Sample records for chemical bath method

  1. Short review on chemical bath deposition of thin film and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mugle, Dhananjay, E-mail: dhananjayforu@gmail.com; Jadhav, Ghanshyam, E-mail: ghjadhav@rediffmail.com

    2016-05-06

    This reviews the theory of early growth of the thin film using chemical deposition methods. In particular, it critically reviews the chemical bath deposition (CBD) method for preparation of thin films. The different techniques used for characterizations of the chemically films such as X-ray diffractometer (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Electrical conductivity and Energy Dispersive Spectroscopy (EDS) are discussed. Survey shows the physical and chemical properties solely depend upon the time of deposition, temperature of deposition.

  2. 40 CFR 63.11507 - What are my standards and management practices?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... other bath chemistry ingredients that are added to replenish the bath, as in the original make-up of the... bath. (iii) If a wetting agent/fume suppressant is included in the electrolytic process bath chemicals... practicable. (8) Maintain quality control of chemicals, and chemical and other bath ingredient concentrations...

  3. Antimony sulfide thin films prepared by laser assisted chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Shaji, S.; Garcia, L. V.; Loredo, S. L.; Krishnan, B.; Aguilar Martinez, J. A.; Das Roy, T. K.; Avellaneda, D. A.

    2017-01-01

    Antimony sulfide (Sb2S3) thin films were prepared by laser assisted chemical bath deposition (LACBD) technique. These thin films were deposited on glass substrates from a chemical bath containing antimony chloride, acetone and sodium thiosulfate under various conditions of normal chemical bath deposition (CBD) as well as in-situ irradiation of the chemical bath using a continuous laser of 532 nm wavelength. Structure, composition, morphology, optical and electrical properties of the Sb2S3 thin films produced by normal CBD and LACBD were analyzed by X-Ray diffraction (XRD), Raman Spectroscopy, Atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and Photoconductivity. The results showed that LACBD is an effective synthesis technique to obtain Sb2S3 thin films for optoelectronic applications.

  4. 40 CFR 63.11507 - What are my standards and management practices?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemistry ingredients that are added to replenish the tank bath, as in the original make-up of the tank. (iii) If a wetting agent/fume suppressant is included in the electrolytic process bath chemicals used... to be plated, as practicable. (8) Maintain quality control of chemicals, and chemical and other bath...

  5. ZnO/CdS bi-layer nanostructures photoelectrode for dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalal, Paresh V., E-mail: paresh10dalal@gmail.com; Deshpande, Milind P., E-mail: vishwadeshpande@yahoo.co.in; Solanki, Bharat G., E-mail: bhrt.solanki17@gmail.com

    2016-05-06

    Simple chemical deposition method for the synthesis of ZnO/CdS bilayer photoelectrode on fluorine doped tin oxide (FTO) coated glass substrate in aqueous medium at low temperature (< 373K) is described. The different preparative parameters such as deposition time, bath temperature, concentration of precursor solution and, pH of the bath etc. were optimized. Nanograined ZnO was deposited on FTO coated glass substrates by dip-coating method, whereas CdS nanorods were successfully synthesized on pre-deposited ZnO film by Chemical Bath Deposition (CBD) method. The Photovoltaic properties of FTO/ZnO/CdS bilayer photo electrodes were also studied. A maximum short circuit current density of 9.1 mA cm-2more » and conversion efficiency 1.05% are observed for ZnO/CdS-10min. Layer, which supports fast electron injection kinetics due to hetero structured nanorod, while minimum values of 0.53mA cm-2 and 0.01% respectively are observed for only ZnO deposited layer.« less

  6. PREDICTING EVAPORATION RATES AND TIMES FOR SPILLS OF CHEMICAL MIXTURES

    EPA Science Inventory


    Spreadsheet and short-cut methods have been developed for predicting evaporation rates and evaporation times for spills (and constrained baths) of chemical mixtures. Steady-state and time-varying predictions of evaporation rates can be made for six-component mixtures, includ...

  7. A chemical bath deposition route to facet-controlled Ag{sub 3}PO{sub 4} thin films with improved visible light photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunjakar, Jayavant L.; Jo, Yun Kyung; Kim, In Young

    A facile, economic, and reproducible chemical bath deposition (CBD) method is developed for the fabrication of facet-controlled Ag{sub 3}PO{sub 4} thin films with enhanced visible light photocatalytic activity. The fine-control of bath temperature, precursor, complexing agent, substrate, and solution pH is fairly crucial in preparing the facet-selective thin film of Ag{sub 3}PO{sub 4} nanocrystal. The change of precursor from silver nitrate to silver acetate makes possible the tailoring of the crystal shape of Ag{sub 3}PO{sub 4} from cube to rhombic dodecahedron and also the bandgap tuning of the deposited films. The control of [Ag{sup +}]/[phosphate] ratio enables to maximize themore » loading amount of Ag{sub 3}PO{sub 4} crystals per the unit area of the deposited film. All the fabricated Ag{sub 3}PO{sub 4} thin films show high photocatalytic activity for visible light-induced degradation of organic molecules, which can be optimized by tailoring the crystal shape of the deposited crystals. This CBD method is also useful in preparing the facet-controlled hybrid film of Ag{sub 3}PO{sub 4}–ZnO photocatalyst. The present study clearly demonstrates the usefulness of the present CBD method for fabricating facet-controlled thin films of metal oxosalt and its nanohybrid. - Highlights: • The crystal facet of Ag{sub 3}PO{sub 4} films can be tuned by chemical bath deposition. • The crystal shape of Ag{sub 3}PO{sub 4} is tailorable from cube to rhombic dodecahedron. • Facet-tuned Ag{sub 3}PO{sub 4} film shows enhanced visible light photocatalyst activity.« less

  8. Growth of different phases and morphological features of MnS thin films by chemical bath deposition: Effect of deposition parameters and annealing

    NASA Astrophysics Data System (ADS)

    Hannachi, Amira; Maghraoui-Meherzi, Hager

    2017-03-01

    Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferential orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like.

  9. Preparation of ZnS microdisks using chemical bath deposition and ZnS/p-Si heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Hsiao, Y. J.; Meen, T. H.; Ji, L. W.; Tsai, J. K.; Wu, Y. S.; Huang, C. J.

    2013-10-01

    The synthesis and heterojunction solar cell properties of ZnS microdisks prepared by the chemical bath deposition method were investigated. The ZnS deposited on the p-Si blanket substrate exhibits good coverage. The lower reflectance spectra were found as the thickness of the ZnS film increased. The optical absorption spectra of the 80 °C ZnS microdisk exhibited a band-gap energy of 3.4 eV and the power conversion efficiency (PCE) of the AZO/ZnS/p-Si heterojunction solar cell with a 300 nm thick ZnS film was η=2.72%.

  10. Mapping of an ultrasonic bath for ultrasound assisted extraction of mangiferin from Mangifera indica leaves.

    PubMed

    Kulkarni, Vrushali M; Rathod, Virendra K

    2014-03-01

    The present work deals with the mapping of an ultrasonic bath for the maximum extraction of mangiferin from Mangifera indica leaves. I3(-) liberation experiments (chemical transformations) and extraction (physical transformations) were carried out at different locations in an ultrasonic bath and compared. The experimental findings indicated a similar trend in variation in an ultrasonic bath by both these methods. Various parameters such as position and depth of vessel in an ultrasonic bath, diameter and shape of a vessel, frequency and input power which affect the extraction yield have been studied in detail. Maximum yield of mangiferin obtained was approximately 31 mg/g at optimized parameters: distance of 2.54 cm above the bottom of the bath, 7 cm diameter of vessel, flat bottom vessel, 6.35 cm liquid height, 122 W input power and 25 kHz frequency. The present work indicates that the position and depth of vessel in an ultrasonic bath, diameter and shape of a vessel, frequency and input power have significant effect on the extraction yield. This work can be used as a base for all ultrasonic baths to obtain maximum efficiency for ultrasound assisted extraction. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannachi, Amira, E-mail: amira.hannachi88@gmail.com; Maghraoui-Meherzi, Hager

    Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferentialmore » orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like. - Graphical Abstract: We report the preparation of different phases of manganese sulfide thin films (γ, β and α-MnS) by chemical bath deposition method. The effects of deposition parameters such as deposition time and temperature, concentrations of precursors and multi-layer deposition on MnS thin films structure and morphology were investigated. The influence of thermal annealing under nitrogen atmosphere at different temperature on MnS properties was also studied. Different manganese precursors as well as different complexing agent were also used. - Highlights: • γ and β-MnS films were deposited on substrate using the chemical bath deposition. • The effect of deposition parameters on MnS film properties has been investigated. • Multi-layer deposition was also studied to increase film thickness. • The effect of annealing under N{sub 2} at different temperature was investigated.« less

  12. A suitable deposition method of CdS for high performance CdS-sensitized ZnO electrodes: Sequential chemical bath deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Haining; Li, Weiping; Liu, Huicong

