon substrate using a complementary metal-oxide-semiconductor-compatible process opens the ability to integrate electronics and optics on a single cost-effective chip. Here, we report an optoelectronic mixer based on chemical vapor-deposited graphene transferred on an oxidized silicon substrate. Our device consists in a coplanar waveguide that integrates a graphene channel, passivated with an atomic layer-deposited Al2O3 film. With this new structure, 30 GHz optoelectronic mixing in commercially available graphene is demonstrated for the first time. In particular, using a 30 GHz intensity-modulated optical signal and a 29.9 GHz electrical signal, we show frequency downconversion to 100 MHz. These results open promising perspectives in the domain of optoelectronics for radar and radio-communication systems.

  9. Selected area chemical vapor deposition of thin films for conductometric microelectronic chemical sensors

    NASA Astrophysics Data System (ADS)

    Majoo, Sanjeev

    Recent advances in microelectronics and silicon processing have been exploited to fabricate miniaturized chemical sensors. Although the capability of chemical sensing technology has grown steadily, it has been outpaced by the increasing demands for more reliable, inexpensive, and selective sensors. The diversity of applications requires the deployment of different sensing materials that have rich interfacial chemistry. However, several promising sensor materials are often incompatible with silicon micromachining and their deposition requires complicated masking steps. The new approach described here is to first micromachine a generic, instrumented, conductometric, microelectronic sensor platform that is fully functional except for the front-end sensing element. This generic platform contains a thin dielectric membrane, an integrated boron-doped silicon heater, and conductance electrodes. The membrane has low thermal mass and excellent thermal isolation. A proprietary selected-area chemical vapor deposition (SACVD) process in a cold-wall reactor at low pressures was then used to achieve maskless, self-lithographic deposition of thin films. The temperature-programmable integrated microheater initiates localized thermal decomposition/reaction of suitable CVD precursors confined to a small heated area (500 mum in diameter), and this creates the active sensing element. Platinum and titania (TiOsb2) films were deposited from pyrolysis of organometallic precursors, tetrakistrifluorophosphine platinum Pt(PFsb3)sb4 and titanium tetraisopropoxide Ti(OCH(CHsb3)sb2rbrack sb4, respectively. Deposition of gold metal films from chlorotriethylphosphine gold (Csb2Hsb5)sb3PAuCl precursor was also attempted but without success. The conductance electrodes permit in situ monitoring of film growth. The as-deposited films were characterized in situ by conductance measurements and optical microscopy and ex situ by electron microscopy and spectroscopy methods. Devices equipped with

  10. Deposition of SiOx layer by plasma-enhanced chemical vapor deposition for the protection of silver (Ag) surfaces

    NASA Astrophysics Data System (ADS)

    Tarazi, Saad Al; Volpe, Luca; Antonelli, Luca; Jafer, Rashida; Batani, Dimitri; d'Esposito, Antonio; Vitobello, Marialuisa

    2014-03-01

    Silver surfaces have been treated with plasma-enhanced chemical vapor deposition to produce SiO2-like coatings for possible applications in the jewelry industry. Different experimental conditions have been tested in order to optimize the protective effectiveness of the deposited layers. Samples were analyzed with optical and scanning electron microscopy and energy-dispersive spectrometry.

  11. High growth rate homoepitaxial diamond film deposition at high temperatures by microwave plasma-assisted chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Vohra, Yogesh K. (Inventor); McCauley, Thomas S. (Inventor)

    1997-01-01

    The deposition of high quality diamond films at high linear growth rates and substrate temperatures for microwave-plasma chemical vapor deposition is disclosed. The linear growth rate achieved for this process is generally greater than 50 .mu.m/hr for high quality films, as compared to rates of less than 5 .mu.m/hr generally reported for MPCVD processes.

  12. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    SciTech Connect

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  13. Atomic layer deposition and chemical vapor deposition precursor selection method application to strontium and barium precursors.

    PubMed

    Holme, Timothy P; Prinz, Fritz B

    2007-08-23

    A new selection method for atomic layer deposition (ALD) or chemical vapor deposition (CVD) precursors is proposed and tested. Density functional theory was used to simulate Sr and Ba precursors, and several precursors were selected and used to grow films via ALD as test cases for the precursor selection method. The precursors studied were M(x)2 (M = Sr, Ba; x = tetramethylheptanedionate (tmhd), acetylacetonate (acac), hexafluoroacetylacetonate (hfac), cyclopentadienyl (H(5)C(5)), pentamethylcyclopentadienyl (Me(5)C(5)), n-propyltetramethylcyclopentadienyl (PrMe(4)C(5)), tris(isopropylcyclopentadienyl) (Pr(3)(i)H(2)C(5)), tris(isopropylcyclopentadienyl)(THF) (Pr(3)(i)H(2)C(5))(OC(4)H(8)), tris(isopropylcyclopentadienyl)(THF)2 (Pr(3)(i)H(2)C(5))(OC(4)H(8))2, tris(tert-butylcyclopentadienyl) (Bu(3)(t)H(2)C(5)), tris(tert-butylcyclopentadienyl)(THF) (Bu(3)(t)H(2)C(5))(OC(4)H(8)), heptafluoro-2,2-dimethyl-3,5-octanedionate (fod)). The energy required to break bonds between the metal atom and the ligands was calculated to find which precursors react most readily. In the case of tmhd and Cp precursors, the energy required to break bonds in the precursor ligand was studied to evaluate the most likely mechanism of carbon incorporation into the film. Trends for Ba and Sr followed each other closely, reflecting the similar chemistry among alkaline earth metals. The diketonate precursors have stronger bonds to the metals than the Cp precursors, but weaker bonds within the ligand, explaining the carbon contamination found in experimentally grown films. Atomic layer deposition of SrO was tested with Sr(tmhd)2 and Sr(PrMe(4)Cp)2 and oxygen, ozone, and water as oxygen sources. No deposition was measured with tmhd precursors, and SrO films were deposited with PrMe(4)Cp with a source temperature of 200 degrees C and at substrate temperatures between 250 and 350 degrees C with growth rates increasing for oxygen sources in this order: O2 < H2O < O2 + H2O. The experimental results

  14. Electrochromic Devices Deposited on Low-Temperature Plastics by Plasma-Enhanced Chemical Vapor Deposition

    SciTech Connect

    Robbins, Joshua; Seman, Michael

    2005-09-20

    Electrochromic windows have been identified by the Basic energy Sciences Advisory committee as an important technology for the reduction of energy spent on heating and cooling in residential and commercial buildings. Electrochromic devices have the ability to reversibly alter their optical properties in response to a small electric field. By blocking ultraviolet and infrared radiation, while modulating the incoming visible radiation, electrochromics could reduce energy consumption by several Quads per year. This amounts to several percent of the total annual national energy expenditures. The purpose of this project was to demonstrate proof of concept for using plasma-enhanced chemical vapor deposition (PECVD) for depositing all five layers necessary for full electrochromic devices, as an alternative to sputtering techniques. The overall goal is to produce electrochromic devices on flexible polymer substrates using PECVD to significantly reduce the cost of the final product. We have successfully deposited all of the films necessary for a complete electrochromic devices using PECVD. The electrochromic layer, WO3, displayed excellent change in visible transmission with good switching times. The storage layer, V2O5, exhibited a high storage capacity and good clear state transmission. The electrolyte, Ta2O5, was shown to functional with good electrical resistivity to go along with the ability to transfer Li ions. There were issues with leakage over larger areas, which can be address with further process development. We developed a process to deposit ZnO:Ga with a sheet resistance of < 50 W/sq. with > 90% transmission. Although we were not able to deposit on polymers due to the temperatures required in combination with the inverted position of our substrates. Two types of full devices were produced. Devices with Ta2O5 were shown to be functional using small aluminum dots as the top contact. The polymer electrolyte devices were shown to have a clear state transmission of

  15. Anomalously high thermal conductivity of amorphous Si deposited by hot-wire chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yang, Ho-Soon; Cahill, David G.; Liu, X.; Feldman, J. L.; Crandall, R. S.; Sperling, B. A.; Abelson, J. R.

    2010-03-01

    The thermal conductivities of thin films of amorphous Si (a-Si) deposited by hot-wire chemical vapor deposition (HWCVD) are measured by time-domain thermoreflectance (TDTR). Amorphous Si samples prepared at the National Renewable Energy Laboratory (NREL) show an anomalous enhancement in thermal conductivity compared to other forms of a-Si and compared to the prediction of the model of the minimum thermal conductivity. The thermal conductivity of the NREL HWCVD a-Si samples also decreases with increasing frequency of the temperature fields used in the experiment. This frequency dependence of the thermal conductivity is nearly identical to the results of our previous studies of crystalline semiconductor alloys; a comparison of the frequency dependence to a phonon-scattering model suggests that Rayleigh-type scattering controls the mean-free path of ˜5meV phonons in this material. Amorphous Si films prepared at University of Illinois (U. Illinois) do not show an enhanced thermal conductivity even though Raman vibrational spectra of the U. Illinois and NREL samples are nearly identical. Thus, the thermal conductivity of a-Si depends on details of the microstructure that are not revealed by vibrational spectroscopy and measurements by TDTR provide a convenient method of identifying novel microstructures in amorphous materials.

  16. Modified chemical deposition and physico-chemical properties of copper sulphide (Cu 2S) thin films

    NASA Astrophysics Data System (ADS)

    Pathan, H. M.; Desai, J. D.; Lokhande, C. D.

    2002-12-01

    Semiconducting stoichiometric copper sulphide (Cu 2S) thin films were deposited using modified chemical deposition method. The preparative conditions such as concentration, pH of cationic and anionic precursors, adsorption, reaction and rinsing time durations, complextant, etc. were optimized to get stoichiometric Cu 2S thin films. The structural, surface morphological, compositional, optical and electrical characterization were carried out with the help of X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Rutherford back scattering (RBS), optical absorbance/transmittance, electrical resistivity and thermoemf studies. The films were found to be nanocrystalline. Absorbance of the film was high (10 4 cm -1) with optical band gap of 2.35 eV. The electrical resistivity was of the order of 10 -2 Ω cm with p-type electrical conductivity.

  17. Modified chemical deposition and physico-chemical properties of copper(I) selenide thin films

    NASA Astrophysics Data System (ADS)

    Pathan, H. M.; Lokhande, C. D.; Amalnerkar, D. P.; Seth, T.

    2003-04-01

    Semiconducting stoichiometric copper(I) selenide (Cu 2Se) thin films were deposited onto glass substrate using a modified chemical method. The deposition conditions such as concentration and pH of cation and anionic precursor solutions, immersion and rinsing times and number of immersions, etc. were optimized for Cu 2Se films. The characterization of Cu 2Se films was carried out by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Rutherford back scattering (RBS), optical absorption/transmittance, electrical resistivity and thermoemf measurement techniques. The XRD shows the formation of copper(I) selenide with monoclinic crystal structure. Absorbance of the Cu 2Se thin film is found to be high (10 4 cm -1) with optical band gap of 2.35 eV. The electrical resistivity is of the order of 10 -1 Ω cm. Film exhibits p-type electrical conductivity.

  18. Formation of amorphous metal alloys by chemical vapor deposition

    DOEpatents

    Mullendore, Arthur W.

    1990-01-01

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures or organometallic compounds and metalloid hydrides, e.g., transition metal carbonyl such as nickel carbonyl, and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit.

  19. Formation of amorphous metal alloys by chemical vapor deposition

    DOEpatents

    Mullendore, A.W.

    1988-03-18

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures of organometallic compounds and metalloid hydrides,e.g., transition metal carbonyl, such as nickel carbonyl and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit. 1 fig.

  20. Model of carrier dynamics in chemical vapor deposition diamond detectors

    SciTech Connect

    Borchi, Emilio; Lagomarsino, Stefano; Mersi, Stefano; Sciortino, Silvio

    2005-03-01

    We propose a quantitative model of electronic transport on the basis of a conductivity characterization of diamond-based sensors exposed to {beta} radiation. Some of the investigated samples have been irradiated with neutron up to a fluence of 2x10{sup 15}/cm{sup 2}. Radiation-induced current measurements have been performed to study the trapping and recombination of deep defect levels in the diamond band gap. We present a quantitative analysis of the passivation of deep traps and the release of carriers during thermal fading between consecutive exposures. We determine the density of trap states per unit volume and per unit energy and their capture cross sections. We also evaluate the modification of these parameters after neutron irradiation. Our analysis gives the cross sections of the traps involved in our measurements with an accuracy of 20-50%, which is far better than that attainable with thermal spectroscopy. Our results on the capture cross section of the recombination centers agree with relevant works presented in literature on natural IIa diamond. We propose that some defects are of the same nature in chemical vapor deposition diamond, but their concentration is far lower in the state-of-the-art material. We also study a modification of the trap level distribution after neutron irradiation. Finally we propose a rationale for the improvement obtained in recent years in the performances of top quality polycrystalline diamond sensors.

  1. Chemical vapor deposition of high T sub c superconductors

    NASA Technical Reports Server (NTRS)

    Webb, G. W.; Engelhardt, J. J.

    1978-01-01

    The results are reported of an investigation into the synthesis and properties of high temperature superconducting materials. A chemical vapor deposition apparatus was designed and built which is suitable for the preparation of multicomponent metal films This apparatus was used to prepare a series of high T sub c A-15 structure superconducting films in the binary system Nb-Ge. The effect on T sub c of a variety of substrate materials was investigated. An extensive series of ternary alloys were also prepared. Conditions allowing the brittle high T sub c (approximately 18 K) A-15 structure superconductor Nb3A1 to be prepared in a low T sub c but ductile form were found. Some of the ways that the ductile (bcc) form can be cold worked or machined are described. Measurements of rate of transformation of cold worked bcc material to the high T sub c A-15 structure with low temperature annealing are given. Preliminary measurements indicate that this material has attractive high field critical current densities.

  2. Photo Initiated Chemical Vapour Deposition To Increase Polymer Hydrophobicity.

    PubMed

    Bérard, Ariane; Patience, Gregory S; Chouinard, Gérald; Tavares, Jason R

    2016-01-01

    Apple growers face new challenges to produce organic apples and now many cover orchards with high-density polyethylene (HDPE) nets to exclude insects, rather than spraying insecticides. However, rainwater- associated wetness favours the development of apple scabs, Venturia inaequalis, whose lesions accumulate on the leaves and fruit causing unsightly spots. Treating the nets with a superhydrophobic coating should reduce the amount of water that passes through the net. Here we treat HDPE and polyethylene terephthalate using photo-initiated chemical vapour deposition (PICVD). We placed polymer samples in a quartz tube and passed a mixture of H2 and CO through it while a UVC lamp (254 nm) illuminated the surface. After the treatment, the contact angle between water droplets and the surface increased by an average of 20°. The contact angle of samples placed 70 cm from the entrance of the tube was higher than those at 45 cm and 20 cm. The PICVD-treated HDPE achieved a contact angle of 124°. Nets spray coated with a solvent-based commercial product achieved 180° but water ingress was, surprisingly, higher than that for nets with a lower contact angle. PMID:27531048

  3. High crystalline quality single crystal chemical vapour deposition diamond

    NASA Astrophysics Data System (ADS)

    Martineau, P. M.; Gaukroger, M. P.; Guy, K. B.; Lawson, S. C.; Twitchen, D. J.; Friel, I.; Hansen, J. O.; Summerton, G. C.; Addison, T. P. G.; Burns, R.

    2009-09-01

    Homoepitaxial chemical vapour deposition (CVD) on high pressure, high temperature (HPHT) synthetic diamond substrates allows the production of diamond material with controlled point defect content. In order to minimize the extended defect content, however, it is necessary to minimize the number of substrate extended defects that reach the initial growth surface and the nucleation of dislocations at the interface between the CVD layer and its substrate. X-ray topography has indicated that when type IIa HPHT synthetic substrates are used, the density of dislocations nucleating at the interface can be less than 400 cm-2. X-ray topography, photoluminescence imaging and birefringence microscopy of HPHT grown synthetic type IIa diamond clearly show that the extended defect content is growth sector dependent. lang111rang sectors contain the highest concentration of both stacking faults and dislocations but lang100rang sectors are relatively free of both. It has been shown that HPHT treatment of such material can significantly reduce the area of stacking faults and cause dislocations to move. This knowledge, coupled with an understanding of how growth sectors develop during HPHT synthesis, has been used to guide selection and processing of substrates suitable for CVD synthesis of material with high crystalline perfection and controlled point defect content.

  4. Photo Initiated Chemical Vapour Deposition To Increase Polymer Hydrophobicity

    PubMed Central

    Bérard, Ariane; Patience, Gregory S.; Chouinard, Gérald; Tavares, Jason R.

    2016-01-01

    Apple growers face new challenges to produce organic apples and now many cover orchards with high-density polyethylene (HDPE) nets to exclude insects, rather than spraying insecticides. However, rainwater- associated wetness favours the development of apple scabs, Venturia inaequalis, whose lesions accumulate on the leaves and fruit causing unsightly spots. Treating the nets with a superhydrophobic coating should reduce the amount of water that passes through the net. Here we treat HDPE and polyethylene terephthalate using photo-initiated chemical vapour deposition (PICVD). We placed polymer samples in a quartz tube and passed a mixture of H2 and CO through it while a UVC lamp (254 nm) illuminated the surface. After the treatment, the contact angle between water droplets and the surface increased by an average of 20°. The contact angle of samples placed 70 cm from the entrance of the tube was higher than those at 45 cm and 20 cm. The PICVD-treated HDPE achieved a contact angle of 124°. Nets spray coated with a solvent-based commercial product achieved 180° but water ingress was, surprisingly, higher than that for nets with a lower contact angle. PMID:27531048

  5. Chemical vapor deposition: Stable carbons from low-rank coals

    SciTech Connect

    Sharma, R.K.; Kulas, R.W.; Olson, E.S.

    1996-12-31

    A chemical vapor deposition (CVD) technique has been used to increase the oxidative stability of activated carbons. Activated carbons prepared from Gascoyne lignite (North Dakota) by thermal or potassium hydroxide activations were subjected to BCI, in helium at 727{degrees}C with or without benzene for a limited period of time, followed by annealing in helium at 900{degrees}C for three days. Untreated and acid-washed coal samples were used to assess the magnitude of the effect of mineral matter in the coal on the boron coating. The oxidative stability of the boron-modified carbons was determined from the decomposition curves obtained from the thermogravimetric analysis. Modification of the as-received, KOH-treated carbon yielded oxidatively stable carbons up to an initial temperature of 520{degrees}C, compared to about 350{degrees}C for the starting material. Similar results were obtained for the carbonized Gascoyne lignite. Sulfurous acid washing of the Gascoyne significantly enhanced the thermal stability (600{degrees}C) of the boron-modified carbon.

  6. Photo Initiated Chemical Vapour Deposition To Increase Polymer Hydrophobicity

    NASA Astrophysics Data System (ADS)

    Bérard, Ariane; Patience, Gregory S.; Chouinard, Gérald; Tavares, Jason R.

    2016-08-01

    Apple growers face new challenges to produce organic apples and now many cover orchards with high-density polyethylene (HDPE) nets to exclude insects, rather than spraying insecticides. However, rainwater- associated wetness favours the development of apple scabs, Venturia inaequalis, whose lesions accumulate on the leaves and fruit causing unsightly spots. Treating the nets with a superhydrophobic coating should reduce the amount of water that passes through the net. Here we treat HDPE and polyethylene terephthalate using photo-initiated chemical vapour deposition (PICVD). We placed polymer samples in a quartz tube and passed a mixture of H2 and CO through it while a UVC lamp (254 nm) illuminated the surface. After the treatment, the contact angle between water droplets and the surface increased by an average of 20°. The contact angle of samples placed 70 cm from the entrance of the tube was higher than those at 45 cm and 20 cm. The PICVD-treated HDPE achieved a contact angle of 124°. Nets spray coated with a solvent-based commercial product achieved 180° but water ingress was, surprisingly, higher than that for nets with a lower contact angle.

  7. Charged impurity-induced scatterings in chemical vapor deposited graphene

    SciTech Connect

    Li, Ming-Yang; Tang, Chiu-Chun; Ling, D. C.; Li, L. J.; Chi, C. C.; Chen, Jeng-Chung

    2013-12-21

    We investigate the effects of defect scatterings on the electric transport properties of chemical vapor deposited (CVD) graphene by measuring the carrier density dependence of the magneto-conductivity. To clarify the dominant scattering mechanism, we perform extensive measurements on large-area samples with different mobility to exclude the edge effect. We analyze our data with the major scattering mechanisms such as short-range static scatters, short-range screened Coulomb disorders, and weak-localization (WL). We establish that the charged impurities are the predominant scatters because there is a strong correlation between the mobility and the charge impurity density. Near the charge neutral point (CNP), the electron-hole puddles that are induced by the charged impurities enhance the inter-valley scattering, which is favorable for WL observations. Away from the CNP, the charged-impurity-induced scattering is weak because of the effective screening by the charge carriers. As a result, the local static structural defects govern the charge transport. Our findings provide compelling evidence for understanding the scattering mechanisms in graphene and pave the way for the improvement of fabrication techniques to achieve high-quality CVD graphene.

  8. Chemical vapor deposited silica coatings for solar mirror protection

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.; Dever, Therese M.; Banholzer, William F.

    1988-01-01

    A variety of techniques is available to apply protective coatings to oxidation susceptible spacecraft components, and each has associated advantages and disadvantages. Film applications by means of chemical vapor deposition (CVD) has the advantage of being able to be applied conformally to objects of irregular shape. For this reason, a study was made of the oxygen plasma durability of thin film (less than 5000 A) silicon dioxide coatings applied by CVD. In these experiments, such coatings were applied to silver mirrors, which are strongly subject to oxidation, and which are proposed for use on the space station solar dynamic power system. Results indicate that such coatings can provide adequate protection without affecting the reflectance of the mirror. Scanning electron micrographs indicated that oxidation of the silver layer did occur at stress crack locations, but this did not affect the measured solar reflectances. Oxidation of the silver did not proceed beyond the immediate location of the crack. Such stress cracks did not occur in thinner silica flims, and hence such films would be desirable for this application.

  9. Synthesis Single Layer Transition Metal Dichalcogenides with Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Li, Yi-Hsien; Wang, Han; Yu, Lili; Fang, Wenjing; Palacios, Tomas; Li, Lain-Jong; Kong, Jing

    2013-03-01

    Recently, monolayers of layered transition metal dichalcogenides (LTMD), such as MX2 (M =Mo, W and X =S, Se), have been reported to exhibit significant spin-valley coupling and optoelectronic performances because of the unique structural symmetry and band structures. Monolayers in this class of materials offered a burgeoning field in fundamental physics, energy harvesting, electronics and optoelectronics. However, most studies to date are hindered with great challenges on the synthesis and transfer of high quality LTMD monolayers. Hence, a feasible synthetic process to overcome the challenges is essential. Here, we demonstrate the growth of high-quality MS2 (M =Mo, W) monolayers using ambient-pressure-chemical-vapor-deposition (APCVD) with the seeding of aromatic molecules. Electronic transport and optical performances of the as-grown MS2 monolayers are comparable to those of exfoliated MS2 monolayers. The growth of MS2 monolayer is achieved on various surfaces. Growth mechanism on the novel synthetic process is investigated. Understanding and better control of seeds for the novel growth on the class of materials may stimulate the progress in the emerging filed.

  10. Temperature admittance spectroscopy of boron doped chemical vapor deposition diamond

    NASA Astrophysics Data System (ADS)

    Zubkov, V. I.; Kucherova, O. V.; Bogdanov, S. A.; Zubkova, A. V.; Butler, J. E.; Ilyin, V. A.; Afanas'ev, A. V.; Vikharev, A. L.

    2015-10-01

    Precision admittance spectroscopy measurements over wide temperature and frequency ranges were carried out for chemical vapor deposition epitaxial diamond samples doped with various concentrations of boron. It was found that the experimentally detected boron activation energy in the samples decreased from 314 meV down to 101 meV with an increase of B/C ratio from 600 to 18000 ppm in the gas reactants. For the heavily doped samples, a transition from thermally activated valence band conduction to hopping within the impurity band (with apparent activation energy 20 meV) was detected at temperatures 120-150 K. Numerical simulation was used to estimate the impurity DOS broadening. Accurate determination of continuously altering activation energy, which takes place during the transformation of conduction mechanisms, was proposed by numerical differentiation of the Arrhenius plot. With increase of boron doping level the gradual decreasing of capture cross section from 3 × 10-13 down to 2 × 10-17 cm2 was noticed. Moreover, for the hopping conduction the capture cross section becomes 4 orders of magnitude less (˜2 × 10-20 cm2). At T > Troom in doped samples the birth of the second conductance peak was observed. We attribute it to a defect, related to the boron doping of the material.

  11. Temperature admittance spectroscopy of boron doped chemical vapor deposition diamond

    SciTech Connect

    Zubkov, V. I. Kucherova, O. V.; Zubkova, A. V.; Ilyin, V. A.; Afanas'ev, A. V.; Bogdanov, S. A.; Vikharev, A. L.; Butler, J. E.

    2015-10-14

    Precision admittance spectroscopy measurements over wide temperature and frequency ranges were carried out for chemical vapor deposition epitaxial diamond samples doped with various concentrations of boron. It was found that the experimentally detected boron activation energy in the samples decreased from 314 meV down to 101 meV with an increase of B/C ratio from 600 to 18000 ppm in the gas reactants. For the heavily doped samples, a transition from thermally activated valence band conduction to hopping within the impurity band (with apparent activation energy 20 meV) was detected at temperatures 120–150 K. Numerical simulation was used to estimate the impurity DOS broadening. Accurate determination of continuously altering activation energy, which takes place during the transformation of conduction mechanisms, was proposed by numerical differentiation of the Arrhenius plot. With increase of boron doping level the gradual decreasing of capture cross section from 3 × 10{sup −13} down to 2 × 10{sup −17} cm{sup 2} was noticed. Moreover, for the hopping conduction the capture cross section becomes 4 orders of magnitude less (∼2 × 10{sup −20} cm{sup 2}). At T > T{sub room} in doped samples the birth of the second conductance peak was observed. We attribute it to a defect, related to the boron doping of the material.

  12. Growth of graphene underlayers by chemical vapor deposition

    SciTech Connect

    Fabiane, Mopeli; Khamlich, Saleh; Bello, Abdulhakeem; Dangbegnon, Julien; Momodu, Damilola; Manyala, Ncholu; Charlie Johnson, A. T.

    2013-11-15

    We present a simple and very convincing approach to visualizing that subsequent layers of graphene grow between the existing monolayer graphene and the copper catalyst in chemical vapor deposition (CVD). Graphene samples were grown by CVD and then transferred onto glass substrates by the bubbling method in two ways, either direct-transfer (DT) to yield poly (methyl methacrylate) (PMMA)/graphene/glass or (2) inverted transfer (IT) to yield graphene/PMMA/glass. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to reveal surface features for both the DT and IT samples. The results from FE-SEM and AFM topographic analyses of the surfaces revealed the underlayer growth of subsequent layers. The subsequent layers in the IT samples are visualized as 3D structures, where the smaller graphene layers lie above the larger layers stacked in a concentric manner. The results support the formation of the so-called “inverted wedding cake” stacking in multilayer graphene growth.

  13. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor.

    PubMed

    Lee, Jung-Soo; Kim, Sun-I; Yoon, Jong-Chul; Jang, Ji-Hyun

    2013-07-23

    A mass-producible mesoporous graphene nanoball (MGB) was fabricated via a precursor-assisted chemical vapor deposition (CVD) technique for supercapacitor application. Polystyrene balls and reduced iron created under high temperature and a hydrogen gas environment provide a solid carbon source and a catalyst for graphene growth during the precursor-assisted CVD process, respectively. Carboxylic acid and sulfonic acid functionalization of the polystyrene ball facilitates homogeneous dispersion of the hydrophobic polymer template in the metal precursor solution, thus, resulting in a MGB with a uniform number of graphene layers. The MGB is shown to have a specific surface area of 508 m(2)/g and is mesoporous with a mean mesopore diameter of 4.27 nm. Mesopores are generated by the removal of agglomerated iron domains, permeating down through the soft polystyrene spheres and providing the surface for subsequent graphene growth during the heating process in a hydrogen environment. This technique requires only drop-casting of the precursor/polystyrene solution, allowing for mass-production of multilayer MGBs. The supercapacitor fabricated by the use of the MGB as an electrode demonstrates a specific capacitance of 206 F/g and more than 96% retention of capacitance after 10,000 cycles. The outstanding characteristics of the MGB as an electrode for supercapacitors verify the strong potential for use in energy-related areas. PMID:23782238

  14. Growth of graphene underlayers by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Fabiane, Mopeli; Khamlich, Saleh; Bello, Abdulhakeem; Dangbegnon, Julien; Momodu, Damilola; Charlie Johnson, A. T.; Manyala, Ncholu

    2013-11-01

    We present a simple and very convincing approach to visualizing that subsequent layers of graphene grow between the existing monolayer graphene and the copper catalyst in chemical vapor deposition (CVD). Graphene samples were grown by CVD and then transferred onto glass substrates by the bubbling method in two ways, either direct-transfer (DT) to yield poly (methyl methacrylate) (PMMA)/graphene/glass or (2) inverted transfer (IT) to yield graphene/PMMA/glass. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to reveal surface features for both the DT and IT samples. The results from FE-SEM and AFM topographic analyses of the surfaces revealed the underlayer growth of subsequent layers. The subsequent layers in the IT samples are visualized as 3D structures, where the smaller graphene layers lie above the larger layers stacked in a concentric manner. The results support the formation of the so-called "inverted wedding cake" stacking in multilayer graphene growth.

  15. Structure of chemical vapor deposition titania/silica gel

    SciTech Connect

    Leboda, R.; Gun'ko, V.M.; Marciniak, M.; Malygin, A.A.; Malkin, A.A.; Grzegorczyk, W.; Trznadel, B.J.; Pakhlov, E.M.; Voronin, E.F.

    1999-10-01

    The structure of porous silica gel/titania synthesized using chemical vapor deposition (CVD) of titania via repeated reactions of TiCl{sub 4} with the surface and subsequent hydrolysis of residual Ti-Cl bonds at different temperatures was investigated by means of low-temperature nitrogen adsorption-desorption, X-ray diffraction (XRD), IR spectroscopy, and theoretical methods. A globular model of porous solids with corpuscular structure was applied to estimate the porosity parameters of titania/silica gel adsorbents. The utilization of this model is useful, for example, to predict conditions for synthesis of titania/silica with a specified structure. Analysis of pore parameters and fractal dimension suggests that the porosity and fractality of samples decrease with increasing amount of TiO{sub 2} covering the silica gel surface in a nonuniform layer, which represents small particles embedded in pores and larger particles formed at the outer surface of silica globules. Theoretical simulation shows that the Si-O-Ti linkages between the cover and the substrate can be easily hydrolyzed, which is in agreement with the IR data corresponding to the absence of a band at 950 cm {sup {minus}1} (characteristic of Si-O-Ti bridges) independent of the concentration of CVD-titania.

  16. Long distance spin communication in chemical vapour deposited graphene

    PubMed Central

    Kamalakar, M. Venkata; Groenveld, Christiaan; Dankert, André; Dash, Saroj P.

