Science.gov

Sample records for chemical bath deposited

  1. Optimization of chemical bath deposited cadmium sulfide thin films

    SciTech Connect

    Oladeji, I.O.; Chow, L.

    1997-07-01

    Cadmium sulfide (CdS) is known to be an excellent heterojunction partner of p-type cadmium telluride (CdTe) or p-type copper indium diselenide (CuInSe{sub 2}) due essentially to its high electron affinity. It is widely used as a window material in high efficiency thin-film solar cells based on CdTe or CuInSe{sub 2} owing to its transparency and photoconductivity among other properties. The authors report the optimization of CdS thin film grown by chemical bath deposition where homogeneous reactions are minimized. The optimum parameters have enabled them to maximize the thickness of the deposited film in a single dip and to grow thicker films by periodically replenishing the concentration of reactants while the substrate remains continuously dipped in the reaction bath. Characterization results reveal the deposited CdS films exhibit improved optical and electrical properties.

  2. CdSe nanowires grown by using chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Gubur, H. Metin; Septekin, F.; Alpdogan, S.

    2015-10-01

    The Cadmium-selenide (CdSe) nanowire thin films were prepared on glass substrates by using chemical bath deposition (CBD) at 70 °C. Cadmium sulfate and sodium selenosulphate were used as Cd2+ and Se2- ion sources, respectively. The CdSe nanowire film was annealed in an air atmosphere at 573 K for 1 hour. X-ray diffraction (XRD) results showed that the nanowire films as-deposited and annealed had mixed cubic and hexagonal phase. Scanning electron microscopy (SEM) indicated that the CdSe nanowires had lengths ranging from 642 nm to 2.5 μm and diameters ranging from 46 nm to 211 nm. The optical properties of the as-deposited and the annealed nanowire films, an investigated by recording the transmission spectra by using an UV-visible spectrophotometer revealed that the energy band gap decreased (from 1.78 eV to 1.50 eV) upon annealing. The conductivity measurements made by using four-probe methods for both the annealed and the as-deposited films showed that the resistivity, conductivity and activation energy changed upon annealing.

  3. SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques

    NASA Astrophysics Data System (ADS)

    Chaki, Sunil H.; Chaudhary, Mahesh D.; Deshpande, M. P.

    2016-05-01

    The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two temperatures: ambient and 70 °C. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.

  4. Characterization of copper selenide thin films deposited by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Al-Mamun; Islam, A. B. M. O.

    2004-11-01

    A low-cost chemical bath deposition (CBD) technique has been used for the preparation of Cu2-xSe thin films onto glass substrates and deposited films were characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-vis spectrophotometry. Good quality thin films of smooth surface of copper selenide thin films were deposited using sodium selenosulfate as a source of selenide ions. The structural and optical behaviour of the films are discussed in the light of the observed data.

  5. Short review on chemical bath deposition of thin film and characterization

    NASA Astrophysics Data System (ADS)

    Mugle, Dhananjay; Jadhav, Ghanshyam

    2016-05-01

    This reviews the theory of early growth of the thin film using chemical deposition methods. In particular, it critically reviews the chemical bath deposition (CBD) method for preparation of thin films. The different techniques used for characterizations of the chemically films such as X-ray diffractometer (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Electrical conductivity and Energy Dispersive Spectroscopy (EDS) are discussed. Survey shows the physical and chemical properties solely depend upon the time of deposition, temperature of deposition.

  6. Effect of precursor concentration and bath temperature on the growth of chemical bath deposited tin sulphide thin films

    NASA Astrophysics Data System (ADS)

    Jayasree, Y.; Chalapathi, U.; Uday Bhaskar, P.; Sundara Raja, V.

    2012-01-01

    SnS is a promising candidate for a low-cost, non-toxic solar cell absorber layer. Tin sulphide thin films have been deposited by chemical bath deposition technique from a solution containing stannous chloride, thioacetamide, ammonia and triethanolamine (TEA). The effects of concentration of tin salt, triethanolamine and bath temperature on the growth of tin sulphide films have been investigated in order to optimize the growth conditions to obtain tin monosulphide (SnS) films. SnS films obtained under optimized conditions were found to be polycrystalline in nature with orthorhombic structure. The optical band gap of these films was found to be 1.5 eV.

  7. Copper selenide thin films by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    García, V. M.; Nair, P. K.; Nair, M. T. S.

    1999-05-01

    We report the structural, optical, and electrical properties of thin films (0.05 to 0.25 μm) of copper selenide obtained from chemical baths using sodium selenosulfate or N,N-dimethylselenourea as a source of selenide ions. X-ray diffraction (XRD) studies on the films obtained from baths using sodium selenosulfate suggest a cubic structure as in berzelianite, Cu 2- xSe with x=0.15. Annealing the films at 400°C in nitrogen leads to a partial conversion of the film to Cu 2Se. In the case of films obtained from the baths containing dimethylselenourea, the XRD patterns match that of klockmannite, CuSe. Annealing these films in nitrogen at 400°C results in loss of selenium, and consequently a composition rich in copper, similar to Cu 2- xSe, is reached. Optical absorption in the films result from free carrier absorption in the near infrared region with absorption coefficient of ˜10 5 cm -1. Band-to-band transitions which gives rise to the optical absorption in the visible-ultraviolet region may be interpreted in terms of direct allowed transitions with band gap in the 2.1-2.3 eV range and indirect allowed transitions with band gap 1.2-1.4 eV. All the films, as prepared and annealed, show p-type conductivity, in the range of (1-5)×10 3 Ω -1 cm -1. This results in high near infrared reflectance, of 30-80%.

  8. Antimony sulfide thin films prepared by laser assisted chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Shaji, S.; Garcia, L. V.; Loredo, S. L.; Krishnan, B.; Aguilar Martinez, J. A.; Das Roy, T. K.; Avellaneda, D. A.

    2017-01-01

    Antimony sulfide (Sb2S3) thin films were prepared by laser assisted chemical bath deposition (LACBD) technique. These thin films were deposited on glass substrates from a chemical bath containing antimony chloride, acetone and sodium thiosulfate under various conditions of normal chemical bath deposition (CBD) as well as in-situ irradiation of the chemical bath using a continuous laser of 532 nm wavelength. Structure, composition, morphology, optical and electrical properties of the Sb2S3 thin films produced by normal CBD and LACBD were analyzed by X-Ray diffraction (XRD), Raman Spectroscopy, Atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and Photoconductivity. The results showed that LACBD is an effective synthesis technique to obtain Sb2S3 thin films for optoelectronic applications.

  9. Morphology control of zinc oxide films via polysaccharide-mediated, low temperature, chemical bath deposition

    PubMed Central

    Schneider, Andreas M; Eiden, Stefanie

    2015-01-01

    Summary In this study we present a three-step process for the low-temperature chemical bath deposition of crystalline ZnO films on glass substrates. The process consists of a seeding step followed by two chemical bath deposition steps. In the second step (the first of the two bath deposition steps), a natural polysaccharide, namely hyaluronic acid, is used to manipulate the morphology of the films. Previous experiments revealed a strong influence of this polysaccharide on the formation of zinc oxide crystallites. The present work aims to transfer this gained knowledge to the formation of zinc oxide films. The influence of hyaluronic acid and the time of its addition on the morphology of the resulting ZnO film were investigated. By meticulous adjustment of the parameters in this step, the film morphology can be tailored to provide an optimal growth platform for the third step (a subsequent chemical bath deposition step). In this step, the film is covered by a dense layer of ZnO. This optimized procedure leads to ZnO films with a very high electrical conductivity, opening up interesting possibilities for applications of such films. The films were characterized by means of electron microscopy, X-ray diffraction and measurements of the electrical conductivity. PMID:25977851

  10. Chemical bath deposition of thin film cadmium selenide for photoelectrochemical cells

    SciTech Connect

    Boudreau, R.A.; Raugh, R.D.

    1983-02-01

    Chemical bath deposition provides an attractive, low cost method of producing cadmium chalcogenide thin films. Intimate contact between the bath solution and the substrate material permits uniform deposition on substrates of complex geometry, presently difficult with spray pyrolysis, vacuum evaporation, or electrodeposition techniques. For CdSe, rigorous control of deposition conditions promotes the formation of a hexagonal, specularly reflecting deposit rather than a less desirable sphalerite (cubic) powdery deposit. Scanning electron microscopy reveals a small grained layered plate morphology similar to that produced by the evaporation method. Specularly reflecting CdSe films can be formed over large area substrates at a thickness optimal for their use as photoelectrochemical cells (PEC). Employing polysulfide as the redox couple, conversion efficiencies as high as 6.8% have been achieved in the authors' laboratory for these films using a tungstenhalogen white light source.

  11. Bath Parameter Dependence of Chemically-Deposited Copper Selenide Thin Film

    NASA Astrophysics Data System (ADS)

    Al-Mamun; Islam, A. B. M. O.

    In this article, a low cost chemical bath deposition (CBD) technique has been used for the preparation of Cu2-xSe thin films on to glass substrate. Different thin films (0.2-0.6 μm) were prepared by adjusting the bath parameter like concentration of ammonia, deposition time, temperature of the solution, and the ratios of the mixing composition between copper and selenium in the reaction bath. From these studies, it reveals that at low concentration of ammonia or TEA, the terminal thicknesses of the films are less, which gradually increases with the increase of concentrations and then drop down at still higher concentrations. It has been found that complexing the Cu2+ ions with TEA first, and then addition of ammonia yields better results than the reverse process. The film thickness increases with the decrease of value x of Cu2-xSe.

  12. Study of planar heterojunction perovskite photovoltaic cells using compact titanium oxide by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kouhei; Kuwabara, Takayuki; Takahashi, Kohshin; Taima, Tetsuya

    2015-08-01

    Spin-coated perovskite solar cells from sol-gels result in high processing costs because of the need for high temperatures. Here, we report a low-temperature spin-coating route to fabricate planar heterojunction perovskite solar cells using chemical bath deposition of compact-TiOx layers. Comparison of the solar cell properties of compact-TiOx and compact-TiO2 layers show that the power conversion efficiency of the planar heterojunction perovskite solar cell fabricated by the low-temperature, compact-TiOx route is comparable to that of conventional TiO2. The chemical bath deposition method requires heating to 150 °C only to form amorphous compact-TiOx films compared with the 450 °C required for crystalline anatase compact-TiO2 films.

  13. High-temperature conductivity in chemical bath deposited copper selenide thin films

    NASA Astrophysics Data System (ADS)

    Dhanam, M.; Manoj, P. K.; Prabhu, Rajeev. R.

    2005-07-01

    This paper reports high-temperature (305-523 K) electrical studies of chemical bath deposited copper (I) selenide (Cu 2-xSe) and copper (II) selenide (Cu 3Se 2) thin films. Cu 2-xSe and Cu 3Se 2 have been prepared on glass substrates from the same chemical bath at room temperature by controlling the pH. From X-ray diffraction (XRD) profiles, it has been found that Cu 2-xSe and Cu 3Se 2 have cubic and tetragonal structures, respectively. The composition of the chemical constituent in the films has been confirmed from XRD data and energy-dispersive X-ray analysis (EDAX). It has been found that both phases of copper selenide thin films have thermally activated conduction in the high-temperature range. In this paper we also report the variation of electrical parameters with film thickness and the applied voltage.

  14. Process and film characterization of chemical-bath-deposited ZnS thin films

    SciTech Connect

    Dona, J.M.; Herrero, J.

    1994-01-01

    Chemical-bath deposition of ZnS thin films from NH{sub 3}/NH{sub 2}-NH{sub 2}/SC(NH{sub 2}){sub 2}/ZnSO{sub 4} solutions has been studied. The effect of various process parameters on the growth and the film quality is presented. A first approach to a mechanistic interpretation of the chemical process is reported. The structural, optical, chemical, and electrical properties of the ZNS thin films deposited by this method have been studied. The electron diffraction (EDS) analysis shows that the films are microcrystalline with a cubic structure. EDS analysis has demonstrated that the films are highly stoichiometric. Scanning electron microscopy studies of the ZnS thin films deposited by this method show that the films are continuous and homogeneous. Electrical conductivity measurements have shown the highly resistivity nature of these films ({sigma} = 10{sup {minus}9} S/cm).

  15. Structural and Optical Study of Chemical Bath Deposited Nano-Structured CdS Thin Films

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh; Sharma, Dheeraj; Sharma, Pankaj; Sharma, Vineet; Barman, P. B.; Katyal, S. C.

    2011-12-01

    CdS is commonly used as window layer in polycrystalline solar cells. The paper presents a structural and optical study of CdS nano-structured thin films. High quality CdS thin films are grown on commercial glass by means of chemical bath deposition. It involves an alkaline solution of cadmium salt, a complexant, a chalcogen source and a non-ionic surfactant. The films have been prepared under various process parameters. The chemically deposited films are annealed to estimate its effect on the structural and optical properties of films. These films (as -deposited and annealed) have been characterized by means of XRD, SEM and UV-Visible spectrophotometer. XRD of films show the nano-crystalline nature. The energy gap of films is found to be of direct in nature.

  16. Photoluminescence studies of chemically bath deposited nanocrystalline lead sulphide (PbS) thin films

    NASA Astrophysics Data System (ADS)

    Singh, L. Rajen; Singh, S. Bobby; London, R. K.; Sharma, H. B.; Rahman, A.

    2012-07-01

    Nanocrystalline lead sulphide (PbS) films have been deposited on glass substrates by chemical bath deposition (CBD) method. Lead acetate [Pb(CH3COOH)2] and thiourea [(NH2)2CS] were used as starting materials for deposition of PbS thin films. The as-deposited thin films were found to be crystalline having cubic phase structure with the strongest diffraction intensity along (200) plane. The grain sizes calculated from XRD spectra were found to decrease from 17 to 15 nm with the decrease in molar concentration of the precursor solutions. The structural, optical and photoluminescence properties of the PbS nanocrystalline thin film with different molar concentration were studied.

  17. Dependence of electro-optical properties on the deposition conditions of chemical bath deposited CdS thin films

    SciTech Connect

    Dona, J.M.; Herrero, J.

    1997-11-01

    Lately, there has been a sharp increase in the publication of papers on chemical bath deposition of CdS thin films and related materials due to successful results obtained using this method to fabricate CdS thin-film buffer layers for CuInSe{sub 2}- and CdTe-based polycrystalline thin-film solar cells. Generally, these papers focus on previously proposed methods of studying film characteristics without a systematic study of the influence of deposition conditions on film characteristics. In this paper the authors present an exhaustive study of the chemical bath-deposited CdS thin films electro-optical properties dependence on deposition variables. The authors propose not only a set of conditions for obtaining CdS thin films by this method but additionally, suitable deposition process conditions for certain application requirements, such as buffer layers for thin-film solar cells. The observed electro-optical characteristics dependence on the deposition variables corroborates the chemical mechanism that they proposed previously for this process.

  18. NiS/ZnS multilayer thinfilm prepared by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Yuvaloshini, J.; Ravi, G.; Shanmugavadivu, Ra.

    2013-06-01

    NiS/ZnS multilayer thin films were prepared by Chemical Bath Deposition (CBD) technique by successive coatings of nickel, zinc and sulphur. The X-ray diffraction was used to obtain structural characterization for the multilayer thinfilms, the crystalline size of 50 nm. The Scanning Electron Microscope techniques were employed to study the internal structure and indentified as of hexagonal structure. An EDAX spectrum confirms the compositional analysis of nickel, zinc and sulphur in nominal composition. The photoluminescence behaviour of NiS/ZnS multilayered system consists in the superposition independent photoluminescence emission in blue shift.

  19. Annealing effect on Cu2S thin films prepared by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    More, Pawan; Dhanayat, Swapnali; Gattu, Ketan; Mahajan, Sandeep; Upadhye, Deepak; Sharma, Ramphal

    2016-05-01

    In present work Cu2S thin film fabricated on glass substrate by simple, cost effective chemical bath deposition method subsequently it annealed at 150°c.These films were studied for their structural, optical and electrical properties using X-ray diffraction, UV-vis spectrophotometer and I-V system. The results show successful synthesis of Cu2S thin films and improvement in crystalline nature of the thin film which resulted in reduced bad gap and resistance of the film. Thus these thinfilms prove to be a promising candidate for solar cell application.

  20. Ion beam analysis of copper selenide thin films prepared by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Andrade, E.; García, V. M.; Nair, P. K.; Nair, M. T. S.; Zavala, E. P.; Huerta, L.; Rocha, M. F.

    2000-03-01

    Analyses of Rutherford back scattered (RBS) 4He+-particle spectra of copper selenide thin films deposited on glass slides by chemical bath were carried out to determine the changes brought about in the thin film by annealing processes. The atomic density per unit area and composition of the films were obtained from these measurements. This analysis shows that annealing in a nitrogen atmosphere at 400°C leads to the conversion of Cu xSe thin film to Cu 2Se. Results of X-ray diffraction, optical, and electrical characteristics on the films are presented to supplement the RBS results.

  1. Fabrication of ZnO nanorod using spray-pyrolysis and chemical bath deposition method

    SciTech Connect

    Ramadhani, Muhammad F. Pasaribu, Maruli A. H. Yuliarto, Brian Nugraha

    2014-02-24

    ZnO thin films with nanorod structure were deposited using Ultrasonic Spray Pyrolysis method for seed growth, and Chemical Bath Deposition (CBD) for nanorod growth. High purity Zn-hydrate and Urea are used to control Ph were dissolved in ethanol and aqua bidest in Ultrasonic Spray Pyrolysis process. Glass substrate was placed above the heater plate of reaction chamber, and subsequently sprayed with the range duration of 5, 10 and 20 minutes at the temperatures of 3500 C. As for the Chemical Bath Deposition, the glass substrate with ZnO seed on the surface was immerse to Zn-hydrate, HMTA (Hexa Methylene Tetra Amine) and deionized water solution for duration of 3, 5 and 7 hour and temperatures of 600 C, washed in distilled water, dried, and annealed at 3500 C for an hour. The characterization of samples was carried out to reveal the surface morphology using Scanning Electron Microscopy (SEM). From the data, the combination of 5 minutes of Ultrasonic Spray Pyrolysis process and 3 hour of CBD has showed the best structure of nanorod. Meanwhile the longer Spraying process and CBD yield the bigger nanorod structure that have been made, and it makes the films more dense which make the nanorod collide each other and as a result produce unsymetric nanorod structure.

  2. Annealing effect on structural and optical properties of chemical bath deposited MnS thin film

    NASA Astrophysics Data System (ADS)

    Ulutas, Cemal; Gumus, Cebrail

    2016-03-01

    MnS thin film was prepared by the chemical bath deposition (CBD) method on commercial microscope glass substrate deposited at 30 °C. The as-deposited film was given thermal annealing treatment in air atmosphere at various temperatures (150, 300 and 450 °C) for 1 h. The MnS thin film was characterized by using X-ray diffraction (XRD), UV-vis spectrophotometer and Hall effect measurement system. The effect of annealing temperature on the structural, electrical and optical properties such as optical constants of refractive index (n) and energy band gap (Eg) of the film was determined. XRD measurements reveal that the film is crystallized in the wurtzite phase and changed to tetragonal Mn3O4 phase after being annealed at 300 °C. The energy band gap of film decreased from 3.69 eV to 3.21 eV based on the annealing temperature.

  3. Photoluminescence study of chemical bath deposited ZnIn2Se4 thin films

    NASA Astrophysics Data System (ADS)

    Babu, Pejjai; Reddy, Minnam Reddy Vasudeva; Reddy, Kotte Tulasi Ramakrishna

    2014-07-01

    Thin films of ZnIn2Se4 (ZIS) have been prepared by chemical bath deposition (CBD) using a novel and water soluble Na2SeO3 as a source of selenium ion for the first time. The deposition of the films was carried out at various pH values in the range of 6-11, keeping all other bath parameters at optimised values. EDAX analysis revealed that all the grown layers were selenium deficient with trace amounts of oxygen and chlorine incorporation. FTIR spectral measurements revealed the associated symmetric and asymmetric stretching modes of bridged oxygen atoms on the surface of the films. The room temperature photoluminescence properties of these samples at different pH values are studied in detail. Further, Gaussian curve fitting was employed to deconvolute the PL spectra and the change in intensities of these peaks with respective to pH values was addressed and correlated to the role of native defects that were incorporated while deposition. The results indicate that the variation of solution pH had a noticeable effect on the photoluminescence ZIS films.

  4. Chemical bath deposition of Cu3BiS3 thin films

    NASA Astrophysics Data System (ADS)

    Deshmukh S., G.; Panchal A., K.; Vipul, Kheraj

    2016-05-01

    First time, copper bismuth sulfide (Cu3BiS3) thin films were synthesized on the glass substrate using simple, low-cost chemical bath deposition (CBD) technique. The synthesized parameters such as temperature of bath, pH and concentration of precursors were optimized for the deposition of uniform, well adherent Cu3BiS3 thin films. The optical, surface morphology and structural properties of the Cu3BiS3 thin films were studied using UV-VIS-NIR spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The as- synthesized Cu3BiS3 film exhibits a direct band gap 1.56 to 1.58 eV having absorption coefficient of the order of 105 cm-1. The XRD declares the amorphous nature of the films. SEM images shows films were composed of close-packed fine spherical nanoparticles of 70-80 nm in diameter. The chemical composition of the film was almost stoichiometric. The optical study indicates that the Cu3BiS3 films can be applied as an absorber layer for thin film solar cells.

  5. Chemical bath deposition of cadmium sulfide on graphene-coated flexible glass substrate

    SciTech Connect

    Seo, Won-Oh; Jung, Younghun; Kim, Jihyun; Kim, Jiwan; Kim, Donghwan

    2014-03-31

    We demonstrate a flexible structure of cadmium sulfide (CdS) on graphene-coated glass substrate, where CdS was deposited by the chemical bath deposition method on defective tri-layer graphene. The defects in graphene, confirmed by micro-Raman spectroscopy, were created by a ultra-violet treatment with varying exposure time from 10 to 60 min. The number of defect sites in the graphene as a seed layer was related to the quality of the CdS thin films determined from the results from X-ray diffraction, optical transmittance, scanning electron microscopy, and room temperature micro-photoluminescence. Our film-on-substrate structure of CdS-graphene-on-glass was maintained up to a tensile strain of 0.3%, where graphene with a high failure strain was employed as a transparent conductive layer.

  6. Synthesis and Characterization of SnO2 Thin Films by Chemical Bath Deposition

    NASA Astrophysics Data System (ADS)

    Rifai, Aditia; Iqbal, Muhammad; Nugraha; Nuruddin, Ahmad; Suyatman; Yuliarto, Brian

    2011-12-01

    SnO2 thin films were deposited on glass substrate by chemical bath deposition (CBD) with stannous chloride (SnCl2..2H2O) as a precursor and urea (CO(NH2)2) as a buffer. X-Ray Diffraction (XRD) are used to characterize the structure of the films; the surface morphology of the films were observed by Scanning Electron Microscope (SEM). Using this techniques, we specify the effect of stannous chloride concentration and weight ratio of urea/H2O on the crystallinity and morphology of these films. The rutile structure corresponding (110), (101) and (211) planes of SnO2 is obtained. The increasing of stannous chloride concentration and the decreasing weight ratio of urea/H2O is found to improve the crystallinity of the film. The average diameter of grain size is about 96 nm.

  7. Chemical-bath deposition of ZnSe thin films: Process and material characterization

    SciTech Connect

    Dona, J.M.; Herrero, J.

    1995-03-01

    Chemical-bath deposition of ZnSe thin films from NH{sub 3}/NH{sub 2}-NH{sub 2}/SeC(NH{sub 2}){sub 2}/Na{sub 2}SO{sub 3}/ZnSO{sub 4} solutions has been studied. The effect of various process parameters on the growth and the film quality is presented. A first approach to a mechanistic interpretation of the chemical process, based on the influence of the process parameters on the film growth rate, is reported. The structural, optical, chemical, and electrical properties of the ZnSe thin-films deposited by this method have been studied. The electron diffraction (EDS) analysis shows that the films are microcrystalline with mixed cubic and hexagonal structure. EDS analysis has demonstrated that the films are highly stoichiometric. Scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy studies of the ZnSe thin films deposited by this method show that the films are continuous and homogeneous. Optical measurements have allowed the authors to detect the presence of the spin-orbit splitting effect in this material. Electrical conductivity measurements have shown the highly resistive nature of these films ({rho} {approximately} 10{sup 9} {Omega} cm).

  8. Combinatorial Chemical Bath Deposition of CdS Contacts for Chalcogenide Photovoltaics.

    PubMed

    Mokurala, Krishnaiah; Baranowski, Lauryn L; de Souza Lucas, Francisco W; Siol, Sebastian; van Hest, Maikel F A M; Mallick, Sudhanshu; Bhargava, Parag; Zakutayev, Andriy

    2016-09-12

    Contact layers play an important role in thin film solar cells, but new material development and optimization of its thickness is usually a long and tedious process. A high-throughput experimental approach has been used to accelerate the rate of research in photovoltaic (PV) light absorbers and transparent conductive electrodes, however the combinatorial research on contact layers is less common. Here, we report on the chemical bath deposition (CBD) of CdS thin films by combinatorial dip coating technique and apply these contact layers to Cu(In,Ga)Se2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) light absorbers in PV devices. Combinatorial thickness steps of CdS thin films were achieved by removal of the substrate from the chemical bath, at regular intervals of time, and in equal distance increments. The trends in the photoconversion efficiency and in the spectral response of the PV devices as a function of thickness of CdS contacts were explained with the help of optical and morphological characterization of the CdS thin films. The maximum PV efficiency achieved for the combinatorial dip-coating CBD was similar to that for the PV devices processed using conventional CBD. The results of this study lead to the conclusion that combinatorial dip-coating can be used to accelerate the optimization of PV device performance of CdS and other candidate contact layers for a wide range of emerging absorbers.

  9. Combinatorial Chemical Bath Deposition of CdS Contacts for Chalcogenide Photovoltaics

    SciTech Connect

    Mokurala, Krishnaiah; Baranowski, Lauryn L.; de Souza Lucas, Francisco W.; Siol, Sebastian; van Hest, Maikel F. A. M.; Mallick, Sudhanshu; Bhargava, Parag; Zakutayev, Andriy

    2016-09-12

    Contact layers play an important role in thin film solar cells, but new material development and optimization of its thickness is usually a long and tedious process. A high-throughput experimental approach has been used to accelerate the rate of research in photovoltaic (PV) light absorbers and transparent conductive electrodes, however the combinatorial research on contact layers is less common. Here, we report on the chemical bath deposition (CBD) of CdS thin films by combinatorial dip coating technique and apply these contact layers to Cu(In,Ga)Se2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) light absorbers in PV devices. Combinatorial thickness steps of CdS thin films were achieved by removal of the substrate from the chemical bath, at regular intervals of time, and in equal distance increments. The trends in the photoconversion efficiency and in the spectral response of the PV devices as a function of thickness of CdS contacts were explained with the help of optical and morphological characterization of the CdS thin films. The maximum PV efficiency achieved for the combinatorial dip-coating CBD was similar to that for the PV devices processed using conventional CBD. The results of this study lead to the conclusion that combinatorial dip-coating can be used to accelerate the optimization of PV device performance of CdS and other candidate contact layers for a wide range of emerging absorbers.

  10. Improved efficiency of the chemical bath deposition method during growth of ZnO thin films

    SciTech Connect

    Ortega-Lopez, Mauricio; Avila-Garcia, Alejandro; Albor-Aguilera, M.L.; Resendiz, V.M. Sanchez

    2003-06-19

    Chemical bath deposition (CBD) is an inexpensive and low temperature method (25-90 deg. C) that allows to deposit large area semiconductor thin films. However, the extent of the desired heterogeneous reaction upon the substrate surface is limited first by the competing homogeneous reaction, which is responsible for colloidal particles formation in the bulk solution, and second, by the material deposition on the CBD reactor walls. Therefore, the CBD method exhibits low efficiency in terms of profiting the whole amount of starting materials. The present work describes a procedure to deposit ZnO thin films by CBD in an efficient way, since it offers the possibility to minimize both the undesirable homogeneous reaction in the bulk solution and the material deposition on the CBD reactor walls. In a first stage, zinc peroxide (ZnO{sub 2}) crystallizing with cubic structure is obtained. This compound shows a good average transparency (90%) and an optical bandgap of 4.2 eV. After an annealing process, the ZnO{sub 2} suffers a transformation toward polycrystalline ZnO with hexagonal structure and 3.25 eV of optical bandgap. The surface morphology of the films, analyzed by atomic force microscope (AFM), reveals three-dimensional growth features as well as no colloidal particles upon the surface, therefore indicating the predominance of the heterogeneous reaction during the growth.

  11. Synthesis and Characterization of In2S3 Thin Films Deposited by Chemical Bath Deposition on Polyethylene Naphthalate Substrates

    NASA Astrophysics Data System (ADS)

    Castelo-González, O. A.; Santacruz-Ortega, H. C.; Quevedo-López, M. A.; Sotelo-Lerma, M.

    2012-04-01

    Indium sulfide (In2S3) thin films were deposited on polyethylene naphthalate (PEN) by chemical bath deposition (CBD). The materials were characterized by ultraviolet (UV)-visible spectroscopy, x-ray photoelectron spectroscopy (XPS), energy-dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), and x-ray diffraction (XRD) to investigate the influence of the polymeric substrate on the resulting thin In2S3. The films showed polycrystalline (cubic and tetragonal) structure. A reduction of the ordering of the polymeric chains at the surface of the PEN was also observed, demonstrated by the appearance of two infrared bands at 1094 cm-1 and 1266 cm-1. Presence of oxygen during the early stages of In2S3 growth was also identified. We propose a reaction mechanism for both the equilibrium and nucleation stages. These results demonstrate that In2S3 can be deposited at room temperature on a flexible substrate.

  12. Surface characterization of ZnO nanorods grown by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Mbulanga, C. M.; Urgessa, Z. N.; Tankio Djiokap, S. R.; Botha, J. R.; Duvenhage, M. M.; Swart, H. C.

    2016-01-01

    The surface composition of as-grown and annealed ZnO nanorods (ZNs) grown by a two-step chemical bath deposition method is investigated by the following surface-sensitive techniques: Time-of-Flight Secondary Ion Mass Spectroscopy (TOF-SIMS), X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The presence of H on the surface and throughout the entire thickness of ZNs is confirmed by TOF-SIMS. Based on TOF-SIMS results, the O2 XPS peak mostly observable at 531.5 is assigned to O bound to H. Furthermore, it is found that the near surface region of as-grown ZNs is Zn-rich, and annealing at high temperature ( 850 °C) removes H-related defects from the surface of ZNs and affect the balance of zinc and oxygen concentrations.

  13. Chemical bath deposition of semiconductor thin films & nanostructures in novel microreactors

    NASA Astrophysics Data System (ADS)

    McPeak, Kevin M.

    Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures and thin films, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. CBD is traditionally performed in a batch reactor, requiring only a substrate to be immersed in a supersaturated solution of aqueous precursors such as metal salts, complexing agents, and pH buffers. Highlights of CBD include low cost, operation at low temperature and atmospheric pressure, and scalability to large area substrates. In this dissertation, I explore CBD of semiconductor thin films and nanowire arrays in batch and continuous flow microreactors. Microreactors offer many advantages over traditional reactor designs including a reduction in mass transport limitations, precise temperature control and ease of production scale-up by "numbering up". Continuous flow micoreactors offer the unique advantage of providing reaction conditions that are time-invariant but change smoothly as a function of distance down the reaction channel. Growth from a bath whose composition changes along the reactor length results in deposited materials whose properties vary as a function of position on the substrate, essentially creating a combinatorial library. These substrates can be rapidly characterized to identify relationships between growth conditions and material properties or growth mechanisms. I have used CBD in a continuous flow microreactor to deposit ZnO nanowire arrays and CdZnS films whose optoelectronic properties vary as a function of position. The spatially-dependent optoelectronic properties of these materials have been correlated to changes in the composition, structure or growth mechanisms of the materials and ultimately their growth conditions by rigorous spatial characterization. CBD in a continuous flow microreactor, coupled with spatial characterization, provides a new route to understanding the connection between CBD growth

  14. Effect of Reaction Temperature of CdS Buffer Layers by Chemical Bath Deposition Method.

    PubMed

    Kim, Hye Jin; Kim, Chae-Woong; Jung, Duk Young; Jeong, Chaehwan

    2016-05-01

    This study investigated CdS deposition on a Cu(In,Ga)Se2 (CIGS) film via chemical bath deposition (CBD) in order to obtain a high-quality optimized buffer layer. The thickness and reaction temperature (from 50 degrees C to 65 degrees C) were investigated, and we found that an increase in the reaction temperature during CBD, resulted in a thicker CdS layer. We obtained a thin film with a thickness of 50 nm at a reaction temperature of 60 degrees C, which also exhibited the highest photoelectric conversion efficiency for use in solar cells. Room temperature time-resolved photoluminescence (TR-PL) measurements were performed on the Cu(In,Ga)Se2 (CIGS) thin film and CdS/CIGS samples to determine the recombination process of the photo-generated minority carrier. The device performance was found to be dependent on the thickness of the CdS layer. As the thickness of the CdS increases, the fill factor and the series resistance increased to 61.66% and decreased to 8.35 Ω, respectively. The best condition was observed at a reaction temperature of 60 degrees C, and its conversion efficiency was 12.20%.

  15. Tuning the morphology of metastable MnS films by simple chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Dhandayuthapani, T.; Girish, M.; Sivakumar, R.; Sanjeeviraja, C.; Gopalakrishnan, R.

    2015-10-01

    In the present investigation, we have prepared the spherical particles, almond-like, and cauliflower-like morphological structures of metastable MnS films on glass substrate by chemical bath deposition technique at low temperature without using any complexing or chelating agent. The morphological change of MnS films with molar ratio may be due to the oriented aggregation of adjacent particles. The compositional purity of deposited film was confirmed by the EDAX study. X-ray diffraction and micro-Raman studies confirm the sulfur source concentration induced enhancement in the crystallization of films with metastable MnS phase (zinc-blende β-MnS, and wurtzite γ-MnS). The shift in PL emission peak with molar ratio may be due to the change in optical energy band gap of the MnS, which was further confirmed by the optical absorbance study. The paramagnetic behavior of the sample was confirmed by the M-H plot.

  16. Properties of Al-doped ZnS Films Grown by Chemical Bath Deposition

    NASA Astrophysics Data System (ADS)

    Nagamani, K.; Prathap, P.; Lingappa, Y.; Miles, R. W.; Reddy, K. T. R.

    Zinc sulphide (ZnS) buffer layers are a cadmium free, wider energy band gap, alternative to the cadmium sulphide (CdS) buffer layers commonly used in copper indium gallium diselenide (CuInGaSe2)-based solar cells. However extrinsic doping of the ZnS is important to lower the resistivity of the layers and to improve flexibility of device design. In this work, Al-doped ZnS nanocrystalline films have been produced on glass substrates using a chemical bath deposition (CBD) method. The Al- concentration was varied from 0 at. % to 10 at. %, keeping other deposition parameters constant. The elemental composition of a typical sample with 6 at. % 'Al' in ZnS was Zn=44.9 at. %, S=49.8 at. % and Al=5.3 at.%. The X-ray diffraction data taken on these samples showed a broad peak corresponding to the (111) plane of ZnS while the crystallite size varied in the range, 8 - 15 nm, depending on the concentration of Al in the layers. The films with a Al-doping content of 6 at. % had an optical transmittance of 75% in the visible range and the energy band gap evaluated from the data was 3.66 eV. The films n-type electrical conductivities and the electrical resistivity varied in the range, 107-103 Ωcm, it decreasing with an increase of the Al-concentration in the solution.

  17. Chemical bath deposition and characterization of electrochromic thin films of sodium vanadium bronzes

    SciTech Connect

    Najdoski, Metodija; Koleva, Violeta; Demiri, Sani

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We report a new chemical bath method for the deposition of vanadium bronze thin films. Black-Right-Pointing-Pointer The films are phase mixture of NaV{sub 6}O{sub 15} and Na{sub 1.1}V{sub 3}O{sub 7.9} with 10.58% lattice water. Black-Right-Pointing-Pointer The as-deposited vanadium bronze films exhibit two-step electrochromism. Black-Right-Pointing-Pointer They change their yellow-orange color to green and then from green to blue color. Black-Right-Pointing-Pointer The method allows the preparation of films on substrates with low melting point. -- Abstract: Thin yellow-orange films of sodium vanadium oxide bronzes have been prepared from a sodium-vanadium solution (1:1) at 75 Degree-Sign C and pH = 3. The composition, structure and morphology of the films have been studied by XRD, IR spectroscopy, TG and SEM-EDX analyses. It has been established that the prepared films are a phase mixture of hydrated NaV{sub 6}O{sub 15} (predominant component) and Na{sub 1.1}V{sub 3}O{sub 7.9} with total water content of 10.58%. The sodium vanadium bronze thin films exhibit two-step electrochromism followed by color change from yellow-orange to green, and then from green to blue. The cyclic voltammetry measurements on the as-deposited and annealed vanadium bronze films reveal the existence of different oxidation/reduction vanadium sites which make these films suitable for electrochromic devices. The annealing of the films at 400 Degree-Sign C changes the composition, optical and electrochemical properties.

  18. Study of the morphology of ZnS thin films deposited on different substrates via chemical bath deposition.

    PubMed

    Gómez-Gutiérrez, Claudia M; Luque, P A; Castro-Beltran, A; Vilchis-Nestor, A R; Lugo-Medina, Eder; Carrillo-Castillo, A; Quevedo-Lopez, M A; Olivas, A

    2015-01-01

    In this work, the influence of substrate on the morphology of ZnS thin films by chemical bath deposition is studied. The materials used were zinc acetate, tri-sodium citrate, thiourea, and ammonium hydroxide/ammonium chloride solution. The growth of ZnS thin films on different substrates showed a large variation on the surface, presenting a poor growth on SiO2 and HfO2 substrates. The thin films on ITO substrate presented a uniform and compact growth without pinholes. The optical properties showed a transmittance of about 85% in the visible range of 300-800 nm with band gap of 3.7 eV.

  19. Surface studies, structural characterization and quantity determination of PbSe nanocrystals deposited by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Ghobadi, Nader; Hatam, Ebrahim Gholami

    2015-05-01

    High quality PbSe nanostructural films are prepared by a chemical bath deposition (CBD) method. The experimental surface studies including scanning electron microscopy (SEM) and X-ray diffraction (XRD) have been used to analyze PbSe nanostructure indicated high purity of sample without cracks or holes in nanostructure scale. Quantity of material is relatively hard to measure accurately for thin films. Rutherford Backscattering Spectroscopy (RBS) was used to obtain stoichiometry as well as thin film thickness. For all nanoparticles size (50-250 nm) we found that the Pb to Se ratio (Pb:Se) variation in depth is approximately constant value of 0.42±0.06 until near to the substrate where it's value diminishes.

  20. Optical Characteristics of La-Doped ZnS Thin Films Prepared by Chemical Bath Deposition

    NASA Astrophysics Data System (ADS)

    Xie, Hai-Qing; Chen, Yuan; Huang, Wei-Qing; Huang, Gui-Fang; Peng, Ping; Peng, Li; Wang, Tai-Hong; Zeng, Yun

    2011-02-01

    Undoped and La-doped ZnS thin films are prepared by chemical bath deposition (CBD) process through the co-precipitation reaction of inorganic precursors zinc sulfate, thiosulfate ammonia and La2O3. Composition of the films is analyzed using an energy-dispersive x-ray spectroscopy (EDS). Absorption spectra and spectral transmittances of the films are measured using a double beam UV-VIS spectrophotometer (TU-1901). It is found that significant red shifts in absorption spectra and decrease in absorptivity are obtained with increasing lanthanum. Moreover, optical transmittance is increased as La is doped, with a transmittance of more than 80% for wavelength above 360 nm in La-doped ZnS thin films. Compared to pure ZnS, the band gap decreases and flat-band potential positively shifts to quasi-metal for the La-doped ZnS. These results indicate that La-doped ZnS thin films could be valuably adopted as transparent electrodes.

  1. Synthesis and characterization of CrSe thin film produced via chemical bath deposition

    NASA Astrophysics Data System (ADS)

    kariper, Ishak afsin

    2017-02-01

    Chromium selenide (CrSe) crystalline thin film has been produced via chemical bath deposition on substrates (commercial glass). Transmittance, absorption, optical band gap and refractive index of the films have been examined by UV/VIS. Spectrum. Structural properties have been examined and XRD hexagonal form has been observed. The structural and optical properties of CrSe thin films, produced at different pH levels were analyzed; SEM and EDX analysis have been performed for surface analysis and elemental ratio of the films. It has been found that some properties of the films have been changed with pH and the changes of these properties with respect to pH have been investigated. Tested pH values were between 8 and 11. The optical band gap has been varied between 3.80 and 3.92 eV and film thickness has been changed from 76 nm to 126 nm for tested pH levels. Absorbance values were found to be 0.053, 0.018, 0.012 and 0.069 for pH values of 11, 10, 9 and 8, respectively (550 nm wavelength). The refractive index of CrSe thin films have been changed with film thickness, found as 2.27, 2.24, 2.25 and 2.26.

  2. CdS nanoparticles grown in a polymer matrix by chemical bath deposition.

    PubMed

    Ghosh, P K; Maity, R; Chattopadhyay, K K

    2005-02-01

    Nanocrystallites of CdS have been grown by chemical bath deposition within the pores of poly(vinyl alcohol) (PVA) on glass and Si substrates. The CdS-PVA composite films are transparent in the visible region. XRD and TEM diffraction patterns confirmed the nanocrystalline CdS phase formation. TEM study of the film revealed the manifestation of nano CdS phase formation and the average particles size was varied in the range 5-12 nm. UV-vis spectrophotometric measurement showed high transparency (nearly 80% in the wavelength range 550-900 nm) of the films with a direct allowed band gap lying in the range 2.64-3.25 eV. Particle sizes have also been calculated from the shift of band gap with respect to that of bulk value and were found to be in the range 3.3-6.44 nm. The high dielectric constant (lies in the range 120-250 at high frequency) of PVA/CdS nanocomposite compared to that of pure PVA (-28) has been observed. The dielectric constant decreases with increase of dispersibility of the CdS nanoparticles within PVA. The nanocrystalline PVA/CdS thin films have also showed field emission properties with a turn-on field of approximately 6.6 V/microm, whereas only PVA thin film and bulk CdS on PVA have shown no field emission.

  3. Adherent and Conformal Zn(S,O,OH) Thin Films by Rapid Chemical Bath Deposition with Hexamethylenetetramine Additive.

    PubMed

    Opasanont, Borirak; Van, Khoa T; Kuba, Austin G; Choudhury, Kaushik Roy; Baxter, Jason B

    2015-06-03

    ZnS is a wide band gap semiconductor whose many applications, such as photovoltaic buffer layers, require uniform and continuous films down to several nanometers thick. Chemical bath deposition (CBD) is a simple, low-cost, and scalable technique to deposit such inorganic films. However, previous attempts at CBD of ZnS have often resulted in nodular noncontinuous films, slow growth rates at low pH, and high ratio of oxygen impurities at high pH. In this work, ZnS thin films were grown by adding hexamethylenetetramine (HMTA) to a conventional recipe that uses zinc sulfate, nitrilotriacetic acid trisodium salt, and thioacetamide. Dynamic bath characterization showed that HMTA helps the bath to maintain near-neutral pH and also acts as a catalyst, which leads to fast nucleation and deposition rates, continuous films, and less oxygen impurities in the films. Films deposited on glass from HMTA-containing bath were uniform, continuous, and 90 nm thick after 1 h, as opposed to films grown without HMTA that were ∼3 times thinner and more nodular. On Cu2(Zn,Sn)Se4, films grown with HMTA were continuous within 10 min. The films have comparatively few oxygen impurities, with S/(S+O) atomic ratio of 88%, and high optical transmission of 98% at 360 nm. The Zn(S,O,OH) films exhibit excellent adhesion to glass and high resistivity, which make them ideal nucleation layers for other metal sulfides. Their promise as a nucleation layer was demonstrated with the deposition of thin, continuous Sb2S3 overlayers. This novel HMTA chemistry enables rapid deposition of Zn(S,O,OH) thin films to serve as a nucleation layer, a photovoltaic buffer layer, or an extremely thin continuous coating for thin film applications. HMTA may also be applied in a similar manner for solution deposition of other metal chalcogenide and oxide thin films with superior properties.

  4. Structural and optical properties of nano-structured CdS thin films prepared by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Bai, Rekha; Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.

    2016-05-01

    Cadmium sulfide (CdS) thin films have been deposited on conducting glass substrates by chemical bath deposition (CBD) technique. The effect of precursor concentration on the structural, morphological, compositional, and optical properties of the CdS films has been studied. Crystal structure of these CdS films is characterized by X-ray diffraction (XRD) and it reveals polycrystalline structure with mixture of cubic and wurtzite phases with grain size decreasing as precursor concentration is increased. Optical studies reveal that the CdS thin films have high transmittance in visible spectral region reaching 90% and the films possess direct optical band gap that decreases from 2.46 to 2.39 eV with decreasing bath concentration. Our study suggests that growth is nucleation controlled.

  5. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition.

    PubMed

    Liao, Yu-Kuang; Liu, Yung-Tsung; Hsieh, Dan-Hua; Shen, Tien-Lin; Hsieh, Ming-Yang; Tzou, An-Jye; Chen, Shih-Chen; Tsai, Yu-Lin; Lin, Wei-Sheng; Chan, Sheng-Wen; Shen, Yen-Ping; Cheng, Shun-Jen; Chen, Chyong-Hua; Wu, Kaung-Hsiung; Chen, Hao-Ming; Kuo, Shou-Yi; Charlton, Martin D B; Hsieh, Tung-Po; Kuo, Hao-Chung

    2017-04-06

    Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new "paradigm shift" non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs) with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD) and chemical bath deposition (CBD) as used by the Cu(In,Ga)Se₂ (CIGS) thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase.

  6. Physical Property Characterization of Pb2+-Doped CdS Nanofilms Deposited by Chemical-Bath Deposition at Low Temperature

    NASA Astrophysics Data System (ADS)

    Díaz-Reyes, J.; Contreras-Rascón, J. I.; Galván-Arellano, M.; Arias-Cerón, J. S.; Gutiérrez-Arias, J. E. M.; Flores-Mena, J. E.; Morín-Castillo, M. M.

    2016-12-01

    Pb2 +-doped CdS nanofilms are prepared using the growth technique chemical bath deposition (CBD) under optimum conditions lead acetate at the reservoir temperature of 20 ± 2 °C. The Pb2+ molar concentration was in the range 0.0 ≤ x ≤ 0.19.67, which was determined by energy-dispersive X-ray spectroscopy (EDS). The X-ray diffraction results show that the films are of PbS-CdS composites with individual CdS and PbS planes. The X-ray diffraction (XRD) analysis and Raman scattering reveal that CdS-deposited films showed the zincblende (ZB) crystalline phase. The average grain size of the CdS films ranged from 1.21 to 6.67 nm that was determined by the Debye-Scherrer equation from ZB (111) direction, and it was confirmed by high-resolution transmission electron microscopy (HRTEM). Raman scattering shows that the lattice dynamics is characteristic of bimodal behaviour and the multipeaks adjust of the first optical longitudinal mode for the Pb2+-doped CdS denotes the Raman shift of the characteristic peak in the range of 305-298 cm-1 of the CdS crystals, which is associated with the lead ion incorporation. The films exhibit three direct bandgaps, 2.44 eV attributed to CdS; the other varies continuously from 1.67 to 1.99 eV and another disappears as Pb2+ molar fraction increases.

  7. Chemical bath deposition of ZnSe and CuSe thin films using n,n-dimethylselenourea

    SciTech Connect

    Estrada, C.A.; Zingaro, R.A.; Meyers, E.A. . Dept. of Chemistry); Nair, P.K.; Nair, M.T.S. . Lab. de Energia Solar)

    1994-03-01

    Chemical bath deposition techniques for ZnSe and CuSe thin films using N,N-dimethylselenourea as the source of selenide ion are presented. Films of 0.1 to 0.3 [mu]m in thickness of ZnSe and CuSe are obtained in 2 to 10 h depositions at 50 C. The ZnSe films possess optical bandgap [approximately]2.63 eV and suffer thermal degradation at temperatures >350 C. They are very resistive, with sheet resistance [approximately]10[sup 12] [Omega]/[open square] ([approximately]0.3 [mu]m film, 10 h deposition). The CuSe films have sheet resistance [approximately]10[sup 3] [Omega]/[open square] ([approximately]0.13 [mu]m, 3 h deposition) but undergo thermal degradation at temperature >200 C. Structure, composition, optical, and electrical characteristics of the films are discussed.

  8. Growth of different phases and morphological features of MnS thin films by chemical bath deposition: Effect of deposition parameters and annealing

    NASA Astrophysics Data System (ADS)

    Hannachi, Amira; Maghraoui-Meherzi, Hager

    2017-03-01

    Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferential orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like.

  9. A suitable deposition method of CdS for high performance CdS-sensitized ZnO electrodes: Sequential chemical bath deposition

    SciTech Connect

    Chen, Haining; Li, Weiping; Liu, Huicong; Zhu, Liqun

    2010-07-15

    A suitable deposition method of CdS is necessary for the high performance CdS-sensitized ZnO electrodes. In this paper, chemical bath deposition (CBD) and sequential chemical bath deposition (S-CBD) methods were used to deposit CdS on ZnO mesoporous films for ZnO/CdS electrodes. The analysis results of XRD patterns and UV-vis spectroscopy indicated that CBD deposition method leaded to the dissolving of ZnO mesoporous films in deposition solution and thickness reduction of ZnO/CdS electrodes. Absorption in visible region by the ZnO/CdS electrodes with CdS deposition by S-CBD was enhanced as deposition cycles increased due to the stability of ZnO mesoporous films in the S-CBD deposition solutions. The results of photocurrent-voltage (I-V) measurement showed that the performance of ZnO/CdS electrodes with CdS deposition by CBD first increased and then decreased as deposition time increased, and the greatest short-circuit current (J{sub sc}) was obtained at the deposition time of 4 min. The performance of ZnO/CdS electrodes with CdS deposition by S-CBD increased as deposition cycles increased, and both open-circuit voltage (V{sub oc}) and J{sub sc} were greater than those electrodes with CdS deposition by CBD when the deposition cycles of S-CBD were 10 or greater. These results indicated that S-CBD is a more suitable method for high performance ZnO/CdS electrodes. (author)

  10. Fabrication and morphology control of BaWO{sub 4} thin films by microwave assisted chemical bath deposition

    SciTech Connect

    Wang Rui; Liu Chen; Zeng Jia; Li KunWei; Wang Hao

    2009-04-15

    Highly crystallized barium tungstate (BaWO{sub 4}) thin films with dumbbell-like, kernel-like, bowknot-like and cauliflower-like microstructure were synthesized from an aqueous solution containing barium nitrate, ethylenediamine tetraacetate acid disodium and sodium tungstate, via mild microwave assisted chemical bath deposition process. The resulting BaWO{sub 4} films with different morphologies were characterized by X-ray diffraction spectrum, scanning electron microscope, Raman and photoluminescence spectra. The results indicate that the morphologies of final products significantly depend on the reaction conditions including the reaction time, the initial concentration of precursor reagent and the physicochemical characteristics of the substrates. Furthermore, the oriented aggregation mechanism is proposed as a possible formation mechanism of the films with specific morphologies. - Graphical abstract: Highly crystallized BaWO{sub 4} thin films with controllable morphologies have been synthesized via mild microwave assisted chemical bath deposition. The oriented aggregation mechanism has been proposed as the possible formation mechanism of specific films.

  11. Growth and Optical Properties of Chemical Bath Deposited Cd0.7Zn0.3S Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sunar, Kumar; Bodo, Bhaskarjyoti; Kalita, P. K.

    2010-10-01

    In the present work thin films of Cd0.7Zn0.3S ternary compound have been deposited onto glass substrates by chemical bath deposition method at 300 °K (room temperature). The structural morphology of the synthesized compound was studied using XRD, TEM as well as SEM techniques. XRD shows the prepared CdZnS are polycrystalline having wurtzite type structure. TEM and images exhibit a uniform distribution of hexagonal shaped particles. EDS confirms the formation of ternary semiconductor from the compositional analysis. The particle size measured from TEM & SEM shows the agglomeration of nanoparticles with a larger particle 45-65 nm. UV-VIS measurement shows prominent absorption peak at 474 nm along with 734 nm The Photoluminescence exhibit the band edge emission at 490 nm along with other blue-green emissions

  12. Structural and optical studied of nano structured lead sulfide thin films prepared by the chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Al Din, Nasser Saad; Hussain, Nabiha; Jandow, Nidhal

    2016-07-01

    Lead (II) Sulfide PbS thin films were deposited on glass substrates at 25°C by chemical bath deposition (CBD) method. The structural properties of the films were studied as a function of the concentration of Thiourea (CS (NH2)2) as Source of Sulfide and deposition time. The surface morphology of the films was characterized by X-ray diffraction and SEM. The obtained results showed that the as-deposited films Polycrystalline had cubic crystalline phase that belong to S.G: Fm3m. We found that they have preferred orientation [200]. Also the thickness of thin films decrease with deposition time after certain value and, it observed free sulfide had orthorhombic phase. Optical properties showed that the thin films have high transmission at visible range and low transmission at UV, IR range. The films of PbS have direct band gap (I.68 - 2.32 ev) at 300K the values of band energy decreases with increases thickness of the Lead (II) Sulfide films.

  13. Synthesis and characterization of flower-like ZnSe nanostructured thin films by chemical bath deposition (CBD) method

    NASA Astrophysics Data System (ADS)

    Bakiyaraj, G.; Dhanasekaran, R.

    2013-04-01

    Flower-like zinc selenide nanostructured thin films were successfully prepared by a chemical bath deposition method on non-conducting glass substrate in an aqueous alkaline medium using sodium selenosulphate as Se2- ion source. The as-deposited films have been characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HRSEM), energy-dispersive X-ray analysis (EDX), optical absorption, and photoluminescence spectroscopy (PL). The XRD studies reveal that the as-deposited ZnSe thin film is nanocrystalline with a face-centered cubic phase. SEM image shows the tens to hundreds of petals are self-assembled within a single nanoflower. The direct optical band gap ` E g' for as-deposited flower-like ZnSe thin films is found to be 2.80 eV. Room temperature PL measurement indicates that the as-deposited cubic ZnSe thin films have a near band edge (NBE) emission peaked at around 440 nm (2.81 eV) and broad weak band emission peak from 552 nm (2.24 eV) to 658 nm (1.88 eV). The strong NBE emission from the flower-like ZnSe nanostructured thin films reveals their potential as building for optoelectronic devices.

  14. Structural and optical properties of Ni-doped CdS thin films prepared by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Premarani, R.; Saravanakumar, S.; Chandramohan, R.; Mahalingam, T.

    2015-06-01

    The structural and optical behavior of undoped Cadmiun Sulphide (CdS) and Ni-doped CdS thinfilms prepared by Chemical Bath Deposition (CBD) technique is reported. The crystallite sizes of the thinfilms have been characterized by X-ray diffraction pattern (XRD). The particle sizes increase with the increase of Ni content in the CdS thinfilms. Scanning Electron Microscope (SEM) results indicated that CdS thinfilms is made up of aggregate of spherical-like particles. The composition was estimated by Energy Dispersive Analysis of X-ray (EDX) and reported. Spectroscopic studies revealed considerable improvement in transmission and the band gap of the films changes with addition of Ni dopant that is associated with variation in crystallite sizes in the nano regime.

  15. Fabrication and characterization of ultraviolet photosensors from ZnO nanowires prepared using chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Al-Asadi, Ahmed S.; Henley, Luke Alexander; Ghosh, Sujoy; Quetz, Abdiel; Dubenko, Igor; Pradhan, Nihar; Balicas, Luis; Perea-Lopez, Nestor; Carozo, Victor; Lin, Zhong; Terrones, Mauricio; Talapatra, Saikat; Ali, Naushad

    2016-02-01

    Highly crystalline zinc oxide (ZnO) nanowires (NWs) were synthesized through chemical bath deposition (CBD) method by using a simple seeding technique. The process includes dispersion of commercially available ZnO nanoparticles through spraying on a desired substrate prior to the CBD growth. A typical growth period of 16 h produced ZnO NW assemblies with an average diameter of ˜45 nm and lengths of 1-1.3 μm, with an optical band gap of ˜3.61 eV. The as-prepared ZnO NWs were photoactive under ultra violet (UV) illumination. Photodetector devices fabricated using these NW assemblies demonstrated a high photoresponse factor of ˜40 and 120 at room temperature under moderate UV illumination power of ˜250 μW/cm2. These findings indicate the possibility of using ZnO NWs, grown using the simple method discussed in this paper, for various opto-electronic applications.

  16. Chemical Bath Deposited Zinc Sulfide Buffer Layers for Copper Indium Gallium Sulfur-selenide Solar Cells and Device Analysis

    SciTech Connect

    Kundu, Sambhu N.; Olsen, Larry C.

    2005-01-03

    Cd free CIGSS thin film solar cell structures with a MgF2/TCO/CGD-ZnS/CIGSS/Mo/SLG structure have been fabricated using chemical bath deposited (CBD)-ZnS buffer layers and high quality CIGSS absorber layers supplied from Shell Solar Industries. The use of CBD-ZnS, which is a higher band gap materials than CdS, improved the quantum efficiency of fabricated cells at lower wavelengths, leading to an increase in short circuit current. The best cell to date yielded an active area (0.43 cm2) efficiency of 13.3%. This paper also presents a discussion of the issues relating to the use of the CBD-ZnS buffer materials for improving device performance.

  17. Structural and optical properties of Ni-doped CdS thin films prepared by chemical bath deposition method

    SciTech Connect

    Premarani, R.; Saravanakumar, S. Chandramohan, R.; Mahalingam, T.

    2015-06-24

    The structural and optical behavior of undoped Cadmiun Sulphide (CdS) and Ni-doped CdS thinfilms prepared by Chemical Bath Deposition (CBD) technique is reported. The crystallite sizes of the thinfilms have been characterized by X-ray diffraction pattern (XRD). The particle sizes increase with the increase of Ni content in the CdS thinfilms. Scanning Electron Microscope (SEM) results indicated that CdS thinfilms is made up of aggregate of spherical-like particles. The composition was estimated by Energy Dispersive Analysis of X-ray (EDX) and reported. Spectroscopic studies revealed considerable improvement in transmission and the band gap of the films changes with addition of Ni dopant that is associated with variation in crystallite sizes in the nano regime.

  18. Top gate ZnO-Al2O3 thin film transistors fabricated using a chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Gogoi, Paragjyoti; Saikia, Rajib; Changmai, Sanjib

    2015-04-01

    ZnO thin films were prepared by a simple chemical bath deposition technique using an inorganic solution mixture of ZnCl2 and NH3 on glass substrates and then were used as the active material in thin film transistors (TFTs). The TFTs were fabricated in a top gate coplanar electrode structure with high-k Al2O3 as the gate insulator and Al as the source, drain and gate electrodes. The TFTs were annealed in air at 500 °C for 1 h. The TFTs with a 50 μm channel length exhibited a high field-effect mobility of 0.45 cm2/(V·s) and a low threshold voltage of 1.8 V. The sub-threshold swing and drain current ON-OFF ratio were found to be 0.6 V/dec and 106, respectively.

  19. Effect of growth time on Ti-doped ZnO nanorods prepared by low-temperature chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Bidier, Shaker A.; Hashim, M. R.; Al-Diabat, Ahmad M.; Bououdina, M.

    2017-04-01

    Ti-doped ZnO nanorod arrays were grown onto Si substrate using chemical bath deposition (CBD) method at 93 °C. To investigate the effect of time deposition on the morphological, and structural properties, four Ti-doped ZnO samples were prepared at various deposition periods of time (2, 3.5, 5, and 6.5 h). FESEM images displayed high-quality and uniform nanorods with a mean length strongly dependent upon deposition time; i.e. it increases for prolonged growth time. Additionally, EFTEM images reveal a strong erosion on the lateral side for the sample prepared for 6.5 h as compared to 5 h. This might be attributed to the dissolution reaction of ZnO with for prolonged growth time. XRD analysis confirms the formation of a hexagonal wurtzite-type structure for all samples with a preferred growth orientation along the c-axis direction. The (100) peak intensity was enhanced and then quenched, which might be the result of an erosion on the lateral side of nanorods as seen in EFTEM. This study confirms the important role of growth time on the morphological features of Ti-doped ZnO nanorods prepared using CBD.

  20. Effect of growth time on Ti-doped ZnO nanorods prepared by low-temperature chemical bath deposition.

    PubMed

    Bidier, Shaker A; Hashim, M R; Al-Diabat, Ahmad M; Bououdina, M

    2017-04-01

    Ti-doped ZnO nanorod arrays were grown onto Si substrate using chemical bath deposition (CBD) method at 93 °C. To investigate the effect of time deposition on the morphological, and structural properties, four Ti-doped ZnO samples were prepared at various deposition periods of time (2, 3.5, 5, and 6.5 h). FESEM images displayed high-quality and uniform nanorods with a mean length strongly dependent upon deposition time; i.e. it increases for prolonged growth time. Additionally, EFTEM images reveal a strong erosion on the lateral side for the sample prepared for 6.5 h as compared to 5 h. This might be attributed to the dissolution reaction of ZnO with for prolonged growth time. XRD analysis confirms the formation of a hexagonal wurtzite-type structure for all samples with a preferred growth orientation along the c-axis direction. The (100) peak intensity was enhanced and then quenched, which might be the result of an erosion on the lateral side of nanorods as seen in EFTEM. This study confirms the important role of growth time on the morphological features of Ti-doped ZnO nanorods prepared using CBD.

  1. Effects of zinc salts on the structural and optical properties of acidic chemical bath deposited ZnS thin films

    SciTech Connect

    Cao, Meng; Zhang, Bin Lei; Li, Liang; Huang, Jian; Zhao, Shou Ren; Cao, Hong; Jiang, Jin Chun; Sun, Yan; Shen, Yue

    2013-02-15

    Graphical abstract: XRD patterns of annealed ZnS films from different zinc salts. Curves a, b, c, d correspond to the annealed ZnS–C1, ZnS–S{sub 3}, ZnS–Cl{sub 2}, ZnS–N{sub 2} thin films. Display Omitted Highlights: ► ZnS thin films were deposited using different zinc salts. ► The grain sizes of deposited ZnS thin films are about 12.5 15.5 nm. ► The band gaps of deposited ZnS thin films were in the range of 3.66–3.83 eV. -- Abstract: ZnS thin films were deposited from different zinc salts by chemical bath deposition (CBD). Structural, morphological and optical characterizations were performed using different methods such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectra. The particle sizes of as-deposited ZnS thin films were calculated to be about 12.5–15.5 nm and the crystal qualities were improved after annealed at 500 °C in Ar/H{sub 2}S (5%) atmosphere. Optical absorption measurements indicated that the band gaps of ZnS thin films were in the range of 3.66–3.83 eV and they decreased with the increasing of particle sizes. ZnCl{sub 2} was found to the best precursor due to the higher crystal quality and compact surface of deposited ZnS thin films.