    2010-07-15

    A suitable deposition method of CdS is necessary for the high performance CdS-sensitized ZnO electrodes. In this paper, chemical bath deposition (CBD) and sequential chemical bath deposition (S-CBD) methods were used to deposit CdS on ZnO mesoporous films for ZnO/CdS electrodes. The analysis results of XRD patterns and UV-vis spectroscopy indicated that CBD deposition method leaded to the dissolving of ZnO mesoporous films in deposition solution and thickness reduction of ZnO/CdS electrodes. Absorption in visible region by the ZnO/CdS electrodes with CdS deposition by S-CBD was enhanced as deposition cycles increased due to the stability of ZnO mesoporous films inmore » the S-CBD deposition solutions. The results of photocurrent-voltage (I-V) measurement showed that the performance of ZnO/CdS electrodes with CdS deposition by CBD first increased and then decreased as deposition time increased, and the greatest short-circuit current (J{sub sc}) was obtained at the deposition time of 4 min. The performance of ZnO/CdS electrodes with CdS deposition by S-CBD increased as deposition cycles increased, and both open-circuit voltage (V{sub oc}) and J{sub sc} were greater than those electrodes with CdS deposition by CBD when the deposition cycles of S-CBD were 10 or greater. These results indicated that S-CBD is a more suitable method for high performance ZnO/CdS electrodes. (author)« less

  13. 40 CFR 63.341 - Definitions and nomenclature.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... control device or a chemical fume suppressant, that is used to reduce chromium emissions from chromium... workpiece. Bath component means the trade or brand name of each component(s) in trivalent chromium plating baths. For trivalent chromium baths, the bath composition is proprietary in most cases. Therefore, the...

  14. 40 CFR 63.341 - Definitions and nomenclature.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... control device or a chemical fume suppressant, that is used to reduce chromium emissions from chromium... workpiece. Bath component means the trade or brand name of each component(s) in trivalent chromium plating baths. For trivalent chromium baths, the bath composition is proprietary in most cases. Therefore, the...

  15. Analyzing the components of the free-energy landscape in a calcium selective ion channel by Widom's particle insertion method

    NASA Astrophysics Data System (ADS)

    Boda, Dezső; Giri, Janhavi; Henderson, Douglas; Eisenberg, Bob; Gillespie, Dirk

    2011-02-01

    The selectivity filter of the L-type calcium channel works as a Ca2 + binding site with a very large affinity for Ca2 + versus Na+. Ca2 + replaces half of the Na+ ions in the filter even when these ions are present in 1 μM and 30 mM concentrations in the bath, respectively. The energetics of this strong selectivity is analyzed in this paper. We use Widom's particle insertion method to compute the space-dependent profiles of excess chemical potential in our grand canonical Monte Carlo simulations. These profiles define the free-energy landscape for the various ions. Following Gillespie [Biophys. J. 94, 1169 (2008)], the difference of the excess chemical potentials for the two competing ions defines the advantage that one of the ions has over the other in the competition for space in the crowded selectivity filter. These advantages depend on ionic bath concentrations: the ion that is present in the bath in larger quantity (Na+) has the "number" advantage which is balanced by the free-energy advantage of the other ion (Ca2 +). The excess chemical potentials are decomposed into hard sphere exclusion and electrostatic components. The electrostatic terms correspond to interactions with the mean electric field produced by ions and induced charges as well to ionic correlations beyond the mean field description. Dielectrics are needed to produce micromolar Ca2 + versus Na+ selectivity in the L-type channel. We study the behavior of these terms with changes in bath concentrations of ions, charges, and diameters of ions, as well as geometrical parameters such as radius of the pore and the dielectric constant of the protein. Ion selectivity in calcium binding proteins probably has a similar mechanism.

  16. Analyzing the components of the free-energy landscape in a calcium selective ion channel by Widom's particle insertion method.

    PubMed

    Boda, Dezso; Giri, Janhavi; Henderson, Douglas; Eisenberg, Bob; Gillespie, Dirk

    2011-02-07

    The selectivity filter of the L-type calcium channel works as a Ca(2+) binding site with a very large affinity for Ca(2+) versus Na(+). Ca(2+) replaces half of the Na(+) ions in the filter even when these ions are present in 1 μM and 30 mM concentrations in the bath, respectively. The energetics of this strong selectivity is analyzed in this paper. We use Widom's particle insertion method to compute the space-dependent profiles of excess chemical potential in our grand canonical Monte Carlo simulations. These profiles define the free-energy landscape for the various ions. Following Gillespie [Biophys. J. 94, 1169 (2008)], the difference of the excess chemical potentials for the two competing ions defines the advantage that one of the ions has over the other in the competition for space in the crowded selectivity filter. These advantages depend on ionic bath concentrations: the ion that is present in the bath in larger quantity (Na(+)) has the "number" advantage which is balanced by the free-energy advantage of the other ion (Ca(2+)). The excess chemical potentials are decomposed into hard sphere exclusion and electrostatic components. The electrostatic terms correspond to interactions with the mean electric field produced by ions and induced charges as well to ionic correlations beyond the mean field description. Dielectrics are needed to produce micromolar Ca(2+) versus Na(+) selectivity in the L-type channel. We study the behavior of these terms with changes in bath concentrations of ions, charges, and diameters of ions, as well as geometrical parameters such as radius of the pore and the dielectric constant of the protein. Ion selectivity in calcium binding proteins probably has a similar mechanism.

  17. Fabrication of ZnO nanorod using spray-pyrolysis and chemical bath deposition method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramadhani, Muhammad F., E-mail: brian@tf.itb.ac.id; Pasaribu, Maruli A. H., E-mail: brian@tf.itb.ac.id; Yuliarto, Brian, E-mail: brian@tf.itb.ac.id

    2014-02-24

    ZnO thin films with nanorod structure were deposited using Ultrasonic Spray Pyrolysis method for seed growth, and Chemical Bath Deposition (CBD) for nanorod growth. High purity Zn-hydrate and Urea are used to control Ph were dissolved in ethanol and aqua bidest in Ultrasonic Spray Pyrolysis process. Glass substrate was placed above the heater plate of reaction chamber, and subsequently sprayed with the range duration of 5, 10 and 20 minutes at the temperatures of 3500 C. As for the Chemical Bath Deposition, the glass substrate with ZnO seed on the surface was immerse to Zn-hydrate, HMTA (Hexa Methylene Tetra Amine)more » and deionized water solution for duration of 3, 5 and 7 hour and temperatures of 600 C, washed in distilled water, dried, and annealed at 3500 C for an hour. The characterization of samples was carried out to reveal the surface morphology using Scanning Electron Microscopy (SEM). From the data, the combination of 5 minutes of Ultrasonic Spray Pyrolysis process and 3 hour of CBD has showed the best structure of nanorod. Meanwhile the longer Spraying process and CBD yield the bigger nanorod structure that have been made, and it makes the films more dense which make the nanorod collide each other and as a result produce unsymetric nanorod structure.« less

  18. Facile synthesis of PbTe nanoparticles and thin films in alkaline aqueous solution at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Y. Y.; Cai, K. F.; Yao, X.

    2009-12-01

    A novel, simple, and cost-effective route to PbTe nanoparticles and films is reported in this paper. The PbTe nanoparticles and films are fabricated by a chemical bath method, at room temperature and ambient pressure, using conventional chemicals as starting materials. The average grain size of the nanoparticles collected at the bottom of the bath is ˜25 nm. The film deposited on glass substrate is dense, smooth, and uniform with silver gray metallic luster. The film exhibits p-type conduction and has a moderate Seebeck coefficient value (˜147 μV K -1) and low electrical conductivity (˜0.017 S cm -1). The formation mechanism of the PbTe nanoparticles and films is proposed.

  19. Structural and morphological study of chemically synthesized CdSe thin films

    NASA Astrophysics Data System (ADS)

    Agrawal, P.; Singh, Randhir; Sharma, Jeewan; Sachdeva, M.; Singh, Anupinder; Bhargava, A.

    2018-05-01

    Nanocrystalline CdSe thin films were prepared by Chemical Bath Deposition (CBD) method using potassium nitrilo-triacetic acid cadmium complex and sodium selenosulphite. The as deposited films were red in color, uniform and well adherent to the glass substrate. These films were strongly dependent on the deposition parameters such as bath composition, deposition temperature and time. Films were annealed at 350 °C for four hours. The morphological, structural and optical properties were studied using X-ray diffraction (XRD), UV-VIS spectrophotometer measurements, scanning electron microscopy and atomic force microscopy. The XRD analysis confirmed that films are predominantly in hexagonal phase. Scanning electron micrograph shows that the grains are uniformly spread all over the film and each grain contains many nanocrystals with spherical shapes.