    2015-01-01

    Graphene is an ideal medium for long-distance spin communication in future spintronic technologies. So far, the prospect is limited by the smaller sizes of exfoliated graphene flakes and lower spin transport properties of large-area chemical vapour-deposited (CVD) graphene. Here we demonstrate a high spintronic performance in CVD graphene on SiO2/Si substrate at room temperature. We show pure spin transport and precession over long channel lengths extending up to 16 μm with a spin lifetime of 1.2 ns and a spin diffusion length ∼6 μm at room temperature. These spin parameters are up to six times higher than previous reports and highest at room temperature for any form of pristine graphene on industrial standard SiO2/Si substrates. Our detailed investigation reinforces the observed performance in CVD graphene over wafer scale and opens up new prospects for the development of lateral spin-based memory and logic applications. PMID:25857650

  17. Effect of tri-sodium citrate concentration on structural, optical and electrical properties of chemically deposited tin sulfide films

    NASA Astrophysics Data System (ADS)

    Gode, F.; Guneri, E.; Baglayan, O.

    2014-11-01

    Tin sulfide thin films were deposited onto glass substrates by chemical bath deposition. The effects of molar concentration of the complexing agent, tri-sodium citrate, on the structural, morphological, optical and electrical properties of the films were investigated. The films are characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, optical absorption spectroscopy and Hall effect measurements. Polycrystalline film structure in orthorhombic phase was determined. Flower-like spherical grains are observed on the surface. While their average size increased from 345 nm to 750 nm when the tri-sodium citrate concentration was increased from 6.4 × 10-3 M to 8.0 × 10-3 M, the surface roughness varied in an opposite manner from approximately 120.18 nm to 29.36 nm. For these concentrations, optical band gap of the films decreased from 1.40 eV to 1.17 eV, whereas the Hall conductivity, mobility and carrier concentration of the films increased slightly from 5.91 × 10-5 to 8.78 × 10-5 (Ω cm)-1, from 148 to 228 cm2 V-1 s-1 and from 1.73 × 1012 to 3.59 × 1012 cm-1, respectively.

  18. Y-Ba-Cu-O film deposition by metal organic chemical vapor deposition on buffered metal substrates.

    SciTech Connect

    Selvamanickam, V.; Galinski, G.; DeFrank, J.; Trautwein, C.; Haldar, P.; Balachandran, U.; Lanagan, M.; Chudzik, M.

    1999-10-12

    YBa{sub 2}Cu{sub 3}O{sub 2} (YBCO) films have been deposited on buffered metal substrates by Metal Organic Chemical Vapor Deposition (MOCVD). Cube-textured nickel substrates were fabricated by a thermomechanical process. Epitaxial CeO{sub 2}films were deposited on these substrates by thermal evaporation. Nickel alloy substrates with biaxially-textured Yttria-Stabilized Zirconia (YSZ) buffer layers deposited by Ion Beam Assisted Deposition were also prepared. Highly biaxially-textured YBCO films were deposited by MOCVD on both types of metal substrates. A critical current density greater than 10{sup 5} A/cm{sup 2} at 77 K has been achieved in YBCO films on metal substrates.

  19. All-Hot-Wire Chemical Vapor Deposition a-Si:H Solar Cells

    SciTech Connect

    Iwaniczko, E.; Wang, Q.; Xu, Y.; Nelson, B. P.; Mahan, A. H.; Crandall, R. S.; Branz, H. M.

    2000-01-01

    Efficient hydrogenated amorphous silicon (a-Si:H) nip solar cells have been fabricated with all doped and undoped a-Si:H layers deposited by hot-wire chemical vapor deposition (HWCVD). The total deposition time of all layers, except the top ITO-contact, is less than 4 minutes.

  20. Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1999-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies ion the processing of semiconductor materials arising from understanding etch chemistries are being developed through a research collaboration between Stanford University and NASA-Ames Research Center, Although a great deal of laboratory-scale research has been performed on many of materials processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. In addition, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. The research described involves the study of plasmas used in semiconductor processes. An inductively coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics and chemistries. This ICP source generates plasmas with higher electron densities (approximately 10(exp 12)/cu cm) and lower operating pressures (approximately 7 mTorr) than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The motivation for this study is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas-phase and surface reaction rates. species

  1. Properties of chemical vapor infiltration diamond deposited in a diamond powder matrix

    SciTech Connect

    Panitz, J.K.G.; Tallant, D.R.; Hills, C.R.; Staley, D.J.

    1993-12-31

    Densifying non-mined diamond powder precursors with diamond produced by chemical vapor infiltration (CVI) is an attractive approach for forming thick diamond deposits that avoids many potential manufacturability problems associated with predominantly chemical vapor deposition (CVD) processes. The authors have developed two techniques: electrophoretic deposition and screen printing, to form nonmined diamond powder precursors on substrates. They then densify these precursors in a hot filament assisted reactor. Analysis indicated that a hot filament assisted chemical vapor infiltration process forms intergranular diamond deposits with properties that are to some degree different from predominantly hot-filament-assisted CVD material.

  2. Chemical mediation of egg capsule deposition by mud snails.

    PubMed

    Rittschof, Dan; Sawardecker, Prasad; Petry, Caroline

    2002-11-01

    Mud snails (Ilyanassa obsoleta = Nassarius obsoletus = Nassa obsoleta) deposit eggs in protective capsules on hard substrata in soft bottom environments. We studied sites of egg capsule deposition and snail movement responses to odors to determine if chemoreception plays a role in deposition site selection. From results of field surveys, laboratory experiments, and field experiments, we conclude that mud snails use chemoreception for capsule deposition. Attractive odors originate from mud snail and whelk egg capsules and from living bivalves. Evidence for attractive odors from conspecifics is equivocal. Capsules are deposited on living odor sources and nearby hard substrates. We hypothesize that deposition of capsules on living substrates increases the likelihood that embryos will survive by decreasing the chance of smothering of embryos by sediments. PMID:12523566

  3. Single crystal diamond detectors grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tuvè, C.; Angelone, M.; Bellini, V.; Balducci, A.; Donato, M. G.; Faggio, G.; Marinelli, M.; Messina, G.; Milani, E.; Morgada, M. E.; Pillon, M.; Potenza, R.; Pucella, G.; Russo, G.; Santangelo, S.; Scoccia, M.; Sutera, C.; Tucciarone, A.; Verona-Rinati, G.

    2007-01-01

    The detection properties of heteropitaxial (polycrystalline, pCVD) and homoepitaxial (single crystal, scCVD) diamond films grown by microwave chemical vapor deposition (CVD) in the Laboratories of Roma "Tor Vergata" University are reported. The pCVD diamond detectors were tested with α-particles from different sources and 12C ions produced by 15 MV Tandem accelerator at Southern National Laboratories (LNS) in Catania (Italy). pCVDs were also used to monitor 14 MeV neutrons produced by the D-T plasma at Joint European Torus (JET), Culham, U.K. The limit of pCVDs is the poor energy resolution. To overcome this problem, we developed scCVD diamonds using the same reactor parameters that optimized pCVD diamonds. scCVD were grown on a low cost (1 0 0) HPHT single crystal substrate. A detector 110 μm thick was tested under α-particles and under 14 MeV neutron irradiation. The charge collection efficiency spectrum measured under irradiation with a triple α-particle source shows three clearly resolved peaks, with an energy resolution of about 1.1%. The measured spectra under neutron irradiation show a well separated C(n,α0)9Be12 reaction peak with an energy spread of 0.5 MeV for 14.8 MeV neutrons and 0.3 MeV for 14.1 MeV neutrons, which are fully compatible with the energy spread of the incident neutron beams.

  4. Carbon Nanotubes/Nanofibers by Plasma Enhanced Chemical Vapour Deposition

    NASA Technical Reports Server (NTRS)

    Teo, K. B. K.; Hash, D. B.; Bell, M. S.; Chhowalla, M.; Cruden, B. A.; Amaratunga, G. A. J.; Meyyappan, M.; Milne, W. I.

    2005-01-01

    Plasma enhanced chemical vapour deposition (PECVD) has been recently used for the production of vertically aligned carbon nanotubedfibers (CN) directly on substrates. These structures are potentially important technologically as electron field emitters (e.g. microguns, microwave amplifiers, displays), nanoelectrodes for sensors, filter media, superhydrophobic surfaces and thermal interface materials for microelectronics. A parametric study on the growth of CN grown by glow discharge dc-PECVD is presented. In this technique, a substrate containing thin film Ni catalyst is exposed to C2H2 and NH3 gases at 700 C. Without plasma, this process is essentially thermal CVD which produces curly spaghetti-like CN as seen in Fig. 1 (a). With the plasma generated by biasing the substrate at -6OOV, we observed that the CN align vertically during growth as shown in Fig. l(b), and that the magnitude of the applied substrate bias affects the degree of alignment. The thickness of the thin film Ni catalyst was found to determine the average diameter and inversely the length of the CN. The yield and density of the CN were controlled by the use of different diffusion barrier materials under the Ni catalyst. Patterned CN growth [Fig. l(c)], with la variation in CN diameter of 4.1% and 6.3% respectively, is achieved by lithographically defining the Ni thin film prior to growth. The shape of the structures could be varied from very straight nanotube-like to conical tip-like nanofibers by increasing the ratio of C2H2 in the gas flow. Due to the plasma decomposition of C2H2, amorphous carbon (a-C) is an undesirable byproduct which could coat the substrate during CN growth. Using a combination of depth profiled Auger electron spectroscopy to study the substrate and in-situ mass spectroscopy to examine gas phase neutrals and ions, the optimal conditions for a-C free growth of CN is determined.

  5. Mathematical and numerical models of CdTe deposition in a pre-cracking metalorganic chemical vapour deposition reactor

    NASA Astrophysics Data System (ADS)

    Davis, T. J.; McAllister, T.; Maslen, V.; Wilkins, S. W.; Faith, M.; Leech, P.

    1993-10-01

    A mathematical model is used to calculate the deposition profile of CdTe in a horizontal pre-cracker metalorganic chemical vapour deposition (MOCVD) reactor. The model is solved numerically in two dimensions, yielding the temperature profile in the reactor and the concentrations of chemical species. The calculated deposition profiles are compared with growths of CdTe on glass. With appropriate approximations, the model is reduced to a simple form which is solved analytically. This model has enabled us to identify the cause of the non-uniformity in the deposition profile as a variation in the rate of supply of metal vapour. By optimizing the reactor temperature and the gas flow rates, high-uniformity CdTe films have been grown on GaAs substrates.

  6. Diamond deposition from fluorinated precursors using microwave-plasma chemical vapor deposition

    SciTech Connect

    Fox, C.A.; McMaster, M.C.; Hsu, W.L.; Kelly, M.A.; Hagstrom, S.B.

    1995-10-16

    Diamond thin films were grown using fluorinated precursors by microwave plasma-assisted chemical vapor deposition. Using CH{sub 4}/H{sub 2}, CH{sub 3}F/H{sub 2}, and CF{sub 4}/H{sub 2} gas mixtures, films were grown at surface temperatures in the range 600--900 {degree}C at constant microwave power, carbon mole fraction, and pressure. Growth activation energies for the CH{sub 4}/H{sub 2}, CH{sub 3}F/H{sub 2}, and CF{sub 4}/H{sub 2} mixtures were 12.6{plus_minus}1.8, 13.7{plus_minus}1.2, and 12.4{plus_minus}1.1 kcal/mole, respectively. Argon ion etching in conjunction with x-ray photoelectron spectroscopy indicated negligible fluorine incorporation into the films. These results are consistent with the hypothesis that diamond is grown from the same intermediates, namely methyl radicals and atomic hydrogen, for all of these mixtures. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  7. Magnetorheological finishing of chemical-vapor deposited zinc sulfide via chemically and mechanically modified fluids

    DOE PAGESBeta

    Salzman, Sivan; Romanofsky, Henry J.; Giannechini, Lucca J.; Jacobs, Stephen D.; Lambropoulos, John C.

    2016-02-19

    In this study, we describe the anisotropy in the material removal rate (MRR) of the polycrystalline, chemical-vapor deposited zinc sulfide (ZnS).We define the polycrystalline anisotropy via microhardness and chemical erosion tests for four crystallographic orientations of ZnS: (100), (110), (111), and (311). Anisotropy in the MRR was studied under magnetorheological finishing (MRF) conditions. Three chemically and mechanically modified magnetorheological (MR) fluids at pH values of 4, 5, and 6 were used to test the MRR variations among the four single-crystal planes. When polishing the single-crystal planes and the polycrystalline with pH 5 and pH 6MR fluids, variations were found inmore » the MRR among the four single-crystal planes and surface artifacts were observed on the polycrystalline material. When polishing the single-crystal planes and the polycrystalline with the modified MR fluid at pH 4, however, minimal variation was observed in the MRR among the four orientations and a reduction in surface artifacts was achieved on the polycrystalline material.« less

  8. Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films

    NASA Astrophysics Data System (ADS)

    Krumov, E.; Starbov, N.; Starbova, K.; Perea, A.; Solis, J.

    2009-11-01

    Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO 2 ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO 2 films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO 2 based thin film catalysts is discussed.

  9. High rate chemical vapor deposition of carbon films using fluorinated gases

    DOEpatents

    Stafford, Byron L.; Tracy, C. Edwin; Benson, David K.; Nelson, Arthur J.

    1993-01-01

    A high rate, low-temperature deposition of amorphous carbon films is produced by PE-CVD in the presence of a fluorinated or other halide gas. The deposition can be performed at less than 100.degree. C., including ambient room temperature, with a radio frequency plasma assisted chemical vapor deposition process. With less than 6.5 atomic percent fluorine incorporated into the amorphous carbon film, the characteristics of the carbon film, including index of refraction, mass density, optical clarity, and chemical resistance are within fifteen percent (15%) of those characteristics for pure amorphous carbon films, but the deposition rates are high.

  10. Solar-induced chemical vapor deposition of diamond-type carbon films

    DOEpatents

    Pitts, J. Roland; Tracy, C. Edwin; King, David E.; Stanley, James T.

    1994-01-01

    An improved chemical vapor deposition method for depositing transparent continuous coatings of sp.sup.3 -bonded diamond-type carbon films, comprising: a) providing a volatile hydrocarbon gas/H.sub.2 reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and b) directing a concentrated solar flux of from about 40 to about 60 watts/cm.sup.2 through said reactant mixture to produce substrate temperatures of about 750.degree. C. to about 950.degree. C. to activate deposition of the film on said substrate.

  11. Solar-induced chemical vapor deposition of diamond-type carbon films

    DOEpatents

    Pitts, J.R.; Tracy, C.E.; King, D.E.; Stanley, J.T.

    1994-09-13

    An improved chemical vapor deposition method for depositing transparent continuous coatings of sp[sup 3]-bonded diamond-type carbon films, comprises: (a) providing a volatile hydrocarbon gas/H[sub 2] reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and (b) directing a concentrated solar flux of from about 40 to about 60 watts/cm[sup 2] through said reactant mixture to produce substrate temperatures of about 750 C to about 950 C to activate deposition of the film on said substrate. 11 figs.

  12. Practical silicon deposition rules derived from silane monitoring during plasma-enhanced chemical vapor deposition

    SciTech Connect

    Bartlome, Richard De Wolf, Stefaan; Demaurex, Bénédicte; Ballif, Christophe; Amanatides, Eleftherios; Mataras, Dimitrios

    2015-05-28

    We clarify the difference between the SiH{sub 4} consumption efficiency η and the SiH{sub 4} depletion fraction D, as measured in the pumping line and the actual reactor of an industrial plasma-enhanced chemical vapor deposition system. In the absence of significant polysilane and powder formation, η is proportional to the film growth rate. Above a certain powder formation threshold, any additional amount of SiH{sub 4} consumed translates into increased powder formation rather than into a faster growing Si film. In order to discuss a zero-dimensional analytical model and a two-dimensional numerical model, we measure η as a function of the radio frequency (RF) power density coupled into the plasma, the total gas flow rate, the input SiH{sub 4} concentration, and the reactor pressure. The adjunction of a small trimethylboron flow rate increases η and reduces the formation of powder, while the adjunction of a small disilane flow rate decreases η and favors the formation of powder. Unlike η, D is a location-dependent quantity. It is related to the SiH{sub 4} concentration in the plasma c{sub p}, and to the phase of the growing Si film, whether the substrate is glass or a c-Si wafer. In order to investigate transient effects due to the RF matching, the precoating of reactor walls, or the introduction of a purifier in the gas line, we measure the gas residence time and acquire time-resolved SiH{sub 4} density measurements throughout the ignition and the termination of a plasma.

  13. Artificial Quantum Thermal Bath

    NASA Astrophysics Data System (ADS)

    Shabani, Alireza; Neven, Hartmut

    In this talk, we present a theory for engineering the temperature of a quantum system different from its ambient temperature, that is basically an analog version of the quantum metropolis algorithm. We define criteria for an engineered quantum bath that, when couples to a quantum system with Hamiltonian H, drives the system to the equilibrium state e/- H / T Tr (e - H / T) with a tunable parameter T. For a system of superconducting qubits, we propose a circuit-QED approximate realization of such an engineered thermal bath consisting of driven lossy resonators. We consider an artificial thermal bath as a simulator for many-body physics or a controllable temperature knob for a hybrid quantum-thermal annealer.

  14. Numerical modeling of chemical vapor deposition (CVD) in a horizontal reactor

    NASA Technical Reports Server (NTRS)

    Sheikholeslami, M. Z.; Jasinski, T.; Fretz, K. W.

    1988-01-01

    In the present numerical prediction of the deposition rate of silicon from silane in a CVD process, the conservation equations for mass, momentum, energy, and chemical species are solved on a staggered grid using the SIMPLE algorithm, while the rate of chemical reactions in the gas phase and on the susceptor surface is obtained from an Arrhenius rate equation. Predicted deposition rates as a function of position along the susceptor with and without the gas phase chemical reaction are compared with the available experimental and numerical data; agreement is excellent except at the leading edge of the susceptor, where the deposition rate is overpredicted.

  15. Characteristics of epitaxial garnets grown by CVD using single metal alloy sources. [Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Besser, P. J.; Hamilton, T. N.; Mee, J. E.; Stermer, R. L.

    1974-01-01

    Single metal alloys have been explored as the cation source in the chemical vapor deposition (CVD) of iron garnets. Growth of good quality single crystal garnet films containing as many as five different cations has been achieved over a wide range of deposition conditions. The relationship of film composition to alloy compositions and deposition conditions has been determined for several materials. By proper choice of the alloy composition and the deposition conditions, uncrazed deposits were grown on (111) gadolinium gallium garnet (GGG) substrates. Data on physical, magnetic and optical properties of representative films is presented and discussed.

  16. Effect of deposition temperature on boron-doped carbon coatings deposited from a BCl 3-C 3H 6-H 2 mixture using low pressure chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, Yongsheng; Zhang, Litong; Cheng, Laifei; Yang, Wenbin; Xu, Yongdong

    2009-08-01

    A mixture of propylene, hydrogen and boron trichloride was used to fabricate boron-doped carbon coatings by using low pressure chemical vapor deposition ( LPCVD) technique. Effect of deposition temperature on deposition rate, morphologies, compositions and bonding states of boron-doped carbon coatings was investigated. Below 1273 K, the deposition rate is controlled by reaction dynamics. The deposition rate increases with increasing deposition temperature. The activation energy is 208.74 kJ/mol. Above 1273 K, the deposition rate decreases due to smaller critical radius rc and higher nuclei formation rate J with increasing temperature. Scanning electron microscopy shows that the structure changes from glass-like to nano-laminates with increasing deposition temperature. The boron concentration decreases with increasing deposition temperature, corresponding with increasing carbon concentration. The five types of bonding states are B-C, B-sub-C, BC 2O, BCO 2 and B-O. B-sub-C and BC 2O are the main bonding states. The reactions are dominant at all temperatures, in which the B-sub-C and PyC are formed.

  17. Influence of the normalized ion flux on the constitution of alumina films deposited by plasma-assisted chemical vapor deposition

    SciTech Connect

    Kurapov, Denis; Reiss, Jennifer; Trinh, David H.; Hultman, Lars; Schneider, Jochen M.

    2007-07-15

    Alumina thin films were deposited onto tempered hot working steel substrates from an AlCl{sub 3}-O{sub 2}-Ar-H{sub 2} gas mixture by plasma-assisted chemical vapor deposition. The normalized ion flux was varied during deposition through changes in precursor content while keeping the cathode voltage and the total pressure constant. As the precursor content in the total gas mixture was increased from 0.8% to 5.8%, the deposition rate increased 12-fold, while the normalized ion flux decreased by approximately 90%. The constitution, morphology, impurity incorporation, and the elastic properties of the alumina thin films were found to depend on the normalized ion flux. These changes in structure, composition, and properties induced by normalized ion flux may be understood by considering mechanisms related to surface and bulk diffusion.

  18. Modeling free convective gravitational effects in chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Stinespring, C. D.; Annen, K. D.

    1987-01-01

    In this paper, a combined fluid-mechanics, mass-transport, and chemistry model describing CVD in an open-tube atmospheric-pressure flow reactor is developed. The model allows gas-phase reactions to proceed to equilibrium and accounts for finite reaction rates at the surface of the deposition substrate. This model is a useful intermediate step toward a model employing fully rate-limited chemistry. The model is used to predict the effects of free convection on flow patterns, temperature and species-concentration profiles, and local deposition rates for silicon deposited by silane pyrolysis. These results are discussed in terms of implications for CVD of silicon and other compounds, microgravity studies, and techniques for testing and validating the model.

  19. Laser/Plasma/Chemical-Vapor Deposition Of Diamond

    NASA Technical Reports Server (NTRS)

    Hsu, George C.

    1989-01-01

    Proposed process for deposition of diamond films includes combination of plasma induced in hydrocarbon feed gas by microwave radiation and irradiation of plasma and substrate by lasers. Deposition of graphite suppressed. Reaction chamber irradiated at wavelength favoring polymerization of CH2 radical into powders filtered out of gas. CH3 radicals, having desired sp3 configuration, remains in gas to serve as precursors for deposition. Feed gas selected to favor formation of CH3 radicals; candidates include CH4, C2H4, C2H2, and C2H6. Plasma produced by applying sufficient power at frequency of 2.45 GHz and adjusting density of gas to obtain electron kinetic energies around 100 eV in low-pressure, low-temperature regime.

  20. Metalorganic chemical vapor deposition of gallium nitride on sacrificial substrates

    NASA Astrophysics Data System (ADS)

    Fenwick, William Edward

    GaN-based light emitting diodes (LEDs) face several challenges if the technology is to continue to make a significant impact in general illumination, and on technology that has become known as solid state lighting (SSL). Two of the most pressing challenges for the continued penetration of SSL into traditional lighting applications are efficacy and total lumens from the device, and their related cost. The development of alternative substrate technologies is a promising avenue toward addressing both of these challenges, as both GaN-based device technology and the associated metalorganic chemical vapor deposition (MOCVD) technology are already relatively mature technologies with a well-understood cost base. Zinc oxide (ZnO) and silicon (Si) are among the most promising alternative substrates for GaN epitaxy. These substrates offer the ability to access both higher efficacy and lumen devices (ZnO) at a much reduced cost. This work focuses on the development of MOCVD growth processes to yield high quality GaN-based materials and devices on both ZnO and Si. ZnO is a promising substrate for growth of low defect-density GaN because of its similar lattice constant and thermal expansion coefficient. The major hurdles for GaN growth on ZnO are the instability of the substrate in a hydrogen atmosphere, which is typical of nitride growth conditions, and the inter-diffusion of zinc and oxygen from the substrate into the GaN-based epitaxial layer. A process was developed for the MOCVD growth of GaN and InxGa 1-xN on ZnO that attempted to address these issues. The structural and optical properties of these films were studied using various techniques. X-ray diffraction (XRD) showed the growth of wurtzite GaN on ZnO, and room-temperature photoluminescence (RT-PL) showed near band-edge luminescence from the GaN and InxGa1-xN layers. However, high zinc and oxygen concentrations due to interdiffusion near the ZnO substrate remained an issue; therefore, the diffusion of zinc and oxygen

  1. Compositional study of silicon oxynitride thin films deposited using electron cyclotron resonance plasma-enhanced chemical vapor deposition technique

    SciTech Connect

    Baumann, H.; Sah, R.E.

    2005-05-01

    We have used backscattering spectrometry and {sup 15}N({sup 1}H,{alpha},{gamma}){sup 12}C nuclear reaction analysis techniques to study in detail the variation in the composition of silicon oxynitride films with deposition parameters. The films were deposited using 2.45 GHz electron cyclotron resonance plasma-enhanced chemical vapor deposition (PECVD) technique from mixtures of precursors argon, nitrous oxide, and silane at deposition temperature 90 deg. C. The deposition pressure and nitrous oxide-to-silane gas flow rates ratio have been found to have a pronounced influence on the composition of the films. When the deposition pressure was varied for a given nitrous oxide-to-silane gas flow ratio, the amount of silicon and nitrogen increased with the deposition pressure, while the amount of oxygen decreased. For a given deposition pressure, the amount of incorporated nitrogen and hydrogen decreased while that of oxygen increased with increasing nitrous oxide-to-silane gas flow rates ratio. For nitrous oxide-to-silane gas flow ratio of 5, we obtained films which contained neither chemically bonded nor nonbonded nitrogen atoms as revealed by the results of infrared spectroscopy, backscattering spectrometry, and nuclear reaction analysis. Our results demonstrate the nitrogen-free nearly stoichiometric silicon dioxide films can be prepared from a mixture of precursors argon, nitrous oxide, and silane at low substrate temperature using high-density PECVD technique. This avoids the use of a hazardous and an often forbidden pair of silane and oxygen gases in a plasma reactor.

  2. Process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    DOEpatents

    Lackey, Jr., Walter J.; Caputo, Anthony J.

    1986-01-01

    A chemical vapor deposition (CVD) process for preparing fiber-reinforced ceramic composites. A specially designed apparatus provides a steep thermal gradient across the thickness of a fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  3. Interior view of bath 1 showing original cabinet and bath ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of bath 1 showing original cabinet and bath fixtures, facing southeast. - Albrook Air Force Station, Company Officer's Quarters, East side of Canfield Avenue, Balboa, Former Panama Canal Zone, CZ

  4. Comparison of chemical and heating methods to enhance latent fingerprint deposits on thermal paper.

    PubMed

    Bond, John W

    2014-03-01

    A comparison is made of proprietary methods to develop latent fingerprint deposits on the inked side of thermal paper using either chemical treatment (Thermanin) or the application of heat to the paper (Hot Print System). Results with a trial of five donors show that the application of heat produces statistically significantly more fingerprint ridge detail than the chemical treatment for both fingerprint deposits aged up to 4 weeks and for a nine sequence depletion series. Subjecting the thermal paper to heat treatment with the Hot Print System did not inhibit subsequent ninhydrin chemical development of fingerprint deposits on the noninked side of the paper. A further benefit of the application of heat is the rapid development of fingerprint deposits (less than a minute) compared with up to 12 h for the Thermanin chemical treatment. PMID:24673413

  5. Comparison of chemical and heating methods to enhance latent fingerprint deposits on thermal paper.

    PubMed

    Bond, John W

    2014-03-01

    A comparison is made of proprietary methods to develop latent fingerprint deposits on the inked side of thermal paper using either chemical treatment (Thermanin) or the application of heat to the paper (Hot Print System). Results with a trial of five donors show that the application of heat produces statistically significantly more fingerprint ridge detail than the chemical treatment for both fingerprint deposits aged up to 4 weeks and for a nine sequence depletion series. Subjecting the thermal paper to heat treatment with the Hot Print System did not inhibit subsequent ninhydrin chemical development of fingerprint deposits on the noninked side of the paper. A further benefit of the application of heat is the rapid development of fingerprint deposits (less than a minute) compared with up to 12 h for the Thermanin chemical treatment.

  6. A kinetic and equilibrium analysis of silicon carbide chemical vapor deposition on monofilaments

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Kuczmarski, M. A.

    1993-01-01

    Chemical kinetics of atmospheric pressure silicon carbide (SiC) chemical vapor deposition (CVD) from dilute silane and propane source gases in hydrogen is numerically analyzed in a cylindrical upflow reactor designed for CVD on monofilaments. The chemical composition of the SiC deposit is assessed both from the calculated total fluxes of carbon and silicon and from chemical equilibrium considerations for the prevailing temperatures and species concentrations at and along the filament surface. The effects of gas and surface chemistry on the evolution of major gas phase species are considered in the analysis.

  7. Optical emission study of a doped diamond deposition process by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Rayar, M.; Supiot, P.; Veis, P.; Gicquel, A.

    2008-08-01

    Standard H2/CH4/B2H6 plasmas (99% of H2 and 1% of CH4, with 0-100ppm of B2H6 added) used for doped diamond film growth are studied by optical emission spectroscopy in order to gain a better understanding of the influence of boron species on the gas phase chemistry. Only two boron species are detected under our experimental conditions (9/15/23Wcm-3 average microwave power density values), and the emission spectra used for studies reported here are B(S1/22-P1/2,3/202) and BH [AΠ1-XΣ+1(0,0)]. Variations of their respective emission intensities as a function of the ratio B /C, the boron to carbon ratio in the gas mixture, are reported. We confirmed that the plasma parameters (Tg, Te, and ne) are not affected by the introduction of diborane, and the number densities of B atoms and BH radical species were estimated from experimental measurements. The results are compared to those obtained from a zero-dimensional chemical kinetic model where two groups of reactions are considered: (1) BHx+H ↔BHx -1+H2 (x=1-3) by analogy with the well-known equilibrium CHx+H set of reactions, which occurs, in particular, in diamond deposition reactors; and (2) from conventional organic chemistry, the set of reactions involving boron species: BHx+C2H2 (x =0-1). The results clearly show that the model based on hydrogen and boron hydrides reactions alone is not consistent with the experimental results, while it is so when taking into account both sets of reactions. Once an upper limit for the boron species number densities has been estimated, axial profiles are calculated on the basis of the plasma model results obtained previously in Laboratoire d'Ingénierie des Matériaux et des Hautes Pressions, and significant differences in trends for different boron species are found. At the plasma-to-substrate boundary, [BH] and [B] drop off in contrast to [BH2], which shows little decrease, and [BH3], which shows little increase, in this region.

  8. Fabrication of lightweight ceramic mirrors by means of a chemical vapor deposition process

    NASA Technical Reports Server (NTRS)

    Goela, Jitendra S. (Inventor); Taylor, Raymond L. (Inventor)

    1991-01-01

    A process to fabricate lightweigth ceramic mirrors, and in particular, silicon/silicon carbide mirrors, involves three chemical vapor deposition steps: one to produce the mirror faceplate, the second to form the lightweight backstructure which is deposited integral to the faceplate, and the third and final step which results in the deposition of a layer of optical grade material, for example, silicon, onto the front surface of the faceplate. The mirror figure and finish are fabricated into this latter material.

  9. Chemical vapor deposition of fluorine-doped zinc oxide

    DOEpatents

    Gordon, Roy G.; Kramer, Keith; Liang, Haifan

    2000-06-06

    Fims of fluorine-doped zinc oxide are deposited from vaporized precursor compounds comprising a chelate of a dialkylzinc, such as an amine chelate, an oxygen source, and a fluorine source. The coatings are highly electrically conductive, transparent to visible light, reflective to infrared radiation, absorbing to ultraviolet light, and free of carbon impurity.

  10. Direct chemical vapor deposition of graphene on dielectric surfaces

    DOEpatents

    Zhang, Yuegang; Ismach, Ariel

    2014-04-29

    A substrate is provided that has a metallic layer on a substrate surface of a substrate. A film made of a two dimensional (2-D) material, such as graphene, is deposited on a metallic surface of the metallic layer. The metallic layer is dewet and/or removed to provide the film on the substrate surface.

  11. Low temperature junction growth using hot-wire chemical vapor deposition

    DOEpatents

    Wang, Qi; Page, Matthew; Iwaniczko, Eugene; Wang, Tihu; Yan, Yanfa

    2014-02-04

    A system and a process for forming a semi-conductor device, and solar cells (10) formed thereby. The process includes preparing a substrate (12) for deposition of a junction layer (14); forming the junction layer (14) on the substrate (12) using hot wire chemical vapor deposition; and, finishing the semi-conductor device.