  2. Chemical bath deposition of CdS thin films: An approach to the chemical mechanism through study of the film microstructure

    SciTech Connect

    Dona, J.M.; Herrero, J.

    1997-11-01

    Many papers have been published lately on chemical bath deposition of CdS (CBD-CdS) thin films and related materials due to the promising results obtained using CBD-CdS for the fabrication of thin-film solar cells. In spite of this little of the research proposes a realistic chemical mechanism for the deposition process based on the determination of kinetic parameters. In this paper the authors present an exhaustive study of the CBD-CdS kinetic from which they propose a new chemical mechanism which agrees with the kinetic parameters determined supported by heterogeneous catalysis concepts. Simultaneously, the dependence of the deposited film structure on the kinetic variables is studied and the results obtained corroborate the proposed mechanism. These studies have allowed the authors to establish a standard set of conditions for the fabrication of homogeneous and continuous very thin CdS films.

  3. Exciton dynamics of CdS thin films produced by chemical bath deposition and DC pulse sputtering.

    PubMed

    Cooper, Jason K; Cao, Jinbo; Zhang, Jin Z

    2013-08-14

    Exciton dynamics of CdS films have been investigated using ultrafast laser spectroscopy with an emphasis on understanding defect-related recombination. Two types of CdS films were deposited on glass substrates via direct current pulse sputtering (DCPS) and chemical bath deposition (CBD) techniques. The films displayed distinct morphological, optical, and structural properties. Their exciton and charge carrier dynamics within the first 1 ns following photoexcitation were characterized by femotosecond pump probe spectroscopy. A singular value decomposition (SVD) global fitting technique was employed to extract the lifetime and wavelength dependence of transient species. The excited electrons of the DCPS sample decays through 1.8, 8, 65, and 450 ps time constants which were attributed to donor level electron trapping, valence band (VB) → conduction band (CB) recombination, shallow donor recombination, and deep donor recombination, respectively. The CBD sample shows time constants of 6, 65, and 450 ps which were attributed to CB → VB recombination, sulfur vacancy (VS) recombination, and VS → oxygen interstitial (Oi) donor-acceptor pair (DAP) recombination, respectively. It was found that the DCPS deposition technique produces films with lower defect density and improved carrier dynamics, which are important for high performance solar cell applications.

  4. Surface modification of cadmium sulfide thin film honey comb nanostructures: Effect of in situ tin doping using chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Wilson, K. C.; Basheer Ahamed, M.

    2016-01-01

    Even though nanostructures possess large surface to volume ratio compared to their thin film counterpart, the complicated procedure that demands for the deposition on a substrate kept them back foot in device fabrication techniques. In this work, a honey comb like cadmium sulfide (CdS) thin films nanostructure are deposited on glass substrates using simple chemical bath deposition technique at 65 °C. Energy band gaps, film thickness and shell size of the honey comb nanostructures are successfully controlled using tin (Sn) doping and number of shells per unit area is found to be maximum for 5% Sn doped (in the reaction mixture) sample. X-ray diffraction and optical absorption analysis showed that cadmium sulfide and cadmium hydroxide coexist in the samples. TEM measurements showed that CdS nanostructures are embedded in cadmium hydroxide just like "plum pudding". Persistent photoconductivity measurements of the samples are also carried out. The decay constants found to be increased with increases in Sn doping.

  5. One-step growth of structured ZnO thin films by chemical bath deposition in aqueous ammonia solution

    NASA Astrophysics Data System (ADS)

    Huang, S M; Bian, Z Q; Chu, J B; Wang, Z A; Zhang, D W; Li, X D; Zhu, H B; Sun, Z

    2009-03-01

    Structured ZnO films have been fabricated on soda-lime glass slides at a low temperature (80-85 °C) by a chemical bath deposition method in one step without seed layers. Mixed aqueous solutions of zinc sulfate, ammonia and thiourea were used at alkaline conditions. The influence of the ammonia concentration in the initial solution on the property of the deposited film was investigated systematically. The morphology, structural and optical properties of the deposited films were examined and characterized by x-ray diffraction (XRD), energy-dispersive spectroscopy x-ray diffraction (EDX), scanning electron microscopy (SEM), Raman spectroscopy and photoluminescence (PL) spectroscopy. Structural analyses with XRD, EDX and SEM revealed that the formed films exhibit a wurtzite hexagonal phase. The deposited film was more preferentially oriented in the (0 0 2) direction with an increase in the ammonia concentration from 0.75 to 2 mol l-1. The optical-phonon E2 mode at 437 cm-1 in the Raman spectrum, together with the XRD and EDX analyses, showed that flower-like and columnar crystalline ZnO films were formed in two ammonia concentration ranges, 0.75-1.4 mol l-1 and 1.6-2.0 mol l-1, respectively. Furthermore, PL spectra showed strong and high intensity peaks of UV emission with suppressed green emission for these deposited ZnO films. ZnS films were formed with a high ammonia concentration of 3.0 M. The formation mechanisms of ZnO, Zn(OH)2 and ZnS phases were discussed.

  6. Physical properties of MgSe thin films grown by chemical bath deposition method: effect of molar concentration of MgCl2

    NASA Astrophysics Data System (ADS)

    Ubale, A. U.; Sakhare, Y. S.

    2013-12-01

    In the present paper, we have reported the effect of molar concentration of Mg salt on physical properties of MgSe thin films deposited by chemical bath deposition process. The MgSe thin films have been characterized for their structural, morphological and optical studies. We have observed that the films are nanocrystalline in nature with cubic lattice. The optical band gap energy of MgSe is changed from 2.82 to 2.65 eV depending on Mg ion concentration in deposition bath. The electrical resistivity of MgSe film varies from 56 × 102 to 41 × 102 Ω cm depending on Mg ion concentration in reaction bath. The thermo-emf measurement has confirmed p-type conductivity of MgSe.

  7. Chemical bath deposited rutile TiO2 compact layer toward efficient planar heterojunction perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Liang, Chao; Wu, Zhenhua; Li, Pengwei; Fan, Jiajie; Zhang, Yiqiang; Shao, Guosheng

    2017-01-01

    TiO2 is a best choice of electron transport layers in perovskite solar cells, due to its high electron mobility and stability. However, traditional TiO2 processing method requires rather high annealing temperature (>500 °C), preventing it from application to flexible devices. Here, we show that TiO2 thin films can be synthesized via chemical bath deposition below 100 °C. Typically, a compact layer of rutile TiO2 is deposited onto fluorine-doped tin oxide (FTO) coated substrates, in an aqueous TiCl4 solution at 70 °C. Through the optimization of precursor concentration and ultraviolet-ozone surface modification, over 12% power conversion efficiency can be achieved for CH3NH3PbI3 based perovskite solar cells. These findings offer a potential low-temperature technical solution in using TiO2 thin film as an effective transport layer for flexible perovskite solar cells.

  8. Some physical effects of reaction rate on PbS thin films obtained by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Altıokka, Barış; Baykul, Mevlana Celalettin; Altıokka, Mehmet Rıza

    2013-12-01

    Thin films of polycrystalline lead sulfide (PbS) have been deposited on glass substrates at 303±1 K using chemical bath deposition (CBD). The precipitation of PbS on solid surfaces under four different reaction conditions was performed using a sodium sulfite (Na2SO3) compound as an inhibitor. The kinetics model for the reaction between Pb2+ and S2- was developed according to the amounts of Pb2+ concentrations measured by atomic absorption spectroscopy (AAS) during the precipitation of PbS. The surface morphologies of PbS thin films were studied with a Scanning Electron Microscope (SEM). It was found that the precipitation rate effects the formation of pinhole. To obtain a good quality of thin films the optimum concentration of lead nitrate (Pb(NO3)2), sodium hydroxide (NaOH), thiourea (CS(NH2)2) and Na2SO3 in the final solution was determined to be 0.0089, 0.1460, 0.510 and 0.00023 M, respectively. The film structures were characterized by X-ray diffractometer (XRD). The XRD results showed that the films formed galena cubic structures which represent the natural mineral of PbS. The crystallite sizes of the films were found to be between 23 and 37 nm.

  9. Characterization of annealed Eu3+-doped ZnO flower-like morphology synthesized by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Koao, L. F.; Dejene, B. F.; Swart, H. C.; Motloung, S. V.; Motaung, T. E.

    2016-10-01

    Undoped and europium ion (Eu3+) doped ZnO nanostructures were synthesized via the chemical bath deposition method and annealed afterwards in air at 700 °C. The X-ray diffraction measurements confirmed the hexagonal wurtzite structure for all samples. The scanning electron microscopy (SEM) revealed that the nanopowder samples were assembled in flower-like shapes for undoped and hexagonal-shaped for Eu3+-doped ZnO. Elemental energy dispersive (EDS) analysis mapping conducted on the samples revealed homogeneous distribution of Zn, O, and Eu ions. The Ultraviolet-visible (UV-vis) diffusion reflectance spectroscopy showed a decrease in the band gap with an increasing Eu3+ concentration. The photoluminescence (PL) results showed that by exciting Eu3+ (4 mol%) doped ZnO with different excitation wavelength the highest luminescence intensity was observed at an excitation wavelength of 395 nm but no emissions were observed from Eu3+. By exciting further with 465 nm the Eu3+ emissions were observed and emission from undoped ZnO was found for the first time.

  10. Annealed Ce3+-doped ZnO flower-like morphology synthesized by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Koao, Lehlohonolo F.; Dejene, Francis B.; Tsega, Moges; Swart, Hendrik C.

    2016-01-01

    We have successfully synthesized ZnO:xmol% Ce3+ (0≤x≤10 mol%) doped nanopowders via the chemical bath deposition method (CBD) technique at low temperature (80 °C) and annealed in air at 700 °C. The X-ray diffraction patterns showed that all the undoped and Ce-doped ZnO nanopowders have a hexagonal wurtzite polycrystalline structure with an average crystallite size of about 46 nm. Weak diffraction peaks related mainly to cerium oxide were also detected at higher concentrations of Ce3+ (x=5-10 mol%). The scanning electron microscopy study revealed that the nanopowder samples were assembled in flower-shaped undoped ZnO and pyramid-shaped Ce3+-doped ZnO nanostructures. The UV-vis spectra showed that the absorption edges shifted slightly to the longer wavelengths with the increase in the Ce3+ ions concentration. Moreover, the photoluminescence (PL) results showed a relative weak visible emission for the Ce3+-doped ZnO nanoparticles compared to the undoped ZnO. The effects of Ce3+-doping on the structure and PL of ZnO nanopowders are discussed in detail.

  11. Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition of TbCl{sub 3}

    SciTech Connect

    Guo, Shuai Zhang, Xiaofeng; Ding, Guangfei; Chen, Renjie; Yan, Aru; Lee, Don

    2014-05-07

    The chemical bath deposition (CBD) and the grain boundary diffusion method were combined to diffuse the heavy rare earth for obtain the thick magnets with high coercivity and low heavy rare earth. The jet mill powders were soaked into the alcohol solution of 0.2 wt. % TbCl{sub 3}. A thin layer of TbCl{sub 3} was wrapped to the surface of (PrNd){sub 2}Fe{sub 14}B powder particles. The coercivity of magnet is increased from 11.89 kOe to 14.72 kOe without significant reduction of remanence after grain boundary diffusion in the sintering and the annealing processes. The temperature coefficients of the remanence and the coercivity are improved by the substitution of PrNd by Tb in the surface of grains. The highly accelerated temperature/humidity stress test (HAST) results indicate that the CBD magnet has poor corrosion resistance, attributing to the present of Cl atoms in the grain boundaries.

  12. Control of Phase, Structural and Optical Properties of Tin Sulfide Nanostructured Thin Films Grown via Chemical Bath Deposition

    NASA Astrophysics Data System (ADS)

    Mahdi, Mohamed S.; Ibrahim, K.; Hmood, Arshad; Ahmed, Naser M.; Mustafa, Falah I.

    2017-02-01

    In this study, nanostructured tin sulfide (SnS) thin films were synthesized on glass substrates by means of low-cost chemical bath deposition using non-toxic trisodium citrate (TSC) as complexing agent. The influence of varying molar concentration of TSC (0.15-0.21 M) on the tin sulfide phases was investigated. The structural, morphological and optical properties of the films were studied using x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption spectroscopy. The XRD patterns confirmed an orthorhombic polycrystalline structure of the as-prepared SnS thin films. The values of average crystalline size and texture coefficient of the major XRD peak increased with increasing TSC concentration. The FESEM micrographs revealed that the synthesized thin films are characterized by a flake-stack structure. The Raman spectra of the films showed the presence of a Sn2S3 peak, which gradually declined in intensity until almost disappearing as the TSC concentration increased from 0.15 M to 0.21 M. The direct energy band gaps estimated from ultraviolet-visible-near-infrared absorption spectra also varied between 1.64 eV to 1.1 eV with increasing TSC concentration from 0.15 M to 0.21 M. The results indicate the crucial role of TSC in the synthesis of SnS nanostructured thin films.

  13. Growth of CdS thin films on indium coated glass substrates via chemical bath deposition and subsequent air annealing

    NASA Astrophysics Data System (ADS)

    Ghosh, Biswajit; Kumar, Kamlesh; Singh, Balwant Kr; Banerjee, Pushan; Das, Subrata

    2014-11-01

    In the present work attempts were made to synthesize indium doped CdS films by fabricating In/CdS bilayers using CBD-CdS on vacuum evaporated In thin films and subsequent air annealing. 135 nm CdS films were grown onto 20 nm and 35 nm indium coated glass substrate employing chemical bath deposition technique. The In/CdS bilayers thus formed were subjected to heat treatment at the temperatures between 200 and 400 °C for 4 min in the muffle furnace to facilitate indium to diffuse into the CdS films. XRD pattern ascertained no noticeable shift in lattice constant implying grain boundary metal segregation, while secondary ion mass spectrometry indicated the diffusion profile of indium into CdS matrices. Mass spectrometry results showed that substantial diffusion of indium had been taken place within CdS at 400 °C. Dark and photocurrent with different illumination time were measured to ascertain the photosensitivity of pure and composite CdS films.

  14. Modeling and experiment of dye-sensitized solar cell with vertically aligned ZnO nanorods through chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Wahyuono, Ruri Agung; Risanti, Doty D.

    2015-01-01

    A theoretical model based on electron diffusion differential equation and Schottky barrier model was developed to determine the current-voltage characteristics of DSSC. To verify the model DSSC with ZnO nanorods photoelectrode which was chemically bath deposited onto the TCO was fabricated. According to modeling results, increasing of recombination current density J at these interfaces results in a decrease in Schottky barrier height φb and therefore improves the photovoltage under the open-circuit condition. It is found that the open-circuit voltage remains constant when the TCO/ZnO Schottky barrier height was varied in the range of 0.45 - 0.6 eV. This theoretical model consistents with the experimental result in which the fabricated DSSCs can produce conversion efficiency in the range of 0.98 - 1.16%. The trend in photovoltage calculated in the theoretical model basically agrees with the experimental result, although the calculated photocurrent is somewhat over estimated compared to the experimental results. The model presents that the ideality factor for ZnO nanorods, which also contributes to the enhancement of photovoltage, increases in the range of 2.75 - 3.0 as the annealing temperature is increased in the experiment.

  15. RETRACTED: Ammonia-free method for synthesis of CdS nanocrystalline thin films through chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Karimi, M.; Rabiee, M.; Moztarzadeh, F.; Bodaghi, M.; Tahriri, M.

    2009-11-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal ( http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief of Solid State Communications as the authors have plagiarized part of a paper that has also appeared in Current Applied Physics: Controlled synthesis, characterization and optical properties of CdS nanocrystalline thin films via chemical bath deposition (CBD) route Meysam Karimi, Mohammad Rabiee, Fathollah Moztarzadeh, Mohammadreza Tahriri and Masoud Bodaghi; Curr. Appl. Phys., 9 (2009) 1263-1268, doi: 10.1016/j.cap.2009.02.006. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  16. Effect of Postannealing Treatment on Structural and Optical Properties of ZnO Nanorods Prepared Using Chemical Bath Deposition

    NASA Astrophysics Data System (ADS)

    Bidier, Shaker A.; Hashim, M. R.; Aldiabat, Ahmad M.

    2017-03-01

    ZnO nanorods have been synthesized on glass substrate by the chemical bath deposition technique. To investigate the effect of postannealing treatment on their crystalline and optical quality, the films were annealed at various temperatures of 300°C, 400°C, and 500°C in air ambient for 1 h. The morphological and chemical composition of the ZnO films were investigated using field-emission scanning electron microscopy (FESEM) with energy-dispersive spectroscopy (EDS). The structural properties were characterized by employing x-ray diffraction analysis and Raman spectroscopy. Finally, the optical properties were investigated by photoluminescence measurements. FESEM images revealed high-quality ZnO nanorods grown on the substrate surface. EDS results demonstrated a slight reduction in the quantity of oxygen after annealing. XRD and Raman results showed noticeable improvement in the crystalline quality of the ZnO films after annealing. The crystallite size increased significantly after annealing, from 40.5 nm for the nonannealed film to a maximum for 46.2 nm for the annealed samples. The photoluminescence results exhibited an increment in the optical quality [ultraviolet (UV) versus visible emission] after postannealing treatment. The enhancement in the crystalline and optical quality of the annealed films compared with the nonannealed sample is due to recrystallization of ZnO particles into a ZnO wurtzite lattice structure as well as relaxation of oxygen molecules adsorbed on the surface of the ZnO nanorods. This enhancement is conducive to improved efficiency for potential applications of ZnO.

  17. Effect of annealing temperature on the optical spectra of CdS thin films deposited at low solution concentrations by Chemical Bath Deposition (CBD) Technique.

    PubMed

    Rizwan, Zahid; Zakaria, Azmi; Mohd Ghazali, Mohd Sabri; Jafari, Atefeh; Din, Fasih Ud; Zamiri, Reza

    2011-02-22

    Two different concentrations of CdCl(2) and (NH(2))(2)CS were used to prepare CdS thin films, to be deposited on glass substrate by chemical bath deposition (CBD) technique. CdCl(2) (0.000312 M and 0.000625 M) was employed as a source of Cd(2+) while (NH(2))(2)CS (0.00125 M and 0.000625 M) for S(2-) at a constant bath temperature of 70 °C. Adhesion of the deposited films was found to be very good for all the solution concentrations of both reagents. The films were air-annealed at a temperature between 200 °C to 360 °C for one hour. The minimum thickness was observed to be 33.6 nm for film annealed at 320 °C. XRD analyses reveal that the films were cubic along with peaks of hexagonal phase for all film samples. The crystallite size of the films decreased from 41.4 nm to 7.4 nm with the increase of annealing temperature for the CdCl(2) (0.000312 M). Optical energy band gap (E(g)), Urbach energy (E(u)) and absorption coefficient (α) have been calculated from the transmission spectral data. These parameters have been discussed as a function of annealing temperature and solution concentration. The best transmission (about 97%) was obtained for the air-annealed films at higher temperature at CdCl(2) (0.000312 M).

  18. A chemical bath deposition route to facet-controlled Ag{sub 3}PO{sub 4} thin films with improved visible light photocatalytic activity

    SciTech Connect

    Gunjakar, Jayavant L.; Jo, Yun Kyung; Kim, In Young; Lee, Jang Mee; Patil, Sharad B.; Pyun, Jae-Chul; Hwang, Seong-Ju

    2016-08-15

    A facile, economic, and reproducible chemical bath deposition (CBD) method is developed for the fabrication of facet-controlled Ag{sub 3}PO{sub 4} thin films with enhanced visible light photocatalytic activity. The fine-control of bath temperature, precursor, complexing agent, substrate, and solution pH is fairly crucial in preparing the facet-selective thin film of Ag{sub 3}PO{sub 4} nanocrystal. The change of precursor from silver nitrate to silver acetate makes possible the tailoring of the crystal shape of Ag{sub 3}PO{sub 4} from cube to rhombic dodecahedron and also the bandgap tuning of the deposited films. The control of [Ag{sup +}]/[phosphate] ratio enables to maximize the loading amount of Ag{sub 3}PO{sub 4} crystals per the unit area of the deposited film. All the fabricated Ag{sub 3}PO{sub 4} thin films show high photocatalytic activity for visible light-induced degradation of organic molecules, which can be optimized by tailoring the crystal shape of the deposited crystals. This CBD method is also useful in preparing the facet-controlled hybrid film of Ag{sub 3}PO{sub 4}–ZnO photocatalyst. The present study clearly demonstrates the usefulness of the present CBD method for fabricating facet-controlled thin films of metal oxosalt and its nanohybrid. - Highlights: • The crystal facet of Ag{sub 3}PO{sub 4} films can be tuned by chemical bath deposition. • The crystal shape of Ag{sub 3}PO{sub 4} is tailorable from cube to rhombic dodecahedron. • Facet-tuned Ag{sub 3}PO{sub 4} film shows enhanced visible light photocatalyst activity.

  19. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    SciTech Connect

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-28

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  20. Microstructure and Near Infrared Absorption of PbS Films Deposited by Chemical Bath Deposition on p-Type Si(100) Wafers

    NASA Astrophysics Data System (ADS)

    Guo, Rui-Fang; Liang, Yan; Gao, Xiao-Yong; Zhu, He-Jie; Zhang, Sa; Liu, Hong-Tao

    2014-12-01

    Nanocrystalline PbS films were synthesized on p-type Si(100) wafers using chemical bath deposition. All of the PbS films are polycrystalline in nature with face -centered cubic (fcc) rock salt structure. The average crystallite size varied from 20 to 74 nm, thereby indicating nanocrystalline films with different molar ratios. The film composed of irregular particles was homogeneous and well adhered to the substrates. Increase in thiourea concentration from 0.5 to 2.0 M resulted into an increase in the lateral particle size and film thickness, while further increase in thiourea concentration caused a decrease in particle size and film thickness. The absorption edge of the films blueshifted slightly with increased molarities of lead sources, blueshifted initially, and then redshifted with increased molarities of sulfur sources at a fixed lead source molarities. The blueshift and redshift of the absorption edge were closely related to the change in the tensile stress of the PbS films subjected to.

  1. Effect of deposition temperature on the structural and optical properties of CdSe thin films synthesised by chemical bath deposition

    SciTech Connect

    Mohammed, Mudhafer Ali

    2013-12-16

    Cadmium selenide thin films were synthesized on glass substrates using chemical bath technique (CBD) at temperatures 320K, 330K, 340K,and 350K. The polycrystalline nature of the material was confirmed by X-ray diffraction technique and various structural parameters such as lattice parameters, grain size, dislocation density, and micro strain. The root mean square (RMS) roughness was obtained by using atomic force microscopy(AFM), which indicated a decreasing average roughness with the decrease of the bath temperature. Optical properties were carried out by UV-Visible transmittance spectra, and the band gap energy was determined.

  2. A chemical bath deposition route to facet-controlled Ag3PO4 thin films with improved visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Gunjakar, Jayavant L.; Jo, Yun Kyung; Kim, In Young; Lee, Jang Mee; Patil, Sharad B.; Pyun, Jae.-Chul.; Hwang, Seong-Ju

    2016-08-01

    A facile, economic, and reproducible chemical bath deposition (CBD) method is developed for the fabrication of facet-controlled Ag3PO4 thin films with enhanced visible light photocatalytic activity. The fine-control of bath temperature, precursor, complexing agent, substrate, and solution pH is fairly crucial in preparing the facet-selective thin film of Ag3PO4 nanocrystal. The change of precursor from silver nitrate to silver acetate makes possible the tailoring of the crystal shape of Ag3PO4 from cube to rhombic dodecahedron and also the bandgap tuning of the deposited films. The control of [Ag+]/[phosphate] ratio enables to maximize the loading amount of Ag3PO4 crystals per the unit area of the deposited film. All the fabricated Ag3PO4 thin films show high photocatalytic activity for visible light-induced degradation of organic molecules, which can be optimized by tailoring the crystal shape of the deposited crystals. This CBD method is also useful in preparing the facet-controlled hybrid film of Ag3PO4-ZnO photocatalyst. The present study clearly demonstrates the usefulness of the present CBD method for fabricating facet-controlled thin films of metal oxosalt and its nanohybrid.

  3. In Situ X-ray Absorption Near-Edge Structure Spectroscopy of ZnO Nanowire Growth During Chemical Bath Deposition

    SciTech Connect

    McPeak, Kevin M.; Becker, Matthew A.; Britton, Nathan G.; Majidi, Hasti; Bunker, Bruce A.; Baxter, Jason B.

    2010-12-03

    Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. Here we report the first use of in situ X-ray absorption spectroscopy during CBD, enabling detailed investigation of both reaction mechanisms and kinetics of ZnO nanowire growth from zinc nitrate and hexamethylenetetramine (HMTA) precursors. Time-resolved X-ray absorption near-edge structure (XANES) spectra were used to quantify Zn(II) speciation in both solution and solid phases. ZnO crystallizes directly from [Zn(H{sub 2}O){sub 6}]{sup 2+} without long-lived intermediates. Using ZnO nanowire deposition as an example, this study establishes in situ XANES spectroscopy as an excellent quantitative tool to understand CBD of nanomaterials.

  4. In Situ Localized Surface Plasmon Resonance (LSPR) Spectroscopy to Investigate Kinetics of Chemical Bath Deposition of CdS Thin Films

    DOE PAGES

    Kalyanaraman, Ramki; Taz, Humaira; Ruther, Rose E.; ...

    2015-02-11

    Techniques that can characterize the early stages of thin film deposition from liquid phase processes can aid greatly in our understanding of mechanistic aspects of chemical bath deposition (CBD). Here we have used localized surface plasmon resonance (LSPR) spectroscopy to monitor in-situ the kinetics of early-stage growth of cadmium sulfide (CdS) thin films on Ag nanoparticle on quartz substrates. Real-time shift during CdS deposition showed that the LSPR wavelength red shifted rapidly due to random deposition of CdS on the substrate, but saturated at longer times. LSPR modeling showed that these features could be interpreted as an initial deposition ofmore » CdS islands followed by preferential deposition onto itself. The CdS also showed significantly enhanced Raman signals up to 170 times due to surface enhanced raman scattering (SERS) from the CdS/Ag NP regions. The ex-situ SERS effect supported the LSPR shift suggesting that these techniques could be used to understand nucleation and growth phenomena from the liquid phase.« less

  5. In Situ Localized Surface Plasmon Resonance (LSPR) Spectroscopy to Investigate Kinetics of Chemical Bath Deposition of CdS Thin Films

    SciTech Connect

    Kalyanaraman, Ramki; Taz, Humaira; Ruther, Rose E.; Nanda, Jagjit

    2015-02-11

    Techniques that can characterize the early stages of thin film deposition from liquid phase processes can aid greatly in our understanding of mechanistic aspects of chemical bath deposition (CBD). Here we have used localized surface plasmon resonance (LSPR) spectroscopy to monitor in-situ the kinetics of early-stage growth of cadmium sulfide (CdS) thin films on Ag nanoparticle on quartz substrates. Real-time shift during CdS deposition showed that the LSPR wavelength red shifted rapidly due to random deposition of CdS on the substrate, but saturated at longer times. LSPR modeling showed that these features could be interpreted as an initial deposition of CdS islands followed by preferential deposition onto itself. The CdS also showed significantly enhanced Raman signals up to 170 times due to surface enhanced raman scattering (SERS) from the CdS/Ag NP regions. The ex-situ SERS effect supported the LSPR shift suggesting that these techniques could be used to understand nucleation and growth phenomena from the liquid phase.

  6. Room temperature chemical bath deposition of cadmium selenide, cadmium sulfide and cadmium sulfoselenide thin films with novel nanostructures

    NASA Astrophysics Data System (ADS)

    VanderHyde, Cephas A.; Sartale, S. D.; Patil, Jayant M.; Ghoderao, Karuna P.; Sawant, Jitendra P.; Kale, Rohidas B.

    2015-10-01

    A simple, convenient and low cost chemical synthesis route has been used to deposit nanostructured cadmium sulfide, selenide and sulfoselenide thin films at room temperature. The films were deposited on glass substrates, using cadmium acetate as cadmium ion and sodium selenosulfate/thiourea as a selenium/sulfur ion sources. Aqueous ammonia was used as a complex reagent and also to adjust the pH of the final solution. The as-deposited films were uniform, well adherent to the glass substrate, specularly reflective and red/yellow in color depending on selenium and sulfur composition. The X-ray diffraction pattern of deposited cadmium selenide thin film revealed the nanocrystalline nature with cubic phase; cadmium sulfide revealed mixture of cubic along with hexagonal phase and cadmium sulfoselenide thin film were grown with purely hexagonal phase. The morphological observations revealed the growth and formation of interesting one, two and three-dimensional nanostructures. The band gap of thin films was calculated and the results are reported.

  7. Optimization of the ZnS Buffer Layer by Chemical Bath Deposition for Cu(In,Ga)Se2 Solar Cells.

    PubMed

    Jeon, Dong-Hwan; Hwang, Dae-Kue; Kim, Dae-Hwan; Kang, Jin-Kyu; Lee, Chang-Seop

    2016-05-01

    We evaluated a ZnS buffer layer prepared using a chemical bath deposition (CBD) process for application in cadmium-free Cu(In,Ga)Se2 (CIGS) solar cells. The ZnS buffer layer showed good transmittance (above 90%) in the spectral range from 300 to 800 nm and was non-toxic compared with the CdS buffer layers normally used in CIGS solar cells. The CBD process was affected by several deposition conditions. The deposition rate was dependent on the ammonia concentration (complexing agent). When the ammonia concentration was either too high or low, a decrease in the deposition rate was observed. In addition, post heat treatments at high temperatures had detrimental influences on the ZnS buffer layers because portions of the ZnS thin films were transformed into ZnO. With optimized deposition conditions, a CIGS solar cell with a ZnS buffer layer showed an efficiency of 14.18% with a 0.23 cm2 active area under 100 mW/cm2 illumination.

  8. Evolution of structural and optical properties of rutile TiO2 thin films synthesized at room temperature by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Mayabadi, A. H.; Waman, V. S.; Kamble, M. M.; Ghosh, S. S.; Gabhale, B. B.; Rondiya, S. R.; Rokade, A. V.; Khadtare, S. S.; Sathe, V. G.; Pathan, H. M.; Gosavi, S. W.; Jadkar, S. R.

    2014-02-01

    Nanocrystalline thin films of TiO2 were prepared on glass substrates from an aqueous solution of TiCl3 and NH4OH at room temperature using the simple and cost-effective chemical bath deposition (CBD) method. The influence of deposition time on structural, morphological and optical properties was systematically investigated. TiO2 transition from a mixed anatase-rutile phase to a pure rutile phase was revealed by low-angle XRD and Raman spectroscopy. Rutile phase formation was confirmed by FTIR spectroscopy. Scanning electron micrographs revealed that the multigrain structure of as-deposited TiO2 thin films was completely converted into semi-spherical nanoparticles. Optical studies showed that rutile thin films had a high absorption coefficient and a direct bandgap. The optical bandgap decreased slightly (3.29-3.07 eV) with increasing deposition time. The ease of deposition of rutile thin films at low temperature is useful for the fabrication of extremely thin absorber (ETA) solar cells, dye-sensitized solar cells, and gas sensors.

  9. Chemical bath deposition growth and characterization of zinc oxide nanostructures on plain and platinum-coated glass substrates for hydrogen peroxide gas sensor application

    NASA Astrophysics Data System (ADS)

    Jamasali, Y. D. J.; Alguno, A. C.

    2015-06-01

    Growth of zinc oxide on plain and Pt-coated glass substrate via chemical bath deposition technique (CBD) were studied. Aqueous solutions of ammonium hydroxide (NH4OH) and zinc sulfate (ZnSO4) were used as the precursor substances in the synthesis. Ultraviolet-visible spectroscopy (UV-Vis) was performed to determine the energy band gap and X-ray diffraction (XRD) to examine crystallinity. Sensitivity measurements were carried out in order to examine its potential to be fabricated as hydrogen peroxide (H2O2) gas sensor. Experimental results in the sensitivity experiment show that in the presence of H2O2 gas, the resistance of ZnOincrease which can be used as the basis for H2O-2 detection. UV-Vis showed variation of energy band gap values but were all near the generally accepted value. XRD spectra further verify that ZnOwere indeed synthesized.

  10. Chemical bath deposition of textured and compact zinc oxide thin films on vinyl-terminated polystyrene brushes

    PubMed Central

    Blumenstein, Nina J; Hofmeister, Caroline G; Lindemann, Peter; Huang, Cheng; Baier, Johannes; Leineweber, Andreas; Wöll, Christof; Schimmel, Thomas

    2016-01-01

    Summary In this study we investigated the influence of an organic polystyrene brush on the deposition of ZnO thin films under moderate conditions. On a non-modified SiOx surface, island growth is observed, whereas the polymer brush induces homogeneous film growth. A chemical modification of the polystyrene brushes during the mineralization process occurs, which enables stronger interaction between the then polar template and polar ZnO crystallites in solution. This may lead to oriented attachment of the crystallites so that the observed (002) texture arises. Characterization of the templates and the resulting ZnO films were performed with ζ-potential and contact angle measurements as well as scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). Infrared spectroscopy (IR) measurements were used to investigate the polystyrene brushes before and after modification. PMID:26925358

  11. Structural, Optical and Electrical Properties of p-CuS:Cu(+)and n-CuS:Sn(4+) Films Deposited with a Chemical Bath Deposition.

    PubMed

    He, Haiyan; Huang, Jianfeng; Fei, Jie; Lu, Jing

    2015-01-01

    This work presents the manufacturing and potential application of the CuS films in recent literature and patents and then focus on the chemical bath depostion of p-CuS: Cu(+)and n-CuS: Sn(4+) filmsat room temperature by controlling S/Cu molar ratio in the bath solution and doping Cu(+) and Sn(4+) cations, respectively. The CuS:Cu(+)and CuS:Sn(4+) films with S/Cu molar ratio larger and less than the stoichiometric ratio showed p-type and n-type electrical conduction, respectively, and low electrical resistivity of~1.31×10(-3) Ω·cm and ~0.73-0.80×10(-3) Ω·cm, respectively. Moreover, the films had the average transmittance of ~20.1-30.1 % in 290-1100 nm. The direct allowed band gaps and indirect allowed optical band gap energies of the films were estimated to be in the ranges of ~2.58-2.63 eV and ~1.6-1.78 eV, respectively. The extinction coefficient, refractive index, dielectric constant, and optical conductivity of the films were calculated with the transmittance and reflectance spectra.

  12. Fabrication of p-type CuO thin films using chemical bath deposition technique and their solar cell applications with Si nanowires

    NASA Astrophysics Data System (ADS)

    Akgul, Funda Aksoy; Akgul, Guvenc

    2017-02-01

    Recently, CuO has attracted much interest owing to its suitable material properties, inexpensive fabrication cost and potential applications for optoelectronic devices. In this study, CuO thin films were deposited on glass substrates using chemical bath deposition technique and post-deposition annealing effect on the properties of the prepared samples were investigated. p-n heterojunction solar cells were then constructed by coating of p-type CuO films onto the vertically well-aligned n-type Si nanowires synthesized through MACE method. Photovoltaic performance of the fabricated devices were determined with current-voltage (I-V) measurements under AM 1.5 G illumination. The optimal short-circuit current density, open-circuit voltage, fill factor and power conversion efficiency were found to be 3.2 mA/cm-2, 337 mV, 37.9 and 0.45%, respectively. The observed performance clearly indicates that the investigated device structure could be a promising candidate for high-performance low-cost new-generation photovoltaic diodes.

  13. Microstructure, optical and structural characterization of Cd0.98Fe0.02S thin films co-doped with Zn by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Pitchaimani, K.; Amalraj, L.; Muthukumaran, S.

    2016-04-01

    Fe-doped CdS (Cd0.98Fe0.02S) and Fe, Zn co-doped CdS (Cd0.98-xZnxFe0.02S (x=0.02, 0.04, and 0.06)) thin films have been successfully deposited on glass substrate by chemical bath deposition technique using aqueous ammonia solution at pH = 9.5. Phase purity of the samples having cubic structure with (111) as the preferential orientation was confirmed by X-ray diffraction technique. Shift of X-ray diffraction peak position towards higher angle side and decrease of lattice parameters, volume and crystallite size confirmed the proper incorporation of Zn into Cd-Fe-S except Zn=6%. The compositional analysis (EDX) showed that Cd, Fe, Zn and S are present in the films. The enhanced band gap and higher transmittance observed in Cd0.94Zn0.04Fe0.02S films are the effective way to use solar energy and enhance its photocatalytic activity under visible light. The enhanced green band emission than blue band by Zn-doping evidenced the existence of higher defect states.

  14. Role of ZnO thin film in the vertically aligned growth of ZnO nanorods by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Son, Nguyen Thanh; Noh, Jin-Seo; Park, Sungho

    2016-08-01

    The effect of ZnO thin film on the growth of ZnO nanorods was investigated. ZnO thin films were sputter-deposited on Si substrate with varying the thickness. ZnO nanorods were grown on the thin film using a chemical bath deposition (CBD) method at 90 °C. The ZnO thin films showed granular structure and vertical roughness on the surface, which facilitated the vertical growth of ZnO nanorods. The average grain size and the surface roughness of ZnO film increased with an increase in film thickness, and this led to the increase in both the average diameter and the average length of vertically grown ZnO nanorods. In particular, it was found that the average diameter of ZnO nanorods was very close to the average grain size of ZnO thin film, confirming the role of ZnO film as a seed layer for the vertical growth of ZnO nanorods. The CBD growth on ZnO seed layers may provide a facile route to engineering vertically aligned ZnO nanorod arrays.

  15. Superhydrophobic Cu2S@Cu2O film on copper surface fabricated by a facile chemical bath deposition method and its application in oil-water separation

    NASA Astrophysics Data System (ADS)

    Pi, Pihui; Hou, Kun; Zhou, Cailong; Li, Guidong; Wen, Xiufang; Xu, Shouping; Cheng, Jiang; Wang, Shuangfeng

    2017-02-01

    Cu2S and Cu2O composite (Cu2S@Cu2O) film with micro/nano binary structure was created on copper surface using the mixing solution of sodium thiosulphate and copper sulfate by a facile chemical bath deposition method. After modification with low-cost polydimethylsioxane (PDMS), the superhydrophobic Cu2S@Cu2O film was obtained. The as-prepared film shows outstanding water repellency with a water contact angle larger than 150° and long-term storage stability. The geometric morphology and chemical composition of the film were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), respectively. Moreover, the same method was used to fabricate superhydrophobic/superoleophilic copper mesh, and it could realize separation of various oily sewages with separation efficiency above 94%. This strategy has potential to fabricate the practical superhydrophobic Cu2S@Cu2O film on copper surface on a large scale due to its simplicity and low cost.

  16. Effect of band-aligned double absorber layers on photovoltaic characteristics of chemical bath deposited PbS/CdS thin film solar cells.

    PubMed

    Ho Yeon, Deuk; Chandra Mohanty, Bhaskar; Lee, Seung Min; Soo Cho, Yong

    2015-09-23

    Here we report the highest energy conversion efficiency and good stability of PbS thin film-based depleted heterojunction solar cells, not involving PbS quantum dots. The PbS thin films were grown by the low cost chemical bath deposition (CBD) process at relatively low temperatures. Compared to the quantum dot solar cells which require critical and multistep complex procedures for surface passivation, the present approach, leveraging the facile modulation of the optoelectronic properties of the PbS films by the CBD process, offers a simpler route for optimization of PbS-based solar cells. Through an architectural modification, wherein two band-aligned junctions are stacked without any intervening layers, an enhancement of conversion efficiency by as much as 30% from 3.10 to 4.03% facilitated by absorption of a wider range of solar spectrum has been obtained. As an added advantage of the low band gap PbS stacked over a wide gap PbS, the devices show stability over a period of 10 days.

  17. Effect of band-aligned double absorber layers on photovoltaic characteristics of chemical bath deposited PbS/CdS thin film solar cells

    PubMed Central

    Ho Yeon, Deuk; Chandra Mohanty, Bhaskar; Lee, Seung Min; Soo Cho, Yong

    2015-01-01

    Here we report the highest energy conversion efficiency and good stability of PbS thin film-based depleted heterojunction solar cells, not involving PbS quantum dots. The PbS thin films were grown by the low cost chemical bath deposition (CBD) process at relatively low temperatures. Compared to the quantum dot solar cells which require critical and multistep complex procedures for surface passivation, the present approach, leveraging the facile modulation of the optoelectronic properties of the PbS films by the CBD process, offers a simpler route for optimization of PbS-based solar cells. Through an architectural modification, wherein two band-aligned junctions are stacked without any intervening layers, an enhancement of conversion efficiency by as much as 30% from 3.10 to 4.03% facilitated by absorption of a wider range of solar spectrum has been obtained. As an added advantage of the low band gap PbS stacked over a wide gap PbS, the devices show stability over a period of 10 days. PMID:26394761

  18. O impurity chemistry in CdS thin-films grown by chemical bath deposition: An investigation with x-ray photoelectron spectroscopy

    SciTech Connect

    Niles, D.W.; Herdt, G.; Al-Jassim, M.

    1997-02-01

    We used x-ray photoelectron spectroscopy to investigate the chemistry of O impurity atoms in CdS thin-films grown for photovoltaic purposes by chemical-bath deposition (CBD). We compared the Cd 3d photoline, O 1s photoline, Cd MNN Auger line, and O KLL Auger line taken from a CBD CdS thin-film, CdS single-crystal reference, Cd metal reference, CdO reference, and Cd(OH){sub 2} reference. This comparison showed that the O present in thin-film CBD CdS is a manifestation of H{sub 2}O incorporated into the film during the CBD growth. Ar{sup +} ion sputtering{emdash}a technique frequently used in thin-film analyses{emdash}preferentially removed S from the CBD CdS thin-film and created CdS{sub 1{minus}x}O{sub x} (x{approximately}0.04) in the surface region from the incorporated O impurity. {copyright} {ital 1997 American Institute of Physics.}

  19. Comparison study of close-spaced sublimated and chemical bath deposited CdS films: Effects on CdTe solar cells

    SciTech Connect

    Albin, D.; Rose, D.; Dhere, R.; Levi, D.; Woods, L.; Swartzlander, A.; Sheldon, P.

    1997-12-31

    Close-spaced-sublimated (CSS) CdS films exhibit strong fundamental edge luminescence, high optical absorption, and a bandgap of {approximately}2.41 eV. Structurally, these films show good crystallinity with thickness-dependent grain sizes that vary between 100--400 nm. In contrast, chemical-bath, deposited (CBD) CdS exhibits subband luminescence, lower absorption, and a thickness-dependent bandgap. These films have CdS grains typically less than 50 nm in size and poorer crystallinity. However, CdTe devices fabricated with these lower quality CBD CdS films yield higher V{sub oc}`s and fill factors. Carrier lifetimes in finished CSS CdS devices measured between 100 and 200 ps while lifetimes in CBD CdS devices were much higher (>500 ps). Compositional differences in the Cd/(S+Te) ratio at the interface suggest the possibility of lower CdS doping and higher CdTe compensation as one reason for lower V{sub oc}`s in CSS CdS devices.

  20. ZnO nanorod arrays prepared by chemical bath deposition combined with rapid thermal annealing: structural, photoluminescence and field emission characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Hung-Wei; Yang, Hsi-Wen; He, Hsin-Min; Lee, Yi-Mu

    2016-01-01

    ZnO nanorod arrays were prepared by low temperature chemical bath deposition (CBD) combined with rapid thermal annealing (RTA) under different ambient conditions. The structure and morphology of the synthesized ZnO have been characterized by field-emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). The obtained ZnO samples are highly crystalline with a hexagonal wurtzite phase and also display well-aligned array structure. A pronounced effect on increased nanorod length was found for the RTA-treated ZnO as compared to the as-grown ZnO. Analysis of XRD indicates that the (0 0 2) feature peak of the as-grown ZnO was shifted towards a lower angle as compared to the peaks of RTA-treated ZnO samples due to the reduction of tensile strain along the c-axis by RTA. Photoluminescence (PL) studies reveal that the ZnO nanorod arrays receiving RTA in an O2 environment have the sharpest UV emission band and greatest intensity ratio of near band-edge emission (NBE) to deep level emission (DLE). Additionally, the effects of RTA on the field emission properties were evaluated. The results demonstrate that RTA an O2 environment can lower the turn-on field and improve the field enhancement factor. The stability of the field emission current was also tested for 4 h.

  1. An x-ray photoelectron spectroscopy investigation of O impurity chemistry in CdS thin films grown by chemical bath deposition

    SciTech Connect

    Niles, D.W.; Herdt, G.; Al-Jassim, M.

    1997-02-01

    We used x-ray photoelectron spectroscopy to investigate the chemistry of O impurity atoms in CdS thin films grown for photovoltaic purposes by chemical-bath deposition (CBD). We compared the Cd 3d photoline, O 1s photoline, Cd MNN Auger line, and O KLL Auger line taken from a CBD CdS thin film, CdS single-crystal reference, Cd metal reference, CdO reference, and Cd(OH){sub 2} reference. This comparison showed that the O present in thin-film CBD CdS is a manifestation of H{sub 2}O incorporated into the film during the CBD growth. Ar{sup +} ion sputtering, a technique frequently used in thin-film analyses, preferentially removed S from the CBD CdS thin film and created CdS{sub 1{minus}x}O{sub x} ({ital x}{approximately}0.04) in the surface region from the incorporated O impurity. {copyright} {ital 1997 American Institute of Physics.}

  2. Effect of band-aligned double absorber layers on photovoltaic characteristics of chemical bath deposited PbS/CdS thin film solar cells

    NASA Astrophysics Data System (ADS)

    Ho Yeon, Deuk; Chandra Mohanty, Bhaskar; Lee, Seung Min; Soo Cho, Yong

    2015-09-01

    Here we report the highest energy conversion efficiency and good stability of PbS thin film-based depleted heterojunction solar cells, not involving PbS quantum dots. The PbS thin films were grown by the low cost chemical bath deposition (CBD) process at relatively low temperatures. Compared to the quantum dot solar cells which require critical and multistep complex procedures for surface passivation, the present approach, leveraging the facile modulation of the optoelectronic properties of the PbS films by the CBD process, offers a simpler route for optimization of PbS-based solar cells. Through an architectural modification, wherein two band-aligned junctions are stacked without any intervening layers, an enhancement of conversion efficiency by as much as 30% from 3.10 to 4.03% facilitated by absorption of a wider range of solar spectrum has been obtained. As an added advantage of the low band gap PbS stacked over a wide gap PbS, the devices show stability over a period of 10 days.

  3. Chemical Bath Deposition of p-Type Transparent, Highly Conducting (CuS)x:(ZnS)1-x Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells.

    PubMed

    Xu, Xiaojie; Bullock, James; Schelhas, Laura T; Stutz, Elias Z; Fonseca, Jose J; Hettick, Mark; Pool, Vanessa L; Tai, Kong Fai; Toney, Michael F; Fang, Xiaosheng; Javey, Ali; Wong, Lydia Helena; Ager, Joel W

    2016-03-09

    P-type transparent conducting films of nanocrystalline (CuS)x:(ZnS)1-x were synthesized by facile and low-cost chemical bath deposition. Wide angle X-ray scattering (WAXS) and high resolution transmission electron microscopy (HRTEM) were used to evaluate the nanocomposite structure, which consists of sub-5 nm crystallites of sphalerite ZnS and covellite CuS. Film transparency can be controlled by tuning the size of the nanocrystallites, which is achieved by adjusting the concentration of the complexing agent during growth; optimal films have optical transmission above 70% in the visible range of the spectrum. The hole conductivity increases with the fraction of the covellite phase and can be as high as 1000 S cm(-1), which is higher than most reported p-type transparent materials and approaches that of n-type transparent materials such as indium tin oxide (ITO) and aluminum doped zinc oxide (AZO) synthesized at a similar temperature. Heterojunction p-(CuS)x:(ZnS)1-x/n-Si solar cells were fabricated with the nanocomposite film serving as a hole-selective contact. Under 1 sun illumination, an open circuit voltage of 535 mV was observed. This value compares favorably to other emerging heterojunction Si solar cells which use a low temperature process to fabricate the contact, such as single-walled carbon nanotube/Si (370-530 mV) and graphene/Si (360-552 mV).

  4. A highly porous NiO/polyaniline composite film prepared by combining chemical bath deposition and electro-polymerization and its electrochromic performance

    NASA Astrophysics Data System (ADS)

    Xia, X. H.; Tu, J. P.; Zhang, J.; Wang, X. L.; Zhang, W. K.; Huang, H.

    2008-11-01

    A highly porous NiO/polyaniline (PANI) composite film was prepared on ITO glass by combining the chemical bath deposition and electro-polymerization methods, successively. The porous NiO film acts as a template for the preferential growth of PANI along NiO flakes, and the NiO/PANI composite film has an intercrossing net-like morphology. The electrochromic performance of the NiO/PANI composite film was investigated in 1 M LiClO4+1 mM HClO4/propylene carbonate (PC) by means of transmittance, cyclic voltammetry (CV) and chronoamperometry (CA) measurements. The NiO/PANI thin film exhibits a noticeable electrochromism with reversible color changes from transparent yellow to purple and presents quite good transmittance modulation with a variation of transmittance up to 56% at 550 nm. The porous NiO/polyaniline (PANI) composite film also shows good reaction kinetics with fast switching speed, and the response time for oxidation and reduction is 90 and 110 ms, respectively.

  5. pH dependent studies of chemical bath deposition grown ZnO-SiO2 core-shell thin films

    NASA Astrophysics Data System (ADS)

    Seth, Rajni; Panwar, Sanjay; Kumar, Sunil; Kang, T. W.; Jeon, H. C.

    2017-01-01

    ZnO-SiO2 core-shell thin films were synthesized using chemical-bath deposition at different pH. Optical studies were done to optimize the thin films to find suitable parameters for solar cell buffer layers. These studies were done by measuring the transmission at 500 nm, which is the peak of the solar spectrum. All the parameters were seen to be highly pH dependent. The transmittance for a sample synthesized with a pH of 10.8 reached 85%. The transmittance was found not to depend on the bandgap values, but it was found possibly to depend on the fewer defect states created at a particular pH, as shown by Urbach energy and scanning electron microscopy (SEM) surface structure. An appreciable transmittance was observed in the blue region of the spectrum which had been missing until now in commercial CdS-based buffer layers. The Fourier-transform infrared and the energy dispersive X-ray spectra confirmed that the films were composed of only ZnO and silica only: no impurities were found. The urbach energy values and the SEM image of sample S3 clearly indicate the creation of fewer of defects, leading to higher crystallintiy and higher transmittance. Therefore, this shortcoming can be resolved by the substituted buffer layer of ZnO:SiO2 nano-composite thin film, which can enhance the blue response of the photovoltaic cells.

  6. Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route

    NASA Astrophysics Data System (ADS)

    Fang, Cheng; Zhang, Dengsong; Cai, Sixiang; Zhang, Lei; Huang, Lei; Li, Hongrui; Maitarad, Phornphimon; Shi, Liyi; Gao, Ruihua; Zhang, Jianping

    2013-09-01

    Nanoflaky MnOx on carbon nanotubes (nf-MnOx@CNTs) was in situ synthesized by a facile chemical bath deposition route for low-temperature selective catalytic reduction (SCR) of NO with NH3. This catalyst was mainly characterized by the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD). The SEM, TEM, XRD results and N2 adsorption-desorption analysis indicated that the CNTs were surrounded by nanoflaky MnOx and the obtained catalyst exhibited a large surface area as well. Compared with the MnOx/CNT and MnOx/TiO2 catalysts prepared by an impregnation method, the nf-MnOx@CNTs presented better NH3-SCR activity at low temperature and a more extensive operating temperature window. The XPS results showed that a higher atomic concentration of Mn4+ and more chemisorbed oxygen species existed on the surface of CNTs for nf-MnOx@CNTs. The H2-TPR and NH3-TPD results demonstrated that the nf-MnOx@CNTs possessed stronger reducing ability, more acid sites and stronger acid strength than the other two catalysts. Based on the above mentioned favourable properties, the nf-MnOx@CNT catalyst has an excellent performance in the low-temperature SCR of NO to N2 with NH3. In addition, the nf-MnOx@CNT catalyst also presented favourable stability and H2O resistance.Nanoflaky MnOx on carbon nanotubes (nf-MnOx@CNTs) was in situ synthesized by a facile chemical bath deposition route for low-temperature selective catalytic reduction (SCR) of NO with NH3. This catalyst was mainly characterized by the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature

  7. Low-temperature selective catalytic reduction of NO with NH₃ over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route.

    PubMed

    Fang, Cheng; Zhang, Dengsong; Cai, Sixiang; Zhang, Lei; Huang, Lei; Li, Hongrui; Maitarad, Phornphimon; Shi, Liyi; Gao, Ruihua; Zhang, Jianping

    2013-10-07

    Nanoflaky MnO(x) on carbon nanotubes (nf-MnO(x)@CNTs) was in situ synthesized by a facile chemical bath deposition route for low-temperature selective catalytic reduction (SCR) of NO with NH₃. This catalyst was mainly characterized by the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N₂ adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), H₂ temperature-programmed reduction (H₂-TPR) and NH₃ temperature-programmed desorption (NH₃-TPD). The SEM, TEM, XRD results and N₂ adsorption-desorption analysis indicated that the CNTs were surrounded by nanoflaky MnO(x) and the obtained catalyst exhibited a large surface area as well. Compared with the MnO(x)/CNT and MnO(x)/TiO₂ catalysts prepared by an impregnation method, the nf-MnO(x)@CNTs presented better NH₃-SCR activity at low temperature and a more extensive operating temperature window. The XPS results showed that a higher atomic concentration of Mn(4+) and more chemisorbed oxygen species existed on the surface of CNTs for nf-MnO(x)@CNTs. The H₂-TPR and NH₃-TPD results demonstrated that the nf-MnO(x)@CNTs possessed stronger reducing ability, more acid sites and stronger acid strength than the other two catalysts. Based on the above mentioned favourable properties, the nf-MnO(x)@CNT catalyst has an excellent performance in the low-temperature SCR of NO to N₂ with NH₃. In addition, the nf-MnO(x)@CNT catalyst also presented favourable stability and H₂O resistance.

  8. High transmittance cadmium oxysulfide Cd(S,O) buffer layer grown by triton X-100 mediated chemical bath deposition for thin-film heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Ballipinar, Faruk; Rastogi, A. C.

    2017-01-01

    Polycrystalline 100-190 nm Cd(S,O) n-type semiconductor thin films of high transparency in the visible range are deposited by a surfactant Triton X-100 mediated chemical bath deposition process. The crystalline structure of the films revealed by X-ray diffraction data shows a cubic-CdO phase signified by (111) and (200) planes alongside the (002), (220), and (110) planes from hexagonal-CdS. The invariance of the 2θ position of the (002) CdS diffraction is interpreted in terms of the growth of the composite film essentially by the formation of a dilute interstitial alloy of CdO and CdS. This is confirmed by Raman spectra which, besides the CdS 1LO and 2LO modes at 300 and 600 cm-1, also show Raman lines from CdO at 1098 cm-1 and 952 cm-1 assigned as overtone of 2LO phonon modes and 556 cm-1 due to band crossing between LO and TO modes of CdO. Optical spectra of Cd(S,O) films show a median transmittance of >85% compared to ˜70% for CdS films in the 550-1000 nm wavelength range. The Cd(S,O) films show optical bandgap varying from 2.34 to 2.26 eV with increasing CdO fraction but retain high sub-bandgap transmission and sharp band edge threshold. The Cd(S,O) films thus offer an alternative to the CdS buffer layer in the heterojunction solar cells, which has major shortcoming of poor stability and high sub-bandgap absorption. The photoluminescence spectra of Cd(S,O) films show three green bands, of which one is the near band edge transition at 511.5 nm, the same as in CdS, the second band at 526.0 nm that red shifted from the CdS position is due to shallow donor-acceptor defects arising from structural change due to CdO, and the third band at 543.6 nm (2.28 eV) originates from direct band transition in CdO. The growth mechanism of Cd(S,O) films is described, which invokes that the Triton X-100 molecule modifies the microenvironment around adsorbed [Cd(NH3)4]2+ species, thereby inducing two concurrent reactions, one with SH- species that cause CdS formation and the

  9. Preparation of highly photocatalytic active CdS/TiO{sub 2} nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    SciTech Connect

    Li, Li; Wang, Lili; Hu, Tianyu; Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi

    2014-10-15

    CdS/TiO{sub 2} nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N{sub 2} adsorption–desorption measurements. The results show that the CdS/TiO{sub 2} nanocomposites were composed of anatase TiO{sub 2} and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer–Emmett–Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO{sub 2} (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO{sub 2} nanocomposites. The CdS/TiO{sub 2} (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO{sub 2} nanocomposites, controlled experiments were performed by adding different radical scavengers. - Graphical abstract: CdS/TiO{sub 2} nanocomposites were prepared using CTAB by CBD combined with MAHS method. In addition, with increasing microwave irradiation time, the morphology of CdS/TiO{sub 2} changed from popcorn-like to wedge-like structure. - Highlights: • The CdS/TiO{sub 2} was prepared by CBD combined with MAHS two-step method under CTAB. • The morphologies of as-samples were different with the time of

  10. Enhancing the photovoltaic performance and stability of QDSSCs using surface reinforced Pt nanostructures with controllable morphology and superior electrocatalysis via cost-effective chemical bath deposition.

    PubMed

    Rao, S Srinivasa; Durga, Ikkurthi Kanaka; Kang, Tae-Su; Kim, Soo-Kyoung; Punnoose, Dinah; Gopi, Chandu V V M; Eswar Reddy, Araveeti; Krishna, T N V; Kim, Hee-Je

    2016-02-28

    To make quantum-dot sensitized solar cells (QDSSCs) competitive, photovoltaic parameters such as the power conversion efficiency (PCE) and fill factor (FF) must become comparable to those of other emerging solar cell technologies. In the present study, a novel strategy has been successfully developed for a highly efficient surface-modified platinum (Pt) counter electrode (CE) with high catalytic activity and long-term stability in a polysulfide redox electrolyte. The reinforcement of the Pt surface was performed using a thin passivating layer of CuS, NiS, or CoS by simple chemical bath deposition techniques. This method was a more efficient method for reducing the electron recombination in QDSSCs. The optimized Pt/CuS CE shows a very low charge transfer resistance of 37.01 Ω, which is an order of magnitude lower than those of bare Pt (86.32 Ω), Pt/NiS (53.83 Ω), and Pt/CoS (73.51 Ω) CEs. Therefore, the Pt/CuS CEs show much greater catalytic activity in the polysulfide redox electrolyte than Pt, Pt/NiS and Pt/CoS CEs. As a result, under one-sun illumination (AM 1.5G, 100 mW cm(-2)), the Pt/CuS CE exhibits a PCE of 4.32%, which is higher than the values of 1.77%, 2.95%, and 3.25% obtained with bare Pt, Pt/CoS, and Pt/NiS CEs, respectively. The performance of the Pt/CuS CE was enhanced by the improved current density, Cu vacancies with increased S composition, and surface morphology, which enable rapid electron transport and lower the electron recombination rate for the polysulfide electrolyte redox couple. Electrochemical impedance spectroscopy and Tafel polarization revealed that the hybrid CEs reduce interfacial recombination and exhibit better electrochemical and photovoltaic performance compared with a bare Pt CE. The Pt/CuS CE also shows superior stability in the polysulfide electrolyte in a working state for over 10 h, resulting in a long-term electrode stability than Pt CE.

  11. Effect of deposition parameters and strontium doping on characteristics of nanostructured ZnO thin film by chemical bath deposition method

    SciTech Connect

    Sheeba, N. H.; Naduvath, J.; Abraham, A. Philip, R. R.; Weiss, M. P. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu; Diener, Z. J. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu; Remillard, S. K. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu; DeYoung, P. A. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu

    2014-10-15

    Polycrystalline thin films of ZnO and Sr-doped ZnO (ZnO:Sr) on ultrasonically cleaned soda lime glass substrates are synthesized through successive ionic layer adsorption and reaction. The XRD profiles of ZnO and ZnO:Sr films prepared at different number of deposition cycles exhibit hexagonal wurtzite structure with preferred orientation along (002) direction. The crystallites are found to be nano sized, having variation in size with the increase in number of depositions cycles and also with Sr doping. Optical absorbance studies reveal a systematically controllable blueshift in band gap of Sr-doped ZnO films. SEM images indicate enhanced assembling of crystallites to form elongated rods as number of dips increased in Sr doped ZnO. The films are found to be n-type with the Sr doping having little effect on the electrical properties.

  12. Effect of deposition parameters and strontium doping on characteristics of nanostructured ZnO thin film by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Sheeba, N. H.; Naduvath, J.; Abraham, A.; Weiss, M. P.; Diener, Z. J.; Remillard, S. K.; DeYoung, P. A.; Philip, R. R.

    2014-10-01

    Polycrystalline thin films of ZnO and Sr-doped ZnO (ZnO:Sr) on ultrasonically cleaned soda lime glass substrates are synthesized through successive ionic layer adsorption and reaction. The XRD profiles of ZnO and ZnO:Sr films prepared at different number of deposition cycles exhibit hexagonal wurtzite structure with preferred orientation along (002) direction. The crystallites are found to be nano sized, having variation in size with the increase in number of depositions cycles and also with Sr doping. Optical absorbance studies reveal a systematically controllable blueshift in band gap of Sr-doped ZnO films. SEM images indicate enhanced assembling of crystallites to form elongated rods as number of dips increased in Sr doped ZnO. The films are found to be n-type with the Sr doping having little effect on the electrical properties.

  13. Dependency of built-in potential of LaF3/porous-silicon heterostructure prepared by chemical bath deposition technique on the concentration of LaCl3 and annealing temperature

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Hafijur; Ismail, Abu Bakar Md.

    2015-11-01

    Effect of LaCl3 concentration and annealing temperature on the built-in potential of LaF3/PS heterojunction has been investigated in this report. LaF3 layers have been deposited by a novel chemical bath deposition (CBD) technique. With this simple technique LaF3 produced as LaCl3 are made to react with hydrofluoric acid on the porous silicon (PS) substrate. This enables direct deposition of LaF3 on the pore walls of the PS leading to a successful passivation of PS. The compositions of the deposited LaF3 were confirmed by energy dispersive of X-ray analysis. The built-in potential decreases with LaCl3 concentration and increases with annealing temperature. Therefore, by changing the LaCl3 concentration and annealing temperature quality of the LaF3 layer on PS can be optimized. From the experimental results it can be concluded that lanthanum fluorides can be deposited on the PS surface by the CBD technique, which provides the required passivation for PS. This passivation can enable the PS to be considered as an important material for photonics.