  20. Fabrication of CIGS Films by Electrodeposition Method for Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Lee, Hyunju; Yoon, Hyukjoo; Ji, Changwook; Lee, Dongyun; Lee, Jae-Ho; Yun, Jae-Ho; Kim, Yangdo

    2012-12-01

    Cu(InGa)Se2 (CIGS) thin films were fabricated by electrochemical deposition in a single bath containing Cu, In, Ga, and Se ions. The electrolyte was prepared by dissolving CuCl2, InCl3, GaCl3, H2SeO3, and LiCl in deionized water. The potentiostatic deposition process was achieved by applying a voltage ranging from -0.5 V to -0.8 V versus Ag/AgCl. The effects of different chemical bath concentrations on the film composition and morphology were investigated. Stoichiometric CIGS film composition could be achieved by controlling the chemical compositions of the bath and the voltage. Gelatin was added to the solution to improve the surface and microstructures of the CIGS film. The as-deposited films were annealed at 500°C in Ar atmosphere for crystallization. The structural, morphological, and compositional properties of the CIGS thin films before and after annealing were examined by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. This study showed that the composition of the CIGS films is dependent on the bath concentration, whereas the applied potential had relatively less effect on the CIGS film composition. In addition, the use of gelatin helped in the fabrication of crack-free CIGS thin films with greatly improved surface morphology.

  1. Transfer of graphene onto Pt/Glass substrate for transparent and large area graphene film using low temperature water bath

    NASA Astrophysics Data System (ADS)

    Aziz, Tengku Norazman Tengku Abd; Rosli, Aimi Bazilah; Yusoff, Marmeezee Mohd; Herman, Sukreen Hana; Zulkifli, Zurita

    2018-05-01

    This paper demonstrates the transfer of graphene at low temperature using water bath. Graphene in water solution (highly opaque) was transferred onto Platinum/Glass (Pt/Glass) substrate and the technique involves no additional chemicals. We obtained high transparency and large area of graphene film that is free of contaminants. The transferred graphene is characterized using FESEM, Raman spectroscopy and I-V measurements. This transfer method enables us to transfer graphene onto ZnO thin film for memristive devices.

  2. Incorporation of Mn2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei; Xiong, Yan; Tsai, Fang-Chang

    2018-03-01

    A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm-2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn2+ doping into CdSe QDs is an innovative and simple method-chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density-voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs.

  3. Incorporation of Mn2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells.

    PubMed

    Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei; Xiong, Yan; Tsai, Fang-Chang

    2018-03-01

    A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm -2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO 2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn 2+ doping into CdSe QDs is an innovative and simple method-chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn 2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn 2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density-voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs.

  4. Photoelectrochemical (PEC) studies on Cu2SnS3 (CTS) thin films deposited by chemical bath deposition method.

    PubMed

    Shelke, H D; Lokhande, A C; Kim, J H; Lokhande, C D

    2017-11-15

    Cu 2 SnS 3 (CTS) thin films have been successfully deposited on a cost-effective stainless steel substrate by simple and inexpensive chemical bath deposition (CBD) method. The films are deliberated in provisos of their structural, morphological, optical and photoelectrochemical (PEC) properties before and after annealing treatment, using various physico-chemical techniques. The XRD studies showed the formation of triclinic phase of CTS films with nanocrystalline structure. Also, the crystallinity is enhanced with annealing and the secondary phase of Cu 2 S observed. Raman analysis confirmed the formation of CTS compound with secondary Cu 2 S phase. The SEM images also discovered mostly tiny spherical grains and significant progress in the size of grains after annealing. The films possess direct transitions with band gap energies of 1.35eV and 1.31eV before and after annealing, respectively. The improved photoconversion efficiency of CTS thin film based PEC cell is explained with the help of theoretical modeling of energy band diagram and correspondent circuit model of the impedance spectra. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Structural and optical properties of Ni-doped CdS thin films prepared by chemical bath deposition method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premarani, R.; Saravanakumar, S., E-mail: sarophy84@gmail.com; Chandramohan, R.

    2015-06-24

    The structural and optical behavior of undoped Cadmiun Sulphide (CdS) and Ni-doped CdS thinfilms prepared by Chemical Bath Deposition (CBD) technique is reported. The crystallite sizes of the thinfilms have been characterized by X-ray diffraction pattern (XRD). The particle sizes increase with the increase of Ni content in the CdS thinfilms. Scanning Electron Microscope (SEM) results indicated that CdS thinfilms is made up of aggregate of spherical-like particles. The composition was estimated by Energy Dispersive Analysis of X-ray (EDX) and reported. Spectroscopic studies revealed considerable improvement in transmission and the band gap of the films changes with addition of Nimore » dopant that is associated with variation in crystallite sizes in the nano regime.« less

  6. 40 CFR 63.341 - Definitions and nomenclature.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air pollution control device or a chemical fume suppressant, that is used to reduce chromium emissions... trivalent chromium plating baths. For trivalent chromium baths, the bath composition is proprietary in most... to the surface tension. Trivalent chromium means the form of chromium in a valence state of +3...

  7. Special Advanced Studies for Pollution Prevention. Delivery Order 0058: The Monitor - Winter 2000

    DTIC Science & Technology

    2001-04-01

    Burning/Open Detonation of Energetic Materials ➨Emission factors from a draft EPA report are incorporated into the guidance Site Restoration ➨Method...Aqueous Cleaner Recycle System Microfiltration Removes oil/grease & TSS from alkaline and acid cleaning baths Commodore Separation Technologies, Inc... Microfiltration Removes all heavy metals from wastewater and recycles water Infinity Chemicals Group Infinity Prep-L Deoxidizing Chemical

  8. Physiological and subjective responses to standing showers, sitting showers, and sink baths.

    PubMed

    Ohnaka, T; Tochihara, Y; Kubo, M; Yamaguchi, C

    1995-09-01

    The purpose of this study was to investigate physiological and subjective responses during and after bathing in three different bathing methods. Eight healthy males bathed for 10 minutes, and then rested for 30 minutes. Three kinds of bathing methods - standing shower, sitting shower and sink bath - were adopted in this experiment. Water temperature and flow volume of the showers were kept at 41 degrees C and 11 liter/min, while water temperature of the bath was kept at 40 degrees C. Rectal temperature, skin temperatures and heart rate of the subjects were measured continuously during bathing and the subsequent 30-minute rest. Blood pressure and votes for thermal sensations were recorded before bathing, after 5 and 10 minutes of bathing, and 5, 10, 20 and 30 minutes after bathing. The following results were obtained. 1) Although rectal temperature rose, on the average, by 0.15 degrees C in all bathing methods, there were no significant differences among the three bathing methods at any time in the experiment. 2) Mean skin temperature (Tsk) during the sink bath was significantly higher than that in the standing or sitting shower. After bathing, Tsk of sink bath was slightly higher than those of the remaining conditions, but did not significantly differ among the bathing methods. 3) Heart rate increased gradually during all the bathing methods, however, only HR in the standing shower exceeded 100 beats/min which was significantly higher than those of the two remaining bathing methods. 4) Blood pressure (BP) decreased rapidly during the sink bath in contrast to an increased BP in the sitting and standing showers.

  9. Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Qiushuang; Guo, Shuai; Yang, Xiao; Zeng, Jiling; Cao, Xuejing; Chen, Renjie; Yan, Aru

    2018-05-01

    The chemical bath deposition (CBD) method is used to diffuse the heavy rare earth element in order to obtain the high coercivity magnets with low heavy rare earth element. The jet mill powders are soaked in the alcohol suspension of Dy(CH3CHOHCH3)3 (Dy-ipa) so that Nd2Fe14B powder particles are surrounded by Dy-ipa homogeneously. By adding 1.0 wt. % Dy, the coercivity of magnet is increased from 14.47 kOe to 17.55 kOe with slight reduction of remanence after grain boundary diffusion (GBD) in the sintering and annealing processes. The temperature coefficient of coercivity optimizes from -0.629 %/°C to -0.605 %/°C as well as that of remanence improves from -0.108 %/°C to -0.100 %/°C. The CBD method is helpful for thermal stability and alignment either. The relation between the microstructure and the coercivity has been studied systematically.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval-Paz, M.G., E-mail: myrnasandoval@udec.cl; Rodríguez, C.A.; Porcile-Saavedra, P.F.