  12. High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells.

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    Thin films of hydrogenated amorphous silicon can be produced at MPa pressures from silane without the use of plasma at temperatures as low as 345 °C. High pressure chemical vapor deposition may open a new way to low cost deposition of amorphous silicon solar cells and other thin film structures over very large areas in very compact, simple reactors. PMID:27174318

  13. Chemical vapor deposition of W-Si-N and W-B-N

    DOEpatents

    Fleming, J.G.; Roherty-Osmun, E.L.; Smith, P.M.; Custer, J.S.; Jones, R.V.; Nicolet, M.; Madar, R.; Bernard, C.

    1999-06-29

    A method of depositing a ternary, refractory based thin film on a substrate by chemical vapor deposition employing precursor sources of tungsten comprising WF[sub 6], either silicon or boron, and nitrogen. The result is a W-Si-N or W-B-N thin film useful for diffusion barrier and micromachining applications. 10 figs.

  14. Dopant gas effect on silicon chemical vapor depositions: A surface potential model

    NASA Technical Reports Server (NTRS)

    Chang, C. A.

    1975-01-01

    A surface potential model is proposed to consistently explain the known dopant gas effects on silicon chemical vapor deposition. This model predicts that the effects of the same dopant gases on the diamond deposition rate using methane and carbon tetrachloride should be opposite and similar to those of silane, respectively. Available data are in agreement with this prediction.

  15. High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells.

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    Thin films of hydrogenated amorphous silicon can be produced at MPa pressures from silane without the use of plasma at temperatures as low as 345 °C. High pressure chemical vapor deposition may open a new way to low cost deposition of amorphous silicon solar cells and other thin film structures over very large areas in very compact, simple reactors.

  16. Chemical vapor deposition of W-Si-N and W-B-N

    DOEpatents

    Fleming, James G.; Roherty-Osmun, Elizabeth Lynn; Smith, Paul M.; Custer, Jonathan S.; Jones, Ronald V.; Nicolet, Marc-A.; Madar, Roland; Bernard, Claude

    1999-01-01

    A method of depositing a ternary, refractory based thin film on a substrate by chemical vapor deposition employing precursor sources of tungsten comprising WF.sub.6, either silicon or boron, and nitrogen. The result is a W--Si--N or W--B--N thin film useful for diffusion barrier and micromachining applications.

  17. Cloud droplet deposition in subalpine balsam fir forests: hydrological and chemical inputs.

    PubMed

    Lovett, G M; Reiners, W A; Olson, R K

    1982-12-24

    Subalpine forests of the northern Appalachians are subject to significant deposition of water and chemicals via cloud droplet impaction. This deposition has been estimated by a method linking micrometeorological measures of turbulent transfer, a detailed representation of canopy structure, and experimentally derived capture efficiencies. Water inputs from clouds are about 46 percent, and chemical inputs range from 150 to 430 percent of the bulk precipitation.

  18. Reduced chemical warfare agent sorption in polyurethane-painted surfaces via plasma-enhanced chemical vapor deposition of perfluoroalkanes.

    PubMed

    Gordon, Wesley O; Peterson, Gregory W; Durke, Erin M

    2015-04-01

    Perfluoralkalation via plasma chemical vapor deposition has been used to improve hydrophobicity of surfaces. We have investigated this technique to improve the resistance of commercial polyurethane coatings to chemicals, such as chemical warfare agents. The reported results indicate the surface treatment minimizes the spread of agent droplets and the sorption of agent into the coating. The improvement in resistance is likely due to reduction of the coating's surface free energy via fluorine incorporation, but may also have contributing effects from surface morphology changes. The data indicates that plasma-based surface modifications may have utility in improving chemical resistance of commercial coatings.

  19. Effect of Reaction Time and Temperature on Chemical, Structural, Optical, and Photoelectrical Properties of PbS Thin Films Chemically Deposited from the Pb(OAc)2-NaOH-TU-TEA Aqueous System

    NASA Astrophysics Data System (ADS)

    Castelo-González, O. A.; Sotelo-Lerma, M.; García-Valenzuela, J. A.

    2016-08-01

    Lead sulfide (PbS) thin films have been deposited on float glass substrates by the chemical bath deposition technique using a Pb(CH3COO)2-NaOH-(NH2)2CS-N(CH2CH2OH)3 definite aqueous system. The chemical and structural characteristics, as well as the variation of the optical and photoelectrical properties, were studied as functions of reaction time and temperature. For this purpose, the following characterization techniques were employed: x-ray diffraction analysis, x-ray photoelectron spectroscopy, ultraviolet-visible-near infrared spectrophotometry, and dark and light current measurements. Based on the results, it was observed that increase in the reaction temperature increased the deposition rate of the PbS thin film (associated with the cubic crystalline structure); increase of this parameter from 40°C to 70°C (with reaction time of 60 min) led to an increase of the thickness from ˜129 nm to ˜459 nm and the crystallite size (D) from 15.3 nm to 20.2 nm; on the other hand, increase in temperature decreased the energy bandgap (E g) from 1.66 eV to 0.51 eV and the relative photosensitivity factor (S ph) from 0.468 to 0.032. A similar effect was obtained with increase of the reaction time for given temperature.

  20. Chemical vapor deposition of silicon carbide for large area mirrors

    NASA Astrophysics Data System (ADS)

    Gentilman, R. L.; Maguire, E. A.

    1982-05-01

    CVD-SiC has been identified as the leading mirror material for high energy synchrotron radiation because of its high K/alpha ratio and its ability to be super-polished to less than or equal to 10 A rms roughness. Technology already exists for depositing SiC over large areas (approximately 70 cm x 20 cm). The CVD process, substrate selection, and mirror design considerations are discussed.

  1. Synthesis of multifilament silicon carbide fibers by chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Revankar, Vithal; Hlavacek, Vladimir

    1991-01-01

    A process for development of clean silicon carbide fiber with a small diameter and high reliability is presented. An experimental evaluation of operating conditions for SiC fibers of good mechanical properties and devising an efficient technique which will prevent welding together of individual filaments are discussed. The thermodynamic analysis of a different precursor system was analyzed vigorously. Thermodynamically optimum conditions for stoichiometric SiC deposit were obtained.

  2. Metal organic chemical vapor deposition of environmental barrier coatings for the inhibition of solid deposit formation from heated jet fuel

    NASA Astrophysics Data System (ADS)

    Mohan, Arun Ram

    Solid deposit formation from jet fuel compromises the fuel handling system of an aviation turbine engine and increases the maintenance downtime of an aircraft. The deposit formation process depends upon the composition of the fuel, the nature of metal surfaces that come in contact with the heated fuel and the operating conditions of the engine. The objective of the study is to investigate the effect of substrate surfaces on the amount and nature of solid deposits in the intermediate regime where both autoxidation and pyrolysis play an important role in deposit formation. A particular focus has been directed to examining the effectiveness of barrier coatings produced by metal organic chemical vapor deposition (MOCVD) on metal surfaces for inhibiting the solid deposit formation from jet fuel degradation. In the first part of the experimental study, a commercial Jet-A sample was stressed in a flow reactor on seven different metal surfaces: AISI316, AISI 321, AISI 304, AISI 347, Inconel 600, Inconel 718, Inconel 750X and FecrAlloy. Examination of deposits by thermal and microscopic analysis shows that the solid deposit formation is influenced by the interaction of organosulfur compounds and autoxidation products with the metal surfaces. The nature of metal sulfides was predicted by Fe-Ni-S ternary phase diagram. Thermal stressing on uncoated surfaces produced coke deposits with varying degree of structural order. They are hydrogen-rich and structurally disordered deposits, spherulitic deposits, small carbon particles with relatively ordered structures and large platelets of ordered carbon structures formed by metal catalysis. In the second part of the study, environmental barrier coatings were deposited on tube surfaces to inhibit solid deposit formation from the heated fuel. A new CVD system was configured by the proper choice of components for mass flow, pressure and temperature control in the reactor. A bubbler was designed to deliver the precursor into the reactor

  3. Nonequilibrium quantum chains under multisite Lindblad baths

    NASA Astrophysics Data System (ADS)

    Guimarães, Pedro H.; Landi, Gabriel T.; de Oliveira, Mario J.

    2016-09-01

    We study a quantum XX chain coupled to two heat reservoirs that act on multiple sites and are kept at different temperatures and chemical potentials. The baths are described by Lindblad dissipators, which are constructed by direct coupling to the fermionic normal modes of the chain. Using a perturbative method, we are able to find analytical formulas for all steady-state properties of the system. We compute both the particle or magnetization current and the energy current, both of which are found to have the structure of Landauer's formula. We also obtain exact formulas for the Onsager coefficients. All properties are found to differ substantially from those of a single-site bath. In particular, we find a strong dependence on the intensity of the bath couplings. In the weak-coupling regime, we show that the Onsager reciprocal relations are satisfied.

  4. Chemical vapor deposition and characterization of titanium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Gilmer, David Christopher

    1998-12-01

    The continued drive to decrease the size and increase the speed of micro-electronic Metal-Oxide-Semiconductor (MOS) devices is hampered by some of the properties of the SiOsb2 gate dielectric. This research has focused on the CVD of TiOsb2 thin films to replace SiOsb2 as the gate dielectric in MOS capacitors and transistors. The relationship of CVD parameters and post-deposition anneal treatments to the physical and electrical properties of thin films of TiOsb2 has been studied. Structural and electrical characterization of TiOsb2 films grown from the CVD precursors tetraisopropoxotitanium (IV) (TTIP) and TTIP plus Hsb2O is described in Chapter 3. Both types of deposition produced stoichiometric TiOsb2 films comprised of polycrystalline anatase, but the interface properties were dramatically degraded when water vapor was added. Films grown with TTIP in the presence of Hsb2O contained greater than 50% more hydrogen than films grown using only TTIP and the hydrogen content of films deposited in both wet and dry TTIP environments decreased sharply with a post deposition Osb2 anneal. A significant thickness variation of the dielectric constant was observed which could be explained by an interfacial oxide and the finite accumulation thickness. Fabricated TiOsb2 capacitors exhibited electrically equivalent SiOsb2 gate dielectric thicknesses and leakage current densities as low as 38, and 1×10sp{-8} Amp/cmsp2 respectively. Chapter 4 discusses the low temperature CVD of crystalline TiOsb2 thin films deposited using the precursor tetranitratotitanium (IV), TNT, which produces crystalline TiOsb2 films of the anatase phase in UHV-CVD at temperatures as low as 184sp°C. Fabricated TiOsb2 capacitors exhibited electrically equivalent SiOsb2 gate dielectric thicknesses and leakage current densities as low as 17, and 1×10sp{-8} Amp/cmsp2 respectively. Chapter 5 describes the results of a comparison of physical and electrical properties between TiOsb2 films grown via LPCVD using

  5. Deposition of microcrystalline silicon prepared by hot-wire chemical-vapor deposition: The influence of the deposition parameters on the material properties and solar cell performance

    NASA Astrophysics Data System (ADS)

    Klein, Stefan; Finger, Friedhelm; Carius, Reinhard; Stutzmann, Martin

    2005-07-01

    Microcrystalline silicon (μc-Si:H) of superior quality can be prepared using the hot-wire chemical-vapor deposition method (HWCVD). At a low substrate temperature (TS) of 185 °C excellent material properties and solar cell performance were obtained with spin densities of 6×1015cm-3 and solar cell efficiencies up to 9.4%, respectively. In this study we have systematically investigated the influence of various deposition parameters on the deposition rate and the material properties. For this purpose, thin films and solar cells were prepared at specific substrate and filament temperatures and deposition pressures (pD), covering the complete range from amorphous to highly crystalline material by adjusting the silane concentration. The influence of these deposition parameters on the chemical reactions at the filament and in the gas phase qualitatively explains the behavior of the structural composition and the formation of defects. In particular, we propose that the deposition rate is determined by the production of reactive species at the filament and a particular atomic-hydrogen-to-silicon ratio is found at the microcrystalline/amorphous transition. The structural, optical, and electronic properties were studied using Raman and infrared spectroscopies, optical-absorption measurements, electron-spin resonance, and dark and photoconductivities. These experiments show that higher TS and pD lead to a deterioration of the material quality, i.e., much higher defect densities, oxygen contaminations, and SiH absorption at 2100cm-1. Similar to plasma enhanced chemical-vapor deposition material, μc-Si:H solar cells prepared with HW i layers show increasing open circuit voltages (Voc) with increasing silane concentration and best performance is achieved near the transition to amorphous growth. Such solar cells prepared at low TS exhibit very high Voc up to 600 mV and fill factors above 70% with i layers prepared by HWCVD.

  6. Second harmonic generation in ZnO thin films fabricated by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Zhang, B. P.; Binh, N. T.; Segawa, Y.

    2004-07-01

    Second harmonic generation (SHG) from ZnO thin films fabricated by metalorganic chemical vapor deposition (MOCVD) technique was carried out. By comparing the second harmonic signal generated in a series of ZnO films with different deposition temperatures, we conclude that a significant part of second harmonic signal is generated at the film deposited with appropriate temperature. The second-order susceptibility tensor χ(2)zzz=9.2 pm/V was deduced for a film deposited at 250 °C.

  7. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    ERIC Educational Resources Information Center

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  8. Diverse Amorphous Carbonaceous Thin Films Obtained by Plasma Enhanced Chemical Vapor Deposition and Plasma Immersion Ion Implantation and Deposition

    NASA Astrophysics Data System (ADS)

    Santos, R. M.; Turri, R.; Rangel, E. C.; da Cruz, N. C.; Schreiner, W.; Davanzo, C. U.; Durrant, S. F.

    Diverse amorphous hydrogenated carbon and similar films containing additional elements were produced by Plasma Enhanced Chemical Vapor Deposition (PECVD) and by Plasma Immersion Ion Implantation and Deposition (PIIID). Thus a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:O:Si were obtained, starting from the same feed gases, using both techniques. The same deposition system supplied with radiofrequency (RF) power was used to produce all the films. A cylindrical stainless steel chamber equipped with circular electrodes mounted horizontally was employed. RF power was fed to the upper electrode; substrates were placed on the lower electrode. For PIIID negative high tension pulses were also applied to the lower electrode. Raman spectroscopy confirmed that all the films are amorphous. Chemical characterization of each pair of films was undertaken using Infrared Reflection Absorption Spectroscopy and X-ray Photoelectron Spectroscopy. The former revealed the presence of specific structures, such as C-H, C-O, O-H. The latter allowed calculation of the ratio of hetero-atoms to carbon atoms in the films, e.g. F:C, N:C, and Si:C. Only relatively small differences in elemental composition were detected between films produced by the two methods. The deposition rate in PIIID is generally reduced in relation to that of PECVD; for a-C:H:Cl films the reduction factor is almost four.

  9. Chemical and physical sputtering effects on the surface morphology of carbon films grown by plasma chemical vapor deposition

    SciTech Connect

    Vazquez, Luis

    2009-08-01

    We have studied the influence of chemical and physical sputtering on the surface morphology of hydrogenated carbon films deposited on silicon substrates by bias-enhanced electron cyclotron resonance chemical vapor deposition. Atomic force microscopy based power spectrum density (PSD) and roughness analysis have been used to investigate the film morphology. This study has been possible due to the appropriate choice of the experimental variables, in particular, gas mixture, resulting in either nitrogen-free (a-C:H) or nitrogenated carbon (a-CN:H) films, and substrate bias (V{sub b}). Under these conditions, chemical sputtering is present for a-CN:H deposition but it is negligible for a-C:H film growth, while physical sputtering processes appear for both systems for V{sub b}<=-85 V. When physical sputtering does not operate, the film growth with simultaneous chemical sputtering leads to a characteristic a-CN:H granular surface morphology. Furthermore, PSD analysis reveals that a spatial correlation of the a-CN:H film surface roughness, up to distances approx300 nm, becomes a fingerprint of the coexistence of growth and chemical erosion processes on the film morphology. However, once physical sputtering takes place, the influence of chemical sputtering by reactive nitrogen species on the final surface morphology becomes negligible and both a-CN:H and a-C:H film morphologies are ultrasmooth.

  10. A new modular multichamber plasma enhanced chemical vapor deposition system

    NASA Astrophysics Data System (ADS)

    Madan, A.; Rava, P.; Schropp, R. E. I.; von Roedern, B.

    1993-06-01

    The present work reports on a new modular UHV multichamber PECVD system with characteristics which prevent both the incorporation of residual impurities and cross contamination between different layers. A wide range of intrinsic and doped hydrogenated amorphous silicon (a-Si:H) materials have been produced and single junction pin solar cells with an efficiency greater than 10% have been readily obtained with little optimization. The system contains three UHV modular process zones (MPZ's); the MPZ's and a load lock chamber are located around a central isolation and transfer zone which contains the transport mechanism consisting of an arm with radial and linear movement. This configuration allows for introduction of the substrate into the MPZ's in any sequence so that any type of multilayer device can be produced. The interelectrode distance in the MPZ's can be adjusted between 1 and 5 cm. This has been found to be an important parameter in the optimisation of the deposition rate and of the uniformity. The multichamber concept also allows individually optimized deposition temperatures and interelectrode distances for the various layers. The system installed in Utrecht will be employed for further optimization of single junction solar cells and for research and development of stable a-Si:H tandem cells.

  11. Prediction of Chemical Vapor Deposition Rates on Monofilaments and Its Implications for Fiber Properties

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Kuczmarski, M.; Veitch, L. C.

    1992-01-01

    Deposition rates are predicted in a cylindrical upflow reactor designed for chemical vapor deposition (CVD) on monofilaments. Deposition of silicon from silane in a hydrogen carrier gas is chosen as a relevant example. The effects of gas and surface chemistry are studied in a two-dimensional axisymmetric flow field for this chemically well-studied system. Model predictions are compared to experimental CVD rate measurements. The differences in some physical and chemical phenomena between such small diameter (about 150 microns) fiber substrates and other typical CVD substrates are highlighted. The influence of the Soret mass transport mechanism is determined to be extraordinarily significant. The difficulties associated with the accurate measurement and control of the fiber temperature are discussed. Model prediction sensitivities are investigated with respect to fiber temperatures, fiber radii, Soret transport, and chemical kinetic parameters. The implications of the predicted instantaneous rates are discussed relative to the desired fiber properties for both the batch and the continuous processes.

  12. Si Passivation and Chemical Vapor Deposition of Silicon Nitride: Final Technical Report, March 18, 2007

    SciTech Connect

    Atwater, H. A.

    2007-11-01

    This report investigated chemical and physical methods for Si surface passivation for application in crystalline Si and thin Si film photovoltaic devices. Overall, our efforts during the project were focused in three areas: i) synthesis of silicon nitride thin films with high hydrogen content by hot-wire chemical vapor deposition; ii) investigation of the role of hydrogen passivation of defects in crystalline Si and Si solar cells by out diffusion from hydrogenated silicon nitride films; iii) investigation of the growth kinetics and passivation of hydrogenated polycrystalline. Silicon nitride films were grown by hot-wire chemical vapor deposition and film properties have been characterized as a function of SiH4/NH3 flow ratio. It was demonstrated that hot-wire chemical vapor deposition leads to growth of SiNx films with controllable stoichiometry and hydrogen.

  13. Low temperature deposition of polycrystalline silicon thin films on a flexible polymer substrate by hot wire chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, Sang-hoon; Jung, Jae-soo; Lee, Sung-soo; Lee, Sung-bo; Hwang, Nong-moon

    2016-11-01

    For the applications such as flexible displays and solar cells, the direct deposition of crystalline silicon films on a flexible polymer substrate has been a great issue. Here, we investigated the direct deposition of polycrystalline silicon films on a polyimide film at the substrate temperature of 200 °C. The low temperature deposition of crystalline silicon on a flexible substrate has been successfully made based on two ideas. One is that the Si-Cl-H system has a retrograde solubility of silicon in the gas phase near the substrate temperature. The other is the new concept of non-classical crystallization, where films grow by the building block of nanoparticles formed in the gas phase during hot-wire chemical vapor deposition (HWCVD). The total amount of precipitation of silicon nanoparticles decreased with increasing HCl concentration. By adding HCl, the amount and the size of silicon nanoparticles were reduced remarkably, which is related with the low temperature deposition of silicon films of highly crystalline fraction with a very thin amorphous incubation layer. The dark conductivity of the intrinsic film prepared at the flow rate ratio of RHCl=[HCl]/[SiH4]=3.61 was 1.84×10-6 Scm-1 at room temperature. The Hall mobility of the n-type silicon film prepared at RHCl=3.61 was 5.72 cm2 V-1s-1. These electrical properties of silicon films are high enough and could be used in flexible electric devices.

  14. Friction and Wear of Ion-Beam-Deposited Diamondlike Carbon on Chemical-Vapor-Deposited, Fine-Grain Diamond

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Lanter, William C.

    1996-01-01

    Friction and wear behavior of ion-beam-deposited diamondlike carbon (DLC) films coated on chemical-vapor-deposited (CVD), fine-grain diamond coatings were examined in ultrahigh vacuum, dry nitrogen, and humid air environments. The DLC films were produced by the direct impact of an ion beam (composed of a 3:17 mixture of Ar and CH4) at ion energies of 1500 and 700 eV and an RF power of 99 W. Sliding friction experiments were conducted with hemispherical CVD diamond pins sliding on four different carbon-base coating systems: DLC films on CVD diamond; DLC films on silicon; as-deposited, fine-grain CVD diamond; and carbon-ion-implanted, fine-grain CVD diamond on silicon. Results indicate that in ultrahigh vacuum the ion-beam-deposited DLC films on fine-grain CVD diamond (similar to the ion-implanted CVD diamond) greatly decrease both the friction and wear of fine-grain CVD diamond films and provide solid lubrication. In dry nitrogen and in humid air, ion-beam-deposited DLC films on fine-grain CVD diamond films also had a low steady-state coefficient of friction and a low wear rate. These tribological performance benefits, coupled with a wider range of coating thicknesses, led to longer endurance life and improved wear resistance for the DLC deposited on fine-grain CVD diamond in comparison to the ion-implanted diamond films. Thus, DLC deposited on fine-grain CVD diamond films can be an effective wear-resistant, lubricating coating regardless of environment.

  15. WORKER REMOVING SLAG FROM THE MOLTEN METAL BATH IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WORKER REMOVING SLAG FROM THE MOLTEN METAL BATH IN THE ELECTRIC FURNACE AFTER ADDING A CHEMICAL COAGULANT TO FORCE IT TO THE SURFACE. - Southern Ductile Casting Company, Melting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  16. Deposition Technique For Chemical Free Black Coatings On Metals

    NASA Astrophysics Data System (ADS)

    Carton, J. G.; Cobbe, N.; O'Donoghue, J.; Pambaguian, L.; Norman, A.; Liedtke, V.; McCaul, T.

    2012-07-01

    Coatings having specific thermo-optical properties are necessary to manage the temperature equilibrium in space hardware. Incumbent black body coatings have a need to extend their operating temperature as well as increase the range of substrate materials that can be coated; in addition, issues relating to outgassing can limit the application of black body coatings. In this paper a relatively new coating technology, CoBlast, is used to deposit material on to titanium substrates, to produce a black body surface; SolarBlack. CoBlast, replaces the oxide layer of reactive metals with a fused thin surface. The process is uniquely non-complex, requiring no thermal input, no wet chemistry and is performed in an ambient temperature and pressure environment. Thermo optical and micro-structure analysis of SolarBlack was completed and the characterisation results including thermo cycling, up to 700°C, are discussed.

  17. Preparation and analysis of chemically gradient functional bioceramic coating formed by pulsed laser deposition.

    PubMed

    Rajesh, P; Muraleedharan, C V; Sureshbabu, S; Komath, Manoj; Varma, Harikrishna

    2012-02-01

    Bioactive ceramic coatings based on calcium phosphates yield better functionality in the human body for a variety of metallic implant devices including orthopaedic and dental prostheses. In the present study chemically and hence functionally gradient bioceramic coating was obtained by pulsed laser deposition method. Calcium phosphate bioactive ceramic coatings based on hydroxyapatite (HA) and tricalcium phosphate (TCP) were deposited over titanium substrate to produce gradation in physico-chemical characteristics and in vitro dissolution behaviour. Sintered targets of HA and α-TCP were deposited in a multi target laser deposition system. The obtained deposits were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. Inductively coupled plasma spectroscopy was used to estimate the in vitro dissolution behaviour of coatings. The variation in mechanical property of the gradient layer was evaluated through scratch test and micro-indentation hardness. The bioactivity was examined in vitro with respect to the ability of HA layer to form on the surface as a result of contact with simulated body fluid. It could be inferred that chemically gradient functional bioceramic coating can be produced by laser deposition of multiple sintered targets with variable chemical composition.

  18. Preparation and analysis of chemically gradient functional bioceramic coating formed by pulsed laser deposition.

    PubMed

    Rajesh, P; Muraleedharan, C V; Sureshbabu, S; Komath, Manoj; Varma, Harikrishna

    2012-02-01

    Bioactive ceramic coatings based on calcium phosphates yield better functionality in the human body for a variety of metallic implant devices including orthopaedic and dental prostheses. In the present study chemically and hence functionally gradient bioceramic coating was obtained by pulsed laser deposition method. Calcium phosphate bioactive ceramic coatings based on hydroxyapatite (HA) and tricalcium phosphate (TCP) were deposited over titanium substrate to produce gradation in physico-chemical characteristics and in vitro dissolution behaviour. Sintered targets of HA and α-TCP were deposited in a multi target laser deposition system. The obtained deposits were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. Inductively coupled plasma spectroscopy was used to estimate the in vitro dissolution behaviour of coatings. The variation in mechanical property of the gradient layer was evaluated through scratch test and micro-indentation hardness. The bioactivity was examined in vitro with respect to the ability of HA layer to form on the surface as a result of contact with simulated body fluid. It could be inferred that chemically gradient functional bioceramic coating can be produced by laser deposition of multiple sintered targets with variable chemical composition. PMID:22105226

  19. Chemical Weathering of New Pyroclastic Deposits from Mt. Merapi (Java), Indonesia

    SciTech Connect

    Fiantis, Dian; Nelson, Malik; Van Ranst, Eric; Shamshudin, Josup; Qafoku, Nikolla

    2009-09-01

    Java Island, Indonesia with abundant amount of pyroclastic deposits is located in the very active and dynamic Pacific Ring of Fires. Studying the geochemical weathering indices of these pyroclastic deposits is important to get a clear picture about weathering profiles on deposits resulting from the eruption of Mt. Merapi. Immediately after the first phase of the eruption (March to June 2006), moist and leached pyroclastic deposits were collected. These pyroclastic deposits were found to be composed of volcanic glass, plagioclase feldspar in various proportions, orthopyroxene, clinopyroxene, olivine, amphibole, and titanomagnetite. Total elemental composition of the bulk samples (including trace elements and heavy metals) were determined by wet chemical methods and X-ray fluorescence (XRF) analyses. Weathering of the pyroclastic deposits was studied using various weathering indices. The Ruxton ratio, weathering index of Parker, Vought resudual index and chemical index of weathering of moist pyroclastic are lower than the leached sample but the alteration indices (chemical and plagioclase) are slightly higher in the moist compared to the leached pyroclastic deposits.

  20. Bath for electrolytic reduction of alumina and method therefor

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-11-26

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode. Removing sulfur from the bath can also minimize cathode deposits. Aluminum formed on the cathode can be removed directly from the cathode.

  1. Etching Effects During the Chemical Vapor Deposition of (100) Diamond

    SciTech Connect

    Battaile, C.C.; Srolovitz, D.J.; Oleinik, I.I.; Pettifor, D.G.; Sutton, A.P.; Harris, S.J.; Butler, J.E.

    1999-08-02

    Current theories of CVD growth on (100) diamond are unable to account for the numerous experimental observations of slow-growing, locally smooth (100)(2x1) films. In this paper they use quantum mechanical calculations of diamond surface thermochemistry and atomic-scale kinetic Monte Carlo simulations of deposition to investigate the efficacy of preferential etching as a mechanism that can help to reconcile this discrepancy. This etching mechanism allows for the removal of undercoordinated carbon atoms from the diamond surface. In the absence of etching, simulated growth on the (100)(2x1) surface is faster than growth on the (110) and (111) surfaces, and the (100) surface is atomically rough. When etching is included in the simulations, the (100) growth rates decrease to values near those observed experimentally, while the rates of growth on the other surfaces remain largely unaffected and similar to those observed experimentally. In addition, the etching mechanism promotes the growth of smooth (100) surface regions in agreement with numerous scanning probe studies.

  2. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, K.C.; Kodas, T.T.

    1994-01-11

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  3. Chemical instrumentation for field studies of atmospheric wet deposition processes

    SciTech Connect

    Tanner, R.L.

    1986-04-01

    Field studies of wet deposition processes require the differentiation and determination of many trace reactive species in the atmosphere. The species may be present in clear-air-gaseous or aerosol phases, or they may be distributed between cloudwater or precipitation and interstitial gaseous phases. Analytical requirement on existing techniques have been extremely rigorous and, in several cases, have required development of new approaches to the sampling and determination of critical species. This paper views these developments with respect to airborne sampling in the following general areas: determination of sub-ppb levels of nitrogen oxides (NO, NO/sub x/, HNO/sub 3/) in real-time using ozone chemiluminescence; determination of sub-ppb levels of sulfur dioxide and aersol sulfate in real-time using the flame photometric detector; determination of oxidants (ozone, PAN, H/sub 2/O/sub 2/) in gaseous and aqueous phases; determination of organic species (hydrocarbons, aldehydes, acids in gaseous and aqueous phases; cloud/raindrop - free air sampling; collection of aqueous liquid and solid samples; direct measurement of particle size distributions (aerosols, cloud droplets, rain droplets.)

  4. Silicon epitaxy using tetrasilane at low temperatures in ultra-high vacuum chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hazbun, Ramsey; Hart, John; Hickey, Ryan; Ghosh, Ayana; Fernando, Nalin; Zollner, Stefan; Adam, Thomas N.; Kolodzey, James

    2016-06-01

    The deposition of silicon using tetrasilane as a vapor precursor is described for an ultra-high vacuum chemical vapor deposition tool. The growth rates and morphology of the Si epitaxial layers over a range of temperatures and pressures are presented. The layers were characterized using transmission electron microscopy, x-ray diffraction, spectroscopic ellipsometry, Atomic Force Microscopy, and secondary ion mass spectrometry. Based on this characterization, high quality single crystal silicon epitaxy was observed. Tetrasilane was found to produce higher growth rates relative to lower order silanes, with the ability to deposit crystalline Si at low temperatures (T=400 °C), with significant amorphous growth and reactivity measured as low as 325 °C, indicating the suitability of tetrasilane for low temperature chemical vapor deposition such as for SiGeSn alloys.

  5. The development of chemically vapor deposited mullite coatings for the corrosion protection of SiC

    SciTech Connect

    Auger, M.; Hou, P.; Sengupta, A.; Basu, S.; Sarin, V.

    1998-05-01

    Crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance the corrosion and oxidation resistance of the substrate. Current research has been divided into three distinct areas: (1) Development of the deposition processing conditions for increased control over coating`s growth rate, microstructure, and morphology; (2) Analysis of the coating`s crystal structure and stability; (3) The corrosion resistance of the CVD mullite coating on SiC.

  6. Galvanostatic and potentiostatic deposition of bismuth telluride films from nitric acid solution: effect of chemical and electrochemical parameters

    NASA Astrophysics Data System (ADS)

    Michel, S.; Diliberto, S.; Boulanger, C.; Stein, N.; Lecuire, J. M.