  14. Influence of LaCl3 concentration and annealing temperature on the diode ideality factor of LaF3/porous-silicon structure prepared by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Hafijur Rahman, Md.; Ismail, Abu Bakar Md.

    2015-08-01

    Effect of LaCl3 concentration and annealing temperature on the diode ideality factor of LaF3/PS heterojunction has been investigated in this report. LaF3 layers have been deposited by a novel chemical bath deposition (CBD) technique. With this simple technique LaF3 produced as LaCl3 are made to react with hydrofluoric acid on the porous silicon (PS) substrate. This enables direct deposition of LaF3 on the pore walls of the PS leading to a successful passivation of PS. The compositions of the deposited LaF3 were confirmed by energy dispersive of X-ray analysis. The diode ideality factor increases with LaCl3 concentration and decreases with annealing temperature. Therefore, by changing the LaCl3 concentration and annealing temperature quality of the LaF3 layer on PS can be optimized. It was also seen that the Ag/LaF3/PS/Si/Ag structure showed the formation of Schottky diode with a threshold voltage of about 5.5 V. From the experimental results it can be concluded that lanthanum fluorides can be deposited into the pores as well as on the top of PS by the CBD technique, which provides the required passivation for PS. This passivation can enable the PS to be considered as an important material for photonics.

  15. Large-scale self-assembled epitaxial growth of highly-ordered three-dimensional micro/nano single-crystalline PbSe pyramid arrays by selective chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Qiu, Jijun; Weng, Binbin; Li, Lin; Li, Xiaomin; Shi, Zhisheng

    2015-05-01

    Highly ordered three-dimensional micro- and nano- PbSe pyramid arrays were synthesized by using selective epitaxial self-assembled chemical bath deposition method. Each pyramid consists of a very sharp (111) tip with six smooth equivalent {100} facets. Every (100) facet forms an angle of about 54.7° with respect to the (111) facet. The structural features including pyramidal size and period could be precisely tailored by pre-patterned Au mask and etching time. Pyramids are self-assembled on the confined positions by the dual functions of one-dimensional and two-dimensional oriented attachment mechanisms along [110] directions on the (111) surface, following the Gibbs-Curie-Wulff minimum energy principle. This method could effectively create large, bottom-up 3D pyramidal surface patterns in a cost-effective and time-saving manner, which has potential applications in infrared photoconductors, solar cells and light emitting enhancement for display, etc.

  16. Light-soaking effects and capacitance profiling in Cu(In,Ga)Se2 thin-film solar cells with chemical-bath-deposited ZnS buffer layers.

    PubMed

    Yu, Hye-Jung; Lee, Woo-Jung; Wi, Jae-Hyung; Cho, Dae-Hyung; Han, Won Seok; Chung, Yong-Duck; Kim, Tae-Soo; Song, Jung-Hoon

    2016-12-07

    We fabricated Cu(In,Ga)Se2 (CIGS) solar cells with chemical-bath deposited (CBD) ZnS buffer layers with different deposition times. The conversion efficiency and the fill factor of the CIGS solar cells reveal a strong dependence on the deposition time of CBD-ZnS films. In order to understand the detailed relationship between the heterojunction structure and the electronic properties of CIGS solar cells with different deposition times of CBD-ZnS films, capacitance-voltage (C-V) profiling measurements with additional laser illumination were performed. The light-soaking effects on CIGS solar cells with a CBD-ZnS buffer layer were investigated in detail using current density-voltage (J-V) and C-V measurements with several different lasers with different emission wavelengths. After light-soaking, the conversion efficiency changed significantly and the double diode feature in J-V curves disappeared. We explain that the major reason for the improvement of efficiency by light-soaking is due to the fact that negatively charged and highly defective vacancies in the CIGS absorber near the interface of CBD-ZnS/CIGS were formed and became neutral due to carriers generated by ultra-violet absorption in the buffer layer.

  17. Spray-Pyrolyzed Three-Dimensional CuInS2 Solar Cells on Nanocrystalline-Titania Electrodes with Chemical-Bath-Deposited Inx(OH)ySz Buffer Layers

    NASA Astrophysics Data System (ADS)

    Nguyen, Duy-Cuong; Mikami, Yuki; Tsujimoto, Kazuki; Ryo, Toshihiro; Ito, Seigo

    2012-10-01

    Three-dimensional (3D) compound solar cells with the structure of have been fabricated by spray pyrolysis deposition of CuInS2 and chemical-bath deposition of Inx(OH)ySz for the light absorber and buffer layer, respectively. The effect of deposition and annealing conditions of Inx(OH)ySz on the photovoltaic properties of 3D CuInS2 solar cells was investigated. Inx(OH)ySz annealed in air ambient showed a better cell performance than those annealed in nitrogen ambient and without annealing. The improvement of the performance of cells with Inx(OH)ySz buffer layers annealed in air ambient is due to the increase in oxide concentration in the buffer layers [confirmed by X-ray photoelectron spectroscopy (XPS) measurement]. Among cells with Inx(OH)ySz buffer layers deposited for 1, 1.5, 1.75, and 2 h, that with Inx(OH)ySz deposited for 1.75 h showed the best cell performance. The best cell performance was observed for Inx(OH)ySz deposited for 1.75 h with annealing at 300 °C for 30 min in air ambient, and cell parameters were 22 mA cm-2 short-circuit photocurrent density, 0.41 V open-circuit voltage, 0.35 fill factor, and 3.2% conversion efficiency.

  18. Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): understanding the role of HMTA in ZnO nanowire growth.

    PubMed

    McPeak, Kevin M; Le, Thinh P; Britton, Nathan G; Nickolov, Zhorro S; Elabd, Yossef A; Baxter, Jason B

    2011-04-05

    Chemical bath deposition (CBD) is an inexpensive and reproducible method for depositing ZnO nanowire arrays over large areas. The aqueous Zn(NO(3))(2)-hexamethylenetetramine (HMTA) chemistry is one of the most common CBD chemistries for ZnO nanowire synthesis, but some details of the reaction mechanism are still not well-understood. Here, we report the use of in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy to study HMTA adsorption from aqueous solutions onto ZnO nanoparticle films and show that HMTA does not adsorb on ZnO. This result refutes earlier claims that the anisotropic morphology arises from HMTA adsorbing onto and capping the ZnO {10 1 0} faces. We conclude that the role of HMTA in the CBD of ZnO nanowires is only to control the saturation index of ZnO. Furthermore, we demonstrate the first deposition of ZnO nanowire arrays at 90 °C and near-neutral pH conditions without HMTA. Nanowires were grown using the pH buffer 2-(N-morpholino)ethanesulfonic acid (MES) and continuous titratation with KOH to maintain the same pH conditions where growth with HMTA occurs. This semi-batch synthetic method opens many new opportunities to tailor the ZnO morphology and properties by independently controlling temperature and pH.

  19. Chemical bath deposition of photosensitive CdS and CdSe thin films and their conversion to n-type for solar cell applications

    SciTech Connect

    Nair, M.T.S.; Nair, P.K.; Zingaro, R.A.; Meyers, E.A.

    1995-12-31

    Methods for preparing good quality CdS and CdSe thin films of 0.1--0.7 {micro}m thickness from solutions at 24--50 C containing citratocadmium(II) ions and thiourea (for CdS) or N,N-dimethyl selenourea (for CdSe) are presented. The as prepared CdS thin films are photosensitive showing photo- to dark-conductivity ratio (S) of > 10{sup 6} under AM-2 illumination. Annealing of these films at 400--450 C for a few minutes converts them to n-type through partial conversion of the films to non stoichiometric CdO. In the case of CdSe, such annealing improves the photosensitivity of the films from S = 10 (as prepared) to > 10{sup 7} (after annealing) under AM-2 illumination. Either film can be converted to n-type with dark conductivities of > 1 {Omega}{sup {minus}1} cm{sup {minus}1} and S = 1 to 10 under AM-2 illumination using a post deposition treatment in dilute (0.01--0.05 M) HgCl{sub 2} solution followed by heating at 200 C.

  20. Synthesis of ZnS films on Si(100) wafers by using chemical bath deposition assisted by the complexing agent ethylenediamine

    NASA Astrophysics Data System (ADS)

    Zhu, He-Jie; Wang, Xue-Mei; Gao, Xiao-Yong

    2015-07-01

    Low-cost synthesis of high-quality ZnS films on silicon wafers is of much importance to the ZnSbased heterojunction blue light-emitting device integrated with silicon. Thus, a series of ZnS films were chemically synthesized at low cost on Si(100) wafers at 353 K under a mixed acidic solution with a pH of 4 with zinc acetate and thioacetamide as precursors and with ethylenediamine and hydrochloric acid as the complexing agent and the pH value modifier, respectively. The effects of the ethylenediamine concentration on the crystallization, surface morphology, and optical properties of the ZnS films were investigated by using X-ray diffractometry, scanning electron microscopy, spectrophotometry, and fluorescence spectroscopy. A mechanism for the formation of ZnS film under an acidic condition was also proposed. All of the ZnS films were polycrystalline in nature, with a dominant cubic phase and a small amounts of hexagonal phases. The crystallization and the surface pattern of the films were clearly improved with increasing ethylenediamine concentration due to its enhanced complexing role. The absorption edge of the films almost underwent a blue shift with increasing ethylenediamine concentration, which was largely attributed to the quantum confinement effects caused by the small particle size of the polycrystalline ZnS films. Defect species and the corresponding strengths of the ZnS films were strongly affected by the ethylenediamine concentration.

  1. Characterization of CdTe Films Deposited at Various Bath Temperatures and Concentrations Using Electrophoretic Deposition

    PubMed Central

    Daud, Mohd Norizam Md; Zakaria, Azmi; Jafari, Atefeh; Ghazali, Mohd Sabri Mohd; Abdullah, Wan Rafizah Wan; Zainal, Zulkarnain

    2012-01-01

    CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111) orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the CdTe film increased with the increase of CdTe concentration. The optical energy band gap of film decreased with the increase of CdTe concentration, and with the increase of isothermal bath temperature. The film thickness increased with respect to the increase of CdTe concentration and bath temperature, and following, the numerical expression for the film thickness with respect to these two variables has been established. PMID:22754325

  2. Characterization of CdTe films deposited at various bath temperatures and concentrations using electrophoretic deposition.

    PubMed

    Daud, Mohd Norizam Md; Zakaria, Azmi; Jafari, Atefeh; Ghazali, Mohd Sabri Mohd; Abdullah, Wan Rafizah Wan; Zainal, Zulkarnain

    2012-01-01

    CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111) orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the CdTe film increased with the increase of CdTe concentration. The optical energy band gap of film decreased with the increase of CdTe concentration, and with the increase of isothermal bath temperature. The film thickness increased with respect to the increase of CdTe concentration and bath temperature, and following, the numerical expression for the film thickness with respect to these two variables has been established.

  3. Characterization of ZnS thin films synthesized through a non-toxic precursors chemical bath

    SciTech Connect

    Rodríguez, C.A.; Sandoval-Paz, M.G.; Cabello, G.; Flores, M.; Fernández, H.; Carrasco, C.

    2014-12-15

    Highlights: • High quality ZnS thin films have been deposited by chemical bath deposition technique from a non-toxic precursor’s solution. • Nanocrystalline ZnS thin films with large band gap energy were synthesized without using ammonia. • Evidence that the growing of the thin films is carried out by means of hydroxide mechanism was found. • The properties of these ZnS thin films are similar and in some cases better than the corresponding ones produced using toxic precursors such as ammonia. - Abstract: In solar cells, ZnS window layer deposited by chemical bath technique can reach the highest conversion efficiency; however, precursors used in the process normally are materials highly volatile, toxic and harmful to the environment and health (typically ammonia and hydrazine). In this work the characterization of ZnS thin films deposited by chemical bath in a non-toxic alkaline solution is reported. The effect of deposition technique (growth in several times) on the properties of the ZnS thin film was studied. The films exhibited a high percentage of optical transmission (greater than 80%); as the deposition time increased a decreasing in the band gap values from 3.83 eV to 3.71 eV was observed. From chemical analysis, the presence of ZnS and Zn(OH){sub 2} was identified and X-ray diffraction patterns exhibited a clear peak corresponding to ZnS hexagonal phase (1 0 3) plane, which was confirmed by electron diffraction patterns. From morphological studies, compact samples with well-defined particles, low roughness, homogeneous and pinhole-free in the surface were observed. From obtained results, it is evident that deposits of ZnS–CBD using a non-toxic solution are suitable as window layer for TFSC.

  4. Synthesis of CuFeS2 thin films from acidic chemical baths

    NASA Astrophysics Data System (ADS)

    Tonpe, Dipak; Gattu, Ketan; More, Ganesh; Upadhye, Deepak; Mahajan, Sandip; Sharma, Ramphal

    2016-05-01

    The growth of Copper iron sulfide nanocrystalline thin films onto glass substrates has been achieved by chemical bath deposition at acidic values of pH. The deposited thin films were characterized for their optoelectronic properties using Raman, UV-Vis spectroscopy. The Raman analysis confirms the formation of CuFeS2 thin film. The thin film with nanosized crystallites of CuFeS2 showed a bandgap of 0.7eV from UV-vis absorption spectroscopy.

  5. Photoassisted Chemically Deposited Tin Sulfide Thin Films Based on Two Different Chemical Formulations

    NASA Astrophysics Data System (ADS)

    Remadevi, T. L.; Dhanya, A. C.; Deepa, K.

    2014-11-01

    Photoassisted chemical deposition is a customized form of chemical bath deposition where the reaction is carried out in the presence of ultraviolet light. Deposition of tin sulfide films was carried out by this method using two different chemical baths. The as-prepared samples from the acetone bath were crystalline, exhibiting the orthorhombic structure of the Sn2S3 phase, but those from the glacial acetic acid bath were amorphous. The crystallinity of the films was improved on annealing. The deposition rate was found to depend on the pH of the bath and the chemical formulation. Distinct morphology was obtained for as-grown films. The films from the acetone bath were compact with uniform morphology of needle-shaped grains having equal diameters and lengths. The films from the glacial acetic acid bath were similar, with smaller needles. The high absorption coefficients of as-grown and annealed films show their potential application as absorber layers in photovoltaic devices. The refractive index was estimated from the reflectance of the films. The estimated activation energies of the as-prepared films from the acetone and glacial acetic acid baths were 0.4 eV and 0.46 eV, whereas those of the annealed samples were 0.2 eV and 0.44 eV, respectively. The activation energy was found to decrease for annealed films due to a decrease in trap sites.

  6. FTIR spectroscopic analysis and STM studies of electroluminescent Eu(DBM) 3 bath thin films vacuum deposited onto Au surface

    NASA Astrophysics Data System (ADS)

    Dovbeshko, G.; Fesenko, O.; Fedorovich, R.; Gavrilko, T.; Marchenko, A.; Puchkovska, G.; Viduta, L.; Naumovets, A.; Chubich, D.; Vitukhnovskii, A.; Fichou, D.

    2006-07-01

    Molecular organization and morphology of vacuum deposited (VD) thin films of the europium complex of europium(dibenzoylmethanato) 3(bathophenanthroline) (Eu(DBM) 3 bath) from metal-organic planar light-emitting nanocomposites consisting of gold island films and VD Eu(DBM) 3 bath film were investigated by FTIR spectroscopy and scanning tunneling microscopy (STM). It has been found that thermal evaporation in vacuum does not cause chemical decomposition of Eu(DBM) 3 bath, and that the obtained films are essentially amorphous. Reflection-absorption IR spectra show no predominant orientation of Eu(DBM) 3 bath molecules in the films with respect to the substrate. With the STM method, the morphology and structure of the near-surface layers of Eu(DBM) 3 bath films were characterized, and it was found that they consist of self-assembled molecular dimers closely packed along the Au [110] steps on the Au(111) terrace. With increase of the Eu(DBM) 3 bath film thickness, the ordered structure is lost.

  7. Effects of Sodium Citrate Concentration on Electroless Ni-Fe Bath Stability and Deposition

    NASA Astrophysics Data System (ADS)

    Jung, Myung-Won; Kang, Sung K.; Lee, Jae-Ho

    2014-01-01

    In this research, electroless Ni-Fe bath stability and deposition characteristics were investigated for various sodium citrate concentrations. Complexing agents such as sodium citrate are one of the main components of such electroless plating baths. Since they could play various roles such as maintaining pH stability, preventing precipitation of metal salts, and reducing the concentrations of free metal ions, the concentration of complexing agents in the plating bath is an important parameter for electroless deposition processes. In this research, unstable baths were obtained for insufficient sodium citrate concentrations, and these phenomena were analyzed with ChemEQL. Moreover, the deposition characteristics of electroless Ni-Fe for under bump metallurgy diffusion barriers were also investigated using energy-dispersive spectroscopy and field-emission scanning electron microscopy.

  8. Pb"1"-"xFe"xS nanoparticle films grown from acidic chemical bath [rapid communication

    NASA Astrophysics Data System (ADS)

    Joshi, Rakesh K.; Subbaraju, G. V.; Sharma, Renu; Sehgal, H. K.

    2004-12-01

    Pb 1- xFe xS ( x=0.25, 0.50, 0.75) films were grown from an acidic chemical bath. Nanoparticle films were structurally characterized by XRD and TEM. Optical band gap of films is observed to vary from 1.65 to 1.42 eV with increase in their iron concentration from x=0.25 to 0.75 in the films. Increased optical band gap of the ternary films compared to the estimated bulk value is attributed to quantum confinement in the nanocrystals deposited on solid substrates.

  9. Ammonia free growth of CdS thin films by Chemical Bath Technique

    NASA Astrophysics Data System (ADS)

    Jaber, A.; Alamri, S. N.; Aida, M. S.

    2011-10-01

    CdS thin films were deposited by a chemical bath deposition technique (CBD). The bath solution is composed of CdCl2 (0.1 M) salt as a source for Cd and thiourea (0.1M) as a source of sulphur (S). To avoid the toxicity and volatility of the commonly used ammonia, ethanolamine (ETA ) is used as complexing agent. Films were deposited with different times from 30 to 120 minutes in order to study the films growth mechanism. The solution temperature was fixed at 60°C. The structural and morphological films characterizations were carried by XRD analysis and AFM observations. From the XRD analysis we inferred that obtained CdS films have a pure hexagonal structure with the preferential orientation along the plane (101). The pure hexagonal structure is highly recommended for the realization of CdTe/ CdS or CuInSe/CdS solar cells. The presence of the hexagonal structure and the low growth rate in order of 1nm/min suggest that the growth mechanism is achieved through the ion by ion process. The optical characterization result indicates that the obtained films have a high transparency from 80 to 60 % in the visible range. In conclusion we inferred that CBD ammonia free CdS thin films deposition enables the production of films suitable for photovoltaic applications.

  10. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    A chemical vapor deposition (CVD) reactor system with a vertical deposition chamber was used for the growth of Si films on glass, glass-ceramic, and polycrystalline ceramic substrates. Silicon vapor was produced by pyrolysis of SiH4 in a H2 or He carrier gas. Preliminary deposition experiments with two of the available glasses were not encouraging. Moderately encouraging results, however, were obtained with fired polycrystalline alumina substrates, which were used for Si deposition at temperatures above 1,000 C. The surfaces of both the substrates and the films were characterized by X-ray diffraction, reflection electron diffraction, scanning electron microscopy optical microscopy, and surface profilometric techniques. Several experiments were conducted to establish baseline performance data for the reactor system, including temperature distributions on the sample pedestal, effects of carrier gas flow rate on temperature and film thickness, and Si film growth rate as a function of temperature.

  11. Equilibrium characteristics of tartrate and EDTA-based electroless copper deposition baths

    SciTech Connect

    Ramasubramanian, M.; Popov, B.N.; White, R.E.; Chen, K.S.

    1997-08-01

    Electroless deposition of copper is being used for a variety of applications, one of them being the development of seed metallic layers on non-metals, which are widely used in electronic circuitry. Solution equilibrium characteristics of two electroless copper baths containing EDTA and tartrate as the complexing agents were studied as functions of pH, chelating agent and metal ion concentrations. Equilibrium diagrams were constructed for both cu-tartrate and Cu-EDTA systems. It was determined that copper is chiefly complexed as Cu(OH){sub 2}L{sub 2}{sup {minus}4} in the tartrate bath, and as CuA{sup {minus}2} in the EDTA bath, where L and A are the complexing tartrate and EDTA ligands, respectively. The operating ranges for electroless copper deposition were identified for both baths. Dependence of Cu(OH){sub 2} precipitation on the pH and species concentrations was also studied for these systems.

  12. Influence of coating bath chemistry on the deposition of 3-mercaptopropyl trimethoxysilane films deposited on magnesium alloy.

    PubMed

    Scott, A F; Gray-Munro, J E; Shepherd, J L

    2010-03-15

    Magnesium alloys have a low specific density and a high strength to weight ratio. This makes them sought after light weight construction materials for automotive and aerospace applications. These materials have also recently become of interest for biomedical applications. Unfortunately, the use of magnesium alloys in many applications has been limited due to its high susceptibility to corrosion. One way to improve the corrosion resistance of magnesium alloys is through the deposition of protective coatings. Many of the current pretreatments/coatings available use toxic chemicals such as chromates and hydrofluoric acid. One possible environmentally friendly alternative is organosilane coatings which have been shown to offer significant corrosion protection to both aluminum alloys and steels. Organosilanes are ambifunctional molecules that are capable of covalent bonding to metal hydroxide surfaces. In order for covalent bonding to occur, the organosilane must undergo hydrolysis in the coating bath followed by a condensation reaction with the surface. There are a number of factors that influence the rates of these reactions such as pH and concentration of reactants. These factors can also influence competing reactions in solution such as oligomerization. The rates of hydrolysis and condensation of 3-mercaptopropyltrimethoxy silane in methanol have been analyzed with (1)H NMR and ATR-FTIR. The results indicate that organosilane oligomers begin to form in solution before the molecules are fully hydrolyzed. The organosilane films deposited on magnesium alloy AZ91 at a variety of concentrations and pre-hydrolysis times were characterized with a combination of ATR-FTIR, ellipsometry and SEM/EDS. The results show that both organosilane film thickness and uniformity are affected by the chemistry occurring in the coating bath prior to deposition.

  13. Chemical Safety: Molten Salt Baths Cited as Lab Hazards.

    ERIC Educational Resources Information Center

    Baum, Rudy

    1982-01-01

    Discusses danger of explosions with molten salts baths, commonly used as heat-transfer media. One such explosion involved use of a bath containing 3-lb sodium nitrite and 1-lb potassium thiocyanate. Although most commercially available mixtures for heat transfer contain oxidizers, a reducer (thiocyanate) was included which possibly triggered the…

  14. Investigation of electroless tin deposition from acidic thiourea-type bath

    NASA Astrophysics Data System (ADS)

    Araźna, A.; Bieliński, J.

    2006-10-01

    The constant tendency of miniaturization in electronic products and developments in surface assembly techniques creates requirement to prepare new techniques and processes also in the range of metallic coatings. An additional factor which influences the evolution of preservatives coatings technology is the necessity to adapt Polish law to European directive. From 1 st July 2006 there will be an obligatory RoHS directive banning applying lead in electronics. Electroless tin deposition is one of an alternative for Sn/Pb lead free preservative films on copper surface in PCB technology. Electroless deposition of tin coatings on copper can be made in two ways: from an alkaline bath - the process disproportionation of Sn(II) compounds and from acidic bath contain complex compound such as thiourea - the displacement of copper by tin in Sn(II). Alkaline baths are not used in printed circuit board technology because it has destructive influence on resists. Besides acidic baths complex compounds contain additional stability solution composition which modify structure of obtained tin film. Quality and thickness tin layer are fundamental parameters which determine its protective character. The research test were done in thiourea-type electroless tin bath. The influence of different parameters on n rate of tin deposition and thickness of Sn coating were determined: temperature of the bath, Sn(II)-salt, thiourea and HCl concentration. Tin layers were depositioned on electrolytical copper foil. The thickness of Sn coating was determined by coulometry in 2M HCl. The rate deposition process depends mainly on the thiourea and HCl concentrations in solution. The temperature is also a very important parameter. The thickness of tin layer grows when the temperature increase. Although above 70°C appear undesirable thiourea decomposition. The results of the investigation show that further investigations are necessary for this solution.

  15. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    The chemical vapor deposition (CVD) method for the growth of Si sheet on inexpensive substrate materials is investigated. The objective is to develop CVD techniques for producing large areas of Si sheet on inexpensive substrate materials, with sheet properties suitable for fabricating solar cells meeting the technical goals of the Low Cost Silicon Solar Array Project. Specific areas covered include: (1) modification and test of existing CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using standard and near-standard processing techniques.

  16. Improving the efficiency of ITO/nc-TiO2/CdS/P3HT:PCBM/PEDOT:PSS/Ag inverted solar cells by sensitizing TiO2 nanocrystalline film with chemical bath-deposited CdS quantum dots

    PubMed Central

    2013-01-01

    An improvement in the power conversion efficiency (PCE) of the inverted organic solar cell (ITO/nc-TiO2/P3HT:PCBM/PEDOT:PSS/Ag) is realized by depositing CdS quantum dots (QDs) on a nanocrystalline TiO2 (nc-TiO2) film as a light absorption material and an electron-selective material. The CdS QDs were deposited via a chemical bath deposition (CBD) method. Our results show that the best PCE of 3.37% for the ITO/nc-TiO2/CdS/P3HT:PCBM/PEDOT:PSS/Ag cell is about 1.13 times that (2.98%) of the cell without CdS QDs (i.e., ITO/nc-TiO2/P3HT:PCBM/PEDOT:PSS/Ag). The improved PCE can be mainly attributed to the increased light absorption and the reduced recombination of charge carriers from the TiO2 to the P3HT:PCBM film due to the introduced CdS QDs. PMID:24172258

  17. Improving the efficiency of ITO/nc-TiO2/CdS/P3HT:PCBM/PEDOT:PSS/Ag inverted solar cells by sensitizing TiO2 nanocrystalline film with chemical bath-deposited CdS quantum dots.

    PubMed

    Chen, Chong; Li, Fumin

    2013-10-31

    An improvement in the power conversion efficiency (PCE) of the inverted organic solar cell (ITO/nc-TiO2/P3HT:PCBM/PEDOT:PSS/Ag) is realized by depositing CdS quantum dots (QDs) on a nanocrystalline TiO2 (nc-TiO2) film as a light absorption material and an electron-selective material. The CdS QDs were deposited via a chemical bath deposition (CBD) method. Our results show that the best PCE of 3.37% for the ITO/nc-TiO2/CdS/P3HT:PCBM/PEDOT:PSS/Ag cell is about 1.13 times that (2.98%) of the cell without CdS QDs (i.e., ITO/nc-TiO2/P3HT:PCBM/PEDOT:PSS/Ag). The improved PCE can be mainly attributed to the increased light absorption and the reduced recombination of charge carriers from the TiO2 to the P3HT:PCBM film due to the introduced CdS QDs.

  18. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Campbell, A. G.; Johnson, R. E.; Kenty, J. L.; Moudy, L. A.; Shaw, G. L.; Simpson, W. I.; Yang, J. J.

    1978-01-01

    The objective was to investigate and develop chemical vapor deposition (CVD) techniques for the growth of large areas of Si sheet on inexpensive substrate materials, with resulting sheet properties suitable for fabricating solar cells that would meet the technical goals of the Low Cost Silicon Solar Array Project. The program involved six main technical tasks: (1) modification and test of an existing vertical-chamber CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using impurity diffusion and other standard and near-standard processing techniques supplemented late in the program by the in situ CVD growth of n(+)/p/p(+) sheet structures subsequently processed into experimental cells.

  19. Dynamics of surface evolution in semiconductor thin films grown from a chemical bath

    PubMed Central

    Gupta, Indu; Mohanty, Bhaskar Chandra

    2016-01-01

    Dynamics of surface evolution in CdS thin films grown by chemical bath deposition technique has been studied from time sequence of atomic force micrographs. Detailed scaling analysis of surface fluctuation in real and Fourier space yielded characteristic exponents αloc = 0.78 ± 0.07, α = 2.20 ± 0.08, αs = 1.49 ± 0.22, β = 0.86 ± 0.05 and βloc = 0.43 ± 0.10, which are very different from those predicted by the local growth models and are not related to any known universality classes. The observed anomalous scaling pattern, characterized by power law scaling dependence of interface width on deposition time differently at local and global scale, with rapid roughening of the growth front has been discussed to arise as a consequence of a nonlocal effect in the form of diffusional instability. PMID:27615367

  20. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Johnson, R. E.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    A laboratory type CVD reactor system with a vertical deposition chamber and sample pedestal heated by an external RF coil has been extensively modified by installation of mass flow controllers, automatic process sequence timers, and special bellows-sealed air-operated valves for overall improved performance. Various film characterization procedures, including classical metallography, SEM analyses, X ray diffraction analyses, surface profilometry, and electrical measurements (resistivity, carrier concentration, mobility, spreading resistance profiles, and minority-carrier lifetime by the C-V-t method) area used to correlate Si sheet properties with CVD parameters and substrate properties. Evaluation procedures and measurements are given. Experimental solar cell structures were made both in epitaxial Si sheet (on sapphire substrates) and in polycrystalline material on alumina substrates, the former to provide an indication of what might be an upper limit on performance of the latter. Preliminary results are given, as obtained in cell structures not specially designed to allow for the unique properties of the sheet material, and fabricated in material known to be far from optimum for photovoltaic performance. Low power conversion efficiencies have been obtained in the epitaxial as well as the polycrystalline Si sheet.

  1. Simple Chemical Vapor Deposition Experiment

    ERIC Educational Resources Information Center

    Pedersen, Henrik

    2014-01-01

    Chemical vapor deposition (CVD) is a process commonly used for the synthesis of thin films for several important technological applications, for example, microelectronics, hard coatings, and smart windows. Unfortunately, the complexity and prohibitive cost of CVD equipment makes it seldom available for undergraduate chemistry students. Here, a…

  2. Mixed ether bath for electrodeposition of aluminum

    NASA Technical Reports Server (NTRS)

    Lui, K.

    1969-01-01

    Anisole added to the bath mixture improves Brenner aluminum plating bath technique. Mixture has lower bath vapor-pressure and the electro-deposits obtained have greater physical strength than deposits from the Brenner bath.

  3. Chemical vapor deposition of sialon

    DOEpatents

    Landingham, R.L.; Casey, A.W.

    A laminated composite and a method for forming the composite by chemical vapor deposition are described. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200/sup 0/C; and impinging a gas containing N/sub 2/, SiCl/sub 4/, and AlCl/sub 3/ on the surface.

  4. Chemical vapor deposition of sialon

    DOEpatents

    Landingham, Richard L.; Casey, Alton W.

    1982-01-01

    A laminated composite and a method for forming the composite by chemical vapor deposition. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200.degree. C.; and impinging a gas containing in a flowing atmosphere of air N.sub.2, SiCl.sub.4, and AlCl.sub.3 on the surface.

  5. Chemical surface deposition of ultra-thin semiconductors

    DOEpatents

    McCandless, Brian E.; Shafarman, William N.

    2003-03-25

    A chemical surface deposition process for forming an ultra-thin semiconducting film of Group IIB-VIA compounds onto a substrate. This process eliminates particulates formed by homogeneous reactions in bath, dramatically increases the utilization of Group IIB species, and results in the formation of a dense, adherent film for thin film solar cells. The process involves applying a pre-mixed liquid coating composition containing Group IIB and Group VIA ionic species onto a preheated substrate. Heat from the substrate causes a heterogeneous reaction between the Group IIB and VIA ionic species of the liquid coating composition, thus forming a solid reaction product film on the substrate surface.

  6. Chemically Deposited Thin-Film Solar Cell Materials

    NASA Technical Reports Server (NTRS)

    Raffaelle, R.; Junek, W.; Gorse, J.; Thompson, T.; Harris, J.; Hehemann, D.; Hepp, A.; Rybicki, G.

    2005-01-01

    We have been working on the development of thin film photovoltaic solar cell materials that can be produced entirely by wet chemical methods on low-cost flexible substrates. P-type copper indium diselenide (CIS) absorber layers have been deposited via electrochemical deposition. Similar techniques have also allowed us to incorporate both Ga and S into the CIS structure, in order to increase its optical bandgap. The ability to deposit similar absorber layers with a variety of bandgaps is essential to our efforts to develop a multi-junction thin-film solar cell. Chemical bath deposition methods were used to deposit a cadmium sulfide (CdS) buffer layers on our CIS-based absorber layers. Window contacts were made to these CdS/CIS junctions by the electrodeposition of zinc oxide (ZnO). Structural and elemental determinations of the individual ZnO, CdS and CIS-based films via transmission spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy and energy dispersive spectroscopy will be presented. The electrical characterization of the resulting devices will be discussed.

  7. Chemical vapor deposition of epitaxial silicon

    DOEpatents

    Berkman, Samuel

    1984-01-01

    A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.

  8. Laser Induced Chemical Liquid Phase Deposition (LCLD)

    SciTech Connect

    Nanai, Laszlo; Balint, Agneta M.

    2012-08-17

    Laser induced chemical deposition (LCLD) of metals onto different substrates attracts growing attention during the last decade. Deposition of metals onto the surface of dielectrics and semiconductors with help of laser beam allows the creation of conducting metal of very complex architecture even in 3D. In the processes examined the deposition occurs from solutions containing metal ions and reducing agents. The deposition happens in the region of surface irradiated by laser beam (micro reactors). Physics -chemical reactions driven by laser beam will be discussed for different metal-substrate systems. The electrical, optical, mechanical properties of created interfaces will be demonstrated also including some practical-industrial applications.

  9. Chemical enhancement of surface deposition

    DOEpatents

    Patch, K.D.; Morgan, D.T.

    1997-07-29

    A method and apparatus are disclosed for increasing the deposition of ions onto a surface, such as the adsorption of uranium ions on the detecting surface of a radionuclide detector. The method includes the step of exposing the surface to a complexing agent, such as a phosphate ion solution, which has an affinity for the dissolved species to be deposited on the surface. This provides, for example, enhanced sensitivity of the radionuclide detector. 16 figs.

  10. Chemical enhancement of surface deposition

    DOEpatents

    Patch, Keith D.; Morgan, Dean T.

    1997-07-29

    A method and apparatus for increasing the deposition of ions onto a surface, such as the adsorption of uranium ions on the detecting surface of a radionuclide detector. The method includes the step of exposing the surface to a complexing agent, such as a phosphate ion solution, which has an affinity for the dissolved species to be deposited on the surface. This provides, for example, enhanced sensitivity of the radionuclide detector.

  11. Flexural strength of acrylic resin repairs processed by different methods: water bath, microwave energy and chemical polymerization

    PubMed Central

    ARIOLI FILHO, João Neudenir; BUTIGNON, Luís Eduardo; PEREIRA, Rodrigo de Paula; LUCAS, Matheus Guilherme; MOLLO JUNIOR, Francisco de Assis

    2011-01-01

    Denture fractures are common in daily practice, causing inconvenience to the patient and to the dentists. Denture repairs should have adequate strength, dimensional stability and color match, and should be easily and quickly performed as well as relatively inexpensive. Objective The aim of this study was to evaluate the flexural strength of acrylic resin repairs processed by different methods: warm water-bath, microwave energy, and chemical polymerization. Material and methods Sixty rectangular specimens (31x10x2.5 mm) were made with warm water-bath acrylic resin (Lucitone 550) and grouped (15 specimens per group) according to the resin type used to make repair procedure: 1) specimens of warm water-bath resin (Lucitone 550) without repair (control group); 2) specimens of warm water-bath resin repaired with warm water-bath; 3) specimens of warm water-bath resin repaired with microwave resin (Acron MC); 4) specimens of warm water-bath resin repaired with autopolymerized acrylic resin (Simplex). Flexural strength was measured with the three-point bending in a universal testing machine (MTS 810 Material Test System) with load cell of 100 kgf under constant speed of 5 mm/min. Data were analyzed statistically by Kruskal-Wallis test (p<0.05). Results The control group showed the best result (156.04±1.82 MPa). Significant differences were found among repaired specimens and the results were decreasing as follows: group 3 (43.02±2.25 MPa), group 2 (36.21±1.20 MPa) and group 4 (6.74±0.85 MPa). Conclusion All repaired specimens demonstrated lower flexural strength than the control group. Repairs with autopolymerized acrylic resin showed the lowest flexural strength. PMID:21625742

  12. Chemical vapor deposition of mullite coatings

    DOEpatents

    Sarin, Vinod; Mulpuri, Rao

    1998-01-01

    This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

  13. Numerical modeling tools for chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Jasinski, Thomas J.; Childs, Edward P.

    1992-01-01

    Development of general numerical simulation tools for chemical vapor deposition (CVD) was the objective of this study. Physical models of important CVD phenomena were developed and implemented into the commercial computational fluid dynamics software FLUENT. The resulting software can address general geometries as well as the most important phenomena occurring with CVD reactors: fluid flow patterns, temperature and chemical species distribution, gas phase and surface deposition. The physical models are documented which are available and examples are provided of CVD simulation capabilities.

  14. Research and Analysis on the Physical and Chemical Properties of Molten Bath with Bottom-Blowing in EAF Steelmaking Process

    NASA Astrophysics Data System (ADS)

    Wei, Guangsheng; Zhu, Rong; Dong, Kai; Ma, Guohong; Cheng, Ting

    2016-10-01

    Bottom-blowing technology is widely adopted in electric arc furnace (EAF) steelmaking to promote the molten bath fluid flow, accelerate the metallurgical reaction, and improve the quality of molten steel. In this study, a water model experiment and a computational fluid dynamics model were established to investigate the effects of bottom-blowing gas flow rate on the fluid flow characteristics in the EAF molten bath. The results show that the interaction among the bottom-blowing gas streams influences the molten bath flow field, and increasing the bottom-blowing gas flow rate can accelerate the fluid flow and decrease the volume of the dead zone. Based on industrial application research, the physical and chemical properties of the molten bath with bottom-blowing were analyzed. Compared with traditional melting conditions without bottom-blowing, bottom-blowing technology demonstrates obvious advantages in promoting the heat transfer and metallurgical reactions in the molten bath. With the bottom-blowing arrangement, the dephosphorization and decarburization rates are accelerated, the contents of FeO and T. Fe in endpoint slag are decreased, and the endpoint carbon-oxygen equilibrium of molten steel is improved.

  15. Chemically deposited nanocrystalline PbS: effect of substrates

    NASA Astrophysics Data System (ADS)

    Choudhury, N.

    2016-03-01

    PbS nanoparticles have been grown in polyvinyl alcohol matrix on glass and mica substrates by chemical bath deposition method at room temperature. The structural investigation of nanocrystalline PbS has been carried out by X-ray diffraction profile analysis using Williamson-Hall and modified Williamson-Hall methods. The values of the crystallite size are found to be within the range from 10 to 17 nm having very high dislocation density of the order of 1017 m-2. The optical band gaps of the films have been determined from optical absorption measurements and found to be within the range from 2.1 to 2.8 eV. The band gap is shifted from infrared to the visible region on the account of quantum confinement in the nanostructured films due to small crystallite size. Such films, with a band gap lying in the visible region, are suitable for use as solar absorbers rather than infrared applications.

  16. Modeling the transport of organic chemicals between polyethylene passive samplers and water in finite and infinite bath conditions.

    PubMed

    Tcaciuc, A Patricia; Apell, Jennifer N; Gschwend, Philip M

    2015-12-01

    Understanding the transfer of chemicals between passive samplers and water is essential for their use as monitoring devices of organic contaminants in surface waters. By applying Fick's second law to diffusion through the polymer and an aqueous boundary layer, the authors derived a mathematical model for the uptake of chemicals into a passive sampler from water, in finite and infinite bath conditions. The finite bath model performed well when applied to laboratory observations of sorption into polyethylene (PE) sheets for various chemicals (polycyclic aromatic hydrocarbons, polychlorinated biphenyls [PCBs], and dichlorodiphenyltrichloroethane [DDT]) and at varying turbulence levels. The authors used the infinite bath model to infer fractional equilibration of PCB and DDT analytes in field-deployed PE, and the results were nearly identical to those obtained using the sampling rate model. However, further comparison of the model and the sampling rate model revealed that the exchange of chemicals was inconsistent with the sampling rate model for partially or fully membrane-controlled transfer, which would be expected in turbulent conditions or when targeting compounds with small polymer diffusivities and small partition coefficients (e.g., phenols, some pesticides, and others). The model can be applied to other polymers besides PE as well as other chemicals and in any transfer regime (membrane, mixed, or water boundary layer-controlled). Lastly, the authors illustrate practical applications of this model such as improving passive sampler design and understanding the kinetics of passive dosing experiments.

  17. Copper Deposits with High Tensile Strength and Elongation Electroformed in an Ultra-Low-Concentration Sulfate Bath without Additives

    NASA Astrophysics Data System (ADS)

    Shen, Chunjian; Zhu, Zengwei; Zhu, Di; Ren, Jianhua

    2017-02-01

    Superior mechanical properties of copper are needed in industries to meet high application requirement. In this study, an electroformed copper with superior mechanical properties is achieved by using a simple ultra-low-concentration copper sulfate bath containing neither chloride nor organic additives. Copper deposits obtained in the copper sulfate concentrations ranging from 30 to 60 g/L exhibit high tensile strength and elongation simultaneously. A maximum tensile strength of 256 MPa is achieved, with an elongation ratio of 31%, at a copper sulfate concentration of 30 g/L, while a maximum elongation ratio of 43% is achieved, with a tensile strength of 216 MPa, at a concentration of 50 g/L. It has been found that the copper sulfate concentration affected the hydrogen content, grain arrangement and orientation index of copper deposits which determine their mechanical properties. When the copper sulfate concentration is less than 30 g/L, the excessive hydrogen content of the deposits thus produced leads to poor compactness and inferior mechanical properties. At concentrations over 50 g/L, a disordered arrangement of grains and a significant increase in the peak of (111) lead to an increase in the tensile strength but a decrease in the elongation ratio. This approach provides an effective and economical method for the copper deposits achieving superior mechanical properties.

  18. Study of CdS epitaxial films chemically deposited from aqueous solutions on InP single crystals

    SciTech Connect

    Froment, M.; Bernard, M.C.; Cortes, R.; Mokili, B.; Lincot, D.

    1995-08-01

    Epitaxial growth of cadmium sulfide on InP single crystals is achieved by chemical bath deposition (CBD) in ammonia solutions at near room temperature. A better understanding of the correlations between the deposition parameters (temperature, bath composition) and the epitaxial quality is obtained by using electron diffraction and transmission techniques, x-ray diffraction, in combination with Raman spectroscopy. They are supplemented by electrochemical impedance and photocurrent experiments which give information on energetic structures between InP and CBD-CdS. Direct relations between the substrate properties and the growth habits of the CdS film (hexagonal vs. cubic, epitaxial vs. polycrystalline) are found.

  19. Quantitative study on the chemical solution deposition of zinc oxysulfide

    SciTech Connect

    Reinisch, Michael; Perkins, Craig L.; Steirer, K. Xerxes

    2015-11-21

    Zinc Oxysulfide (ZnOS) has demonstrated potential in the last decade to replace CdS as a buffer layer material since it is a wide-band-gap semiconductor with performance advantages over CdS (Eg = 2.4 eV) in the near UV-range for solar energy conversion. However, questions remain on the growth mechanisms of chemical bath deposited ZnOS. In this study, a detailed model is employed to calculate solubility diagrams that describe simple conditions for complex speciation control using only ammonium hydroxide without additional base. For these conditions, ZnOS is deposited via aqueous solution deposition on a quartz crystal microbalance in a continuous flow cell. Data is used to analyze the growth rate dependence on temperature and also to elucidate the effects of dimethylsulfoxide (DMSO) when used as a co-solvent. Activation energies (EA) of ZnOS are calculated for different flow rates and solution compositions. As a result, the measured EA relationships are affected by changes in the primary growth mechanism when DMSO is included.

  20. Quantitative study on the chemical solution deposition of zinc oxysulfide

    DOE PAGES

    Reinisch, Michael; Perkins, Craig L.; Steirer, K. Xerxes

    2015-11-21

    Zinc Oxysulfide (ZnOS) has demonstrated potential in the last decade to replace CdS as a buffer layer material since it is a wide-band-gap semiconductor with performance advantages over CdS (Eg = 2.4 eV) in the near UV-range for solar energy conversion. However, questions remain on the growth mechanisms of chemical bath deposited ZnOS. In this study, a detailed model is employed to calculate solubility diagrams that describe simple conditions for complex speciation control using only ammonium hydroxide without additional base. For these conditions, ZnOS is deposited via aqueous solution deposition on a quartz crystal microbalance in a continuous flow cell.more » Data is used to analyze the growth rate dependence on temperature and also to elucidate the effects of dimethylsulfoxide (DMSO) when used as a co-solvent. Activation energies (EA) of ZnOS are calculated for different flow rates and solution compositions. As a result, the measured EA relationships are affected by changes in the primary growth mechanism when DMSO is included.« less

  1. Chemical-Vapor-Deposited Diamond Film

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This chapter describes the nature of clean and contaminated diamond surfaces, Chemical-vapor-deposited (CVD) diamond film deposition technology, analytical techniques and the results of research on CVD diamond films, and the general properties of CVD diamond films. Further, it describes the friction and wear properties of CVD diamond films in the atmosphere, in a controlled nitrogen environment, and in an ultra-high-vacuum environment.

  2. Laser Velocimetry of Chemical Vapor Deposition Flows

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Laser velocimetry (LV) is being used to measure the gas flows in chemical vapor deposition (CVD) reactors. These gas flow measurements can be used to improve industrial processes in semiconductor and optical layer deposition and to validate numerical models. Visible in the center of the picture is the graphite susceptor glowing orange-hot at 600 degrees C. It is inductively heated via the copper cool surrounding the glass reactor.

  3. AFM investigation and optical band gap study of chemically deposited PbS thin films

    NASA Astrophysics Data System (ADS)

    Zaman, S.; Mansoor, M.; Abubakar; Asim, M. M.

    2016-08-01

    The interest into deposition of nanocrystalline PbS thin films, the potential of designing and tailoring both the topographical features and the band gap energy (Eg) by controlling growth parameters, has significant technological importance. Nanocrystalline thin films of lead sulfide were grown onto glass substrates by chemical bath deposition (CBD) method. The experiments were carried out by varying deposition temperature. We report on the modification of structural and optical properties as a function of deposition temperature. The morphological changes of the films were analyzed by using SEM and AFM. AFM was also used to calculate average roughness of the films. XRD spectra indicated preferred growth of cubic phase of PbS films in (200) direction with increasing deposition time. Optical properties have been studied by UV-Spectrophotometer. From the diffused reflectance spectra we have calculated the optical Eg shift from 0.649-0.636 eV with increasing deposition time.

  4. Automated semiconductor vacuum chemical vapor deposition facility

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A semiconductor vacuum chemical vapor deposition facility (totally automatic) was developed. Wafers arrived on an air track, automatically loaded into a furnace tube, processed, returned to the track, and sent on to the next operation. The entire process was controlled by a computer.

  5. Chemical effect on ozone deposition over seawater

    EPA Science Inventory

    Surface layer resistance plays an important role in determining ozone deposition velocity over seawater. Recent studies suggest that surface layer resistance over sea-water is influenced by wind-speed and chemical interaction at the air-water interface. Here, we investigate the e...

  6. Low-pressure, chemical vapor deposition polysilicon

    NASA Technical Reports Server (NTRS)

    Gallagher, B. D.; Crotty, G. C.

    1986-01-01

    The low-pressure chemical vapor deposition (LPCVD) of polycrystalline silicon was investigted. The physical system was described, as was the controlling process parameters and requirements for producing films for use as an integral portion of the solar cell contact system.

  7. Chemical vapor deposition coating for micromachines

    SciTech Connect

    MANI,SEETHAMBAL S.; FLEMING,JAMES G.; SNIEGOWSKI,JEFFRY J.; DE BOER,MAARTEN P.; IRWIN,LAWRENCE W.; WALRAVEN,JEREMY A.; TANNER,DANELLE M.; DUGGER,MICHAEL T.

    2000-04-21

    Two major problems associated with Si-based MEMS devices are stiction and wear. Surface modifications are needed to reduce both adhesion and friction in micromechanical structures to solve these problems. In this paper, the authors will present a process used to selectively coat MEMS devices with tungsten using a CVD (Chemical Vapor Deposition) process. The selective W deposition process results in a very conformal coating and can potentially solve both stiction and wear problems confronting MEMS processing. The selective deposition of tungsten is accomplished through silicon reduction of WF{sub 6}, which results in a self-limiting reaction. The selective deposition of W only on polysilicon surfaces prevents electrical shorts. Further, the self-limiting nature of this selective W deposition process ensures the consistency necessary for process control. Selective tungsten is deposited after the removal of the sacrificial oxides to minimize process integration problems. This tungsten coating adheres well and is hard and conducting, requirements for device performance. Furthermore, since the deposited tungsten infiltrates under adhered silicon parts and the volume of W deposited is less than the amount of Si consumed, it appears to be possible to release stuck parts that are contacted over small areas such as dimples. Results from tungsten deposition on MEMS structures with dimples will be presented. The effect of wet and vapor phase cleanings prior to the deposition will be discussed along with other process details. The W coating improved wear by orders of magnitude compared to uncoated parts. Tungsten CVD is used in the integrated-circuit industry, which makes this approach manufacturable.

  8. Metal film deposition by laser breakdown chemical vapor deposition

    SciTech Connect

    Jervis, T.R.

    1985-01-01

    Dielectric breakdown of gas mixtures can be used to deposit homogeneous thin films by chemical vapor deposition with appropriate control of flow and pressure conditions to suppress gas phase nucleation and particle formation. Using a pulsed CO/sub 2/ laser operating at 10.6 microns where there is no significant resonant absorption in any of the source gases, we have succeeded in depositing homogeneous films from several gas phase precursors by gas phase laser pyrolysis. Nickel and molybdenum from the respective carbonyls and tungsten from the hexafluoride have been examined to date. In each case the gas precursor is buffered to reduce the partial pressure of the reactants and to induce breakdown. The films are spectrally reflective and uniform over a large area. Films have been characterized by Auger electron spectroscopy, x-ray diffraction, pull tests, and resistivity measurements. The highest quality films have resulted from the nickel depositions. Detailed x-ray diffraction analysis of these films yields a very small domain size (approx. 50 A) consistent with rapid quenching from the gas phase reaction zone. This analysis also shows nickel carbide formation consistent with the temperature of the reaction zone and the Auger electron spectroscopy results which show some carbon and oxygen incorporation (8% and 1% respectively). Gas phase transport and condensation of the molybdenum carbonyl results in substantial carbon and oxygen contamination of the molybdenum films requiring heated substrates, a requirement not consistent with the goals of the program to maximize the quench rate of the deposition. Results from tungsten deposition experiments representing a reduction chemistry instead of the decomposition chemistry involved in the carbonyl experiments are also reported.

  9. Metal film deposition by laser breakdown chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jervis, T. R.

    1985-01-01

    Dielectric breakdown of gas mixtures can be used to deposit homogeneous thin films by chemical vapor deposition with appropriate control of flow and pressure conditions to suppress gas phase nucleation and particle formation. Using a pulsed CO2 laser operating at 10.6 microns where there is no significant resonant absorption in any of the source gases, we have succeeded in depositing homogeneous films from several gas phase precursors by gas phase laser pyrolysis. Nickel and molybdenum from the respective carbonyls and tungsten from the hexafluoride have been examined to date. In each case the gas precursor is buffered to reduce the partial pressure of the reactants and to induce breakdown. The films are spectrally reflective and uniform over a large area. Films have been characterized by Auger electron spectroscopy, X-ray diffraction, pull tests, and resistivity measurements. The highest quality films have resulted from the nickel depositions. Detailed X-ray diffraction analysis of these films yields a very small domain size (approx. 50 A) consistent with rapid quenching from the gas phase reaction zone. This analysis also shows nickel carbide formation consistent with the temperature of the reaction zone and the Auger electron spectroscopy results which show some carbon and oxygen incorporation (8% and 1% respectively). Gas phase transport and condensation of the molybdenum carbonyl results in substantial carbon and oxygen contamination of the molybdenum films requiring heated substrates, a requirement not consistent with the goals of the program to maximize the quench rate of the deposition. Results from tungsten deposition experiments representing a reduction chemistry instead of the decomposition chemistry involved in the carbonyl experiments are also reported.

  10. Metal film deposition by laser breakdown chemical vapor deposition

    SciTech Connect

    Jervis, T. R.; Newkirk, L. R.

    1986-06-01

    Dielectric breakdown of gas mixtures can be used to deposit thin films by chemical vapor deposition with appropriate control of flow and pressure conditions to suppress gas-phase nucleation and particle formation. Using a pulsed CO/sub 2/ laser operating at 10.6 ..mu.. where there is no significant resonant absorption in any of the source gases, homogeneous films from several gas-phase precursors have been sucessfully deposited by gas-phase laser pyrolysis. Nickel and molybdenum from the respective carbonyls representing decomposition chemistry and tungsten from the hexafluoride representing reduction chemistry have been demonstrated. In each case the gas precursor is buffered with argon to reduce the partial pressure of the reactants and to induce breakdown. Films have been characterized by Auger electron spectroscopy, x-ray diffraction, transmission electron microscopy, pull tests, and resistivity measurements. The highest quality films have resulted from the nickel depositions. Detailed x-ray diffraction analysis of these films yields a very small domain size consistent with the low temperature of the substrate and the formation of metastable nickel carbide. Transmission electron microscopy supports this analysis.

  11. Chemical vapor deposition of group IIIB metals

    DOEpatents

    Erbil, Ahmet

    1989-01-01

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula (I) ##STR1## where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula I is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula I and a heat decomposable tellurium compound under nonoxidizing conditions.

  12. Chemical vapor deposition of group IIIB metals

    DOEpatents

    Erbil, A.

    1989-11-21

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  13. Advanced deposition model for thermal activated chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  14. Chemical deposition methods using supercritical fluid solutions

    DOEpatents

    Sievers, Robert E.; Hansen, Brian N.

    1990-01-01

    A method for depositing a film of a desired material on a substrate comprises dissolving at least one reagent in a supercritical fluid comprising at least one solvent. Either the reagent is capable of reacting with or is a precursor of a compound capable of reacting with the solvent to form the desired product, or at least one additional reagent is included in the supercritical solution and is capable of reacting with or is a precursor of a compound capable of reacting with the first reagent or with a compound derived from the first reagent to form the desired material. The supercritical solution is expanded to produce a vapor or aerosol and a chemical reaction is induced in the vapor or aerosol so that a film of the desired material resulting from the chemical reaction is deposited on the substrate surface. In an alternate embodiment, the supercritical solution containing at least one reagent is expanded to produce a vapor or aerosol which is then mixed with a gas containing at least one additional reagent. A chemical reaction is induced in the resulting mixture so that a film of the desired material is deposited.

  15. Origin and chemical composition of evaporite deposits

    USGS Publications Warehouse

    Moore, George William

    1960-01-01

    A comparative study of marine evaporite deposits forming at the present time along the pacific coast of central Mexico and evaporite formations of Permian age in West Texas Basin was made in order to determine if the modern sediments provide a basis for understanding environmental conditions that existed during deposition of the older deposits. The field work was supplemented by investigations of artificial evaporite minerals precipitated in the laboratory and by study of the chemical composition of halite rock of different geologic ages. The environment of deposition of contemporaneous marine salt deposits in Mexico is acidic, is strongly reducing a few centimeters below the surface, and teems with microscopic life. Deposition of salt, unlike that of many other sediments, is not wholly a constructional phenomenon. Permanent deposits result only if a favorable balance exists between deposition in the dry season and dissolution in the wet season. Evaporite formations chosen for special study in the West Texas Basin are, in ascending order, the Castile, Salado, and Rustler formations, which have a combined thickness of 1200 meters. The Castile formation is largely composed of gypsum rock, the Salado, halite rock, and the Rustler, quartz and carbonate sandstone. The lower part of the Castile formation is bituminous and contains limestone laminae. The Castile and Rustler formations thicken to the south at the expense of salt of the intervening Salado formation. The clastic rocks of the Rustler formation are interpreted as the deposits of a series of barrier islands north of which halite rock of the Salado was deposited. The salt is believed to have formed in shallow water of uniform density that was mixed by the wind. Where water depth exceeded the depth of the wind mixing, density stratification developed, and gypsum was deposited. Dense water of high salinity below the density discontinuity was overlain by less dense, more normally saline water which was derived from

  16. Radiative transfer modeling of surface chemical deposits

    NASA Astrophysics Data System (ADS)

    Reichardt, Thomas A.; Kulp, Thomas J.

    2016-05-01

    Remote detection of a surface-bound chemical relies on the recognition of a pattern, or "signature," that is distinct from the background. Such signatures are a function of a chemical's fundamental optical properties, but also depend upon its specific morphology. Importantly, the same chemical can exhibit vastly different signatures depending on the size of particles composing the deposit. We present a parameterized model to account for such morphological effects on surface-deposited chemical signatures. This model leverages computational tools developed within the planetary and atmospheric science communities, beginning with T-matrix and ray-tracing approaches for evaluating the scattering and extinction properties of individual particles based on their size and shape, and the complex refractive index of the material itself. These individual-particle properties then serve as input to the Ambartsumian invariant imbedding solution for the reflectance of a particulate surface composed of these particles. The inputs to the model include parameters associated with a functionalized form of the particle size distribution (PSD) as well as parameters associated with the particle packing density and surface roughness. The model is numerically inverted via Sandia's Dakota package, optimizing agreement between modeled and measured reflectance spectra, which we demonstrate on data acquired on five size-selected silica powders over the 4-16 μm wavelength range. Agreements between modeled and measured reflectance spectra are assessed, while the optimized PSDs resulting from the spectral fitting are then compared to PSD data acquired from independent particle size measurements.

  17. Physical-chemical conditions of ore deposition

    USGS Publications Warehouse

    Barton, P.B.

    1981-01-01

    Ore deposits form under a wide range of physical and chemical conditions, but those precipitating from hot, aqueous fluids-i.e. the hydrothermal deposits-form generally below 700??C and at pressures of only 1 or 2 kbar or less. Natural aqueous fluids in rocks may extract metal and sulfur from a variety of rock types or may acquire them as a residual heritage from a crystallizing silicate magma. Ore-forming hydrothermal fluids never appear as hot springs (except in deep, submarine situations) because they boil, mix with surface waters, and cool, thereby losing their ore-bearing ability before reaching the surface. Mineral systems function as chemical buffers and indicators just as buffers and indicators function in a chemical laboratory. By reading the record written in the buffer/indicator assemblages of minerals one can reconstruct many aspects of the former chemical environment. By studying the record of changing conditions one may deduce information regarding the processes functioning to create the succession of chemical environments and the ore deposits they represent. The example of the OH vein at Creede, Colorado, shows a pH buffered by the K-feldspar + muscovite + quartz assemblage and the covariation of S2 and O2 buffered by the assemblage chlorite + pyrite + quartz. Boiling of the ore fluid led to its oxidation to hematite-bearing assemblages and simultaneously produced an intensely altered, sericitic capping over the vein in response to the condensation of vapors bearing acidic components. The solubility of metals as calculated from experimental and theoretical studies of mineral solubility appears too low by at least one or two powers of ten to explain the mineralization at Creede. In contrast to Creede where the mineral stabilities all point to a relatively consistent chemistry, the Mississippi Valley type deposits present a puzzle of conflicting chemical clues that are impossible to reconcile with any single equilibrium situation. Thus we must

  18. Chemical vapor deposition of copper films

    NASA Astrophysics Data System (ADS)

    Borgharkar, Narendra Shamkant

    We have studied the kinetics of copper chemical vapor deposition (CVD) for interconnect metallization using hydrogen (Hsb2) reduction of the Cu(hfac)sb2 (copper(II) hexafluoroacetylacetonate) precursor. Steady-state deposition rates were measured using a hot-wall microbalance reactor. For base case conditions of 2 Torr Cu(hfac)sb2, 40 Torr Hsb2, and 300sp°C, a growth rate of 0.5 mg cmsp{-2} hrsp{-1} (ca. 10 nm minsp{-1}) is observed. Reaction order experiments suggest that the deposition rate passes through a maximum at partial pressure of 2 Torr of Cu(hfac)sb2. The deposition rate has an overall half-order dependence on Hsb2 partial pressure. A Langmuir-Hinshelwood rate expression is used to describe the observed kinetic dependencies on Cu(hfac)sb2, Hsb2, and H(hfac). Based on the rate expression a mechanism is proposed in which the overall rate is determined by the surface reaction of adsorbed Cu(hfac)sb2 and H species. Additionally, the role of alcohols in enhancing the deposition rate has been investigated. Addition of isopropanol results in a six fold enhancement to yield a deposition rate of 3.3 mg cmsp{-2} hrsp{-1} (ca. 60 nm minsp{-1}) at 5 Torr of isopropanol, 0.4 Torr Cu(hfac)sb2, 40 Torr Hsb2, and 300sp°C. Ethanol and methanol give lower enhancements of 1.75 and 1.1 mg cmsp{-2} hrsp{-1}, respectively. A mechanism based on the ordering of the aqueous pKsba values of the alcohols is proposed to explain the observed results. Lastly, we have built a warm-wall Pedestal reactor apparatus to demonstrate copper CVD on TiN/Si substrates. The apparatus includes a liquid injection system for transport of isopropanol-diluted precursor solutions. At optimized conditions of precursor and substrate pre-treatments, we have deposited uniform films of copper on TiN/Si substrates at an average deposition rate of 3.0 mg cmsp{-2} hrsp{-1} (ca. 60 nm minsp{-1}).

  19. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.

    NASA Astrophysics Data System (ADS)

    Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.

    2016-10-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.

  20. Characterization of Metalorganic Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Jesser, W. A.

    1998-01-01

    A series of experimental and numerical investigations to develop a more complete understanding of the reactive fluid dynamics of chemical vapor deposition were conducted. In the experimental phases of the effort, a horizontal CVD reactor configuration was used for the growth of InP at UVA and for laser velocimetry measurements of the flow fields in the reactor at LaRC. This horizontal reactor configuration was developed for the growth of III-V semiconductors and has been used by our research group in the past to study the deposition of both GaAs and InP. While the ultimate resolution of many of the heat and mass transport issues will require access to a reduced-gravity environment, the series of groundbased research makes direct contributions to this area while attempting to answer the design questions for future experiments of how low must gravity be reduced and for how long must this gravity level be maintained to make the necessary measurements. It is hoped that the terrestrial experiments will be useful for the design of future microgravity experiments which likely will be designed to employ a core set of measurements for applications in the microgravity environment such as HOLOC, the Fluid Physics/Dynamics Facility, or the Schlieren photography, the Laser Imaging Velocimetry and the Laser Doppler Velocimetry instruments under development for the Advanced Fluids Experiment Module.