    Copper (I) selenide thin films with orthorhombic and cubic structure were deposited on glass substrates by using the chemical bath deposition technique. The effects of the solution pH on the films growth and subsequently the structural, optical and electrical properties of the films were studied. Films with orthorhombic structure were obtained from baths wherein both metal complex and hydroxide coexist; while films with cubic structure were obtained from baths where the metal hydroxide there is no present. The structural modifications are accompanied by changes in bandgap energy, morphology and electrical resistivity of the films. - Graphical abstract: “Study of themore » crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution” by M. G. Sandoval-Paz, C. A. Rodríguez, P. F. Porcile-Saavedra, C. Trejo-Cruz. Display Omitted - Highlights: • Copper (I) selenide thin films were obtained by chemical bath deposition. • Orthorhombic to cubic phase change was induced by varying the reaction solution pH. • Orthorhombic phase is obtained mainly from a hydroxides cluster mechanism. • Cubic phase is obtained mainly from an ion by ion mechanism. • Structural, optical and electrical properties are presented as a function of pH.« less

  11. Chemical Safety: Molten Salt Baths Cited as Lab Hazards.

    ERIC Educational Resources Information Center

    Baum, Rudy

    1982-01-01

    Discusses danger of explosions with molten salts baths, commonly used as heat-transfer media. One such explosion involved use of a bath containing 3-lb sodium nitrite and 1-lb potassium thiocyanate. Although most commercially available mixtures for heat transfer contain oxidizers, a reducer (thiocyanate) was included which possibly triggered the…

  12. Chemical bath deposited (CBD) CuO thin films on n-silicon substrate for electronic and optical applications: Impact of growth time

    NASA Astrophysics Data System (ADS)

    Sultana, Jenifar; Paul, Somdatta; Karmakar, Anupam; Yi, Ren; Dalapati, Goutam Kumar; Chattopadhyay, Sanatan

    2017-10-01

    Thin film of p-type cupric oxide (p-CuO) is grown on silicon (n-Si) substrate by using chemical bath deposition (CBD) technique and a precise control of thickness from 60 nm to 178 nm has been achieved. The structural properties and stoichiometric composition of the grown films are observed to depend significantly on the growth time. The chemical composition, optical properties, and structural quality are investigated in detail by employing XRD, ellipsometric measurements and SEM images. Also, the elemental composition and the oxidation states of Cu and O in the grown samples have been studied in detail by XPS measurements. Thin film of 110 nm thicknesses exhibited the best performance in terms of crystal quality, refractive index, dielectric constant, band-gap, and optical properties. The study suggests synthesis route for developing high quality CuO thin film using CBD method for electronic and optical applications.

  13. Single step synthesis of rutile TiO{sub 2} nanoflower array film by chemical bath deposition method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhandayuthapani, T.; Sivakumar, R.; Ilangovan, R., E-mail: rilangovan@yahoo.com

    2016-05-06

    Titanium oxide (TiO{sub 2}) nanostructures such as nanorod arrays, nanotube arrays and nanoflower arrays have been extensively investigated by the researchers. Among them nanoflower arrays has shown superior performance than other nanostructures in Dye sensitized solar cell, photocatalysis and energy storage applications. Herein, a single step synthesis for rutile TiO{sub 2} nanoflower array films suitable for device applications has been reported. Rutile TiO{sub 2} nanoflower thin film was synthesized by chemical bath deposition method using NaCl as an additive. Bath temperature induced evolution of nanoflower thin film arrays was observed from the morphological study. X-ray diffraction study confirmed the presencemore » of rutile phase polycrystalline TiO{sub 2}. Micro-Raman study revealed the presence of surface phonon mode at 105 cm{sup −1} due to the phonon confinement effect (finite size effect), in addition with the rutile Raman active modes of B{sub 1}g (143 cm{sup −1}), Eg (442 cm{sup −1}) and A{sub 1}g (607 cm{sup −1}). Further, the FTIR spectrum confirmed the presence of Ti-O-Ti bonding vibration. The Tauc plot showed the direct energy band gap nature of the film with the value of 2.9 eV.« less

  14. Method of dye removal for the textile industry

    DOEpatents

    Stone, Mark L.

    2000-01-01

    The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention comprises using an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.

  15. Characterization of Polysulfone Membranes Prepared with Thermally Induced Phase Separation Technique

    NASA Astrophysics Data System (ADS)

    Tiron, L. G.; Pintilie, Ș C.; Vlad, M.; Birsan, I. G.; Baltă, Ș

    2017-06-01

    Abstract Membrane technology is one of the most used water treatment technology because of its high removal efficiency and cost effectiveness. Preparation techniques for polymer membranes show an important aspect of membrane properties. Generally, polysulfone (PSf) and polyethersulfone (PES) are used for the preparation of ultrafiltration (UF) membranes. Polysulfone (PSf) membranes have been widely used for separation and purification of different solutions because of their excellent chemical and thermal stability. Polymeric membranes were obtained by phase inversion method. The polymer solution introduced in the nonsolvent bath (distilled water) initiate the evaporation of the solvent from the solution, this phenomenon has a strong influence on the transport properties. The effect of the coagulation bath temperature on the membrane properties is of interest for this study. Membranes are characterized by pure water flux, permeability, porosity and retention of methylene blue. The low temperature of coagulation bath improve the membrane’s rejection and its influence was most notable.

  16. Influence of bath PH value on microstructure and corrosion resistance of phosphate chemical conversion coating on sintered Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Ding, Xia; Xue, Long-fei; Wang, Xiu-chun; Ding, Kai-hong; Cui, Sheng-li; Sun, Yong-cong; Li, Mu-sen

    2016-10-01

    The effect of bath PH value on formation, microstructure and corrosion resistance of the phosphate chemical conversion (PCC) coatings as well as the effect on the magnetic property of the magnets is investigated in this paper. The results show that the coating mass and thickness increase with the decrease of the bath PH value. Scanning electron microscopy observation demonstrates that the PCC coatings are in a blocky structure with different grain size. Transmission electron microscope and X-ray diffractometer tests reveal the coatings are polycomponent and are mainly composed of neodymium phosphate hydrate and praseodymium phosphate hydrate. The electrochemical analysis and static immersion corrosion test show the corrosion resistance of the PCC coatings prepared at bath PH value of 0.52 is worst. Afterwards the corrosion resistance increases first and then decreases with the increasing of the bath PH values. The magnetic properties of all the samples with PCC treatment are decreased. The biggest loss is occurred when the bath PH value is 0.52. Taken together, the optimum PH range of 1.00-1.50 for the phosphate solution has been determined.

  17. Ion chromatography in the manufacture of multilayer circuit boards

    NASA Astrophysics Data System (ADS)

    Smith, Robert E.

    1990-01-01

    Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. Unlike other chemical quantification techniques, IC provides results on ions not expected in the production solutions. Thus, solution contamination and break-down products can be monitored in every phase of the circuit board manufacturing. During the first phase, epoxy laminates experience an etchback, first in chromic acid, which can be analyzed for trace chloride and sulfate, then in ammonium bifluoride/HCl, which can be analyzed for fluoride and chloride. Following a wet-blasting to roughen up the surface, 20 microinches of copper are deposited using an electroless bath. Again, IC is applicable for monitoring formate, tartarate, and sulfate levels. Next, an acid copper bath is used to electroplate the through holes with 0.001 inches of ductile copper. This bath is analyzed for trace chloride. Photoimaging is then performed, and the organic solvents used can be assayed for trace ionic chloride. Finally, a fluoroboric acid-based tin-lead bath is used to deposit a solderable alloy. This bath is analyzed for fluoroborate, tin, and lead. In addition, mobile phase ion chromatography (MPIC) is used to monitor the nonionic organic brighteners in the baths.

  18. Effect of growth parameters on the optical properties of ZnO nanostructures grown by simple solution methods

    NASA Astrophysics Data System (ADS)

    Kothari, Anjana

    2017-05-01

    ZnO, a wide band gap semiconductor is of significant interest for a range of practical applications. One of the highly attractive features of ZnO is to grow variety of nanostructures by using low-cost techniques. In this paper, we report deposition of ZnO nanostructure rod-arrays (NRA) via low-temperature, solution-based deposition techniques such as chemical bath deposition (CBD) and microwave-assisted chemical bath deposition (MACBD). A detailed study of film deposition parameters such as variation in concentration of precursors and deposition temperature has been carried out. Compositional and structural study of the films has been done by X-ray Diffractometer to know the phase and purity of the final product. Morphological study of these structures has been carried out by Scanning Electron Microscopy. Optical study such as transmittance and diffuse reflectance of the films has been carried out as a function of growth parameters.

  19. Influence of mechanical and chemical polishing in the solubility of acrylic resins polymerized by microwave irradiation and conventional water bath.

    PubMed

    Machado, Cristiane; Rizzatti-Barbosa, Célia M; Gabriotti, Morgana N; Joia, Fábio A; Ribeiro, Margarete C; Sousa, Rodrigo L S

    2004-07-01

    The aim of this work was to evaluate the solubility of acrylic resin activated by microwave irradiation (MI) or water bath (WB), when submitted to chemical (CP) or mechanical (MP) polishing. Forty acrylic resin samples were made and processed either by water bath (74 +/- 1 degrees C, 9 h) or microwave irradiation (500 W, 3 min). After deflasking, the samples were finished with aluminum oxide sandpapers in decreasing granulations till reaching similar dimensions. The samples were divided into four groups according to the association between kind of polymerization and polishing: A (WB + CP), B (WB + MP), C (MI + CP) and D (MI + MP). Solubility test was performed for each group and percentile solubility was calculated. Data were statistically analyzed using variance analysis and Kruskal-Wallis. The average of percentile solubility (%) was obtained: A = 0.07, B = 0.02, C = 0.04, D = -0.14, however, no significant difference was found between types of polishing in the samples polymerized by water bath (A and B). When processed by microwave irradiation (C and D), there was significant difference between the applied methods of polishing, so that mechanical polishing lead to a lower solubility. Solubility is a property of acrylic resins, representing not reacted substances releasing that could promote tissular reactions in prosthesis users. The association between polymerization by microwave irradiation and mechanical polishing showed less residual substances releasing for heat-cured acrylic resins, reducing the probability of developing tissular reactions.