    2005-04-01

    Composition modulated Bi 2Te 3 thin films have been deposited onto stainless-steel substrates using a potentiostatic or a galvanostatic process. The deposition potentials and current densities for different bath compositions and concentrations have been estimated from voltamperometric curves. Solutions with two Bi/Te ratios were studied. Only Bi 3+ and HTeO 2+ solutions in the volumetric proportion of 1:1 with equimolar solution concentrations of 0.01, 0.015 or 0.02 M allow one to obtain films with an excess or a deficiency of Bi in relation to stoichiometric Bi 2Te 3 (Bi=40 at%, Te=60 at%) by changing the deposition potential or the current density. The structure and the morphology of films have been studied as a function of the electrolyte concentration and the deposition conditions.

  7. CuInS2 Films Deposited by Aerosol-Assisted Chemical Vapor Deposition Using Ternary Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Jin, Michael; Banger, Kal; Harris, Jerry; Hepp, Aloysius

    2003-01-01

    Polycrystalline CuInS2 films were deposited by aerosol-assisted chemical vapor deposition using both solid and liquid ternary single-source precursors (SSPs) which were prepared in-house. Films with either (112) or (204/220) preferred orientation, had a chalcopyrite structure, and (112)-oriented films contained more copper than (204/220)-oriented films. The preferred orientation of the film is likely related to the decomposition and reaction kinetics associated with the molecular structure of the precursors at the substrate. Interestingly, the (204/220)-oriented films were always In-rich and were accompanied by a secondary phase. From the results of post-growth annealing, etching experiments, and Raman spectroscopic data, the secondary phase was identified as an In-rich compound. On the contrary, (112)-oriented films were always obtained with a minimal amount of the secondary phase, and had a maximum grain size of about 0.5 micron. Electrical and optical properties of all the films grown were characterized. They all showed p-type conduction with an electrical resistivity between 0.1 and 30 Omega-cm, and an optical band gap of approximately 1.46 eV +/- 0.02, as deposited. The material properties of deposited films revealed this methodology of using SSPs for fabricating chalcopyrite-based solar cells to be highly promising.

  8. CuInS2 Films Deposited by Aerosol-Assisted Chemical Vapor Deposition Using Ternary Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Jin, Michael H.-C.; Banger, Kulbinder K.; Harris, Jerry D.; Hepp, Aloysius F.

    2004-01-01

    Polycrystalline CuInS2 films were deposited by aerosol-assisted chemical vapor deposition using both solid and liquid ternary single-source precursors (SSPs) prepared in-house. Films with either (112) or (204/220) preferred orientation were obtained, and compositional analysis showed that (112)-oriented films contained more copper than (204/220)-oriented films. Using X-ray diffraction, the signature of chalcopyrite structure was often confirmed for (112)-oriented films. The preferred orientation of the film is likely related to the decomposition and reaction kinetics associated with the molecular structure of the precursors at the substrate. Interestingly, the (204/220)-oriented films were always accompanied by a secondary phase, which was identified as an unknown In-rich compound from the results of post-growth annealing, etching experiments, and Raman spectroscopic data. By increasing Cu to In ratio in the film, (112)-oriented films were obtained with a maximum grain size of about 0.5 micrometers, and their X-ray diffractions did not show any observable signature of the In secondary phase. Electrical and optical properties of all the films grown were characterized. They all showed p-type conduction with an electrical resistivity between 0.1 omega cm and 30 omega cm, and an optical band gap of 1.46eV +/- 0.02, as deposited. The material properties of deposited films revealed this methodology of using SSPs for fabricating chalcopyrite-based solar cells to be highly promising.

  9. Chemical-vapor deposition of complex oxides: materials and process development

    SciTech Connect

    Muenchausen, R.

    1996-11-01

    This is the final report of a six-month, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL) part of the Advanced Materials Laboratory (AML). The demand for higher performance and lower cost in electronics is driving the need for advanced materials and consequent process integration. Ceramic thin-film technology is becoming more important in the manufacture of microelectronic devices, photovoltaics, optoelectronics, magneto-optics, sensors, microwave, and radio frequency communication devices, and high-Tc superconducting tapes. A flexible processing approach for potential large-scale manufacturing of novel electronic ceramic thin films is desirable. Current thin- film deposition technologies based on physical vapor-deposition techniques are limited in scale potential and have limited control of processing parameters. The lack of control over multiple process parameters inhibits the versatility and reproducibility of the physical vapor deposition processes applied to complex oxides. Chemical vapor deposition is emerging as a viable approach for large- scale manufacturing of electronic materials. Specifically, the ability to control more processing parameters with chemical vapor deposition than with other processing techniques provides the reliability and material property reproducibility required by manufacturing. This project sought to investigate the chemical vapor deposition of complex oxides.

  10. Development of a Computational Chemical Vapor Deposition Model: Applications to Indium Nitride and Dicyanovinylaniline

    NASA Technical Reports Server (NTRS)

    Cardelino, Carlos

    1999-01-01

    A computational chemical vapor deposition (CVD) model is presented, that couples chemical reaction mechanisms with fluid dynamic simulations for vapor deposition experiments. The chemical properties of the systems under investigation are evaluated using quantum, molecular and statistical mechanics models. The fluid dynamic computations are performed using the CFD-ACE program, which can simulate multispecies transport, heat and mass transfer, gas phase chemistry, chemistry of adsorbed species, pulsed reactant flow and variable gravity conditions. Two experimental setups are being studied, in order to fabricate films of: (a) indium nitride (InN) from the gas or surface phase reaction of trimethylindium and ammonia; and (b) 4-(1,1)dicyanovinyl-dimethylaminoaniline (DCVA) by vapor deposition. Modeling of these setups requires knowledge of three groups of properties: thermodynamic properties (heat capacity), transport properties (diffusion, viscosity, and thermal conductivity), and kinetic properties (rate constants for all possible elementary chemical reactions). These properties are evaluated using computational methods whenever experimental data is not available for the species or for the elementary reactions. The chemical vapor deposition model is applied to InN and DCVA. Several possible InN mechanisms are proposed and analyzed. The CVD model simulations of InN show that the deposition rate of InN is more efficient when pulsing chemistry is used under conditions of high pressure and microgravity. An analysis of the chemical properties of DCVA show that DCVA dimers may form under certain conditions of physical vapor transport. CVD simulations of the DCVA system suggest that deposition of the DCVA dimer may play a small role in the film and crystal growth processes.

  11. Processing of CuInSe{sub 2}-based solar cells: Characterization of deposition processes in terms of chemical reaction analyses. Phase 2 Annual Report, 6 May 1996--5 May 1997

    SciTech Connect

    Anderson, T.

    1999-10-20

    This report describes research performed by the University of Florida during Phase 2 of this subcontract. First, to study CIGS, researchers adapted a contactless, nondestructive technique previously developed for measuring photogenerated excess carrier lifetimes in SOI wafers. This dual-beam optical modulation (DBOM) technique was used to investigate the differences between three alternative methods of depositing CdS (conventional chemical-bath deposition [CBD], metal-organic chemical vapor deposition [MOCVD], and sputtering). Second, a critical assessment of the Cu-In-Se thermochemical and phase diagram data using standard CALPHAD procedures is being performed. The outcome of this research will produce useful information on equilibrium vapor compositions (required annealing ambients, Sex fluxes from effusion cells), phase diagrams (conditions for melt-assisted growth), chemical potentials (driving forces for diffusion and chemical reactions), and consistent solution models (extents of solid solutions and extending phase diagrams). Third, an integrated facility to fabricate CIS PV devices was established that includes migration-enhanced epitaxy (MEE) for deposition of CIS, a rapid thermal processing furnace for absorber film formation, sputtering of ZnO, CBD or MOCVD of CdS, metallization, and pattern definition.

  12. Helicon wave plasma chemical vapor deposition of nanocrystalline silicon carbide films at low substrate temperature

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Lu, Wanbing; Wang, Baozhu; Han, Li; Fu, Guangsheng

    2005-02-01

    Silicon carbide thin films have been deposited by helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) technique under the conditions of variant deposition temperatures from 300 to 600°C. Silane, methane and hydrogen are used as reactive gas. The structural properties of the deposited films are characterized using Fourier transform infrared (FTIR), scan electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet-visible optical absorption techniques. Detailed analysis of the FTIR spectra indicates that the onset of growing nanocrystalline SiC films at low substrate temperature is closed related with the high plasma ionization rate of helicon wave plasma and the condition of low working gas pressure and strong hydrogen dilution in experiment. The SEM and TEM measurements confirm that the structure of the deposited films is nanocrystalline SiC grains embedded in amorphous matrix and the size of the crystalline gains increases with substrate temperature.

  13. Convection and mass-transport in laser-induced chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Patnaik, S.; Brown, R. A.

    1988-01-01

    Gas flow and energy and species transport in laser-induced chemical vapor deposition (LICVD) of amorphous silicon films by silane pyrolysis are analyzed by finite element analysis of a two-dimensional model for the process. Spatial nonuniformity of the deposited film is shown to result from diffusion controlled transport of products between the beam and substrate. Deposition profiles are affected by buoyancy-driven convection only at increased gas pressures. Horizontal orientation of the reactor with respect to gravity is optimal because the stagnation-like flow, that results adjacent to the substrate, enhances mixing, and smoothes the film profile.

  14. Microstructural modification of nc-Si/SiOx films during plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, X. W.

    2005-07-01

    Nanocrystalline-silicon embedded silicon oxide films are prepared by plasma-enhanced chemical vapor deposition (PECVD) at 300 °C without post-heat treatment. Measurements of XPS, IR, XRD, and HREM are performed. Microstructural modifications are found occurring throughout the film deposition. The silica network with a high oxide state is suggested to be formed directly under the abduction of the former deposited layer, rather than processing repeatedly from the original low-oxide state of silica. Nanocrystalline silicon particles with a size of 6-10 nm are embedded in the SiOx film matrix, indicating the potential application in Si-based optoelectronic integrity.

  15. Comparison of the chemical characteristics of the uranium deposits of the Morrison Formation in the Grants uranium region, New Mexico

    USGS Publications Warehouse

    Spirakis, C.S.; Pierson, C.T.

    1983-01-01

    Statistical treatment of the chemical data of samples from the northeast Church Rock area, Ruby deposit, Mariano Lake deposit, and the Ambrosia Lake district indicates that primary ore-forming processes concentrated copper, iron, magnesium, manganese, molybdenum, selenium, vanadium, yttrium, arsenic, organic carbon, and sulfur, along with uranium. A barium halo that is associated with all of these deposits formed from secondary processes. Calcium and strontium were also enriched in the ores by secondary processes. Comparison of the chemical characteristics of the redistributed deposits in the Church Rock district to the primary deposits in the Grants uranium region indicates that calcium, manganese, strontium, yttrium, copper, iron, magnesium, molybdenum, lead, selenium, and vanadium are separated from uranium during redistribution of the deposits in the Church Rock area. Comparisons of the chemical characteristics of the Church Rock deposits and the secondary deposits at Ambrosia Lake suggest some differences in the processes that were involved in the genesis of the redistributed deposits in these two areas.

  16. The chemical evolution of a travertine-depositing stream: geochemical processes and mass transfer reactions

    USGS Publications Warehouse

    Lorah, M.M.; Herman, J.S.

    1988-01-01

    Focuses on quantiatively defining the chemical changes occurring in Falling Spring Creek, a travertine-depositing stream located in Alleghany County, Virgina. The processes of CO2 outgassing and calcite precipitation or dissolution control the chemical evolution of the stream. Physical evidence for calcite precipitation exists in the travertine deposits which are first observed immediately above the waterfall and extend for at least 1.0 km below the falls. Net calcite precipitation occurs at all times of the year but is greatest during low-flow conditions in the summer and early fall. -from Authors

  17. Electron field emission characteristics of nano-catkin carbon films deposited by electron cyclotron resonance microwave plasma chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Gu, Guang-Rui; Wu, Bao-Jia; Jin, Zhe; Ito, Toshimichi

    2008-02-01

    This paper reported that the nano-catkin carbon films were prepared on Si substrates by means of electron cyclotron resonance microwave plasma chemical vapour deposition in a hydrogen and methane mixture. The surface morphology and the structure of the fabricated films were characterized by using scanning electron microscopes and Raman spectroscopy, respectively. The stable field emission properties with a low threshold field of 5V/μm corresponding to a current density of about 1μA/cm2 and a current density of 3.2mA/cm2 at an electric field of 10V/μm were obtained from the carbon film deposited at CH4 concentration of 8%. The mechanism that the threshold field decreased with the increase of the CH4 concentration and the high emission current appeared at the high CH4 concentration was explained by using the Fowler-Nordheim theory.

  18. Enhanced Bactericidal Activity of Silver Thin Films Deposited via Aerosol-Assisted Chemical Vapor Deposition.

    PubMed

    Ponja, Sapna D; Sehmi, Sandeep K; Allan, Elaine; MacRobert, Alexander J; Parkin, Ivan P; Carmalt, Claire J

    2015-12-30

    Silver thin films were deposited on SiO2-barrier-coated float glass, fluorine-doped tin oxide (FTO) glass, Activ glass, and TiO2-coated float glass via AACVD using silver nitrate at 350 °C. The films were annealed at 600 °C and analyzed by X-ray powder diffraction, X-ray photoelectron spectroscopy, UV/vis/near-IR spectroscopy, and scanning electron microscopy. All the films were crystalline, and the silver was present in its elemental form and of nanometer dimension. The antibacterial activity of these samples was tested against Escherichia coli and Staphylococcus aureus in the dark and under UV light (365 nm). All Ag-deposited films reduced the numbers of E. coli by 99.9% within 6 h and the numbers of S. aureus by 99.9% within only 2 h. FTO/Ag reduced bacterial numbers of E. coli to below the detection limit after 60 min and caused a 99.9% reduction of S. aureus within only 15 min of UV irradiation. Activ/Ag reduced the numbers of S. aureus by 66.6% after 60 min and TiO2/Ag killed 99.9% of S. aureus within 60 min of UV exposure. More remarkably, we observed a 99.9% reduction in the numbers of E. coli within 6 h and the numbers of S. aureus within 4 h in the dark using our novel TiO2/Ag system. PMID:26632854

  19. Tunable optoelectronic properties of CBD-CdS thin films via bath temperature alterations

    NASA Astrophysics Data System (ADS)

    Kumarage, W. G. C.; Wijesundera, R. P.; Seneviratne, V. A.; Jayalath, C. P.; Dassanayake, B. S.

    2016-03-01

    The tunability of the band-gap value and electron affinity of the n-CdS by adjusting the growth parameters is very important as it paves the way to improve the efficiency of CdS-based solar cells by adjusting the band lineup with other p-type semiconductors. In this respect, polycrystalline n-CdS thin films were grown on FTO glass substrates at different bath temperatures (40-80 °C) by the chemical bath deposition technique. The structural, morphological and optoelectronic properties of CdS thin films were studied using x-ray diffraction, scanning electron microscopy, UV-Vis spectrometry, profilometry, atomic force microscopy, photoelectrochemical and Mott-Schottky measurements. Absorption measurements reveal that an energy-gap value of n-CdS can be adjusted from 2.27 to 2.57 eV and Mott-Schottky measurements indicate that the flat-band potential is increased from  -699 to  -835 V with respect to a Ag/AgCl electrode by decreasing the deposition bath temperature from 60 to 40 °C. This tunability of optoelectronic properties of n-CdS is very useful for applications in thin film solar cells and other devices.

  20. Chemical composition and physical state of lipid deposits in atherosclerosis.

    PubMed

    Lundberg, B

    1985-07-01

    The composition, morphology, and physical properties of lipids in atherosclerotic lesions from human aortas were studied in order to elucidate the factors for the accumulation of cholesterol and its esters in the vessel wall. Lesions were classified histologically into 3 groups: fatty streak, fibrous plaque, and advanced plaque. The relative lipid composition of the lesions was plotted on the phase diagram of the 3 major lipids: cholesterol, cholesteryl ester, and phospholipid. Early fatty streaks had compositions within the 2-phase zone with a cholesterol-phospholipid liquid crystalline phase and a cholesteryl ester oily phase. Advanced fatty streaks and fibro-fatty plaques fell within the 3-phase zone with excess free cholesterol. Advanced plaques also had an average lipid composition within the 3-phase zone, but with a larger excess of free cholesterol. From the lipid-chemical point of view there is a continuous progression from early fatty streaks through advanced fatty streaks and fibro-fatty plaques to advanced plaques. In fatty streaks the cholesteryl esters accumulate in the form of isotropic and anisotropic droplets. The latter are in the smectic liquid crystalline state with the molecules arranged in layers and have surfaces that are spherical and smooth. Fibrous and advanced plaques showed beside droplets also amorphous lipids and cholesterol monohydrate crystals. Some of the amorphous lipids were solid up to about 45 degrees C and exhibited a smectic phase at cooling, indicating cholesteryl esters as the major component. The transition temperatures of high-melting cholesteryl esters, e.g. palmitate, are depressed by low-melting ones. Most of the triglycerides are present in the cholesteryl ester droplets and abolish the cholesteric liquid crystalline phase.

  1. Chemical vapor deposition of ceramic coatings on metals and ceramic fibers

    NASA Astrophysics Data System (ADS)

    Nable, Jun Co

    2005-07-01

    The research presented in this study consists of two major parts. The first part is about the development of ceramic coatings on metals by chemical vapor deposition (CVD) and metal-organic chemical vapor deposition (MOCVD). Ceramics such as Al2O3 and Cr2O3, are used as protective coatings for materials used at elevated temperatures (>700°C). These metal oxides either exhibit oxidation resistance or have been used as environmental bond coats. Conventional methods of coating by chemical vapor deposition requires deposition temperatures of >950°C which could damage the substrate material during the coating process. Lower deposition temperatures (400 to 600°C) by MOCVD of these metal oxides were successful on Ni metal substrates. Surface modification such as pre-oxidation and etching were also investigated. In addition, a novel approach for the CVD of TiN on metals was developed. This new approach utilizes ambient pressure conditions which lead to deposition temperatures of 800°C or lower compared to conventional CVD of TiN at 1000°C. Titanium nitride can be used as an abrasive and wear coating on cutting and grinding tools. This nitride can also serve as a diffusion coating in metals. The second major part of this research involves the synthesis of interfacial coatings on ceramic reinforcing fibers for ceramic matrix composites. Aluminum and chromium oxides were deposited onto SiC, and Al2O3-SiO 2 fibers by MOCVD. The effects of the interface coatings on the tensile strength of ceramic fibers are also discussed. New duplex interface coatings consisting of BN or TiN together with Al2O3 or ZrO 2 were also successfully deposited and evaluated on SiC fibers.

  2. Physical and chemical characteristics and development of the Changuinola peat deposit of northwestern Panama

    SciTech Connect

    Cohen, A.D.; Raymond, R. Jr.; Thayer, G.; Ramirez, A.

    1987-08-01

    A peat deposit occupying over 80 square kilometers, and averaging 8 meters in thickness, was discovered on the Caribbean coast of northwestern Panama near the town of Changuinola. This deposit occurs inland (behind) the present beach-barrier shoreline. It is thickest in the center and thins toward all edges (as if domed). The surface vegetation in the central regions consists primarily of ombrotrophic plants (especially sedges, grasses, Sphagnum, Sagittaria, and various scattered shrubs). Toward the edges, the deposit has a surface cover of more minerotrophic plants (such as swamp-forest trees, ferns, and palms). Petrographic/botanical analysis of the deposit with depth reveals the presence of five peat types (swamp-forest, sedge-grass-fern, Sagittaria et al., Nymphaea et al., and Rhizophora). Typically peats of the thick, central portions of the deposit are very low in ash and sulfur (less than 2% ash and 0.3% sulfur). Ash contents tend to increase abruptly at the base and more gradually toward the edges of the deposit and sulfur contents increasing gradually toward the ocean and bay. Vertical and lateral variations in botanical, chemical, and physical properties of this deposit can be related to factors that have controlled: (1) the surrounding rocks and water chemistry; (2) the source vegetation; and (3) the environments in which these source ingredients were deposited. 3 refs., 10 figs.

  3. Growth of diamond by RF plasma-assisted chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Meyer, Duane E.; Ianno, Natale J.; Woollam, John A.; Swartzlander, A. B.; Nelson, A. J.

    1988-01-01

    A system has been designed and constructed to produce diamond particles by inductively coupled radio-frequency, plasma-assisted chemical vapor deposition. This is a low-pressure, low-temperature process used in an attempt to deposit diamond on substrates of glass, quartz, silicon, nickel, and boron nitride. Several deposition parameters have been varied including substrate temperature, gas concentration, gas pressure, total gas flow rate, RF input power, and deposition time. Analytical methods employed to determine composition and structure of the deposits include scanning electron microscopy, absorption spectroscopy, scanning Auger microprobe spectroscopy, and Raman spectroscopy. Analysis indicates that particles having a thin graphite surface, as well as diamond particles with no surface coatings, have been deposited. Deposits on quartz have exhibited optical bandgaps as high as 4.5 eV. Scanning electron microscopy analysis shows that particles are deposited on a pedestal which Auger spectroscopy indicates to be graphite. This is a phenomenon that has not been previously reported in the literature.

  4. Aerosol assisted chemical vapor deposition of superconducting YBa 2Cu 3O 7-χ

    NASA Astrophysics Data System (ADS)

    Salazar, K. V.; Ott, K. C.; Dye, R. C.; Hubbard, K. M.; Peterson, E. J.; Coulter, J. Y.; Kodas, T. T.

    1992-08-01

    A hybrid process, aerosol-assisted chemical vapor deposotion (AACVD), is described for reproducible preparation of superconducting thin films of YBa 2Cu 3O 7-χ. The process consists of atomizing a toluene solution of the Y, Ba, and Cu tetramethylheptanedionato complexes using an aerosol generator. The aerosol is transported into a CVD reactor where solvent and precursor evaporation and deposition occur at atmospheric pressure on heated substrates. The process provides stable evaporation rates for all three precursors, yielding constant film stoichiometry throughout the deposition period and from film to film. Superconducting films may be deposited in-situ at substrate heater temperatures above 825°C, or may be formed at lower temperatures by deposition followed by post-deposition annealing at higher temperatures. The microstructure and quality of films are highly dependent on the conditions employed in deposition and in the case of films deposited below 825°C, the post-deposition annealing conditions. Superconducting films prepared by the AACVD/post-annealing process have a metallic normal state resistivity signature with a zero resistance temperature typically above 88K, and are highly c-axis oriented. Transport critical current densities measured at 75 K on polycrystalline films prepared by the AACVD process are 220 000 A/cm 2 and 84 000 A/cm 2 at self-field and 0.1 T, respectively.

  5. Chemical sputtering by H2+ and H3+ ions during silicon deposition

    NASA Astrophysics Data System (ADS)

    Landheer, K.; Goedheer, W. J.; Poulios, I.; Schropp, R. E. I.; Rath, J. K.

    2016-08-01

    We investigated chemical sputtering of silicon films by Hy+ ions (with y being 2 and 3) in an asymmetric VHF Plasma Enhanced Chemical Vapor Deposition (PECVD) discharge in detail. In experiments with discharges created with pure H2 inlet flows, we observed that more Si was etched from the powered than from the grounded electrode, and this resulted in a net deposition on the grounded electrode. With experimental input data from a power density series of discharges with pure H2 inlet flows, we were able to model this process with a chemical sputtering mechanism. The obtained chemical sputtering yields were (0.3-0.4) ± 0.1 Si atom per bombarding Hy+ ion at the grounded electrode and at the powered electrode the yield ranged from (0.4 to 0.65) ± 0.1. Subsequently, we investigated the role of chemical sputtering during PECVD deposition with a series of silane fractions SF (SF(%) = [SiH4]/[H2]*100) ranging from SF = 0% to 20%. We experimentally observed that the SiHy+ flux is not proportional to SF but decreasing from SF = 3.4% to 20%. This counterintuitive SiHy+ flux trend was partly explained by an increasing chemical sputtering rate with decreasing SF and partly by the reaction between H3+ and SiH4 that forms SiH3+.

  6. Vaporization of a mixed precursors in chemical vapor deposition for YBCO films

    NASA Technical Reports Server (NTRS)

    Zhou, Gang; Meng, Guangyao; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

    1995-01-01

    Single phase YBa2Cu3O7-delta thin films with T(c) values around 90 K are readily obtained by using a single source chemical vapor deposition technique with a normal precursor mass transport. The quality of the films is controlled by adjusting the carrier gas flow rate and the precursor feed rate.

  7. Combinatorial Characterization of TiO2 Chemical Vapor Deposition Utilizing Titanium Isopropoxide.

    PubMed

    Reinke, Michael; Ponomarev, Evgeniy; Kuzminykh, Yury; Hoffmann, Patrik

    2015-07-13

    The combinatorial characterization of the growth kinetics in chemical vapor deposition processes is challenging because precise information about the local precursor flow is usually difficult to access. In consequence, combinatorial chemical vapor deposition techniques are utilized more to study functional properties of thin films as a function of chemical composition, growth rate or crystallinity than to study the growth process itself. We present an experimental procedure which allows the combinatorial study of precursor surface kinetics during the film growth using high vacuum chemical vapor deposition. As consequence of the high vacuum environment, the precursor transport takes place in the molecular flow regime, which allows predicting and modifying precursor impinging rates on the substrate with comparatively little experimental effort. In this contribution, we study the surface kinetics of titanium dioxide formation using titanium tetraisopropoxide as precursor molecule over a large parameter range. We discuss precursor flux and temperature dependent morphology, crystallinity, growth rates, and precursor deposition efficiency. We conclude that the surface reaction of the adsorbed precursor molecules comprises a higher order reaction component with respect to precursor surface coverage.

  8. Chemical vapour deposition of thermochromic vanadium dioxide thin films for energy efficient glazing

    SciTech Connect

    Warwick, Michael E.A.; Binions, Russell

    2014-06-01

    Vanadium dioxide is a thermochromic material that undergoes a semiconductor to metal transitions at a critical temperature of 68 °C. This phase change from a low temperature monoclinic structure to a higher temperature rutile structure is accompanied by a marked change in infrared reflectivity and change in resistivity. This ability to have a temperature-modulated film that can limit solar heat gain makes vanadium dioxide an ideal candidate for thermochromic energy efficient glazing. In this review we detail the current challenges to such glazing becoming a commercial reality and describe the key chemical vapour deposition technologies being employed in the latest research. - Graphical abstract: Schematic demonstration of the effect of thermochromic glazing on solar radiation (red arrow represents IR radiation, black arrow represents all other solar radiation). - Highlights: • Vanadium dioxide thin films for energy efficient glazing. • Reviews chemical vapour deposition techniques. • Latest results for thin film deposition for vanadium dioxide.

  9. Influence of krypton atoms on the structure of hydrogenated amorphous carbon deposited by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Oliveira, M. H.; Viana, G. A.; de Lima, M. M.; Cros, A.; Cantarero, A.; Marques, F. C.

    2010-12-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared by plasma enhanced chemical vapor deposition using methane (CH4) plus krypton (Kr) mixed atmosphere. The depositions were performed as function of the bias voltage and krypton partial pressure. The goal of this work was to study the influence of krypton gas on the physical properties of a-C:H films deposited on the cathode electrode. Krypton concentration up to 1.6 at. %, determined by Rutherford Back-Scattering, was obtained at high Kr partial pressure and bias of -120 V. The structure of the films was analyzed by means of optical transmission spectroscopy, multi-wavelength Raman scattering and Fourier Transform Infrared spectroscopy. It was verified that the structure of the films remains unchanged up to a concentration of Kr of about 1.0 at. %. A slight graphitization of the films occurs for higher concentration. The observed variation in the film structure, optical band gap, stress, and hydrogen concentration were associated mainly with the subplantation process of hydrocarbons radicals, rather than the krypton ion energy.

  10. Influence of krypton atoms on the structure of hydrogenated amorphous carbon deposited by plasma enhanced chemical vapor deposition

    SciTech Connect

    Oliveira, M. H. Jr.; Viana, G. A.; Marques, F. C.; Lima, M. M. Jr. de; Cros, A.; Cantarero, A.

    2010-12-15

    Hydrogenated amorphous carbon (a-C:H) films were prepared by plasma enhanced chemical vapor deposition using methane (CH{sub 4}) plus krypton (Kr) mixed atmosphere. The depositions were performed as function of the bias voltage and krypton partial pressure. The goal of this work was to study the influence of krypton gas on the physical properties of a-C:H films deposited on the cathode electrode. Krypton concentration up to 1.6 at. %, determined by Rutherford Back-Scattering, was obtained at high Kr partial pressure and bias of -120 V. The structure of the films was analyzed by means of optical transmission spectroscopy, multi-wavelength Raman scattering and Fourier Transform Infrared spectroscopy. It was verified that the structure of the films remains unchanged up to a concentration of Kr of about 1.0 at. %. A slight graphitization of the films occurs for higher concentration. The observed variation in the film structure, optical band gap, stress, and hydrogen concentration were associated mainly with the subplantation process of hydrocarbons radicals, rather than the krypton ion energy.

  11. Deposition kinetics and characterization of stable ionomers from hexamethyldisiloxane and methacrylic acid by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Urstöger, Georg; Resel, Roland; Koller, Georg; Coclite, Anna Maria

    2016-04-01

    A novel ionomer of hexamethyldisiloxane and methacrylic acid was synthesized by plasma enhanced chemical vapor deposition (PECVD). The PECVD process, being solventless, allows mixing of monomers with very different solubilities, and for polymers formed at high deposition rates and with high structural stability (due to the high number of cross-links and covalent bonding to the substrate) to be obtained. A kinetic study over a large set of parameters was run with the aim of determining the optimal conditions for high stability and proton conductivity of the polymer layer. Copolymers with good stability over 6 months' time in air and water were obtained, as demonstrated by ellipsometry, X-Ray reflectivity, and FT-IR spectroscopy. Stable coatings showed also proton conductivity as high as 1.1 ± 0.1 mS cm-1. Chemical analysis showed that due to the high molecular weight of the chosen precursors, it was possible to keep the plasma energy-input-per-mass low. This allowed limited precursor fragmentation and the functional groups of both monomers to be retained during the plasma polymerization.

  12. Chemical Alteration Pathways Resulting in High-Silica Deposits on Mars

    NASA Astrophysics Data System (ADS)

    Yen, A. S.; Gellert, R.; Clark, B. C.; Ming, D. W.; Morris, R. V.; Mittlefehldt, D. W.

    2015-12-01

    The chemical compositions of nearly 1000 targets at the surface of Mars have been established by the cross-calibrated Alpha-Particle X-ray Spectrometers (APXS) onboard the Mars Science Laboratory (MSL) and the two Mars Exploration Rovers (MER). Comparing and contrasting these measurements provides greater insight into martian surface processes than the standalone use of data from an individual mission. For example, the combination of MER and MSL APXS data indicate two distinct pathways for silicate weathering: 1. Open system alteration at circumneutral pH. Fracture-filling deposits in impact breccias at the rim of Endeavour Crater analyzed by the Opportunity rover show the highest SiO2 concentrations at Meridiani Planum (62 wt%) with correlated Si and Al (Si:Al ~0.3). These Mg and Fe-depleted veins have chemical signatures consistent with an Al-rich smectite and likely formed as a precipitate from non-acidic aqueous solutions. Similar high Si and Al deposits found at the Gusev landing site by the Spirit rover were interpreted as montmorillonite. 2. Open system, acid-sulfate alteration. In sharp contrast to Si and Al-rich deposits, a group of high-Si targets have low concentrations of Al. Deposits in Gusev Crater near "Home Plate," a hydrothermal locale with nearby fumarolic deposits, fall into this category. Acid-sulfate processes are likely responsible for mobilizing most other elements, including Al, leaving behind a Si-rich, and generally Ti-rich, residue. Recent high-Si samples (up to 72 wt% SiO2) analyzed by the Curiosity rover exhibit similar chemical patterns, including elevated TiO2 concentrations, suggestive that acidic leaching may also have been an important process in the development of deposits found within Gale Crater. The framework of chemical analyses established through years of Mars surface operations provides the basis against which future measurements by Opportunity, Curiosity and the Mars 2020 rover can be compared.