  1. Surface chemical deposition of advanced electronic materials

    NASA Astrophysics Data System (ADS)

    Bjelkevig, Cameron

    The focus of this work was to examine the direct plating of Cu on Ru diffusion barriers for use in interconnect technology and the substrate mediated growth of graphene on boron nitride for use in advanced electronic applications. The electrodeposition of Cu on Ru(0001) and polycrystalline substrates (with and without pretreatment in an iodine containing solution) has been studied by cyclic voltammetry (CV), current--time transient measurements (CTT), in situ electrochemical atomic force microscopy (EC-AFM), and X-ray photoelectron spectroscopy (XPS). The EC-AFM data show that at potentials near the OPD/UPD threshold, Cu crystallites exhibit pronounced growth anisotropy, with lateral dimensions greatly exceeding vertical dimensions. XPS measurements confirmed the presence and stability of adsorbed I on the Ru surface following pre-treatment in a KI/H2SO4 solution and following polarization to at least -200 mV vs. Ag/AgCl. CV data of samples pre-reduced in I-containing electrolyte exhibited a narrow Cu deposition peak in the overpotential region and a UPD peak. The kinetics of the electrodeposited Cu films was investigated by CTT measurements and applied to theoretical models of nucleation. The data indicated that a protective I adlayer may be deposited on an airexposed Ru electrode as the oxide surface is electrochemically reduced, and that this layer will inhibit reformation of an oxide during the Cu electroplating process. A novel method for epitaxial graphene growth directly on a dielectric substrate of systematically variable thickness was studied. Mono/multilayers of BN(111) were grown on Ru(0001) by atomic layer deposition (ALD), exhibiting a flat (non-nanomesh) R30(✓3x✓3) structure. BN(111) was used as a template for growth of graphene by chemical vapor deposition (CVD) of C2H4 at 1000 K. Characterization by LEED, Auger, STM/STS and Raman indicate the graphene is in registry with the BN substrate, and exhibits a HOPG-like 0 eV bandgap density

  2. Physical properties of chemically deposited Bi2S3 thin films using two post-deposition treatments

    NASA Astrophysics Data System (ADS)

    Moreno-García, H.; Messina, S.; Calixto-Rodriguez, M.; Martínez, H.

    2014-08-01

    As-deposited bismuth sulfide (Bi2S3) thin films prepared by chemical bath deposition technique were treated with thermal annealed in air atmosphere and argon AC plasma. The as-deposited, thermally annealing and plasma treatment Bi2S3 thin films have been characterized by X-ray diffraction (XRD) analysis, atomic force microscopy analysis (AFM), transmission, specular reflectance and electrical measurements. The structural, morphological, optical and electrical properties of the films are compared. The XRD analysis showed that both post-deposition treatments, transform the thin films from amorphous to a crystalline phase. The atomic force microscopy (AFM) measurement showed a reduction of roughness for the films treated in plasma. The energy band gap value of the as-prepared film was Eg = 1.61 eV, while for the film thermally annealed was Eg = 1.60 eV and Eg = 1.56 eV for film treated with Plasma. The electrical conductivity under illumination of the as-prepared films was 3.6 × 10-5 (Ω cm)-1, whereas the conductivity value for the thermally annealed films was 2.0 × 10-3 (Ω cm)-1 and for the plasma treated films the electrical conductivity increases up to 7.7 × 10-2 (Ω cm)-1.

  3. Bath Salts

    MedlinePlus

    ... panic attacks depression suicidal thoughts paranoia delusions and hallucinations distorted sense of reality decreased ability to think ... of bath salts may cause people to have hallucinations, hear voices, feel paranoid, and develop a psychosis ...

  4. Modeling of Tungsten Thermal Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Kim, Byunghoon; Akiyama, Yasunobu; Imaishi, Nobuyuki; Park, Heung-Chul

    1999-05-01

    Low-pressure chemical vapor deposition (LPCVD) of tungsten (W)film on silicon (Si) substrate was performed by reducting hexafluoride(WF6) with hydrogen. This CVD system is known for its nonlineardependence of growth rate on WF6 concentration. This study adopted asimple surface-reaction model which assumes that the precursor, i.e.,WF6, in the gas phase adsorbs on solid surfaces and then the adsorbedWF6 molecule is converted into tungsten solid film. The two kineticparameters involved in the model are derived from the experimentalresults. The solidification rate constant (ks) is equal to the growthrate at very high WF6 concentrations. The adsorption rate constant(ka) is derived from profile analyses of films grown in microtrenchesunder very low WF6 concentrations by applying the conventional MonteCarlo simulation code, which is valid for linear surface-reactionsystems. In the temperature range of 623 to 823 K, ka and ks haveactivation energies of 82 kJmol-1, 66.1 kJmol-1, respectively. A newlyproposed Monte Carlo simulation for nonlinear reaction systems, incombination with the two kinetic parameters, can quantitativelypredict the shape of film in microtrenches for a wide range oftemperatures and WF6 concentrations.

  5. Influence of bath PH value on microstructure and corrosion resistance of phosphate chemical conversion coating on sintered Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Ding, Xia; Xue, Long-fei; Wang, Xiu-chun; Ding, Kai-hong; Cui, Sheng-li; Sun, Yong-cong; Li, Mu-sen

    2016-10-01

    The effect of bath PH value on formation, microstructure and corrosion resistance of the phosphate chemical conversion (PCC) coatings as well as the effect on the magnetic property of the magnets is investigated in this paper. The results show that the coating mass and thickness increase with the decrease of the bath PH value. Scanning electron microscopy observation demonstrates that the PCC coatings are in a blocky structure with different grain size. Transmission electron microscope and X-ray diffractometer tests reveal the coatings are polycomponent and are mainly composed of neodymium phosphate hydrate and praseodymium phosphate hydrate. The electrochemical analysis and static immersion corrosion test show the corrosion resistance of the PCC coatings prepared at bath PH value of 0.52 is worst. Afterwards the corrosion resistance increases first and then decreases with the increasing of the bath PH values. The magnetic properties of all the samples with PCC treatment are decreased. The biggest loss is occurred when the bath PH value is 0.52. Taken together, the optimum PH range of 1.00-1.50 for the phosphate solution has been determined.

  6. Effects of Buffer Salt Concentration on the Dominated Deposition Mechanism and Optical Characteristics of Chemically Deposited Cadmium Sulfide Thin Films

    NASA Astrophysics Data System (ADS)

    Kakhaki, Z. Makhdoumi; Youzbashi, A.; Sangpour, P.; Kazemzadeh, A.; Naderi, N.; Bazargan, A. M.

    2016-02-01

    Effects of buffer salt concentration on the rate of deposition, dominated deposition mechanism and subsequently the structural, morphological, and optical properties of cadmium sulfide (CdS) thin films deposited by chemical bath deposition (CBD) on glass substrate were investigated. The precursors were chosen to be cadmium chloride (CdCl2) as the cadmium source, thiourea (CS(NH2)2) as the sulfur source, ammonium nitrate (NH4NO3) as the buffer salt and ammonia as the complexing agent and the pH controller. The influence of the NH4NO3 concentration on the structure, morphology, film uniformity, stoichiometry and optical properties of CdS thin films was also studied by X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray (EDX) spectroscope, uv-visible and photoluminescence (PL) spectroscopes. The XRD studies revealed that all the deposited films exhibited a (002)h/(111)c preferred orientation. The crystallite size was increased from 20nm to 30nm by the increase of concentration of NH4NO3 from 0.5M to 2.5M. The morphology of CdS thin films were agglomerated spherical particles consisted of smaller particles. The surface of thin films deposited at the NH4NO3 concentration of 0.5M was compact and smooth. The increase of the concentration of NH4NO3 decreased the packing density of the films. The optical band gap was in the range of 2.25-2.4eV, which was decreased by the decrement of packing density. The PL spectra showed two peaks centered at 400nm and 500nm which are attributed to violet and band-to-band emissions, respectively.

  7. Survival of the faucet snail after chemical disinfection, pH extremes, and heated water bath treatments

    USGS Publications Warehouse

    Mitchell, A.J.; Cole, R.A.

    2008-01-01

    The faucet snail Bithynia tentaculata, a nonindigenous aquatic snail from Eurasia, was introduced into Lake Michigan in 1871 and has spread to the mid-Atlantic states, the Great Lakes region, Montana, and most recently, the Mississippi River. The faucet snail serves as intermediate host for several trematodes that have caused large-scale mortality among water birds, primarily in the Great Lakes region and Montana. It is important to limit the spread of the faucet snail; small fisheries equipment can serve as a method of snail distribution. Treatments with chemical disinfection, pH extremes, and heated water baths were tested to determine their effectiveness as a disinfectant for small fisheries equipment. Two treatments eliminated all test snails: (1) a 24-h exposure to Hydrothol 191 at a concentration of at least 20 mg/L and (2) a treatment with 50??C heated water for 1 min or longer. Faucet snails were highly resistant to ethanol, NaCl, formalin, Lysol, potassium permanganate, copper sulfate, Baquacil, Virkon, household bleach, and pH extremes (as low as 1 and as high as 13).

  8. Pulse electrodeposition of gold-nickel alloys from a citrate bath. 1. Deposition rate and coating appearance

    SciTech Connect

    Kostin, N.A.; Kaptanovskii, V.I.

    1994-11-01

    The effect of various parameters of pulse polarizing current on the deposition rate and appearance of gold-nickel coatings used in the watch industry was studied. It was shown that the pulse conditions allow deposition-rate enhancement and production of variously colored coatings.

  9. Chemical vapor deposition of graphene single crystals.

    PubMed

    Yan, Zheng; Peng, Zhiwei; Tour, James M

    2014-04-15

    As a two-dimensional (2D) sp(2)-bonded carbon allotrope, graphene has attracted enormous interest over the past decade due to its unique properties, such as ultrahigh electron mobility, uniform broadband optical absorption and high tensile strength. In the initial research, graphene was isolated from natural graphite, and limited to small sizes and low yields. Recently developed chemical vapor deposition (CVD) techniques have emerged as an important method for the scalable production of large-size and high-quality graphene for various applications. However, CVD-derived graphene is polycrystalline and demonstrates degraded properties induced by grain boundaries. Thus, the next critical step of graphene growth relies on the synthesis of large graphene single crystals. In this Account, we first discuss graphene grain boundaries and their influence on graphene's properties. Mechanical and electrical behaviors of CVD-derived polycrystalline graphene are greatly reduced when compared to that of exfoliated graphene. We then review four representative pathways of pretreating Cu substrates to make millimeter-sized monolayer graphene grains: electrochemical polishing and high-pressure annealing of Cu substrate, adding of additional Cu enclosures, melting and resolidfying Cu substrates, and oxygen-rich Cu substrates. Due to these pretreatments, the nucleation site density on Cu substrates is greatly reduced, resulting in hexagonal-shaped graphene grains that show increased grain domain size and comparable electrical properties as to exfoliated graphene. Also, the properties of graphene can be engineered by its shape, thickness and spatial structure. Thus, we further discuss recently developed methods of making graphene grains with special spatial structures, including snowflakes, six-lobed flowers, pyramids and hexagonal graphene onion rings. The fundamental growth mechanism and practical applications of these well-shaped graphene structures should be interesting topics and

  10. Chemical vapor deposition for automatic processing of integrated circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1980-01-01

    Chemical vapor deposition for automatic processing of integrated circuits including the wafer carrier and loading from a receiving air track into automatic furnaces and unloading on to a sending air track is discussed. Passivation using electron beam deposited quartz is also considered.

  11. Chemical vapor deposition of aluminum oxide

    DOEpatents

    Gordon, Roy; Kramer, Keith; Liu, Xinye

    2000-01-01

    An aluminum oxide film is deposited on a heated substrate by CVD from one or more alkylaluminum alkoxide compounds having composition R.sub.n Al.sub.2 (OR').sub.6-n, wherein R and R' are alkyl groups and n is in the range of 1 to 5.

  12. Chemically deposited CdS by an ammonia-free process for solar cells window layers

    SciTech Connect

    Ochoa-Landin, R.; Sastre-Hernandez, J.; Vigil-Galan, O.; Ramirez-Bon, R.

    2010-02-15

    Chemically deposited CdS window layers were studied on two different transparent conductive substrates, namely indium tin oxide (ITO) and fluorine doped tin oxide (FTO), to determine the influence of their properties on CdS/CdTe solar cells performance. Three types of CdS films obtained from different chemical bath deposition (CBD) processes were studied. The three CBD processes employed sodium citrate as the complexing agent in partial or full substitution of ammonia. The CdS films were studied by X-ray diffraction, optical transmission spectroscopy and atomic force microscopy. CdS/CdTe devices were completed by depositing 3 {mu}m thick CdTe absorbent layers by means of the close-spaced vapor transport technique (CSVT). Evaporated Cu-Au was used as the back contact in all the solar cells. Dark and under illumination J-V characteristic and quantum efficiency measurements were done on the CdS/CdTe devices to determine their conversion efficiency and spectral response. The efficiency of the cells depended on the window layer and on the transparent contact with values between 5.7% and 8.7%. (author)

  13. Atmospheric Transport and Deposition of Agricultural Chemicals

    NASA Astrophysics Data System (ADS)

    Majewski, M. S.; Vogel, J. R.; Capel, P. D.

    2006-05-01

    Concentrations of more than 80 pesticides and select transformation products were measured in atmospheric deposition during two growing seasons in five agricultural areas across the United States. Rainfall samples were collected at study areas in California, Indiana, Maryland, and Nebraska. In the arid Yakima Valley of Washington, dry deposition for the same compounds was estimated using air concentration measurements and depositional models. In the predominantly corn, soybean, and alfalfa growing region of Nebraska, Indiana, and Maryland, the herbicides acetochlor, alachlor, atrazine, and metolachlor where the predominant pesticides detected, and the highest concentrations ranged from 0.64 microgram per liter (ug/L) for metolachlor in a small, predominantly dairy use dominated watershed in Maryland to 6.6 ug/L and 19 ug/L for atrazine in Indiana and Nebraska, respectively. California showed a different seasonal occurrence pattern and suite of detected pesticides because the rainy season occurs during the winter months and a wide variety of crops are grown throughout the year. With the exception of metolachlor (0.23 ug/L, max.), the corn and soybean herbicides were not used to any great extent in the California study area and were not detected. The insecticides diazinon (1.21 ug/L, max.) and chlorpyrifos (0.12 ug/L, max.) were detected in nearly every sample taken in California. The Washington study area was similar to California in terms of the variety of crops grown and the pesticides use, but it receives very little rainfall. Dry deposition was estimated at this site from air concentrations and particle settling velocities. The results of these studies show the importance of the atmosphere as an additional source of pesticide loading to agricultural watersheds.

  14. Effect of bath concentration on the growth and photovoltaic response of SILAR-deposited CuO thin films

    NASA Astrophysics Data System (ADS)

    Visalakshi, S.; Kannan, R.; Valanarasu, S.; Kim, Hyun-Seok; Kathalingam, A.; Chandramohan, R.

    2015-09-01

    Solar cell property of p-CuO/n-Si heterojunction was investigated using SILAR-deposited CuO thin films. The effects of copper salt concentration on the growth of CuO films and its effect on the efficiency in solar cell conversion were investigated. Structural, morphological, optical and electrical studies of the CuO thin films deposited at 90 °C with different copper sulphate concentrations are reported. Crystallinity of the film is found to increase with the increase in copper sulphate concentration. The measured Raman spectrum of the deposited film showed peaks corresponding to CuO phase. It is observed by the SEM that the film is homogeneous fully covering the substrate. The optical band gap of the deposited film has exhibited a decrease in band gap from 1.76 to 1.57 eV with the increase in copper sulphate concentration. Solar cell device was constructed using the p-CuO film deposited on n-silicon substrate, and its photovoltaic response was measured. It showed increasing photoresponse with increasing concentration of copper sulphate.

  15. The chemical/physical and microbiological characteristics of typical bath and laundry waste waters. [waste water reclamation during manned space flight

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    Chemical/physical and microbiological characteristics are studied of typical bath and laundry waters collected during a 12 day test in which the untreated waste waters were reused for toilet flush. Most significant changes were found for ammonia, color, methylene blue active substances, phosphates, sodium, sulfates, total organic carbon, total solids, and turbidity in comparison with tap water baseline. The mean total number of microorganisms detected in the waste waters ranged from 1 million to 10 to the 7th power cells/m1 and the mean number of possible coliforms ranged from 10 to the 5th power to 1 million. An accumulation of particulates and an objectible odor were detected in the tankage used during the 12 day reuse of the untreated waste waters. The combined bath and laundry waste waters from a family of four provided 91 percent of the toilet flush water for the same family.

  16. Chemical Vapor Deposition of Turbine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Haven, Victor E.

    1999-01-01

    Ceramic thermal barrier coatings extend the operating temperature range of actively cooled gas turbine components, therefore increasing thermal efficiency. Performance and lifetime of existing ceram ic coatings are limited by spallation during heating and cooling cycles. Spallation of the ceramic is a function of its microstructure, which is determined by the deposition method. This research is investigating metalorganic chemical vapor deposition (MOCVD) of yttria stabilized zirconia to improve performance and reduce costs relative to electron beam physical vapor deposition. Coatings are deposited in an induction-heated, low-pressure reactor at 10 microns per hour. The coating's composition, structure, and response to the turbine environment will be characterized.

  17. Light-induced chemical vapour deposition painting with titanium dioxide

    NASA Astrophysics Data System (ADS)

    Halary-Wagner, E.; Bret, T.; Hoffmann, P.

    2003-03-01

    Light-induced chemical vapour deposits of titanium dioxide are obtained from titanium tetra-isopropoxide (TTIP) in an oxygen and nitrogen atmosphere with a long pulse (250 ns) 308 nm XeCl excimer laser using a mask projection set-up. The demonstrated advantages of this technique are: (i) selective area deposition, (ii) precise control of the deposited thickness and (iii) low temperature deposition, enabling to use a wide range of substrates. A revolving mask system enables, in a single reactor load, to deposit shapes of controlled heights, which overlap to build up a complex pattern. Interferential multi-coloured deposits are achieved, and the process limitations (available colours and resolution) are discussed.

  18. The Chemical Vapor Deposition of Iridium.

    DTIC Science & Technology

    1981-07-01

    accepted types are made of porous tungsten impregnated with barium calcium aluminates (Levi, 1955; Brodie and Jenkins, 1956). The emission capability of the...not only does the chemical composition of the pore ends and the bulk material undergo alteration, but the crystal structure of the tungsten (Maloney... hexafluoride to iridium metal or IrF 6 species. In our work, IrF 6 was prepared and stored in fluorine-passivated apparatus, and between runs maintained at

  19. Fabrication and evaluation of chemically vapor deposited tungsten heat pipe

    NASA Technical Reports Server (NTRS)

    Bacigalupi, R. J.

    1972-01-01

    A network of lithium-filled tungsten heat pipes is considered as a method of heat extraction from high temperature nuclear reactors. The need for material purity and shape versatility in these applications dictates the use of chemically vapor deposited (CVD) tungsten. Adaptability of CVD tungsten to complex heat pipe designs is shown. Deposition and welding techniques are described. Operation of two lithium-filled CVD tungsten heat pipes above 1800 K is discussed.

  20. Deposition of electrochromic tungsten oxide thin films by plasma-enhanced chemical vapor deposition

    SciTech Connect

    Henley, W.B.; Sacks, G.J.

    1997-03-01

    Use of plasma-enhanced chemical vapor deposition (PECVD) for electrochromic WO{sub 3} film deposition is investigated. Oxygen, hydrogen, and tungsten hexafluoride were used as source gases. Reactant gas flow was investigated to determine the effect on film characteristics. High quality optical films were obtained at deposition rates on the order of 100 {angstrom}/s. Higher deposition rates were attainable but film quality and optical coherence degraded. Atomic emission spectroscopy (AES), was used to provide an in situ assessment of the plasma deposition chemistry. Through AES, it is shown that the hydrogen gas flow is essential to the deposition of the WO{sub 3} film. Oxygen gas flow and tungsten hexafluoride gas flow must be approximately equal for high quality films.

  1. Chemical vapor deposition modeling: An assessment of current status

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1991-01-01

    The shortcomings of earlier approaches that assumed thermochemical equilibrium and used chemical vapor deposition (CVD) phase diagrams are pointed out. Significant advancements in predictive capabilities due to recent computational developments, especially those for deposition rates controlled by gas phase mass transport, are demonstrated. The importance of using the proper boundary conditions is stressed, and the availability and reliability of gas phase and surface chemical kinetic information are emphasized as the most limiting factors. Future directions for CVD are proposed on the basis of current needs for efficient and effective progress in CVD process design and optimization.

  2. Growth and properties of W-B-N diffusion barriers deposited by chemical vapor deposition

    SciTech Connect

    Fleming, J.G.; Roherty-Osmun, E.; Custer, J.; Smith, P.M.; Reid, J.S.; Nicolet, M.A.

    1995-10-01

    The authors have used chemical vapor deposition to grow ternary tungsten-based diffusion barriers to determine if they exhibit properties similar to those of sputter-deposited ternaries. A range of different W-B-N compositions in a band of compositions roughly between 20 and 40% W were produced. The deposition temperature was low, 350 C, and the precursors used are well accepted by the industry. Deposition rates are high for a diffusion barrier application. Resistivities range from 200 to 20,000 {micro}{Omega}-cm, the films with the best barrier properties having {approximately}1,000 {micro}{Omega}-cm resistivities. Adhesion to oxides is sufficient to allow these films to be used as the adhesion layer in a tungsten chemical mechanical polishing plug application. The films are x-ray amorphous as-deposited and have crystallization temperatures of up to 900 C. Barrier performance against Cu has been tested using diode test structures. A composition of W{sub .23}B{sub .49}N{sub .28} was able to prevent diode failure up to a 700 C, 30 minute anneal. These materials, deposited by CVD, display properties similar to those deposited by physical deposition techniques.

  3. Ultrafine Microstructure Composites Prepared by Chemical Vapor Deposition

    DTIC Science & Technology

    1988-12-01

    deposition experiments reported in this paper, we performed numerous thermo- dynamic calculations using the SOLGASMIX - PV program [21]. In summary...Besmann, " SOLGASMIX - PV , A Computer Program to Calculate Equilibrium Relationships in Complex Chemical Systems," ORNL/TM-5775, Oak Ridge National

  4. Chemical Vapor Deposition of Aluminum Oxide Thin Films

    ERIC Educational Resources Information Center

    Vohs, Jason K.; Bentz, Amy; Eleamos, Krystal; Poole, John; Fahlman, Bradley D.

    2010-01-01

    Chemical vapor deposition (CVD) is a process routinely used to produce thin films of materials via decomposition of volatile precursor molecules. Unfortunately, the equipment required for a conventional CVD experiment is not practical or affordable for many undergraduate chemistry laboratories, especially at smaller institutions. In an effort to…

  5. A novel induction heater for chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ong, C. W.; Wong, H. K.; Sin, K. S.; Yip, S. T.; Chik, K. P.

    1989-06-01

    We report how an induction cooker for household use can be modified for heating substrate or heating gases to high temperature in a chemical vapor deposition system. Only minor changes of the cooker are necessary. Stable substrate temperature as high as 900 °C was achieved with input power of about 1150 W.

  6. Synthesis of mullite coatings by chemical vapor deposition

    SciTech Connect

    Mulpuri, R.P.; Sarin, V.K.

    1996-06-01

    Formation of mullite on ceramic substrates via chemical vapor deposition was investigated. Mullite is a solid solution of Al{sub 2}O{sub 3} and SiO{sub 2} with a composition of 3Al{sub 2}O{sub 3}{center_dot}2SiO{sub 2}. Thermodynamic calculations performed on the AlCl{sub 3}{endash}SiCl{sub 4}{endash}CO{sub 2}{endash}H{sub 2} system were used to construct equilibrium chemical vapor deposition (CVD) phase diagrams. With the aid of these diagrams and consideration of kinetic rate limiting factors, initial process parameters were determined. Through process optimization, crystalline CVD mullite coatings have been successfully grown on SiC and Si{sub 3}N{sub 4} substrates. Results from the thermodynamic analysis, process optimization, and effect of various process parameters on deposition rate and coating morphology are discussed. {copyright} {ital 1996 Materials Research Society.}

  7. Metal Organic-Chemical Vapor Deposition fabrication of semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Thomas, C.

    1980-08-01

    The metal organic chemical vapor deposition (MO-CVD) process was studied and implemented in detail. Single crystal GaAs, and Ga(x)Al(1-x)As films were grown on GaAs by depositing metal organic alkyl gallium compounds in the presence of an arsine mixture. The metal organic chemical vapor deposition process allowed formation of the semiconductor compound directly on the heated substrate in only one hot temperature zone. With MO-CVD, semiconductor films can be efficiently produced by a more economical, less complicated process which will lend itself more easily than past fabrication procedures, to high quantity, high quality reproduction techniques of semiconductor lasers. Clearly MO-CVD is of interest to the communication industry where semiconductor lasers are used extensively in fiber optic communication systems, and similarly to the solar energy business where GaAs substrates are used as photoelectric cells.

  8. Low-temperature deposition of crystalline silicon nitride nanoparticles by hot-wire chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Chan-Soo; Youn, Woong-Kyu; Lee, Dong-Kwon; Seol, Kwang-Soo; Hwang, Nong-Moon

    2009-07-01

    The nanocrystalline alpha silicon nitride (α-Si 3N 4) was deposited on a silicon substrate by hot-wire chemical vapor deposition at the substrate temperature of 700 °C under 4 and 40 Torr at the wire temperatures of 1430 and 1730 °C, with a gas mixture of SiH 4 and NH 3. The size and density of crystalline nanoparticles on the substrate increased with increasing wire temperature. With increasing reactor pressure, the crystallinity of α-Si 3N 4 nanoparticles increased, but the deposition rate decreased.

  9. Modified chemical route for deposition of molybdenum disulphide thin films

    SciTech Connect

    Vyas, Akshay N. Sartale, S. D.

    2014-04-24

    Molybdenum disulphide (MoS{sub 2}) thin films were deposited on quartz substrates using a modified chemical route. Sodium molybdate and sodium sulphide were used as precursors for molybdenum and sulphur respectively. The route involves formation of tetrathiomolybdate ions (MoS{sub 4}{sup 2−}) and further reduction by sodium borohydride to form MoS{sub 2}. The deposition was performed at room temperature. The deposited films were annealed in argon atmosphere at 1073 K for 1 hour to improve its crystallinity. The deposited films were characterized using scanning electron microscopy (SEM) for morphology, UV-Vis absorption spectroscopy for optical studies and X-ray diffraction (XRD) for structure determination.

  10. Chemically deposited thin films of sulfides and selenides of antimony and bismuth as solar energy materials

    NASA Astrophysics Data System (ADS)

    Nair, M. T.; Nair, Padmanabhan K.; Garcia, V. M.; Pena, Y.; Arenas, O. L.; Garcia, J. C.; Gomez-Daza, O.

    1997-10-01

    Chemical bath deposition techniques for bismuth sulfide, bismuth selenide, antimony sulfide, and antimony selenide thin films of about 0.20 - 0.25 micrometer thickness are reported. All these materials may be considered as solar absorber films: strong optical absorption edges, with absorption coefficient, (alpha) , greater than 104 cm-1, are located at 1.31 eV for Bi2Se3, 1.33 eV for Bi2S3, 1.8 eV for Sb2S3, and 1.35 eV for Sb2Se3. As deposited, all the films are nearly amorphous. However, well defined crystalline peaks matching bismuthinite (JCPDS 17- 0320), paraguanajuatite (JCPDS 33-0214), and stibnite (JCPDS 6-0474) and antimony selenide (JCPDS 15-0861) for Bi2S3, Bi2Se3, Sb2S3 and Sb2Se3 respectively, are observed when the films are annealed in nitrogen at 300 degrees Celsius. This is accompanied by a substantial modification of the electrical conductivity in the films: from 10-7 (Omega) -1 cm-1 (in as prepared films) to 10 (Omega) -1 cm-1 in the case of bismuth sulfide and selenide films, and enhancement of photosensitivity in the case of antimony sulfide films. The chemical deposition of a CuS/CuxSe film on these Vx- VIy films and subsequent annealing at 300 degrees Celsius for 1 h at 1 torr of nitrogen leads to the formation of p-type films (conductivity of 1 - 100 (Omega) -1 cm-1) of multinary composition. Among these, the formation of Cu3BiS3 (JCPDS 9-0488) and Cu3SbS4 (JCPDS 35- 0581), CuSbS2 (JCPDS 35-0413) have been clearly detected. Solar energy applications of these films are suggested.

  11. Chemical vapor deposition and atomic layer deposition of metal oxide and nitride thin films

    NASA Astrophysics Data System (ADS)

    Barton, Jeffrey Thomas

    Processes for depositing thin films with various electronic, optical, mechanical, and chemical properties are indispensable in many industries today. Of the many deposition methods available, chemical vapor deposition (CVD) has proved over time to be one of the most flexible, efficient, and cost-effective. Atomic layer deposition (ALD) is a newer process that is gaining favor as a method for depositing films with excellent properties and unparalleled precision. This work describes the development of novel CVD and ALD processes to deposit a variety of materials. Hafnium oxide and zirconium oxide show promise as replacements for SiO 2 as gate dielectrics in future-generation transistors. These high-k materials would provide sufficient capacitance with layers thick enough to avoid leakage from tunneling. An ALD method is presented here for depositing conformal hafnium oxide from tetrakis-(diethylamido)hafnium and oxygen gas. A CVD method for depositing zirconium oxide from tetrakis-(dialkylamido)zirconium and either oxygen gas or water vapor is also described. The use of copper for interconnects in integrated circuits requires improved diffusion barrier materials, given its high diffusivity compared to the previously-used aluminum and tungsten. Tungsten nitride has a low resistivity among barrier materials, and can be deposited in amorphous films that are effective diffusion barriers in layers as thin as a few nanometers. Here we demonstrate CVD and plasma-enhanced CVD methods to deposit tungsten nitride films from bis-(dialkylamido)bis-( tert-butylimido)tungsten precursors and ammonia gas. Recent findings had shown uniform copper growth on tantalum silicate films, without the dewetting that usually occurs on oxide surfaces. Tantalum and tungsten silicates were deposited by a CVD reaction from the reaction of either tris-(diethylamido)ethylimido tantalum or bis-(ethylmethylamido)-bis-( tert-butylimido)tungsten with tris-(tert-butoxy)silanol. The ability of evaporated

  12. Investigation of diamond deposition by chemical vapor transport with hydrogen

    NASA Astrophysics Data System (ADS)

    Piekarczyk, Wladyslaw; Messier, Russell F.; Roy, Rustum; Engdahl, Chris

    1990-12-01

    The carbon-hydrogen chemical vapor transport system was examined in accordance with a four-stage transport model. A result of this examination is that graphite co-deposition could be avoided when diamond is deposited from gas solutions under-saturated with respect to diamond. Actual deposition experiments showed that this unusual requirement can be fulfilled but only for the condition that the transport distance between the carbon source and the substrate surface is short. In such a case diamond can be deposited equally from super-saturated as well as from under-saturated gas solutions. On the basis of thermodynamic considerations a possible explanation of this unusual phenomenon is given. It is shown that there is a possibility of deposition of diamond from both super-saturated as well as under-saturated gas solutions but only on the condition that they are in a non-equilibrium state generally called the activated state. A model of the diamond deposition process consisting of two steps is proposed. In the first step diamond and graphite are deposited simultaneously. The most important carbon deposition reaction is C2H2(g) + 2 H(g) C(diamond graphite) + CH(g). The amount of co-deposited graphite is not a direct function of the saturation state of the gas phase. In the second step graphite is etched according to the most probable reaction C(graphite) + 4 H(g) CH4(g). Atomic hydrogen in a super-equilibrium concentration is necessary not only to etch graphite but also to precipitate and graphite. 1.

  13. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    SciTech Connect

    Hampikian, J.M.; Carter, W.B.

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  14. Chemical vapor deposition and characterization of tungsten boron alloy films

    SciTech Connect

    Smith, P.M.; Fleming, J.G.; Lujan, R.D.; Roherty-Osmun, E.; Reid, J.S.; Hochberg, A.K.; Roberts, D.A.

    1993-11-01

    A low pressure chemical vapor deposition (LPCVD) process for depositing W{sub X}B{sub (1-X)} films from WF{sub 6} and B{sub 2}H{sub 6} is described. The depositions were performed in a cold wall reactor on 6 in. Si wafers at 400C. During deposition, pressure was maintained at a fixed level in the range of 200 to 260 mTorr. Ratio of WF{sub 6}/B{sub 2}H{sub 6} was varied from 0.05 to 1.07. Carrier gas was either 100 sccm of Ar with a gas flow of 308 to 591 sccm, or 2000 sccm of Ar and 2000 sccm of H{sub 2} with the overall gas flow from 4213 to 4452 sccm. Two stable deposition regions were found separated by an unstable region that produced non-uniform films. The B-rich films produced in one of the stable deposition regions had W concentrations of 30 at.% and resistivities between 200 and 300 {mu}ohm{center_dot}cm. The W-rich films produced in the other stable deposition region had W concentrations of 80 at.% and resistivities of 100 {mu}ohm{center_dot}cm. As-deposited films had densities similar to bulk material of similar stoichiometry. Barrier properties of the films against diffusion of Cu to 700C in vacuum were measured by 4-point probe. Also, annealing was carried out to 900C in order to determine phases formed as the films crystallize. These studies indicate that W{sub X}B{sub (1-X)} films may be useful barriers in ULSI metallization applications.

  15. Development and study of chemical vapor deposited tantalum base alloys

    NASA Technical Reports Server (NTRS)

    Meier, G. H.; Bryant, W. A.

    1976-01-01

    A technique for the chemical vapor deposition of alloys was developed. The process, termed pulsing, involves the periodic injection of reactant gases into a previously-evacuated reaction chamber where they blanket the substrate almost instantaneously. Formation of alternating layers of the alloy components and subsequent homogenization allows the formation of an alloy of uniform composition with the composition being determined by the duration and relative numbers of the various cycles. The technique has been utilized to produce dense alloys of uniform thickness and composition (Ta- 10 wt % W) by depositing alternating layers of Ta and W by the hydrogen reduction of TaCl5 and WCl6. A similar attempt to deposit a Ta - 8 wt % W - 2 wt% Hf alloy was unsuccessful because of the difficulty in reducing HfCl4 at temperatures below those at which gas phase nucleation of Ta and W occurred.

  16. CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED CONDUCTORS

    SciTech Connect

    Paranthaman, Mariappan Parans

    2011-01-01

    We have reviewed briefly the growth of buffer and high temperature superconducting oxide thin films using a chemical solution deposition (CSD) method. In the Rolling-Assisted Biaxially Textured Substrates (RABiTS) process, developed at Oak Ridge National Laboratory, utilizes the thermo mechanical processing to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited epitaxially on the textured nickel alloy substrates. The starting substrate serves as a template for the REBCO layer, which has substantially fewer weak links. Buffer layers play a major role in fabricating the second generation REBCO wire technology. The main purpose of the buffer layers is to provide a smooth, continuous and chemically inert surface for the growth of the REBCO film, while transferring the texture from the substrate to the superconductor layer. To achieve this, the buffer layers need to be epitaxial to the substrate, i.e. they have to nucleate and grow in the same bi-axial texture provided by the textured metal foil. The most commonly used RABiTS multi-layer architectures consist of a starting template of biaxially textured Ni-5 at.% W (Ni-W) substrate with a seed (first) layer of Yttrium Oxide (Y2O3), a barrier (second) layer of Yttria Stabilized Zirconia (YSZ), and a Cerium Oxide (CeO2) cap (third) layer. These three buffer layers are generally deposited using physical vapor deposition (PVD) techniques such as reactive sputtering. On top of the PVD template, REBCO film is then grown by a chemical solution deposition. This article reviews in detail about the list of oxide buffers and superconductor REBCO films grown epitaxially on single crystal and/or biaxially textured Ni-W substrates using a CSD method.

  17. Baby Bath Basics

    MedlinePlus

    ... feel more comfortable at bath time. Start by learning baby bath basics. There's no need to give your newborn a bath every day. Three times a week might be enough until your baby becomes more mobile. Bathing your baby too much can dry out ...

  18. Chemical vapor deposition coating of fibers using microwave application

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Hoover, Gordon (Inventor); Jackson, Henry W. (Inventor)

    2000-01-01

    Chemical vapor deposition coating is carried out in a cylindrical cavity. The fibers are heated by a microwave source that is uses a TM0N0 mode, where O is an integer, and produces a field that depends substantially only on radius. The fibers are observed to determine their heating, and their position can be adjusted. Once the fibers are uniformly heated, a CVD reagent is added to process the fibers.

  19. Extraordinary magnetoresistance in shunted chemical vapor deposition grown graphene devices

    DTIC Science & Technology

    2011-07-01

    than 95% single-layer gra- phene using chemical vapor deposition (CVD) on copper foils.12 These large-area films are transferable to any arbi- trary...graphene will reconcile with the need for higher mobility, as mobility coupled the cleanliness and defectiveness of the graphene. Nonetheless, such devices...Wiesendagner, Science 320, 82 (2008). 21A. L. Friedman, H. Chun, Y. J. Jung, D. Heiman, E. R. Glaser , and L. Menon, Phys. Rev. B 81, 115461 (2010). FIG. 3

  20. Processing Research on Chemically Vapor Deposited Silicon Nitride.

    DTIC Science & Technology

    1979-12-01

    the feasi- bility of synthesizing free-standing plate and figured geometries of phase-pure silicon nitride by the chemical vapor deposition (CVD) method...ates toward moisture and the probability that they all contain absorbed ammonium chloride and ammonia. A strong ammoniacal odor indicates that...solid (V- L -S) processes favored by high ammonia/silicon ratios, high concentrations and long times. Whisker formation would be favored by the opposite

  1. Research on chemical vapor deposition processes for advanced ceramic coatings

    NASA Technical Reports Server (NTRS)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  2. A high temperature, plasma-assisted chemical vapor deposition system

    SciTech Connect

    Brusasco, R.M.; Britten, J.A.; Thorsness, C.B.; Scrivener, M.S.; Unites, W.G.; Campbell, J.H. ); Johnson, W.L. )

    1990-02-01

    We have designed and built a high-temperature, plasma-assisted, chemical vapor deposition system to deposit multilayer optical coatings of SiO{sub 2} and doped-SiO{sub 2} flat substrates. The coater concept and design is an outgrowth of our recent work with Schott Glasswerke demonstrating the use of plasma assisted CVD to prepare very high damage threshold optical coatings. The coater is designed to deposit up to several thousand alternating quarterwave layers of SiO{sub 2} and doped SiO{sub 2} substrate at deposition rates up to several microns per minute. The substrate is resistively heated to about 1000{degree}C during the deposition phase of the process. The plasma is driven by a 13.56 MHz RF unit capable of producing power densities of up to 140 W cm{sup {minus}3} in the reaction zone. The coater is designed to be adaptable to microwave generated plasmas, as well as RF. Reactant gas flow rates of up to 10 slm can be achieved at a 10 tar operating pressure. Reactants consist of O{sub 2}, SiCl{sub 4} and a volatile halogenated dopant. These gases react in the plasma volume producing SiO{sub 2} with dopant concentrations of up to a few percent. A variable dopant concentration is used to produce index differences between adjacent optical layers.

  3. Chemical etching and organometallic chemical vapor deposition on varied geometries of GaAs

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.; Wilt, David M.

    1989-01-01

    Results of micron-spaced geometries produced by wet chemical etching and subsequent OMCVD growth on various GaAs surfaces are presented. The polar lattice increases the complexity of the process. The slow-etch planes defined by anisotropic etching are not always the same as the growth facets produced during MOCVD deposition, especially for deposition on higher-order planes produced by the hex groove etching.

  4. Modeling of InP metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Black, Linda R.; Clark, Ivan O.; Kui, J.; Jesser, William A.

    1991-01-01

    The growth of InP by metalorganic chemical vapor deposition (MOCVD) in a horizontal reactor is being modeled with a commercially available computational fluid dynamics modeling code. The mathematical treatment of the MOCVD process has four primary areas of concern: 1) transport phenomena, 2) chemistry, 3) boundary conditions, and 4) numerical solution methods. The transport processes involved in CVD are described by conservation of total mass, momentum, energy, and atomic species. Momentum conservation is described by a generalized form of the Navier-Stokes equation for a Newtonian fluid and laminar flow. The effect of Soret diffusion on the transport of particular chemical species and on the predicted deposition rate is examined. Both gas-phase and surface chemical reactions are employed in the model. Boundary conditions are specified at the inlet and walls of the reactor for temperature, fluid flow and chemical species. The coupled set of equations described above is solved by a finite difference method over a nonuniform rectilinear grid in both two and three dimensions. The results of the 2-D computational model is presented for gravity levels of zero- and one-g. The predicted growth rates at one-g are compared to measured growth rates on fused silica substrates.

  5. Chemical vapor deposition modeling for high temperature materials

    NASA Technical Reports Server (NTRS)

    Goekoglu, Sueleyman

    1992-01-01

    The formalism for the accurate modeling of chemical vapor deposition (CVD) processes has matured based on the well established principles of transport phenomena and chemical kinetics in the gas phase and on surfaces. The utility and limitations of such models are discussed in practical applications for high temperature structural materials. Attention is drawn to the complexities and uncertainties in chemical kinetics. Traditional approaches based on only equilibrium thermochemistry and/or transport phenomena are defended as useful tools, within their validity, for engineering purposes. The role of modeling is discussed within the context of establishing the link between CVD process parameters and material microstructures/properties. It is argued that CVD modeling is an essential part of designing CVD equipment and controlling/optimizing CVD processes for the production and/or coating of high performance structural materials.

  6. Crystalline ha coating on peek via chemical deposition

    NASA Astrophysics Data System (ADS)

    Almasi, D.; Izman, S.; Assadian, M.; Ghanbari, M.; Abdul Kadir, M. R.

    2014-09-01

    Polyether ether ketone (PEEK) has a similar elastic modulus to bone and can be a suitable alternative to metallic implants. However, PEEK is bioinert and does not integrate well with the surrounding tissues. The current commercial method for solving this problem is by coating PEEK substrates with calcium phosphates via plasma spraying. However, this method produces a low bonding strength between the substrate and the coating layer, as well as non-uniform density of the coating. In this study, chemical deposition was used to deposit HA crystalline particles on PEEK substrate without any subsequent crystallisation process therefore producing crystalline treated layer. EDX results confirmed the deposition of HA, and the XRD results confirmed that the treated layer was crystalline HA. FT-IR analysis confirmed the chemical bonding between HA and the substrate. Surface roughness increased from 24.27 nm to 34.08 nm for 3 min immersion time. The water contact angle showed an increase in wettability of the treated sample from 71.6 to 36.4 degrees, which in turn increased its bioactivity. The proposed method is a suitable alternative to other conventional methods as high temperature was not involved in the process which could damage the surface of the substrate.

  7. Deposition of thermal and hot-wire chemical vapor deposition copper thin films on patterned substrates.

    PubMed

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    In this work we study the hot-wire chemical vapor deposition (HWCVD) of copper films on blanket and patterned substrates at high filament temperatures. A vertical chemical vapor deposition reactor was used in which the chemical reactions were assisted by a tungsten filament heated at 650 degrees C. Hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) vapors were used, directly injected into the reactor with the aid of a liquid injection system using N2 as carrier gas. Copper thin films grown also by thermal and hot-wire CVD. The substrates used were oxidized silicon wafers on which trenches with dimensions of the order of 500 nm were formed and subsequently covered with LPCVD W. HWCVD copper thin films grown at filament temperature of 650 degrees C showed higher growth rates compared to the thermally ones. They also exhibited higher resistivities than thermal and HWCVD films grown at lower filament temperatures. Thermally grown Cu films have very uniform deposition leading to full coverage of the patterned substrates while the HWCVD films exhibited a tendency to vertical growth, thereby creating gaps and incomplete step coverage.

  8. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, Kevin C.; Kodas, Toivo T.

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  9. Characterisation of TiO 2 deposited by photo-induced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Kaliwoh, Never; Zhang, Jun-Ying; Boyd, Ian W.

    2002-01-01

    We report the deposition of thin TiO 2 films on crystalline Si and quartz by photo-induced chemical vapour deposition (CVD) using UV excimer lamps employing a dielectric barrier discharge in krypton chloride (KrCl ∗) to provide intense narrow band radiation at λ=222 nm. The precursor used was titanium isopropoxide (TTIP). Films from around 20-510 nm in thickness with refractive indices from 2.20 to 2.54 were grown at temperatures between 50 and 350 °C. The higher refractive index values compare favourably with the value of 2.58 recorded for the bulk material. The measured deposition rate was around 50 nm/min at 350 °C. Fourier transform infrared spectroscopy (FTIR) revealed the presence of TiO 2 through the observation of a Ti-O absorption peak and the absence of OH in films deposited at 250-350 °C indicated relatively good quality films. The phase of films deposited at 200-350 °C was anatase as determined by X-ray diffraction.

  10. Synthesis of mullite coatings by chemical vapor deposition

    SciTech Connect

    Mulpuri, R.P.; Auger, M.; Sarin, V.K.

    1996-08-01

    Formation of mullite on ceramic substrates via chemical vapor deposition was investigated. Mullite is a solid solution of Al{sub 2}O{sub 3} and SiO{sub 2} with a composition of 3Al{sub 2}O{sub 3}{circ}2SiO{sub 2}. Thermodynamic calculations performed on the AlCl{sub 3}-SiCl{sub 4}-CO{sub 2}-H{sub 2} system were used to construct equilibrium CVD phase diagrams. With the aid of these diagrams and consideration of kinetic rate limiting factors, initial process parameters were determined. Through process optimization, crystalline CVD mullite coatings have been successfully grown on SiC and Si{sub 3}N{sub 4} substrates. Results from the thermodynamic analysis, process optimization, and effect of various process parameters on deposition rate and coating morphology are discussed.

  11. Chemical vapor deposition of low reflective cobalt (II) oxide films

    NASA Astrophysics Data System (ADS)

    Amin-Chalhoub, Eliane; Duguet, Thomas; Samélor, Diane; Debieu, Olivier; Ungureanu, Elisabeta; Vahlas, Constantin

    2016-01-01

    Low reflective CoO coatings are processed by chemical vapor deposition from Co2(CO)8 at temperatures between 120 °C and 190 °C without additional oxygen source. The optical reflectivity in the visible and near infrared regions stems from 2 to 35% depending on deposition temperature. The combination of specific microstructural features of the coatings, namely a fractal ⿿cauliflower⿿ morphology and a grain size distribution more or less covering the near UV and IR wavelength ranges enhance light scattering and gives rise to a low reflectivity. In addition, the columnar morphology results in a density gradient in the vertical direction that we interpret as a refractive index gradient lowering reflectivity further down. The coating formed at 180 °C shows the lowest average reflectivity (2.9%), and presents an interesting deep black diffuse aspect.

  12. Unusual thermopower of inhomogeneous graphene grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Nam, Youngwoo; Sun, Jie; Lindvall, Niclas; Jae Yang, Seung; Rae Park, Chong; Woo Park, Yung; Yurgens, August

    2014-01-01

    We report on thermopower (TEP) and resistance measurements of inhomogeneous graphene grown by chemical vapor deposition (CVD). Unlike the conventional resistance of pristine graphene, the gate-dependent TEP shows a large electron-hole asymmetry. This can be accounted for by inhomogeneity of the CVD-graphene where individual graphene regions contribute with different TEPs. At the high magnetic field and low temperature, the TEP has large fluctuations near the Dirac point associated with the disorder in the CVD-graphene. TEP measurements reveal additional characteristics of CVD-graphene, which are difficult to obtain from the measurement of resistance alone.

  13. Highly sensitive wide bandwidth photodetectors using chemical vapor deposited graphene

    NASA Astrophysics Data System (ADS)

    Goo Kang, Chang; Kyung Lee, Sang; Jin Yoo, Tae; Park, Woojin; Jung, Ukjin; Ahn, Jinho; Hun Lee, Byoung

    2014-04-01

    A photodetector generating a nearly constant photocurrent in a very wide spectral range from ultraviolet (UV) to infrared has been demonstrated using chemical vapor deposited (CVD) graphene. Instability due to a photochemical reaction in the UV region has been minimized using an Al2O3 passivation layer, and a responsivity comparable to that of Highly Ordered Pyrolytic Graphite graphene photodetectors of ˜8 mA/W has been achieved at a 0.1 V bias, despite high defect density in the CVD graphene. A highly sensitive multi-band photodetector using graphene has many potential applications including optical interconnects, multi-band imaging sensors, highly sensitive motion detectors, etc.

  14. Chemical Vapor Deposited Zinc Sulfide. SPIE Press Monograph

    SciTech Connect

    McCloy, John S.; Tustison, Randal W.

    2013-04-22

    Zinc sulfide has shown unequaled utility for infrared windows that require a combination of long-wavelength infrared transparency, mechanical durability, and elevated-temperature performance. This book reviews the physical properties of chemical vapor deposited ZnS and their relationship to the CVD process that produced them. An in-depth look at the material microstructure is included, along with a discussion of the material's optical properties. Finally, because the CVD process itself is central to the development of this material, a brief history is presented.

  15. Plasma-enhanced chemical vapor deposition of multiwalled carbon nanofibers

    NASA Technical Reports Server (NTRS)

    Matthews, Kristopher; Cruden, Brett A.; Chen, Bin; Meyyappan, M.; Delzeit, Lance

    2002-01-01

    Plasma-enhanced chemical vapor deposition is used to grow vertically aligned multiwalled carbon nanofibers (MWNFs). The graphite basal planes in these nanofibers are not parallel as in nanotubes; instead they exhibit a small angle resembling a stacked cone arrangement. A parametric study with varying process parameters such as growth temperature, feedstock composition, and substrate power has been conducted, and these parameters are found to influence the growth rate, diameter, and morphology. The well-aligned MWNFs are suitable for fabricating electrode systems in sensor and device development.

  16. Microbiologists meet geologists in Bath

    NASA Astrophysics Data System (ADS)

    Onstott, T. C.

    A diverse group of microbiologists, molecular biologists, chemical engineers, and geologists met in Bath, United Kingdom, in September 1993 to reach across the barriers separating their disciplines and report new findings in the expanding field of geomicrobiology. The occasion was the second International Symposium on Subsurface Microbiology, cosponsored by the Subsurface Science Program of the U.S. Department of Energy. Historically, Bath was a resort centered around the emission of thermal waters credited with the potential to cure numerous ills. The location was appropriate given that biotechnology appears to have considerable potential to cure some challenging environmental ailments.

  17. ZnS nanoflakes deposition by modified chemical method

    SciTech Connect

    Desai, Mangesh A. Sartale, S. D.

    2014-04-24

    We report deposition of zinc sulfide nanoflakes on glass substrates by modified chemical method. The modified chemical method involves adsorption of zinc–thiourea complex on the substrate and its dissociation in presence of hydroxide ions to release sulfur ions from thiourea which react with zinc ions present in the complex to form zinc sulfide nanoflakes at room temperature. Influence of zinc salt and thiourea concentrations ratios on the morphology of the films was investigated by scanning electron microscope (SEM). The ratio of zinc and thiourea in the zinc–thiourea complex significantly affect the size of the zinc sulfide nanoflakes, especially width and density of the nanoflakes. The X-ray diffraction analysis exhibits polycrystalline nature of the zinc sulfide nanoflakes with hexagonal phase.

  18. What Are Bath Salts?

    MedlinePlus

    ... risks of using synthetic cathinones (bath salts)? Another danger of bath salts is that they might contain ... Drugs: Is There a Way to Reduce the Dangers? June 09, 2015 / The NIDA Blog Team Concert ...

  19. Ti-doped hydrogenated diamond like carbon coating deposited by hybrid physical vapor deposition and plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, Na Rae; Sle Jun, Yee; Moon, Kyoung Il; Sunyong Lee, Caroline

    2017-03-01

    Diamond-like carbon films containing titanium and hydrogen (Ti-doped DLC:H) were synthesized using a hybrid technique based on physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). The film was deposited under a mixture of argon (Ar) and acetylene gas (C2H2). The amount of Ti in the Ti-doped DLC:H film was controlled by varying the DC power of the Ti sputtering target ranging from 0 to 240 W. The composition, microstructure, mechanical and chemical properties of Ti-doped DLC:H films with varying Ti concentrations, were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nano indentation, a ball-on-disk tribometer, a four-point probe system and dynamic anodic testing. As a result, the optimum composition of Ti in Ti-doped DLC:H film using our hybrid method was found to be a Ti content of 18 at. %, having superior electrical conductivity and high corrosion resistance, suitable for bipolar plates. Its hardness value was measured to be 25.6 GPa with a low friction factor.

  20. METAL COATING BATHS

    DOEpatents

    Robinson, J.W.

    1958-08-26

    A method is presented for restoring the effectiveness of bronze coating baths used for hot dip coating of uranium. Such baths, containing a high proportion of copper, lose their ability to wet uranium surfaces after a period of use. The ability of such a bath to wet uranium can be restored by adding a small amount of metallic aluminum to the bath, and skimming the resultant hard alloy from the surface.

  1. Chemical vapor deposition of conformal, functional, and responsive polymer films.

    PubMed

    Alf, Mahriah E; Asatekin, Ayse; Barr, Miles C; Baxamusa, Salmaan H; Chelawat, Hitesh; Ozaydin-Ince, Gozde; Petruczok, Christy D; Sreenivasan, Ramaswamy; Tenhaeff, Wyatt E; Trujillo, Nathan J; Vaddiraju, Sreeram; Xu, Jingjing; Gleason, Karen K

    2010-05-11

    Chemical vapor deposition (CVD) polymerization utilizes the delivery of vapor-phase monomers to form chemically well-defined polymeric films directly on the surface of a substrate. CVD polymers are desirable as conformal surface modification layers exhibiting strong retention of organic functional groups, and, in some cases, are responsive to external stimuli. Traditional wet-chemical chain- and step-growth mechanisms guide the development of new heterogeneous CVD polymerization techniques. Commonality with inorganic CVD methods facilitates the fabrication of hybrid devices. CVD polymers bridge microfabrication technology with chemical, biological, and nanoparticle systems and assembly. Robust interfaces can be achieved through covalent grafting enabling high-resolution (60 nm) patterning, even on flexible substrates. Utilizing only low-energy input to drive selective chemistry, modest vacuum, and room-temperature substrates, CVD polymerization is compatible with thermally sensitive substrates, such as paper, textiles, and plastics. CVD methods are particularly valuable for insoluble and infusible films, including fluoropolymers, electrically conductive polymers, and controllably crosslinked networks and for the potential to reduce environmental, health, and safety impacts associated with solvents. Quantitative models aid the development of large-area and roll-to-roll CVD polymer reactors. Relevant background, fundamental principles, and selected applications are reviewed.

  2. Fundamental studies of the chemical vapor deposition of diamond

    SciTech Connect

    Stevenson, D.A.

    1991-01-01

    The plasma or thermally enhanced low pressure chemical vapor deposition of diamond films is an exciting development with many challenging fundamental problems. The early stages of nucleation is relevant to the initial growth rate and the perfection and morphology of the deposit. To isolate one of the factors that influence nucleation, we have studied the effect of surface topography on the nucleation process. Our earlier work has shown preferential nucleation on sharp convex features and we have proposed several possible reasons for this behavior, including dangling bonds at the convex features. In our recent work, we have extended our investigation to include a novel patterning of silicon substrates used to pattern silicon solar cells. The results are consistent with our earlier observations that the majority of nucleation events occur on protruding surface features. In an effort to establish whether dangling bonds at the protruding surfaces may be responsible for the selective nucleation, we have evaluated the dangling bond concentration using electron spin resonance. We have carried out deposition under nominally identical surface topography, but with different concentrations of dangling bonds at or near the surface. The results of this study indicate that dangling bonds play a minor role in enhancing nucleation, in contrast to a substantial role played by special surface topographical features. In the course of the past year, we have submitted four manuscripts for publication and have made six presentations.

  3. Conversion Coatings for Aluminum Alloys by Chemical Vapor Deposition Mechanisms

    NASA Technical Reports Server (NTRS)

    Reye, John T.; McFadden, Lisa S.; Gatica, Jorge E.; Morales, Wilfredo

    2004-01-01

    With the rise of environmental awareness and the renewed importance of environmentally friendly processes, the United States Environmental Protection Agency has targeted surface pre-treatment processes based on chromates. Indeed, this process has been subject to regulations under the Clean Water Act as well as other environmental initiatives, and there is today a marked movement to phase the process out in the near future. Therefore, there is a clear need for new advances in coating technology that could provide practical options for replacing present industrial practices. Depending on the final application, such coatings might be required to be resistant to corrosion, act as chemically resistant coatings, or both. This research examined a chemical vapor deposition (CVD) mechanism to deposit uniform conversion coatings onto aluminum alloy substrates. Robust protocols based on solutions of aryl phosphate ester and multi-oxide conversion coating (submicron) films were successfully grown onto the aluminum alloy samples. These films were characterized by X-ray Photoelectron Spectroscopy (XPS). Preliminary results indicate the potential of this technology to replace aqueous-based chromate processes.

  4. Precursors for chemical and photochemical vapor deposition of copper metal

    NASA Astrophysics Data System (ADS)

    James, Alicia Marie

    The colorless square-planar cluster [CuN(SiMe3)2] 4, which contains four Cu(I) ions with four bridging amide groups, was studied as a precursor for chemical and photochemical vapor deposition of Cu metal. The cluster phosphoresces in CH2Cl2 solution and in the solid state at room temperature. Its electronic spectrum in CH 2Cl2 consists of two intense bands which are assigned to symmetry-allowed 3d → 4p transitions; the phosphorescence is also likely to be metal-centered. Solid [CuN(SiMe3)2]4 luminesces with approximately the same spectrum as that of the CH2Cl2 solutions. At 77 K, the solid-state luminescence red-shifts slightly. The emission lifetime in glassy Et2O solution is 690 mus. [CuN(SiMe3) 2]4 deposits Cu metal via chemical vapor deposition under H2 carrier gas at substrate temperatures of 145--200°C. Deposition also occurs photochemically beginning at 136--138°C under near-UV irradiation. The preparation of monomeric derivatives of [CuN(SiMe3) 2]4 was attempted by using neutral donor ligands L (e.g. LnCuN(SiMe3)2; L = CO, PR3, CN-t-Bu; n = 1--3). The target compounds were expected to be more volatile than the copper cluster and still maintain photosensitivity. CuCl and [Cu(CH 3CN)4]PF6 were used as starting materials. Even in the presence of L, [CuN(SiMe3)2] 4 is a major product in reactions using CuCl and NaN(SiCH3) 2- [Cu(CH3CN)4]PF6 was a promising route for the monomeric Cu(I) complexes because of ready dissociation of its acetonitrile ligands. However, the characterization of these complexes was unsuccessful. Other Cu(I) amide clusters have been prepared; they may also be suitable for chemical and photochemical vapor deposition of Cu. [CuNEt2] 4, [CuN(i-Pr)2]4, and [CuN(t-Bu)(SiMe 3)]4 are phosphorescent though they are very air sensitive. They should be more volatile and produce Cu metal films more readily than [CuN(SiMe3)2]4 Cu(hfac)2 is a versatile Lewis acid, forming adducts with a variety of bases. The bases that were used were ethylene

  5. Chemically deposited In2S3-Ag2S layers to obtain AgInS2 thin films by thermal annealing

    NASA Astrophysics Data System (ADS)

    Lugo, S.; Peña, Y.; Calixto-Rodriguez, M.; López-Mata, C.; Ramón, M. L.; Gómez, I.; Acosta, A.

    2012-12-01

    AgInS2 thin films were obtained by the annealing of chemical bath deposited In2S3-Ag2S layers at 400 °C in N2 for 1 h. According to the XRD and EDX results the chalcopyrite structure of AgInS2 has been obtained. These films have an optical band gap, Eg, of 1.86 eV and an electrical conductivity value of 1.2 × 10-3 (Ω cm)-1.

  6. Robust Ultralow-k Dielectric (Fluorocarbon) Deposition by Microwave Plasma-Enhanced Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Kikuchi, Yoshiyuki; Miyatani, Kotaro; Kobayashi, Yasuo; Kawamura, Kohei; Nemoto, Takenao; Nakamura, Masahiro; Matsumoto, Hirokazu; Ito, Azumi; Shirotori, Akihide; Nozawa, Toshihisa; Matsuoka, Takaaki

    2012-05-01

    A robust fluorocarbon film was successfully deposited on a substrate at a temperature above 400 °C by the new microwave plasma-enhanced chemical vapor deposition (MWPE-CVD) method using the linear C5F8 precursor instead of a conventional cyclic C5F8 one. The fluorocarbon performed keeping the dielectric constant low as a value of 2.25 by controlling the molecular structure forming cross-linked poly(tetrafluoroethylene) (PTFE) chains with configurational carbon atoms. The novel fluorocarbon demonstrates less fluorine degassing at an elevated temperature, with high mechanical strength and without degradation of adhesion of the fluorocarbon film to SiCN and SiOx stacked films after thermal stress at 400 °C and 1 atm N2 for 1 h. Consequently, this robust fluorocarbon film is considered a promising candidate for general porous silicon materials with applications to practical integration processes as an interlayer dielectric.

  7. NASA evaluation of Type 2 chemical depositions. [effects of deicer deposition on aircraft tire friction performance

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Stubbs, Sandy M.; Howell, W. Edward; Webb, Granville L.

    1993-01-01

    Recent findings from NASA Langley tests to define effects of aircraft Type 2 chemical deicer depositions on aircraft tire friction performance are summarized. The Aircraft Landing Dynamics Facility (ALDF) is described together with the scope of the tire cornering and braking friction tests conducted up to 160 knots ground speed. Some lower speed 32 - 96 km/hr (20 - 60 mph) test run data obtained using an Instrumented Tire Test Vehicle (ITTV) to determine effects of tire bearing pressure and transverse grooving on cornering friction performance are also discussed. Recommendations are made concerning which parameters should be evaluated in future testing.

  8. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor.

    PubMed

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnO(x)-CVD layers.

  9. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor

    NASA Astrophysics Data System (ADS)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G.

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnOx-CVD layers.

  10. Fluorinated carboxylic membranes deposited by plasma enhanced chemical vapour deposition for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Thery, J.; Martin, S.; Faucheux, V.; Le Van Jodin, L.; Truffier-Boutry, D.; Martinent, A.; Laurent, J.-Y.