  20. Modeling the transport of organic chemicals between polyethylene passive samplers and water in finite and infinite bath conditions.

    PubMed

    Tcaciuc, A Patricia; Apell, Jennifer N; Gschwend, Philip M

    2015-12-01

    Understanding the transfer of chemicals between passive samplers and water is essential for their use as monitoring devices of organic contaminants in surface waters. By applying Fick's second law to diffusion through the polymer and an aqueous boundary layer, the authors derived a mathematical model for the uptake of chemicals into a passive sampler from water, in finite and infinite bath conditions. The finite bath model performed well when applied to laboratory observations of sorption into polyethylene (PE) sheets for various chemicals (polycyclic aromatic hydrocarbons, polychlorinated biphenyls [PCBs], and dichlorodiphenyltrichloroethane [DDT]) and at varying turbulence levels. The authors used the infinite bath model to infer fractional equilibration of PCB and DDT analytes in field-deployed PE, and the results were nearly identical to those obtained using the sampling rate model. However, further comparison of the model and the sampling rate model revealed that the exchange of chemicals was inconsistent with the sampling rate model for partially or fully membrane-controlled transfer, which would be expected in turbulent conditions or when targeting compounds with small polymer diffusivities and small partition coefficients (e.g., phenols, some pesticides, and others). The model can be applied to other polymers besides PE as well as other chemicals and in any transfer regime (membrane, mixed, or water boundary layer-controlled). Lastly, the authors illustrate practical applications of this model such as improving passive sampler design and understanding the kinetics of passive dosing experiments. © 2015 SETAC.

  1. Evolution of structural and optical properties of rutile TiO2 thin films synthesized at room temperature by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Mayabadi, A. H.; Waman, V. S.; Kamble, M. M.; Ghosh, S. S.; Gabhale, B. B.; Rondiya, S. R.; Rokade, A. V.; Khadtare, S. S.; Sathe, V. G.; Pathan, H. M.; Gosavi, S. W.; Jadkar, S. R.

    2014-02-01

    Nanocrystalline thin films of TiO2 were prepared on glass substrates from an aqueous solution of TiCl3 and NH4OH at room temperature using the simple and cost-effective chemical bath deposition (CBD) method. The influence of deposition time on structural, morphological and optical properties was systematically investigated. TiO2 transition from a mixed anatase-rutile phase to a pure rutile phase was revealed by low-angle XRD and Raman spectroscopy. Rutile phase formation was confirmed by FTIR spectroscopy. Scanning electron micrographs revealed that the multigrain structure of as-deposited TiO2 thin films was completely converted into semi-spherical nanoparticles. Optical studies showed that rutile thin films had a high absorption coefficient and a direct bandgap. The optical bandgap decreased slightly (3.29-3.07 eV) with increasing deposition time. The ease of deposition of rutile thin films at low temperature is useful for the fabrication of extremely thin absorber (ETA) solar cells, dye-sensitized solar cells, and gas sensors.

  2. The transformation of ZnO submicron dumbbells into perfect hexagonal tubular structures using CBD: a post treatment route.

    PubMed

    Borade, P; Joshi, K U; Gokarna, A; Lerondel, G; Jejurikar, S M

    2016-01-15

    In this paper, we report the synthesis of dumbbell-shaped ZnO structures and their subsequent transformation into perfect hexagonal tubes by the extended chemical bath deposition (CBD) method, retaining all advantages such as reproducibility, simplicity, quickness and economical aspect. Well-dispersed sub-micron-sized dumbbell-shaped ZnO structures were synthesized on a SiO2/Si substrate by the CBD method. As an extension of the CBD process the synthesized ZnO dumbbells were exposed to the evaporate coming out of the chemical bath for a few minutes (simply by adjusting the height of the deposit so that it remained just above the solution) to convert them into hexagonal tubes via the dissolution process. The possible dissolution mechanism responsible for the observed conversion is discussed. The optical properties (photo-luminescence) recorded at low temperature on both the structures showed an intense, sharp excitonic peak located at ∼370 nm. The improved intensity and low FWHM of the UV peak observed in the hexagonal tubular structures assures high optical quality, and hence can be used for optoelectronic applications.

  3. Incorporation of Mn2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells

    PubMed Central

    Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei

    2018-01-01

    A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm−2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn2+ doping into CdSe QDs is an innovative and simple method—chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density–voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs. PMID:29657776

  4. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition

    PubMed Central

    Liao, Yu-Kuang; Liu, Yung-Tsung; Hsieh, Dan-Hua; Shen, Tien-Lin; Hsieh, Ming-Yang; Tzou, An-Jye; Chen, Shih-Chen; Tsai, Yu-Lin; Lin, Wei-Sheng; Chan, Sheng-Wen; Shen, Yen-Ping; Cheng, Shun-Jen; Chen, Chyong-Hua; Wu, Kaung-Hsiung; Chen, Hao-Ming; Kuo, Shou-Yi; Charlton, Martin D. B.; Hsieh, Tung-Po; Kuo, Hao-Chung

    2017-01-01

    Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs) with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD) and chemical bath deposition (CBD) as used by the Cu(In,Ga)Se2 (CIGS) thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase. PMID:28383488

  5. Synergistic influence of Al, Ni, Bi and Sn addition to a zinc bath upon growth kinetics and the structure of coatings

    NASA Astrophysics Data System (ADS)

    Kania, H.; Liberski, P.

    2012-05-01

    In this article the authors have analysed the current knowledge about the influence of alloy additions used in galvanizing baths. The optimum concentration of Al, Ni, Bi and Sn addition has been established. Some tests have been conducted to determine the synergistic effect of the addition of AlNiBiSn to a zinc bath upon the structure and growth kinetics of coatings. The structure of the coatings obtained on steel with low silicon contents and on Sandelin steel as well as their chemical composition have been revealed. It has been established that the addition of AlNiBiSn helps to reduce excessive growth of coating on Sandelin steel. The chemical composition and the structure of the coating on Sandelin steel are similar to the chemical composition and structure obtained on steel with regular silicon contents.

  6. SEPARATION OF URANIUM AND PLUTONIUM OXIDES

    DOEpatents

    Benedict, G.E.; Lyon, W.L.

    1961-12-01

    ABS>A method of separating a mixture of UO/sub 2/ and PuO/sub 2/ is given which comprises immersing the mixture in a fused NaCl-KCl bath, chlorinating with chlorine or phosgene, and preferentially electrolytically or chemically reducing the UO/sub 2/Cl/sub 2/ so produced to UO/sub 2/ and filtering it out. (AEC)

  7. Preparation and characterization of copper telluride thin films by modified chemical bath deposition (M-CBD) method

    NASA Astrophysics Data System (ADS)

    Pathan, H. M.; Lokhande, C. D.; Amalnerkar, D. P.; Seth, T.

    2003-09-01

    Copper telluride thin films were deposited using modified chemical method using copper(II) sulphate; pentahydrate [CuSO 4·5H 2O] and sodium tellurite [Na 2TeO 3] as cationic and anionic sources, respectively. Modified chemical method is based on the immersion of the substrate into separately placed cationic and anionic precursors. The preparative conditions such as concentration, pH, immersion time, immersion cycles, etc. were optimized to get good quality copper telluride thin films at room temperature. The films have been characterized for structural, compositional, optical and electrical transport properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Rutherford back scattering (RBS), optical absorption/transmission, electrical resistivity and thermoemf measurement techniques.

  8. Experimental Studies on role of pH, potential and concentration of buffer solution for chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Suresha, B. L.; Sumantha, H. S.; Salman, K. Mohammed; Pramod, N. G.; Abhiram, J.

    2018-04-01

    The ionization potential is usually found to be less in acid and more in base. The experiment proves that the ionization potential increases on dilution of acid to base and reduces from base to acid. The potential can be tailored according to the desired properties based on our choice of acid or base. The experimental study establishes a direct relationship between pH and electric potential. This work provides theoretical insights on the need for a basic media of pH 10 in chemical thin film growth techniques called Chemical Bath Deposition Techniques.

  9. Fabrication of p-type CuO thin films using chemical bath deposition technique and their solar cell applications with Si nanowires

    NASA Astrophysics Data System (ADS)

    Akgul, Funda Aksoy; Akgul, Guvenc

    2017-02-01

    Recently, CuO has attracted much interest owing to its suitable material properties, inexpensive fabrication cost and potential applications for optoelectronic devices. In this study, CuO thin films were deposited on glass substrates using chemical bath deposition technique and post-deposition annealing effect on the properties of the prepared samples were investigated. p-n heterojunction solar cells were then constructed by coating of p-type CuO films onto the vertically well-aligned n-type Si nanowires synthesized through MACE method. Photovoltaic performance of the fabricated devices were determined with current-voltage (I-V) measurements under AM 1.5 G illumination. The optimal short-circuit current density, open-circuit voltage, fill factor and power conversion efficiency were found to be 3.2 mA/cm-2, 337 mV, 37.9 and 0.45%, respectively. The observed performance clearly indicates that the investigated device structure could be a promising candidate for high-performance low-cost new-generation photovoltaic diodes.