  13. Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Qi, J. L.; Zheng, W. T.; Zheng, X. H.; Wang, X.; Tian, H. W.

    2011-05-01

    We present a simple, low-cost and high-effective method for synthesizing high-quality, large-area graphene using radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) on SiO 2/Si substrate covered with Ni thin film at relatively low temperatures (650 °C). During deposition, the trace amount of carbon (CH 4 gas flow rate of 2 sccm) is introduced into PECVD chamber and the deposition time is only 30 s, in which the carbon atoms diffuse into the Ni film and then segregate on its surface, forming single-layer or few-layer graphene. After deposition, Ni is removed by wet etching, and the obtained single continuous graphene film can easily be transferred to other substrates. This investigation provides a large-area, low temperature and low-cost synthesis method for graphene as a practical electronic material.

  14. Template assisted synthesis of photocatalytic titanium dioxide nanotubes by hot filament chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Karaman, Mustafa; Sarıipek, Fatma; Köysüren, Özcan; Yıldız, H. Bekir

    2013-10-01

    Titanium dioxide thin films were deposited conformally over electrospun polymethyl methacrylate (PMMA) fibers by hot filament chemical vapor deposition method. Deposition rates were observed to be very high to allow for rapid coatings. Thermal annealing of as deposited materials leads the clean decomposition of the polymeric inner layer and formation of randomly distributed anatase TiO2 nanotubes. Nanotubular TiO2 structure was clearly identified by SEM and that structure is ideal for good photocatalytic activity because of its high surface area per unit volume ratio. FTIR and XPS results show the formation of stoichiometric TiO2, and the crystalline form of the final nanotubes was found to be anatase (1 0 1) after XRD analysis. High photocatalytic activity of TiO2 nanotubes under UV irradiation was observed with an apparent rate constant of 0.74 h-1 for methyl orange decomposition.

  15. Light induced chemical vapour deposition of titanium oxide thin films at room temperature

    NASA Astrophysics Data System (ADS)

    Halary, E.; Benvenuti, G.; Wagner, F.; Hoffmann, P.

    2000-02-01

    High resolution patterned deposition of titania is achieved by light induced chemical vapour deposition (LICVD), by imaging a mask onto a glass substrate. A long pulse XeCl Excimer laser (308 nm) provides, by perpendicular irradiation, the energy to convert titanium tetraisopropoxide (TTIP) vapour into titanium dioxide films, in an oxygen atmosphere, on unheated glass substrates. The amorphous titania deposits contain about 6% carbon contamination according to X-ray photoelectron spectroscopy (XPS) measurements. The deposition rate increases with increasing laser fluence until a maximum value is reached, then remains constant over a wide range, and finally decreases with further fluence increase due to titania ablation or thermal effects. The film thickness increases linearly with the number of pulses after a nucleation period. The strong influence of the laser pulse repetition rate on the growth rate and the thickness profile are reported.

  16. The design, construction and three dimensional modeling of a high pressure organometallic chemical vapor deposition reactor

    NASA Astrophysics Data System (ADS)

    McCall, Sonya Denise

    Two high pressure reactors have been designed, built and tested, in order to extend Organometallic Chemical Vapor Deposition (OMCVD) to materials that exhibit large thermal decomposition pressures at their optimum growth temperature. The Differentially Pressure Controlled (DPC) Reactor System was designed and built for use at pressures ≤10 atm. A second generation reactor, the Compact Hard Shell (CHS) Reactor was built in order to extend pressures ≤100 atm. A physico-chemical model of the High Pressure Organometallic Chemical Vapor Deposition (HPOMCVD) process that describes three dimensional transport phenomena as well as gas-phase and surface reactions underlying the growth of compound semiconductors is presented. A reduced-order model of the Organometallic Chemical Vapor Deposition of InN from trimethylindium and ammonia at elevated pressures has been developed and tested. The model describes the flow dynamics coupled to chemical reactions and transport in the flow channel of the Compact Hard Shell Reactor, as a function of substrate temperature, total pressure and centerline flow velocity.

  17. Chemical Vapor Deposition of Nanocarbon on Electroless NiB Catalyst Using Ethanol Precursor

    NASA Astrophysics Data System (ADS)

    Tanaka, Toru; Sato, Tomomi; Karasawa, Yusuke; Ueno, Kazuyoshi

    2011-05-01

    Nanocarbon materials have been expected as post-Cu interconnect materials for large-scale integrated circuits (LSIs). In this paper, we present a nanocarbon deposition process using electroless plated NiB as the catalyst, which features conformal deposition on patterned dielectric surfaces. It was found that carbon nanotubes (CNTs) and graphitic films were deposited on the electroless NiB by atmospheric pressure chemical vapor deposition (CVD) using ethanol as the precursor. The graphitic quality estimated from the Raman spectra of the nanocarbon on the NiB catalyst was equivalent to that on a sputter-deposited pure Ni catalyst. The nanocarbon shape was dependent on NiB thickness, and CNTs were grown on 10-nm-thick NiB and graphitic films were grown on 30 nm or thicker NiB. The deposition temperature can be lowered to 505 °C, although the graphitic quality was degraded. It is considered that the electroless catalysts can be effective for nanocarbon deposition on patterned dielectric surfaces.

  18. Chemical vapor deposition of atomically thin materials for membrane dialysis applications

    NASA Astrophysics Data System (ADS)

    Kidambi, Piran; Mok, Alexander; Jang, Doojoon; Boutilier, Michael; Wang, Luda; Karnik, Rohit; Microfluidics; Nanofluidics Research Lab Team

    2015-11-01

    Atomically thin 2D materials like graphene and h-BN represent a new class of membranes materials. They offer the possibility of minimum theoretical membrane transport resistance along with the opportunity to tune pore sizes at the nanometer scale. Chemical vapor deposition has emerged as the preferable route towards scalable, cost effective synthesis of 2D materials. Here we show selective molecular transport through sub-nanometer diameter pores in graphene grown via chemical vapor deposition processes. A combination of pressure driven and diffusive transport measurements shows evidence for size selective transport behavior which can be used for separation by dialysis for applications such as desalting of biomolecular or chemical solutions. Principal Investigator

  19. Quantum Chemical Simulation of Carbon Nanotube Nucleation on Al2O3 Catalysts via CH4 Chemical Vapor Deposition.

    PubMed

    Page, Alister J; Saha, Supriya; Li, Hai-Bei; Irle, Stephan; Morokuma, Keiji

    2015-07-29

    We present quantum chemical simulations demonstrating how single-walled carbon nanotubes (SWCNTs) form, or "nucleate", on the surface of Al2O3 nanoparticles during chemical vapor deposition (CVD) using CH4. SWCNT nucleation proceeds via the formation of extended polyyne chains that only interact with the catalyst surface at one or both ends. Consequently, SWCNT nucleation is not a surface-mediated process. We demonstrate that this unusual nucleation sequence is due to two factors. First, the π interaction between graphitic carbon and Al2O3 is extremely weak, such that graphitic carbon is expected to desorb at typical CVD temperatures. Second, hydrogen present at the catalyst surface actively passivates dangling carbon bonds, preventing a surface-mediated nucleation mechanism. The simulations reveal hydrogen's reactive chemical pathways during SWCNT nucleation and that the manner in which SWCNTs form on Al2O3 is fundamentally different from that observed using "traditional" transition metal catalysts. PMID:26148208

  20. Synthetic Cathinones ("Bath Salts")

    MedlinePlus

    ... still unknown about how synthetic cathinones affect the human brain. Researchers do know that synthetic cathinones are chemically ... of the chemicals in synthetic cathinones affect the human brain. Synthetic cathinones can cause: nosebleeds paranoia increased sociability ...

  1. Control of interface nanoscale structure created by plasma-enhanced chemical vapor deposition.

    PubMed

    Peri, Someswara R; Akgun, Bulent; Satija, Sushil K; Jiang, Hao; Enlow, Jesse; Bunning, Timothy J; Foster, Mark D

    2011-09-01

    Tailoring the structure of films deposited by plasma-enhanced chemical vapor deposition (PECVD) to specific applications requires a depth-resolved understanding of how the interface structures in such films are impacted by variations in deposition parameters such as feed position and plasma power. Analysis of complementary X-ray and neutron reflectivity (XR, NR) data provide a rich picture of changes in structure with feed position and plasma power, with those changes resolved on the nanoscale. For plasma-polymerized octafluorocyclobutane (PP-OFCB) films, a region of distinct chemical composition and lower cross-link density is found at the substrate interface for the range of processing conditions studied and a surface layer of lower cross-link density also appears when plasma power exceeds 40 W. Varying the distance of the feed from the plasma impacts the degree of cross-linking in the film center, thickness of the surface layer, and thickness of the transition region at the substrate. Deposition at the highest power, 65 W, both enhances cross-linking and creates loose fragments with fluorine content higher than the average. The thickness of the low cross-link density region at the air interface plays an important role in determining the width of the interface built with a layer subsequently deposited atop the first. PMID:21875044

  2. Control of interface nanoscale structure created by plasma-enhanced chemical vapor deposition.

    PubMed

    Peri, Someswara R; Akgun, Bulent; Satija, Sushil K; Jiang, Hao; Enlow, Jesse; Bunning, Timothy J; Foster, Mark D

    2011-09-01

    Tailoring the structure of films deposited by plasma-enhanced chemical vapor deposition (PECVD) to specific applications requires a depth-resolved understanding of how the interface structures in such films are impacted by variations in deposition parameters such as feed position and plasma power. Analysis of complementary X-ray and neutron reflectivity (XR, NR) data provide a rich picture of changes in structure with feed position and plasma power, with those changes resolved on the nanoscale. For plasma-polymerized octafluorocyclobutane (PP-OFCB) films, a region of distinct chemical composition and lower cross-link density is found at the substrate interface for the range of processing conditions studied and a surface layer of lower cross-link density also appears when plasma power exceeds 40 W. Varying the distance of the feed from the plasma impacts the degree of cross-linking in the film center, thickness of the surface layer, and thickness of the transition region at the substrate. Deposition at the highest power, 65 W, both enhances cross-linking and creates loose fragments with fluorine content higher than the average. The thickness of the low cross-link density region at the air interface plays an important role in determining the width of the interface built with a layer subsequently deposited atop the first.

  3. High rate, large area laser-assisted chemical vapor deposition of nickel from nickel carbonyl

    NASA Astrophysics Data System (ADS)

    Paserin, Vlad

    High-power diode lasers (HPDL) are being increasingly used in industrial applications. Deposition of nickel from nickel carbonyl (Ni(CO)4 ) precursor by laser-induced chemical vapor deposition (CVD) was studied with emphasis on achieving high deposition rates. An HPDL system was used to provide a novel energy source facilitating a simple and compact design of the energy delivery system. Nickel deposits on complex, 3-dimensional polyurethane foam substrates were prepared and characterized. The resulting "nickel foam" represents a novel material of high porosity (>95% by volume) finding uses, among others, in the production of rechargeable battery and fuel cell electrodes and as a specialty high-temperature filtration medium. Deposition rates up to ˜19 mum/min were achieved by optimizing the gas precursor flow pattern and energy delivery to the substrate surface using a 480W diode laser. Factors affecting the transition from purely heterogeneous decomposition to a combined hetero- and homogeneous decomposition of nickel carbonyl were studied. High quality, uniform 3-D deposits produced at a rate more than ten times higher than in commercial processes were obtained by careful balance of mass transport (gas flow) and energy delivery (laser power). Cross-flow of the gases through the porous substrate was found to be essential in facilitating mass transport and for obtaining uniform deposits at high rates. When controlling the process in a transient regime (near the onset of homogenous decomposition), unique morphology features formed as part of the deposits, including textured surface with pyramid-shape crystallites, spherical and non-spherical particles and filaments. Operating the laser in a pulsed mode produced smooth, nano-crystalline deposits with sub-100 nm grains. The effect of H2S, a commonly used additive in nickel carbonyl CVD, was studied using both polyurethane and nickel foam substrates. H2S was shown to improve the substrate coverage and deposit

  4. 33 CFR 165.104 - Safety Zone: Vessel Launches, Bath Iron Works, Kennebec River, Bath, Maine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Bath Iron Works, Kennebec River, Bath, Maine. 165.104 Section 165.104 Navigation and Navigable Waters... Guard District § 165.104 Safety Zone: Vessel Launches, Bath Iron Works, Kennebec River, Bath, Maine. (a... Bath Iron Works dry dock while it is being moved to and from its moored position at the Bath Iron...

  5. 33 CFR 165.104 - Safety Zone: Vessel Launches, Bath Iron Works, Kennebec River, Bath, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Bath Iron Works, Kennebec River, Bath, Maine. 165.104 Section 165.104 Navigation and Navigable Waters... Guard District § 165.104 Safety Zone: Vessel Launches, Bath Iron Works, Kennebec River, Bath, Maine. (a... Bath Iron Works dry dock while it is being moved to and from its moored position at the Bath Iron...

  6. 33 CFR 165.104 - Safety Zone: Vessel Launches, Bath Iron Works, Kennebec River, Bath, Maine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Bath Iron Works, Kennebec River, Bath, Maine. 165.104 Section 165.104 Navigation and Navigable Waters... Guard District § 165.104 Safety Zone: Vessel Launches, Bath Iron Works, Kennebec River, Bath, Maine. (a... Bath Iron Works dry dock while it is being moved to and from its moored position at the Bath Iron...

  7. 33 CFR 165.104 - Safety Zone: Vessel Launches, Bath Iron Works, Kennebec River, Bath, Maine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Bath Iron Works, Kennebec River, Bath, Maine. 165.104 Section 165.104 Navigation and Navigable Waters... Guard District § 165.104 Safety Zone: Vessel Launches, Bath Iron Works, Kennebec River, Bath, Maine. (a... Bath Iron Works dry dock while it is being moved to and from its moored position at the Bath Iron...

  8. Metal organic chemical vapor deposition of phase change Ge1Sb2Te4 nanowires.

    PubMed

    Longo, Massimo; Fallica, Roberto; Wiemer, Claudia; Salicio, Olivier; Fanciulli, Marco; Rotunno, Enzo; Lazzarini, Laura

    2012-03-14

    The self-assembly of Ge(1)Sb(2)Te(4) nanowires (NWs) for phase change memories application was achieved by metal organic chemical vapor deposition, catalyzed by Au nanoislands in a narrow range of temperatures and deposition pressures. In the optimized conditions of 400 °C, 50 mbar, the NWs are Ge(1)Sb(2)Te(4) single hexagonal crystals. Phase change memory switching was reversibly induced by nanosecond current pulses through metal-contacted NWs with threshold voltage of about 1.35 V.

  9. Deposition of Hydrogenated Microcrystalline Films of CdTe by Chemical Sputtering in Hydrogen

    NASA Astrophysics Data System (ADS)

    Saito, Koji; Nishibayashi, Yoshiki; Imura, Takeshi; Osaka, Yukio

    1988-07-01

    Films of CdTe are deposited by chemical sputtering of a CdTe target in hydrogen gas. X-ray diffraction patterns show that the films are composed of microcrystals of cubic CdTe with a grain size of 15˜30 nm. The films contain a trace amount of hydrogen in the form of the Cd-H (and presumably Te-H2) bonds. This hydrogen is evolved during the thermal treatment of the film above 100°C, as the grain size of the microcrystal grows. The deposition rate is also reduced when the substrate temperature increases up to 100°C or more.

  10. Oxygen and hydrogen effects on the chemical vapor deposition of aluminum nitride films

    SciTech Connect

    Aspar, B.; Armas, B.; Combescure, C. ); Figueras, A.; Rodriguez-Clemente, R. ); Mazel, A.; Kihn, Y.; Sevely, J. )

    1993-06-01

    Aluminum nitride has been obtained by chemical vapor deposition using AlCl[sub 3] and NH[sub 3] as precursors. Progressive introduction of N[sub 2]0 in the gas mixture has shown the possibility of inserting oxygen in the AlN lattice. This involves strong changes of surface morphology of the deposit and the formation of less-crystallized materials. When hydrogen is added to the gas mixture, these effects are reduced, Electron energy loss spectroscopy has shown that, in this case, oxygen is mainly concentrated on the external parts of AlN crystals, the structure of which has been found consistent with the wurtzite structure.

  11. Development of a polysilicon process based on chemical vapor deposition, phase 1

    NASA Technical Reports Server (NTRS)

    Plahutnik, F.; Arvidson, A.; Sawyer, D.

    1982-01-01

    The goal of this program is to demonstrate that a dichlorosilane-based reductive chemical vapor deposition (CVD) process is capable of producing, at low cost, high quality polycrystalline silicon. Physical form and purity of this material will be consistent with LSA material requirements for use in the manufacture of high efficiency solar cells. Four polysilicon deposition runs were completed in an intermediate size reactor using dichlorosilane fed from 250 pound cylinders. Results from the intermediate size reactor are consistent with those obtained earlier with a small experimental reactor. Modifications of two intermediate size reactors were completed to interface with the dichlorosilane process demonstration unit (PDU).

  12. Thermodynamic Analysis and Growth of Zirconium Carbide by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Wei, Sun; Hua, Hao Zheng; Xiang, Xiong

    Equilibrium calculations were used to optimize conditions for the chemical vapor deposition of zirconium carbide from zirconium halide + CxHy+H2+Ar system. The results show the CVD-ZrC phase diagram is divided into ZrC+C, ZrC and ZrC+Zr zones by C, Zr generating lines. For the same mole of ZrCl4 reactant, it needs higher concentration of CH4 to generate single ZrC phase than that of C3H6. Using these calculations as a guide, single-phase cubic zirconium carbide coatings were deposited onto graphite substrate.

  13. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  14. Improvement of uniformity in chemical vapor deposition of silicon carbide by using CFD

    NASA Astrophysics Data System (ADS)

    Seo, Jin-Won; Kim, Jun-Woo; Choi, Kyoon; Lee, Jong-Heun

    2016-01-01

    The chemical vapor deposition (CVD) of silicon carbide (SiC) on carbon has been widely used as a general method to suppress dust generation on carbon surfaces. For a CH3SiCl3 (MTS) and hydrogen system, computational fluid dynamic simulations to predict the growth rate of the silicon carbide are performed. The results of the simulations are consistent with the experimental results where the deposition rate depends highly on the H/Si composition and the specimen's location. This simulation can provide guidance in optimizing the CVD process and improving the apparatus for CVD of SiC.

  15. Estimating Chemical Exchange between Atmospheric Deposition and Forest Canopy in Guizhou, China.

    PubMed

    Li, Wei; Gao, Fang; Liao, Xueqin

    2013-01-01

    To evaluate the effects of atmospheric deposition on forest ecosystems, wet-only precipitation and throughfall samples were collected in two forest types (Masson pine [ Lamb.] forests and mixed conifer and broadleaf forests) in the Longli forest in the Guizhou province of southwestern China for a period of 21 successive months from April 2007 to December 2008. The pH and chemical components of precipitation and throughfall were analyzed. In addition, the canopy budget model was applied to distinguish between in-canopy and atmospheric sources of chemical compounds. Canopy leaching and total potentially acidifying deposition fluxes were calculated. The results showed that the average pH and the concentration of ions in throughfall were higher than those in precipitation, with the exception of the NH concentration. Dry deposition of S and N accumulated more in Masson pine forests than in mixed conifer and broadleaf forests. Canopy leaching was the most significant source of base cations in forest throughfall, which was higher in the mixed forests than in the coniferous forests. Anions in throughfall deposition in Masson pine forests exceeded those in the mixed forests. Higher total potentially acidifying deposition fluxes reflected the more effective amounts of acid delivered to Masson pine forests compared with mixed conifer and broadleaf forests. In addition, acid deposition induced the leaching and loss of nutrient ions such as Mg, K, and Ca. Although the trees of the studied areas have not shown any symptoms of cation loss, a potentially harmful influence was engendered by atmospheric deposition in the two forest types in the Longli area.

  16. Estimating Chemical Exchange between Atmospheric Deposition and Forest Canopy in Guizhou, China.

    PubMed

    Li, Wei; Gao, Fang; Liao, Xueqin

    2013-01-01

    To evaluate the effects of atmospheric deposition on forest ecosystems, wet-only precipitation and throughfall samples were collected in two forest types (Masson pine [ Lamb.] forests and mixed conifer and broadleaf forests) in the Longli forest in the Guizhou province of southwestern China for a period of 21 successive months from April 2007 to December 2008. The pH and chemical components of precipitation and throughfall were analyzed. In addition, the canopy budget model was applied to distinguish between in-canopy and atmospheric sources of chemical compounds. Canopy leaching and total potentially acidifying deposition fluxes were calculated. The results showed that the average pH and the concentration of ions in throughfall were higher than those in precipitation, with the exception of the NH concentration. Dry deposition of S and N accumulated more in Masson pine forests than in mixed conifer and broadleaf forests. Canopy leaching was the most significant source of base cations in forest throughfall, which was higher in the mixed forests than in the coniferous forests. Anions in throughfall deposition in Masson pine forests exceeded those in the mixed forests. Higher total potentially acidifying deposition fluxes reflected the more effective amounts of acid delivered to Masson pine forests compared with mixed conifer and broadleaf forests. In addition, acid deposition induced the leaching and loss of nutrient ions such as Mg, K, and Ca. Although the trees of the studied areas have not shown any symptoms of cation loss, a potentially harmful influence was engendered by atmospheric deposition in the two forest types in the Longli area. PMID:23673825

  17. Chemical vapor deposited diamond-on-diamond powder composites (LDRD final report)

    SciTech Connect

    Panitz, J.K.; Hsu, W.L.; Tallant, D.R.; McMaster, M.; Fox, C.; Staley, D.

    1995-12-01

    Densifying non-mined diamond powder precursors with diamond produced by chemical vapor infiltration (CVI) is an attractive approach for forming thick diamond deposits that avoids many potential manufacturability problems associated with predominantly chemical vapor deposition (CVD) processes. The authors developed techniques for forming diamond powder precursors and densified these precursors in a hot filament-assisted reactor and a microwave plasma-assisted reactor. Densification conditions were varied following a fractional factorial statistical design. A number of conclusions can be drawn as a result of this study. High density diamond powder green bodies that contain a mixture of particle sizes solidify more readily than more porous diamond powder green bodies with narrow distributions of particle sizes. No composite was completely densified although all of the deposits were densified to some degree. The hot filament-assisted reactor deposited more material below the exterior surface, in the interior of the powder deposits; in contrast, the microwave-assisted reactor tended to deposit a CVD diamond skin over the top of the powder precursors which inhibited vapor phase diamond growth in the interior of the powder deposits. There were subtle variations in diamond quality as a function of the CVI process parameters. Diamond and glassy carbon tended to form at the exterior surface of the composites directly exposed to either the hot filament or the microwave plasma. However, in the interior, e.g. the powder/substrate interface, diamond plus diamond-like-carbon formed. All of the diamond composites produced were grey and relatively opaque because they contained flawed diamond, diamond-like-carbon and glassy carbon. A large amount of flawed and non-diamond material could be removed by post-CVI oxygen heat treatments. Heat treatments in oxygen changed the color of the composites to white.

  18. A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2015-01-01

    We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics. The PECVD technology is inherently multiscale, from macroscale processes in the chemical reactor to atomic-scale surface chemistry. Our macroscale model is based on Navier-Stokes equations for a transient laminar flow of a compressible chemically reacting gas mixture, together with the mass transfer and energy balance equations, Poisson equation for electric potential, electrons and ions balance equations. The chemical kinetics model includes 24 species and 58 reactions: 37 in the gas phase and 21 on the surface. A deposition model consists of three stages: adsorption to the surface, diffusion along the surface and embedding of products into the substrate. A new model has been validated on experimental results obtained with the "Plasmalab System 100" reactor. We present the mathematical model and simulation results investigating the influence of flow rate and source gas proportion on silicon nitride film growth rate and chemical composition.

  19. Modeling chemical vapor deposition of silicon dioxide in microreactors at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2015-01-01

    We developed a multiphysics mathematical model for simulation of silicon dioxide Chemical Vapor Deposition (CVD) from tetraethyl orthosilicate (TEOS) and oxygen mixture in a microreactor at atmospheric pressure. Microfluidics is a promising technology with numerous applications in chemical synthesis due to its high heat and mass transfer efficiency and well-controlled flow parameters. Experimental studies of CVD microreactor technology are slow and expensive. Analytical solution of the governing equations is impossible due to the complexity of intertwined non-linear physical and chemical processes. Computer simulation is the most effective tool for design and optimization of microreactors. Our computational fluid dynamics model employs mass, momentum and energy balance equations for a laminar transient flow of a chemically reacting gas mixture at low Reynolds number. Simulation results show the influence of microreactor configuration and process parameters on SiO2 deposition rate and uniformity. We simulated three microreactors with the central channel diameter of 5, 10, 20 micrometers, varying gas flow rate in the range of 5-100 microliters per hour and temperature in the range of 300-800 °C. For each microchannel diameter we found an optimal set of process parameters providing the best quality of deposited material. The model will be used for optimization of the microreactor configuration and technological parameters to facilitate the experimental stage of this research.

  20. Facile synthesis 3D flexible core-shell graphene/glass fiber via chemical vapor deposition

    PubMed Central

    2014-01-01

    Direct deposition of graphene layers on the flexible glass fiber surface to form the three-dimensional (3D) core-shell structures is offered using a two-heating reactor chemical vapor deposition system. The two-heating reactor is utilized to offer sufficient, well-proportioned floating C atoms and provide a facile way for low-temperature deposition. Graphene layers, which are controlled by changing the growth time, can be grown on the surface of wire-type glass fiber with the diameter from 30 nm to 120 um. The core-shell graphene/glass fiber deposition mechanism is proposed, suggesting that the 3D graphene films can be deposited on any proper wire-type substrates. These results open a facile way for direct and high-efficiency deposition of the transfer-free graphene layers on the low-temperature dielectric wire-type substrates. PACS 81.05.U-; 81.07.-b; 81.15.Gh PMID:25170331

  1. Chemical response of lakes in the Adirondack Region of New York to declines in acidic deposition.

    PubMed

    Driscoll, Charles T; Driscoll, Kimberley M; Roy, Karen M; Mitchell, Myron J

    2003-05-15

    Long-term changes in the chemistry of wet deposition and lake water were investigated in the Adirondack Region of New York. Marked decreases in concentrations of SO4(2-) and H+ in wet deposition have occurred at two sites since the late 1970s. These decreases are consistent with long-term declines in emissions of sulfur dioxide (SO2) in the eastern United States. Changes in wet NO3- deposition and nitrogen oxides (NOx) emissions have been minor over the same interval. Virtually all Adirondack Lakes have shown marked decreases in concentrations of SO4(2-), which coincide with decreases in atmospheric S deposition. Concentrations of NO3- have also decreased in several Adirondack lakes. As atmospheric N deposition has not changed over this period, the mechanism contributing to this apparent increase in lake/watershed N retention is not evident. Decreases in concentrations of SO4(2-) + NO3- have resulted in increases in acid-neutralizing capacity (ANC) and pH and resulted in a shift in the speciation of monomeric Al from toxic inorganic species toward less toxic organic forms in some lakes. Nevertheless, many lakes continue to exhibit pH values and concentrations of inorganic monomeric Al that are critical to aquatic biota. Extrapolation of rates of ANC increase suggests that the time frame of chemical recovery of Adirondack Lakes will be several decades if current decreases in acidic deposition are maintained.

  2. Chlorhexidine gluconate: to bathe or not to bathe?

    PubMed

    Rubin, Caroline; Louthan, Rufina Bavin; Wessels, Erica; McGowan, Mary-Bridgid; Downer, Shantee; Maiden, Jeanne

    2013-01-01

    Despite infection-prevention initiatives, hospital-acquired infections (HAIs) are still a common occurrence. Chlorhexidine gluconate (CHG) is an important antibacterial agent. Research indicates that the intervention of bathing with CHG can reduce the number of HAIs. Chlorhexidine gluconate is known to reduce the bioload of several bacteria, including multiple strains of methicillin-resistant Staphylococcus aureus. Research regarding the intervention of bathing with CHG was assessed and found to reduce central line-related blood stream infections, ventilator-associated pneumonia, and vancomycin-resistant enterococci. The reduction in HAIs was found to be greater as compared to bathing with soap and water. The reduction of these HAIs will allow for a saving of resources, finances and staff time, which may ultimately be passed on to the patient. While further research is indicated, a strong conclusion is drawn that bathing with CHG reduces the number of HAIs. PMID:23470709

  3. Process development for the manufacture of an integrated dispenser cathode assembly using laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Johnson, Ryan William

    2005-07-01

    Laser Chemical Vapor Deposition (LCVD) has been shown to have great potential for the manufacture of small, complex, two or three dimensional metal and ceramic parts. One of the most promising applications of the technology is in the fabrication of an integrated dispenser cathode assembly. This application requires the deposition of a boron nitride-molybdenum composite structure. In order to realize this structure, work was done to improve the control and understanding of the LCVD process and to determine experimental conditions conducive to the growth of the required materials. A series of carbon fiber and line deposition studies were used to characterize process-shape relationships and study the kinetics of carbon LCVD. These studies provided a foundation for the fabrication of the first high aspect ratio multi-layered LCVD wall structures. The kinetics studies enabled the formulation of an advanced computational model in the FLUENT CFD package for studying energy transport, mass and momentum transport, and species transport within a forced flow LCVD environment. The model was applied to two different material systems and used to quantify deposition rates and identify rate-limiting regimes. A computational thermal-structural model was also developed using the ANSYS software package to study the thermal stress state within an LCVD deposit during growth. Georgia Tech's LCVD system was modified and used to characterize both boron nitride and molybdenum deposition independently. The focus was on understanding the relations among process parameters and deposit shape. Boron nitride was deposited using a B3 N3H6-N2 mixture and growth was characterized by sporadic nucleation followed by rapid bulk growth. Molybdenum was deposited from the MoCl5-H2 system and showed slow, but stable growth. Each material was used to grow both fibers and lines. The fabrication of a boron nitride-molybdenum composite was also demonstrated. In sum, this work served to both advance the

  4. Synthesis of novel barium precursors and their use to deposit thin films by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Studebaker, Daniel Bliss

    A new class of volatile compounds of barium were synthesized. These 'capsule' compounds were prepared to saturate the coordination sphere of barium with one ligand. The covalent bonding of the polyglyme ligand to the 2,2,6,6-tetramethyl-3,5-heptanedione or similar ligand also increased the chelate effect, making loss of the glyme ligand on sublimation less likely. Single crystal X-ray crystal diffraction studies were done on these complexes. One of the complexes was used to grow BaTiO3 thin films to display the ability for these complexes to be used as metal organic chemical vapor deposition (MOCVD) precursors. Thin films of the superconducting material YBa2Cu3O 7-x were deposited on silver substrates by MOCVD. These films were analyzed by microscopy, and the electrical properties are discussed. The first reported growth of beta-BaBLO4 thin films by MOCVD is given. These films were grown on platinum, fused silica, sapphire, and silicon. Second harmonic generation of light from a Nd:YAG laser is observed in optical measurements.

  5. Flexible Electronics: High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells (Adv. Mater. 28/2016).

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    On page 5939, J. V. Badding and co-workers describe the unrolling of a flexible hydrogenated amorphous silicon solar cell, deposited by high-pressure chemical vapor deposition. The high-pressure deposition process is represented by the molecules of silane infiltrating the small voids between the rolled up substrate, facilitating plasma-free deposition over a very large area. The high-pressure approach is expected to also find application for 3D nanoarchitectures.