    Among the fuel cell technologies, the polymer electrolyte membrane fuel cells (PEMFCs) are particularly promising because they are energy-efficient, clean, and fuel-flexible (i.e., can use hydrogen or methanol). The great majority of PEM fuel cells rely on a polymer electrolyte from the family of perfluorosulfonic acid membranes, nevertheless alternative materials are currently being developed, mainly to offer the alternative workout techniques which are required for the portable energy sources. Plasma polymerization represents a good solution, as it offers the possibility to deposit thin layer with an accurate and homogeneous thickness, even on 3D surfaces. In this paper, we present the results for the growth of proton conductive fluoro carboxylic membranes elaborated by plasma enhanced chemical vapour deposition. These membranes present conductivity values of the same order than the one of Nafion ®. The properties of the membrane, such as the chemical composition, the ionic conductivity, the swelling behaviour and the permeability were correlated to the plasma process parameters. The membranes were integrated in fuel cells on porous substrates and we present here the results regarding the barrier effect and the power output. Barrier effect similar to those of 40 μm Nafion ® layers was reached for 10 μm thick carboxylic membranes. Power outputs around 3 mW cm -2 were measured. We discuss the results regarding the gas barrier effect and the power outputs.

  11. Chemical Vapor Deposition Growth of Graphene and Related Materials

    NASA Astrophysics Data System (ADS)

    Kitaura, Ryo; Miyata, Yasumitsu; Xiang, Rong; Hone, James; Kong, Jing; Ruoff, Rodney S.; Maruyama, Shigeo

    2015-12-01

    Research on atomic layers including graphene, hexagonal boron nitride (hBN), transition metal dichalcogenides (TMDCs) and their heterostructures has attracted a great deal of attention. Chemical vapor deposition (CVD) can provide large-area structure-defined high-quality atomic layer samples, which have considerably contributed to the recent advancement of atomic-layer research. In this article, we focus on the CVD growth of various atomic layers and review recent progresses including (1) the CVD growth of graphene using methane and ethanol as carbon sources, (2) the CVD growth of hBN using borazine and ammonia borane, (3) the CVD growth of various TMDCs using single and multi-furnace methods, and (4) CVD growth of vertical and lateral heterostructures such as graphene/hBN, MoS2/graphite, WS2/hBN and MoS2/WS2.

  12. Advanced titania buffer layer architectures prepared by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Kunert, J.; Bäcker, M.; Brunkahl, O.; Wesolowski, D.; Edney, C.; Clem, P.; Thomas, N.; Liersch, A.

    2011-08-01

    Chemical solution deposition (CSD) was used to grow high-quality (100) oriented films of SrTiO3 (STO) on CSD CaTiO3 (CTO), Ba0.1Ca0.9TiO3 (BCT) and STO seed and template layers. These template films bridge the lattice misfit between STO and the nickel-tungsten (NiW) substrate, assisting in dense growth of textured STO. Additional niobium (Nb) doping of the STO buffer layer reduces oxygen diffusion which is necessary to avoid undesired oxidation of the NiW. The investigated templates offer suitable alternatives to established standard buffer systems like La2Zr2O7 (LZO) and CeO2 for coated conductors.

  13. Creep of chemically vapor deposited SiC fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1984-01-01

    The creep, thermal expansion, and elastic modulus properties for chemically vapor deposited SiC fibers were measured between 1000 and 1500 C. Creep strain was observed to increase logarithmically with time, monotonically with temperature, and linearly with tensile stress up to 600 MPa. The controlling activation energy was 480 + or - 20 kJ/mole. Thermal pretreatments near 1200 and 1450 C were found to significantly reduce fiber creep. These results coupled with creep recovery observations indicate that below 1400 C fiber creep is anelastic with neglible plastic component. This allowed a simple predictive method to be developed for describing fiber total deformation as a function of time, temperature, and stress. Mechanistic analysis of the property data suggests that fiber creep is the result of beta-SiC grain boundary sliding controlled by a small percent of free silicon in the grain boundaries.

  14. Low Temperature Chemical Vapor Deposition Of Thin Film Magnets

    DOEpatents

    Miller, Joel S.; Pokhodnya, Kostyantyn I.

    2003-12-09

    A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO).sub.6) and bis(benzene)vanalium (V(C.sub.6 H.sub.6).sub.2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90.degree. C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40.degree. C. and 70.degree. C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.

  15. Chemical vapour deposition synthetic diamond: materials, technology and applications

    NASA Astrophysics Data System (ADS)

    Balmer, R. S.; Brandon, J. R.; Clewes, S. L.; Dhillon, H. K.; Dodson, J. M.; Friel, I.; Inglis, P. N.; Madgwick, T. D.; Markham, M. L.; Mollart, T. P.; Perkins, N.; Scarsbrook, G. A.; Twitchen, D. J.; Whitehead, A. J.; Wilman, J. J.; Woollard, S. M.

    2009-09-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form; however, non-planar geometries are also possible and enable a number of key applications. This paper reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, on the basis of the ability to synthesize a consistent and engineered high performance product.

  16. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  17. Chemical vapour deposition: Transition metal carbides go 2D

    DOE PAGES

    Gogotsi, Yury

    2015-08-17

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a highmore » crystallinity and very low defect concentration.« less

  18. Strain relaxation in graphene grown by chemical vapor deposition

    SciTech Connect

    Troppenz, Gerald V. Gluba, Marc A.; Kraft, Marco; Rappich, Jörg; Nickel, Norbert H.

    2013-12-07

    The growth of single layer graphene by chemical vapor deposition on polycrystalline Cu substrates induces large internal biaxial compressive strain due to thermal expansion mismatch. Raman backscattering spectroscopy and atomic force microscopy were used to study the strain relaxation during and after the transfer process from Cu foil to SiO{sub 2}. Interestingly, the growth of graphene results in a pronounced ripple structure on the Cu substrate that is indicative of strain relaxation of about 0.76% during the cooling from the growth temperature. Removing graphene from the Cu substrates and transferring it to SiO{sub 2} results in a shift of the 2D phonon line by 27 cm{sup −1} to lower frequencies. This translates into additional strain relaxation. The influence of the processing steps, used etching solution and solvents on strain, is investigated.

  19. Field emission properties of chemical vapor deposited individual graphene

    SciTech Connect

    Zamri Yusop, Mohd; Kalita, Golap; Yaakob, Yazid; Takahashi, Chisato; Tanemura, Masaki

    2014-03-03

    Here, we report field emission (FE) properties of a chemical vapor deposited individual graphene investigated by in-situ transmission electron microscopy. Free-standing bilayer graphene is mounted on a cathode microprobe and FE processes are investigated varying the vacuum gap of cathode and anode. The threshold field for 10 nA current were found to be 515, 610, and 870 V/μm for vacuum gap of 400, 300, and 200 nm, respectively. It is observed that the structural stability of a high quality bilayer graphene is considerably stable during emission process. By contacting the nanoprobe with graphene and applying a bias voltage, structural deformation and buckling are observed with significant rise in temperature owing to Joule heating effect. The finding can be significant for practical application of graphene related materials in emitter based devices as well as understanding the contact resistance influence and heating effect.

  20. Chemical vapor deposition fluid flow simulation modelling tool

    NASA Technical Reports Server (NTRS)

    Bullister, Edward T.

    1992-01-01

    Accurate numerical simulation of chemical vapor deposition (CVD) processes requires a general purpose computational fluid dynamics package combined with specialized capabilities for high temperature chemistry. In this report, we describe the implementation of these specialized capabilities in the spectral element code NEKTON. The thermal expansion of the gases involved is shown to be accurately approximated by the low Mach number perturbation expansion of the incompressible Navier-Stokes equations. The radiative heat transfer between multiple interacting radiating surfaces is shown to be tractable using the method of Gebhart. The disparate rates of reaction and diffusion in CVD processes are calculated via a point-implicit time integration scheme. We demonstrate the use above capabilities on prototypical CVD applications.

  1. Chemical vapour deposition: Transition metal carbides go 2D

    SciTech Connect

    Gogotsi, Yury

    2015-08-17

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a high crystallinity and very low defect concentration.

  2. Testing of Wrought Iridium/Chemical Vapor Deposition Rhenium Rocket

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Schneider, Steven J.

    1996-01-01

    A 22-N class, iridium/rhenium (Ir/Re) rocket chamber, composed of a thick (418 miocrometer) wrought iridium (Ir) liner and a rhenium substrate deposited via chemical vapor deposition, was tested over an extended period on gaseous oxygen/gaseous hydrogen (GO2/GH2) propellants. The test conditions were designed to produce species concentrations similar to those expected in an Earth-storable propellant combustion environment. Temperatures attained in testing were significantly higher than those expected with Earth-storable propellants, both because of the inherently higher combustion temperature of GO2/GH2 propellants and because the exterior surface of the rocket was not treated with a high-emissivity coating that would be applied to flight class rockets. Thus the test conditions were thought to represent a more severe case than for typical operational applications. The chamber successfully completed testing (over 11 hr accumulated in 44 firings), and post-test inspections showed little degradation of the Ir liner. The results indicate that use of a thick, wrought Ir liner is a viable alternative to the Ir coatings currently used for Ir/Re rockets.

  3. Chemical Vapor Deposition of an Organic Magnet, Vanadium Tetracyanoethylene.

    PubMed

    Harberts, Megan; Lu, Yu; Yu, Howard; Epstein, Arthur J; Johnston-Halperin, Ezekiel

    2015-07-03

    Recent progress in the field of organic materials has yielded devices such as organic light emitting diodes (OLEDs) which have advantages not found in traditional materials, including low cost and mechanical flexibility. In a similar vein, it would be advantageous to expand the use of organics into high frequency electronics and spin-based electronics. This work presents a synthetic process for the growth of thin films of the room temperature organic ferrimagnet, vanadium tetracyanoethylene (V[TCNE]x, x~2) by low temperature chemical vapor deposition (CVD). The thin film is grown at <60 °C, and can accommodate a wide variety of substrates including, but not limited to, silicon, glass, Teflon and flexible substrates. The conformal deposition is conducive to pre-patterned and three-dimensional structures as well. Additionally this technique can yield films with thicknesses ranging from 30 nm to several microns. Recent progress in optimization of film growth creates a film whose qualities, such as higher Curie temperature (600 K), improved magnetic homogeneity, and narrow ferromagnetic resonance line-width (1.5 G) show promise for a variety of applications in spintronics and microwave electronics.

  4. Nano structured carbon nitrides prepared by chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Karuppannan, Ramesh; Prashantha, M.

    2010-08-01

    Nanostructured carbon nitride films were prepared by pyrolysis assisted chemical vapour deposition(CVD). A two zone furnace with a temperature profile having a uniform temperature over a length of 20 cm length has been designed and developed. The precursor Azabenzimidazole was taken in a quartz tube and evaporated at 400 0C. The dense vapours enter the pyrolysis zone kept at a desired temperature and deposit on the quartz substrates. The FTIR spectrum of the prepared samples shows peaks at 1272 cm-1 (C.N stretching) and 1600 cm-1 (C=N) confirms the bonding of nitrogen with carbon. Raman D and G peaks, are observed at 1360 cm-1 and 1576 cm-1 respectively. XPS core level spectra of C 1s and N 1s show the formation of π bonding between carbon and nitrogen atoms. The size of the nano crystals estimated from the SEM images and XRD is ~100 nm. In some regions of the sample a maximum of 57 atom % of nitrogen has been observed.

  5. High growth rate homoepitaxial diamond film deposition at high temperatures by microwave plasma-assisted chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Vohra, Yogesh K. (Inventor); McCauley, Thomas S. (Inventor)

    1997-01-01

    The deposition of high quality diamond films at high linear growth rates and substrate temperatures for microwave-plasma chemical vapor deposition is disclosed. The linear growth rate achieved for this process is generally greater than 50 .mu.m/hr for high quality films, as compared to rates of less than 5 .mu.m/hr generally reported for MPCVD processes.

  6. Electrochromic Devices Deposited on Low-Temperature Plastics by Plasma-Enhanced Chemical Vapor Deposition

    SciTech Connect

    Robbins, Joshua; Seman, Michael

    2005-09-20

    Electrochromic windows have been identified by the Basic energy Sciences Advisory committee as an important technology for the reduction of energy spent on heating and cooling in residential and commercial buildings. Electrochromic devices have the ability to reversibly alter their optical properties in response to a small electric field. By blocking ultraviolet and infrared radiation, while modulating the incoming visible radiation, electrochromics could reduce energy consumption by several Quads per year. This amounts to several percent of the total annual national energy expenditures. The purpose of this project was to demonstrate proof of concept for using plasma-enhanced chemical vapor deposition (PECVD) for depositing all five layers necessary for full electrochromic devices, as an alternative to sputtering techniques. The overall goal is to produce electrochromic devices on flexible polymer substrates using PECVD to significantly reduce the cost of the final product. We have successfully deposited all of the films necessary for a complete electrochromic devices using PECVD. The electrochromic layer, WO3, displayed excellent change in visible transmission with good switching times. The storage layer, V2O5, exhibited a high storage capacity and good clear state transmission. The electrolyte, Ta2O5, was shown to functional with good electrical resistivity to go along with the ability to transfer Li ions. There were issues with leakage over larger areas, which can be address with further process development. We developed a process to deposit ZnO:Ga with a sheet resistance of < 50 W/sq. with > 90% transmission. Although we were not able to deposit on polymers due to the temperatures required in combination with the inverted position of our substrates. Two types of full devices were produced. Devices with Ta2O5 were shown to be functional using small aluminum dots as the top contact. The polymer electrolyte devices were shown to have a clear state transmission of

  7. Plasma-enhanced chemical vapor deposition of tungsten films

    NASA Astrophysics Data System (ADS)

    Chu, J. K.; Tang, C. C.; Hess, D. W.

    1982-07-01

    High-purity films of tungsten are deposited from tungsten hexafluoride and hydrogen using plasma-enhanced deposition (PED). At 400 °C deposition temperature, resistivities of ˜40 μΩ cm are attained. After annealing at 1100 °C, the resistivity falls to ˜7 μΩ cm. Below 400 °C, the as-deposited film stress is <6×109 dynes/cm2. Tensile, unlike tungsten, molybdenum films deposited by PED displayed high resistivities.

  8. A chemical kinetic model for chemical vapor deposition of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Raji, K.; Thomas, Shijo; Sobhan, C. B.

    2011-10-01

    Carbon nanotubes (CNTs) are classified among the most promising novel materials due to their exceptional physical properties. Still, optimal fabrication of carbon nanotubes involves a number of challenges. Whatever be the fabrication method, a process optimization can be evolved only on the basis of a good theoretical model to predict the parametric influences on the final product. The work reported here investigates the dependence of the deposition parameters on the controllable parameters for carbon nanotube growth during Chemical vapor deposition (CVD), through a chemical kinetic model. The theoretical model consisted of the design equations and the energy balance equations, based on the reaction kinetics, for the plug flow and the batch reactor, which simulate the CVD system. The numerical simulation code was developed in-house in a g++ environment. The results predicted the growth conditions for CNT: the deposition temperature, pressure and number of atoms, which were found to be influenced substantially by the initial controllable parameters namely the temperature, volumetric flow rate of the carbon precursor, and the reaction time. An experimental study was also conducted on a CVD system developed in the laboratory, to benchmark the computational results. The experimental results were found to agree well with the theoretical predictions obtained from the model.

  9. Antireflective silica nanoparticle array directly deposited on flexible polymer substrates by chemical vapor deposition.

    PubMed

    Yun, Jungheum; Bae, Tae-Sung; Kwon, Jung-Dae; Lee, Sunghun; Lee, Gun-Hwan

    2012-11-21

    We report the direct coating of a novel antireflective (AR) nanoarray structure of silica nanoparticles on highly flexible polymer substrates by a conventional vacuum coating method using plasma-enhanced chemical vapor deposition. Globular-shaped silica nanoparticles are found to be self-arranged in a periodic pattern on subwavelength scales without the use of artificial assemblies that typically require complicated nanolithography or solution-based nanoparticle fabrication approaches. Highly efficient AR characteristics in the visible spectral range are obtained at optimized refractive indices by controlling the dimensions and average distances of the silica nanoparticle arrays in a level accuracy of tens of nanometers. The AR nanoarrays exhibit sufficient structural durability against the very high strain levels that arise from the flexibility of polymer substrates. This simple coating process provides a cost-effective, high-throughput, room-temperature fabrication solution for producing large-area polymer substrates with AR characteristics.

  10. Deposition barium titanate (BaTiO3) doped lanthanum with chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Iriani, Y.; Jamaludin, A.; Nurhadi, N.

    2016-11-01

    Deposition of Barium Titanate (BaTiO3) thin films used Chemical Solution Deposition (CSD) method and prepared with spin coater. BaTiO3 is doped with lanthanum, 1%, 2%, and 3%. The thermal process use annealing temperature 900°C and holding time for 3 hours. The result of characterization with x-ray diffraction (XRD) equipment show that the addition of La3+ doped on Barium Titanate caused the change of angle diffraction.The result of refine with GSAS software shows that lanthanum have been included in the structure of BaTiO3. Increasing mol dopant La3+ cause lattice parameter and crystal volume become smaller. Characterization result using Scanning Electron Microscopy (SEM) equipment show that grain size (grain size) become smaller with increasing mole dopant (x) La3+. The result of characterization using Sawyer Tower methods show that all the samples (Barium Titanante and Barium Titanate doped lanthanum) are ferroelectric material. Increasing of mole dopant La3+ cause smaller coercive field and remanent polarization increases.

  11. Formation of amorphous metal alloys by chemical vapor deposition

    DOEpatents

    Mullendore, Arthur W.

    1990-01-01

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures or organometallic compounds and metalloid hydrides, e.g., transition metal carbonyl such as nickel carbonyl, and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit.

  12. Formation of amorphous metal alloys by chemical vapor deposition

    DOEpatents

    Mullendore, A.W.

    1988-03-18

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures of organometallic compounds and metalloid hydrides,e.g., transition metal carbonyl, such as nickel carbonyl and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit. 1 fig.

  13. Photo Initiated Chemical Vapour Deposition To Increase Polymer Hydrophobicity

    NASA Astrophysics Data System (ADS)

    Bérard, Ariane; Patience, Gregory S.; Chouinard, Gérald; Tavares, Jason R.

    2016-08-01

    Apple growers face new challenges to produce organic apples and now many cover orchards with high-density polyethylene (HDPE) nets to exclude insects, rather than spraying insecticides. However, rainwater- associated wetness favours the development of apple scabs, Venturia inaequalis, whose lesions accumulate on the leaves and fruit causing unsightly spots. Treating the nets with a superhydrophobic coating should reduce the amount of water that passes through the net. Here we treat HDPE and polyethylene terephthalate using photo-initiated chemical vapour deposition (PICVD). We placed polymer samples in a quartz tube and passed a mixture of H2 and CO through it while a UVC lamp (254 nm) illuminated the surface. After the treatment, the contact angle between water droplets and the surface increased by an average of 20°. The contact angle of samples placed 70 cm from the entrance of the tube was higher than those at 45 cm and 20 cm. The PICVD-treated HDPE achieved a contact angle of 124°. Nets spray coated with a solvent-based commercial product achieved 180° but water ingress was, surprisingly, higher than that for nets with a lower contact angle.

  14. Chemical vapor deposited silica coatings for solar mirror protection

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.; Dever, Therese M.; Banholzer, William F.

    1988-01-01

    A variety of techniques is available to apply protective coatings to oxidation susceptible spacecraft components, and each has associated advantages and disadvantages. Film applications by means of chemical vapor deposition (CVD) has the advantage of being able to be applied conformally to objects of irregular shape. For this reason, a study was made of the oxygen plasma durability of thin film (less than 5000 A) silicon dioxide coatings applied by CVD. In these experiments, such coatings were applied to silver mirrors, which are strongly subject to oxidation, and which are proposed for use on the space station solar dynamic power system. Results indicate that such coatings can provide adequate protection without affecting the reflectance of the mirror. Scanning electron micrographs indicated that oxidation of the silver layer did occur at stress crack locations, but this did not affect the measured solar reflectances. Oxidation of the silver did not proceed beyond the immediate location of the crack. Such stress cracks did not occur in thinner silica flims, and hence such films would be desirable for this application.

  15. Photo Initiated Chemical Vapour Deposition To Increase Polymer Hydrophobicity

    PubMed Central

    Bérard, Ariane; Patience, Gregory S.; Chouinard, Gérald; Tavares, Jason R.

    2016-01-01

    Apple growers face new challenges to produce organic apples and now many cover orchards with high-density polyethylene (HDPE) nets to exclude insects, rather than spraying insecticides. However, rainwater- associated wetness favours the development of apple scabs, Venturia inaequalis, whose lesions accumulate on the leaves and fruit causing unsightly spots. Treating the nets with a superhydrophobic coating should reduce the amount of water that passes through the net. Here we treat HDPE and polyethylene terephthalate using photo-initiated chemical vapour deposition (PICVD). We placed polymer samples in a quartz tube and passed a mixture of H2 and CO through it while a UVC lamp (254 nm) illuminated the surface. After the treatment, the contact angle between water droplets and the surface increased by an average of 20°. The contact angle of samples placed 70 cm from the entrance of the tube was higher than those at 45 cm and 20 cm. The PICVD-treated HDPE achieved a contact angle of 124°. Nets spray coated with a solvent-based commercial product achieved 180° but water ingress was, surprisingly, higher than that for nets with a lower contact angle. PMID:27531048

  16. Growth of graphene underlayers by chemical vapor deposition

    SciTech Connect

    Fabiane, Mopeli; Khamlich, Saleh; Bello, Abdulhakeem; Dangbegnon, Julien; Momodu, Damilola; Manyala, Ncholu; Charlie Johnson, A. T.

    2013-11-15

    We present a simple and very convincing approach to visualizing that subsequent layers of graphene grow between the existing monolayer graphene and the copper catalyst in chemical vapor deposition (CVD). Graphene samples were grown by CVD and then transferred onto glass substrates by the bubbling method in two ways, either direct-transfer (DT) to yield poly (methyl methacrylate) (PMMA)/graphene/glass or (2) inverted transfer (IT) to yield graphene/PMMA/glass. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to reveal surface features for both the DT and IT samples. The results from FE-SEM and AFM topographic analyses of the surfaces revealed the underlayer growth of subsequent layers. The subsequent layers in the IT samples are visualized as 3D structures, where the smaller graphene layers lie above the larger layers stacked in a concentric manner. The results support the formation of the so-called “inverted wedding cake” stacking in multilayer graphene growth.

  17. Chemical vapor deposition of high T sub c superconductors

    NASA Technical Reports Server (NTRS)

    Webb, G. W.; Engelhardt, J. J.

    1978-01-01

    The results are reported of an investigation into the synthesis and properties of high temperature superconducting materials. A chemical vapor deposition apparatus was designed and built which is suitable for the preparation of multicomponent metal films This apparatus was used to prepare a series of high T sub c A-15 structure superconducting films in the binary system Nb-Ge. The effect on T sub c of a variety of substrate materials was investigated. An extensive series of ternary alloys were also prepared. Conditions allowing the brittle high T sub c (approximately 18 K) A-15 structure superconductor Nb3A1 to be prepared in a low T sub c but ductile form were found. Some of the ways that the ductile (bcc) form can be cold worked or machined are described. Measurements of rate of transformation of cold worked bcc material to the high T sub c A-15 structure with low temperature annealing are given. Preliminary measurements indicate that this material has attractive high field critical current densities.

  18. Temperature admittance spectroscopy of boron doped chemical vapor deposition diamond

    SciTech Connect

    Zubkov, V. I. Kucherova, O. V.; Zubkova, A. V.; Ilyin, V. A.; Afanas'ev, A. V.; Bogdanov, S. A.; Vikharev, A. L.; Butler, J. E.

    2015-10-14

    Precision admittance spectroscopy measurements over wide temperature and frequency ranges were carried out for chemical vapor deposition epitaxial diamond samples doped with various concentrations of boron. It was found that the experimentally detected boron activation energy in the samples decreased from 314 meV down to 101 meV with an increase of B/C ratio from 600 to 18000 ppm in the gas reactants. For the heavily doped samples, a transition from thermally activated valence band conduction to hopping within the impurity band (with apparent activation energy 20 meV) was detected at temperatures 120–150 K. Numerical simulation was used to estimate the impurity DOS broadening. Accurate determination of continuously altering activation energy, which takes place during the transformation of conduction mechanisms, was proposed by numerical differentiation of the Arrhenius plot. With increase of boron doping level the gradual decreasing of capture cross section from 3 × 10{sup −13} down to 2 × 10{sup −17} cm{sup 2} was noticed. Moreover, for the hopping conduction the capture cross section becomes 4 orders of magnitude less (∼2 × 10{sup −20} cm{sup 2}). At T > T{sub room} in doped samples the birth of the second conductance peak was observed. We attribute it to a defect, related to the boron doping of the material.

  19. Chemical vapor deposited silica coatings for solar mirror protection

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.; Dever, Therese M.; Banholzer, William F.

    1988-01-01

    A variety of techniques is available to apply protective coatings to oxidation susceptible spacecraft components, and each has associated advantages and disadvantages. Film applications by means of chemical vapor deposition (CVD) has the advantage of being able to be applied conformally to objects of irregular shape. For this reason, a study was made of the oxygen plasma durability of thin film (less than 5000 A) silicon dioxide coatings applied by CVD. In these experiments, such coatings were applied to silver mirrors, which are strongly subject to oxidation, and which are proposed for use on the space station solar dynamic power system. Results indicate that such coatings can provide adequate protection without affecting the reflectance of the mirror. Scanning electron micrographs indicated that oxidation of the silver layer did occur at stress crack locations, but this did not affect the measured solar reflectances. Oxidation of the silver did not proceed beyond the immediate location of the crack. Such stress cracks did not occur in thinner silica films, and hence such films would be desirable for this application.

  20. High surface area graphene foams by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Drieschner, Simon; Weber, Michael; Wohlketzetter, Jörg; Vieten, Josua; Makrygiannis, Evangelos; Blaschke, Benno M.; Morandi, Vittorio; Colombo, Luigi; Bonaccorso, Francesco; Garrido, Jose A.

    2016-12-01

    Three-dimensional (3D) graphene-based structures combine the unique physical properties of graphene with the opportunity to get high electrochemically available surface area per unit of geometric surface area. Several preparation techniques have been reported to fabricate 3D graphene-based macroscopic structures for energy storage applications such as supercapacitors. Although reaserch has been focused so far on achieving either high specific capacitance or high volumetric capacitance, much less attention has been dedicated to obtain high specific and high volumetric capacitance simultaneously. Here, we present a facile technique to fabricate graphene foams (GF) of high crystal quality with tunable pore size grown by chemical vapor deposition. We exploited porous sacrificial templates prepared by sintering nickel and copper metal powders. Tuning the particle size of the metal powders and the growth temperature allow fine control of the resulting pore size of the 3D graphene-based structures smaller than 1 μm. The as-produced 3D graphene structures provide a high volumetric electric double layer capacitance (165 mF cm-3). High specific capacitance (100 Fg-1) is obtained by lowering the number of layers down to single layer graphene. Furthermore, the small pore size increases the stability of these GFs in contrast to the ones that have been grown so far on commercial metal foams. Electrodes based on the as-prepared GFs can be a boost for the development of supercapacitors, where both low volume and mass are required.

  1. Long distance spin communication in chemical vapour deposited graphene

    PubMed Central

    Kamalakar, M. Venkata; Groenveld, Christiaan; Dankert, André; Dash, Saroj P.

    2015-01-01

    Graphene is an ideal medium for long-distance spin communication in future spintronic technologies. So far, the prospect is limited by the smaller sizes of exfoliated graphene flakes and lower spin transport properties of large-area chemical vapour-deposited (CVD) graphene. Here we demonstrate a high spintronic performance in CVD graphene on SiO2/Si substrate at room temperature. We show pure spin transport and precession over long channel lengths extending up to 16 μm with a spin lifetime of 1.2 ns and a spin diffusion length ∼6 μm at room temperature. These spin parameters are up to six times higher than previous reports and highest at room temperature for any form of pristine graphene on industrial standard SiO2/Si substrates. Our detailed investigation reinforces the observed performance in CVD graphene over wafer scale and opens up new prospects for the development of lateral spin-based memory and logic applications. PMID:25857650

  2. Residual metallic contamination of transferred chemical vapor deposited graphene.

    PubMed

    Lupina, Grzegorz; Kitzmann, Julia; Costina, Ioan; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Vaziri, Sam; Östling, Mikael; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Kataria, Satender; Gahoi, Amit; Lemme, Max C; Ruhl, Guenther; Zoth, Guenther; Luxenhofer, Oliver; Mehr, Wolfgang

    2015-05-26

    Integration of graphene with Si microelectronics is very appealing by offering a potentially broad range of new functionalities. New materials to be integrated with the Si platform must conform to stringent purity standards. Here, we investigate graphene layers grown on copper foils by chemical vapor deposition and transferred to silicon wafers by wet etching and electrochemical delamination methods with respect to residual submonolayer metallic contaminations. Regardless of the transfer method and associated cleaning scheme, time-of-flight secondary ion mass spectrometry and total reflection X-ray fluorescence measurements indicate that the graphene sheets are contaminated with residual metals (copper, iron) with a concentration exceeding 10(13) atoms/cm(2). These metal impurities appear to be partially mobile upon thermal treatment, as shown by depth profiling and reduction of the minority charge carrier diffusion length in the silicon substrate. As residual metallic impurities can significantly alter electronic and electrochemical properties of graphene and can severely impede the process of integration with silicon microelectronics, these results reveal that further progress in synthesis, handling, and cleaning of graphene is required to advance electronic and optoelectronic applications.

  3. On The Stability Of Model Flows For Chemical Vapour Deposition

    NASA Astrophysics Data System (ADS)

    Miller, Robert

    2016-11-01

    The flow in a chemical vapour deposition (CVD) reactor is assessed. The reactor is modelled as a flow over an infinite-radius rotating disk, where the mean flow and convective instability of the disk boundary layer are measured. Temperature-dependent viscosity and enforced axial flow are used to model the steep temperature gradients present in CVD reactors and the pumping of the gas towards the disk, respectively. Increasing the temperature-dependence parameter of the fluid viscosity (ɛ) results in an overall narrowing of the fluid boundary layer. Increasing the axial flow strength parameter (Ts) accelerates the fluid both radially and axially, while also narrowing the thermal boundary layer. It is seen that when both effects are imposed, the effects of axial flow generally dominate those of the viscosity temperature dependence. A local stability analysis is performed and the linearized stability equations are solved using a Galerkin projection in terms of Chebyshev polynomials. The neutral stability curves are then plotted for a range of ɛ and Ts values. Preliminary results suggest that increasing Ts has a stabilising effect on both type I and type II stationary instabilities, while small increases in ɛ results in a significant reduction to the critical Reynolds number.

  4. Y-Ba-Cu-O film deposition by metal organic chemical vapor deposition on buffered metal substrates.

    SciTech Connect

    Selvamanickam, V.; Galinski, G.; DeFrank, J.; Trautwein, C.; Haldar, P.; Balachandran, U.; Lanagan, M.; Chudzik, M.

    1999-10-12

    YBa{sub 2}Cu{sub 3}O{sub 2} (YBCO) films have been deposited on buffered metal substrates by Metal Organic Chemical Vapor Deposition (MOCVD). Cube-textured nickel substrates were fabricated by a thermomechanical process. Epitaxial CeO{sub 2}films were deposited on these substrates by thermal evaporation. Nickel alloy substrates with biaxially-textured Yttria-Stabilized Zirconia (YSZ) buffer layers deposited by Ion Beam Assisted Deposition were also prepared. Highly biaxially-textured YBCO films were deposited by MOCVD on both types of metal substrates. A critical current density greater than 10{sup 5} A/cm{sup 2} at 77 K has been achieved in YBCO films on metal substrates.

  5. Properties of chemical vapor infiltration diamond deposited in a diamond powder matrix

    SciTech Connect

    Panitz, J.K.G.; Tallant, D.R.; Hills, C.R.; Staley, D.J.

    1993-12-31

    Densifying non-mined diamond powder precursors with diamond produced by chemical vapor infiltration (CVI) is an attractive approach for forming thick diamond deposits that avoids many potential manufacturability problems associated with predominantly chemical vapor deposition (CVD) processes. The authors have developed two techniques: electrophoretic deposition and screen printing, to form nonmined diamond powder precursors on substrates. They then densify these precursors in a hot filament assisted reactor. Analysis indicated that a hot filament assisted chemical vapor infiltration process forms intergranular diamond deposits with properties that are to some degree different from predominantly hot-filament-assisted CVD material.

  6. Experimental Study of Diamond Nucleation by Plasmon Assisted Chemical Vapor Deposition

    DTIC Science & Technology

    2012-05-18

    chemical vapor deposition, characterization of diamond nanoparticles , and direct conversion of the polymer poly(hydridocarbyne) to diamond. We adapted the...the nucleation of diamond by plasmon assisted chemical vapor deposition, characterization of diamond nanoparticles , and direct conversion of the...and etching of amorphous carbon. We were able to form diamond-like carbon. For comparison, we examined commercially available diamond nanoparticles

  7. Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1999-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies ion the processing of semiconductor materials arising from understanding etch chemistries are being developed through a research collaboration between Stanford University and NASA-Ames Research Center, Although a great deal of laboratory-scale research has been performed on many of materials processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. In addition, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. The research described involves the study of plasmas used in semiconductor processes. An inductively coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics and chemistries. This ICP source generates plasmas with higher electron densities (approximately 10(exp 12)/cu cm) and lower operating pressures (approximately 7 mTorr) than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The motivation for this study is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas-phase and surface reaction rates. species

  8. Development of a new direct liquid injection system for nanoparticle deposition by chemical vapor deposition using nanoparticle solutions

    NASA Astrophysics Data System (ADS)

    Vervaele, Mattias; De Roo, Bert; Deschaume, Olivier; Rajala, Markku; Guillon, Herve; Sousa, Marilyne; Bartic, Carmen; Van Haesendonck, Chris; Seo, Jin Won; Locquet, Jean-Pierre

    2016-02-01

    Nanoparticles of different materials are already in use for many applications. In some applications, these nanoparticles need to be deposited on a substrate in a fast and reproducible way. We have developed a new direct liquid injection system for nanoparticle deposition by chemical vapor deposition using a liquid nanoparticle precursor. The system was designed to deposit nanoparticles in a controlled and reproducible way by using two direct liquid injectors to deliver nanoparticles to the system. The nanoparticle solution is first evaporated and then the nanoparticles flow onto a substrate inside the vacuum chamber. To allow injection and evaporation of the liquid, a direct liquid injection and vaporization system are mounted on top of the process chamber. The deposition of the nanoparticles is controlled by parameters such as deposition temperature, partial pressure of the gases, and flow rate of the nanoparticle suspension. The concentration of the deposited nanoparticles can be varied simply by changing the flow rate and deposition time. We demonstrate the capabilities of this system using gold nanoparticles. The selected suspension flow rates were varied between 0.25 and 1 g/min. AFM analysis of the deposited samples showed that the aggregation of gold nanoparticles is well controlled by the flow and deposition parameters.

  9. Review of chemical vapor deposition of graphene and related applications.

    PubMed

    Zhang, Yi; Zhang, Luyao; Zhou, Chongwu

    2013-10-15

    Since its debut in 2004, graphene has attracted enormous interest because of its unique properties. Chemical vapor deposition (CVD) has emerged as an important method for the preparation and production of graphene for various applications since the method was first reported in 2008/2009. In this Account, we review graphene CVD on various metal substrates with an emphasis on Ni and Cu. In addition, we discuss important and representative applications of graphene formed by CVD, including as flexible transparent conductors for organic photovoltaic cells and in field effect transistors. Growth on polycrystalline Ni films leads to both monolayer and few-layer graphene with multiple layers because of the grain boundaries on Ni films. We can greatly increase the percentage of monolayer graphene by using single-crystalline Ni(111) substrates, which have smooth surface and no grain boundaries. Due to the extremely low solubility of carbon in Cu, Cu has emerged as an even better catalyst for the growth of monolayer graphene with a high percentage of single layers. The growth of graphene on Cu is a surface reaction. As a result, only one layer of graphene can form on a Cu surface, in contrast with Ni, where more than one layer can form through carbon segregation and precipitation. We also describe a method for transferring graphene sheets from the metal using polymethyl methacrylate (PMMA). CVD graphene has electronic properties that are potentially valuable in a number of applications. For example, few-layer graphene grown on Ni can function as flexible transparent conductive electrodes for organic photovoltaic cells. In addition, because we can synthesize large-grain graphene on Cu foil, such large-grain graphene has electronic properties suitable for use in field effect transistors.

  10. Chemical Vapor-Deposited (CVD) Diamond Films for Electronic Applications

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Diamond films have a variety of useful applications as electron emitters in devices such as magnetrons, electron multipliers, displays, and sensors. Secondary electron emission is the effect in which electrons are emitted from the near surface of a material because of energetic incident electrons. The total secondary yield coefficient, which is the ratio of the number of secondary electrons to the number of incident electrons, generally ranges from 2 to 4 for most materials used in such applications. It was discovered recently at the NASA Lewis Research Center that chemical vapor-deposited (CVD) diamond films have very high secondary electron yields, particularly when they are coated with thin layers of CsI. For CsI-coated diamond films, the total secondary yield coefficient can exceed 60. In addition, diamond films exhibit field emission at fields orders of magnitude lower than for existing state-of-the-art emitters. Present state-of-the-art microfabricated field emitters generally require applied fields above 5x10^7 V/cm. Research on field emission from CVD diamond and high-pressure, high-temperature diamond has shown that field emission can be obtained at fields as low as 2x10^4 V/cm. It has also been shown that thin layers of metals, such as gold, and of alkali halides, such as CsI, can significantly increase field emission and stability. Emitters with nanometer-scale lithography will be able to obtain high-current densities with voltages on the order of only 10 to 15 V.

  11. Carbon Nanotubes/Nanofibers by Plasma Enhanced Chemical Vapour Deposition

    NASA Technical Reports Server (NTRS)

    Teo, K. B. K.; Hash, D. B.; Bell, M. S.; Chhowalla, M.; Cruden, B. A.; Amaratunga, G. A. J.; Meyyappan, M.; Milne, W. I.

    2005-01-01

    Plasma enhanced chemical vapour deposition (PECVD) has been recently used for the production of vertically aligned carbon nanotubedfibers (CN) directly on substrates. These structures are potentially important technologically as electron field emitters (e.g. microguns, microwave amplifiers, displays), nanoelectrodes for sensors, filter media, superhydrophobic surfaces and thermal interface materials for microelectronics. A parametric study on the growth of CN grown by glow discharge dc-PECVD is presented. In this technique, a substrate containing thin film Ni catalyst is exposed to C2H2 and NH3 gases at 700 C. Without plasma, this process is essentially thermal CVD which produces curly spaghetti-like CN as seen in Fig. 1 (a). With the plasma generated by biasing the substrate at -6OOV, we observed that the CN align vertically during growth as shown in Fig. l(b), and that the magnitude of the applied substrate bias affects the degree of alignment. The thickness of the thin film Ni catalyst was found to determine the average diameter and inversely the length of the CN. The yield and density of the CN were controlled by the use of different diffusion barrier materials under the Ni catalyst. Patterned CN growth [Fig. l(c)], with la variation in CN diameter of 4.1% and 6.3% respectively, is achieved by lithographically defining the Ni thin film prior to growth. The shape of the structures could be varied from very straight nanotube-like to conical tip-like nanofibers by increasing the ratio of C2H2 in the gas flow. Due to the plasma decomposition of C2H2, amorphous carbon (a-C) is an undesirable byproduct which could coat the substrate during CN growth. Using a combination of depth profiled Auger electron spectroscopy to study the substrate and in-situ mass spectroscopy to examine gas phase neutrals and ions, the optimal conditions for a-C free growth of CN is determined.

  12. Control of crystallite size in diamond film chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Moran, Mark B.; Johnson, Linda F.; Klemm, Karl A.

    1992-12-01

    In depositing an adhering, continuous, polycrystalline diamond film of optical or semiconductor quality on a substrate, as by forming on the substrate a layer of a refractory nitride interlayer and depositing diamond on the interlayer without mechanical treatment or seeding of the substrate or the interlayer, the substrate is heated in a vacuum chamber containing a microwave activated mixture of hydrogen and a gas including carbon, and the size of deposited diamond crystallites and their rate of deposition selectively varied by a bias voltage applied to the substrate.

  13. Electrocution in a bath.

    PubMed

    Mackenzie, E C

    1995-01-01

    A wife was found dead by her husband, lying in a tiled bath on a cast concrete floor, with a 1 kW electric radiator immersed in the bath water. Initially the case was treated as accidental death, but the police charged the husband with murder on the grounds that his wife could not have died in the manner he described. Subsequent investigation showed that the bath had a low resistance to earth and that there were faults in both the house wiring and the radiator cable, which, together with a high blood alcohol content, produced a fatal chain of events.

  14. Magnetorheological finishing of chemical-vapor deposited zinc sulfide via chemically and mechanically modified fluids

    DOE PAGES

    Salzman, Sivan; Romanofsky, Henry J.; Giannechini, Lucca J.; ...

    2016-02-19

    In this study, we describe the anisotropy in the material removal rate (MRR) of the polycrystalline, chemical-vapor deposited zinc sulfide (ZnS).We define the polycrystalline anisotropy via microhardness and chemical erosion tests for four crystallographic orientations of ZnS: (100), (110), (111), and (311). Anisotropy in the MRR was studied under magnetorheological finishing (MRF) conditions. Three chemically and mechanically modified magnetorheological (MR) fluids at pH values of 4, 5, and 6 were used to test the MRR variations among the four single-crystal planes. When polishing the single-crystal planes and the polycrystalline with pH 5 and pH 6MR fluids, variations were found inmore » the MRR among the four single-crystal planes and surface artifacts were observed on the polycrystalline material. When polishing the single-crystal planes and the polycrystalline with the modified MR fluid at pH 4, however, minimal variation was observed in the MRR among the four orientations and a reduction in surface artifacts was achieved on the polycrystalline material.« less

  15. Magnetorheological finishing of chemical-vapor deposited zinc sulfide via chemically and mechanically modified fluids

    SciTech Connect

    Salzman, Sivan; Romanofsky, Henry J.; Giannechini, Lucca J.; Jacobs, Stephen D.; Lambropoulos, John C.

    2016-02-19

    In this study, we describe the anisotropy in the material removal rate (MRR) of the polycrystalline, chemical-vapor deposited zinc sulfide (ZnS).We define the polycrystalline anisotropy via microhardness and chemical erosion tests for four crystallographic orientations of ZnS: (100), (110), (111), and (311). Anisotropy in the MRR was studied under magnetorheological finishing (MRF) conditions. Three chemically and mechanically modified magnetorheological (MR) fluids at pH values of 4, 5, and 6 were used to test the MRR variations among the four single-crystal planes. When polishing the single-crystal planes and the polycrystalline with pH 5 and pH 6MR fluids, variations were found in the MRR among the four single-crystal planes and surface artifacts were observed on the polycrystalline material. When polishing the single-crystal planes and the polycrystalline with the modified MR fluid at pH 4, however, minimal variation was observed in the MRR among the four orientations and a reduction in surface artifacts was achieved on the polycrystalline material.

  16. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions.

    PubMed

    Drogowska, Karolina; Kovaříček, Petr; Kalbáč, Martin

    2017-03-23

    The reactivity of hydrogenated graphene when treated with oxidising agents, KMnO4 and KIO4 , as well as alkylated with benzyl bromide (BnBr) was studied. The probed reactions are strictly limited to the partly hydrogenated form of graphene in which most of the hydrogen atoms are located in activated benzylic/allylic positions. This, in turn, clearly demonstrates the presence of hydrogen attached to the graphene lattice. Attachment of the benzyl group was also unequivocally demonstrated by characteristic vibrations recorded in the surface-enhanced Raman spectra, and all reactions were shown to proceed solely on hydrogenated graphene as evidenced by the comparison with pristine chemical vapour deposition-grown graphene.

  17. Comparison of InGaAs(100) Grown by Chemical Beam Epitaxy and Metal Organic Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Greene, A. L.; Daniels-Race, T.; Lum, R. M.

    2000-01-01

    Secondary ion mass spectrometry is used to study the effects of substrate temperature on the composition and growth rate of InGaAs/InP(100) multilayers grown by chemical beam epitaxy, metal-organic chemical vapor deposition and solid source molecular beam epitaxy. The growth kinetics of the material grown by the different techniques are analyzed and compared.

  18. High rate chemical vapor deposition of carbon films using fluorinated gases

    DOEpatents

    Stafford, Byron L.; Tracy, C. Edwin; Benson, David K.; Nelson, Arthur J.

    1993-01-01

    A high rate, low-temperature deposition of amorphous carbon films is produced by PE-CVD in the presence of a fluorinated or other halide gas. The deposition can be performed at less than 100.degree. C., including ambient room temperature, with a radio frequency plasma assisted chemical vapor deposition process. With less than 6.5 atomic percent fluorine incorporated into the amorphous carbon film, the characteristics of the carbon film, including index of refraction, mass density, optical clarity, and chemical resistance are within fifteen percent (15%) of those characteristics for pure amorphous carbon films, but the deposition rates are high.

  19. Solar-induced chemical vapor deposition of diamond-type carbon films

    DOEpatents

    Pitts, J. Roland; Tracy, C. Edwin; King, David E.; Stanley, James T.

    1994-01-01

    An improved chemical vapor deposition method for depositing transparent continuous coatings of sp.sup.3 -bonded diamond-type carbon films, comprising: a) providing a volatile hydrocarbon gas/H.sub.2 reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and b) directing a concentrated solar flux of from about 40 to about 60 watts/cm.sup.2 through said reactant mixture to produce substrate temperatures of about 750.degree. C. to about 950.degree. C. to activate deposition of the film on said substrate.

  20. Solar-induced chemical vapor deposition of diamond-type carbon films

    DOEpatents

    Pitts, J.R.; Tracy, C.E.; King, D.E.; Stanley, J.T.

    1994-09-13

    An improved chemical vapor deposition method for depositing transparent continuous coatings of sp[sup 3]-bonded diamond-type carbon films, comprises: (a) providing a volatile hydrocarbon gas/H[sub 2] reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and (b) directing a concentrated solar flux of from about 40 to about 60 watts/cm[sup 2] through said reactant mixture to produce substrate temperatures of about 750 C to about 950 C to activate deposition of the film on said substrate. 11 figs.

  1. Low resistance tungsten films on GaAs deposited by means of rapid thermal low pressure chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Katz, A.; Feingold, A.; Nakahara, S.; Pearton, S. J.; Lane, E.

    1992-08-01

    Low resistance tungsten (W) films were deposited onto GaAs substrates by means of rapid thermal low pressure chemical vapor deposition (RT-LPCVD), using tungsten hexafluoride (WF6) gas reduced by hydrogen (H2). Deposition temperatures up to 550 °C for durations of up to 30 s were explored, resulting in deposition of relatively pure W films (containing less than 2% O2 and C). Post-deposition sintering of the layers led to significant reduction of the resistivity to values as low as 50 μΩ cm. The efficiency of the deposition improved upon increasing the H2 flow rate up to 1250 sccm resulting in a deposition rate of about 10 nm/s at a total chamber pressure of 3.5 Torr and temperature of 500 °C. The films appeared to be polycrystalline with a very fine grain structure, regardless of the deposition temperature with good morphology and underwent a limited reaction with the underlying GaAs substrates.

  2. Practical silicon deposition rules derived from silane monitoring during plasma-enhanced chemical vapor deposition

    SciTech Connect

    Bartlome, Richard De Wolf, Stefaan; Demaurex, Bénédicte; Ballif, Christophe; Amanatides, Eleftherios; Mataras, Dimitrios

    2015-05-28

    We clarify the difference between the SiH{sub 4} consumption efficiency η and the SiH{sub 4} depletion fraction D, as measured in the pumping line and the actual reactor of an industrial plasma-enhanced chemical vapor deposition system. In the absence of significant polysilane and powder formation, η is proportional to the film growth rate. Above a certain powder formation threshold, any additional amount of SiH{sub 4} consumed translates into increased powder formation rather than into a faster growing Si film. In order to discuss a zero-dimensional analytical model and a two-dimensional numerical model, we measure η as a function of the radio frequency (RF) power density coupled into the plasma, the total gas flow rate, the input SiH{sub 4} concentration, and the reactor pressure. The adjunction of a small trimethylboron flow rate increases η and reduces the formation of powder, while the adjunction of a small disilane flow rate decreases η and favors the formation of powder. Unlike η, D is a location-dependent quantity. It is related to the SiH{sub 4} concentration in the plasma c{sub p}, and to the phase of the growing Si film, whether the substrate is glass or a c-Si wafer. In order to investigate transient effects due to the RF matching, the precoating of reactor walls, or the introduction of a purifier in the gas line, we measure the gas residence time and acquire time-resolved SiH{sub 4} density measurements throughout the ignition and the termination of a plasma.

  3. Processing tungsten single crystal by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Xiao, Zhigang; Zee, Ralph H.; Begg, Lester L.

    2000-01-01

    A tungsten single crystal layer has been fabricated on molybdenum single crystal substrate through the hydrogen (H2) reduction of the tungsten hexafluoride (WF6) in low pressure. Substrate temperature, reaction chamber pressure, and flow rate of WF6 and H2, are critical process parameters during deposition. A comprehensive analysis for the effects of these parameters on single crystal layer growth has been processed and optimized growth conditions have been achieved. The different orientation of the substrate shows the different deposition rate for tungsten. Low index plane has higher deposition rate than high index plane. The kinetics of the deposition process has also been investigated. SEM surface analysis indicates that the single crystal layer is smooth in macro-scale and rough and step-growth format in micro-scale. .

  4. Numerical modeling of chemical vapor deposition (CVD) in a horizontal reactor

    NASA Technical Reports Server (NTRS)

    Sheikholeslami, M. Z.; Jasinski, T.; Fretz, K. W.

    1988-01-01

    In the present numerical prediction of the deposition rate of silicon from silane in a CVD process, the conservation equations for mass, momentum, energy, and chemical species are solved on a staggered grid using the SIMPLE algorithm, while the rate of chemical reactions in the gas phase and on the susceptor surface is obtained from an Arrhenius rate equation. Predicted deposition rates as a function of position along the susceptor with and without the gas phase chemical reaction are compared with the available experimental and numerical data; agreement is excellent except at the leading edge of the susceptor, where the deposition rate is overpredicted.

  5. Characteristics of epitaxial garnets grown by CVD using single metal alloy sources. [Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Besser, P. J.; Hamilton, T. N.; Mee, J. E.; Stermer, R. L.

    1974-01-01

    Single metal alloys have been explored as the cation source in the chemical vapor deposition (CVD) of iron garnets. Growth of good quality single crystal garnet films containing as many as five different cations has been achieved over a wide range of deposition conditions. The relationship of film composition to alloy compositions and deposition conditions has been determined for several materials. By proper choice of the alloy composition and the deposition conditions, uncrazed deposits were grown on (111) gadolinium gallium garnet (GGG) substrates. Data on physical, magnetic and optical properties of representative films is presented and discussed.

  6. Electrochemical studies of zinc nickel codeposition in sulphate bath

    NASA Astrophysics Data System (ADS)

    Abou-Krisha, Mortaga M.

    2005-11-01

    The electrodeposition of Zn-Ni alloys from a sulphate bath was studied under different conditions. The bath had the composition 0.40 M sodium sulphate, 0.01 M sulphuric acid, 0.16 M boric acid, 0.20 M zinc sulphate and 0.20 M nickel sulphate. It is found that the plating bath temperature has a great effect on the cyclic voltammograms, galvanostatic measurements during electrodeposition, and consequently linear polarization resistance for corrosion study and the alloy composition. Under the examined conditions, the electrodeposition of the alloys was of anomalous type. X-ray diffraction measurements revealed that the alloys consisted of the δ-phase (Ni 3Zn 22) or a mixture of the two phases δ and γ (Ni 5Zn 21). The comparison between Ni deposition and Zn-Ni codeposition revealed that the remarkable inhibition of Ni deposition takes place due to the presence of Zn 2+ in the plating bath. The Ni deposition starts at -0.85 V in the bath of Ni deposition only, but the deposition starts at more negative potentials in the codeposition bath although the concentration of Ni 2+ is the same in the both baths.

  7. Effects of the growth conditions on the roughness of amorphous hydrogenated carbon films deposited by plasma enhanced chemical vapor deposition

    SciTech Connect

    Capote, G.; Prioli, R.; Freire, F. L. Jr.

    2006-11-15

    The surface roughness and scaling behavior of a-C:H films deposited by plasma enhanced chemical vapor deposition from CH{sub 4}-Ar mixtures were studied using atomic force microscopy. Raman spectroscopy gives some insights about the film microstructure. The film surface roughness is shown to decrease with the increase of deposition negative self-bias, while the presence of Ar ions enhances this effect. An analysis of the film surface and scaling behavior suggests that there is a transition of the mechanism of the film growth from a random deposition with surface diffusion process to a thermal spike based process that occurs upon the increase of the negative self-bias voltage and the argon bombardment.

  8. Compositional study of silicon oxynitride thin films deposited using electron cyclotron resonance plasma-enhanced chemical vapor deposition technique

    SciTech Connect

    Baumann, H.; Sah, R.E.

    2005-05-01

    We have used backscattering spectrometry and {sup 15}N({sup 1}H,{alpha},{gamma}){sup 12}C nuclear reaction analysis techniques to study in detail the variation in the composition of silicon oxynitride films with deposition parameters. The films were deposited using 2.45 GHz electron cyclotron resonance plasma-enhanced chemical vapor deposition (PECVD) technique from mixtures of precursors argon, nitrous oxide, and silane at deposition temperature 90 deg. C. The deposition pressure and nitrous oxide-to-silane gas flow rates ratio have been found to have a pronounced influence on the composition of the films. When the deposition pressure was varied for a given nitrous oxide-to-silane gas flow ratio, the amount of silicon and nitrogen increased with the deposition pressure, while the amount of oxygen decreased. For a given deposition pressure, the amount of incorporated nitrogen and hydrogen decreased while that of oxygen increased with increasing nitrous oxide-to-silane gas flow rates ratio. For nitrous oxide-to-silane gas flow ratio of 5, we obtained films which contained neither chemically bonded nor nonbonded nitrogen atoms as revealed by the results of infrared spectroscopy, backscattering spectrometry, and nuclear reaction analysis. Our results demonstrate the nitrogen-free nearly stoichiometric silicon dioxide films can be prepared from a mixture of precursors argon, nitrous oxide, and silane at low substrate temperature using high-density PECVD technique. This avoids the use of a hazardous and an often forbidden pair of silane and oxygen gases in a plasma reactor.

  9. Organometallic Chemical Vapor Deposition Growth of Antimony Compounds

    NASA Astrophysics Data System (ADS)

    Chiang, Peng-Kuen

    This research is motivated by the desire to synthesize Sb III-V materials, including GaAs(,1-x)Sb(,x), InSb, and InAs(,1-x)Sb(,x). Ga-As-Sb system is known to have a significant solid phase miscibility gap from x = 0.2 to x = 0.8 at 600(DEGREES)C using a liquid phase epitaxy (LPE) growth technique. In this work, organometallic chemical vapor deposition (OM-CVD) has been shown to be a suitable growth technique for growing GaAs(,1-x)Sb(,x) alloys lying in the region of solid immiscibility. Conditions for growth of GaAs(,1-x)Sb(,x) layers with x as high as 0.7 on GaAs substrates are described for temperatures between 580 and 650(DEGREES)C. Effects of substrate orientation on growth characteristics are noted, and comparisons of growth on (511) and (100) GaAs faces are made. The experimental results indicate that growth is being controlled by surface reaction kinetics. A simple model based on kinetic control is presented. InSb is one of the most extensively examined semiconductors because of the small energy bandgap which is suitable for 3-5 (mu)m wavelength detection, and it also has highest mobility of any III-V compounds. OM-CVD has been used to epitaxially grow high quality InSb for the first time in this work. InSb with excellent morphology was achieved on both (100) and (111)B InSb substrates. The measured electron mobility at 300(DEGREES)K of undoped InSb grown on (100) GaAs semi-insulating substrates was 40,000 cm('2)/V -sec at a carrier concentration of N(,D)-N(,A) = 1.2 x 10('15)cm(' -3) has been measured at 77(DEGREES)K.Experimental data suggests that a dislocation scattering mechanism represents a significant mobility limiting process. InAs(,1-x)Sb(,x), with x (TURN) 0.6, has the lowest bandgap (=0.1 eV at 300(DEGREES)K) of any of the III-V ternary compounds. This bandgap is suitable for detectors in the 8-12 (mu)m wavelength region where an atmosphere window exists. So far, InAs(,1-x)Sb(,x) with 0.55 < x < 0.75 has not been achieved by LPE and molecular

  10. Metalorganic chemical vapor deposition of gallium nitride on sacrificial substrates

    NASA Astrophysics Data System (ADS)

    Fenwick, William Edward

    GaN-based light emitting diodes (LEDs) face several challenges if the technology is to continue to make a significant impact in general illumination, and on technology that has become known as solid state lighting (SSL). Two of the most pressing challenges for the continued penetration of SSL into traditional lighting applications are efficacy and total lumens from the device, and their related cost. The development of alternative substrate technologies is a promising avenue toward addressing both of these challenges, as both GaN-based device technology and the associated metalorganic chemical vapor deposition (MOCVD) technology are already relatively mature technologies with a well-understood cost base. Zinc oxide (ZnO) and silicon (Si) are among the most promising alternative substrates for GaN epitaxy. These substrates offer the ability to access both higher efficacy and lumen devices (ZnO) at a much reduced cost. This work focuses on the development of MOCVD growth processes to yield high quality GaN-based materials and devices on both ZnO and Si. ZnO is a promising substrate for growth of low defect-density GaN because of its similar lattice constant and thermal expansion coefficient. The major hurdles for GaN growth on ZnO are the instability of the substrate in a hydrogen atmosphere, which is typical of nitride growth conditions, and the inter-diffusion of zinc and oxygen from the substrate into the GaN-based epitaxial layer. A process was developed for the MOCVD growth of GaN and InxGa 1-xN on ZnO that attempted to address these issues. The structural and optical properties of these films were studied using various techniques. X-ray diffraction (XRD) showed the growth of wurtzite GaN on ZnO, and room-temperature photoluminescence (RT-PL) showed near band-edge luminescence from the GaN and InxGa1-xN layers. However, high zinc and oxygen concentrations due to interdiffusion near the ZnO substrate remained an issue; therefore, the diffusion of zinc and oxygen

  11. Process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    DOEpatents

    Lackey, Jr., Walter J.; Caputo, Anthony J.

    1986-01-01

    A chemical vapor deposition (CVD) process for preparing fiber-reinforced ceramic composites. A specially designed apparatus provides a steep thermal gradient across the thickness of a fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  12. Low pressure chemical vapor deposition of niobium coating on silicon carbide

    NASA Astrophysics Data System (ADS)

    Liu, Qiaomu; Zhang, Litong; Cheng, Laifei; Liu, Jinling; Wang, Yiguang

    2009-07-01

    Nb coatings were prepared on a SiC substrate by low pressure chemical vapor deposition using NbCl 5. Thermodynamic calculations were performed to study the effect of temperature and partial pressure of NbCl 5 on the final products. The as-deposited coatings were characterized by scanning electron microscopy, X-ray diffraction, and energy dispersive spectroscopy. The Nb coatings are oriented and grow in the preferred (2 0 0) plane and (2 1 1) plane, at 1173 K and 1223-1423 K, respectively. At 1123-1273 K, the deposition is controlled by the surface kinetic processes. The activation energy is found to be 133 kJ/mol. At 1273-1373 K, the deposition is controlled by the mass transport processes. The activation energy is found to be 46 kJ/mol. The growth mechanism of the chemical vapor deposited Nb is also discussed based on the morphologies and the deposition rates.

  13. Comparison of chemical and heating methods to enhance latent fingerprint deposits on thermal paper.

    PubMed

    Bond, John W

    2014-03-01

    A comparison is made of proprietary methods to develop latent fingerprint deposits on the inked side of thermal paper using either chemical treatment (Thermanin) or the application of heat to the paper (Hot Print System). Results with a trial of five donors show that the application of heat produces statistically significantly more fingerprint ridge detail than the chemical treatment for both fingerprint deposits aged up to 4 weeks and for a nine sequence depletion series. Subjecting the thermal paper to heat treatment with the Hot Print System did not inhibit subsequent ninhydrin chemical development of fingerprint deposits on the noninked side of the paper. A further benefit of the application of heat is the rapid development of fingerprint deposits (less than a minute) compared with up to 12 h for the Thermanin chemical treatment.

  14. A kinetic and equilibrium analysis of silicon carbide chemical vapor deposition on monofilaments

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Kuczmarski, M. A.

    1993-01-01

    Chemical kinetics of atmospheric pressure silicon carbide (SiC) chemical vapor deposition (CVD) from dilute silane and propane source gases in hydrogen is numerically analyzed in a cylindrical upflow reactor designed for CVD on monofilaments. The chemical composition of the SiC deposit is assessed both from the calculated total fluxes of carbon and silicon and from chemical equilibrium considerations for the prevailing temperatures and species concentrations at and along the filament surface. The effects of gas and surface chemistry on the evolution of major gas phase species are considered in the analysis.

  15. Optical emission study of a doped diamond deposition process by plasma enhanced chemical vapor deposition

    SciTech Connect

    Rayar, M.; Supiot, P.; Veis, P.; Gicquel, A.

    2008-08-01

    Standard H{sub 2}/CH{sub 4}/B{sub 2}H{sub 6} plasmas (99% of H{sub 2} and 1% of CH{sub 4}, with 0-100 ppm of B{sub 2}H{sub 6} added) used for doped diamond film growth are studied by optical emission spectroscopy in order to gain a better understanding of the influence of boron species on the gas phase chemistry. Only two boron species are detected under our experimental conditions (9/15/23 W cm{sup -3} average microwave power density values), and the emission spectra used for studies reported here are B({sup 2}S{sub 1/2}-{sup 2}P{sub 1/2,3/2}{sup 0}) and BH[A {sup 1}{pi}-X {sup 1}{sigma}{sup +}(0,0)]. Variations of their respective emission intensities as a function of the ratio B/C, the boron to carbon ratio in the gas mixture, are reported. We confirmed that the plasma parameters (T{sub g}, T{sub e}, and n{sub e}) are not affected by the introduction of diborane, and the number densities of B atoms and BH radical species were estimated from experimental measurements. The results are compared to those obtained from a zero-dimensional chemical kinetic model where two groups of reactions are considered: (1) BH{sub x}+H{r_reversible}BH{sub x-1}+H{sub 2} (x=1-3) by analogy with the well-known equilibrium CH{sub x}+H set of reactions, which occurs, in particular, in diamond deposition reactors; and (2) from conventional organic chemistry, the set of reactions involving boron species: BH{sub x}+C{sub 2}H{sub 2} (x=0-1). The results clearly show that the model based on hydrogen and boron hydrides reactions alone is not consistent with the experimental results, while it is so when taking into account both sets of reactions. Once an upper limit for the boron species number densities has been estimated, axial profiles are calculated on the basis of the plasma model results obtained previously in Laboratoire d'Ingenierie des Materiaux et des Hautes Pressions, and significant differences in trends for different boron species are found. At the plasma-to-substrate boundary

  16. Optical emission study of a doped diamond deposition process by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Rayar, M.; Supiot, P.; Veis, P.; Gicquel, A.