  10. Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition of TbCl{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Shuai, E-mail: gshuai@nimte.ac.cn; Zhang, Xiaofeng; Ding, Guangfei

    2014-05-07

    The chemical bath deposition (CBD) and the grain boundary diffusion method were combined to diffuse the heavy rare earth for obtain the thick magnets with high coercivity and low heavy rare earth. The jet mill powders were soaked into the alcohol solution of 0.2 wt. % TbCl{sub 3}. A thin layer of TbCl{sub 3} was wrapped to the surface of (PrNd){sub 2}Fe{sub 14}B powder particles. The coercivity of magnet is increased from 11.89 kOe to 14.72 kOe without significant reduction of remanence after grain boundary diffusion in the sintering and the annealing processes. The temperature coefficients of the remanence and themore » coercivity are improved by the substitution of PrNd by Tb in the surface of grains. The highly accelerated temperature/humidity stress test (HAST) results indicate that the CBD magnet has poor corrosion resistance, attributing to the present of Cl atoms in the grain boundaries.« less

  11. Annealing effect on structural and optical properties of chemical bath deposited MnS thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulutas, Cemal, E-mail: cemalulutas@hakkari.edu.tr; Gumus, Cebrail

    2016-03-25

    MnS thin film was prepared by the chemical bath deposition (CBD) method on commercial microscope glass substrate deposited at 30 °C. The as-deposited film was given thermal annealing treatment in air atmosphere at various temperatures (150, 300 and 450 °C) for 1 h. The MnS thin film was characterized by using X-ray diffraction (XRD), UV-vis spectrophotometer and Hall effect measurement system. The effect of annealing temperature on the structural, electrical and optical properties such as optical constants of refractive index (n) and energy band gap (E{sub g}) of the film was determined. XRD measurements reveal that the film is crystallized inmore » the wurtzite phase and changed to tetragonal Mn{sub 3}O{sub 4} phase after being annealed at 300 °C. The energy band gap of film decreased from 3.69 eV to 3.21 eV based on the annealing temperature.« less

  12. Micro-poromechanics model of fluid-saturated chemically active fibrous media.

    PubMed

    Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette

    2015-02-01

    We have developed a micromechanics based model for chemically active saturated fibrous media that incorporates fiber network microstructure, chemical potential driven fluid flow, and micro-poromechanics. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's volume averaging. The advantage of this approach is that the resultant continuum model accounts for the discrete nature of the individual fibers while retaining a form suitable for porous materials. As a result, the model is able to predict the influence of micro-scale phenomena, such as the fiber pre-strain caused by osmotic effects and evolution of fiber network structure with loading, on the overall behavior and in particular, on the poromechanics parameters. Additionally, the model can describe fluid-flow related rate-dependent behavior under confined and unconfined conditions and varying chemical environments. The significance of the approach is demonstrated by simulating unconfined drained monotonic uniaxial compression under different surrounding fluid bath molarity, and fluid-flow related creep and relaxation at different loading-levels and different surrounding fluid bath molarity. The model predictions conform to the experimental observations for saturated soft fibrous materials. The method can potentially be extended to other porous materials such as bone, clays, foams and concrete.

  13. 40 CFR Appendix A to Part 80 - Test for the Determination of Phosphorus in Gasoline

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Specification for Filter Paper for Use in Chemical Analysis. 3. Summary of method. 3.1 Organic matter in the...) during the entire period of sample heating. Note 1: If the temperature of the hot water bath drops below... 100-ml volumetric flasks submerged to the mark in ice water. 4.4 Filter Paper, for quantitative...

  14. 40 CFR Appendix A to Part 80 - Test for the Determination of Phosphorus in Gasoline

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Specification for Filter Paper for Use in Chemical Analysis. 3. Summary of method. 3.1 Organic matter in the...) during the entire period of sample heating. Note 1: If the temperature of the hot water bath drops below... 100-ml volumetric flasks submerged to the mark in ice water. 4.4 Filter Paper, for quantitative...

  15. 40 CFR Appendix A to Part 80 - Test for the Determination of Phosphorus in Gasoline

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Specification for Filter Paper for Use in Chemical Analysis. 3. Summary of method. 3.1 Organic matter in the...) during the entire period of sample heating. Note 1: If the temperature of the hot water bath drops below... 100-ml volumetric flasks submerged to the mark in ice water. 4.4 Filter Paper, for quantitative...

  16. An investigation into the role of polyethyleneimine in chemical bath deposition of zinc oxide nanowires

    NASA Astrophysics Data System (ADS)

    Eskandari, Alireza; Abdizadeh, Hossein; Pourshaban, Erfan; Golobostanfard, Mohammad Reza

    2018-01-01

    Zinc oxide nanowires are considered as promising materials for wide range of optoelectrical and chemical devices, thanks to their desirable structural and optoelectrical properties. Over the past decade, chemical bath deposition (CBD) has been widely used to synthesize these nanostructures due to its low cost and controllability. Since improving the aspect ratio and length of nanowires is a vital issue in growing one-dimensional nanostructures, the influence of polyethyleneimine (PEI) as a complexing and chelating agent on the structural, morphological, and optoelectrical properties of ZnO nanowires has been studied in this report. As-grown ZnO nanowires synthesized by mixing deionized water, zinc acetate dihydrate, hexamethylenetetramine, and PEI were characterized with field emission scanning electron microscope (FESEM), X-ray diffractometer (XRD), and photoluminescence spectroscopy (PL). FESEM results unambiguously show that increasing PEI concentration (from 0 to 0.2 g in 50 ml DI water) reduces the diameter and density of nanowires from ˜120 to 56 nm and from ˜85% to 65%, respectively. Interestingly, although adding more PEI decreases nanowires diameter, over-increasing of PEI brings about an inappropriate nanostructures growth. Moreover, XRD patterns demonstrate that all the samples have wurtzite structure with a preferred orientation along c-axis which may be improved or deteriorated by adding PEI into the chemical bath. Accordingly, it is crucial to optimize the amount of PEI in CBD method. Near-band edge (NBE) region in PL spectrum also confirms wide bandgap of ZnO (˜3.3 eV). In addition, comparing the appearance of PEI free with PEI assisted solutions show a considerable difference in their colors, which may be attributed to the formation of new chemical compounds. Considering these results, PEI plays a couple of determining roles in synthesizing ZnO nanowires; making nanowires thinner, with selectively absorption to the non-polar, lateral facets of wurtzite lattice, and controlling deposition rate by forming the PEI-Zn2+-HCHO complex compounds.

  17. Local density approximation in site-occupation embedding theory

    NASA Astrophysics Data System (ADS)

    Senjean, Bruno; Tsuchiizu, Masahisa; Robert, Vincent; Fromager, Emmanuel

    2017-01-01

    Site-occupation embedding theory (SOET) is a density functional theory (DFT)-based method which aims at modelling strongly correlated electrons. It is in principle exact and applicable to model and quantum chemical Hamiltonians. The theory is presented here for the Hubbard Hamiltonian. In contrast to conventional DFT approaches, the site (or orbital) occupations are deduced in SOET from a partially interacting system consisting of one (or more) impurity site(s) and non-interacting bath sites. The correlation energy of the bath is then treated implicitly by means of a site-occupation functional. In this work, we propose a simple impurity-occupation functional approximation based on the two-level (2L) Hubbard model which is referred to as two-level impurity local density approximation (2L-ILDA). Results obtained on a prototypical uniform eight-site Hubbard ring are promising. The extension of the method to larger systems and more sophisticated model Hamiltonians is currently in progress.

  18. Osmotic propulsion: the osmotic motor.

    PubMed

    Córdova-Figueroa, Ubaldo M; Brady, John F

    2008-04-18

    A model for self-propulsion of a colloidal particle--the osmotic motor--immersed in a dispersion of "bath" particles is presented. The nonequilibrium concentration of bath particles induced by a surface chemical reaction creates an osmotic pressure imbalance on the motor causing it to move. The ratio of the speed of reaction to that of diffusion governs the bath particle distribution which is employed to calculate the driving force on the motor, and from which the self-induced osmotic velocity is determined. For slow reactions, the self-propulsion is proportional to the reaction velocity. When surface reaction dominates over diffusion the osmotic velocity cannot exceed the diffusive speed of the bath particles. Implications of these features for different bath particle volume fractions and motor sizes are discussed. Theoretical predictions are compared with Brownian dynamics simulations.