  6. Flexible Electronics: High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells (Adv. Mater. 28/2016).

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    On page 5939, J. V. Badding and co-workers describe the unrolling of a flexible hydrogenated amorphous silicon solar cell, deposited by high-pressure chemical vapor deposition. The high-pressure deposition process is represented by the molecules of silane infiltrating the small voids between the rolled up substrate, facilitating plasma-free deposition over a very large area. The high-pressure approach is expected to also find application for 3D nanoarchitectures. PMID:27442970

  7. Field emission properties of porous diamond-like films produced by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Mammana, V. P.; Santos, T. E. A.; Mammana, A. P.; Baranauskas, V.; Ceragioli, Helder J.; Peterlevitz, A. C.

    2002-10-01

    The field emission properties of "porous diamond-like" carbon structures have been characterized. A hot filament chemical vapor deposition system fed with ethyl alcohol vapor diluted in helium was used to deposit the samples. Morphological analysis by field emission scanning electron microscopy revealed that they had a highly porous structure, which was attributed to the modification of the kinetics of the carbon deposition process due to the presence of helium as a buffer gas. Micro-Raman spectroscopy showed two peaks in the graphene and microcrystalline graphite frequencies and a new peak at 1620 cm-1. Low threshold fields (Et) and hysteresis in the current versus voltage characteristic have been observed, and a model to explain the hysteresis is proposed.

  8. Hot-wire chemical vapour deposition at low substrate temperatures for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Bakker, R.

    2010-09-01

    The need for large quantities of rapidly and cheaply produced electronic devices has increased rapidly over the past decades. The transistors and diodes that are used to build these devices are predominantly made of crystalline silicon. Since crystalline silicon is very expensive to produce on a large scale and cannot be directly deposited on plastic substrates, much research is being done on thin film amorphous or nanocrystalline semiconductors and insulators. Hot-wire chemical vapour deposition (HWCVD) is a novel, low cost, and convenient way to deposit these materials. The process can be controlled in such a way that specific chemical reactions take place and unwanted side reactions are minimized. It can easily be scaled up to produce large-area thin film electronics. Conventionally, plasma enhanced chemical vapour deposition (PECVD) is used to deposit semiconductors and inorganic dielectrics. Recently, HWCVD has been explored for fast deposition of such materials. An adaptation of HWCVD, initiated chemical vapour deposition (iCVD), offers the unique possibility of producing organic materials and polymers in a vacuum reactor, without the use of solvents. This technique was originally proposed at the Massachusetts institute of technology (MIT) by Prof. Karen Gleason. The iCVD process involves the creation of radicals by dissociation of a peroxide (a molecule with a ~O-O~ bond) by a heated wire in a vacuum reactor. This radical initiates a polymerization reaction of a vinyl (a molecule with a double carbon-carbon bond, ~C=C~) monomer at a substrate held at room temperature. This thesis describes a dedicated iCVD reactor for polymer deposition, installed at Utrecht University, along with a reactor with a cooled substrate holder in an existing HWCVD multi-chamber setup for low-temperature silicon nitride (SiNx) depositions. The most important features of these reactors are described and the characterization techniques are explained. This thesis contains four new

  9. Determination of chemical elements in deposition on the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Hayashi, Kazuhiko; Dokiya, Yukiko; Ohyama, Jun-Ichi; Sagi, Takeshi; Maruta, Emiko; Fushimi, Katsuhiko; Kodama, Yukio; Tanaka, Shigeru

    Shipboard sampling was performed for the evaluation of the deposition amount of chemical species on the southwestern section of the North Pacific, utilizing simple plastic samplers fixed on the upper decks of research vessels of the Japan Meteorological Agency on their routine meteorological and oceanographical cruises from 1988 to 1990. The deposition of nss-sulfate (non-seasalt sulfate, calculated from the concentration of sodium) was found to be high in the western Japan Sea, East China Sea and southern sea adjacent to the Japanese Islands. In the Mariana Sea and the equatorial area, the lowest values were constantly observed in the summer of those 3 years. Values a little higher, but much lower than in the Japan Sea or East China Sea, were measured off the Philippine Islands. The deposition amounts of crustal elements such as silicon, aluminum and iron showed similar tendencies but with some difference in detail.

  10. Development of a polysilicon process based on chemical vapor deposition, phase 1

    NASA Technical Reports Server (NTRS)

    Mccormick, J.; Sharp, K.; Arvidson, A.; Sawyer, D.

    1981-01-01

    The development of a dichlorosilane-based reductive chemical vapor deposition process for the production of polycrystalline silicon is discussed. Experimental data indicate that the ease of ignition and explosion severity of dichlorosilane (DCS)/air mixtures is substantially attenuated if the DCS is diluted with hydrogen. Redesign of the process development unit to accommodate safety related information is described. Several different sources of trichlorosilane were used to generate a mixture of redistributed chlorosilanes via Dowex ion exchange resin. The unseparated mixtures were then fed to an experimental reactor in which silicon was deposited and the deposited silicon analyzed for electrically active impurities. At least one trichlorosilane source provided material of requisite purity. Silicon grown in the experimental reactor was converted to single crystal material and solar cells fabricated and tested.

  11. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J.

    2015-11-01

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH4/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H2 into the deposition gas chemistry. Electronically excited species of CN, C2, Ar, N2, CH, Hβ, and Hα were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T2g phonon at 1333 cm-1 peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit "coral" and "cauliflower-like" morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  12. QUALITY ASSURANCE PROGRAM FOR WET DEPOSITION SAMPLING AND CHEMICAL ANALYSES FOR THE NATIONAL TRENDS NETWORK.

    USGS Publications Warehouse

    Schroder, LeRoy J.; Malo, Bernard A.; ,

    1985-01-01

    The purpose of the National Trends Network is to delineate the major inorganic constituents in the wet deposition in the United States. The approach chosen to monitor the Nation's wet deposition is to install approximately 150 automatic sampling devices with at least one collector in each state. Samples are collected at one week intervals, removed from collectors, and transported to an analytical laboratory for chemical analysis. The quality assurance program has divided wet deposition monitoring into 5 parts: (1) Sampling site selection, (2) sampling device, (3) sample container, (4) sample handling, and (5) laboratory analysis. Each of these five components is being examined using existing designs or new designs. Each existing or proposed sampling site is visited and a criteria audit is performed.

  13. Nanosoldering carbon nanotube junctions by local chemical vapor deposition for improved device performance.

    PubMed

    Do, Jae-Won; Estrada, David; Xie, Xu; Chang, Noel N; Mallek, Justin; Girolami, Gregory S; Rogers, John A; Pop, Eric; Lyding, Joseph W

    2013-01-01

    The performance of carbon nanotube network (CNN) devices is usually limited by the high resistance of individual nanotube junctions (NJs). We present a novel method to reduce this resistance through a nanoscale chemical vapor deposition (CVD) process. By passing current through the devices in the presence of a gaseous CVD precursor, localized nanoscale Joule heating induced at the NJs stimulates the selective and self-limiting deposition of metallic nanosolder. The effectiveness of this nanosoldering process depends on the work function of the deposited metal (here Pd or HfB2), and it can improve the on/off current ratio of a CNN device by nearly an order of magnitude. This nanosoldering technique could also be applied to other device types where nanoscale resistance components limit overall device performance. PMID:24215439

  14. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    SciTech Connect

    Rainer Wallny

    2012-10-15

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2010, and the LHC upgrades expected in 2015, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed and operational in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  15. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    SciTech Connect

    Harris Kagan; K.K. Gan; Richard Kass

    2009-03-31

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2009, and the LHC upgrades expected in 2013, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  16. Chemical patterns of octadecyltrimethoxysilane monolayers for the selective deposition of nanoparticles on silicon substrate.

    PubMed

    Ressier, L; Viallet, B; Grisolia, J; Peyrade, J P

    2007-10-01

    The use of nano-objects to make the active part of reproducible nanodevices requires their controlled assembling on specific areas of substrates. In this work, we propose to use van der Waals interactions to assemble selectively gold particles covered by alkyl-thiol ligands on hydrophobic OctadecylTriMethoxySilane (OTMS) patterns defined on SiO(2)/Si substrates by a process combining nano-imprint lithography (NIL) or high resolution electron beam lithography (HREBL) and atmospheric chemical vapor deposition (CVD) of silane. A study by atomic force microscopy (AFM) reveals that homogeneous patterns of OTMS self-assembled monolayers, extending on several square millimeters, have been made. These OTMS patterns, with a lateral dimension ranging from 2mum down to 50nm, can be located at a precise place of a nanodevice, for example, between nanoelectrodes. Preliminary results of selective nanoparticle deposition on these chemical patterns are presented.

  17. Characterization of chemical-vapor-deposited low-k thin films using x-ray porosimetry

    NASA Astrophysics Data System (ADS)

    Lee, Hae-Jeong; Lin, Eric K.; Bauer, Barry J.; Wu, Wen-li; Hwang, Byung Keun; Gray, William D.

    2003-02-01

    Trimethylsilane-based carbon-doped silica films prepared with varying chemical-vapor-deposition process conditions were characterized using x-ray reflectivity and porosimetry to measure the film thickness, average film density, density depth profile, wall density, and porosity. Samples deposited under single or dual frequency conditions with either N2O or O2 as an oxidant were compared. The structural parameters were correlated with the chemical bond structure measured by Fourier transform infrared spectroscopy. The density profiles of the porous films were uniform with a slight densification at the film surface. The distribution of pores was also uniform through the film. Films prepared under a single frequency and/or N2O atmosphere had the lowest film density, wall density, and dielectric constant. The porosities of the films were similar and the pore sizes were less than 10 Å.

  18. Synthesis of single-crystalline anisotropic gold nano-crystals via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Manna, Sohini; Kim, Jong Woo; Takahashi, Yukiko; Shpyrko, Oleg G.; Fullerton, Eric E.

    2016-05-01

    We report on a novel one-step catalyst-free, thermal chemical vapor deposition procedure to synthesize gold nanocrystals on silicon substrates. This approach yields single-crystal nanocrystals with various morphologies, such as prisms, icosahedrons, and five-fold twinned decahedrons. Our approach demonstrates that high-quality anisotropic crystals composed of fcc metals can be produced without the need for surfactants or templates. Compared with the traditional wet chemical synthesis processes, our method enables direct formation of highly pure and single crystalline nanocrystals on solid substrates which have applications in catalysis. We investigated the evolution of gold nanocrystals and established their formation mechanism.

  19. Monocrystalline molybdenum silicide based quantum dot superlattices grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Savelli, Guillaume; Silveira Stein, Sergio; Bernard-Granger, Guillaume; Faucherand, Pascal; Montès, Laurent

    2016-09-01

    This paper presents the growth of doped monocrystalline molybdenum-silicide-based quantum dot superlattices (QDSL). This is the first time that such nanostructured materials integrating molybdenum silicide nanodots have been grown. QDSL are grown by reduced pressure chemical vapor deposition (RPCVD). We present here their crystallographic structures and chemical properties, as well as the influence of the nanostructuration on their thermal and electrical properties. Particularly, it will be shown some specific characteristics for these QDSL, such as a localization of nanodots between the layers, unlike other silicide based QDSL, an accumulation of doping atoms near the nanodots, and a strong decrease of the thermal conductivity obtained thanks to the nanostructuration.

  20. Deposition of silver nanoparticles on multiwalled carbon nanotubes by chemical reduction process and their antimicrobial effects

    NASA Astrophysics Data System (ADS)

    Haider, Adawiya J.; Thamir, Amin D.; Ahmed, Duha S.; Mohammad, M. R.

    2016-07-01

    In this paper, the functionalization of raw-MWCNTs involves oxidation reaction using concentrated acid mixture of HNO3:H2SO4 (1:3), via ultrasonic bath (170 W, 50 kHz) to obtain functional groups. Then Ag nanoparticles are decorated the outside over the surface of functionalized MWCNTs using a chemical reduction process resulting in the formation of(Ag/ MWCNTs) hybrid material. The results showed that outer diameter functionalized F-MWCNTs andAg nanoparticles size was about (11-80) nm and (10 to 25) nm, respectively using TEM and HRTEM. The crystallographic structure of MWCNTs using X-ray diffraction (XRD) analysis proved diffraction peaks at 38.1°, 44.3°, 64.7° and 77.4° degrees namely, Ag (111), Ag (200), Ag (220), and Ag (311) of the face-centered cubic lattice of Ag, respectively, excepting the peak at 2θ =25.6°, which correspond to the (0 0 2) reflection of the MWNTs are corresponding to Ag/MWNTs. The antimicrobial activities of Ag/MWCNTs hybrid using plate count method showed that decreasing a large number of bacteria colonies of E. coli and S. aureu with increasing the hybrid concentrations after incubation for 24h in shaker incubator with percentage of inhibition approaching 100%.

  1. A kinetic model for the metallorganic chemical vapor deposition of CdTe

    SciTech Connect

    Cavallotti, C.; Bertani, V.; Masi, M.; Carra, S.

    1999-09-01

    The industrial application of cadmium telluride (CdTe) semiconducting layers is still limited by the large amount of defects contained in the films and by the problem of the reproducible control of the level and type of conductivity. Overcoming these difficulties requires a better understanding of the physical and chemical phenomena underlying the deposition process. In particular, in order to improve the quality of the films and to optimize the deposition processes, it is of great importance to understand the elementary kinetic mechanism governing the growth of CdTe. Epitaxial deposition of cadmium telluride through metallorganic chemical vapor deposition was investigated. A detailed elementary kinetic scheme of surface and gas-phase reactions occurring during the deposition process was developed and embedded in a one-dimensional fluid-dynamic model based on the boundary-layer theory. Kinetic constants of gas-phase reactions were either found in the literature or determined through quantum chemistry methods. The most important surface processes were identified and studied through quantum chemistry. Quantum chemistry calculations were performed through the three-parameter Becke-Lee-Yang-Parr hybrid (B3LYP) density functional theory using the 3-21G** basis set. Bond dissociation energies of adsorbed methyl groups were calculated, and according to these data, it was proposed that the growth process proceeds through the adsorption of dimethylcadmium, which successively loses a methyl group to give the adsorbed methylcadmium species. Adsorbed methylcadmium successively reacts with a dimethyltellurium gas-phase molecule to give ethane and methylcadmium telluride, which after the loss of the methyl group becomes part of the film. The effect of the carrier gas on the deposition chemistry was also investigated and a possible reason for the decrease in growth rate observed when the carrier gas is changed from hydrogen to helium was proposed. The productivity of the model

  2. SYNTHESIS AND CHARACTERIZATION OF SMART FUNCTIONAL COATINGS BY CHEMICAL SOLUTION DEPOSITION METHODS

    SciTech Connect

    Mendez-Torres, A.

    2011-07-19

    New coating technology enables the fabrication of low cost structural health monitoring (SHM) and tamper indication devices that can be employed to strengthen national and international safeguards objectives. In particular, such innovations could serve the safeguards community by improving both the timeliness of detection and confidence in verification and monitoring. This work investigates the synthesis of functional surface coatings using chemical solutions deposition methods. Chemical solution deposition has recently received attention in the materials research community due to its unique advantages such as low temperature processing, high homogeneity of final products and the ability to fabricate materials with controlled surface properties and pore structures. The synthesis of functional coatings aimed at modifying the materials conductivity and optical properties was investigated by the incorporation of transition element (e.g. Cr{sup +3}) and rare earth (e.g. Er{sup +3}) serving as dopants in a polymer or gel matrix. The structural and morphological investigation of the as-deposited films was carried out using UV/Vis and photoluminescence (PL) spectroscopy. The as deposited coating was further investigated by scanning electron microscopy and energy dispersive x-ray microscopy.

  3. Large improvement of phosphorus incorporation efficiency in n-type chemical vapor deposition of diamond

    SciTech Connect

    Ohtani, Ryota; Yamamoto, Takashi; Janssens, Stoffel D.; Yamasaki, Satoshi

    2014-12-08

    Microwave plasma enhanced chemical vapor deposition is a promising way to generate n-type, e.g., phosphorus-doped, diamond layers for the fabrication of electronic components, which can operate at extreme conditions. However, a deeper understanding of the doping process is lacking and low phosphorus incorporation efficiencies are generally observed. In this work, it is shown that systematically changing the internal design of a non-commercial chemical vapor deposition chamber, used to grow diamond layers, leads to a large increase of the phosphorus doping efficiency in diamond, produced in this device, without compromising its electronic properties. Compared to the initial reactor design, the doping efficiency is about 100 times higher, reaching 10%, and for a very broad doping range, the doping efficiency remains highly constant. It is hypothesized that redesigning the deposition chamber generates a higher flow of active phosphorus species towards the substrate, thereby increasing phosphorus incorporation in diamond and reducing deposition of phosphorus species at reactor walls, which additionally reduces undesirable memory effects.

  4. Aerosol-Assisted Chemical Vapor Deposited Thin Films for Space Photovoltaics

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; McNatt, Jeremiah; Dickman, John E.; Jin, Michael H.-C.; Banger, Kulbinder K.; Kelly, Christopher V.; AquinoGonzalez, Angel R.; Rockett, Angus A.

    2006-01-01

    Copper indium disulfide thin films were deposited via aerosol-assisted chemical vapor deposition using single source precursors. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties in order to optimize device-quality material. Growth at atmospheric pressure in a horizontal hot-wall reactor at 395 C yielded best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier, smoother, denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands (1.45, 1.43, 1.37, and 1.32 eV) and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was 1.03 percent.

  5. Antimony sulphide thin film as an absorber in chemically deposited solar cells

    NASA Astrophysics Data System (ADS)

    Messina, Sarah; Nair, M. T. S.; Nair, P. K.

    2008-05-01

    Antimony sulfide thin films (thickness, 500 nm) were deposited on chemically deposited CdS thin films (100 nm) obtained on 3 mm glass substrates coated with a transparent conductive coating of SnO2:F (TEC-15 with 15 Ω sheet resistance). Two different chemical formulations were used for depositing antimony sulfide films. These contained (i) antimony trichloride dissolved in acetone and sodium thiosulfate, and (ii) potassium antimony tartrate, triethanolamine, ammonia, thioacetamide and small concentrations of silicotungstic acid. The films were heated at 250 °C in nitrogen. The cell structure was completed by depositing a 200 nm p-type PbS thin film. Graphite paint applied on the PbS thin film and a subsequent layer of silver paint served as the p-side contact. The cell structure: SnO2:F/CdS/Sb2S3 (i or ii)/PbS showed open circuit voltage (Voc) of 640 mV and short circuit current density (Jsc) above 1 mA cm-2 under 1 kW m-2 tungsten-halogen radiation. Four cells, each of 1.7 cm2 area, were series-connected to give Voc of 1.6 V and a short circuit current of 4.1 mA under sunlight (1060 W m-2).

  6. Conductivity of Thin Films Based on Single-Walled Carbon Nanotubes Grown by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Rybakov, M. S.; Kosobutsky, A. V.; Sevostyanov, O. G.; Russakov, D. M.; Lomakin, M. V.; Chirkova, I. M.; Shandakov, S. D.

    2015-03-01

    Electrical and optical properties of thin films of single-walled carbon nanotubes (SWCNT) obtained by aerosol chemical vapor deposition using ethanol, ferrocene, and sulfur are studied. Structural and geometrical characteristics of the synthesis products are determined by the methods of Raman spectroscopy and transmission electron microscopy. The effect of sulfur on the properties of the SWCNTs and thin films based on them is found.

  7. Magnetic nanostructures fabricated by scanning tunneling microscope-assisted chemical vapor deposition

    SciTech Connect

    Pai, W.W.; Zhang, J.; Wendelken, J.F.; Warmack, R.J.

    1997-07-01

    We have successfully used scanning tunneling microscope-assisted chemical vapor deposition to fabricate magnetic nanostructures as fine as 5 nm wide and {lt}2 nm high using ferrocene [Fe(C{sub 5}H{sub 5}){sub 2}] as the metal-organic source gas. The physical properties of these nanostructures were qualitatively characterized and {ital ex situ} magnetic force microscopy measurements indicate these features are strongly magnetic.

  8. Synthesis of Cobalt Oxides Thin Films Fractal Structures by Laser Chemical Vapor Deposition

    PubMed Central

    Haniam, P.; Kunsombat, C.; Chiangga, S.; Songsasen, A.

    2014-01-01

    Thin films of cobalt oxides (CoO and Co3O4) fractal structures have been synthesized by using laser chemical vapor deposition at room temperature and atmospheric pressure. Various factors which affect the density and crystallization of cobalt oxides fractal shapes have been examined. We show that the fractal structures can be described by diffusion-limited aggregation model and discuss a new possibility to control the fractal structures. PMID:24672354

  9. Synthesis of cobalt oxides thin films fractal structures by laser chemical vapor deposition.

    PubMed

    Haniam, P; Kunsombat, C; Chiangga, S; Songsasen, A

    2014-01-01

    Thin films of cobalt oxides (CoO and Co3O4) fractal structures have been synthesized by using laser chemical vapor deposition at room temperature and atmospheric pressure. Various factors which affect the density and crystallization of cobalt oxides fractal shapes have been examined. We show that the fractal structures can be described by diffusion-limited aggregation model and discuss a new possibility to control the fractal structures. PMID:24672354

  10. Gravity Effects in Carbon Nanotube Growth by Thermal Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Zhu, S.; Su, C. H.; Cochrane, J. C.; Lehoczky, S. L.; Cui, Y.; Burger, A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Carbon nanotubes are synthesized using thermal chemical vapor deposition. The sizes of these carbon nanotubes (CNT) are quite uniform and the length of the tube is up to several tens of micrometers. With the substrate surface normal either along or against the gravity vector, different growth orientations of CNT are observed by scanning electron microscopy although the Raman spectra are similar for samples synthesized at different locations. These results suggest the gravitation effects in the growth of long and small diameter CNT.

  11. Electrochromic properties of molybdenum trioxide thin films prepared by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Maruyama, Toshiro; Kanagawa, Tetsuya

    1995-05-01

    Electrochromic molybdenum trioxide thin films were prepared by chemical vapor deposition. The source material was molybdenum carbonyl. Amorphous molybdenum trioxide thin films were produced at a substrate temperature 300 C. Reduction and oxidation of the films in a 0.3M LiClO4 propylene carbon ate solution caused desirable changes in optical absorption. Coulometry indicated that the coloration efficiency was 25.8 sq cm center-dot C(exp -1).

  12. Metal organic chemical vapor deposition of 111-v compounds on silicon

    DOEpatents

    Vernon, Stanley M.

    1986-01-01

    Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.

  13. GaN Stress Evolution During Metal-Organic Chemical Vapor Deposition

    SciTech Connect

    Amano, H.; Chason, E.; Figiel, J.; Floro, J.A.; Han, J.; Hearne, S.; Hunter, J.; Tsong, I.

    1998-10-14

    The evolution of stress in gallium nitride films on sapphire has been measured in real- time during metal organic chemical vapor deposition. In spite of the 161%0 compressive lattice mismatch of GaN to sapphire, we find that GaN consistently grows in tension at 1050"C. Furthermore, in-situ stress monitoring indicates that there is no measurable relaxation of the tensile growth stress during annealing or thermal cycling.

  14. Chemical vapour deposition growth and Raman characterization of graphene layers and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lai, Y.-C.; Rafailov, P. M.; Vlaikova, E.; Marinova, V.; Lin, S. H.; Yu, P.; Yu, S.-C.; Chi, G. C.; Dimitrov, D.; Sveshtarov, P.; Mehandjiev, V.; Gospodinov, M. M.

    2016-02-01

    Single-layer graphene films were grown by chemical vapour deposition (CVD) on Cu foil. The CVD process was complemented by plasma enhancement to grow also vertically aligned multiwalled carbon nanotubes using Ni nanoparticles as catalyst. The obtained samples were characterized by Raman spectroscopy analysis. Nature of defects in the samples and optimal growth conditions leading to achieve high quality of graphene and carbon nanotubes are discussed.

  15. Negative Electron Affinity Effect on the Surface of Chemical Vapor Deposited Diamond Polycrystalline Films

    NASA Technical Reports Server (NTRS)

    Krainsky, I. L.; Asnin, V. M.; Mearini, G. T.; Dayton, J. A., Jr.

    1996-01-01

    Strong negative electron affinity effects have been observed on the surface of as-grown chemical vapor deposited diamond using Secondary Electron Emission. The test samples were randomly oriented and the surface was terminated with hydrogen. The effect appears as an intensive peak in the low energy part of the spectrum of the electron energy distribution and may be described in the model of effective negative electron affinity.

  16. Growth mechanism of Co:TiO2 thin film deposited by metal organic chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    Saripudin, A.; Arifin, P.

    2016-04-01

    In this research, we investigated the growth mechanism of cobalt-doped titanium dioxide (Co:TiO2) films. Thi Co:TiO2 thin films were grown on the n-type silicon substrate. The films were grown by metal organic chemical vapor deposition method. The growth temperature was varied of 325°C - 450°C. The films were characterized by SEM. Using Arheniu’s equation, it is known that the activation energy value of film growth is positive in the range of temperature of 325°C - 400°C and negative in the range of temperature of 400°C - 450°C. These results show that the decomposition rate in the range of temperature of 325°C - 400°C is due to diffusion phase of precursor gas. On the other hand, the decomposition rate decreased in the range of temperature of 400°C - 450°C because the precursor gas decreased, and the surface chemical reaction was high.

  17. Grooming, Bathing and Safety Tips

    MedlinePlus

    ... Wet One of the most common problems that amputees encounter is maintaining balance while bathing and climbing ... 18/2014 Back to Top © Copyrighted by the Amputee Coalition . Local reproduction for use by Amputee Coalition ...

  18. Bath for electrolytic reduction of alumina and method therefor

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2001-07-10

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  19. Preparation and structure of porous dielectrics by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gates, S. M.; Neumayer, D. A.; Sherwood, M. H.; Grill, A.; Wang, X.; Sankarapandian, M.

    2007-05-01

    The preparation of ultralow dielectric constant porous silicon, carbon, oxygen, hydrogen alloy dielectrics, called "pSiCOH," using a production 200mm plasma enhanced chemical vapor deposition tool and a thermal treatment is reported here. The effect of deposition temperature on the pSiCOH film is examined using Fourier transform infrared (FTIR) spectroscopy, dielectric constant (k), and film shrinkage measurements. For all deposition temperatures, carbon in the final porous film is shown to be predominantly Si -CH3 species, and lower k is shown to correlate with increased concentration of Si -CH3. NMR and FTIR spectroscopies clearly detect the loss of a removable, unstable, hydrocarbon (CHx) phase during the thermal treatment. Also detected are increased cross-linking of the Si-O skeleton, and concentration changes for three distinct structures of carbon. In the as deposited films, deposition temperature also affects the hydrocarbon (CHx) content and the presence of C O and C C functional groups.

  20. Differing morphologies of textured diamond films with electrical properties made with microwave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lai, Wen Chi; Wu, Yu-Shiang; Chang, Hou-Cheng; Lee, Yuan-Haun

    2010-12-01

    This study investigates the orientation of textured diamond films produced through microwave plasma chemical vapor deposition (MPCVD) at 1200 W, 110 Torr, CH 4/H 2 = 1/20, with depositions times of 0.5-4.0 h. After a growth period of 2.0-4.0 h, this particular morphology revealed a rectangular structure stacked regularly on the diamond film. The orientation on {1 1 1}-textured diamond films grew a preferred orientation of {1 1 0} on the surface, as measured by XRD. The formation of the diamond epitaxial film formed textured octahedrons in ball shaped (or cauliflower-like) diamonds in the early stages (0.5 h), and the surface of the diamond film extended to pile the rectangular structure at 4.0 h. The width of the tier was approximately 200 nm at the 3.0 h point of deposition, according to TEM images. The results revealed that the textured diamond films showed two different morphological structures (typical ball shaped and rectangular diamonds), at different stages of the deposition period. The I- V characteristics of the oriented diamond films after 4.0 h of deposition time showed good conformity with the ohmic contact.

  1. Application of Chlorine-Assisted Chemical Vapor Deposition of Diamond at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Pan, Chenyu; Altemir, David A.; Margrave, John L.; Hauge, Robert H.

    1994-01-01

    Low temperature deposition of diamond has been achieved by a chlorine-assisted diamond chemical vapor deposition (CA-CVD) process. This method begins with the thermal dissociation of molecular chlorine into atomic chlorine in a resistively heated graphite furnace at temperatures between 1300 and 1500 deg. C. The atomic chlorine, upon mixing, subsequently reacts with molecular hydrogen and hydrocarbons. The rapid exchange reactions between the atomic chlorine, molecular hydrogen, and hydrocarbons give rise to the atomic hydrogen and carbon precursors required for diamond deposition. Homoepitaxial diamond growth on diamond substrates has been studied over the substrate temperature range of 100-950 C. It was found that the diamond growth rates are approximately 0.2 microns/hr in the temperature range between 102 and 300 C and that the growth rates do not decrease significantly with a decrease in substrate temperature. This is unique because the traditional diamond deposition using H2/CH4 systems usually disappears at substrate temperatures below approx. 500 deg. C. This opens up a possible route to the deposition of diamond on low-melting point materials such as aluminum and its alloys.

  2. Chain Assemblies from Nanoparticles Synthesized by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition: The Computational View.

    PubMed

    Mishin, Maxim V; Zamotin, Kirill Y; Protopopova, Vera S; Alexandrov, Sergey E

    2015-12-01

    This article refers to the computational study of nanoparticle self-organization on the solid-state substrate surface with consideration of the experimental results, when nanoparticles were synthesised during atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD). The experimental study of silicon dioxide nanoparticle synthesis by AP-PECVD demonstrated that all deposit volume consists of tangled chains of nanoparticles. In certain cases, micron-sized fractals are formed from tangled chains due to deposit rearrangement. This work is focused on the study of tangled chain formation only. In order to reveal their formation mechanism, a physico-mathematical model was developed. The suggested model was based on the motion equation solution for charged and neutral nanoparticles in the potential fields with the use of the empirical interaction potentials. In addition, the computational simulation was carried out based on the suggested model. As a result, the influence of such experimental parameters as deposition duration, particle charge, gas flow velocity, and angle of gas flow was found. It was demonstrated that electrical charges carried by nanoparticles from the discharge area are not responsible for the formation of tangled chains from nanoparticles, whereas nanoparticle kinetic energy plays a crucial role in deposit morphology and density. The computational results were consistent with experimental results. PMID:26682441

  3. Silica-titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds.

    PubMed

    Zu, Guoqing; Shen, Jun; Wang, Wenqin; Zou, Liping; Lian, Ya; Zhang, Zhihua

    2015-03-11

    Silica-titania composite aerogels were synthesized by chemical liquid deposition of titania onto nanoporous silica scaffolds. This novel deposition process was based on chemisorption of partially hydrolyzed titanium alkoxides from solution onto silica nanoparticle surfaces and subsequent hydrolysis and condensation to afford titania nanoparticles on the silica surface. The titania is homogeneously distributed in the silica-titania composite aerogels, and the titania content can be effectively controlled by regulating the deposition cycles. The resultant composite aerogel with 15 deposition cycles possessed a high specific surface area (SSA) of 425 m(2)/g, a small particle size of 5-14 nm, and a large pore volume and pore size of 2.41 cm(3)/g and 18.1 nm, respectively, after heat treatment at 600 °C and showed high photocatalytic activity in the photodegradation of methylene blue under UV-light irradiation. Its photocatalytic activity highly depends on the deposition cycles and heat treatment. The combination of small particle size, high SSA, and enhanced crystallinity after heat treatment at 600 °C contributes to the excellent photocatalytic property of the silica-titania composite aerogel. The higher SSAs compared to those of the reported titania aerogels (<200 m(2)/g at 600 °C) at high temperatures combined with the simple method makes the silica-titania aerogels promising candidates as photocatalysts.