    2008-08-01

    Standard H2/CH4/B2H6 plasmas (99% of H2 and 1% of CH4, with 0-100ppm of B2H6 added) used for doped diamond film growth are studied by optical emission spectroscopy in order to gain a better understanding of the influence of boron species on the gas phase chemistry. Only two boron species are detected under our experimental conditions (9/15/23Wcm-3 average microwave power density values), and the emission spectra used for studies reported here are B(S1/22-P1/2,3/202) and BH [AΠ1-XΣ+1(0,0)]. Variations of their respective emission intensities as a function of the ratio B /C, the boron to carbon ratio in the gas mixture, are reported. We confirmed that the plasma parameters (Tg, Te, and ne) are not affected by the introduction of diborane, and the number densities of B atoms and BH radical species were estimated from experimental measurements. The results are compared to those obtained from a zero-dimensional chemical kinetic model where two groups of reactions are considered: (1) BHx+H ↔BHx -1+H2 (x=1-3) by analogy with the well-known equilibrium CHx+H set of reactions, which occurs, in particular, in diamond deposition reactors; and (2) from conventional organic chemistry, the set of reactions involving boron species: BHx+C2H2 (x =0-1). The results clearly show that the model based on hydrogen and boron hydrides reactions alone is not consistent with the experimental results, while it is so when taking into account both sets of reactions. Once an upper limit for the boron species number densities has been estimated, axial profiles are calculated on the basis of the plasma model results obtained previously in Laboratoire d'Ingénierie des Matériaux et des Hautes Pressions, and significant differences in trends for different boron species are found. At the plasma-to-substrate boundary, [BH] and [B] drop off in contrast to [BH2], which shows little decrease, and [BH3], which shows little increase, in this region.

  17. Fabrication of lightweight ceramic mirrors by means of a chemical vapor deposition process

    NASA Technical Reports Server (NTRS)

    Goela, Jitendra S. (Inventor); Taylor, Raymond L. (Inventor)

    1991-01-01

    A process to fabricate lightweigth ceramic mirrors, and in particular, silicon/silicon carbide mirrors, involves three chemical vapor deposition steps: one to produce the mirror faceplate, the second to form the lightweight backstructure which is deposited integral to the faceplate, and the third and final step which results in the deposition of a layer of optical grade material, for example, silicon, onto the front surface of the faceplate. The mirror figure and finish are fabricated into this latter material.

  18. Dopant gas effect on silicon chemical vapor depositions: A surface potential model

    NASA Technical Reports Server (NTRS)

    Chang, C. A.

    1975-01-01

    A surface potential model is proposed to consistently explain the known dopant gas effects on silicon chemical vapor deposition. This model predicts that the effects of the same dopant gases on the diamond deposition rate using methane and carbon tetrachloride should be opposite and similar to those of silane, respectively. Available data are in agreement with this prediction.

  19. Low temperature junction growth using hot-wire chemical vapor deposition

    DOEpatents

    Wang, Qi; Page, Matthew; Iwaniczko, Eugene; Wang, Tihu; Yan, Yanfa

    2014-02-04

    A system and a process for forming a semi-conductor device, and solar cells (10) formed thereby. The process includes preparing a substrate (12) for deposition of a junction layer (14); forming the junction layer (14) on the substrate (12) using hot wire chemical vapor deposition; and, finishing the semi-conductor device.

  20. High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells.

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    Thin films of hydrogenated amorphous silicon can be produced at MPa pressures from silane without the use of plasma at temperatures as low as 345 °C. High pressure chemical vapor deposition may open a new way to low cost deposition of amorphous silicon solar cells and other thin film structures over very large areas in very compact, simple reactors.

  1. Chemical vapor deposition of W-Si-N and W-B-N

    DOEpatents

    Fleming, J.G.; Roherty-Osmun, E.L.; Smith, P.M.; Custer, J.S.; Jones, R.V.; Nicolet, M.; Madar, R.; Bernard, C.

    1999-06-29

    A method of depositing a ternary, refractory based thin film on a substrate by chemical vapor deposition employing precursor sources of tungsten comprising WF[sub 6], either silicon or boron, and nitrogen. The result is a W-Si-N or W-B-N thin film useful for diffusion barrier and micromachining applications. 10 figs.

  2. Chemical vapor deposition of W-Si-N and W-B-N

    DOEpatents

    Fleming, James G.; Roherty-Osmun, Elizabeth Lynn; Smith, Paul M.; Custer, Jonathan S.; Jones, Ronald V.; Nicolet, Marc-A.; Madar, Roland; Bernard, Claude

    1999-01-01

    A method of depositing a ternary, refractory based thin film on a substrate by chemical vapor deposition employing precursor sources of tungsten comprising WF.sub.6, either silicon or boron, and nitrogen. The result is a W--Si--N or W--B--N thin film useful for diffusion barrier and micromachining applications.

  3. Chemical Vapor Deposition of Atomically-Thin Molybdenum Disulfide (MoS2)

    DTIC Science & Technology

    2015-03-01

    UNCLASSIFIED AD-E403 625 Technical Report ARMET-TR-14041 CHEMICAL VAPOR DEPOSITION OF ATOMICALLY -THIN MOLYBDENUM...4. TITLE AND SUBTITLE CHEMICAL VAPOR DEPOSITION OF ATOMICALLY -THIN MOLYBDENUM DISULFIDE (MoS2) 5a. CONTRACT NUMBER 5b. GRANT NUMBER...materials, in their bulk form exist as lamellar structures, they can be exfoliated into individual, atomically -thin layers . While the exfoliated 2D materials

  4. Fabrication of large tungsten structures by chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Kahle, V. E.; Lewis, W. J.; Stubbs, V. R.

    1971-01-01

    Process is accomplished by reducing tungsten hexafluoride with hydrogen. Metallic tungsten of essentially 100 percent purity and density is produced and built up as dense deposit on heated mandrel assembly. Process variations are building up, sealing or bonding refractory metals at temperatures below transition temperatures of base metal substrates.

  5. Chemical vapor deposition of fluorine-doped zinc oxide

    DOEpatents

    Gordon, Roy G.; Kramer, Keith; Liang, Haifan

    2000-06-06

    Fims of fluorine-doped zinc oxide are deposited from vaporized precursor compounds comprising a chelate of a dialkylzinc, such as an amine chelate, an oxygen source, and a fluorine source. The coatings are highly electrically conductive, transparent to visible light, reflective to infrared radiation, absorbing to ultraviolet light, and free of carbon impurity.

  6. Direct chemical vapor deposition of graphene on dielectric surfaces

    DOEpatents

    Zhang, Yuegang; Ismach, Ariel

    2014-04-29

    A substrate is provided that has a metallic layer on a substrate surface of a substrate. A film made of a two dimensional (2-D) material, such as graphene, is deposited on a metallic surface of the metallic layer. The metallic layer is dewet and/or removed to provide the film on the substrate surface.

  7. Artificial Quantum Thermal Bath

    NASA Astrophysics Data System (ADS)

    Shabani, Alireza; Neven, Hartmut

    In this talk, we present a theory for engineering the temperature of a quantum system different from its ambient temperature, that is basically an analog version of the quantum metropolis algorithm. We define criteria for an engineered quantum bath that, when couples to a quantum system with Hamiltonian H, drives the system to the equilibrium state e/- H / T Tr (e - H / T) with a tunable parameter T. For a system of superconducting qubits, we propose a circuit-QED approximate realization of such an engineered thermal bath consisting of driven lossy resonators. We consider an artificial thermal bath as a simulator for many-body physics or a controllable temperature knob for a hybrid quantum-thermal annealer.

  8. Plasma-Enhanced Chemical Vapor Deposition as a Method for the Deposition of Peptide Nanotubes

    DTIC Science & Technology

    2013-09-17

    45432, United States Distribution A: Approved for public release; distribution is unlimited. 2    Introduction: The unique ability of dipeptides ...Using physical vapor deposition (PVD) well-ordered assemblies of peptide nanotubes (PNTs) composed of dipeptide subunits are obtained on various...the PECVD deposition chamber with sublimation capability in the laboratory of Dr. Rajesh Naik (AFRL/RXAS) and conditions were modified for dipeptide

  9. Properties of TCO anodes deposited by atmospheric pressure chemical vapor deposition and their application to OLED lighting

    NASA Astrophysics Data System (ADS)

    Korotkov, R. Y.

    2012-02-01

    Doped ZnO is one of the materials currently being considered in commercial optoelectronic applications as a potential indium tin oxide (ITO) replacement for the transparent conducting oxide (TCO). The properties of doped ZnO anodes prepared at Arkema Inc. are analyzed using spectroscopic ellipsometer (230 to 1700 nm) and Hall-effect. The modeling of the refractive indexes is conducted using a double oscillator model. The model parameters are tested on a double layer: undoped and doped structure deposited by atmospheric pressure chemical vapor deposition (APCVD) on glass substrates. Excellent correlation between calculated and experimental parameters was obtained.

  10. Reduced chemical warfare agent sorption in polyurethane-painted surfaces via plasma-enhanced chemical vapor deposition of perfluoroalkanes.

    PubMed

    Gordon, Wesley O; Peterson, Gregory W; Durke, Erin M

    2015-04-01

    Perfluoralkalation via plasma chemical vapor deposition has been used to improve hydrophobicity of surfaces. We have investigated this technique to improve the resistance of commercial polyurethane coatings to chemicals, such as chemical warfare agents. The reported results indicate the surface treatment minimizes the spread of agent droplets and the sorption of agent into the coating. The improvement in resistance is likely due to reduction of the coating's surface free energy via fluorine incorporation, but may also have contributing effects from surface morphology changes. The data indicates that plasma-based surface modifications may have utility in improving chemical resistance of commercial coatings.

  11. Synthesis of multifilament silicon carbide fibers by chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Revankar, Vithal; Hlavacek, Vladimir

    1991-01-01

    A process for development of clean silicon carbide fiber with a small diameter and high reliability is presented. An experimental evaluation of operating conditions for SiC fibers of good mechanical properties and devising an efficient technique which will prevent welding together of individual filaments are discussed. The thermodynamic analysis of a different precursor system was analyzed vigorously. Thermodynamically optimum conditions for stoichiometric SiC deposit were obtained.

  12. Effect of Reaction Time and Temperature on Chemical, Structural, Optical, and Photoelectrical Properties of PbS Thin Films Chemically Deposited from the Pb(OAc)2-NaOH-TU-TEA Aqueous System

    NASA Astrophysics Data System (ADS)

    Castelo-González, O. A.; Sotelo-Lerma, M.; García-Valenzuela, J. A.

    2017-01-01

    Lead sulfide (PbS) thin films have been deposited on float glass substrates by the chemical bath deposition technique using a Pb(CH3COO)2-NaOH-(NH2)2CS-N(CH2CH2OH)3 definite aqueous system. The chemical and structural characteristics, as well as the variation of the optical and photoelectrical properties, were studied as functions of reaction time and temperature. For this purpose, the following characterization techniques were employed: x-ray diffraction analysis, x-ray photoelectron spectroscopy, ultraviolet-visible-near infrared spectrophotometry, and dark and light current measurements. Based on the results, it was observed that increase in the reaction temperature increased the deposition rate of the PbS thin film (associated with the cubic crystalline structure); increase of this parameter from 40°C to 70°C (with reaction time of 60 min) led to an increase of the thickness from ˜129 nm to ˜459 nm and the crystallite size ( D) from 15.3 nm to 20.2 nm; on the other hand, increase in temperature decreased the energy bandgap ( E g) from 1.66 eV to 0.51 eV and the relative photosensitivity factor ( S ph) from 0.468 to 0.032. A similar effect was obtained with increase of the reaction time for given temperature.

  13. Chemical vapor deposition and characterization of titanium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Gilmer, David Christopher

    1998-12-01

    The continued drive to decrease the size and increase the speed of micro-electronic Metal-Oxide-Semiconductor (MOS) devices is hampered by some of the properties of the SiOsb2 gate dielectric. This research has focused on the CVD of TiOsb2 thin films to replace SiOsb2 as the gate dielectric in MOS capacitors and transistors. The relationship of CVD parameters and post-deposition anneal treatments to the physical and electrical properties of thin films of TiOsb2 has been studied. Structural and electrical characterization of TiOsb2 films grown from the CVD precursors tetraisopropoxotitanium (IV) (TTIP) and TTIP plus Hsb2O is described in Chapter 3. Both types of deposition produced stoichiometric TiOsb2 films comprised of polycrystalline anatase, but the interface properties were dramatically degraded when water vapor was added. Films grown with TTIP in the presence of Hsb2O contained greater than 50% more hydrogen than films grown using only TTIP and the hydrogen content of films deposited in both wet and dry TTIP environments decreased sharply with a post deposition Osb2 anneal. A significant thickness variation of the dielectric constant was observed which could be explained by an interfacial oxide and the finite accumulation thickness. Fabricated TiOsb2 capacitors exhibited electrically equivalent SiOsb2 gate dielectric thicknesses and leakage current densities as low as 38, and 1×10sp{-8} Amp/cmsp2 respectively. Chapter 4 discusses the low temperature CVD of crystalline TiOsb2 thin films deposited using the precursor tetranitratotitanium (IV), TNT, which produces crystalline TiOsb2 films of the anatase phase in UHV-CVD at temperatures as low as 184sp°C. Fabricated TiOsb2 capacitors exhibited electrically equivalent SiOsb2 gate dielectric thicknesses and leakage current densities as low as 17, and 1×10sp{-8} Amp/cmsp2 respectively. Chapter 5 describes the results of a comparison of physical and electrical properties between TiOsb2 films grown via LPCVD using

  14. Optical properties of silicon nitride films formed by plasma-chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Vlasukova, L. A.; Komarov, F. F.; Parkhomenko, I. N.; Milchanin, O. V.; Leont'ev, A. V.; Mudryi, A. V.; Togambaeva, A. K.

    2013-03-01

    The optical properties and structure of layers of silicon nitride deposited on silicon substrates by plasma-aided chemical vapor deposition at 300°C are studied by ellipsometry, Raman scattering, IR spectroscopy, and photoluminescence techniques. It is found that immediately after deposition the silicon nitride contains hydrogen in the form of Si-H bonds. Annealing (1100°C, 30 min) leads to dehydrogenation and densification of the nitride layer. An intense Si3N4 photoluminescence signal is detected in the green. Immediately after deposition the photoluminescence peak appears at 542 nm and annealing shifts it to shorter wavelengths.

  15. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    ERIC Educational Resources Information Center

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  16. Si Passivation and Chemical Vapor Deposition of Silicon Nitride: Final Technical Report, March 18, 2007

    SciTech Connect

    Atwater, H. A.

    2007-11-01

    This report investigated chemical and physical methods for Si surface passivation for application in crystalline Si and thin Si film photovoltaic devices. Overall, our efforts during the project were focused in three areas: i) synthesis of silicon nitride thin films with high hydrogen content by hot-wire chemical vapor deposition; ii) investigation of the role of hydrogen passivation of defects in crystalline Si and Si solar cells by out diffusion from hydrogenated silicon nitride films; iii) investigation of the growth kinetics and passivation of hydrogenated polycrystalline. Silicon nitride films were grown by hot-wire chemical vapor deposition and film properties have been characterized as a function of SiH4/NH3 flow ratio. It was demonstrated that hot-wire chemical vapor deposition leads to growth of SiNx films with controllable stoichiometry and hydrogen.

  17. Low temperature deposition of polycrystalline silicon thin films on a flexible polymer substrate by hot wire chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, Sang-hoon; Jung, Jae-soo; Lee, Sung-soo; Lee, Sung-bo; Hwang, Nong-moon

    2016-11-01

    For the applications such as flexible displays and solar cells, the direct deposition of crystalline silicon films on a flexible polymer substrate has been a great issue. Here, we investigated the direct deposition of polycrystalline silicon films on a polyimide film at the substrate temperature of 200 °C. The low temperature deposition of crystalline silicon on a flexible substrate has been successfully made based on two ideas. One is that the Si-Cl-H system has a retrograde solubility of silicon in the gas phase near the substrate temperature. The other is the new concept of non-classical crystallization, where films grow by the building block of nanoparticles formed in the gas phase during hot-wire chemical vapor deposition (HWCVD). The total amount of precipitation of silicon nanoparticles decreased with increasing HCl concentration. By adding HCl, the amount and the size of silicon nanoparticles were reduced remarkably, which is related with the low temperature deposition of silicon films of highly crystalline fraction with a very thin amorphous incubation layer. The dark conductivity of the intrinsic film prepared at the flow rate ratio of RHCl=[HCl]/[SiH4]=3.61 was 1.84×10-6 Scm-1 at room temperature. The Hall mobility of the n-type silicon film prepared at RHCl=3.61 was 5.72 cm2 V-1s-1. These electrical properties of silicon films are high enough and could be used in flexible electric devices.

  18. Friction and Wear of Ion-Beam-Deposited Diamondlike Carbon on Chemical-Vapor-Deposited, Fine-Grain Diamond

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Lanter, William C.

    1996-01-01

    Friction and wear behavior of ion-beam-deposited diamondlike carbon (DLC) films coated on chemical-vapor-deposited (CVD), fine-grain diamond coatings were examined in ultrahigh vacuum, dry nitrogen, and humid air environments. The DLC films were produced by the direct impact of an ion beam (composed of a 3:17 mixture of Ar and CH4) at ion energies of 1500 and 700 eV and an RF power of 99 W. Sliding friction experiments were conducted with hemispherical CVD diamond pins sliding on four different carbon-base coating systems: DLC films on CVD diamond; DLC films on silicon; as-deposited, fine-grain CVD diamond; and carbon-ion-implanted, fine-grain CVD diamond on silicon. Results indicate that in ultrahigh vacuum the ion-beam-deposited DLC films on fine-grain CVD diamond (similar to the ion-implanted CVD diamond) greatly decrease both the friction and wear of fine-grain CVD diamond films and provide solid lubrication. In dry nitrogen and in humid air, ion-beam-deposited DLC films on fine-grain CVD diamond films also had a low steady-state coefficient of friction and a low wear rate. These tribological performance benefits, coupled with a wider range of coating thicknesses, led to longer endurance life and improved wear resistance for the DLC deposited on fine-grain CVD diamond in comparison to the ion-implanted diamond films. Thus, DLC deposited on fine-grain CVD diamond films can be an effective wear-resistant, lubricating coating regardless of environment.

  19. Ultrafine Microstructure Composites Prepared by Chemical Vapor Deposition

    DTIC Science & Technology

    1987-12-01

    have performed numerous thermodynamic calculations for the BN + AIN and HfB2 + SiC systems. The calculations were performed usi..g the SOLGASMIX - PV ...CH3 SiCl 3 (methyltrichlorosilane or MTS1 again using the SOLGASMIX - PV program. A quantity of hydrogen was added equal to ten times the sum of the...Electro- chemical Society, Inc., Pennington, NJ, 1979, p.1. 7. T. M. Besmann, " SOLGASMIX - PV , A Computer Program to Calcu- late Equilibrium

  20. Preparation and analysis of chemically gradient functional bioceramic coating formed by pulsed laser deposition.

    PubMed

    Rajesh, P; Muraleedharan, C V; Sureshbabu, S; Komath, Manoj; Varma, Harikrishna

    2012-02-01

    Bioactive ceramic coatings based on calcium phosphates yield better functionality in the human body for a variety of metallic implant devices including orthopaedic and dental prostheses. In the present study chemically and hence functionally gradient bioceramic coating was obtained by pulsed laser deposition method. Calcium phosphate bioactive ceramic coatings based on hydroxyapatite (HA) and tricalcium phosphate (TCP) were deposited over titanium substrate to produce gradation in physico-chemical characteristics and in vitro dissolution behaviour. Sintered targets of HA and α-TCP were deposited in a multi target laser deposition system. The obtained deposits were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. Inductively coupled plasma spectroscopy was used to estimate the in vitro dissolution behaviour of coatings. The variation in mechanical property of the gradient layer was evaluated through scratch test and micro-indentation hardness. The bioactivity was examined in vitro with respect to the ability of HA layer to form on the surface as a result of contact with simulated body fluid. It could be inferred that chemically gradient functional bioceramic coating can be produced by laser deposition of multiple sintered targets with variable chemical composition.

  1. Chemical Weathering of New Pyroclastic Deposits from Mt. Merapi (Java), Indonesia

    SciTech Connect

    Fiantis, Dian; Nelson, Malik; Van Ranst, Eric; Shamshudin, Josup; Qafoku, Nikolla

    2009-09-01

    Java Island, Indonesia with abundant amount of pyroclastic deposits is located in the very active and dynamic Pacific Ring of Fires. Studying the geochemical weathering indices of these pyroclastic deposits is important to get a clear picture about weathering profiles on deposits resulting from the eruption of Mt. Merapi. Immediately after the first phase of the eruption (March to June 2006), moist and leached pyroclastic deposits were collected. These pyroclastic deposits were found to be composed of volcanic glass, plagioclase feldspar in various proportions, orthopyroxene, clinopyroxene, olivine, amphibole, and titanomagnetite. Total elemental composition of the bulk samples (including trace elements and heavy metals) were determined by wet chemical methods and X-ray fluorescence (XRF) analyses. Weathering of the pyroclastic deposits was studied using various weathering indices. The Ruxton ratio, weathering index of Parker, Vought resudual index and chemical index of weathering of moist pyroclastic are lower than the leached sample but the alteration indices (chemical and plagioclase) are slightly higher in the moist compared to the leached pyroclastic deposits.

  2. Electrodeposition of single gamma phased Zn-Ni alloy coatings from additive-free acidic bath

    NASA Astrophysics Data System (ADS)

    Ghaziof, Soroor; Gao, Wei

    2014-08-01

    Zn-Ni alloy coatings were electrodeposited on mild steel substrate from acidic sulphate bath. The effect of different electrodeposition parameters including temperature, current density, agitation speed and Ni2+/Zn2+ ion ratio on the Zn-Ni coating's physical, chemical and mechanical properties has been studied. Results show that Ni content of coatings has a strong effect on the structure, morphology and microhardness of coatings. Increasing Ni2+/Zn2+ ratio in the bath, higher temperature and higher deposition current density increased the Ni content of coatings. However, higher agitation speed increased the Zn electrodeposition and the anomaly of deposits. The phase structure of the coatings was strongly affected by the Ni content in the coatings. It changed from Zn rich η phase to Ni5Zn21 γ phase. Weak signal of δ-Ni3Zn22 phase was rarely observed for some coatings deposited at different parameters. Single γ phase coatings with optimum properties were electrodeposited at 40 °C and 80 mA/cm2, under 600 rpm agitation speed from the bath with Ni2+/Zn2+ ratio equals 1. Wear resistance of coatings were also improved by Ni doping.

  3. Nonequilibrium quantum chains under multisite Lindblad baths

    NASA Astrophysics Data System (ADS)

    Guimarães, Pedro H.; Landi, Gabriel T.; de Oliveira, Mario J.

    2016-09-01

    We study a quantum XX chain coupled to two heat reservoirs that act on multiple sites and are kept at different temperatures and chemical potentials. The baths are described by Lindblad dissipators, which are constructed by direct coupling to the fermionic normal modes of the chain. Using a perturbative method, we are able to find analytical formulas for all steady-state properties of the system. We compute both the particle or magnetization current and the energy current, both of which are found to have the structure of Landauer's formula. We also obtain exact formulas for the Onsager coefficients. All properties are found to differ substantially from those of a single-site bath. In particular, we find a strong dependence on the intensity of the bath couplings. In the weak-coupling regime, we show that the Onsager reciprocal relations are satisfied.

  4. X-ray photoelectron spectroscopic study of the chemical vapor deposited W/Al interface

    NASA Astrophysics Data System (ADS)

    Ohshima, H.; Katayama, M.; Onoda, K.; Hattori, T.; Suzuki, H.; Tokuda, Y.

    1993-07-01

    The dependence of the amount of aluminum trifluoride (AlF3) piled up at the interface of chemical vapor deposited tungsten and the aluminum under layer on the deposition time and subsequent annealing in ultrahigh vacuum (UHV) or in monosilane (SiH4) gas has been studied. AlF3 is formed by the reaction of the aluminum under layer with tungsten hexafluoride (WF6) during the initial state of tungsten chemical vapor deposition. Tungsten was deposited on an Al layer under selective deposition conditions by SiH4 reduction at 250 °C. X-ray photoelectron spectroscopy measurement reveals that the amount of AlF3 decreases with an increase in the tungsten deposition time and that the reduction of AlF3 by volatilization of aluminum fluorides, which occurs at higher temperatures (≳400 °C) is not observed at low temperature (270 °C). Annealing in SiH4 gas after the tungsten deposition was effective to reduce the amount of AlF3 compared with annealing in UHV. This result and thermochemical data would suggest that the dependence of the amount of AlF3 on the tungsten deposition time is explained by the reduction of AlF3 with hydrogen atoms supplied from the dissociation of SiH4.

  5. Ultrafine Microstructure Composites Prepared by Chemical Vapor Deposition

    DTIC Science & Technology

    1989-12-01

    phase ceramic composites by CVD is that mechanical as well as chemical, electrical , optical, and thermal properties of the composites 2 can be favorably...while it is also an electrical insulator. Also, in Table 2-1, other important properties of BN are compared with those of AIN and other materials... Electrical Resistivity >10" >1016 >10" >10" >101 - (ncm) Density theo: 2.27 3.26 3.97 2.21 obs: 1.9 1.4 3.1 3.15 92% (g/cm’) to to to to 2.0 2.2 3.2

  6. Interfacial diffusion of metal atoms during air annealing of chemically deposited ZnS-CuS and PbS-CuS thin films

    SciTech Connect

    Huang, L.; Zingaro, R.A.; Meyers, E.A. . Dept. of Chemistry); Nair, P.K.; Nair, M.T.S. . Lab. de Energia Solar)

    1994-09-01

    The authors report on the interfacial diffusion of metal ions occurring during air annealing of multilayer CuS films (0.15-0.6[mu]m) deposited on thin coating of ZnS or PbS ([approximately]0.06 [mu]m) on glass substrates. All the films are deposited from chemical baths at room temperature. The interfacial diffusion on the metal atoms during the air annealing is illustrate by X-ray photoelectron spectroscopy studies. A multilayer of 0.3 [mu]m thick CuS film deposited over a thin film of ZnS upon annealing at 150 C shows atomic ratios of Zn to Cu of [approximately]0.15 and [approximately]0.48 at the surface layers of the samples annealed for 12 and 24 h, respectively. In the case of CuS on PbS film, the corresponding Pb to Cu atomic ratios at the surface layers are 0.43 and 0.83. The optical transmittance spectra and sheet resistance of these multilayer films indicate thermal stabilities superior to that of the CuS-only coatings. Application of the interfacial diffusion process in the production of thermally stable solar control coatings, solar absorber coating, or p-type films for solar cell structures is discussed.

  7. Silicon epitaxy using tetrasilane at low temperatures in ultra-high vacuum chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hazbun, Ramsey; Hart, John; Hickey, Ryan; Ghosh, Ayana; Fernando, Nalin; Zollner, Stefan; Adam, Thomas N.; Kolodzey, James

    2016-06-01

    The deposition of silicon using tetrasilane as a vapor precursor is described for an ultra-high vacuum chemical vapor deposition tool. The growth rates and morphology of the Si epitaxial layers over a range of temperatures and pressures are presented. The layers were characterized using transmission electron microscopy, x-ray diffraction, spectroscopic ellipsometry, Atomic Force Microscopy, and secondary ion mass spectrometry. Based on this characterization, high quality single crystal silicon epitaxy was observed. Tetrasilane was found to produce higher growth rates relative to lower order silanes, with the ability to deposit crystalline Si at low temperatures (T=400 °C), with significant amorphous growth and reactivity measured as low as 325 °C, indicating the suitability of tetrasilane for low temperature chemical vapor deposition such as for SiGeSn alloys.

  8. Electro-optic polymer waveguide fabricated using electric-field-assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tatsuura, Satoshi; Sotoyama, Wataru; Yoshimura, Tetsuzo

    1992-04-01

    The paper describes the fabrication of an electrooptic (EO) polymer channel waveguide using a new technique, electric-field-assisted chemical vapor deposition. A polymer film is deposited from epoxy and nonlinear optical (NLO) aliphatic amine, using chemical vapor deposition under an electric field applied by slit electrodes on a thermally oxidized Si wafer at room temperature. A clear propagating He-Ne laser beam is observed along the electrode gap. The propagated beam's near field pattern is bright for the TE mode, but very weak for the TM mode. This indicates the NLO side groups' in-plane alignment and the fabrication of a channel waveguide. The EO coefficient of this waveguide, measured in a Mach-Zehnder interferometer, is r(11) of about 0.1 pm/V. The polymer channel waveguide, which is poled at room temperature after film deposition, shows no EO response. This means NLO molecules are actually aligned during polymerizing, not after.

  9. Plasma enhanced metalorganic chemical vapor deposition of amorphous aluminum nitride

    NASA Astrophysics Data System (ADS)

    Harris, H.; Biswas, N.; Temkin, H.; Gangopadhyay, S.; Strathman, M.

    2001-12-01

    Plasma enhanced deposition of amorphous aluminum nitride (AlN) using trimethylaluminum, hydrogen, and nitrogen was performed in a capacitively coupled plasma system. Temperature was varied from 350 to 550 °C, and pressure dependence of the film structure was investigated. Films were characterized by Fourier transform infrared, Rutherford backscattering (RBS), ellipsometry, and x-ray diffraction (XRD). The films are amorphous in nature, as indicated by XRD. Variations in the refractive index were observed in ellipsometric measurements, which is explained by the incorporation of carbon in the films, and confirmed by RBS. Capacitance-voltage, conductance-voltage (G-V), and current-voltage measurements were performed to reveal bulk and interface electrical properties. The electrical properties showed marked dependence on processing conditions of the AlN films. Clear peaks as observed in the G-V characteristics indicated that the losses are predominantly due to interface states. The interface state density ranged between 1010 and 1011eV-1 cm-2. Annealing in hydrogen resulted in lowering of interface state density values.

  10. Etching Effects During the Chemical Vapor Deposition of (100) Diamond

    SciTech Connect

    Battaile, C.C.; Srolovitz, D.J.; Oleinik, I.I.; Pettifor, D.G.; Sutton, A.P.; Harris, S.J.; Butler, J.E.

    1999-08-02

    Current theories of CVD growth on (100) diamond are unable to account for the numerous experimental observations of slow-growing, locally smooth (100)(2x1) films. In this paper they use quantum mechanical calculations of diamond surface thermochemistry and atomic-scale kinetic Monte Carlo simulations of deposition to investigate the efficacy of preferential etching as a mechanism that can help to reconcile this discrepancy. This etching mechanism allows for the removal of undercoordinated carbon atoms from the diamond surface. In the absence of etching, simulated growth on the (100)(2x1) surface is faster than growth on the (110) and (111) surfaces, and the (100) surface is atomically rough. When etching is included in the simulations, the (100) growth rates decrease to values near those observed experimentally, while the rates of growth on the other surfaces remain largely unaffected and similar to those observed experimentally. In addition, the etching mechanism promotes the growth of smooth (100) surface regions in agreement with numerous scanning probe studies.

  11. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, K.C.; Kodas, T.T.

    1994-01-11

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  12. Very narrow SiGe/Si quantum wells deposited by low-temperature atmospheric pressure chemical vapor deposition

    SciTech Connect

    Gruetzmacher, D.A.; Sedgwick, T.O.; Northrop, G.A.

    1993-05-01

    The optical, structural, and electrical properties of very narrow SiGe quantum wells grown by {open_quotes}ultra-clean{close_quotes} atmospheric pressure chemical vapor deposition (APCVD) are investigated. X-ray reflectivity data reveal abrupt interfaces with a root-mean-square roughness of not more than 0.2 nm. For the first time narrow (4.3 meV) excitonic photoluminescence (PL) spectra were obtained from APCVD grown samples containing SiGe wells with 12.5% to 32.5% Ge. For the narrowest wells PL doublets are observed which are attributed to atomic steps at the SiGe/Si interfaces. The Pl and x-ray diffractometry data show that process deposition control for well and barrier width is within the monolayer range. Resonant tunneling diodes fabricated with 2.5-mm-wide Si{sub 0.75}Ge{sub 0.25} wells show world record peak to valley ratios of 4.2. Magneto-transport measurements performed at high magnetic fields of two-dimensional hole gases exhibit pronounced Hall plateaus and well-defined Shubnikov de Hass oscillations, indicating high material quality. The results give evidence that atmospheric pressure chemical vapor deposition, which relies on gas switching sequences of the reactive gases in a hydrogen ambience, is able to produce interface abruptness comparable if not better than reported by any other technique. 22 refs., 7 figs.

  13. Groundwater chemical and microbiological composition in Aptian-Cenomanian deposits (Kaimisovsky oil-gas bearing province)

    NASA Astrophysics Data System (ADS)

    Nalivaiko, N. G.; Dutova, E. M.; Spiridonov, T. S.; Pokrovsky, D. S.; Pokrovskiy, V. D.

    2016-09-01

    This paper reveals the investigation results of the groundwater chemical and microbiological composition in Aptian-Cenomanian deposits, Kaimisovsky oil-gas bearing province. The mineral-forming behavior of the groundwater was evaluated. It was determined that the diversity of microbial communities could be corrosive- harmful for the groundwater used in reservoir pressure maintenance systems. According to the research results it is necessary to study the groundwater microorganisms in Aptian-Cenomanian deposits and their influence on groundwater itself.

  14. Correlation between Optical Properties and Chemical Composition of Sputter-Deposited Germanium Oxide (GEOX) Films (Postprint)

    DTIC Science & Technology

    2014-03-18

    AFRL-RX-WP-JA-2014-0154 CORRELATION BETWEEN OPTICAL PROPERTIES AND CHEMICAL COMPOSITION OF SPUTTER- DEPOSITED GERMANIUM OXIDE (GEOX) FILMS...DEPOSITED GERMANIUM OXIDE (GEOX) FILMS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6...dx.doi.org/10.1016/j.optmat.2014.02.023. 14. ABSTRACT Germanium oxide (GeOx) films were grown on (100) Si substrates by reactive Direct-Current (DC

  15. The development of chemically vapor deposited mullite coatings for the corrosion protection of SiC

    SciTech Connect

    Auger, M.; Hou, P.; Sengupta, A.; Basu, S.; Sarin, V.

    1998-05-01

    Crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance the corrosion and oxidation resistance of the substrate. Current research has been divided into three distinct areas: (1) Development of the deposition processing conditions for increased control over coating`s growth rate, microstructure, and morphology; (2) Analysis of the coating`s crystal structure and stability; (3) The corrosion resistance of the CVD mullite coating on SiC.

  16. Mathematical Modeling of Chemical Vapor Deposition of Material on a Curvilinear Surface

    NASA Astrophysics Data System (ADS)

    Kuvyrkin, G. N.; Zhuravskii, A. V.; Savel‧eva, I. Yu.

    2016-11-01

    In this work, a mathematical model has been constructed that describes the process of chemical vapor deposition of material on a curvilinear plate. On the boundary where the deposition occurs, account is taken of convective heat transfer, heat transfer by radiation, and heat and mass transfer during the attachment of the substance to the surface. A numerical algorithm is proposed for finding the temperature profile at any instant of time; results and an analysis of numerical calculation are given for different materials.

  17. Composition and submicron structure of chemically deposited Cu2Se-In2Se3 films

    NASA Astrophysics Data System (ADS)

    Markov, V. F.; Tulenin, S. S.; Maskaeva, L. N.; Kuznetsov, M. V.; Barbin, N. M.

    2012-03-01

    Films of substitutional solid solutions of the Cu2Se-In2Se3 system containing up to 7.5 at. % In have been obtained by chemical deposition from aqueous media. The composition, structure, and morphology of the films have been studied. Data of X-ray diffraction and X-ray photoelectron spectroscopy showed that copper in the solid solution occurs in a single-valence state (Cu+). The deposited layers possess a globular morphology and are nanostructured.

  18. Electrical and mechanical characterization of chemical vapor deposition of tungsten on sputter-deposited TiN layers

    NASA Astrophysics Data System (ADS)

    Zhang, S.-L.; Palmans, R.; Petersson, C. S.; Maex, K.

    1995-12-01

    Tungsten (W) films are deposited from tungsten hexafluoride on sputter-deposited TiN adhesion layers in a cold-wall chemical vapor deposition reactor. The film resistivity of the W films is found to be thickness dependent. It decreases monotonically with increasing film thickness. Typical resistivity values of 40-nm-thick W films are about 19.3-23.4 μΩ cm, depending on the structure of the underlying TiN layer used. The resistivity of a 980-nm-thick W film is 9.8 μΩ cm. Oxygen and fluorine impurities, as well as structural difference in the W films are found to be the major causes for the resistivity variations. Lowering impurity level and/or increasing W crystallite size can decrease film resistivity. The stress of all the W films is found to be tensile, independent of the structure of the TiN layers. However, the absolute value of the stress is intimately associated with the structure of the TiN layers. The stress values can differ by a factor of more than 2 for the 40-nm-thick W films deposited on the different underlying TiN layers. The amplitude of stress also monotonically decreases with increasing film thickness. Consequently, the difference in stress induced by the difference in the underlying TiN layers gradually disappears as the film thickness increases. A strong correlation between the stress and the film texture is found.

  19. CuInS2 Films Deposited by Aerosol-Assisted Chemical Vapor Deposition Using Ternary Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Jin, Michael; Banger, Kal; Harris, Jerry; Hepp, Aloysius

    2003-01-01

    Polycrystalline CuInS2 films were deposited by aerosol-assisted chemical vapor deposition using both solid and liquid ternary single-source precursors (SSPs) which were prepared in-house. Films with either (112) or (204/220) preferred orientation, had a chalcopyrite structure, and (112)-oriented films contained more copper than (204/220)-oriented films. The preferred orientation of the film is likely related to the decomposition and reaction kinetics associated with the molecular structure of the precursors at the substrate. Interestingly, the (204/220)-oriented films were always In-rich and were accompanied by a secondary phase. From the results of post-growth annealing, etching experiments, and Raman spectroscopic data, the secondary phase was identified as an In-rich compound. On the contrary, (112)-oriented films were always obtained with a minimal amount of the secondary phase, and had a maximum grain size of about 0.5 micron. Electrical and optical properties of all the films grown were characterized. They all showed p-type conduction with an electrical resistivity between 0.1 and 30 Omega-cm, and an optical band gap of approximately 1.46 eV +/- 0.02, as deposited. The material properties of deposited films revealed this methodology of using SSPs for fabricating chalcopyrite-based solar cells to be highly promising.

  20. CuInS2 Films Deposited by Aerosol-Assisted Chemical Vapor Deposition Using Ternary Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Jin, Michael H.-C.; Banger, Kulbinder K.; Harris, Jerry D.; Hepp, Aloysius F.

    2004-01-01

    Polycrystalline CuInS2 films were deposited by aerosol-assisted chemical vapor deposition using both solid and liquid ternary single-source precursors (SSPs) prepared in-house. Films with either (112) or (204/220) preferred orientation were obtained, and compositional analysis showed that (112)-oriented films contained more copper than (204/220)-oriented films. Using X-ray diffraction, the signature of chalcopyrite structure was often confirmed for (112)-oriented films. The preferred orientation of the film is likely related to the decomposition and reaction kinetics associated with the molecular structure of the precursors at the substrate. Interestingly, the (204/220)-oriented films were always accompanied by a secondary phase, which was identified as an unknown In-rich compound from the results of post-growth annealing, etching experiments, and Raman spectroscopic data. By increasing Cu to In ratio in the film, (112)-oriented films were obtained with a maximum grain size of about 0.5 micrometers, and their X-ray diffractions did not show any observable signature of the In secondary phase. Electrical and optical properties of all the films grown were characterized. They all showed p-type conduction with an electrical resistivity between 0.1 omega cm and 30 omega cm, and an optical band gap of 1.46eV +/- 0.02, as deposited. The material properties of deposited films revealed this methodology of using SSPs for fabricating chalcopyrite-based solar cells to be highly promising.

  1. Enhanced Bactericidal Activity of Silver Thin Films Deposited via Aerosol-Assisted Chemical Vapor Deposition.

    PubMed

    Ponja, Sapna D; Sehmi, Sandeep K; Allan, Elaine; MacRobert, Alexander J; Parkin, Ivan P; Carmalt, Claire J

    2015-12-30

    Silver thin films were deposited on SiO2-barrier-coated float glass, fluorine-doped tin oxide (FTO) glass, Activ glass, and TiO2-coated float glass via AACVD using silver nitrate at 350 °C. The films were annealed at 600 °C and analyzed by X-ray powder diffraction, X-ray photoelectron spectroscopy, UV/vis/near-IR spectroscopy, and scanning electron microscopy. All the films were crystalline, and the silver was present in its elemental form and of nanometer dimension. The antibacterial activity of these samples was tested against Escherichia coli and Staphylococcus aureus in the dark and under UV light (365 nm). All Ag-deposited films reduced the numbers of E. coli by 99.9% within 6 h and the numbers of S. aureus by 99.9% within only 2 h. FTO/Ag reduced bacterial numbers of E. coli to below the detection limit after 60 min and caused a 99.9% reduction of S. aureus within only 15 min of UV irradiation. Activ/Ag reduced the numbers of S. aureus by 66.6% after 60 min and TiO2/Ag killed 99.9% of S. aureus within 60 min of UV exposure. More remarkably, we observed a 99.9% reduction in the numbers of E. coli within 6 h and the numbers of S. aureus within 4 h in the dark using our novel TiO2/Ag system.

  2. Chemical reactions in TEOS/ozone chemical vapor deposition[TetraEthylOrtho Silicate

    SciTech Connect

    HO,PAULINE

    2000-02-01

    A reaction mechanism for TEOS/O{sub 3} CVD in a SVG/WJ atmospheric pressure furnace belt reactor has been developed and calibrated with experimental deposition rate data. One-dimensional simulations using this mechanism successfully reproduce the trends observed in a set of 31 experimental runs in a WJ-TEOS999 reactor. Two-dimensional simulations using this mechanism successfully reproduce the average deposition rates for 3 different experimental conditions in a WJ-1500TF reactor, although the deposition profiles predicted by the model are flatter than the experimental static prints.

  3. Development of a Computational Chemical Vapor Deposition Model: Applications to Indium Nitride and Dicyanovinylaniline

    NASA Technical Reports Server (NTRS)

    Cardelino, Carlos

    1999-01-01

    A computational chemical vapor deposition (CVD) model is presented, that couples chemical reaction mechanisms with fluid dynamic simulations for vapor deposition experiments. The chemical properties of the systems under investigation are evaluated using quantum, molecular and statistical mechanics models. The fluid dynamic computations are performed using the CFD-ACE program, which can simulate multispecies transport, heat and mass transfer, gas phase chemistry, chemistry of adsorbed species, pulsed reactant flow and variable gravity conditions. Two experimental setups are being studied, in order to fabricate films of: (a) indium nitride (InN) from the gas or surface phase reaction of trimethylindium and ammonia; and (b) 4-(1,1)dicyanovinyl-dimethylaminoaniline (DCVA) by vapor deposition. Modeling of these setups requires knowledge of three groups of properties: thermodynamic properties (heat capacity), transport properties (diffusion, viscosity, and thermal conductivity), and kinetic properties (rate constants for all possible elementary chemical reactions). These properties are evaluated using computational methods whenever experimental data is not available for the species or for the elementary reactions. The chemical vapor deposition model is applied to InN and DCVA. Several possible InN mechanisms are proposed and analyzed. The CVD model simulations of InN show that the deposition rate of InN is more efficient when pulsing chemistry is used under conditions of high pressure and microgravity. An analysis of the chemical properties of DCVA show that DCVA dimers may form under certain conditions of physical vapor transport. CVD simulations of the DCVA system suggest that deposition of the DCVA dimer may play a small role in the film and crystal growth processes.

  4. WORKER REMOVING SLAG FROM THE MOLTEN METAL BATH IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WORKER REMOVING SLAG FROM THE MOLTEN METAL BATH IN THE ELECTRIC FURNACE AFTER ADDING A CHEMICAL COAGULANT TO FORCE IT TO THE SURFACE. - Southern Ductile Casting Company, Melting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  5. Laser-induced chemical vapour deposition of conductive and insulating thin films

    NASA Astrophysics Data System (ADS)

    Reisse, G.; Gaensicke, F.; Ebert, R.; Illmann, U.; Johansen, H.

    1992-01-01

    Investigations concerning the laser-induced chemical vapour deposition of Mo, W, Co and TiSi 2 conductive thin film structures from Mo(CO) 6, W(CO) 6, Co 2(CO) 8, TiCl 4 and SiH 4 using a direct writing method are presented. SiO 2 thin films were deposited from SiH 4 and N 2O in a large area deposition process stimulated by an excimer laser by using a parallel beam configuration.

  6. Microstructural modification of nc-Si/SiOx films during plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, X. W.

    2005-07-01

    Nanocrystalline-silicon embedded silicon oxide films are prepared by plasma-enhanced chemical vapor deposition (PECVD) at 300 °C without post-heat treatment. Measurements of XPS, IR, XRD, and HREM are performed. Microstructural modifications are found occurring throughout the film deposition. The silica network with a high oxide state is suggested to be formed directly under the abduction of the former deposited layer, rather than processing repeatedly from the original low-oxide state of silica. Nanocrystalline silicon particles with a size of 6-10 nm are embedded in the SiOx film matrix, indicating the potential application in Si-based optoelectronic integrity.

  7. Comparison of the chemical characteristics of the uranium deposits of the Morrison Formation in the Grants uranium region, New Mexico

    USGS Publications Warehouse

    Spirakis, C.S.; Pierson, C.T.

    1983-01-01

    Statistical treatment of the chemical data of samples from the northeast Church Rock area, Ruby deposit, Mariano Lake deposit, and the Ambrosia Lake district indicates that primary ore-forming processes concentrated copper, iron, magnesium, manganese, molybdenum, selenium, vanadium, yttrium, arsenic, organic carbon, and sulfur, along with uranium. A barium halo that is associated with all of these deposits formed from secondary processes. Calcium and strontium were also enriched in the ores by secondary processes. Comparison of the chemical characteristics of the redistributed deposits in the Church Rock district to the primary deposits in the Grants uranium region indicates that calcium, manganese, strontium, yttrium, copper, iron, magnesium, molybdenum, lead, selenium, and vanadium are separated from uranium during redistribution of the deposits in the Church Rock area. Comparisons of the chemical characteristics of the Church Rock deposits and the secondary deposits at Ambrosia Lake suggest some differences in the processes that were involved in the genesis of the redistributed deposits in these two areas.

  8. The chemical evolution of a travertine-depositing stream: geochemical processes and mass transfer reactions

    USGS Publications Warehouse

    Lorah, M.M.; Herman, J.S.

    1988-01-01

    Focuses on quantiatively defining the chemical changes occurring in Falling Spring Creek, a travertine-depositing stream located in Alleghany County, Virgina. The processes of CO2 outgassing and calcite precipitation or dissolution control the chemical evolution of the stream. Physical evidence for calcite precipitation exists in the travertine deposits which are first observed immediately above the waterfall and extend for at least 1.0 km below the falls. Net calcite precipitation occurs at all times of the year but is greatest during low-flow conditions in the summer and early fall. -from Authors

  9. Properties of Plasma Enhanced Chemical Vapor Deposition Barrier Coatings and Encapsulated Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Qi, Lei; Zhang, Chunmei; Chen, Qiang

    2014-01-01

    In this paper, we report silicon oxide coatings deposited by plasma enhanced chemical vapor deposition technology (PECVD) on 125 μm polyethyleneterephthalate (PET) surfaces for the purpose of the shelf lifetime extension of sealed polymer solar cells. After optimization of the processing parameters, we achieved a water vapor transmission rate (WVTR) of ca. 10-3 g/m2/day with the oxygen transmission rate (OTR) less than 0.05 cc/m2/day, and succeeded in extending the shelf lifetime to about 400 h in encapsulated solar cells. And then the chemical structure of coatings related to the properties of encapsulated cell was investigated in detail.

  10. Processing of CuInSe{sub 2}-based solar cells: Characterization of deposition processes in terms of chemical reaction analyses. Phase 2 Annual Report, 6 May 1996--5 May 1997

    SciTech Connect

    Anderson, T.

    1999-10-20

    This report describes research performed by the University of Florida during Phase 2 of this subcontract. First, to study CIGS, researchers adapted a contactless, nondestructive technique previously developed for measuring photogenerated excess carrier lifetimes in SOI wafers. This dual-beam optical modulation (DBOM) technique was used to investigate the differences between three alternative methods of depositing CdS (conventional chemical-bath deposition [CBD], metal-organic chemical vapor deposition [MOCVD], and sputtering). Second, a critical assessment of the Cu-In-Se thermochemical and phase diagram data using standard CALPHAD procedures is being performed. The outcome of this research will produce useful information on equilibrium vapor compositions (required annealing ambients, Sex fluxes from effusion cells), phase diagrams (conditions for melt-assisted growth), chemical potentials (driving forces for diffusion and chemical reactions), and consistent solution models (extents of solid solutions and extending phase diagrams). Third, an integrated facility to fabricate CIS PV devices was established that includes migration-enhanced epitaxy (MEE) for deposition of CIS, a rapid thermal processing furnace for absorber film formation, sputtering of ZnO, CBD or MOCVD of CdS, metallization, and pattern definition.

  11. Gaseous deposition to snow 2. Physical-chemical model for SO/sub 2/ deposition

    SciTech Connect

    Bales, R.C.; Valdez, M.P.; Dawson, G.A.

    1987-08-20

    A diffusion/reaction model of SO/sub 2/ uptake by snow containing liquid water is used to examine the snowpack processes controlling accumulation of dissolved S(IV) and S(VI). Surface deposition velocity v/sub d/ (defined as overall accumulation rate divided by surface SO/sub 2/ concentration) depends on the amount of liquid water in the snow, the time scale considered, the rate of S(IV) to S(VI) conversion in the aqueous phase, and the SO/sub 2/ concentration. In the absence of any oxidation, v/sub d/ for dense snow (specific gravity 0.4) with a moderate liquid water mass fraction (X/sub m/ = 0.01) and SO/sub 2/ concentration of 20 ppbv (parts per billion by volume) is calculated to be 0.026 cm s/sup -1/ after 6 hours. Deposition velocity increases by a factor of 3.2 for each tenfold increase in X/sub m/ and by a factor of 2.5--3.2 for each tenfold decrease in time. SO/sub 2/ penetration into the snowpack is about 5 cm for the 6--hour case. In the presence of air containing 30 ppbv ozone and otherwise identical conditions, 80% of the accumulated sulfur is as S(VI), and the calculated v/sub d/ is 0.036 cm s/sup -1/. A further tenfold increase in ozone concentration gives only a 70% increase in v/sub d/. A similar dependence is calculated for oxygen (catalyzed by Fe(III)) as oxidant, but that for hydrogen peroxide is much stronger and almost linear. A tenfold increase in SO/sub 2/ concentration (with ozone at 30 ppb) results in a 2.3-fold decrease in v/sub d/. Wet snow with a liquid water mass fraction of about 0.1 gives a deposition velocity at 20 ppb SO/sub 2/ of 0.12 cm s/sup -1/, with a penetration of only 2 cm. Calculated and observed uptakes of SO/sub 2/ by snow are in good agreement. copyrightAmerican Geophysical Union 1987

  12. Analysis of gallium arsenide deposition in a horizontal chemical vapor deposition reactor using massively parallel computations

    SciTech Connect

    Salinger, A.G.; Shadid, J.N.; Hutchinson, S.A.

    1998-01-01

    A numerical analysis of the deposition of gallium from trimethylgallium (TMG) and arsine in a horizontal CVD reactor with tilted susceptor and a three inch diameter rotating substrate is performed. The three-dimensional model includes complete coupling between fluid mechanics, heat transfer, and species transport, and is solved using an unstructured finite element discretization on a massively parallel computer. The effects of three operating parameters (the disk rotation rate, inlet TMG fraction, and inlet velocity) and two design parameters (the tilt angle of the reactor base and the reactor width) on the growth rate and uniformity are presented. The nonlinear dependence of the growth rate uniformity on the key operating parameters is discussed in detail. Efficient and robust algorithms for massively parallel reacting flow simulations, as incorporated into our analysis code MPSalsa, make detailed analysis of this complicated system feasible.

  13. Bath for electrolytic reduction of alumina and method therefor

    SciTech Connect

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-11-26

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode. Removing sulfur from the bath can also minimize cathode deposits. Aluminum formed on the cathode can be removed directly from the cathode.

  14. Metrology and Optical Characterization of Plasma Enhanced Chemical Vapor Deposition, (PECVD), low temperature deposited Amorphous Carbon films

    NASA Astrophysics Data System (ADS)

    Ferrieu, F.; Chaton, C.; Neira, D.; Beitia, C.; Mota, L. Proenca; Papon, A. M.; Tarnowka, A.

    2007-09-01

    Amorphous Carbon films deposited by PECVD (RF) have recently been introduced as a new material for semiconductor processing, e.g. in 193 nm ARC lithography [1] and in the DRAM production [2]. A large amount of literature has already been published on with regard to the applications of this class of material [3]. Hence, it has been reported that Amorphous Carbon films undergo a hydrogen chemical desorption when deposited above 500 °C, together with an amorphous to graphite phase transition. Unfortunately, the intrinsic nature of the amorphous carbons depends strongly upon deposition techniques. Film morphology can be completely different from one case to another since there are so many deposition techniques. Optical characterization of these films has also undergone development for several decades. In Spectroscopic Ellipsometry (SE), several models have been proposed from simple Lorentz oscillators' absorption, toward the Tauc Lorentz or Forhoui Bloomer equations. Nevertheless, none of these models sufficiently quantitatively explain the experimental data. In some cases, a simple `Effective Medium Approximation', (EMA), is able to determine the sp2/sp3 bounds present in the film. However, the validity limitation of this approach remains questionable when considering films in a wide range of film thicknesses. In line, metrology for semiconductor requires robust models, which account for parameters such as temperature deposition, stress and film resistivity as well. Different solutions are investigated from our optical measurements, including a biaxial anisotropy hypothesis, which has been proposed by J. Leng et al. [3] from BPR (Beam Reflectometry Profile) and with SE measurements [4]. Our results are considered, together with other surface analysis techniques (XRD, IR and Raman) and confronted to TEM observations.

  15. Chemical vapor deposition of ceramic coatings on metals and ceramic fibers

    NASA Astrophysics Data System (ADS)

    Nable, Jun Co

    2005-07-01

    The research presented in this study consists of two major parts. The first part is about the development of ceramic coatings on metals by chemical vapor deposition (CVD) and metal-organic chemical vapor deposition (MOCVD). Ceramics such as Al2O3 and Cr2O3, are used as protective coatings for materials used at elevated temperatures (>700°C). These metal oxides either exhibit oxidation resistance or have been used as environmental bond coats. Conventional methods of coating by chemical vapor deposition requires deposition temperatures of >950°C which could damage the substrate material during the coating process. Lower deposition temperatures (400 to 600°C) by MOCVD of these metal oxides were successful on Ni metal substrates. Surface modification such as pre-oxidation and etching were also investigated. In addition, a novel approach for the CVD of TiN on metals was developed. This new approach utilizes ambient pressure conditions which lead to deposition temperatures of 800°C or lower compared to conventional CVD of TiN at 1000°C. Titanium nitride can be used as an abrasive and wear coating on cutting and grinding tools. This nitride can also serve as a diffusion coating in metals. The second major part of this research involves the synthesis of interfacial coatings on ceramic reinforcing fibers for ceramic matrix composites. Aluminum and chromium oxides were deposited onto SiC, and Al2O3-SiO 2 fibers by MOCVD. The effects of the interface coatings on the tensile strength of ceramic fibers are also discussed. New duplex interface coatings consisting of BN or TiN together with Al2O3 or ZrO 2 were also successfully deposited and evaluated on SiC fibers.

  16. Chemical vapor deposited carbon nanotubes for aqueous H2-Cl2 fuel cells.

    PubMed

    Suryavanshi, U B; Bhosale, C H

    2010-06-01

    Carbon nanotubes having large surface area is an interesting material to develop H2-Cl2 fuel cell electrodes. The attempts were made to deposit carbon nanotubes on porous substrates by chemical vapour deposition. Turpentine oil (C10H16) was used as a precursor, decomposed at 1100 degrees C reactor temperature. Nickel, platinum, tin, Ni-Pt, Ni-Sn, Pt-Sn, Ni-Pt-Sn catalysts were used to grow carbon nanotubes. Nickel was deposited with electrodeposition, platinum with sputter coater and tin with vacuum deposition technique. The developed electrodes were characterized by XRD, SEM, TEM, FTIR, and resistivity by van-der Pauw method. Carbon nanotubes have been formed for 0.25 N nickel deposited for 45 and 60 min; 0.5 N, 0.75 N and 1 N nickel deposited for 15 to 60 min, at the interval of 15. Ni-Pt, Ni-Sn, Pt-Sn and Ni-Pt-Sn activated carbon also shows the well grown CNTs. Aqueous H2-Cl2 fuel cell performance was tested with these grown carbon nanotubes. 40% KCl with 1067 mohm(-1) cm(-1) conductivity was used as electrolyte. Linear sweep voltametry shows reduction potential for hydrogen gas. Chronoamperometry results show better half cell performance for nickel, deposited with 1 N, 45 min deposition time period; and combination of Ni-Pt-Sn with 140, and 110-100 mA/cm2 stable current density respectively.

  17. Physical and chemical characteristics and development of the Changuinola peat deposit of northwestern Panama

    SciTech Connect

    Cohen, A.D.; Raymond, R. Jr.; Thayer, G.; Ramirez, A.

    1987-08-01

    A peat deposit occupying over 80 square kilometers, and averaging 8 meters in thickness, was discovered on the Caribbean coast of northwestern Panama near the town of Changuinola. This deposit occurs inland (behind) the present beach-barrier shoreline. It is thickest in the center and thins toward all edges (as if domed). The surface vegetation in the central regions consists primarily of ombrotrophic plants (especially sedges, grasses, Sphagnum, Sagittaria, and various scattered shrubs). Toward the edges, the deposit has a surface cover of more minerotrophic plants (such as swamp-forest trees, ferns, and palms). Petrographic/botanical analysis of the deposit with depth reveals the presence of five peat types (swamp-forest, sedge-grass-fern, Sagittaria et al., Nymphaea et al., and Rhizophora). Typically peats of the thick, central portions of the deposit are very low in ash and sulfur (less than 2% ash and 0.3% sulfur). Ash contents tend to increase abruptly at the base and more gradually toward the edges of the deposit and sulfur contents increasing gradually toward the ocean and bay. Vertical and lateral variations in botanical, chemical, and physical properties of this deposit can be related to factors that have controlled: (1) the surrounding rocks and water chemistry; (2) the source vegetation; and (3) the environments in which these source ingredients were deposited. 3 refs., 10 figs.

  18. Growth of diamond by RF plasma-assisted chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Meyer, Duane E.; Ianno, Natale J.; Woollam, John A.; Swartzlander, A. B.; Nelson, A. J.

    1988-01-01

    A system has been designed and constructed to produce diamond particles by inductively coupled radio-frequency, plasma-assisted chemical vapor deposition. This is a low-pressure, low-temperature process used in an attempt to deposit diamond on substrates of glass, quartz, silicon, nickel, and boron nitride. Several deposition parameters have been varied including substrate temperature, gas concentration, gas pressure, total gas flow rate, RF input power, and deposition time. Analytical methods employed to determine composition and structure of the deposits include scanning electron microscopy, absorption spectroscopy, scanning Auger microprobe spectroscopy, and Raman spectroscopy. Analysis indicates that particles having a thin graphite surface, as well as diamond particles with no surface coatings, have been deposited. Deposits on quartz have exhibited optical bandgaps as high as 4.5 eV. Scanning electron microscopy analysis shows that particles are deposited on a pedestal which Auger spectroscopy indicates to be graphite. This is a phenomenon that has not been previously reported in the literature.

  19. Chemical sputtering by H2+ and H3+ ions during silicon deposition

    NASA Astrophysics Data System (ADS)

    Landheer, K.; Goedheer, W. J.; Poulios, I.; Schropp, R. E. I.; Rath, J. K.

    2016-08-01

    We investigated chemical sputtering of silicon films by Hy+ ions (with y being 2 and 3) in an asymmetric VHF Plasma Enhanced Chemical Vapor Deposition (PECVD) discharge in detail. In experiments with discharges created with pure H2 inlet flows, we observed that more Si was etched from the powered than from the grounded electrode, and this resulted in a net deposition on the grounded electrode. With experimental input data from a power density series of discharges with pure H2 inlet flows, we were able to model this process with a chemical sputtering mechanism. The obtained chemical sputtering yields were (0.3-0.4) ± 0.1 Si atom per bombarding Hy+ ion at the grounded electrode and at the powered electrode the yield ranged from (0.4 to 0.65) ± 0.1. Subsequently, we investigated the role of chemical sputtering during PECVD deposition with a series of silane fractions SF (SF(%) = [SiH4]/[H2]*100) ranging from SF = 0% to 20%. We experimentally observed that the SiHy+ flux is not proportional to SF but decreasing from SF = 3.4% to 20%. This counterintuitive SiHy+ flux trend was partly explained by an increasing chemical sputtering rate with decreasing SF and partly by the reaction between H3+ and SiH4 that forms SiH3+.

  20. Atmospheric pressure chemical vapour deposition of BPSG films from TEOS, 03, TMB, TMPI: Determination of a chemical mechanism

    NASA Astrophysics Data System (ADS)

    Nieto, J.-P.; Caussat, B.; Couderc, J.-P.; Orain', I.; Jeannerot, L.

    2002-06-01

    APCVD of boro-phospho silicate glass from mixtures of TEOS, TMB and TMP, has been analysed then modelled in a continuous reactor. A reduced chemical mechanism has been developed and the corresponding rate constants have been identified. The first results obtained are encouraging and suggest that the very simple gas phase chemistry selected could be precise enough to represent the main trends of this very complex deposition procedure.

  1. Surface Plasmon Mediated Chemical Solution Deposition of Gold Nanoparticles on a Nanostructured Silver Surface

    SciTech Connect

    Qiu, Jingjing; Wu, Yung-Chen; Wang, Yi-Chung; Engelhard, Mark H.; McElwee-White, Lisa; Wei, Wei

    2013-01-01

    Utilizing intrinsic surface properties to direct and control nanostructure growth on a large-scale surface is fundamentally interesting and holds great technological promise. Reported here is a novel "bottom-up" approach to fabricating sub-15 nm Au nanoparticles on a nanostructured Ag surface via a liquid-phase chemical deposition by using localized surface plasmon resonance (SPR) excitation. A molecular thermometry strategy was employed to investigate the SPR-mediated photothermal heating of the Ag film on nanosphere (AgFON) substrate and measured the surface temperature to be above 230 °C, which led to an efficient decomposition of CH3AuPPh3 to form Au nanoparticles on the Ag surface. Particle sizes were tunable between 3 to 10 nm by adjusting the deposition time. Moreover, investigation of the deposition kinetics revealed that the Au nanoparticle deposition was surface-limited by the Ag substrate. This SPR-mediated chemical solution deposition (SPMCSD) strategy should be extendable to the deposition of many other materials for various applications.