  19. Chemical Dynamics Simulations of Intermolecular Energy Transfer: Azulene + N2 Collisions.

    PubMed

    Kim, Hyunsik; Paul, Amit K; Pratihar, Subha; Hase, William L

    2016-07-14

    Chemical dynamics simulations were performed to investigate collisional energy transfer from highly vibrationally excited azulene (Az*) in a N2 bath. The intermolecular potential between Az and N2, used for the simulations, was determined from MP2/6-31+G* ab initio calculations. Az* is prepared with an 87.5 kcal/mol excitation energy by using quantum microcanonical sampling, including its 95.7 kcal/mol zero-point energy. The average energy of Az* versus time, obtained from the simulations, shows different rates of Az* deactivation depending on the N2 bath density. Using the N2 bath density and Lennard-Jones collision number, the average energy transfer per collision ⟨ΔEc⟩ was obtained for Az* as it is collisionally relaxed. By comparing ⟨ΔEc⟩ versus the bath density, the single collision limiting density was found for energy transfer. The resulting ⟨ΔEc⟩, for an 87.5 kcal/mol excitation energy, is 0.30 ± 0.01 and 0.32 ± 0.01 kcal/mol for harmonic and anharmonic Az potentials, respectively. For comparison, the experimental value is 0.57 ± 0.11 kcal/mol. During Az* relaxation there is no appreciable energy transfer to Az translation and rotation, and the energy transfer is to the N2 bath.

  20. Structural and optical properties of nano-structured CdS thin films prepared by chemical bath deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Rekha, E-mail: rekha.mittal07@gmail.com; Kumar, Dinesh; Chaudhary, Sujeet

    2016-05-06

    Cadmium sulfide (CdS) thin films have been deposited on conducting glass substrates by chemical bath deposition (CBD) technique. The effect of precursor concentration on the structural, morphological, compositional, and optical properties of the CdS films has been studied. Crystal structure of these CdS films is characterized by X-ray diffraction (XRD) and it reveals polycrystalline structure with mixture of cubic and wurtzite phases with grain size decreasing as precursor concentration is increased. Optical studies reveal that the CdS thin films have high transmittance in visible spectral region reaching 90% and the films possess direct optical band gap that decreases from 2.46more » to 2.39 eV with decreasing bath concentration. Our study suggests that growth is nucleation controlled.« less

  1. Photocatalytic efficiency of CdS film synthesized by CBD method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiyama, T.; Sato, Y.; Jeyadevan, B.

    2006-05-15

    Cadmium Sulfide semiconductor has comparatively small band gap and act as photocatalyst under irradiation of visible light. For practical use, it is convenient to fix the photocatalyst on a substrate as a thin film. In this study, we prepared CdS thin film on Ti substrate by Chemical Bath Deposition (CBD). To improve photocatalytic activity, CdS film was annealed and optimum thickness was investigated.

  2. Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

    NASA Astrophysics Data System (ADS)

    Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George

    2016-07-01

    The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel by Zn-Ti alloys.

  3. Ugly ducklings-the dark side of plastic materials in contact with potable water.

    PubMed

    Neu, Lisa; Bänziger, Carola; Proctor, Caitlin R; Zhang, Ya; Liu, Wen-Tso; Hammes, Frederik

    2018-01-01

    Bath toys pose an interesting link between flexible plastic materials, potable water, external microbial and nutrient contamination, and potentially vulnerable end-users. Here, we characterized biofilm communities inside 19 bath toys used under real conditions. In addition, some determinants for biofilm formation were assessed, using six identical bath toys under controlled conditions with either clean water prior to bathing or dirty water after bathing. All examined bath toys revealed notable biofilms on their inner surface, with average total bacterial numbers of 5.5 × 10 6  cells/cm 2 (clean water controls), 9.5 × 10 6  cells/cm 2 (real bath toys), and 7.3 × 10 7  cells/cm 2 (dirty water controls). Bacterial community compositions were diverse, showing many rare taxa in real bath toys and rather distinct communities in control bath toys, with a noticeable difference between clean and dirty water control biofilms. Fungi were identified in 58% of all real bath toys and in all dirty water control toys. Based on the comparison of clean water and dirty water control bath toys, we argue that bath toy biofilms are influenced by (1) the organic carbon leaching from the flexible plastic material, (2) the chemical and biological tap water quality, (3) additional nutrients from care products and human body fluids in the bath water, as well as, (4) additional bacteria from dirt and/or the end-users' microbiome. The present study gives a detailed characterization of bath toy biofilms and a better understanding of determinants for biofilm formation and development in systems comprising plastic materials in contact with potable water.

  4. Investigation on structural and optical properties of ZnO film prepared by simple wet chemical method

    NASA Astrophysics Data System (ADS)

    Sholehah, Amalia; Mulyadi, Rendi; Haryono, Didied; Muttakin, Imamul; Rusbana, Tb Bahtiar; Mardiyanto

    2018-04-01

    ZnO thin layer has a broad potential application in electronic and optoelectronic devices. In this study, vertically align ZnO layers were deposited on ITO glass using wet chemistry method. The seed layers were prepared using electrodeposition technique at 3°C. The growing process was carried out using chemical bath deposition at 90°C. To improve the structural properties, two different hydrothermal treatment variations were applied separately. From the experiment, it is shown that the hydrothermal process using N2 gas has given the best result, with average diameter, crystallite size, and band-gap energy of 68.83 nm; 56.37 nm; and 3.16 eV, respectively.

  5. Toward High-Efficiency Solution-Processed Planar Heterojunction Sb2S3 Solar Cells.

    PubMed

    Zimmermann, Eugen; Pfadler, Thomas; Kalb, Julian; Dorman, James A; Sommer, Daniel; Hahn, Giso; Weickert, Jonas; Schmidt-Mende, Lukas

    2015-05-01

    Low-cost hybrid solar cells have made tremendous steps forward during the past decade owing to the implementation of extremely thin inorganic coatings as absorber layers, typically in combination with organic hole transporters. Using only extremely thin films of these absorbers reduces the requirement of single crystalline high-quality materials and paves the way for low-cost solution processing compatible with roll-to-roll fabrication processes. To date, the most efficient absorber material, except for the recently introduced organic-inorganic lead halide perovskites, has been Sb 2 S 3 , which can be implemented in hybrid photovoltaics using a simple chemical bath deposition. Current high-efficiency Sb 2 S 3 devices utilize absorber coatings on nanostructured TiO 2 electrodes in combination with polymeric hole transporters. This geometry has so far been the state of the art, even though flat junction devices would be conceptually simpler with the additional potential of higher open circuit voltages due to reduced charge carrier recombination. Besides, the role of the hole transporter is not completely clarified yet. In particular, additional photocurrent contribution from the polymers has not been directly shown, which points toward detrimental parasitic light absorption in the polymers. This study presents a fine-tuned chemical bath deposition method that allows fabricating solution-processed low-cost flat junction Sb 2 S 3 solar cells with the highest open circuit voltage reported so far for chemical bath devices and efficiencies exceeding 4%. Characterization of back-illuminated solar cells in combination with transfer matrix-based simulations further allows to address the issue of absorption losses in the hole transport material and outline a pathway toward more efficient future devices.

  6. Synthesis and photosensor study of as-grown CuZnO thin film by facile chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Gubari, Ghamdan M. M.; Ibrahim Mohammed S., M.; Huse, Nanasaheb P.; Dive, Avinash S.; Sharma, Ramphal

    2018-05-01

    We have successfully deposited CuZnO thin film on a glass substrate by facile chemical bath deposition method at 85 °C for 1 hr. Structural, topographical, Optical and Electrical properties of the prepared Thin Films were investigated by XRD, Raman spectrum, AFM, UV-Visible Spectrophotometer and I-V Measurement System respectively. The X-ray diffraction (XRD) pattern confirmed the formation of the CuZnO composition when compared with standard JCPDS card (JCPDF # 75-0576 & # 36-1451). The Raman analysis shows a major peak at 458 cm-1 with E2 (High) vibrational mode. AFM images revealed uniform deposition over an entire glass substrate with 66.2 nm average roughness of the film. From the optical absorption spectrum, clear band edge around ˜407 nm was observed which results in a wide energy band gap of ˜3.04 eV. The electrical properties were measured at room temperature in the voltage range ±5 V, showed a drastic enhancement in current under light illumination with the highest photosensitivity of ˜99.9 % for 260 W.

  7. Facile synthesis of CoNi2S4/Co9S8 composites as advanced electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Fenglin; Huang, Wanxia; Zhang, Hongtao; Zhou, Dengmei

    2017-12-01

    In this paper, a facile chemical bath deposition method was utilized to synthesize three-dimensional nanostructured CoNi2S4/Co9S8 (CNSCS) composites as advanced electrode materials for high performance supercapacitors. CNSCS composites showed remarkable electrochemical performance owing to the high porosity, appropriate pore size distribution, novel architecture and synergistic effect of Ni/Co ions. The electrochemical tests revealed that CNSCS composites exhibited high specific capacitance (1183.3 Fg-1 at the current density of 2 Ag-1), excellent rate performance (74.9% retention with tenfold current density increase) and outstanding cycle life stability. Moreover, the effect of temperature on electrochemical performance of CNSCS composites was investigated and the results indicated the specific capacitance of CoNi2S4/Co9S8 can keep relatively stable in a wide temperature from 0 °C to 50 °C. These results indicated that the synthesized CNSCS composites can be a promising electrode materials candidate for supercapacitors and chemical bath deposition is a promising processing route for CNSCS composites production.