  4. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors.

    PubMed

    Liu, Bilu; Chen, Liang; Liu, Gang; Abbas, Ahmad N; Fathi, Mohammad; Zhou, Chongwu

    2014-05-27

    Trace chemical detection is important for a wide range of practical applications. Recently emerged two-dimensional (2D) crystals offer unique advantages as potential sensing materials with high sensitivity, owing to their very high surface-to-bulk atom ratios and semiconducting properties. Here, we report the first use of Schottky-contacted chemical vapor deposition grown monolayer MoS2 as high-performance room temperature chemical sensors. The Schottky-contacted MoS2 transistors show current changes by 2-3 orders of magnitude upon exposure to very low concentrations of NO2 and NH3. Specifically, the MoS2 sensors show clear detection of NO2 and NH3 down to 20 ppb and 1 ppm, respectively. We attribute the observed high sensitivity to both well-known charger transfer mechanism and, more importantly, the Schottky barrier modulation upon analyte molecule adsorption, the latter of which is made possible by the Schottky contacts in the transistors and is not reported previously for MoS2 sensors. This study shows the potential of 2D semiconductors as high-performance sensors and also benefits the fundamental studies of interfacial phenomena and interactions between chemical species and monolayer 2D semiconductors.

  5. Annealing effects on the chemical deposited CdS films and the electrical properties of CdS/CdTe solar cells

    SciTech Connect

    Han, Junfeng; Liao, Cheng; Jiang, Tao; Fu, Ganhua; Krishnakumar, V.; Spanheimer, C.; Haindl, G.; Zhao, Kui; Klein, A.; Jaegermann, W.

    2011-02-15

    Graphical abstract: From XPS core level spectras, compared with as-depositing CdS (sample A), the Fermi level is shifting closer to the conduction band after annealing treatment in the oxygen (sample B) while it is shifting closer to the valence band after annealing treatment in the argon-hydrogen (sample C). That might be the main reason of the different performance of the final devices. The open circuit voltage of the CdS/CdTe solar cell increases when the CBD CdS is annealed with oxygen, while the performance of the solar cell decreases when the CBD CdS is annealed with argon-hydrogen. Research highlights: {yields} Two different methods (oxidation and reduction) were used to anneal CdS films for CdTe solar cells. {yields} Electrical properties were analyzed by XPS (Fermi levels of CdS films). {yields} Annealing treatment in oxidation atmosphere could shift Fermi level of CdS film to higher position and consequently improve the CdS/CdTe junction and performance of solar cells. -- Abstract: CdS layers grown by chemical bath deposition (CBD) are annealed in the oxygen and argon-hydrogen atmosphere respectively. It has been found that the open circuit voltage of the CdS/CdTe solar cell increases when the CBD CdS is annealed with oxygen before the deposition of CdTe by close spaced sublimation (CSS), while the performance of the solar cell decreases when the CBD CdS is annealed with argon-hydrogen. Electronic properties of the CdS films are investigated using X-ray photo-electron spectroscopy (XPS), which indicates that the Fermi level is shifting closer to the conduction band after annealing in the oxygen and consequently a higher open circuit voltage of the solar cell can be obtained.

  6. Low temperature atmospheric pressure chemical vapor deposition of group 14 oxide films

    SciTech Connect

    Hoffman, D.M.; Atagi, L.M. |; Chu, Wei-Kan; Liu, Jia-Rui; Zheng, Zongshuang; Rubiano, R.R.; Springer, R.W.; Smith, D.C.

    1994-06-01

    Depositions of high quality SiO{sub 2} and SnO{sub 2} films from the reaction of homoleptic amido precursors M(NMe{sub 2})4 (M = Si,Sn) and oxygen were carried out in an atmospheric pressure chemical vapor deposition r. The films were deposited on silicon, glass and quartz substrates at temperatures of 250 to 450C. The silicon dioxide films are stoichiometric (O/Si = 2.0) with less than 0.2 atom % C and 0.3 atom % N and have hydrogen contents of 9 {plus_minus} 5 atom %. They are deposited with growth rates from 380 to 900 {angstrom}/min. The refractive indexes of the SiO{sub 2} films are 1.46, and infrared spectra show a possible Si-OH peak at 950 cm{sup {minus}1}. X-Ray diffraction studies reveal that the SiO{sub 2} film deposited at 350C is amorphous. The tin oxide films are stoichiometric (O/Sn = 2.0) and contain less than 0.8 atom % carbon, and 0.3 atom % N. No hydrogen was detected by elastic recoil spectroscopy. The band gap for the SnO{sub 2} films, as estimated from transmission spectra, is 3.9 eV. The resistivities of the tin oxide films are in the range 10{sup {minus}2} to 10{sup {minus}3} {Omega}cm and do not vary significantly with deposition temperature. The tin oxide film deposited at 350C is cassitterite with some (101) orientation.

  7. Microstructural, chemical and textural characterization of ZnO nanorods synthesized by aerosol assisted chemical vapor deposition

    SciTech Connect

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Fuentes-Cobas, L.; Pizá-Ruiz, P.; Antúnez-Flores, W.; Ornelas-Gutiérrez, C.; Pérez-García, S.A.; Miki-Yoshida, M.

    2014-12-15

    ZnO nanorods were synthesized by aerosol assisted chemical vapor deposition onto TiO{sub 2} covered borosilicate glass substrates. Deposition parameters were optimized and kept constant. Solely the effect of different nozzle velocities on the growth of ZnO nanorods was evaluated in order to develop a dense and uniform structure. The crystalline structure was characterized by conventional X-ray diffraction in grazing incidence and Bragg–Brentano configurations. In addition, two-dimensional grazing incidence synchrotron radiation diffraction was employed to determine the preferred growth direction of the nanorods. Morphology and growth characteristics analyzed by electron microscopy were correlated with diffraction outcomes. Chemical composition was established by X-ray photoelectron spectroscopy. X-ray diffraction results and X-ray photoelectron spectroscopy showed the presence of wurtzite ZnO and anatase TiO{sub 2} phases. Morphological changes noticed when the deposition velocity was lowered to the minimum, indicated the formation of relatively vertically oriented nanorods evenly distributed onto the TiO{sub 2} buffer film. By coupling two-dimensional X-ray diffraction and computational modeling with ANAELU it was proved that a successful texture determination was achieved and confirmed by scanning electron microscopy analysis. Texture analysis led to the conclusion of a preferred growth direction in [001] having a distribution width Ω = 20° ± 2°. - Highlights: • Uniform and pure single-crystal ZnO nanorods were obtained by AACVD technique. • Longitudinal and transversal axis parallel to the [001] and [110] directions, respectively. • Texture was determined by 2D synchrotron diffraction and electron microscopy analysis. • Nanorods have its [001] direction distributed close to the normal of the substrate. • Angular spread about the preferred orientation is 20° ± 2°.

  8. Temporal and spatial trends of chemical composition of wet deposition samples collected in Austria

    NASA Astrophysics Data System (ADS)

    Schreiner, Elisabeth; Kasper-Giebl, Anne; Lohninger, Hans

    2016-04-01

    Triggered by the occurrence of acid rain a sampling network for the collection of wet deposition samples was initiated in Austria in the early 1980s. Now the data set covers a time period of slightly more than 30 years for the stations being operable since the beginning. Sampling of rain water and snow was and is performed with Wet and Dry Only Samplers (WADOS) on a daily basis. Chemical analysis of rain water and snow samples comprised anions (chloride, nitrate, sulfate) and cations (sodium, ammonium, potassium, calcium and magnesium) as well as pH and electrical conductivity. Here we evaluate and discuss temporal trends of both, ion concentrations and wet deposition data for twelve sampling stations, which were operable for most of the observation period of 30 years. As expected concentrations and wet deposition loads of sulfate and acidity decreased significantly during the last three decades - which is also reflected by a strong decrease of sulfur emissions in Austria and neighboring countries. Regarding nitrate the decrease of concentrations and wet deposition loads is less pronounced. Again this is in accordance with changes in emission data. In case of ammonium even less stations showed a significant decrease of annual average concentrations and depositions. Reasons for that might be twofold. On one hand emissions of ammonia did not decrease as strongly as e.g. sulfur emissions. Furthermore local sources will be more dominant and can influence the year to year variability. Seasonality of ion concentrations and deposition loads were investigated using Fourier analysis. Sulfate, nitrate, ammonium, acidity and also precipitation amount showed characteristic seasonal patterns for most of the sites and for concentrations as well as deposition loads. However the maxima in ion concentrations and deposition loads were observed during different times of the year. Concentrations of basic cations and chloride, on the contrary, hardly showed any seasonality. However, as

  9. Chemical vapor deposition of silicon, silicon dioxide, titanium and ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Chen, Feng

    Various silicon-based thin films (such as epitaxial, polycrystalline and amorphous silicon thin films, silicon dioxide thin films and silicon nitride thin films), titanium thin film and various ferroelectric thin films (such as BaTiO3 and PbTiO3 thin films) play critical roles in the manufacture of microelectronics circuits. For the past few years, there have been tremendous interests to search for cheap, safe and easy-to-use methods to develop those thin films with high quality and good step coverage. Silane is a critical chemical reagent widely used to deposit silicon-based thin films. Despite its wide use, silane is a dangerous material. It is pyrophoric, extremely flammable and may explode from heat, shock and/or friction. Because of the nature of silane, serious safety issues have been raised concerning the use, transportation, and storage of compressed gas cylinders of silane. Therefore it is desired to develop safer ways to deposit silicon-based films. In chapter III, I present the results of our research in the following fields: (1) Silane generator, (2) Substitutes of silane for deposition of silicon and silicon dioxide thin films, (3) Substitutes of silane for silicon dioxide thin film deposition. In chapter IV, hydropyridine is introduced as a new ligand for use in constructing precursors for chemical vapor deposition. Detachement of hydropyridine occurs by a low-temperature reaction leaving hydrogen in place of the hydropyridine ligands. Hydropyridine ligands can be attached to a variety of elements, including main group metals, such as aluminum and antimony, transition metals, such as titanium and tantalum, semiconductors such as silicon, and non-metals such as phosphorus and arsenic. In this study, hydropyridine-containing titanium compounds were synthesized and used as chemical vapor deposition precursors for deposition of titanium containing thin films. Some other titanium compounds were also studied for comparison. In chapter V, Chemical Vapor

  10. Comprehensive investigation of HgCdTe metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Raupp, Gregory B.

    1993-01-01

    The principal objective of this experimental and theoretical research program was to explore the possibility of depositing high quality epitaxial CdTe and HgCdTe at very low pressures through metalorganic chemical vapor deposition (MOCVD). We explored two important aspects of this potential process: (1) the interaction of molecular flow transport and deposition in an MOCVD reactor with a commercial configuration, and (2) the kinetics of metal alkyl source gas adsorption, decomposition and desorption from the growing film surface using ultra high vacuum surface science reaction techniques. To explore the transport-reaction issue, we have developed a reaction engineering analysis of a multiple wafer-in-tube ultrahigh vacuum chemical vapor deposition (UHV/CVD) reactor which allows an estimate of wafer or substrate throughput for a reactor of fixed geometry and a given deposition chemistry with specified film thickness uniformity constraints. The model employs a description of ballistic transport and reaction based on the pseudo-steady approximation to the Boltzmann equation in the limit of pure molecular flow. The model representation takes the form of an integral equation for the flux of each reactant or intermediate species to the wafer surfaces. Expressions for the reactive sticking coefficients (RSC) for each species must be incorporated in the term which represents reemission from a wafer surface. The interactions of MOCVD precursors with Si and CdTe were investigated using temperature programmed desorption (TPD) in ultra high vacuum combined with Auger electron spectroscopy (AES). These studies revealed that diethyltellurium (DETe) and dimethylcadmium (DMCd) adsorb weakly on clean Si(100) and desorb upon heating without decomposing. These precursors adsorb both weakly and strongly on CdTe(111)A, with DMCd exhibiting the stronger interaction with the surface than DETe.

  11. Effects of digestion, chemical separation, and deposition on Po-210 quantitative analysis

    SciTech Connect

    Seiner, Brienne N.; Morley, Shannon M.; Beacham, Tere A.; Haney, Morgan M.; Gregory, Stephanie J.; Metz, Lori A.

    2014-10-01

    Polonium-210 is a radioactive isotope often used to study sedimentation processes, food chains, aerosol behavior, and atmospheric circulations related to environmental sciences. Materials for the analysis of Po-210 range from tobacco leaves or cotton fibers, to soils and sediments. The purpose of this work was to determine polonium losses from a variety of sample types (soil, cotton fiber, and air filter) due to digestion technique, chemical separation, and deposition method for alpha energy analysis. Results demonstrated that yields from a perchloric acid wet-ash were similar to that from a microwave digestion. Both were greater than the dry-ash procedure. The polonium yield from the perchloric acid wet ash was 87 ± 5%, the microwave digestion had a yield of 100 ± 7%, and the dry ash had a yield of 38 ± 5%. The chemical separation of polonium by an anion exchange resin was used only on the soil samples due to the complex nature of this sample. The yield of Po-209 tracer after chemical separation and deposition for alpha analysis was 83 ± 7% for the soil samples. Spontaneous deposition yields for the cotton and air filters were 87 ± 4% and 92 ± 6%, respectively. Based on the overall process yields for each sample type the amount of Po-210 was quantified using alpha energy analysis. The soil contained 0.18 ± 0.08 Bq/g, the cotton swipe contained 0.7 mBq/g, and the air filter contained 0.04 ± 0.02 mBq/g. High and robust yields of polonium are possible using a suitable digestion, separation, and deposition method.

  12. Graphene oxide thin films: influence of chemical structure and deposition methodology.

    PubMed

    Hidalgo, R S; López-Díaz, D; Velázquez, M Mercedes

    2015-03-10

    We synthesized graphene oxide sheets of different functionalization by oxidation of two different starting materials, graphite and GANF nanofibers, followed by purification based on alkaline washing. The chemical structure of graphene oxide materials was determined by X-ray photoelectron spectroscopy (XPS), and the nanoplatelets were characterized by ζ potential and dynamic light scattering (DLS) measurements. The XPS results indicated that the chemical structure depends on the starting material. Two different deposition methodologies, Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS), were employed to build the graphene oxide thin films. The film morphology was analyzed by scanning electron microscopy (SEM). The SEM images allow us to conclude that the LB methodology provides the highest coverage. This coverage is almost independent of the chemical composition of sheets. Conversely, the coverage obtained by the LS methodology increases with the percentage of C-O groups attached to sheets. Surface-pressure isotherms of these materials were interpreted according to the Volmer model.

  13. Bath salts and other emerging toxins.

    PubMed

    Thornton, Matthew D; Baum, Carl R

    2014-01-01

    Novel classes of synthetic drugs, including synthetic cathinones ("bath salts") and synthetic cannabinoids ("spice" or "K2"), have recently emerged as popular drugs of abuse. Salvia divinorum, a naturally occurring herb, has gained popularity in the last decade as a hallucinogenic as well. The legal status of these substances has been undergoing rapid changes and has been confusing to lawmakers and medical practitioners alike. We present an up-to-date information about the legality of these substances. We also discuss the historical background, chemical composition, patterns of abuse, clinical presentations, laboratory analysis, and management strategies for these drugs, with an emphasis on synthetic cathinones.

  14. MBMS studies of gas-phase kinetics in diamond chemical vapor deposition

    SciTech Connect

    Fox, C.A.; McMaster, M.C.; Tung, D.M.

    1995-03-01

    A molecular beam mass spectrometer system (MBMS) has been used to determine the near-surface gaseous composition involved in the low pressure chemical vapor deposition of diamond. With this system, radical and stable species can be detected with a sensitivity better than 10 ppm. Threshold ionization techniques have been employed to distinguish between radical species in the deposition environment from radical species generated by parent molecule cracking. An extensive calibration procedure was used to enable the quantitative determination of H-atom and CH{sub 3} radical mole fractions. Using the MBMS system, the gaseous composition involved in LPCVD of diamond has been measured for a wide variety of deposition conditions, including hot-filament gas activation, microwave-plasma gas activation, and a variety of precursor feed mixtures (ex: CH{sub 4}/H{sub 2}, C{sub 2}H{sub 2}/H{sub 2}). For microwave-plasma activation (MPCVD), the radical concentrations (H-atom and CH{sub 3} radicals) are independent of the identity of the precursor feed gas provided the input carbon mole fraction is constant. However, in hot-filament diamond deposition (HFCVD), the atomic hydrogen concentration decreased by an order of magnitude as the mole fraction of carbon in the precursor mixture is increased to .07; this sharp reduction has been attributed to filament poisoning of the catalytic tungsten surface via hydrocarbon deposition. Additionally, the authors find that the H-atom concentration is independent of the substrate temperature for both hot-filament and microwave plasma deposition; radial H-atom diffusion is invoked to explain this observation.

  15. Acid copper sulfate plating bath: Control of chloride and copper

    SciTech Connect

    Borhani, K.J.

    1992-08-01

    Plated-through holes in high-reliability printed wiring boards require a ductile copper plate of uniform consistency. The level of control of the chemical constituents in the electroplating solutions dictates the physical properties of the copper plate. To improve the control of the chemical bath constituents, in-situ methods for electrochemically determining copper and chloride in acid copper sulfate baths were developed. A solid-state ion-selective electrode was used for the chloride ion and proved to be more reproducible than conventional silver chloride turbidimetric methods. The use of a copper solid-state ion-selective electrode in-situ was also successful in this application.

  16. Quantum chemical simulations of atomic layer deposition of metal oxides and metal nitrides

    NASA Astrophysics Data System (ADS)

    Xu, Ye

    Scaling of SiO2 gate dielectrics to extend the miniaturization of complementary metal oxide semiconductor (CMOS) devices in accordance with Moore's Law has resulted in unacceptable tunneling current leakage levels. The projection that this challenge could significantly limit CMOS performance has prompted the intense search for alternative gate dielectric materials that can achieve high capacitances with physically thicker films which minimize tunneling leakage current. Atomic layer deposition is an ideal deposition method for high-k films because it controls the film thickness with atomic layer precision and can achieve high film conformality and uniformity. We use density functional theory (DFT) to explore chemical reactions involved in ALD processes at the atomic level. We have investigated different metal precursors for ALD process. Compared to halides, metal alkylamides are more favorable on nitrided silicon surfaces and subsequent film growth. Likewise, hafnium alkylamide is more favorable than water to initiate the nucleation on hydrogen terminated silicon surfaces. For deposition on organic self-assembled monolayers, different end groups significantly affect the selectivity towards ALD reactions. The chemical mechanisms involved in ALD of hafnium nitride, aluminum nitride are developed which provide an understanding to the difficulty in producing oxygen free metal nitrides by ALD. By combining ALD of metal oxide and metal nitride, a new method for incorporating nitrogen into oxide films is proposed. In TMA and ozone reaction, it's found that by-product water can be a catalyzer for this reaction.

  17. Heat-Resistant Co-W Catalytic Metals for Multilayer Graphene Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Ueno, Kazuyoshi; Karasawa, Yusuke; Kuwahara, Satoru; Baba, Shotaro; Hanai, Hitoshi; Yamazaki, Yuichi; Sakuma, Naoshi; Kajita, Akihiro; Sakai, Tadashi

    2013-04-01

    Multilayer graphene (MLG) is expected to be a low-resistance and high-reliability interconnect material replacing copper (Cu) in nanoscale interconnects. Chemical vapor deposition (CVD) on catalytic metals is expected as a practical method for MLG deposition. To obtain high-quality MLG films without catalyst agglomeration by CVD, heat-resistant Co-W catalytic metals were investigated. The agglomeration of the Co-W catalytic metals was suppressed by increasing the W composition; however, MLG deposition was suppressed at the same time. The effects of W addition on the MLG growth were discussed from the viewpoints of the crystallographic change of the Co-W catalysts and chemical reactions. It was found that the Co grain size was reduced and the fcc Co formation was suppressed by W addition. In addition, graphite formation was supposed to be suppressed by W addition owing to the formation of phases other than fcc Co according to the Co-W-C phase diagram. With the optimum W concentration, MLG crystallinity was improved by high-temperature CVD using the heat-resistant Co-W catalytic metals (0.7 at. %) without agglomeration, compared with that in the case of using pure-Co catalysts.

  18. Optimization of silicon oxynitrides by plasma-enhanced chemical vapor deposition for an interferometric biosensor

    NASA Astrophysics Data System (ADS)

    Choo, Sung Joong; Lee, Byung-Chul; Lee, Sang-Myung; Park, Jung Ho; Shin, Hyun-Joon

    2009-09-01

    In this paper, silicon oxynitride layers deposited with different plasma-enhanced chemical vapor deposition (PECVD) conditions were fabricated and optimized, in order to make an interferometric sensor for detecting biochemical reactions. For the optimization of PECVD silicon oxynitride layers, the influence of the N2O/SiH4 gas flow ratio was investigated. RF power in the PEVCD process was also adjusted under the optimized N2O/SiH4 gas flow ratio. The optimized silicon oxynitride layer was deposited with 15 W in chamber under 25/150 sccm of N2O/SiH4 gas flow rates. The clad layer was deposited with 20 W in chamber under 400/150 sccm of N2O/SiH4 gas flow condition. An integrated Mach-Zehnder interferometric biosensor based on optical waveguide technology was fabricated under the optimized PECVD conditions. The adsorption reaction between bovine serum albumin (BSA) and the silicon oxynitride surface was performed and verified with this device.

  19. The organometallic chemical vapor deposition of transition metal carbides: The use of homoleptic alkyls

    SciTech Connect

    Healy, M.D.; Smith, D.C.; Springer, R.W.; Rubiano, R.R.; Springer, R.W.; Parmeter, J.E.

    1993-12-31

    The organometallic chemical vapor deposition of transition metal carbides (M = Ti, Zr, Hf, and Cr) from tetraneopentyl-metal precursors has been carried out. Metal carbides can be deposited on Si, Al{sub 2}O{sub 3}, and stainless steel substrates from M[CH{sub 2}C(CH{sub 3}){sub 3}]{sub 4} at temperatures in the range of 300 to 750 C and pressures from 10{sup {minus}2} to 10{sup {minus}4} Torr. Thin films have also been grown using a carrier gas (Ar, H{sub 2}). The effects of variation of the metal center, deposition conditions, and reactor design on the resulting material have been examined by SEM, XPS, XRD, ERD and AES. Hydrocarbon fragments generated in the deposition chamber have been studied in by in-situ mass spectrometry. Complementary studies examining the UHV surface decomposition of Zr[CH{sub 2}C(CH{sub 3}){sub 3}]{sub 4} have allowed for a better understanding of the mechanism leading to film growth.

  20. Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition (CLD) modified ZSM-5.

    PubMed

    Zhang, Huiyan; Luo, Mengmeng; Xiao, Rui; Shao, Shanshan; Jin, Baosheng; Xiao, Guomin; Zhao, Ming; Liang, Junyu

    2014-03-01

    Chemical liquid deposition (CLD) with KH550, TEOS and methyl silicone oil as the modifiers was used to modify ZSM-5 and deposit its external acid sites. The characteristics of modified catalysts were tested by catalytic conversion of biomass pyrolysis-derived compounds. The effects of different modifying conditions (deposited amount, temperature, and time) on the product yields and selectivities were investigated. The results show KH550 modified ZSM-5 (deposited amount of 4%, temperature of 20°C and time of 6h) produced the maximum yields of aromatics (24.5%) and olefins (16.5%), which are much higher than that obtained with original ZSM-5 catalyst (18.8% aromatics and 9.8% olefins). The coke yield decreased from 44.1% with original ZSM-5 to 26.7% with KH550 modified ZSM-5. The selectivities of low-molecule-weight hydrocarbons (ethylene and benzene) decreased, while that of higher molecule-weight hydrocarbons (propylene, butylene, toluene, and naphthalene) increased comparing with original ZSM-5. PMID:24413482

  1. Hydrothermal Vents in Yellowstone Lake: Chemical Fluxes, Siliceous Deposits, and Collapse Structures

    NASA Astrophysics Data System (ADS)

    Shanks, W. P.; Morgan, L. A.; Balistrieri, L.; Alt, J.; Meeker, G.

    2002-12-01

    The geochemistry of Yellowstone Lake is strongly influenced by sublacustrine hydrothermal vent activity. The hydrothermal source fluid is identified using Cl and dD data on water column and sublacustrine hydrothermal vent fluid samples. Silica-rich hydrothermal deposits occur on the lake bottom near active and presently inactive hydrothermal vents. Pipe- and flange-like deposits contain cemented and recrystallized diatoms and represent pathways for hydrothermal fluid migration. Another major type of hydrothermal deposit comprises hard, porous siliceous spires up to 7 m tall that occur in 15 m of water in Bridge Bay. Bridge Bay spires are hydrothermal silica deposits formed in place by growth of chimney-like features from lake-bottom hydrothermal vents. The Cl concentrations indicate that Yellowstone Lake water is about 1 percent hydrothermal source fluid and 99 percent inflowing stream water and that the flux is about 10 percent of the total hydrothermal water flux in Yellowstone National Park. With recent swath-sonar mapping studies that show numerous new hydrothermal features, Yellowstone Lake should now be considered one of the most significant hydrothermal basins in the Park. Many lake-bottom hydrothermal vents occur in small depressions that are clearly imaged on multibeam sonar, some of which are interpreted as collapse structures based on seismic reflection data. Sediments collected from such vents show chemical evidence of leaching of 60-70 wt. percent SiO2, which may result in volume reductions up to 80 percent and provides a mechanism for vent structure formation.

  2. Decreased acid deposition and the chemical recovery of Killarney, Ontario, lakes.

    PubMed

    Keller, Wendel; Heneberry, Jocelyne H; Dixit, Sushil S

    2003-04-01

    Lakes in Killarney Park near Sudbury, Ontario, Canada, have shown dramatic water quality changes including general increases in pH and alkalinity, and decreases in SO4(2-), base cations and metals. While some lakes have recovered to pH > 6.0, many are still highly acidic despite decades of improvement. Very high historical S deposition related to emissions from the Sudbury metal smelters dominated the acidification process in this region. However, since the implementation of substantial S emission controls (90%) at the smelters, the Sudbury emissions are no longer the major source of S deposition in the Sudbury area. Wet deposition of SO4(2-) and SO4(2-) concentrations in lakewaters at Killarney now approach values in the Dorset, Ontario, area, about 200 km from Sudbury. This suggests that the S deposition to the Killarney area is now primarily from long-range transport, not from local sources. Studies of Killarney lakes are revealing the complex nature of the chemical recovery process. As lake acidity decreases, other changes including decreased Ca2+ concentrations, increased transparency, and altered thermal regimes may potentially affect some of these ecosystems. It is clear that continuing assessments of the recovery of Killarney lakes, within a multiple-stressor framework, are needed.

  3. Plasma enhanced chemical vapor deposition of silicon oxide films with divinyldimethylsilane and tetravinylsilane

    SciTech Connect

    Park, Sung-Gyu; Rhee, Shi-Woo

    2006-03-15

    Carbon-doped silicon oxide (SiCOH) low-k films were deposited with plasma enhanced chemical vapor deposition (PECVD) using divinyldimethylsilane (DVDMS) with two vinyl groups and tetravinylsilane (TVS) with four vinyl groups compared with vinyltrimethylsilane (VTMS) with one vinyl group. With more vinyl groups in the precursor, due to the crosslinking of the vinyl groups, the film contains more of an organic phase and organic phase became less volatile. It was confirmed that the deposition rate, refractive index, and k value increase with more vinyl groups in the precursor molecule. After annealing, the SiCOH films deposited with DVDMS and TVS showed a low dielectric constant of 2.2 and 2.4 at optimum conditions, respectively. In both cases, the annealed film had low leakage current density (J=6.7x10{sup -7} A/cm{sup 2} for SiCOH film of DVDMS and J=1.18x10{sup -8} A/cm{sup 2} for SiCOH film of TVS at 1 MV/cm) and relatively high breakdown field strength (E>4.0 MV/cm at 1 mA/cm{sup 2}), which is comparable to those of PECVD SiO{sub 2}.

  4. Chemical vapour deposition of zeolitic imidazolate framework thin films.

    PubMed

    Stassen, Ivo; Styles, Mark; Grenci, Gianluca; Gorp, Hans Van; Vanderlinden, Willem; Feyter, Steven De; Falcaro, Paolo; Vos, Dirk De; Vereecken, Philippe; Ameloot, Rob

    2016-03-01

    Integrating metal-organic frameworks (MOFs) in microelectronics has disruptive potential because of the unique properties of these microporous crystalline materials. Suitable film deposition methods are crucial to leverage MOFs in this field. Conventional solvent-based procedures, typically adapted from powder preparation routes, are incompatible with nanofabrication because of corrosion and contamination risks. We demonstrate a chemical vapour deposition process (MOF-CVD) that enables high-quality films of ZIF-8, a prototypical MOF material, with a uniform and controlled thickness, even on high-aspect-ratio features. Furthermore, we demonstrate how MOF-CVD enables previously inaccessible routes such as lift-off patterning and depositing MOF films on fragile features. The compatibility of MOF-CVD with existing infrastructure, both in research and production facilities, will greatly facilitate MOF integration in microelectronics. MOF-CVD is the first vapour-phase deposition method for any type of microporous crystalline network solid and marks a milestone in processing such materials. PMID:26657328

  5. Photocatalytic Functional Coating of TiO2 Thin Film Deposited by Cyclic Plasma Chemical Vapor Deposition at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Kwon, Jung-Dae; Rha, Jong-Joo; Nam, Kee-Seok; Park, Jin-Seong

    2011-08-01

    Photocatalytic TiO2 thin films were prepared with titanium tetraisopropoxide (TTIP) using cyclic plasma chemical vapor deposition (CPCVD) at atmospheric pressure. The CPCVD TiO2 films contain carbon-free impurities up to 100 °C and polycrystalline anatase phases up to 200 °C, due to the radicals and ion-bombardments. The CPCVD TiO2 films have high transparency in the visible wavelength region and absorb wavelengths below 400 nm (>3.2 eV). The photocatalytic effects of the CPCVD TiO2 and commercial sprayed TiO2 films were measured by decomposing methylene blue (MB) solution under UV irradiation. The smooth CPCVD TiO2 films showed a relatively lower photocatalytic efficiency, but superior catalyst-recycling efficiency, due to their high adhesion strength on the substrates. This CPCVD technique may provide the means to produce photocatalytic thin films with low cost and high efficiency, which would be a reasonable candidate for practical photocatalytic applications, because of the reliability and stability of their photocatalytic efficiency in a practical environment.

  6. Synthesis of multiferroic Er-Fe-O thin films by atomic layer and chemical vapor deposition

    SciTech Connect

    Mantovan, R. Vangelista, S.; Wiemer, C.; Lamperti, A.; Tallarida, G.; Chikoidze, E.; Dumont, Y.; Fanciulli, M.

    2014-05-07

    R-Fe-O (R = rare earth) compounds have recently attracted high interest as potential new multiferroic materials. Here, we report a method based on the solid-state reaction between Er{sub 2}O{sub 3} and Fe layers, respectively grown by atomic layer deposition and chemical vapor deposition, to synthesize Er-Fe-O thin films. The reaction is induced by thermal annealing and evolution of the formed phases is followed by in situ grazing incidence X-ray diffraction. Dominant ErFeO{sub 3} and ErFe{sub 2}O{sub 4} phases develop following subsequent thermal annealing processes at 850 °C in air and N{sub 2}. Structural, chemical, and morphological characterization of the layers are conducted through X-ray diffraction and reflectivity, time-of-flight secondary ion-mass spectrometry, and atomic force microscopy. Magnetic properties are evaluated by magnetic force microscopy, conversion electron Mössbauer spectroscopy, and vibrating sample magnetometer, being consistent with the presence of the phases identified by X-ray diffraction. Our results constitute a first step toward the use of cost-effective chemical methods for the synthesis of this class of multiferroic thin films.