  2. Patterning and Characterization of Carbon Nanotubes Grown in a Microwave Plasma Enhanced Chemical Vapor Deposition Chamber

    DTIC Science & Technology

    2009-03-01

    determined optically through scanning electron microscope images. carbon nanotubes, field emission, microwave plasma enhanced chemical vapor deposition U U U...PECVD) 13 2.3 Carbon Nanotube Properties . . . . . . . . . . . . . . . 22 2.4 Applications of Carbon Nanotubes . . . . . . . . . . . . 24 2.4.1...Multi-walled Carbon Nanotube . . . . . . . . . . . . . . . 6 TEM Transmission Electron Microscope . . . . . . . . . . . . . 6 SWCNT Single-walled Carbon

  3. Volatile Barium Beta-Diketonate Polyether Adducts. Synthesis, Characterization and Metalorganic Chemical Vapor Deposition

    DTIC Science & Technology

    1991-05-31

    Volatile Barium 13- Diketonate Polyether Adducts.... Synthesis , Characterization and Metalorganic Chemical Vapor Deposition by Robin A. Gardiner...has been approved for public release and sale: its distribution is unlimited. Volatile, Barium B- Diketonate Polyether Adducts. Synthesis ...NO. NO. INO. ACCESSION NO. Arlington, VA 22217 II 11. TITLE (include Security Classification) Volatile Barium B- Diketonate Polyether Adducts

  4. Vaporization of a mixed precursors in chemical vapor deposition for YBCO films

    NASA Technical Reports Server (NTRS)

    Zhou, Gang; Meng, Guangyao; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

    1995-01-01

    Single phase YBa2Cu3O7-delta thin films with T(c) values around 90 K are readily obtained by using a single source chemical vapor deposition technique with a normal precursor mass transport. The quality of the films is controlled by adjusting the carrier gas flow rate and the precursor feed rate.

  5. Combinatorial Characterization of TiO2 Chemical Vapor Deposition Utilizing Titanium Isopropoxide.

    PubMed

    Reinke, Michael; Ponomarev, Evgeniy; Kuzminykh, Yury; Hoffmann, Patrik

    2015-07-13

    The combinatorial characterization of the growth kinetics in chemical vapor deposition processes is challenging because precise information about the local precursor flow is usually difficult to access. In consequence, combinatorial chemical vapor deposition techniques are utilized more to study functional properties of thin films as a function of chemical composition, growth rate or crystallinity than to study the growth process itself. We present an experimental procedure which allows the combinatorial study of precursor surface kinetics during the film growth using high vacuum chemical vapor deposition. As consequence of the high vacuum environment, the precursor transport takes place in the molecular flow regime, which allows predicting and modifying precursor impinging rates on the substrate with comparatively little experimental effort. In this contribution, we study the surface kinetics of titanium dioxide formation using titanium tetraisopropoxide as precursor molecule over a large parameter range. We discuss precursor flux and temperature dependent morphology, crystallinity, growth rates, and precursor deposition efficiency. We conclude that the surface reaction of the adsorbed precursor molecules comprises a higher order reaction component with respect to precursor surface coverage.

  6. Moire-Fringe Images of Twin Boundaries in Chemical Vapor Deposited Diamond

    DTIC Science & Technology

    1992-07-10

    Features in lattice image micrographs of chemical vapor deposited diamond can be interpreted as Moire fringes that occur when viewing twin boundaries that...are inclined to the electron beam. The periodicities in images of inclined twin boundaries with Sigma=3 and Sigma=9 misorientations have been modeled by computer graphic simulation.

  7. Circular Graphene Platelets with Grain Size and Orientation Gradients Grown by Chemical Vapor Deposition.

    PubMed

    Xin, Xing; Fei, Zeyuan; Ma, Teng; Chen, Long; Chen, Mao-Lin; Xu, Chuan; Qian, Xitang; Sun, Dong-Ming; Ma, Xiu-Liang; Cheng, Hui-Ming; Ren, Wencai

    2017-02-27

    Monolayer circular graphene platelets with a grain structure gradient in the radial direction are synthesized by chemical vapor deposition on immiscible W-Cu substrates. Because of the different interactions and growth behaviors of graphene on Cu and tungsten carbide, such substrates cause the formation of grain size and orientation gradients through the competition between Cu and tungsten carbide in graphene growth.

  8. Chemical vapour deposition of thermochromic vanadium dioxide thin films for energy efficient glazing

    SciTech Connect

    Warwick, Michael E.A.; Binions, Russell

    2014-06-01

    Vanadium dioxide is a thermochromic material that undergoes a semiconductor to metal transitions at a critical temperature of 68 °C. This phase change from a low temperature monoclinic structure to a higher temperature rutile structure is accompanied by a marked change in infrared reflectivity and change in resistivity. This ability to have a temperature-modulated film that can limit solar heat gain makes vanadium dioxide an ideal candidate for thermochromic energy efficient glazing. In this review we detail the current challenges to such glazing becoming a commercial reality and describe the key chemical vapour deposition technologies being employed in the latest research. - Graphical abstract: Schematic demonstration of the effect of thermochromic glazing on solar radiation (red arrow represents IR radiation, black arrow represents all other solar radiation). - Highlights: • Vanadium dioxide thin films for energy efficient glazing. • Reviews chemical vapour deposition techniques. • Latest results for thin film deposition for vanadium dioxide.

  9. Influence of krypton atoms on the structure of hydrogenated amorphous carbon deposited by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Oliveira, M. H.; Viana, G. A.; de Lima, M. M.; Cros, A.; Cantarero, A.; Marques, F. C.

    2010-12-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared by plasma enhanced chemical vapor deposition using methane (CH4) plus krypton (Kr) mixed atmosphere. The depositions were performed as function of the bias voltage and krypton partial pressure. The goal of this work was to study the influence of krypton gas on the physical properties of a-C:H films deposited on the cathode electrode. Krypton concentration up to 1.6 at. %, determined by Rutherford Back-Scattering, was obtained at high Kr partial pressure and bias of -120 V. The structure of the films was analyzed by means of optical transmission spectroscopy, multi-wavelength Raman scattering and Fourier Transform Infrared spectroscopy. It was verified that the structure of the films remains unchanged up to a concentration of Kr of about 1.0 at. %. A slight graphitization of the films occurs for higher concentration. The observed variation in the film structure, optical band gap, stress, and hydrogen concentration were associated mainly with the subplantation process of hydrocarbons radicals, rather than the krypton ion energy.

  10. Influence of krypton atoms on the structure of hydrogenated amorphous carbon deposited by plasma enhanced chemical vapor deposition

    SciTech Connect

    Oliveira, M. H. Jr.; Viana, G. A.; Marques, F. C.; Lima, M. M. Jr. de; Cros, A.; Cantarero, A.

    2010-12-15

    Hydrogenated amorphous carbon (a-C:H) films were prepared by plasma enhanced chemical vapor deposition using methane (CH{sub 4}) plus krypton (Kr) mixed atmosphere. The depositions were performed as function of the bias voltage and krypton partial pressure. The goal of this work was to study the influence of krypton gas on the physical properties of a-C:H films deposited on the cathode electrode. Krypton concentration up to 1.6 at. %, determined by Rutherford Back-Scattering, was obtained at high Kr partial pressure and bias of -120 V. The structure of the films was analyzed by means of optical transmission spectroscopy, multi-wavelength Raman scattering and Fourier Transform Infrared spectroscopy. It was verified that the structure of the films remains unchanged up to a concentration of Kr of about 1.0 at. %. A slight graphitization of the films occurs for higher concentration. The observed variation in the film structure, optical band gap, stress, and hydrogen concentration were associated mainly with the subplantation process of hydrocarbons radicals, rather than the krypton ion energy.

  11. Microstructural and conductivity changes induced by annealing of ZnO:B thin films deposited by chemical vapour deposition.

    PubMed

    David, C; Girardeau, T; Paumier, F; Eyidi, D; Lacroix, B; Papathanasiou, N; Tinkham, B P; Guérin, P; Marteau, M

    2011-08-24

    Zinc oxide (ZnO) thin films have attracted much attention in recent years due to progress in crystal growth for a large variety of technological applications including optoelectronics and transparent electrodes in solar cells. Boron (B)-doped ZnO thin films are deposited by low pressure chemical vapour deposition (LPCVD) on Si(100). These films exhibit a strong (002) texture with a pyramidal grain structure. The ZnO films were annealed after growth; the annealing temperature and the atmosphere appear to strongly impact the layer conductivity. This work will first present the modification of the physical properties (carrier concentration, mobility) extracted from the simulation of layer reflection in the infrared range. At low annealing temperatures the mobility increases slightly before decreasing drastically above a temperature close to 250 °C. The chemical and structural evolution (XPS, x-ray diffraction) of the films was also studied to identify the relationship between microstructural modifications and the variations observed in the film conductivity. An in situ XRD study during annealing has been performed under air and low pressure conditions. As observed for electrical properties, the microstructural modifications shift to higher temperatures for vacuum annealing.

  12. Tunable optoelectronic properties of CBD-CdS thin films via bath temperature alterations

    NASA Astrophysics Data System (ADS)

    Kumarage, W. G. C.; Wijesundera, R. P.; Seneviratne, V. A.; Jayalath, C. P.; Dassanayake, B. S.

    2016-03-01

    The tunability of the band-gap value and electron affinity of the n-CdS by adjusting the growth parameters is very important as it paves the way to improve the efficiency of CdS-based solar cells by adjusting the band lineup with other p-type semiconductors. In this respect, polycrystalline n-CdS thin films were grown on FTO glass substrates at different bath temperatures (40-80 °C) by the chemical bath deposition technique. The structural, morphological and optoelectronic properties of CdS thin films were studied using x-ray diffraction, scanning electron microscopy, UV-Vis spectrometry, profilometry, atomic force microscopy, photoelectrochemical and Mott-Schottky measurements. Absorption measurements reveal that an energy-gap value of n-CdS can be adjusted from 2.27 to 2.57 eV and Mott-Schottky measurements indicate that the flat-band potential is increased from  -699 to  -835 V with respect to a Ag/AgCl electrode by decreasing the deposition bath temperature from 60 to 40 °C. This tunability of optoelectronic properties of n-CdS is very useful for applications in thin film solar cells and other devices.

  13. Chemical Alteration Pathways Resulting in High-Silica Deposits on Mars

    NASA Astrophysics Data System (ADS)

    Yen, A. S.; Gellert, R.; Clark, B. C.; Ming, D. W.; Morris, R. V.; Mittlefehldt, D. W.

    2015-12-01

    The chemical compositions of nearly 1000 targets at the surface of Mars have been established by the cross-calibrated Alpha-Particle X-ray Spectrometers (APXS) onboard the Mars Science Laboratory (MSL) and the two Mars Exploration Rovers (MER). Comparing and contrasting these measurements provides greater insight into martian surface processes than the standalone use of data from an individual mission. For example, the combination of MER and MSL APXS data indicate two distinct pathways for silicate weathering: 1. Open system alteration at circumneutral pH. Fracture-filling deposits in impact breccias at the rim of Endeavour Crater analyzed by the Opportunity rover show the highest SiO2 concentrations at Meridiani Planum (62 wt%) with correlated Si and Al (Si:Al ~0.3). These Mg and Fe-depleted veins have chemical signatures consistent with an Al-rich smectite and likely formed as a precipitate from non-acidic aqueous solutions. Similar high Si and Al deposits found at the Gusev landing site by the Spirit rover were interpreted as montmorillonite. 2. Open system, acid-sulfate alteration. In sharp contrast to Si and Al-rich deposits, a group of high-Si targets have low concentrations of Al. Deposits in Gusev Crater near "Home Plate," a hydrothermal locale with nearby fumarolic deposits, fall into this category. Acid-sulfate processes are likely responsible for mobilizing most other elements, including Al, leaving behind a Si-rich, and generally Ti-rich, residue. Recent high-Si samples (up to 72 wt% SiO2) analyzed by the Curiosity rover exhibit similar chemical patterns, including elevated TiO2 concentrations, suggestive that acidic leaching may also have been an important process in the development of deposits found within Gale Crater. The framework of chemical analyses established through years of Mars surface operations provides the basis against which future measurements by Opportunity, Curiosity and the Mars 2020 rover can be compared.

  14. Experimental and Theoretical Analysis of Chemical Vapor Deposition with Prediction of Gravity Effects

    NASA Technical Reports Server (NTRS)

    Stinespring, C. D.; Spear, K. E.

    1985-01-01

    A combined experimental and theoretical study to characterize the effects of gravitationally-induced transport on atmospheric pressure silicon epitaxy by SiH4 pyrolysis is planned. Experimentally, flow regimes in which free convective transport contributes to the Chemical Vapor Deposition (CVD) process will be identified, and, for these conditions, the flow and deposition process will be characterized. Specifically, this will include measurements of three dimensional temperature variations using in situ Rayleigh scattering, gas phase composition profiles using laser absorption and fluorescence techniques, and deposition rates and defect densities. Subsequently, the free convective transport contribution to the CVD process will be minimized and/or altered while leaving deposition chemistry unaltered, and the characterization will be repeated. Based on these analyses, the effects of gravitationally-induced transport on atmospheric pressure CVD will be assessed.

  15. Controlled modification of nanoporous gold: Chemical vapor deposition of TiO2 in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Schaefer, A.; Ragazzon, D.; Walle, L. E.; Farstad, M. H.; Wichmann, A.; Bäumer, M.; Borg, A.; Sandell, A.

    2013-10-01

    TiO2 has been deposited in the first 400 nm of a nanoporous gold (NPG) structure using metal organic chemical vapor deposition with titanium-tetraisopropoxide as single source precursor in ultra high vacuum. The NPG has been pretreated by ozone to clean and stabilize the structure for deposition. The deposited oxide stabilizes the porous structure, otherwise prone to coarsening at elevated temperatures, up to 300 °C. The study combines the controlled sample preparation with a functional test of the prepared catalyst under real conditions in a continuous gas flow reactor. The catalytic activity of the loaded NPG at 60 °C for CO oxidation is found to be superior to unloaded as-prepared NPG.

  16. Light induced chemical vapour deposition of titanium oxide thin films at room temperature

    NASA Astrophysics Data System (ADS)

    Halary, E.; Benvenuti, G.; Wagner, F.; Hoffmann, P.

    2000-02-01

    High resolution patterned deposition of titania is achieved by light induced chemical vapour deposition (LICVD), by imaging a mask onto a glass substrate. A long pulse XeCl Excimer laser (308 nm) provides, by perpendicular irradiation, the energy to convert titanium tetraisopropoxide (TTIP) vapour into titanium dioxide films, in an oxygen atmosphere, on unheated glass substrates. The amorphous titania deposits contain about 6% carbon contamination according to X-ray photoelectron spectroscopy (XPS) measurements. The deposition rate increases with increasing laser fluence until a maximum value is reached, then remains constant over a wide range, and finally decreases with further fluence increase due to titania ablation or thermal effects. The film thickness increases linearly with the number of pulses after a nucleation period. The strong influence of the laser pulse repetition rate on the growth rate and the thickness profile are reported.

  17. Influence of gas phase equilibria on the chemical vapor deposition of graphene.

    PubMed

    Lewis, Amanda M; Derby, Brian; Kinloch, Ian A

    2013-04-23

    We have investigated the influence of gas phase chemistry on the chemical vapor deposition of graphene in a hot wall reactor. A new extended parameter space for graphene growth was defined through literature review and experimentation at low pressures (≥0.001 mbar). The deposited films were characterized by scanning electron microscopy, Raman spectroscopy, and dark field optical microscopy, with the latter showing promise as a rapid and nondestructive characterization technique for graphene films. The equilibrium gas compositions have been calculated across this parameter space. Correlations between the graphene films grown and prevalent species in the equilibrium gas phase revealed that deposition conditions associated with a high acetylene equilibrium concentration lead to good quality graphene deposition, and conditions that stabilize large hydrocarbon molecules in the gas phase result in films with multiple defects. The transition between lobed and hexagonal graphene islands was found to be linked to the concentration of the monatomic hydrogen radical, with low concentrations associated with hexagonal islands.

  18. Chemical vapour deposition of zeolitic imidazolate framework thin films.

    PubMed

    Stassen, Ivo; Styles, Mark; Grenci, Gianluca; Gorp, Hans Van; Vanderlinden, Willem; Feyter, Steven De; Falcaro, Paolo; Vos, Dirk De; Vereecken, Philippe; Ameloot, Rob

    2016-03-01

    Integrating metal-organic frameworks (MOFs) in microelectronics has disruptive potential because of the unique properties of these microporous crystalline materials. Suitable film deposition methods are crucial to leverage MOFs in this field. Conventional solvent-based procedures, typically adapted from powder preparation routes, are incompatible with nanofabrication because of corrosion and contamination risks. We demonstrate a chemical vapour deposition process (MOF-CVD) that enables high-quality films of ZIF-8, a prototypical MOF material, with a uniform and controlled thickness, even on high-aspect-ratio features. Furthermore, we demonstrate how MOF-CVD enables previously inaccessible routes such as lift-off patterning and depositing MOF films on fragile features. The compatibility of MOF-CVD with existing infrastructure, both in research and production facilities, will greatly facilitate MOF integration in microelectronics. MOF-CVD is the first vapour-phase deposition method for any type of microporous crystalline network solid and marks a milestone in processing such materials.

  19. Transparent Conducting ZnO:B Thin Films Grown by Ultraviolet Light Assisted Metal Organic Chemical Vapor Deposition Using Triethylboron for Cu(In,Ga)Se2 Solar Cells

    NASA Astrophysics Data System (ADS)

    Kobayashi, Taizo; Yamauchi, Kotaro; Mise, Takahiro; Nakada, Tokio

    2012-10-01

    High-efficiency cadmium-free Cu(In,Ga)Se2 (CIGS) thin-film solar cells have been fabricated using a zinc compound buffer layer deposited by the chemical bath deposition (CBD) process. However, the zinc compound buffer layers such as ZnS(O,OH) are prone to plasma-induced damage during the subsequent ZnO sputtering process. A process causing less damage such as metal-organic chemical vapor deposition (MOCVD) is thus required for ZnO-based transparent conducting oxide (TCO) layers. In the present work, the boron-doped zinc oxide (ZnO:B) films were grown by MOCVD using diethyl zinc (DEZ), H2O, and low-toxicity triethylboron (TEB). An UV-assisted MOCVD process was developed in order to reduce the resistivity of ZnO:B films. As a result, the resisitivity significantly decreased together with the increased electron mobility and carrier concentration. The comparison of performance was also carried out for the ZnS(O,OH)/CIGS solar cells with MOCVD-deposited ZnO:B and sputter-deposited ZnO:Al window layers.

  20. On the Growth and Microstructure of Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

    PubMed Central

    2010-01-01

    Carbon nanotubes (CNTs) were deposited on various substrates namely untreated silicon and quartz, Fe-deposited silicon and quartz, HF-treated silicon, silicon nitride-deposited silicon, copper foil, and stainless steel mesh using thermal chemical vapor deposition technique. The optimum parameters for the growth and the microstructure of the synthesized CNTs on these substrates are described. The results show that the growth of CNTs is strongly influenced by the substrate used. Vertically aligned multi-walled CNTs were found on quartz, Fe-deposited silicon and quartz, untreated silicon, and on silicon nitride-deposited silicon substrates. On the other hand, spaghetti-type growth was observed on stainless steel mesh, and no CNT growth was observed on HF-treated silicon and copper. Silicon nitride-deposited silicon substrate proved to be a promising substrate for long vertically aligned CNTs of length 110–130 μm. We present a possible growth mechanism for vertically aligned and spaghetti-type growth of CNTs based on these results. PMID:20596549

  1. Formation of chemical bonds and morphological studies of a-CNx : Effects of PECVD deposition pressure

    NASA Astrophysics Data System (ADS)

    Purhanudin, Noorain; Awang, Rozidawati

    2016-11-01

    We report the structural difference and film properties of amorphous carbon nitride (a-CNx) thin films as a function of PECVD deposition pressure using precursor gases of ethane (C2H6) and nitrogen (N2). The Fourier transform infra-red (FTIR) spectra reveal peaks of single C-N (1100 cm-1), double C=C (1500 cm-1), double C=N (1670 cm-1) and triple C≡N (2340 cm-1). A systematic change in the preferential peaks correspond to the C=N and C≡N triple bonds were found to increase as deposition pressure increased. Field emission scanning electron microscopy (FESEM) provides morphological structure of the film. From the samples prepare at low deposition pressure, the particles tend to agglomerate into clusters with non-homogenous grains distributed over the surface. Higher deposition pressure results in coalescence process of the film, reflecting the formation of grains evenly distributed on the film. The film morphology is increased in voids structure with increase in deposition pressure. Finally, the samples were successfully prepared by PECVD technique with deposition pressure in varied, and the effect of deposition pressure on the chemical bonding and the morphology of the films had been studied.

  2. Control of interface nanoscale structure created by plasma-enhanced chemical vapor deposition.

    PubMed

    Peri, Someswara R; Akgun, Bulent; Satija, Sushil K; Jiang, Hao; Enlow, Jesse; Bunning, Timothy J; Foster, Mark D

    2011-09-01

    Tailoring the structure of films deposited by plasma-enhanced chemical vapor deposition (PECVD) to specific applications requires a depth-resolved understanding of how the interface structures in such films are impacted by variations in deposition parameters such as feed position and plasma power. Analysis of complementary X-ray and neutron reflectivity (XR, NR) data provide a rich picture of changes in structure with feed position and plasma power, with those changes resolved on the nanoscale. For plasma-polymerized octafluorocyclobutane (PP-OFCB) films, a region of distinct chemical composition and lower cross-link density is found at the substrate interface for the range of processing conditions studied and a surface layer of lower cross-link density also appears when plasma power exceeds 40 W. Varying the distance of the feed from the plasma impacts the degree of cross-linking in the film center, thickness of the surface layer, and thickness of the transition region at the substrate. Deposition at the highest power, 65 W, both enhances cross-linking and creates loose fragments with fluorine content higher than the average. The thickness of the low cross-link density region at the air interface plays an important role in determining the width of the interface built with a layer subsequently deposited atop the first.

  3. Study of the low-pressure chemical-vapor-deposited tungsten-silicon interface: Interfacial fluorine

    SciTech Connect

    Carlisle, J.A.; Chopra, D.R.; Dillingham, T.R.; Gnade, B.; Smith, G.

    1989-03-15

    Single-crystal silicon <100> substrates uniformly doped at approx. >12 ..cap omega.. cm with boron were deposited with approx.800 A of low-pressure chemically vapor deposited W in a hot-quartz-walled (Anicon) system at a deposition temperature of 300 /sup 0/C. The samples studied include an as-deposited sample and two others which were post-deposition annealed at 600 /sup 0/C in Ar for 15 min each. X-ray photoelectron spectroscopy (XPS) coupled with an Ar/sup +/ ion sputter profiling technique was employed to investigate these structures as a function of depth. Particular emphasis was placed on the depth distribution, content, and chemical state of the fluorine present. Rutherford backscattering spectrometry and x-ray diffraction were used to corroborate the XPS data. Results show that, for the as-deposited and 600 /sup 0/C annealed sample, the maximum concentration of fluorine (0.6--0.8 at. %) is observed, not at the W/Si interface, but rather at the W (H/sub 2/ reduction)/W (Si displacement) interface. For the sample annealed at 850 /sup 0/C, WSi/sub 2/ is formed in the overlayer, and the peak in the F profile corresponds to the position of the WSi/sub 2//Si interface. The maximum concentration of fluorine is reduced by approximately 75% to 0.23 at. % in this sample. From the XPS spectra of the F 1s region, the chemical species of fluorine present in these samples have been identified as WF/sub 6/, WF/sub 5/, and WF/sub 4/.

  4. Plasma-enhanced chemical vapor deposition of β-tungsten, a metastable phase

    NASA Astrophysics Data System (ADS)

    Tang, C. C.; Hess, D. W.

    1984-09-01

    Plasma-enhanced chemical vapor deposition of a metastable phase of tungsten ( β-W) is performed using tungsten hexafluoride and hydrogen as source gases. At 350 °C, the as-deposited resistivity of these films is ˜50 μΩ cm. After heat treatments between 650 and 750 °C in forming gas, the resistivity drops below 11 μΩ cm. Concomitant with this resistivity change is a phase change to α-W, the equilibrium, body-centered-cubic form.

  5. Growth mechanism of carbon nanotubes grown by microwave plasma-assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Muneyoshi, T.; Okai, M.; Yaguchi, T.; Sasaki, S.

    2001-10-01

    To investigate the most suitable deposition conditions and growth mechanism, we grew carbon nanotubes (CNTs) by microwave plasma-assisted chemical vapor deposition under various conditions. The experimental parameters we varied were (a) the mixture ratio of methane in hydrogen, (b) the total gas pressure, and (c) the bias electric current. We found that the bias electric current was the most influential parameter in determining the shape of CNTs. We believe that the growth process of CNTs can be explained by using the solid solubility curves of metal-carbon phase diagrams. Selective growth and low-temperature growth of CNTs can also be understood from these phase diagrams.

  6. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  7. Development of a polysilicon process based on chemical vapor deposition, phase 1

    NASA Technical Reports Server (NTRS)

    Plahutnik, F.; Arvidson, A.; Sawyer, D.

    1982-01-01

    The goal of this program is to demonstrate that a dichlorosilane-based reductive chemical vapor deposition (CVD) process is capable of producing, at low cost, high quality polycrystalline silicon. Physical form and purity of this material will be consistent with LSA material requirements for use in the manufacture of high efficiency solar cells. Four polysilicon deposition runs were completed in an intermediate size reactor using dichlorosilane fed from 250 pound cylinders. Results from the intermediate size reactor are consistent with those obtained earlier with a small experimental reactor. Modifications of two intermediate size reactors were completed to interface with the dichlorosilane process demonstration unit (PDU).

  8. Self-assembled patterns of iron oxide nanoparticles by hydrothermal chemical-vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengjun; Wei, B. Q.; Ajayan, P. M.

    2001-12-01

    Here, we report a hydrothermal chemical-vapor deposition process, which produces self-assembled patterns of iron oxide nanoparticles. By exposing a planar silica substrate to a prevaporized mixture of water, ferrocene [Fe(C5H5)2] and xylene (C8H10), at temperatures of ˜1000 °C, Fe2O3 nanoparticles are deposited on the substrate surface, in regular circular patterns. The particle sizes are less than 100 nm, and are organized into submicron-size patterns. The same process without water produces arrays of carbon nanotubes catalyzed by iron nanoparticles that are formed by the decomposition of ferrocene molecules.

  9. Metal organic chemical vapor deposition of phase change Ge1Sb2Te4 nanowires.

    PubMed

    Longo, Massimo; Fallica, Roberto; Wiemer, Claudia; Salicio, Olivier; Fanciulli, Marco; Rotunno, Enzo; Lazzarini, Laura

    2012-03-14

    The self-assembly of Ge(1)Sb(2)Te(4) nanowires (NWs) for phase change memories application was achieved by metal organic chemical vapor deposition, catalyzed by Au nanoislands in a narrow range of temperatures and deposition pressures. In the optimized conditions of 400 °C, 50 mbar, the NWs are Ge(1)Sb(2)Te(4) single hexagonal crystals. Phase change memory switching was reversibly induced by nanosecond current pulses through metal-contacted NWs with threshold voltage of about 1.35 V.

  10. Chemical vapor deposited diamond-on-diamond powder composites (LDRD final report)

    SciTech Connect

    Panitz, J.K.; Hsu, W.L.; Tallant, D.R.; McMaster, M.; Fox, C.; Staley, D.

    1995-12-01

    Densifying non-mined diamond powder precursors with diamond produced by chemical vapor infiltration (CVI) is an attractive approach for forming thick diamond deposits that avoids many potential manufacturability problems associated with predominantly chemical vapor deposition (CVD) processes. The authors developed techniques for forming diamond powder precursors and densified these precursors in a hot filament-assisted reactor and a microwave plasma-assisted reactor. Densification conditions were varied following a fractional factorial statistical design. A number of conclusions can be drawn as a result of this study. High density diamond powder green bodies that contain a mixture of particle sizes solidify more readily than more porous diamond powder green bodies with narrow distributions of particle sizes. No composite was completely densified although all of the deposits were densified to some degree. The hot filament-assisted reactor deposited more material below the exterior surface, in the interior of the powder deposits; in contrast, the microwave-assisted reactor tended to deposit a CVD diamond skin over the top of the powder precursors which inhibited vapor phase diamond growth in the interior of the powder deposits. There were subtle variations in diamond quality as a function of the CVI process parameters. Diamond and glassy carbon tended to form at the exterior surface of the composites directly exposed to either the hot filament or the microwave plasma. However, in the interior, e.g. the powder/substrate interface, diamond plus diamond-like-carbon formed. All of the diamond composites produced were grey and relatively opaque because they contained flawed diamond, diamond-like-carbon and glassy carbon. A large amount of flawed and non-diamond material could be removed by post-CVI oxygen heat treatments. Heat treatments in oxygen changed the color of the composites to white.

  11. Estimating Chemical Exchange between Atmospheric Deposition and Forest Canopy in Guizhou, China.

    PubMed

    Li, Wei; Gao, Fang; Liao, Xueqin

    2013-01-01

    To evaluate the effects of atmospheric deposition on forest ecosystems, wet-only precipitation and throughfall samples were collected in two forest types (Masson pine [ Lamb.] forests and mixed conifer and broadleaf forests) in the Longli forest in the Guizhou province of southwestern China for a period of 21 successive months from April 2007 to December 2008. The pH and chemical components of precipitation and throughfall were analyzed. In addition, the canopy budget model was applied to distinguish between in-canopy and atmospheric sources of chemical compounds. Canopy leaching and total potentially acidifying deposition fluxes were calculated. The results showed that the average pH and the concentration of ions in throughfall were higher than those in precipitation, with the exception of the NH concentration. Dry deposition of S and N accumulated more in Masson pine forests than in mixed conifer and broadleaf forests. Canopy leaching was the most significant source of base cations in forest throughfall, which was higher in the mixed forests than in the coniferous forests. Anions in throughfall deposition in Masson pine forests exceeded those in the mixed forests. Higher total potentially acidifying deposition fluxes reflected the more effective amounts of acid delivered to Masson pine forests compared with mixed conifer and broadleaf forests. In addition, acid deposition induced the leaching and loss of nutrient ions such as Mg, K, and Ca. Although the trees of the studied areas have not shown any symptoms of cation loss, a potentially harmful influence was engendered by atmospheric deposition in the two forest types in the Longli area.

  12. A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2015-01-01

    We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics. The PECVD technology is inherently multiscale, from macroscale processes in the chemical reactor to atomic-scale surface chemistry. Our macroscale model is based on Navier-Stokes equations for a transient laminar flow of a compressible chemically reacting gas mixture, together with the mass transfer and energy balance equations, Poisson equation for electric potential, electrons and ions balance equations. The chemical kinetics model includes 24 species and 58 reactions: 37 in the gas phase and 21 on the surface. A deposition model consists of three stages: adsorption to the surface, diffusion along the surface and embedding of products into the substrate. A new model has been validated on experimental results obtained with the "Plasmalab System 100" reactor. We present the mathematical model and simulation results investigating the influence of flow rate and source gas proportion on silicon nitride film growth rate and chemical composition.

  13. High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays.

    PubMed

    Tao, Liang; Xiong, Yan; Liu, Hong; Shen, Wenzhong

    2014-01-21

    Quantum dot sensitized solar cells (QDSSCs) are attractive photovoltaic devices due to their simplicity and low material requirements. However, efforts to realize high efficiencies in QDSSCs have often been offset by complicated processes and expensive or toxic materials, significantly limiting their useful application. In this work, we have realized for the first time, high performance PbS QDSSCs based on TiO2 nanotube arrays (NTAs) via an in situ chemical deposition method controlled by a low electric field. An efficiency, η, of ~3.41% under full sun illumination has been achieved, which is 133.6% higher than the best result previously reported for a simple system without doping or co-sensitizing, and comparable to systems with additional chemicals. Furthermore, a high open-circuit voltage (0.64 V), short-circuit current (8.48 mA cm(-2)) and fill factor (0.63) have been achieved. A great increase in the quantity of the loaded quantum dots (QDs) in the NTAs was obtained from the in situ electric field assisted chemical bath deposition (EACBD) process, which was the most significant contributing factor with respect to the high JSC. The high VOC and FF have been attributed to a much shorter electron path, less structural and electronic defects, and lower recombination in the ordered TiO2 NTAs produced by oscillating anodic voltage. Besides, the optimal film thickness (~4 μm) based on the NTAs was much thinner than that of the control cell based on nanoporous film (~30.0 μm). This investigation can hopefully offer an effective way of realizing high performance QDSSCs and QD growth/installation in other nanostructures as well.

  14. Using different chemical methods for deposition of copper selenide thin films and comparison of their characterization.

    PubMed

    Güzeldir, Betül; Sağlam, Mustafa

    2015-11-05

    Different chemical methods such as Successive Ionic Layer Adsorption and Reaction (SILAR), spin coating and spray pyrolysis methods were used to deposite of copper selenide thin films on the glass substrates. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDX) spectroscopy and UV-vis spectrophotometry. The XRD and SEM studies showed that all the films exhibit polycrystalline nature and crystallinity of copper selenide thin films prepared with spray pyrolysis greater than spin coating and SILAR methods. From SEM and AFM images, it was observed copper selenide films were uniform on the glass substrates without any visible cracks or pores. The EDX spectra showed that the expected elements exist in the thin films. Optical absorption studies showed that the band gaps of copper selenide thin films were in the range 2.84-2.93 eV depending on different chemical methods. The refractive index (n), optical static and high frequency dielectric constants (ε0, ε∞) values were calculated by using the energy bandgap values for each deposition method. The obtained results from different chemical methods revealed that the spray pyrolysis technique is the best chemical deposition method to fabricate copper selenide thin films. This absolute advantage was lead to play key roles on performance and efficiency electrochromic and photovoltaic devices.

  15. Surface modification of silicon-containing fluorocarbon films prepared by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jin, Yoonyoung; Desta, Yohannes; Goettert, Jost; Lee, G. S.; Ajmera, P. K.

    2005-07-01

    Surface modification of silicon-containing fluorocarbon (SiCF) films achieved by wet chemical treatments and through x-ray irradiation is examined. The SiCF films were prepared by plasma-enhanced chemical vapor deposition, using gas precursors of tetrafluoromethane and disilane. As-deposited SiCF film composition was analyzed by x-ray photoelectron spectroscopy. Surface modification of SiCF films utilizing n-lithiodiaminoethane wet chemical treatment is discussed. Sessile water-drop contact angle changed from 95°+/-2° before treatment to 32°+/-2° after treatment, indicating a change in the film surface characteristics from hydrophobic to hydrophilic. For x-ray irradiation on the SiCF film with a dose of 27.4 kJ/cm3, the contact angle of the sessile water drop changed from 95°+/-2° before radiation to 39°+/-3° after x-ray exposure. The effect of x-ray exposure on chemical bond structure of SiCF films is studied using Fourier transform infrared measurements. Electroless Cu deposition was performed to test the applicability of the surface modified films. The x-ray irradiation method offers a unique advantage in making possible surface modification in a localized area of high-aspect-ratio microstructures. Fabrication of a Ti-membrane x-ray mask is introduced here for selective surface modification using x-ray irradiation.

  16. Facile synthesis 3D flexible core-shell graphene/glass fiber via chemical vapor deposition

    PubMed Central

    2014-01-01

    Direct deposition of graphene layers on the flexible glass fiber surface to form the three-dimensional (3D) core-shell structures is offered using a two-heating reactor chemical vapor deposition system. The two-heating reactor is utilized to offer sufficient, well-proportioned floating C atoms and provide a facile way for low-temperature deposition. Graphene layers, which are controlled by changing the growth time, can be grown on the surface of wire-type glass fiber with the diameter from 30 nm to 120 um. The core-shell graphene/glass fiber deposition mechanism is proposed, suggesting that the 3D graphene films can be deposited on any proper wire-type substrates. These results open a facile way for direct and high-efficiency deposition of the transfer-free graphene layers on the low-temperature dielectric wire-type substrates. PACS 81.05.U-; 81.07.-b; 81.15.Gh PMID:25170331

  17. Enhanced chemical vapor deposition of copper from (hfac)Cu(TMVS) using liquid coinjection of TMVS

    SciTech Connect

    Peterson, G.A.; Parmeter, J.E.; Apblett, C.A.; Gonzales, M.F.; Smith, P.M.; Omstead, T.R.; Norman, J.A.T.

    1995-03-01

    A direct liquid connection system has been applied to the chemical vapor deposition of copper using the commercially available Cu(I) precursor (hfac)Cu(TMVS), where hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate and TMVS = trimethylvinyl-silane. Precursor delivery was enhanced through the use of a coinjection system wherein additional TMVS was mixed with tire copper precursor before injection into the vaporization chamber. The results reported here demonstrate the capability of depositing blanket cooper for high purity (on the order of 99.99% copper) and low resistivity (1.85 {+-} 0.1 {mu}{Omega}-cm). These copper films have been deposited at rates up to and exceeding 1,500 {angstrom}/min. The effects of temperature and carrier gas on deposition rate and resistivity are examined. The as-deposited films demonstrate and dependence of grain size with thickness and little structural or morphological change with annealing. This study suggests that liquid coinjection is an effective method for enhancing deposition rates and for producing high quality copper films from copper(I) precursors.

  18. Conformal encapsulation of three-dimensional, bioresorbable polymeric scaffolds using plasma-enhanced chemical vapor deposition.

    PubMed

    Hawker, Morgan J; Pegalajar-Jurado, Adoracion; Fisher, Ellen R

    2014-10-21

    Bioresorbable polymers such as poly(ε-caprolactone) (PCL) have a multitude of potential biomaterial applications such as controlled-release drug delivery and regenerative tissue engineering. For such biological applications, the fabrication of porous three-dimensional bioresorbable materials with tunable surface chemistry is critical to maximize their surface-to-volume ratio, mimic the extracellular matrix, and increase drug-loading capacity. Here, two different fluorocarbon (FC) precursors (octofluoropropane (C3F8) and hexafluoropropylene oxide (HFPO)) were used to deposit FC films on PCL scaffolds using plasma-enhanced chemical vapor deposition (PECVD). These two coating systems were chosen with the intent of modifying the scaffold surfaces to be bio-nonreactive while maintaining desirable bulk properties of the scaffold. X-ray photoelectron spectroscopy showed high-CF2 content films were deposited on both the exterior and interior of PCL scaffolds and that deposition behavior is PECVD system specific. Scanning electron microscopy data confirmed that FC film deposition yielded conformal rather than blanket coatings as the porous scaffold structure was maintained after plasma treatment. Treated scaffolds seeded with human dermal fibroblasts (HDF) demonstrate that the cells do not attach after 72 h and that the scaffolds are noncytotoxic to HDF. This work demonstrates conformal FC coatings can be deposited on 3D polymeric scaffolds using PECVD to fabricate 3D bio-nonreactive materials.

  19. The growth characteristics of microcrystalline Si thin film deposited by atmospheric pressure plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kwon, Jung-Dae

    2013-11-01

    Microcrystalline silicon thin film was grown by atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) technique with a cylindrical rotary electrode supplied with 150 MHz very-high-frequency power. The crystalline volume fraction could be controlled by changing the flow rate ratio of silane and hydrogen gas during AP-PECVD. We could also control it by regulating the substrate scanning speed. At low substrate scanning speed, the silicon film had a low crystalline volume faction and layer-by-layer structure with alternating layers of amorphous and microcrystalline Si. On the other hand, at high substrate scanning speed, silicon crystals of sizes 25 nm grew homogeneously throughout the whole film.

  20. Deposition of zinc oxide photoelectrode using plasma enhanced chemical vapor deposition for dye-sensitized solar cells.

    PubMed

    Lee, Su Young; Kim, Sang Ho

    2014-12-01

    We investigated the characteristics of zinc oxide (ZnO) photoelectrodes grown by plasma enhanced chemical vapor deposition. ZnO has many advantages, such as high binding energy, breakdown strength, cohesion, hardness, and electron mobility. On the F-doped SnO2 (FTO) electrode, we deposited ZnO as a function of thickness, and we examined the thickness effect on the I-V, fill factor, open-circuit voltage, short-circuit current density, and especially the power conversion efficiency of the built in dye-sensitized solar cell. To study the thickness effect on the conduction and recombination of electrons in the ZnO electrode, we analyzed the alignment of grains, crystallinity, impedance, and cyclic I-V properties. The thickness of ZnO changed the electron diffusion length and recombination time. As a result, the maximum power conversion efficiency of 2.63% was obtained with a moderately thick (8.06 μm) ZnO.

  1. Flexible Electronics: High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells (Adv. Mater. 28/2016).

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    On page 5939, J. V. Badding and co-workers describe the unrolling of a flexible hydrogenated amorphous silicon solar cell, deposited by high-pressure chemical vapor deposition. The high-pressure deposition process is represented by the molecules of silane infiltrating the small voids between the rolled up substrate, facilitating plasma-free deposition over a very large area. The high-pressure approach is expected to also find application for 3D nanoarchitectures.

  2. Kinetics of laser chemical vapor deposition of carbon and refractory metals

    NASA Astrophysics Data System (ADS)

    Gao, Feng

    2000-10-01

    Three-dimensional laser chemical vapor deposition (3D-LCVD) has been used to grow rods of carbon, tungsten, titanium, and hafnium from a variety of hydrocarbons and metal halide-based precursors. A novel computerized 3D-LCVD system was designed and successfully used in the experiments. A focused Nd:Yag laser beam (lambda = 1.06 mum) was utilized to locally heat up a substrate to deposition temperature. The rods, which grew along the axis of the laser beam, had a typical diameter of 30--80 mum and a length of about 1 mm. The precursors for carbon deposition were the alkynes: propyne, butyne, pentyne, hexyne, and octyne. Propyne gave the highest deposition rate, in excess 3 mm/s at high laser powers (0.45 W) and high partial pressures (3000 mbar). the temperature dependence and pressure dependence were both non-linear functions of the growth rate. the temperature dependence could be separated into two regions---the kinetically limited region, which obeys the Arrhenius relationship, and the transport limited region, which is explained by diffusion of the precursors to the reaction zone. The pressure dependence showed that the reaction order for the different precursors varied from 2.5 for propyne to 1.3 for octyne. The precursors used deposit the refractory metals were tungsten hexafloride, titanium tetraiodide and hafnium chloride. The only successful precursor was tungsten hexafluoride, which readily produced tungsten rods when mixed with hydrogen. Rod diameters typically ranged from 50 mum to 400 mum and the average length of the rods were about 1 mm. Much lower deposition rates, less than 4.5 mum/s were obtained in this case as compared to carbon deposition. By an optimization of the LCVD process, it was possible to deposit high-quality single crystal tungsten rods. They were all oriented in the <100> direction.

  3. Chemical characterisation of rainwater at Stromboli Island (Italy): The effect of post-depositional processes

    NASA Astrophysics Data System (ADS)

    Cangemi, Marianna; Madonia, Paolo; Favara, Rocco

    2017-04-01

    Volcanoes emit fluids and solid particles into the atmosphere that modify the chemical composition of natural precipitation. We have investigated the geochemistry of Stromboli's rainfall during the period from November 2014 to March 2016 using a network of a new type of sampler specifically designed for operations on volcanic islands. We found that most of the chemical modifications are due to processes occurring after the storage of rainwater in the sampling bottles. These processes include dissolution of volcanogenic soluble salts encrusting volcanic ash and a variable contribution of sea spray aerosol. Our data showed noticeably less scatter than has previously been achieved with a different sampling system that was more open to the atmosphere. This demonstrates the improved efficacy of the new sampler design. The data showed that post-depositional chemical alteration of rain samples dominates over processes occurring during droplet formation ad precipitation. This has important implications for the calculation of fluxes of chemicals from rainfall in volcanic regions.

  4. Low Temperature Metal Free Growth of Graphene on Insulating Substrates by Plasma Assisted Chemical Vapor Deposition.

    PubMed

    Muñoz, R; Munuera, C; Martínez, J I; Azpeitia, J; Gómez-Aleixandre, C; García-Hernández, M

    2017-03-01

    Direct growth of graphene films on dielectric substrates (quartz and silica) is reported, by means of remote electron cyclotron resonance plasma assisted chemical vapor deposition r-(ECR-CVD) at low temperature (650°C). Using a two step deposition process- nucleation and growth- by changing the partial pressure of the gas precursors at constant temperature, mostly monolayer continuous films, with grain sizes up to 500 nm are grown, exhibiting transmittance larger than 92% and sheet resistance as low as 900 Ω·sq(-1). The grain size and nucleation density of the resulting graphene sheets can be controlled varying the deposition time and pressure. In additon, first-principles DFT-based calculations have been carried out in order to rationalize the oxygen reduction in the quartz surface experimentally observed. This method is easily scalable and avoids damaging and expensive transfer steps of graphene films, improving compatibility with current fabrication technologies.

  5. Fluorine redistribution in a chemical vapor deposited tungsten/polycrystalline silicon gate structure during heat treatment

    NASA Astrophysics Data System (ADS)

    Eriksson, Th.; Carlsson, J.-O.; Keinonen, J.; Petersson, C. S.

    1988-09-01

    Fluorine redistribution during heat treatment of chemical vapor deposited tungsten/polycrystalline silicon gate structures was analyzed by the nuclear resonance broadening technique. The tungsten layer was deposited from a hydrogen/tungsten hexafluoride gas mixture. Upon heat treatment in the temperature range 1020-1325-K tungsten disilicide formation was observed using Rutherford backscattering spectrometry. In the as-deposited sample, the fluorine was accumulated at the tungsten/polycrystalline silicon interface. After silicide formation the fluorine was observed at the tungsten disilicide/polycrystalline silicon interface. At temperatures above 1120 K fluorine starts to diffuse through the polycrystalline silicon layer. A variation in the total fluorine content between the samples was also observed. The origin of the fluorine redistribution as well as the variation in the total fluorine content is discussed in connection to conceivable mechanisms.

  6. Fluorine redistribution in a chemical vapor deposited tungsten/polycrystalline silicon gate structure during heat treatment

    SciTech Connect

    Eriksson, T.; Carlsson, J.; Keinonen, J.; Petersson, C.S.

    1988-09-15

    Fluorine redistribution during heat treatment of chemical vapor deposited tungsten/polycrystalline silicon gate structures was analyzed by the nuclear resonance broadening technique. The tungsten layer was deposited from a hydrogen/tungsten hexafluoride gas mixture. Upon heat treatment in the temperature range 1020--1325-K tungsten disilicide formation was observed using Rutherford backscattering spectrometry. In the as-deposited sample, the fluorine was accumulated at the tungsten/polycrystalline silicon interface. After silicide formation the fluorine was observed at the tungsten disilicide/polycrystalline silicon interface. At temperatures above 1120 K fluorine starts to diffuse through the polycrystalline silicon layer. A variation in the total fluorine content between the samples was also observed. The origin of the fluorine redistribution as well as the variation in the total fluorine content is discussed in connection to conceivable mechanisms.

  7. Chemical vapor deposited tungsten with dispersed carbides for Space Shuttle check valves

    NASA Technical Reports Server (NTRS)

    Williams, G. E.

    1980-01-01

    A chemical vapor deposited tungsten with dispersed carbides was selected as the material for Space Shuttle Orbital Maneuvering and Reaction Control Systems check valve poppets and seats. The selection followed a NASA-sponsored prototype check valve development program utilizing the cutter-seal shell poppet concept. The poppet material is deposited as a coating approximately 0.9 mm thick and fabricated into a shell as a free standing body. The seat material is deposited as a coating 1.1 mm thick on a seat blank, and the cutter seal is machined in the coating. Module tests demonstrated that the material could be ground and lapped to very sharp edges and could cut through typical system contaminants without excessive damage to the sealing surfaces. The material was also determined to be unaffected by exposure to a strongly oxidizing storable propellant.

  8. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J.

    2015-11-01

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH4/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H2 into the deposition gas chemistry. Electronically excited species of CN, C2, Ar, N2, CH, Hβ, and Hα were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T2g phonon at 1333 cm-1 peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit "coral" and "cauliflower-like" morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  9. Hot-wire chemical vapour deposition at low substrate temperatures for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Bakker, R.

    2010-09-01

    The need for large quantities of rapidly and cheaply produced electronic devices has increased rapidly over the past decades. The transistors and diodes that are used to build these devices are predominantly made of crystalline silicon. Since crystalline silicon is very expensive to produce on a large scale and cannot be directly deposited on plastic substrates, much research is being done on thin film amorphous or nanocrystalline semiconductors and insulators. Hot-wire chemical vapour deposition (HWCVD) is a novel, low cost, and convenient way to deposit these materials. The process can be controlled in such a way that specific chemical reactions take place and unwanted side reactions are minimized. It can easily be scaled up to produce large-area thin film electronics. Conventionally, plasma enhanced chemical vapour deposition (PECVD) is used to deposit semiconductors and inorganic dielectrics. Recently, HWCVD has been explored for fast deposition of such materials. An adaptation of HWCVD, initiated chemical vapour deposition (iCVD), offers the unique possibility of producing organic materials and polymers in a vacuum reactor, without the use of solvents. This technique was originally proposed at the Massachusetts institute of technology (MIT) by Prof. Karen Gleason. The iCVD process involves the creation of radicals by dissociation of a peroxide (a molecule with a ~O-O~ bond) by a heated wire in a vacuum reactor. This radical initiates a polymerization reaction of a vinyl (a molecule with a double carbon-carbon bond, ~C=C~) monomer at a substrate held at room temperature. This thesis describes a dedicated iCVD reactor for polymer deposition, installed at Utrecht University, along with a reactor with a cooled substrate holder in an existing HWCVD multi-chamber setup for low-temperature silicon nitride (SiNx) depositions. The most important features of these reactors are described and the characterization techniques are explained. This thesis contains four new

  10. Low temperature metal free growth of graphene on insulating substrates by plasma assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Muñoz, R.; Munuera, C.; Martínez, J. I.; Azpeitia, J.; Gómez-Aleixandre, C.; García-Hernández, M.

    2017-03-01

    Direct growth of graphene films on dielectric substrates (quartz and silica) is reported, by means of remote electron cyclotron resonance plasma assisted chemical vapor deposition r-(ECR-CVD) at low temperature (650 °C). Using a two step deposition process- nucleation and growth- by changing the partial pressure of the gas precursors at constant temperature, mostly monolayer continuous films, with grain sizes up to 500 nm are grown, exhibiting transmittance larger than 92% and sheet resistance as low as 900 Ω sq-1. The grain size and nucleation density of the resulting graphene sheets can be controlled varying the deposition time and pressure. In additon, first-principles DFT-based calculations have been carried out in order to rationalize the oxygen reduction in the quartz surface experimentally observed. This method is easily scalable and avoids damaging and expensive transfer steps of graphene films, improving compatibility with current fabrication technologies.

  11. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    DOE PAGES

    Gou, Huiyang; Hemley, Russell J.; Hemawan, Kadek W.

    2015-11-02

    Polycrystalline diamond has been successfully synthesized on silicon substrates at atmospheric pressure using a microwave capillary plasma chemical vapor deposition technique. The CH4/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H2 into the deposition gas chemistry. Electronically excited species of CN, C2, Ar, N2, CH, Hβ and Hα were observed in emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T2g phonon at 1333 cm-1 peak relative to the Raman features of graphitic carbon. Furthermore, field emission scanning electron microscopy (SEM) images revealmore » that, depending on the on growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.« less

  12. QUALITY ASSURANCE PROGRAM FOR WET DEPOSITION SAMPLING AND CHEMICAL ANALYSES FOR THE NATIONAL TRENDS NETWORK.

    USGS Publications Warehouse

    Schroder, LeRoy J.; Malo, Bernard A.; ,

    1985-01-01

    The purpose of the National Trends Network is to delineate the major inorganic constituents in the wet deposition in the United States. The approach chosen to monitor the Nation's wet deposition is to install approximately 150 automatic sampling devices with at least one collector in each state. Samples are collected at one week intervals, removed from collectors, and transported to an analytical laboratory for chemical analysis. The quality assurance program has divided wet deposition monitoring into 5 parts: (1) Sampling site selection, (2) sampling device, (3) sample container, (4) sample handling, and (5) laboratory analysis. Each of these five components is being examined using existing designs or new designs. Each existing or proposed sampling site is visited and a criteria audit is performed.

  13. Development of a polysilicon process based on chemical vapor deposition, phase 1

    NASA Technical Reports Server (NTRS)

    Mccormick, J.; Sharp, K.; Arvidson, A.; Sawyer, D.

    1981-01-01

    The development of a dichlorosilane-based reductive chemical vapor deposition process for the production of polycrystalline silicon is discussed. Experimental data indicate that the ease of ignition and explosion severity of dichlorosilane (DCS)/air mixtures is substantially attenuated if the DCS is diluted with hydrogen. Redesign of the process development unit to accommodate safety related information is described. Several different sources of trichlorosilane were used to generate a mixture of redistributed chlorosilanes via Dowex ion exchange resin. The unseparated mixtures were then fed to an experimental reactor in which silicon was deposited and the deposited silicon analyzed for electrically active impurities. At least one trichlorosilane source provided material of requisite purity. Silicon grown in the experimental reactor was converted to single crystal material and solar cells fabricated and tested.

  14. Low Temperature Metal Free Growth of Graphene on Insulating Substrates by Plasma Assisted Chemical Vapor Deposition

    PubMed Central

    Muñoz, R.; Munuera, C.; Martínez, J. I.; Azpeitia, J.; Gómez-Aleixandre, C.; García-Hernández, M.

    2016-01-01

    Direct growth of graphene films on dielectric substrates (quartz and silica) is reported, by means of remote electron cyclotron resonance plasma assisted chemical vapor deposition r-(ECR-CVD) at low temperature (650°C). Using a two step deposition process- nucleation and growth- by changing the partial pressure of the gas precursors at constant temperature, mostly monolayer continuous films, with grain sizes up to 500 nm are grown, exhibiting transmittance larger than 92% and sheet resistance as low as 900 Ω·sq-1. The grain size and nucleation density of the resulting graphene sheets can be controlled varying the deposition time and pressure. In additon, first-principles DFT-based calculations have been carried out in order to rationalize the oxygen reduction in the quartz surface experimentally observed. This method is easily scalable and avoids damaging and expensive transfer steps of graphene films, improving compatibility with current fabrication technologies. PMID:28070341

  15. Non-classical crystallization of silicon thin films during hot wire chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Soo; Lee, Sang-Hoon; Kim, Da-Seul; Kim, Kun-Su; Park, Soon-Won; Hwang, Nong-Moon

    2017-01-01

    The deposition behavior of silicon films by hot wire chemical vapor deposition (HWCVD) was approached by non-classical crystallization, where the building block of deposition is a nanoparticle generated in the gas phase of the reactor. The puzzling phenomenon of the formation of an amorphous incubation layer on glass could be explained by the liquid-like property of small charged nanoparticles (CNPs), which are generated in the initial stage of the HWCVD process. Using the liquid-like property of small CNPs, homo-epitaxial growth as thick as 150 nm could be successfully grown on a silicon wafer at 600 °C under the processing condition where CNPs as small as possible could be supplied steadily by a cyclic process which periodically resets the process. The size of CNPs turned out to be an important parameter in the microstructure evolution of thin films.

  16. Formation of catalyst nanoparticles and nucleation of carbon nanotubes in chemical vapor deposition.

    PubMed

    Verissimo, C; Aguiar, M R; Moshkalev, S A

    2009-07-01

    Multi-walled carbon nanotubes and other carbon nanostructures have been grown using catalytic thermal chemical vapor deposition method in a horizontal tubular quartz furnace at atmospheric pressure. The mechanisms of nanotubes/nanofibers nucleation and growth are analyzed. A new model explaining the nanotube nucleation as a specific instability occurring on the catalyst particle surface supersaturated with carbon is presented. It is also shown that an axially symmetric instability, giving rise to the nanotube nucleation, is developed when certain critical conditions such as temperature, supersaturation and catalyst volume are achieved. For smaller temperatures, another mechanism of carbon segregation from supersaturated catalyst particles has been observed. In this case, flat rather than tubular graphitic layers are formed. These findings are important for better understanding and control of the synthesis of different carbon nanoforms using chemical vapor deposition.

  17. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    SciTech Connect

    Rainer Wallny

    2012-10-15

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2010, and the LHC upgrades expected in 2015, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed and operational in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  18. Investigations of chemical vapor deposition of GaN using synchrotron radiation

    SciTech Connect

    Thompson, C.; Stephenson, G. B.; Eastman, J. A.; Munkholm, A.; Auciello, O.; Murty, M. V. R.; Fini, P.; DenBaars, S. P.; Speck, J. S.

    2000-05-25

    The authors apply synchrotron x-ray analysis techniques to probe the surface structure of GaN films during synthesis by metal-organic chemical vapor deposition (MOCVD). Their approach is to observe the evolution of surface structure and morphology in real time using grazing incidence x-ray scattering (GIXS). This technique combines the ability of x-rays to penetrate the chemical vapor deposition environment for in situ measurements, with the sensitivity of GIXS to atomic scale structure. In this paper they present examples from some of their studies of growth modes and surface evolution as a function of process conditions that illustrate the capabilities of synchrotron x-ray analysis during MOCVD growth. They focus on studies of the homoepitaxial growth mode, island coarsening dynamics, and effects of impurities.

  19. A study of diamond synthesis by hot filament chemical vapor deposition on Nc coatings

    NASA Astrophysics Data System (ADS)

    Polini, R.; Kumashiro, S.; Jackson, M. J.; Amar, M.; Ahmed, W.; Sein, H.

    2006-04-01

    Deposition of diamond films onto various substrates can result in significant technological advantages in terms of functionality and improved life and performance of components. Diamond is hard, wear resistant, chemically inert, and biocompatible. It is considered to be the ideal material for surfaces of cutting tools and biomedical components. However, it is well known that diamond deposition onto technologically important substrates, such as co-cemented carbides and steels, is problematic due to carbon interaction with the substrate, low nucleation densities, and poor adhesion. Several papers previously published in the relevant literature have reported the application of interlayer materials such as metal nitrides and carbides to provide bonding between diamond and hostile substrates. In this study, the chemical vapor deposition (CVD) of polycrystalline diamond on TiN/SiN x nc (nc) interlayers deposited at relatively low temperatures has been investigated for the first time. The nc layers were deposited at 70 or 400 °C on Si substrates using a dual ion beam deposition system. The results showed that a preliminary seeding pretreatment with diamond suspension was necessary to achieve large diamond nucleation densities and that diamond nucleation was larger on nc films than on bare sc-Si subjected to the same pretreatment and CVD process parameters. TiN/SiN x layers synthesized at 70 or 400 °C underwent different nanostructure modifications during diamond CVD. The data also showed that TiN/SiN x films obtained at 400 °C are preferable in so far as their use as interlayers between hostile substrates and CVD diamond is concerned.

  20. Aerosol-Assisted Chemical Vapor Deposited Thin Films for Space Photovoltaics

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; McNatt, Jeremiah; Dickman, John E.; Jin, Michael H.-C.; Banger, Kulbinder K.; Kelly, Christopher V.; AquinoGonzalez, Angel R.; Rockett, Angus A.

    2006-01-01

    Copper indium disulfide thin films were deposited via aerosol-assisted chemical vapor deposition using single source precursors. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties in order to optimize device-quality material. Growth at atmospheric pressure in a horizontal hot-wall reactor at 395 C yielded best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier, smoother, denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands (1.45, 1.43, 1.37, and 1.32 eV) and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was 1.03 percent.

  1. SYNTHESIS AND CHARACTERIZATION OF SMART FUNCTIONAL COATINGS BY CHEMICAL SOLUTION DEPOSITION METHODS

    SciTech Connect

    Mendez-Torres, A.

    2011-07-19

    New coating technology enables the fabrication of low cost structural health monitoring (SHM) and tamper indication devices that can be employed to strengthen national and international safeguards objectives. In particular, such innovations could serve the safeguards community by improving both the timeliness of detection and confidence in verification and monitoring. This work investigates the synthesis of functional surface coatings using chemical solutions deposition methods. Chemical solution deposition has recently received attention in the materials research community due to its unique advantages such as low temperature processing, high homogeneity of final products and the ability to fabricate materials with controlled surface properties and pore structures. The synthesis of functional coatings aimed at modifying the materials conductivity and optical properties was investigated by the incorporation of transition element (e.g. Cr{sup +3}) and rare earth (e.g. Er{sup +3}) serving as dopants in a polymer or gel matrix. The structural and morphological investigation of the as-deposited films was carried out using UV/Vis and photoluminescence (PL) spectroscopy. The as deposited coating was further investigated by scanning electron microscopy and energy dispersive x-ray microscopy.

  2. Large improvement of phosphorus incorporation efficiency in n-type chemical vapor deposition of diamond

    NASA Astrophysics Data System (ADS)

    Ohtani, Ryota; Yamamoto, Takashi; Janssens, Stoffel D.; Yamasaki, Satoshi; Koizumi, Satoshi

    2014-12-01

    Microwave plasma enhanced chemical vapor deposition is a promising way to generate n-type, e.g., phosphorus-doped, diamond layers for the fabrication of electronic components, which can operate at extreme conditions. However, a deeper understanding of the doping process is lacking and low phosphorus incorporation efficiencies are generally observed. In this work, it is shown that systematically changing the internal design of a non-commercial chemical vapor deposition chamber, used to grow diamond layers, leads to a large increase of the phosphorus doping efficiency in diamond, produced in this device, without compromising its electronic properties. Compared to the initial reactor design, the doping efficiency is about 100 times higher, reaching 10%, and for a very broad doping range, the doping efficiency remains highly constant. It is hypothesized that redesigning the deposition chamber generates a higher flow of active phosphorus species towards the substrate, thereby increasing phosphorus incorporation in diamond and reducing deposition of phosphorus species at reactor walls, which additionally reduces undesirable memory effects.

  3. Large improvement of phosphorus incorporation efficiency in n-type chemical vapor deposition of diamond

    SciTech Connect

    Ohtani, Ryota; Yamamoto, Takashi; Janssens, Stoffel D.; Yamasaki, Satoshi

    2014-12-08

    Microwave plasma enhanced chemical vapor deposition is a promising way to generate n-type, e.g., phosphorus-doped, diamond layers for the fabrication of electronic components, which can operate at extreme conditions. However, a deeper understanding of the doping process is lacking and low phosphorus incorporation efficiencies are generally observed. In this work, it is shown that systematically changing the internal design of a non-commercial chemical vapor deposition chamber, used to grow diamond layers, leads to a large increase of the phosphorus doping efficiency in diamond, produced in this device, without compromising its electronic properties. Compared to the initial reactor design, the doping efficiency is about 100 times higher, reaching 10%, and for a very broad doping range, the doping efficiency remains highly constant. It is hypothesized that redesigning the deposition chamber generates a higher flow of active phosphorus species towards the substrate, thereby increasing phosphorus incorporation in diamond and reducing deposition of phosphorus species at reactor walls, which additionally reduces undesirable memory effects.

  4. Bandgap tuning of mixed organic cation utilizing chemical vapor deposition process

    PubMed Central

    Kim, Jeongmo; Kim, Hyeong Pil; Teridi, Mohd Asri Mat; Yusoff, Abd. Rashid bin Mohd; Jang, Jin

    2016-01-01

    Bandgap tuning of a mixed organic cation perovskite is demonstrated via chemical vapor deposition process. The optical and electrical properties of the mixed organic cation perovskite can be manipulated by varying the growth time. A slight shift of the absorption band to shorter wavelengths is demonstrated with increasing growth time, which results in the increment of the current density. Hence, based on the optimized growth time, our device exhibits an efficiency of 15.86% with negligible current hysteresis. PMID:27874026

  5. Laser-induced chemical liquid phase deposition of copper from aqueous solutions without reducing agents

    SciTech Connect

    Kochemirovsky, V A; Tumkin, I I; Logunov, L S; Safonov, S V; Menchikov, Leonid G

    2012-08-31

    Laser-induced chemical liquid phase deposition of copper without a traditional reducing agent has been used for the first time to obtain conductive patterns on a dielectric surface having a reducing ability. It is shown that phenol-formaldehyde binder of the dielectric (glass fibre) can successfully play the role of a reducing agent in this process. The resulting copper sediments have low electrical resistance and good topology. (interaction of laser radiation with matter. laser plasmas)

  6. Metal organic chemical vapor deposition of 111-v compounds on silicon

    DOEpatents

    Vernon, Stanley M.

    1986-01-01

    Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.

  7. Monolayer Graphene Growth on Ni(111) by Low Temperature Chemical Vapor Deposition

    SciTech Connect

    Batzill, M.; Sutter, P.; Addou, R.; Dahal, A.

    2012-01-09

    In contrast to the commonly employed high temperature chemical vapor deposition growth that leads to multilayer graphene formation by carbon segregation from the bulk, we demonstrate that below 600 C graphene can be grown in a self-limiting monolayer growth process. Optimum growth is achieved at {approx}550 C. Above this temperature, carbon diffusion into the bulk is limiting the surface growth rate, while at temperatures below {approx}500 C a competing surface carbide phase impedes graphene formation.

  8. Chemical Vapor Deposition Growth of Linked Carbon Monolayers with Acetylenic Scaffoldings on Silver Foil.

    PubMed

    Liu, Rong; Gao, Xin; Zhou, Jingyuan; Xu, Hua; Li, Zhenzhu; Zhang, Shuqing; Xie, Ziqian; Zhang, Jin; Liu, Zhongfan

    2017-03-02

    Graphdiyne analogs, linked carbon monolayers with acetylenic scaffoldings, are fabricated by adopting low-temperature chemical vapor deposition which provides a route for the synthesis of two-dimensional carbon materials via molecular building blocks. The electrical conductivity of the as-grown films can reach up to 6.72 S cm(-1) . Moreover, the films show potential as promising substrates for fluorescence suppressing and Raman advancement.

  9. GaN Stress Evolution During Metal-Organic Chemical Vapor Deposition

    SciTech Connect

    Amano, H.; Chason, E.; Figiel, J.; Floro, J.A.; Han, J.; Hearne, S.; Hunter, J.; Tsong, I.

    1998-10-14

    The evolution of stress in gallium nitride films on sapphire has been measured in real- time during metal organic chemical vapor deposition. In spite of the 161%0 compressive lattice mismatch of GaN to sapphire, we find that GaN consistently grows in tension at 1050"C. Furthermore, in-situ stress monitoring indicates that there is no measurable relaxation of the tensile growth stress during annealing or thermal cycling.

  10. Synthesis of Cobalt Oxides Thin Films Fractal Structures by Laser Chemical Vapor Deposition

    PubMed Central

    Haniam, P.; Kunsombat, C.; Chiangga, S.; Songsasen, A.

    2014-01-01

    Thin films of cobalt oxides (CoO and Co3O4) fractal structures have been synthesized by using laser chemical vapor deposition at room temperature and atmospheric pressure. Various factors which affect the density and crystallization of cobalt oxides fractal shapes have been examined. We show that the fractal structures can be described by diffusion-limited aggregation model and discuss a new possibility to control the fractal structures. PMID:24672354

  11. Characterization of single crystal chemical vapor deposition diamond detectors for neutron spectrometry.

    PubMed

    Gagnon-Moisan, F; Zimbal, A; Nolte, R; Reginatto, M; Schuhmacher, H

    2012-10-01

    Detectors made from artificial chemical vapor deposition single crystal diamond have shown great potential for fast neutron spectrometry. In this paper, we present the results of measurements made at the Physikalisch-Technische Bundesanstalt accelerator using neutron fields in the energy range from 7 MeV to 16 MeV. This study presents the first results of the characterization of the detector in this energy range.

  12. Negative Electron Affinity Effect on the Surface of Chemical Vapor Deposited Diamond Polycrystalline Films

    NASA Technical Reports Server (NTRS)

    Krainsky, I. L.; Asnin, V. M.; Mearini, G. T.; Dayton, J. A., Jr.

    1996-01-01

    Strong negative electron affinity effects have been observed on the surface of as-grown chemical vapor deposited diamond using Secondary Electron Emission. The test samples were randomly oriented and the surface was terminated with hydrogen. The effect appears as an intensive peak in the low energy part of the spectrum of the electron energy distribution and may be described in the model of effective negative electron affinity.

  13. High index of refraction films for dielectric mirrors prepared by metal-organic chemical vapor deposition

    SciTech Connect

    Brusasco, R.M.

    1989-01-01

    A wide variety of metal oxides with high index of refraction can be prepared by Metal-Organic Chemical Vapor Deposition. We present some recent optical and laser damage results on oxide films prepared by MOCVD which could be used in a multilayer structure for highly reflecting (HR) dielectric mirror applications. The method of preparation affects both optical properties and laser damage threshold. 10 refs., 8 figs., 4 tabs.

  14. Chemical Vapor Deposition of Large-Sized Hexagonal WSe₂ Crystals on Dielectric Substrates.

    PubMed

    Chen, Jianyi; Liu, Bo; Liu, Yanpeng; Tang, Wei; Nai, Chang Tai; Li, Linjun; Zheng, Jian; Gao, Libo; Zheng, Yi; Shin, Hyun Suk; Jeong, Hu Young; Loh, Kian Ping

    2015-11-01

    High-quality large-sized hexagoal WSe2 crystals can be grown on dielectric substrates using atmospheric chemical vapor deposition in the presence of hydrogen gas. These hexagonal crystals (lateral width >160 um) have a carrier mobility of 100 cm(2) V(-1) s(-1) and a photoresponsivity of ≈1100 mA W(-1), which is comparable to that of exfoliated flakes.

  15. Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapour Deposition

    DTIC Science & Technology

    2011-06-01

    active investigation, both experimentally25–28 and theoretically29–31. For example, exfoliated monolayer graphene flakes can show both zigzag and...crystalsmade of eithermultilayer or monolayer CVD graphene as well as transferred exfoliated graphene /graphite. Seeds made from multilayer CVD graphene ...synthesis of graphene by chemical vapour deposition and its application in hydrogen sensing. Sens. Actuat. B 150, 296–300 (2010). 21. Li, X. S., Cai, W. W

  16. Deposition of silver nanoparticles on multiwalled carbon nanotubes by chemical reduction process and their antimicrobial effects

    NASA Astrophysics Data System (ADS)

    Haider, Adawiya J.; Thamir, Amin D.; Ahmed, Duha S.; Mohammad, M. R.

    2016-07-01

    In this paper, the functionalization of raw-MWCNTs involves oxidation reaction using concentrated acid mixture of HNO3:H2SO4 (1:3), via ultrasonic bath (170 W, 50 kHz) to obtain functional groups. Then Ag nanoparticles are decorated the outside over the surface of functionalized MWCNTs using a chemical reduction process resulting in the formation of(Ag/ MWCNTs) hybrid material. The results showed that outer diameter functionalized F-MWCNTs andAg nanoparticles size was about (11-80) nm and (10 to 25) nm, respectively using TEM and HRTEM. The crystallographic structure of MWCNTs using X-ray diffraction (XRD) analysis proved diffraction peaks at 38.1°, 44.3°, 64.7° and 77.4° degrees namely, Ag (111), Ag (200), Ag (220), and Ag (311) of the face-centered cubic lattice of Ag, respectively, excepting the peak at 2θ =25.6°, which correspond to the (0 0 2) reflection of the MWNTs are corresponding to Ag/MWNTs. The antimicrobial activities of Ag/MWCNTs hybrid using plate count method showed that decreasing a large number of bacteria colonies of E. coli and S. aureu with increasing the hybrid concentrations after incubation for 24h in shaker incubator with percentage of inhibition approaching 100%.

  17. 33 CFR 165.104 - Safety Zone: Vessel Launches, Bath Iron Works, Kennebec River, Bath, Maine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Bath Iron Works, Kennebec River, Bath, Maine. 165.104 Section 165.104 Navigation and Navigable Waters... Guard District § 165.104 Safety Zone: Vessel Launches, Bath Iron Works, Kennebec River, Bath, Maine. (a... Bath Iron Works dry dock while it is being moved to and from its moored position at the Bath Iron...

  18. 33 CFR 165.104 - Safety Zone: Vessel Launches, Bath Iron Works, Kennebec River, Bath, Maine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Bath Iron Works, Kennebec River, Bath, Maine. 165.104 Section 165.104 Navigation and Navigable Waters... Guard District § 165.104 Safety Zone: Vessel Launches, Bath Iron Works, Kennebec River, Bath, Maine. (a... Bath Iron Works dry dock while it is being moved to and from its moored position at the Bath Iron...

  19. 33 CFR 165.104 - Safety Zone: Vessel Launches, Bath Iron Works, Kennebec River, Bath, Maine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Bath Iron Works, Kennebec River, Bath, Maine. 165.104 Section 165.104 Navigation and Navigable Waters... Guard District § 165.104 Safety Zone: Vessel Launches, Bath Iron Works, Kennebec River, Bath, Maine. (a... Bath Iron Works dry dock while it is being moved to and from its moored position at the Bath Iron...

  20. 33 CFR 165.104 - Safety Zone: Vessel Launches, Bath Iron Works, Kennebec River, Bath, Maine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Bath Iron Works, Kennebec River, Bath, Maine. 165.104 Section 165.104 Navigation and Navigable Waters... Guard District § 165.104 Safety Zone: Vessel Launches, Bath Iron Works, Kennebec River, Bath, Maine. (a... Bath Iron Works dry dock while it is being moved to and from its moored position at the Bath Iron...

  1. 33 CFR 165.104 - Safety Zone: Vessel Launches, Bath Iron Works, Kennebec River, Bath, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Bath Iron Works, Kennebec River, Bath, Maine. 165.104 Section 165.104 Navigation and Navigable Waters... Guard District § 165.104 Safety Zone: Vessel Launches, Bath Iron Works, Kennebec River, Bath, Maine. (a... Bath Iron Works dry dock while it is being moved to and from its moored position at the Bath Iron...

  2. Chain Assemblies from Nanoparticles Synthesized by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition: The Computational View.

    PubMed

    Mishin, Maxim V; Zamotin, Kirill Y; Protopopova, Vera S; Alexandrov, Sergey E

    2015-12-01

    This article refers to the computational study of nanoparticle self-organization on the solid-state substrate surface with consideration of the experimental results, when nanoparticles were synthesised during atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD). The experimental study of silicon dioxide nanoparticle synthesis by AP-PECVD demonstrated that all deposit volume consists of tangled chains of nanoparticles. In certain cases, micron-sized fractals are formed from tangled chains due to deposit rearrangement. This work is focused on the study of tangled chain formation only. In order to reveal their formation mechanism, a physico-mathematical model was developed. The suggested model was based on the motion equation solution for charged and neutral nanoparticles in the potential fields with the use of the empirical interaction potentials. In addition, the computational simulation was carried out based on the suggested model. As a result, the influence of such experimental parameters as deposition duration, particle charge, gas flow velocity, and angle of gas flow was found. It was demonstrated that electrical charges carried by nanoparticles from the discharge area are not responsible for the formation of tangled chains from nanoparticles, whereas nanoparticle kinetic energy plays a crucial role in deposit morphology and density. The computational results were consistent with experimental results.

  3. Soot-overcladding process for enlarging modified chemical vapor deposition preforms

    NASA Astrophysics Data System (ADS)

    Ihalainen, Heikki; Kurki, Jouko

    1995-09-01

    The equipment and the process for soot sleeving of optical fiber preforms made by the modified chemical vapor deposition (MCVD) method has been developed. The equipment consists of a soot-sleeving lathe that is used for deposition of soot glass particles onto the surface of an MCVD core preform and a separate furnace that is used for drying and sintering the deposited porous glass layer. An outline of the equipment is presented. This equipment has then been used to study the basic parameters of flame hydrolysis deposition as well as sintering of the porous layer. The raw material and the fuel gas flow as well as the substrate diameter proved to be the most important parameters affecting the process. The basic knowledge achieved is used to optimize the process for three different preform sizes. In the soot-sleeving process for 80-km optical fiber preforms, an average deposition rate of 5.2 g/min is achieved with a double burner. The overall quality of the drawn fiber proved to be good. The typical attenuations were 0.330 and 0.215 dB/km at 1310- and 1550-nm wavelengths, respectively. The geometry of the drawn fibers was found to be very good.

  4. Application of Chlorine-Assisted Chemical Vapor Deposition of Diamond at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Pan, Chenyu; Altemir, David A.; Margrave, John L.; Hauge, Robert H.

    1994-01-01

    Low temperature deposition of diamond has been achieved by a chlorine-assisted diamond chemical vapor deposition (CA-CVD) process. This method begins with the thermal dissociation of molecular chlorine into atomic chlorine in a resistively heated graphite furnace at temperatures between 1300 and 1500 deg. C. The atomic chlorine, upon mixing, subsequently reacts with molecular hydrogen and hydrocarbons. The rapid exchange reactions between the atomic chlorine, molecular hydrogen, and hydrocarbons give rise to the atomic hydrogen and carbon precursors required for diamond deposition. Homoepitaxial diamond growth on diamond substrates has been studied over the substrate temperature range of 100-950 C. It was found that the diamond growth rates are approximately 0.2 microns/hr in the temperature range between 102 and 300 C and that the growth rates do not decrease significantly with a decrease in substrate temperature. This is unique because the traditional diamond deposition using H2/CH4 systems usually disappears at substrate temperatures below approx. 500 deg. C. This opens up a possible route to the deposition of diamond on low-melting point materials such as aluminum and its alloys.

  5. Differing morphologies of textured diamond films with electrical properties made with microwave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lai, Wen Chi; Wu, Yu-Shiang; Chang, Hou-Cheng; Lee, Yuan-Haun

    2010-12-01

    This study investigates the orientation of textured diamond films produced through microwave plasma chemical vapor deposition (MPCVD) at 1200 W, 110 Torr, CH 4/H 2 = 1/20, with depositions times of 0.5-4.0 h. After a growth period of 2.0-4.0 h, this particular morphology revealed a rectangular structure stacked regularly on the diamond film. The orientation on {1 1 1}-textured diamond films grew a preferred orientation of {1 1 0} on the surface, as measured by XRD. The formation of the diamond epitaxial film formed textured octahedrons in ball shaped (or cauliflower-like) diamonds in the early stages (0.5 h), and the surface of the diamond film extended to pile the rectangular structure at 4.0 h. The width of the tier was approximately 200 nm at the 3.0 h point of deposition, according to TEM images. The results revealed that the textured diamond films showed two different morphological structures (typical ball shaped and rectangular diamonds), at different stages of the deposition period. The I- V characteristics of the oriented diamond films after 4.0 h of deposition time showed good conformity with the ohmic contact.

  6. Silica-titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds.

    PubMed

    Zu, Guoqing; Shen, Jun; Wang, Wenqin; Zou, Liping; Lian, Ya; Zhang, Zhihua

    2015-03-11

    Silica-titania composite aerogels were synthesized by chemical liquid deposition of titania onto nanoporous silica scaffolds. This novel deposition process was based on chemisorption of partially hydrolyzed titanium alkoxides from solution onto silica nanoparticle surfaces and subsequent hydrolysis and condensation to afford titania nanoparticles on the silica surface. The titania is homogeneously distributed in the silica-titania composite aerogels, and the titania content can be effectively controlled by regulating the deposition cycles. The resultant composite aerogel with 15 deposition cycles possessed a high specific surface area (SSA) of 425 m(2)/g, a small particle size of 5-14 nm, and a large pore volume and pore size of 2.41 cm(3)/g and 18.1 nm, respectively, after heat treatment at 600 °C and showed high photocatalytic activity in the photodegradation of methylene blue under UV-light irradiation. Its photocatalytic activity highly depends on the deposition cycles and heat treatment. The combination of small particle size, high SSA, and enhanced crystallinity after heat treatment at 600 °C contributes to the excellent photocatalytic property of the silica-titania composite aerogel. The higher SSAs compared to those of the reported titania aerogels (<200 m(2)/g at 600 °C) at high temperatures combined with the simple method makes the silica-titania aerogels promising candidates as photocatalysts.

  7. Low temperature atmospheric pressure chemical vapor deposition of group 14 oxide films

    SciTech Connect

    Hoffman, D.M.; Atagi, L.M. |; Chu, Wei-Kan; Liu, Jia-Rui; Zheng, Zongshuang; Rubiano, R.R.; Springer, R.W.; Smith, D.C.

    1994-06-01

    Depositions of high quality SiO{sub 2} and SnO{sub 2} films from the reaction of homoleptic amido precursors M(NMe{sub 2})4 (M = Si,Sn) and oxygen were carried out in an atmospheric pressure chemical vapor deposition r. The films were deposited on silicon, glass and quartz substrates at temperatures of 250 to 450C. The silicon dioxide films are stoichiometric (O/Si = 2.0) with less than 0.2 atom % C and 0.3 atom % N and have hydrogen contents of 9 {plus_minus} 5 atom %. They are deposited with growth rates from 380 to 900 {angstrom}/min. The refractive indexes of the SiO{sub 2} films are 1.46, and infrared spectra show a possible Si-OH peak at 950 cm{sup {minus}1}. X-Ray diffraction studies reveal that the SiO{sub 2} film deposited at 350C is amorphous. The tin oxide films are stoichiometric (O/Sn = 2.0) and contain less than 0.8 atom % carbon, and 0.3 atom % N. No hydrogen was detected by elastic recoil spectroscopy. The band gap for the SnO{sub 2} films, as estimated from transmission spectra, is 3.9 eV. The resistivities of the tin oxide films are in the range 10{sup {minus}2} to 10{sup {minus}3} {Omega}cm and do not vary significantly with deposition temperature. The tin oxide film deposited at 350C is cassitterite with some (101) orientation.

  8. a Design of Experiment Study of the Nucleation of Chemical Vapor Deposited Diamond Films.

    NASA Astrophysics Data System (ADS)

    Tang, Chi

    1995-01-01

    Because of its property, diamond has a unique role in the semiconductor and tool industry. As diamond synthesis technology advances, more and more applications are emerging. However, in order to take advantage of its exceptional property, reliable control of nucleation and growth must be accomplished. In this study, the author systematically studies the nucleation process in chemical vapor deposition (CVD) of diamonds. Among many important intricacies concerning diamond nucleation on foreign surfaces, this study addresses the following issues: the role of ultrasonic pre-treatment in CVD; the correlation between hot filament chemical vapor deposition (HFCVD) and microwave assisted chemical vapor deposition (MACVD) control parameters and the nucleation processes; the role of biasing substrates on the nucleation density in MACVD; the correlation between parameters of biasing substrates and the nucleation density; the reliable control of nucleation in CVD diamond synthesis. To achieve the goal of this research, a multi -purpose deposition system was built enabling the author to eliminate unnecessary variables in the deposition process. To ensure the accuracy of the nucleation effects of parameters investigated, great effort was made to calibrate measurement instruments so that noise or fluctuations in the experiments were minimized. The implementation of design of experiments (DOE), a systematic investigating technique, vastly improved the efficiency of this study over the less sophisticated empirical approach. In addition, DOE allowed the author to quantitatively estimate the effects of control parameters. Finally, diamond deposition was confirmed by Scanning Electron microscope, Micro Raman Scattering and Rutherford Backscattering. This research has successfully implemented DOE in estimating the effects of diamond nucleation quantitatively. The mechanism of ultrasonic pre-treatment is explained, and its effects are ascribed to seeding. The effects of primary CVD

  9. Annealing effects on the chemical deposited CdS films and the electrical properties of CdS/CdTe solar cells

    SciTech Connect

    Han, Junfeng; Liao, Cheng; Jiang, Tao; Fu, Ganhua; Krishnakumar, V.; Spanheimer, C.; Haindl, G.; Zhao, Kui; Klein, A.; Jaegermann, W.

    2011-02-15

    Graphical abstract: From XPS core level spectras, compared with as-depositing CdS (sample A), the Fermi level is shifting closer to the conduction band after annealing treatment in the oxygen (sample B) while it is shifting closer to the valence band after annealing treatment in the argon-hydrogen (sample C). That might be the main reason of the different performance of the final devices. The open circuit voltage of the CdS/CdTe solar cell increases when the CBD CdS is annealed with oxygen, while the performance of the solar cell decreases when the CBD CdS is annealed with argon-hydrogen. Research highlights: {yields} Two different methods (oxidation and reduction) were used to anneal CdS films for CdTe solar cells. {yields} Electrical properties were analyzed by XPS (Fermi levels of CdS films). {yields} Annealing treatment in oxidation atmosphere could shift Fermi level of CdS film to higher position and consequently improve the CdS/CdTe junction and performance of solar cells. -- Abstract: CdS layers grown by chemical bath deposition (CBD) are annealed in the oxygen and argon-hydrogen atmosphere respectively. It has been found that the open circuit voltage of the CdS/CdTe solar cell increases when the CBD CdS is annealed with oxygen before the deposition of CdTe by close spaced sublimation (CSS), while the performance of the solar cell decreases when the CBD CdS is annealed with argon-hydrogen. Electronic properties of the CdS films are investigated using X-ray photo-electron spectroscopy (XPS), which indicates that the Fermi level is shifting closer to the conduction band after annealing in the oxygen and consequently a higher open circuit voltage of the solar cell can be obtained.

  10. Temporal and spatial trends of chemical composition of wet deposition samples collected in Austria

    NASA Astrophysics Data System (ADS)

    Schreiner, Elisabeth; Kasper-Giebl, Anne; Lohninger, Hans

    2016-04-01

    Triggered by the occurrence of acid rain a sampling network for the collection of wet deposition samples was initiated in Austria in the early 1980s. Now the data set covers a time period of slightly more than 30 years for the stations being operable since the beginning. Sampling of rain water and snow was and is performed with Wet and Dry Only Samplers (WADOS) on a daily basis. Chemical analysis of rain water and snow samples comprised anions (chloride, nitrate, sulfate) and cations (sodium, ammonium, potassium, calcium and magnesium) as well as pH and electrical conductivity. Here we evaluate and discuss temporal trends of both, ion concentrations and wet deposition data for twelve sampling stations, which were operable for most of the observation period of 30 years. As expected concentrations and wet deposition loads of sulfate and acidity decreased significantly during the last three decades - which is also reflected by a strong decrease of sulfur emissions in Austria and neighboring countries. Regarding nitrate the decrease of concentrations and wet deposition loads is less pronounced. Again this is in accordance with changes in emission data. In case of ammonium even less stations showed a significant decrease of annual average concentrations and depositions. Reasons for that might be twofold. On one hand emissions of ammonia did not decrease as strongly as e.g. sulfur emissions. Furthermore local sources will be more dominant and can influence the year to year variability. Seasonality of ion concentrations and deposition loads were investigated using Fourier analysis. Sulfate, nitrate, ammonium, acidity and also precipitation amount showed characteristic seasonal patterns for most of the sites and for concentrations as well as deposition loads. However the maxima in ion concentrations and deposition loads were observed during different times of the year. Concentrations of basic cations and chloride, on the contrary, hardly showed any seasonality. However, as

  11. Chemical vapor deposition of silicon, silicon dioxide, titanium and ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Chen, Feng

    Various silicon-based thin films (such as epitaxial, polycrystalline and amorphous silicon thin films, silicon dioxide thin films and silicon nitride thin films), titanium thin film and various ferroelectric thin films (such as BaTiO3 and PbTiO3 thin films) play critical roles in the manufacture of microelectronics circuits. For the past few years, there have been tremendous interests to search for cheap, safe and easy-to-use methods to develop those thin films with high quality and good step coverage. Silane is a critical chemical reagent widely used to deposit silicon-based thin films. Despite its wide use, silane is a dangerous material. It is pyrophoric, extremely flammable and may explode from heat, shock and/or friction. Because of the nature of silane, serious safety issues have been raised concerning the use, transportation, and storage of compressed gas cylinders of silane. Therefore it is desired to develop safer ways to deposit silicon-based films. In chapter III, I present the results of our research in the following fields: (1) Silane generator, (2) Substitutes of silane for deposition of silicon and silicon dioxide thin films, (3) Substitutes of silane for silicon dioxide thin film deposition. In chapter IV, hydropyridine is introduced as a new ligand for use in constructing precursors for chemical vapor deposition. Detachement of hydropyridine occurs by a low-temperature reaction leaving hydrogen in place of the hydropyridine ligands. Hydropyridine ligands can be attached to a variety of elements, including main group metals, such as aluminum and antimony, transition metals, such as titanium and tantalum, semiconductors such as silicon, and non-metals such as phosphorus and arsenic. In this study, hydropyridine-containing titanium compounds were synthesized and used as chemical vapor deposition precursors for deposition of titanium containing thin films. Some other titanium compounds were also studied for comparison. In chapter V, Chemical Vapor

  12. Highly conducting phosphorous doped Nc-Si:H thin films deposited at high deposition rate by hot-wire chemical vapor deposition method.

    PubMed

    Waman, V S; Kamble, M M; Ghosh, S S; Mayabadi, Azam; Sathe, V G; Amalnekar, D P; Pathan, H M; Jadkar, S R

    2012-11-01

    In this paper, we report the synthesis of highly conducting phosphorous doped hydrogenated nanocrystalline silicon (nc-Si:H) films at substantially low substrate temperature (200 degrees C) by hot-wire chemical vapor deposition (HW-CVD) method using pure silane (SiH4) and phosphine (PH3) gas mixture without hydrogen dilution. Structural, optical and electrical properties of these films were investigated as a function of PH3 gas-phase ratio. The characterization of these films by low-angle X-ray diffraction, Raman spectroscopy and atomic force microscopy revealed that, the incorporation of phosphorous in nc-Si:H induces an amorphization in the nc-Si:H film structure. Fourier transform infrared spectroscopy analysis indicates that hydrogen predominately incorporated in phosphorous doped n-type nc-Si:H films mainly in di-hydrogen species (Si-H2) and poly-hydrogen (Si-H2)n bonded species signifying that the films become porous, and micro-void rich. We have observed high band gap (1.97-2.37 eV) in the films, though the hydrogen content is low (< 1.4 at.%) over the entire range of PH3 gas-phase ratio studied. Under the optimum deposition conditions, phosphorous doped nc-Si:H films with high dark conductivity (sigma Dark -5.3 S/cm), low charge-carrier activation energy (E(act) - 132 meV) and high band gap (- 2.01 eV), low hydrogen content (- 0.74 at.%) were obtained at high deposition rate (12.9 angstroms/s).

  13. Comprehensive investigation of HgCdTe metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Raupp, Gregory B.

    1993-01-01

    The principal objective of this experimental and theoretical research program was to explore the possibility of depositing high quality epitaxial CdTe and HgCdTe at very low pressures through metalorganic chemical vapor deposition (MOCVD). We explored two important aspects of this potential process: (1) the interaction of molecular flow transport and deposition in an MOCVD reactor with a commercial configuration, and (2) the kinetics of metal alkyl source gas adsorption, decomposition and desorption from the growing film surface using ultra high vacuum surface science reaction techniques. To explore the transport-reaction issue, we have developed a reaction engineering analysis of a multiple wafer-in-tube ultrahigh vacuum chemical vapor deposition (UHV/CVD) reactor which allows an estimate of wafer or substrate throughput for a reactor of fixed geometry and a given deposition chemistry with specified film thickness uniformity constraints. The model employs a description of ballistic transport and reaction based on the pseudo-steady approximation to the Boltzmann equation in the limit of pure molecular flow. The model representation takes the form of an integral equation for the flux of each reactant or intermediate species to the wafer surfaces. Expressions for the reactive sticking coefficients (RSC) for each species must be incorporated in the term which represents reemission from a wafer surface. The interactions of MOCVD precursors with Si and CdTe were investigated using temperature programmed desorption (TPD) in ultra high vacuum combined with Auger electron spectroscopy (AES). These studies revealed that diethyltellurium (DETe) and dimethylcadmium (DMCd) adsorb weakly on clean Si(100) and desorb upon heating without decomposing. These precursors adsorb both weakly and strongly on CdTe(111)A, with DMCd exhibiting the stronger interaction with the surface than DETe.

  14. A new sampler for collecting separate dry and wet atmospheric depositions of trace organic chemicals

    NASA Astrophysics Data System (ADS)

    Waite, Don T.; Cessna, Allan J.; Gurprasad, Narine P.; Banner, James

    Studies conducted in Saskatchewan and elsewhere have demonstrated the atmospheric transport of agricultural pesticides and other organic contaminants and their deposition into aquatic ecosystems. To date these studies have focused on ambient concentrations in the atmosphere and in wet precipitation. To measure the dry deposition of organic chemicals, a new sampler was designed which uses a moving sheet of water to passively trap dry particles and gasses. The moving sheet of water drains into a reservoir and, during recirculation through the sampler, is passed through an XAD-2 resin column which adsorbs the trapped organic contaminants. All surfaces which contact the process water are stainless steel or Teflon. Chemicals collected can be related to airborne materials depositing into aquatic ecosystems. The sampler has received a United States patent (number 5,413,003 - 9 May 1996) with the Canadian patent pending. XAD-2 resin adsorption efficiencies for 10 or 50 μg fortifications of ten pesticides ranged from 76% for atrazine (2-chloro-4-ethylamino-6-isopropylamino- S-triazine) to 110% for triallate [ S-(2,3,3-trichloro-2-phenyl)bis(1-methylethyl)carbamothioate], dicamba (2-methoxy-3,6-dichlorobenzoic acid) and toxaphene (chlorinated camphene mixture). Field testing using duplicate samplers showed good reproducibility and amounts trapped were consistent with those from high volume and bulk pan samplers located on the same site. Average atmospheric dry deposition rates of three chemicals, collected for 5 weeks in May and June, were: dicamba, 69 ng m -2 da -1; 2,4-D (2,4-dichlorophenoxyacetic acid), 276 ng m -2 da -1: and, γ-HCH ( γ-1, 2, 3, 4, 5, 6-hexachlorocyclohexane), 327 ng m -2 da -1.

  15. Effects of digestion, chemical separation, and deposition on Po-210 quantitative analysis

    SciTech Connect

    Seiner, Brienne N.; Morley, Shannon M.; Beacham, Tere A.; Haney, Morgan M.; Gregory, Stephanie J.; Metz, Lori A.

    2014-10-01

    Polonium-210 is a radioactive isotope often used to study sedimentation processes, food chains, aerosol behavior, and atmospheric circulations related to environmental sciences. Materials for the analysis of Po-210 range from tobacco leaves or cotton fibers, to soils and sediments. The purpose of this work was to determine polonium losses from a variety of sample types (soil, cotton fiber, and air filter) due to digestion technique, chemical separation, and deposition method for alpha energy analysis. Results demonstrated that yields from a perchloric acid wet-ash were similar to that from a microwave digestion. Both were greater than the dry-ash procedure. The polonium yield from the perchloric acid wet ash was 87 ± 5%, the microwave digestion had a yield of 100 ± 7%, and the dry ash had a yield of 38 ± 5%. The chemical separation of polonium by an anion exchange resin was used only on the soil samples due to the complex nature of this sample. The yield of Po-209 tracer after chemical separation and deposition for alpha analysis was 83 ± 7% for the soil samples. Spontaneous deposition yields for the cotton and air filters were 87 ± 4% and 92 ± 6%, respectively. Based on the overall process yields for each sample type the amount of Po-210 was quantified using alpha energy analysis. The soil contained 0.18 ± 0.08 Bq/g, the cotton swipe contained 0.7 mBq/g, and the air filter contained 0.04 ± 0.02 mBq/g. High and robust yields of polonium are possible using a suitable digestion, separation, and deposition method.

  16. Graphene oxide thin films: influence of chemical structure and deposition methodology.

    PubMed

    Hidalgo, R S; López-Díaz, D; Velázquez, M Mercedes

    2015-03-10

    We synthesized graphene oxide sheets of different functionalization by oxidation of two different starting materials, graphite and GANF nanofibers, followed by purification based on alkaline washing. The chemical structure of graphene oxide materials was determined by X-ray photoelectron spectroscopy (XPS), and the nanoplatelets were characterized by ζ potential and dynamic light scattering (DLS) measurements. The XPS results indicated that the chemical structure depends on the starting material. Two different deposition methodologies, Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS), were employed to build the graphene oxide thin films. The film morphology was analyzed by scanning electron microscopy (SEM). The SEM images allow us to conclude that the LB methodology provides the highest coverage. This coverage is almost independent of the chemical composition of sheets. Conversely, the coverage obtained by the LS methodology increases with the percentage of C-O groups attached to sheets. Surface-pressure isotherms of these materials were interpreted according to the Volmer model.

  17. Re-determination of the reaction path parameters of silicon deposition for aerospace silicon carbide composites via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chandrasekaram, Sandeep D.

    Development of air travel technology is always increasing and fuel efficiency is one of the most important factors that's being looked into. For a 25% increase in fuel efficiency in the future aeroplanes, reduction in the weight of the engine is one of the factors that should be addressed while increasing the strength and power generated. For this purpose, General Electric Aviation has chosen Silicon Carbide as the material to build the turbine blades of its engines. Silicon carbide works best as it is strong, can withstand high temperature and lightweight. The downside of this material is that it reacts with water vapor at temperatures greater than 2700°F to form volatile Silicon hydroxide from Silicon dioxide, its protective layer; and furthermore it reduces to Silicon monoxide that vaporizes. To counter this problem, scientists at the National Aeronautics & Space Administration (NASA) have found that a rare earth silicate could be used as an environmental barrier coating (EBC) to prevent the exposure of Silicon Carbide to water vapor. The EBC can't be directly coated on the Silicon Carbide surface as it isn't chemically adhesive enough, therefore Silicon was chosen to act as the bond coat between the Silicon Carbide and EBC. The goal of this research is to design a reactor for the composites to be coated with Silicon using the reaction and diffusion kinetics determined at higher temperatures and different partial pressures compared to the standard electronics industry. Chemical Vapor Deposition is the technique that will be used in determining the necessary parameters. The findings from this research can be further used in optimizing the utilization of the reagents and optimizing the process economically.

  18. Titanium oxide thin films obtained with physical and chemical vapour deposition methods for optical biosensing purposes.

    PubMed

    Dominik, M; Leśniewski, A; Janczuk, M; Niedziółka-Jönsson, J; Hołdyński, M; Wachnicki, Ł; Godlewski, M; Bock, W J; Śmietana, M

    2017-07-15

    This work discusses an application of titanium oxide (TiOx) thin films deposited using physical (reactive magnetron sputtering, RMS) and chemical (atomic layer deposition, ALD) vapour deposition methods as a functional coating for label-free optical biosensors. The films were applied as a coating for two types of sensors based on the localised surface plasmon resonance (LSPR) of gold nanoparticles deposited on a glass plate and on a long-period grating (LPG) induced in an optical fibre. Optical and structural properties of the TiOx thin films were investigated and discussed. It has been found that deposition method has a significant influence on optical properties and composition of the films, but negligible impact on TiOx surface silanization effectiveness. A higher content of oxygen with lower Ti content in the ALD films leads to the formation of layers with higher refractive index and slightly higher extinction coefficient than for the RMS TiOx. Moreover, application of the TiOx film independently on deposition method enables not only for tuning of the spectral response of the investigated biosensors, but also in case of LSPR for enhancing the ability for biofunctionalization, i.e., TiOx film mechanically protects the nanoparticles and induces change in the biofunctionalization procedure to the one typical for oxides. TiOx coated LSPR and LPG sensors with refractive index sensitivity of close to 30 and 3400nm/RIU, respectively, were investigated. The ability for molecular recognition was evaluated with the well-known complex formation between avidin and biotin as a model system. The shift in resonance wavelength reached 3 and 13.2nm in case of LSPR and LPG sensors, respectively. Any modification in TiOx properties resulting from the biofunctionalization process can be also clearly detected.

  19. MBMS studies of gas-phase kinetics in diamond chemical vapor deposition

    SciTech Connect

    Fox, C.A.; McMaster, M.C.; Tung, D.M.

    1995-03-01

    A molecular beam mass spectrometer system (MBMS) has been used to determine the near-surface gaseous composition involved in the low pressure chemical vapor deposition of diamond. With this system, radical and stable species can be detected with a sensitivity better than 10 ppm. Threshold ionization techniques have been employed to distinguish between radical species in the deposition environment from radical species generated by parent molecule cracking. An extensive calibration procedure was used to enable the quantitative determination of H-atom and CH{sub 3} radical mole fractions. Using the MBMS system, the gaseous composition involved in LPCVD of diamond has been measured for a wide variety of deposition conditions, including hot-filament gas activation, microwave-plasma gas activation, and a variety of precursor feed mixtures (ex: CH{sub 4}/H{sub 2}, C{sub 2}H{sub 2}/H{sub 2}). For microwave-plasma activation (MPCVD), the radical concentrations (H-atom and CH{sub 3} radicals) are independent of the identity of the precursor feed gas provided the input carbon mole fraction is constant. However, in hot-filament diamond deposition (HFCVD), the atomic hydrogen concentration decreased by an order of magnitude as the mole fraction of carbon in the precursor mixture is increased to .07; this sharp reduction has been attributed to filament poisoning of the catalytic tungsten surface via hydrocarbon deposition. Additionally, the authors find that the H-atom concentration is independent of the substrate temperature for both hot-filament and microwave plasma deposition; radial H-atom diffusion is invoked to explain this observation.

  20. Seasonal chemical composition variations of wet deposition in Urumchi, Northwestern China

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Lü, Aihua; Xu, Feng; Wang, Bin

    Urumchi suffered serious air quality problem in recent years. Although the main air pollutants and wet deposition monitoring have been undertaken by Urumchi Environmental Monitoring Center for many years, researches on chemical composition and variations of wet deposition were not there till now. In this paper, wet deposition monitoring data in Urumchi from 2000 and 2005 were selected to perform this evaluation based on data quality and data integrity. The volume-weighted mean (VWM) concentrations of parameters of wet deposition, namely pH, conductivity, SO 42-, NO 3-, F -, Cl -, NH 4+,Ca 2+, Mg 2+, Na + and K + concentrations, were 6.86 and 91.04 μs cm -1, 14.3, 1.63, 0.37, 3.78, 1.22, 4.79, 0.59, 1.05, 0.74 mg L -1, respectively. Acid precipitation appeared only in wintertime in few cases, and its extreme value was 4.96; the maximum emerged during sand storm event in the non-winter season with the value of 9.35. Wet deposition and air pollution characteristics varied with seasons. In order to make a certainty of possible sources of ions in different seasons, principal component analysis was applied, and conclusions were drawn that in wintertime, the predominant contributor to the wet deposition was coal combustion for residential heating; however, in the non-winter season, the situation was more complicated, dust and soil from outside the urban, dust re-suspension, local industries process, motor vehicle emissions all played their roles.

  1. A simple chemical method for deposition of electrochromic Prussian blue thin films

    SciTech Connect

    Demiri, Sani; Najdoski, Metodija; Velevska, Julijana

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Prussian blue thin films were prepared by a simple chemical deposition method. Black-Right-Pointing-Pointer The films can be easily prepared from aqueous solution of Fe{sub 2}(SO{sub 4}){sub 3} and K{sub 4}[Fe(CN){sub 6}]. Black-Right-Pointing-Pointer The films show good electrochromic properties. Black-Right-Pointing-Pointer They change from deep blue color into green, and then back to blue and colorless. Black-Right-Pointing-Pointer The PB thin films exhibit stability and excellent reversibility. -- Abstract: This paper is about a recently developed new chemical method for deposition of Prussian blue thin films. The films are easily prepared by successive immersion of the substrates into an acidic aqueous solution of Fe{sub 2}(SO{sub 4}){sub 3} and K{sub 4}[Fe(CN){sub 6}]. It is calculated of the results from AFM analysis that the growth in the film thickness by one immersion cycle corresponds to an average increase of 6 nm. The characterization of the films with X-ray diffraction, SEM-EDS analysis and FTIR spectroscopy shows that the deposited material is amorphous hydrated Fe{sub 4}[Fe(CN){sub 6}]{sub 3}. The electrochromic properties are characterized by cyclic voltammetry and VIS spectrophotometry. The PB thin films exhibit stability and excellent reversibility, which make these films favorable for electrochromic devices.

  2. Functional metal oxide coatings by molecule-based thermal and plasma chemical vapor deposition techniques.

    PubMed

    Mathur, S; Ruegamer, T; Donia, N; Shen, H

    2008-05-01

    Deposition of thin films through vaccum processes plays an important role in industrial processing of decorative and functional coatings. Many metal oxides have been prepared as thin films using different techniques, however obtaining compositionally uniform phases with a control over grain size and distribution remains an enduring challenge. The difficulties are largely related to complex compositions of functional oxide materials, which makes a control over kinetics of nucleation and growth processes rather difficult to control thus resulting in non-uniform material and inhomogeneous grain size distribution. Application of tailor-made molecular precursors in low pressure or plasma-enhanced chemical vapor deposition (CVD) techniques offers a viable solution for overcoming thermodynamic impediments involved in thin film growth. In this paper molecule-based CVD of functional coatings is demonstrated for iron oxide (Fe2O3, Fe3O4), vanadium oxide (V2O5, VO2) and hafnium oxide (HfO2) phases followed by the characterization of their microstructural, compositional and functional properties which support the advantages of chemical design in simplifying deposition processes and optimizing functional behavior.

  3. Environmental geology of Bath, England

    NASA Astrophysics Data System (ADS)

    Kellaway, G. A.

    1995-10-01

    The hot springs of Bath, England, have been of importance to man for hundreds of years. It was a famous spa in Roman times. Subsequently, the springs were used during the 17th through the 20th centuries and extensive urban and commercial properties were developed at Bath using the water for medical and tourist-oriented activities. With urban and commercial development in the area, man's impact on the environment was substantial and typical environmental problems included pollution, land subsidence, or stability that effected construction, drainage, highways, and canals. During the growth of Bath in the 18th and 19th centuries these environmental problems were described by geologist William Smith and Joseph Townsend. Bath and vicinity provides a unique example of environmental geoscience.

  4. Bath for electrolytic reduction of alumina and method therefor

    SciTech Connect

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2001-07-10

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  5. Improved multiferroic properties in Sm-doped BiFeO3 thin films deposited using chemical solution deposition method

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Tomy, C. V.; Era, T.; Itoh, M.; Ishiwara, H.

    2012-05-01

    Sm-substituted (0% to 10%) BiFeO3 thin films were fabricated by chemical solution deposition on Pt/Ti/SiO2/Si substrates. X-ray diffraction analysis revealed that no secondary phase appeared even if Bi atoms were substituted with Sm atoms up to 10 at. %. 7.5 at. % Sm-substituted films show improved electrical properties and substitution was effective in improving the coercive field in the films. Sm-substitution shows improved ferroelectric as well as magnetic properties of the films. There is a noticeable reduction in the leakage current density (10-4 A/cm2) and increase in the polarization (70 μC/cm2) when the Sm concentration is kept around 7.5%. The magnetic moment obtained from the saturated magnetization curves shows a value of 0.3 μB/Fe compared to 0.04 μB/Fe for the parent compound. The results are important since it increases the potential of the material as a multiferroic compound.

  6. Photocatalytic Functional Coating of TiO2 Thin Film Deposited by Cyclic Plasma Chemical Vapor Deposition at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Kwon, Jung-Dae; Rha, Jong-Joo; Nam, Kee-Seok; Park, Jin-Seong

    2011-08-01

    Photocatalytic TiO2 thin films were prepared with titanium tetraisopropoxide (TTIP) using cyclic plasma chemical vapor deposition (CPCVD) at atmospheric pressure. The CPCVD TiO2 films contain carbon-free impurities up to 100 °C and polycrystalline anatase phases up to 200 °C, due to the radicals and ion-bombardments. The CPCVD TiO2 films have high transparency in the visible wavelength region and absorb wavelengths below 400 nm (>3.2 eV). The photocatalytic effects of the CPCVD TiO2 and commercial sprayed TiO2 films were measured by decomposing methylene blue (MB) solution under UV irradiation. The smooth CPCVD TiO2 films showed a relatively lower photocatalytic efficiency, but superior catalyst-recycling efficiency, due to their high adhesion strength on the substrates. This CPCVD technique may provide the means to produce photocatalytic thin films with low cost and high efficiency, which would be a reasonable candidate for practical photocatalytic applications, because of the reliability and stability of their photocatalytic efficiency in a practical environment.

  7. Nucleation and growth of single layer graphene on electrodeposited Cu by cold wall chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Das, Shantanu; Drucker, Jeff

    2017-03-01

    The nucleation density and average size of graphene crystallites grown using cold wall chemical vapor deposition (CVD) on 4 μm thick Cu films electrodeposited on W substrates can be tuned by varying growth parameters. Growth at a fixed substrate temperature of 1000 °C and total pressure of 700 Torr using Ar, H2 and CH4 mixtures enabled the contribution of total flow rate, CH4:H2 ratio and dilution of the CH4/H2 mixture by Ar to be identified. The largest variation in nucleation density was obtained by varying the CH4:H2 ratio. The observed morphological changes are analogous to those that would be expected if the deposition rate were varied at fixed substrate temperature for physical deposition using thermal evaporation. The graphene crystallite boundary morphology progresses from irregular/jagged through convex hexagonal to regular hexagonal as the effective C deposition rate decreases. This observation suggests that edge diffusion of C atoms along the crystallite boundaries, in addition to H2 etching, may contribute to shape evolution of the graphene crystallites. These results demonstrate that graphene grown using cold wall CVD follows a nucleation and growth mechanism similar to hot wall CVD. As a consequence, the vast knowledge base relevant to hot wall CVD may be exploited for graphene synthesis by the industrially preferable cold wall method.

  8. Chemical vapor deposition of Ni-C films from bis-(ethylcyclopentadienyl) nickel.

    PubMed

    Alexandrov, S E; Protopopova, V S

    2011-09-01

    Metal-organic chemical vapor deposition (MOCVD) is widely used for deposition of various nickel-containing coatings, such as catalytic nickel thin films and nanoparticles, nickel silicide alloys and magnetic carbon-nickel nanocomposite layers. Here we report preliminary results from an attempt to use bis-(ethylcyclopentadienyl) nickel [(EtCp)2Ni] as a precursor for MOCVD of Ni-C thin films in the (EtCp)2Ni-Ar and (EtCp)2Ni-H2-Ar reaction systems. Mechanism of precursor fragmentation was proposed on the basis of the results from a study of gaseous reaction products in the exhaust line of the reactor by means of mass-spectrometry. It was found that an introduction of hydrogen in the gas phase led to an increase in conversion rate of the precursor. Deposited films were analyzed by means of atomic force microscope (AFM), scanning electron microscopy (SEM), X-ray fluorescence spectroscopy (XFS). The effect of hydrogen on growth rate, composition, and morphology of the deposited Ni-C films were experimentally studied.

  9. Characterization of lead zirconate titanate--lanthanum ruthenate thin film structures prepared by chemical solution deposition.

    PubMed

    Bencan, Andreja; Malic, Barbara; Drazic, Goran; Vukadinović, Miso; Kosec, Marija

    2007-01-01

    In this work, the results of compositional and microstructural analysis of lead zirconate titanate--lanthanum ruthenate thin film structures prepared by chemical solution deposition are discussed. The cross-section transmission electron microscope (TEM) micrographs of the La-Ru-O film deposited on a SiO2/Si substrate and annealed at 700 degrees C revealed RuO2 crystals embedded in a glassy silicate matrix. When the La-Ru-O film was deposited on a Pt/TiO2/SiO2/Si substrate, RuO2 and La4Ru6O19 crystallized after annealing at 700 degrees C. After firing at 550 degrees C randomly oriented lead zirconate titanate (PZT) thin films crystallized on the La-Ru-O/SiO2/Si substrate, while on La-Ru-O/Pt/TiO2/SiO2/Si substrates PZT thin films with (111) preferred orientation were obtained. No diffusion of the Ru atoms in the PZT film was found. Ferroelectric response of PZT thin films on these substrates is shown in comparison with the PZT film deposited directly on the Pt/TiO2/SiO2/Si substrate without a La-Ru-O layer.

  10. Structural and optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition.

    PubMed

    Prakash, G V; Daldosso, N; Degoli, E; Iacona, F; Cazzanelli, M; Gaburro, Z; Pucker, G; Dalba, P; Rocca, F; Ceretta Moreira, E; Franzò, G; Pacifici, D; Priolo, F; Arcangeli, C; Filonov, A B; Ossicini, S; Pavesi, L

    2001-06-01

    Silicon nanocrystals (Si-nc) embedded in SiO2 matrix have been prepared by high temperature thermal annealing (1000-1250 degrees C) of substoichiometric SiOx films deposited by plasma-enhanced chemical vapor deposition (PECVD). Different techniques have been used to examine the optical and structural properties of Si-nc. Transmission electron microscopy analysis shows the formation of nanocrystals whose sizes are dependent on annealing conditions and deposition parameters. The spectral positions of room temperature photoluminescence are systematically blue shifted with reduction in the size of Si-nc obtained by decreasing the annealing temperature or the Si content during the PECVD deposition. A similar trend has been found in optical absorption measurements. X-ray absorption fine structure measurements indicate the presence of an intermediate region between the Si-nc and the SiO2 matrix that participates in the light emission process. Theoretical observations reported here support these findings. All these efforts allow us to study the link between dimensionality, optical properties, and the local environment of Si-nc and the surrounding SiO2 matrix.

  11. Hydrothermal Vents in Yellowstone Lake: Chemical Fluxes, Siliceous Deposits, and Collapse Structures

    NASA Astrophysics Data System (ADS)

    Shanks, W. P.; Morgan, L. A.; Balistrieri, L.; Alt, J.; Meeker, G.

    2002-12-01

    The geochemistry of Yellowstone Lake is strongly influenced by sublacustrine hydrothermal vent activity. The hydrothermal source fluid is identified using Cl and dD data on water column and sublacustrine hydrothermal vent fluid samples. Silica-rich hydrothermal deposits occur on the lake bottom near active and presently inactive hydrothermal vents. Pipe- and flange-like deposits contain cemented and recrystallized diatoms and represent pathways for hydrothermal fluid migration. Another major type of hydrothermal deposit comprises hard, porous siliceous spires up to 7 m tall that occur in 15 m of water in Bridge Bay. Bridge Bay spires are hydrothermal silica deposits formed in place by growth of chimney-like features from lake-bottom hydrothermal vents. The Cl concentrations indicate that Yellowstone Lake water is about 1 percent hydrothermal source fluid and 99 percent inflowing stream water and that the flux is about 10 percent of the total hydrothermal water flux in Yellowstone National Park. With recent swath-sonar mapping studies that show numerous new hydrothermal features, Yellowstone Lake should now be considered one of the most significant hydrothermal basins in the Park. Many lake-bottom hydrothermal vents occur in small depressions that are clearly imaged on multibeam sonar, some of which are interpreted as collapse structures based on seismic reflection data. Sediments collected from such vents show chemical evidence of leaching of 60-70 wt. percent SiO2, which may result in volume reductions up to 80 percent and provides a mechanism for vent structure formation.

  12. Optimization of silicon oxynitrides by plasma-enhanced chemical vapor deposition for an interferometric biosensor

    NASA Astrophysics Data System (ADS)

    Choo, Sung Joong; Lee, Byung-Chul; Lee, Sang-Myung; Park, Jung Ho; Shin, Hyun-Joon

    2009-09-01

    In this paper, silicon oxynitride layers deposited with different plasma-enhanced chemical vapor deposition (PECVD) conditions were fabricated and optimized, in order to make an interferometric sensor for detecting biochemical reactions. For the optimization of PECVD silicon oxynitride layers, the influence of the N2O/SiH4 gas flow ratio was investigated. RF power in the PEVCD process was also adjusted under the optimized N2O/SiH4 gas flow ratio. The optimized silicon oxynitride layer was deposited with 15 W in chamber under 25/150 sccm of N2O/SiH4 gas flow rates. The clad layer was deposited with 20 W in chamber under 400/150 sccm of N2O/SiH4 gas flow condition. An integrated Mach-Zehnder interferometric biosensor based on optical waveguide technology was fabricated under the optimized PECVD conditions. The adsorption reaction between bovine serum albumin (BSA) and the silicon oxynitride surface was performed and verified with this device.

  13. Nucleation and growth of single layer graphene on electrodeposited Cu by cold wall chemical vapor deposition.

    PubMed

    Das, Shantanu; Drucker, Jeff

    2017-03-10

    The nucleation density and average size of graphene crystallites grown using cold wall chemical vapor deposition (CVD) on 4 μm thick Cu films electrodeposited on W substrates can be tuned by varying growth parameters. Growth at a fixed substrate temperature of 1000 °C and total pressure of 700 Torr using Ar, H2 and CH4 mixtures enabled the contribution of total flow rate, CH4:H2 ratio and dilution of the CH4/H2 mixture by Ar to be identified. The largest variation in nucleation density was obtained by varying the CH4:H2 ratio. The observed morphological changes are analogous to those that would be expected if the deposition rate were varied at fixed substrate temperature for physical deposition using thermal evaporation. The graphene crystallite boundary morphology progresses from irregular/jagged through convex hexagonal to regular hexagonal as the effective C deposition rate decreases. This observation suggests that edge diffusion of C atoms along the crystallite boundaries, in addition to H2 etching, may contribute to shape evolution of the graphene crystallites. These results demonstrate that graphene grown using cold wall CVD follows a nucleation and growth mechanism similar to hot wall CVD. As a consequence, the vast knowledge base relevant to hot wall CVD may be exploited for graphene synthesis by the industrially preferable cold wall method.

  14. Structural and chemical characterization of inorganic deposits in calcified human mitral valve.

    PubMed

    Bigi, A; Compostella, L; Fichera, A M; Foresti, E; Gazzano, M; Ripamonti, A; Roveri, N

    1988-10-01

    X-ray diffraction, i.r. absorption, and chemical analyses have been carried out on the mineral deposits of calcified human mitral valves and glutaraldehyde-preserved porcine aortic grafts. The mineral deposits isolated from highly calcified mitral valves and porcine aortic grafts are constituted of type B-carbonate apatite. Magnesium substituted beta-tricalcium phosphate is present, together with an apatitic phase similar to dahllite, in the ashes of poorly calcified mitral valves. The contraction of the unit cell of beta-tricalcium phosphate due to magnesium incorporation is compared with the variation of the lattice constants of synthetic beta-tricalcium phosphate at different degree of magnesium substitution for calcium. The results reveal the important role of magnesium on the calcification of human valves. In fact, the apatitic phase deposited at the beginning of the calcification process, when there is a high magnesium content, converts completely into beta-tricalcium phosphate by heat treatment at 1,000 degrees C. On the other hand, when the calcification becomes massive, magnesium content appears highly reduced, and the deposited apatitic phase is characterized by a high thermal stability.

  15. High-efficiency cadmium-free Cu(In,Ga)Se{sub 2} thin-film solar cells with chemically deposited ZnS buffer layers

    SciTech Connect

    Nakada, Tokio; Furumi, Keisuke; Kunioka, Akio

    1999-10-01

    Cadmium-free Cu(In,Ga)Se{sub 2} (CIGS) thin-film solar cells with a MgF{sub 2}/ZnO:Al/CBD-ZnS/CIGS/Mo/SLG structure have been fabricated using chemical bath deposition (CBD)-ZnS buffer layers and high-quality CIGS absorber layers grown using molecular beam epitaxy (MBE) system. The use of CBD-ZnS, which is a wider band gap material than CBD-CdS, improved the quantum efficiency of fabricated cells at short wavelengths, leading to an increase in the short-circuit current. The best cell at present yielded an active area efficiency of 16.9% which is the highest value reported previously for Cd-free CIGS thin-film solar cells. The as-fabricated solar cells exhibited a reversible light-soaking effect under AM 1.5, 100 mW/cm{sup 2} illumination. This paper also presents a discussion of the issues relating to the use of the CBD-ZnS buffer material for improving device performance.

  16. Synthesis of multiferroic Er-Fe-O thin films by atomic layer and chemical vapor deposition

    SciTech Connect

    Mantovan, R. Vangelista, S.; Wiemer, C.; Lamperti, A.; Tallarida, G.; Chikoidze, E.; Dumont, Y.; Fanciulli, M.

    2014-05-07

    R-Fe-O (R = rare earth) compounds have recently attracted high interest as potential new multiferroic materials. Here, we report a method based on the solid-state reaction between Er{sub 2}O{sub 3} and Fe layers, respectively grown by atomic layer deposition and chemical vapor deposition, to synthesize Er-Fe-O thin films. The reaction is induced by thermal annealing and evolution of the formed phases is followed by in situ grazing incidence X-ray diffraction. Dominant ErFeO{sub 3} and ErFe{sub 2}O{sub 4} phases develop following subsequent thermal annealing processes at 850 °C in air and N{sub 2}. Structural, chemical, and morphological characterization of the layers are conducted through X-ray diffraction and reflectivity, time-of-flight secondary ion-mass spectrometry, and atomic force microscopy. Magnetic properties are evaluated by magnetic force microscopy, conversion electron Mössbauer spectroscopy, and vibrating sample magnetometer, being consistent with the presence of the phases identified by X-ray diffraction. Our results constitute a first step toward the use of cost-effective chemical methods for the synthesis of this class of multiferroic thin films.

  17. Computational Study of Fluid Flow in a Rotational Chemical Vapor Deposition (CVD) Reactor

    NASA Astrophysics Data System (ADS)

    Wong, Sun; Jaluria, Yogesh

    2015-11-01

    In a typical Chemical Vapor Deposition (CVD) reactor, the flow of the reacting gases is one of the most important considerations that must be precisely controlled in order to obtain desired film quality. In general, the fluids enter the reactor chamber, travel over to the heated substrate area, where chemical reactions lead to deposition, and then exit the chamber. However, the flow inside the reactor chamber is not that simple. It would often develop recirculation at various locations inside the reactor due to reactor geometry, flow conditions, buoyancy effects from temperature differences and rotational effects cause by the rotating substrate. This recirculation causes hot spots and affects the overall performance of the reactor. A recirculation fluid packet experiences a longer residence time inside the reactor and, thus, it heats up to higher temperatures causing unwanted chemical reactions and decomposition. It decreases the grow rate and uniformity on the substrate. A mathematical and computational model has been developed to help identify these unwanted hot spots occurring inside the CVD reactor. The model can help identify the user parameters needed to reduce the recirculation effects and better control the flow. Flow rates, pressures, rotational speeds and temperatures can all affect the severity of the recirculation within the reactor. The model can also help assist future designs as the geometry plays a big role in controlling fluid flow. The model and the results obtained are discussed in detail.

  18. Synthesis of zirconia (ZrO2) nanowires via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Baek, M. K.; Park, S. J.; Choi, D. J.

    2017-02-01

    Monoclinic zirconia nanowires were synthesized by chemical vapor deposition using ZrCl4 powder as a starting material at 1200 °C and 760 Torr. Graphite was employed as a substrate, and an Au thin film was pre-deposited on the graphite as a catalyst. The zirconia nanostructure morphology was observed through scanning electron microscopy and transmission electron microscopy. Based on X-ray diffraction, selected area electron diffraction, and Raman spectroscopy data, the resulting crystal structure was found to be single crystalline monoclinic zirconia. The homogeneous distributions of Zr, O and Au were studied by scanning transmission electron microscopy with energy dispersive X-ray spectroscopy mapping, and there was no metal droplet at the nanowire tips despite the use of an Au metal catalyst. This result is apart from that of conventional metal catalyzed nanowires.

  19. The effect of ultrasonic pre-treatment on nucleation density of chemical vapor deposition diamond

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Ingram, David C.

    1995-11-01

    Using statistical design of experiments, the effect of ultrasonic pre-treatment on the nucleation density of diamond was studied. The parameters investigated included ultrasonic excitation power, concentration of diamond powder in water, duration of ultrasonic excitation, and duration of cleaning with water after ultrasonic excitation. Diamond films were deposited on silicon (100) substrates using microwave assisted plasma chemical vapor deposition. The nucleation density varied from 106 nuclei/cm2 to 109 nuclei/cm2. The results illustrated that the dominant effect in ultrasonic pre-treatment was seeding. Moreover, scratches caused by the seeds during the treatment enabled more seeds to be retained on the surface. Based on these results, an optimized ultrasonic pretreatment has been developed. The new procedure yields a uniform nucleation density of 109 nuclei/cm2 on silicon (100) substrates.

  20. Growth of continuous graphene by open roll-to-roll chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhong, Guofang; Wu, Xingyi; D'Arsie, Lorenzo; Teo, Kenneth B. K.; Rupesinghe, Nalin L.; Jouvray, Alex; Robertson, John

    2016-11-01

    We demonstrate the growth of high-quality, continuous monolayer graphene on Cu foils using an open roll-to-roll (R2R) chemical vapor deposition (CVD) reactor with both static and moving foil growth conditions. N2 instead of Ar was used as carrier gas to reduce process cost, and the concentrations of H2 and CH4 reactants were kept below the lower explosive limit to ensure process safety for reactor ends open to ambient. The carrier mobility of graphene deposited at a Cu foil winding speed of 5 mm/min was 5270-6040 cm2 V-1 s-1 at room temperature (on 50 μm × 50 μm Hall devices). These results will enable the inline integration of graphene CVD for industrial R2R production.