  7. Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrodes

    SciTech Connect

    Starschich, S.; Griesche, D.; Schneller, T.; Böttger, U.; Waser, R.

    2014-05-19

    Ferroelectric hafnium oxide films were fabricated by chemical solution deposition with a remnant polarization of >13 μC/cm{sup 2}. The samples were prepared with 5.2 mol. % yttrium-doping and the thickness varied from 18 nm to 70 nm. The hafnium oxide layer was integrated into a metal-insulator-metal capacitor using platinum electrodes. Due to the processing procedure, no thickness dependence of the ferroelectric properties was observed. To confirm the ferroelectric nature of the deposited samples, polarization, capacitance, and piezoelectric displacement measurements were performed. However, no evidence of the orthorhombic phase was found which has been proposed to be the non-centrosymmetric, ferroelectric phase in HfO{sub 2}.

  8. Nanoscale arrays of antimony telluride single crystals by selective chemical vapor deposition.

    PubMed

    Huang, Ruomeng; Benjamin, Sophie L; Gurnani, Chitra; Wang, Yudong; Hector, Andrew L; Levason, William; Reid, Gillian; De Groot, C H Kees

    2016-01-01

    Arrays of individual single nanocrystals of Sb2Te3 have been formed using selective chemical vapor deposition (CVD) from a single source precursor. Crystals are self-assembled reproducibly in confined spaces of 100 nm diameter with pitch down to 500 nm. The distribution of crystallite sizes across the arrays is very narrow (standard deviation of 15%) and is affected by both the hole diameter and the array pitch. The preferred growth of the crystals in the <1 1 0> orientation along the diagonal of the square holes strongly indicates that the diffusion of adatoms results in a near thermodynamic equilibrium growth mechanism of the nuclei. A clear relationship between electrical resistivity and selectivity is established across a range of metal selenides and tellurides, showing that conductive materials result in more selective growth and suggesting that electron donation is of critical importance for selective deposition. PMID:27283116

  9. Growth of well-oriented VACNTs using thermal chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Yousefi, Amin Termeh; Mahmood, Mohamad Rusop; Ikeda, Shoichiro

    2016-07-01

    The remarkable properties of carbon nanotubes (CNTs) make them attractive for biosensor applications, especially for medical detecting devices. In this paper, we describe a process to grow high oriented ratio CNT arrays to improve the electrical properties of the devices based on CNTs. Chemical vapor deposition (CVD) was used to grow highly oriented CNT using camphor as the carbon source, and argon and hydrogen as carrier gases to grow perpendicular CNTs on the surface of the silicon substrate in presence of ferrocene as a metallic catalyst. Images were revealed by FESEM indicates that the formation mechanism of oriented CNTs with high morphological purity nanotubes, which is depends significantly on deposition time and applied temperature to the furnaces. This method might be an effective method to produce oriented MWCNT in different length.

  10. Ultralow-k dielectrics prepared by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Grill, A.; Patel, V.

    2001-08-01

    Carbon-doped oxide materials (SiCOH films) with ultralow dielectric constants have been prepared by plasma-enhanced chemical vapor deposition (PECVD) from mixtures of SiCOH precursors with organic materials. The films have been characterized by Rutherford backscattering and forward recoil elastic scattering analysis, Fourier transform infrared spectroscopy and index of refraction measurements, and measurement of step heights in the films. The electrical properties of the films have been measured on metal-insulator-silicon structures. By proper choice of the precursor and deposition conditions, the dielectric constants of the SiCOH films can be reduced to values below 2.1, demonstrating the extendibility of PECVD-prepared carbon-doped oxides as the interconnect dielectrics for future generation of very large scale integrated chips.

  11. Preparation of γ-Al2O3 films by laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Ito, Akihiko; Goto, Takashi

    2015-06-01

    γ- and α-Al2O3 films were prepared by chemical vapor deposition using CO2, Nd:YAG, and InGaAs lasers to investigate the effects of varying the laser wavelength and deposition conditions on the phase composition and microstructure. The CO2 laser was found to mostly produce α-Al2O3 films, whereas the Nd:YAG and InGaAs lasers produced γ-Al2O3 films when used at a high total pressure. γ-Al2O3 films had a cauliflower-like structure, while the α-Al2O3 films had a dense and columnar structure. Of the three lasers, it was the Nd:YAG laser that interacted most with intermediate gas species. This promoted γ-Al2O3 nucleation in the gas phase at high total pressure, which explains the cauliflower-like structure of nanoparticles observed.

  12. Growth of MoS2 Layers by Two-Step Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Sheu, An-Di

    Monolayer molybdenum disulfide (MoS2), a two-dimensional (2D) crystal with a direct bandgap, is a promising candidate for nano electronic devices, energy storage, and photocatalysts. People are researching for large-area single-layer MoS2 growth. In my work, I investigated the growth of monolayer MoS2 on SiO2/Si substrate by chemical vapor deposition (CVD). Using sulfur and molybdenum trioxide (MoO3) as precursors to grow 2D MoS2 in the tube furnace CVD system. As part of my thesis, I carried out several growth experiments while varying the deposition parameters. The as-grown samples are characterized using optical, scanning electron, and atomic force microscopes and Raman spectroscopy. I have also developed a two-step approach to grow MoS2 layers. This new approach has great potential to grow large-area single-layer MoS2.

  13. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOEpatents

    Grigorian, Leonid; Hornyak, Louis; Dillon, Anne C; Heben, Michael J

    2014-09-23

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  14. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOEpatents

    Grigorian, Leonid; Hornyak, Louis; Dillon, Anne C; Heben, Michael J

    2008-10-07

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  15. Silicon Chemical Vapor Deposition on macro and submicron powders in a fluidized bed

    SciTech Connect

    Cadoret, L.; Reuge, N; Pannala, Sreekanth; Syamlal, M; Rossignol, C; Dexpert-Ghys, J; Coufort, C; Caussat, B

    2009-01-01

    Titanium oxide (TiO2) submicron powders have been treated by Chemical Vapor Deposition (CVD) in a vibro-fluidized bed in order to deposit silicon layers of nanometer scale on each individual grain from silane (SiH4). Experimental results show that for the conditions tested, the original granular structure of the powders is preserved for 90% of the initial bed weight while the remaining 10% consisted of agglomerates in millimetre range found near the distributor of the reactor. A comparison between experimental and modelling results using the MFIX code shows that for Geldart's Group B alumina particles (Al2O3), the model represents both the bed hydrodynamics and silane conversion rates quite well. The future objective is to extend the simulation capability to cohesive submicron powders in order to achieve better predictability of the phenomena governing ultrafine particles.

  16. Selective charge doping of chemical vapor deposition-grown graphene by interface modification

    SciTech Connect

    Wang, Shengnan Suzuki, Satoru; Furukawa, Kazuaki; Orofeo, Carlo M.; Takamura, Makoto; Hibino, Hiroki

    2013-12-16

    The doping and scattering effect of substrate on the electronic properties of chemical vapor deposition (CVD)-grown graphene are revealed. Wet etching the underlying SiO{sub 2} of graphene and depositing self-assembled monolayers (SAMs) of organosilane between graphene and SiO{sub 2} are used to modify various substrates for CVD graphene transistors. Comparing with the bare SiO{sub 2} substrate, the carrier mobility of CVD graphene on modified substrate is enhanced by almost 5-fold; consistently the residual carrier concentration is reduced down to 10{sup 11} cm{sup −2}. Moreover, scalable and reliable p- and n-type graphene and graphene p-n junction are achieved on various silane SAMs with different functional groups.

  17. Nanoscale arrays of antimony telluride single crystals by selective chemical vapor deposition

    PubMed Central

    Huang, Ruomeng; Benjamin, Sophie L.; Gurnani, Chitra; Wang, Yudong; Hector, Andrew L.; Levason, William; Reid, Gillian; De Groot, C. H. (Kees)

    2016-01-01

    Arrays of individual single nanocrystals of Sb2Te3 have been formed using selective chemical vapor deposition (CVD) from a single source precursor. Crystals are self-assembled reproducibly in confined spaces of 100 nm diameter with pitch down to 500 nm. The distribution of crystallite sizes across the arrays is very narrow (standard deviation of 15%) and is affected by both the hole diameter and the array pitch. The preferred growth of the crystals in the <1 1 0> orientation along the diagonal of the square holes strongly indicates that the diffusion of adatoms results in a near thermodynamic equilibrium growth mechanism of the nuclei. A clear relationship between electrical resistivity and selectivity is established across a range of metal selenides and tellurides, showing that conductive materials result in more selective growth and suggesting that electron donation is of critical importance for selective deposition. PMID:27283116

  18. High rate epitaxy of silicon thick films by medium pressure plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kambara, M.; Yagi, H.; Sawayanagi, M.; Yoshida, T.

    2006-04-01

    Homoepitaxial silicon thick films have been produced by medium pressure plasma chemical vapor deposition at rates as fast as 60 nm/s and at a temperature of around 700 °C, with a silane gas partial pressure of 4 mTorr. The continuous transition of the film structures from agglomerated to faceted columnar and to epitaxial planar structure was observed with an increase in the plasma power. The calorimetric analysis during deposition has also confirmed that the thermal boundary layer thickness between the plasma and substrate reduced with the increasing power and became comparable to the mean free path of the vapors when epitaxy was achieved at high rates. In addition, the rate for epitaxial growth was observed to increase linearly with silane gas partial pressure. These potentially indicate that less coagulated silicon atom clusters formed in the reduced boundary thickness have contributed effectively to the high rate epitaxial growth.

  19. Hexagonal nanosized molybdenum diselenide thin film deposited at 333 K by chemical method

    NASA Astrophysics Data System (ADS)

    Sathe, D. J.; Chate, P. A.

    2015-10-01

    Molybdenum diselenide thin films have been deposited on to stainless steel and glass substrates by the chemical process, using ammonium molybdate, sodium selenosulphite as a precursor sources and citric acid was used as a complexing agent. The structural and optical properties of the deposited films have been studied using X-ray diffraction and optical absorption techniques, respectively. XRD studies reveal that the films are polycrystalline with hexagonal crystal structure. Optical absorption study shows the presence of direct transition with band gap energy 1.51 eV. EDAX analysis shows that the films are nearly stoichiometry of Mo: Se: 1:2. The configuration of fabricated cell is n-MoSe2 | NaI (2 M) + I2 (1 M) | C (graphite) yielded a conversion efficiency of 1.08%.

  20. Growth of aligned carbon nanotubes on carbon microfibers by dc plasma-enhanced chemical vapor deposition

    SciTech Connect

    Chen, L H.; AuBuchon, J F.; Chen, I C.; Daraio, C; Ye, X R.; Gapin, A; Jin, Sungho; Wang, Chong M.

    2006-01-16

    It is shown that unidirectionally aligned carbon nanotubes can be grown on electrically conductive network of carbon microfibers via control of buffer layer material and applied electric field during dc plasma chemical vapor deposition growth. Ni catalyst deposition on carbon microfiber produces relatively poorly aligned nanotubes with significantly varying diameters and lengths obtained. The insertion of Ti 5 nm thick underlayer between Ni catalyst layer and C microfiber substrate significantly alters the morphology of nanotubes, resulting in much better aligned, finer diameter, and longer array of nanotubes. This beneficial effect is attributed to the reduced reaction between Ni and carbon paper, as well as prevention of plasma etching of carbon paper by inserting a Ti buffer layer. Such a unidirectionally aligned nanotube structure on an open-pore conductive substrate structure may conveniently be utilized as a high-surface-area base electrodes for fuel cells, batteries, and other electrochemical and catalytic reactions.

  1. Plasma-enhanced chemical vapor deposition of amorphous Si on graphene

    NASA Astrophysics Data System (ADS)

    Lupina, G.; Strobel, C.; Dabrowski, J.; Lippert, G.; Kitzmann, J.; Krause, H. M.; Wenger, Ch.; Lukosius, M.; Wolff, A.; Albert, M.; Bartha, J. W.

    2016-05-01

    Plasma-enhanced chemical vapor deposition of thin a-Si:H layers on transferred large area graphene is investigated. Radio frequency (RF, 13.56 MHz) and very high frequency (VHF, 140 MHz) plasma processes are compared. Both methods provide conformal coating of graphene with Si layers as thin as 20 nm without any additional seed layer. The RF plasma process results in amorphization of the graphene layer. In contrast, the VHF process keeps the high crystalline quality of the graphene layer almost intact. Correlation analysis of Raman 2D and G band positions indicates that Si deposition induces reduction of the initial doping in graphene and an increase of compressive strain. Upon rapid thermal annealing, the amorphous Si layer undergoes dehydrogenation and transformation into a polycrystalline film, whereby a high crystalline quality of graphene is preserved.

  2. The application of pulse modulated plasma to the plasma enhanced chemical vapor deposition of dielectric materials

    NASA Astrophysics Data System (ADS)

    Qi, Yu

    This dissertation work applied the pulse modulated plasma to the plasma enhanced chemical vapor deposition (PECVD) of two types of dielectric materials: SiO2-like coatings and Teflon-like coatings. SiO2-like coatings were firstly implemented with continuous plasma. It was proven that three different precursors: hexamethyldisiloxane (HMDSO), 1, 3, 5, 7-tetramethylcyclotetrasiloxane (TMCTS) and octamethylcyclotetrasiloxane (OMCTS) can be used to generate hard, clear and high density SiO2 deposition with coupled high growth rate and low processing temperature via PECVD. Under similar conditions, HMDSO has the lowest growth rate, lowest hardness and highest carbon content; TMCTS has the highest growth rate and hardness, and lowest carbon content; and OMCTS has moderate rates of these deposition qualities, but the best corrosion resistance. Substrate bias seems to have no effect on any deposition quality. High chamber pressure can significantly lower the carbon content in the thin films but does not affect any other qualities; the O2/precursor ratio is the most influential factor among all variables considered in this experiment. The deposition hardness and O:Si ratio always increase with this ratio while the carbon content always decreases. However, different precursors require different optimal ratios to achieve the highest growth rate. Pulse modulation was introduced into PECVD of SiO2-like coatings and OMCTS was selected as the precursor. It was demonstrated that pulse frequency, duty ratio and peak power have significant effects on deposition qualities. The proper combination of the pulse parameters and other traditional plasma parameters can significantly lower the processing temperature while retaining or even improving other deposition qualities, such as growth rate, corrosion resistance and elemental composition. Hardness is the only sacrifice of the lower time-average power caused by pulsing. Therefore, pulse modulation can effectively expand the possible

  3. Chemical vapor deposition and characterization of poly(p-phenylene vinylene) films

    NASA Astrophysics Data System (ADS)

    Gedelilan, Cynthia Ann

    2008-10-01

    As a conducting, electroluminescent, and photoluminescent polymer, poly(p-phenylene vinylene) (PPV) is a material of much interest for electronic and optical applications. Although this polymer has traditionally been deposited using spin-on methods and soluble precursor polymers, the technique has several drawbacks including an increase in contamination and defects from the solvent, the need to convert the precursor into PPV without adding further impurities or damaging the film, and the processing restrictions when dealing with liquid depositions. Chemical vapor deposition (CVD), on the other hand, deposits the precursor polymer in the gas phase and therefore eliminates the need for a solvent and creates the capability for conformal deposition on many types of nanostructured substrates. However, PPV films deposited by CVD remain understudied. This work aims to investigate properties of those films including the removal of bromine left from the CVD precursor, the behavior and structure of PPV after heat treatment at elevated temperatures (>450°C), the usefulness of encapsulation materials for preventing photodegradation, and characteristics of films deposited on top of nanosize porous materials. Bromine from the precursor polymer is removed during the first thirty minutes of heating. Films annealed at 300°C in nitrogen gas consisted of 0.36% bromine; however, photoluminescence spectra comparing films annealed at 150 and 300°C showed more defects in the 300°C film. Heat treatment of PPV beyond the initial anneal showed that the film degrades at 500°C by emitting monomer fragments without crosslinking. Photodegradation of PPV films due to incorporation of oxygen during light exposure can be reduced from 80% to 30% under UV light and nearly prevented under blue light when encapsulated with 10 nm aluminum oxide. Encapsulation with organic Parylene shows no significant improvement. Use of the Stern-Volmer equation to examine self-quenching in films shows larger

  4. Behavior of incorporated nitrogen in plasma-nitrided silicon oxide formed by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Shinoda, Nao; Itokawa, Hiroshi; Fujitsuka, Ryota; Sekine, Katsuyuki; Onoue, Seiji; Tonotani, Junichi

    2016-04-01

    The behavior of nitrogen (N) atoms in plasma-nitrided silicon oxide (SiO2) formed by chemical vapor deposition (CVD) was characterized by physical analysis and from electrical properties. The changes in the chemical bonding and distribution of N in plasma-nitrided SiO2 were investigated for different subsequent processes. N-Si3, N-Si2O, and N2 are formed in a SiO2 film by plasma nitridation. N2 molecules diffuse out during annealing at temperatures higher than 900 °C. NH species are generated from N2 molecules and H in the SiO2 film with subsequent oxide deposition using O3 as an oxidant. The capacitance-voltage (C-V) curves of metal-oxide-semiconductor (MOS) capacitors are obtained. The negative shift of the C-V curve is caused by the increase in the density of positive fix charge traps in CVD-SiO2 induced by plasma nitridation. The C-V curve of plasma-nitrided SiO2 subjected to annealing shifts to the positive direction and that subjected to the subsequent oxide deposition shifts markedly to the negative direction. It is clarified that the density of positive charge fixed traps in plasma-nitrided SiO2 films decrease because the amount of N2 molecules is decreased by annealing, and that the density of traps increases because NH species are generated and move to the interface between SiO2 and the Si substrate with the subsequent oxide deposition.

  5. Inhable particulate matter from lime industries: Chemical composition and deposition in human respiratory tract

    NASA Astrophysics Data System (ADS)

    Godoi, Ricardo H. M.; Braga, Darci M.; Makarovska, Yaroslava; Alfoldy, Balint; Carvalho Filho, Marco A. S.; Van Grieken, Réne; Godoi, Ana Flavia L.

    Air pollution caused by the lime production industry has become a serious problem with potential effects to human health, especially in developing countries. Colombo is a city included in the Metropolitan Region of Curitiba (capital of Paraná State) in South Brazil. In Colombo city, a correlation has been shown between the lime production and the number of persons who need respiratory treatment in a local hospital, indicating that the lime industry can cause deleterious health effects in the exposed workers and population. This research was conducted to deal firstly with the characterization of the size distribution and chemical compositions of particles emitted from lime manufacturing and subsequently to assess the deposition rate of inhaled dolomitic lime aerosol particles in the human respiratory tract. The elemental chemical composition and particle size of individual atmospheric particles was quantitatively elucidated, including low-Z components like C, N and O, as well as higher-Z elements, using automated electron probe microanalysis. Information concerning the bulk composition is provided by energy-dispersive X-ray detection. The majority of the respirable particulate matter identified was composed of aluminosilicates, Ca-Mg oxides, carbon-rich particles, mixtures of organic particles and Ca-Mg carbonates, soot and biogenic particles. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the human respiratory system were calculated, revealing the deposition of CaO·MgO at extrathoracic, tracheobronchial and pulmonary levels. The results of this study offer evidence to the threat of the fine and coarse particles emitted from dolomite lime manufacturing, allowing policy-makers to better focus their mitigation strategies in an effective way, as well as to the dolomite producers for the purpose of designing and/or implementing improved emission controls.

  6. Growth of 2D black phosphorus film from chemical vapor deposition.

    PubMed

    Smith, Joshua B; Hagaman, Daniel; Ji, Hai-Feng

    2016-05-27

    Phosphorene, a novel 2D material isolated from bulk black phosphorus (BP), is an intrinsic p-type material with a variable bandgap for a variety of applications. However, these applications are limited by the inability to isolate large films of phosphorene. Here we present an in situ chemical vapor deposition type approach that demonstrates progress towards growth of large area 2D BP with average areas >3 μm2 and thicknesses representing samples around four layers and thicker samples with average areas >100 μm2. Transmission electron microscopy and Raman spectroscopy have confirmed successful growth of 2D BP from red phosphorus. PMID:27087456

  7. Synthesize of N-doped Carbon nanotube according to gas flow rate by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Kim, J. B.; Kim, C. D.; Kong, S. J.; Kim, J. H.; Min, B. K.; Jung, W. S.; Lee, H. R.

    2011-12-01

    Nitrogen-doped (N-doped) Carbon nanotubes (CNTs) have been prepared by Thermal Chemical Vapor Deposition (CVD). As doping accompanies with the recombination of carbon atoms into CNTs in the CVD process, N atoms can be substitutionally doped into the CNTs lattice, which is hard to realize by other synthetic methods. The synthesis technique and the characteristic analysis of N-doped CNT will move up the industrialization and the basic study of CNT. We will elucidate the basic properties of CNT such as the structural characteristics of the N-doped CNT material and study for the industrial application of the N-doped CNTs to the electrode of fuel cell.

  8. Microstructure and properties of multiphase and functionally graded materials prepared by chemical vapor deposition

    SciTech Connect

    Lee, W.Y.

    1996-05-01

    The synthesis of multiphase and functionally graded materials by chemical vapor deposition is discussed from a perspective of controlling their composition and microstructure at a nano-scale level, and ultimately, tailoring their material properties. Prior research is briefly reviewed to address the current state of this novel material concept. Recent experimental results relating to controlling the selected properties of two multiphase systems, TiN + MoS{sub 2} and NiAl + Al{sub 2}O{sub 3}, are described to illustrate this concept`s potential merits and challenges for use in realistic applications.

  9. Optical properties of epitaxial single-crystal chemical-vapor-deposited diamond

    NASA Astrophysics Data System (ADS)

    Turri, Giorgio; Chen, Ying; Bass, Michael; Orchard, David; Butler, James E.; Magana, Sally; Feygelson, Tatayana; Thiel, Derrick; Fourspring, Kevin; Pentony, Joni; Hawkins, Samantha; Baronowski, Meghan; Dewees, Randle V.; Seltzer, Michael D.; Guenthner, Andrew; Harris, Daniel C.; Stickley, C. Martin

    2007-04-01

    Epitaxial single-crystal chemical-vapor-deposited diamond was obtained from Element Six Ltd. (Ascot, UK) and from Apollo Diamond (Boston, MA). Both companies provided 5 x 5 mm squares with thicknesses ranging from 0.5 to 1.5 mm. In addition, Element Six provided 10-mm-diameter disks with a thickness of 1.0 mm. The absorptance of all specimens at 1064 nm was measured by laser calorimetry, with good agreement between independent measurements at the University of Central Florida and at QinetiQ (Malvern, UK). Depolarization at 1064 nm and ultraviolet absorption properties are also reported.

  10. Templated growth of diamond optical resonators via plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Hu, E. L.

    2016-08-01

    We utilize plasma-enhanced chemical vapor deposition through a patterned silica mask for templated diamond growth to create optical resonators. The pyramid-shaped structures have quality factors Q up to 600, measured using confocal photoluminescence spectroscopy, and mode volumes V as small as 2.5 (λ/n) 3 for resonances at wavelengths λ between 550 and 650 nm, and refractive index n, obtained using finite-difference time-domain simulations. Bright luminescence from nitrogen-vacancy and silicon-vacancy centers in the grown diamond is observed. The resonator design and fabrication technique obviates any etching of diamond, which preserves emitter properties in a pristine host lattice.

  11. Single crystal chemical vapor deposit diamond detector for energetic plasma measurement in space

    NASA Astrophysics Data System (ADS)

    Ogasawara, K.; Broiles, T. W.; Coulter, K. E.; Dayeh, M. A.; Desai, M. I.; Livi, S. A.; McComas, D. J.; Walther, B. C.

    2015-03-01

    This study reports the performance of single crystal chemical vapor deposit diamond detectors for measuring space plasma and energetic particles: ~7 keV energy resolution for protons with a 14 keV threshold level, and good response linearity for ions and electrons as expected from Monte-Carlo calculations of primary particle energy loss. We investigated that these diamond detectors are able to operate at high temperature (> 70 ° C) and have fast response times (< 1 ns rise time). While silicon detectors have proven capability over this energy range for space plasma measurements, diamond detectors offer a faster response, higher temperature operation, greater radiation tolerance, and immunity to light.

  12. Spectroscopic signatures of AA' and AB stacking of chemical vapor deposited bilayer MoS2

    DOE PAGESBeta

    Xia, Ming; Li, Bo; Yin, Kuibo; Capellini, Giovanni; Niu, Gang; Gong, Yongji; Zhou, Wu; Ajayan, Pulickel M.; Xie, Ya -Hong

    2015-11-04

    We discuss prominent resonance Raman and photoluminescence spectroscopic differences between AA'and AB stacked bilayer molybdenum disulfide (MoS2) grown by chemical vapor deposition are reported. Bilayer MoS2 islands consisting of the two stacking orders were obtained under identical growth conditions. Also, resonance Raman and photoluminescence spectra of AA' and AB stacked bilayer MoS2 were obtained on Au nanopyramid surfaces under strong plasmon resonance. Both resonance Raman and photoluminescence spectra show distinct features indicating clear differences in interlayer interaction between these two phases. The implication of these findings on device applications based on spin and valley degrees of freedom.

  13. Simulation of chemical-vapor-deposited silicon carbide for a cold wall vertical reactor

    NASA Astrophysics Data System (ADS)

    Lee, Y. L.; Sanchez, J. M.

    1997-07-01

    The growth rate of silicon carbide obtained by low-pressure chemical vapor deposition from tetramethylsilane is numerically simulated for a cold wall vertical reactor. The transport equations for momentum, heat, and mass transfer are simultaneously solved by employing the finite volume method. A model for reaction rate is also proposed in order to predict the measured growth rates [A. Figueras, S. Garelik, J. Santiso, R. Rodroguez-Clemente, B. Armas, C. Combescure, R. Berjoan, J.M. Saurel and R. Caplain, Mater. Sci. Eng. B 11 (1992) 83]. Finally, the effects of thermal diffusion on the growth rate are investigated.

  14. Observation of spin-charge conversion in chemical-vapor-deposition-grown single-layer graphene

    SciTech Connect

    Ohshima, Ryo; Sakai, Atsushi; Ando, Yuichiro; Shiraishi, Masashi; Shinjo, Teruya; Kawahara, Kenji; Ago, Hiroki

    2014-10-20

    Conversion of pure spin current to charge current in single-layer graphene (SLG) is investigated by using spin pumping. Large-area SLG grown by chemical vapor deposition is used for the conversion. Efficient spin accumulation in SLG by spin pumping enables observing an electromotive force produced by the inverse spin Hall effect (ISHE) of SLG. The spin Hall angle of SLG is estimated to be 6.1 × 10{sup −7}. The observed ISHE in SLG is ascribed to its non-negligible spin-orbit interaction in SLG.

  15. Multiwalled Carbon Nanotube Forest Grown via Chemical Vapor Deposition from Iron Catalyst Nanoparticles, by XPS

    SciTech Connect

    Jensen, David S.; Kanyal, Supriya S.; Madaan, Nitesh; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-25

    Carbon nanotubes (CNTs) have unique chemical and physical properties. Herein, we report an XPS analysis of a forest of multiwalled CNTs using monochromatic Al Kα radiation. Survey scans show only one element: carbon. The carbon 1s peak is centered 284.5 eV. The C 1s envelope also shows the expected π → π* shake-up peak at ca. 291 eV. The valence band and carbon KVV Auger signals are presented. When patterned, the CNT forests can be used as a template for subsequent deposition of metal oxides to make thin layer chromatography plates.1-3

  16. Method of making AlInSb by metal-organic chemical vapor deposition

    DOEpatents

    Biefeld, Robert M.; Allerman, Andrew A.; Baucom, Kevin C.

    2000-01-01

    A method for producing aluminum-indium-antimony materials by metal-organic chemical vapor deposition (MOCVD). This invention provides a method of producing Al.sub.X In.sub.1-x Sb crystalline materials by MOCVD wherein an Al source material, an In source material and an Sb source material are supplied as a gas to a heated substrate in a chamber, said Al source material, In source material, and Sb source material decomposing at least partially below 525.degree. C. to produce Al.sub.x In.sub.1-x Sb crystalline materials wherein x is greater than 0.002 and less than one.

  17. Chemical vapor deposition of Ti-Si-N films for diffusion barrier applications

    SciTech Connect

    Smith, P.M.; Custer, J.S.; Jones, R.V.

    1995-11-01

    Structurally disordered refractory ternary films such as titanium silicon nitride (Ti-Si-N) have potential as advanced diffusion barriers in future ULSI metallization schemes. The authors demonstrate chemical vapor deposition (CVD) of Ti-Si-N-containing films in a commercially available single-wafer CVD system using two different Ti precursors, TiCl{sub 4} and tetrakis(diethylamino)titanium (TDEAT). In particular, the TDEAT-based films can be grown conformally with low impurity content, and are promising candidates for advanced diffusion barrier applications.

  18. Synthesis and Characterization of Tin(IV) Oxide Obtained by Chemical Vapor Deposition Method.

    PubMed

    Nagirnyak, Svitlana V; Lutz, Victoriya A; Dontsova, Tatiana A; Astrelin, Igor M

    2016-12-01

    The effect of precursors on the characteristics of tin oxide obtained by chemical vapor deposition (CVD) method was investigated. The synthesis of nanosized tin(IV) oxide was carried out with the use of two different precursors: tin(II) oxalate obtained using tin chloride(II) and oxalic acid; tin(II) oxalate obtained using tin chloride(II); and ammonium oxalate. The synthesized tin(IV) oxide samples were studied by electron microscopy, X-ray diffraction and optical spectra. The lattice parameters of tin(IV) oxide samples were defined, the bandgap of samples were calculated. PMID:27456501

  19. Studies on non-oxide coating on carbon fibers using plasma enhanced chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Sharma, S.; Prajapati, K. K.; Vyas, M. M.; Batra, N. M.

    2016-05-01

    A new way of improving the oxidative behavior of carbon fibers coated with SiC through Plasma Enhanced Chemical Vapor Deposition technique. The complete study includes coating of SiC on glass slab and Stainless steel specimen as a starting test subjects but the major focus was to increase the oxidation temperature of carbon fibers by PECVD technique. This method uses relatively lower substrate temperature and guarantees better stoichiometry than other coating methods and hence the substrate shows higher resistance towards mechanical and thermal stresses along with increase in oxidation temperature.

  20. Spectroscopic Signatures of AA' and AB Stacking of Chemical Vapor Deposited Bilayer MoS2.

    PubMed

    Xia, Ming; Li, Bo; Yin, Kuibo; Capellini, Giovanni; Niu, Gang; Gong, Yongji; Zhou, Wu; Ajayan, Pulickel M; Xie, Ya-Hong

    2015-12-22

    Prominent resonance Raman and photoluminescence spectroscopic differences between AA' and AB stacked bilayer molybdenum disulfide (MoS2) grown by chemical vapor deposition are reported. Bilayer MoS2 islands consisting of the two stacking orders were obtained under identical growth conditions. Resonance Raman and photoluminescence spectra of AA' and AB stacked bilayer MoS2 were obtained on Au nanopyramid surfaces under strong plasmon resonance. Both resonance Raman and photoluminescence spectra show distinct features indicating clear differences in interlayer interaction between these two phases. The implication of these findings on device applications based on spin and valley degrees of freedom will be discussed. PMID:26536495