  8. Survival of the faucet snail after chemical disinfection, pH extremes, and heated water bath treatments

    USGS Publications Warehouse

    Mitchell, A.J.; Cole, Rebecca A.

    2008-01-01

    The faucet snail Bithynia tentaculata, a nonindigenous aquatic snail from Eurasia, was introduced into Lake Michigan in 1871 and has spread to the mid-Atlantic states, the Great Lakes region, Montana, and most recently, the Mississippi River. The faucet snail serves as intermediate host for several trematodes that have caused large-scale mortality among water birds, primarily in the Great Lakes region and Montana. It is important to limit the spread of the faucet snail; small fisheries equipment can serve as a method of snail distribution. Treatments with chemical disinfection, pH extremes, and heated water baths were tested to determine their effectiveness as a disinfectant for small fisheries equipment. Two treatments eliminated all test snails: (1) a 24-h exposure to Hydrothol 191 at a concentration of at least 20 mg/L and (2) a treatment with 50°C heated water for 1 min or longer. Faucet snails were highly resistant to ethanol, NaCl, formalin, Lysol, potassium permanganate, copper sulfate, Baquacil, Virkon, household bleach, and pH extremes (as low as 1 and as high as 13).

  9. Structural and optical studied of nano structured lead sulfide thin films prepared by the chemical bath deposition technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Din, Nasser Saad, E-mail: nsaadaldin@yahoo.com; Hussain, Nabiha, E-mail: nabihahssin@yahoo.com; Jandow, Nidhal, E-mail: nidhaljandow@yahoo.com

    2016-07-25

    Lead (II) Sulfide PbS thin films were deposited on glass substrates at 25°C by chemical bath deposition (CBD) method. The structural properties of the films were studied as a function of the concentration of Thiourea (CS (NH{sub 2}){sub 2}) as Source of Sulfide and deposition time. The surface morphology of the films was characterized by X-ray diffraction and SEM. The obtained results showed that the as-deposited films Polycrystalline had cubic crystalline phase that belong to S.G: Fm3m. We found that they have preferred orientation [200]. Also the thickness of thin films decrease with deposition time after certain value and, itmore » observed free sulfide had orthorhombic phase. Optical properties showed that the thin films have high transmission at visible range and low transmission at UV, IR range. The films of PbS have direct band gap (I.68 - 2.32 ev) at 300 K the values of band energy decreases with increases thickness of the Lead (II) Sulfide films.« less

  10. Consequence of oxidant concentration on XPS properties of chemically synthesized polythiophene thin films

    NASA Astrophysics Data System (ADS)

    Kamat, Sandip V.; Chhabra, Jasvinder; Patil, V. S.; Yadav, J. B.; Puri, R. K.; Puri, Vijaya

    2018-05-01

    The polythiophene thin films were prepared by a wellknown chemical bath deposition technique. The deposited thin films were characterized for structural morphological properties and the adhesion of these thin films were measured by direct pull off (DPO) method, the effect of oxidant concentration on these thin films also studied. The FTIR spectra of chemically deposited polythiophene thin films shows the absorption peak at 836 cm-1 which represents c-s stretching vibrations, shifts to 869 cm-1 as the oxidant concentration increases. The band at 666 cm-1 representing c-s-c ring deformation becomes sharper and appears with a shoulder peak due to increase in oxidant concentration.

  11. Characterization of honeycomb-like "β-Ni(OH) 2" thin films synthesized by chemical bath deposition method and their supercapacitor application

    NASA Astrophysics Data System (ADS)

    Patil, U. M.; Gurav, K. V.; Fulari, V. J.; Lokhande, C. D.; Joo, Oh Shim

    Nanostructured nickel hydroxide thin films are synthesized via a simple chemical bath deposition (CBD) method using nickel nitrate Ni(NO 3) 2 as the starting material. The deposition process is based on the thermal decomposition of ammonia-complexed nickel ions at 333 K. The structural, surface morphological, optical, electrical and electrochemical properties of the films are examined. The nanocrystalline "β" phase of Ni(OH) 2 is confirmed by the X-ray diffraction analysis. Scanning electron microscopy reveals a macroporous and interconnected honeycomb-like morphology. Optical absorption studies show that "β-Ni(OH) 2" has a wide optical band-gap of 3.95 eV. The negative temperature coefficient of the electrical resistance of "β-Ni(OH) 2", is attributed to the semiconducting nature of the material. The electrochemical properties of "β-Ni(OH) 2" in KOH electrolyte are examined by cyclic voltammetric (CV) measurements. The scan-rate dependent voltammograms demonstrate pseudocapacitive behaviour when "β-Ni(OH) 2" is employed as a working electrode in a three-electrode electrochemical cell containing 2 M KOH electrolyte with a platinum counter electrode and a saturated calomel reference electrodes. A specific capacitance of ∼398 × 10 3 F kg -1 is obtained.

  12. Salvaging and Conserving Water Damaged Photographic Materials

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryuji

    Degradation of water damaged photographic materials is discussed; the most vulnerable elements are gelatin layers and silver image. A simple and inexpensive chemical treatment is proposed, consisting of a bath containing a gelatin-protecting biocide and a silver image protecting agent. These ingredients were selected among those used in manufacturing of silver halide photographic emulsions or processing chemicals. Experiments confirmed that this treatment significantly reduced oxidative attacks to silver image and bacterial degradation of gelatin layers. The treated material was also stable under intense light fading test. Method of hardening gelatin to suppress swelling is also discussed.

  13. Substrate spacing and thin-film yield in chemical bath deposition of semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Arias-Carbajal Reádigos, A.; García, V. M.; Gomezdaza, O.; Campos, J.; Nair, M. T. S.; Nair, P. K.

    2000-11-01

    Thin-film yield in the chemical bath deposition technique is studied as a function of separation between substrates in batch production. Based on a mathematical model, it is proposed and experimentally verified in the case of CdS thin films that the film thickness reaches an asymptotic maximum with increase in substrate separation. It is shown that at a separation less than 1 mm between substrates the yield, i.e. percentage in moles of a soluble cadmium salt deposited as a thin film of CdS, can exceed 50%. This behaviour is explained on the basis of the existence of a critical layer of solution near the substrate, within which the relevant ionic species have a higher probability of interacting with the thin-film layer than of contributing to precipitate formation. The critical layer depends on the solution composition and the temperature of the bath as well as the duration of deposition. An effective value for the critical layer thickness has been defined as half the substrate separation at which 90% of the maximum film thickness for the particular bath composition, bath temperature and duration of deposition is obtained. In the case of CdS thin films studied as an example, the critical layer is found to extend from 0.5 to 2.5 mm from the substrate surface, depending on the deposition conditions.

  14. Verification of impact of morning showering and mist sauna bathing on human physiological functions and work efficiency during the day

    NASA Astrophysics Data System (ADS)

    Lee, Soomin; Fujimura, Hiroko; Shimomura, Yoshihiro; Katsuura, Tetsuo

    2015-09-01

    Recently, a growing number in Japan are switching to taking baths in the morning (morning bathing). However, the effects of the morning bathing on human physiological functions and work efficiency have not yet been revealed. Then, we hypothesized that the effect of morning bathing on physiological functions would be different from those of night bathing. In this study, we measured the physiological functions and work efficiency during the day following the morning bathing (7:10-7:20) including showering, mist sauna bathing, and no bathing as a control. Ten male healthy young adults participated in this study as the subjects. We evaluated the rectal temperature (Tre), skin temperature (Tsk), heart rate (HR), heart rate variability (HRV), blood pressure (BP), the relative power density of the alpha wave (α-wave ratio) of electroencephalogram, alpha attenuation coefficient (AAC), and the error rate of the task performance. As a result, we found that the HR after the mist sauna bathing was significantly lower than those after no bathing rest 3 (11:00). Furthermore, we verified that the α-wave ratio of the Pz after the mist sauna bathing was significantly lower than those after no bathing during the task 6 (15:00). On the other hand, the α-wave ratio of the Pz after the mist sauna bathing was significantly higher than those after showering during the rest 3 (11:00). Tsk after the mist sauna bathing was higher than those after the showering at 9:00 and 15:00. In addition, the error rate of the task performance after the mist sauna bathing was lower than those after no bathing and showering at 14:00. This study concludes that a morning mist sauna is safe and maintains both skin temperature compared to other bathing methods. Moreover, it is presumed that the morning mist sauna bathing improves work efficiency comparing other bathing methods during the task period of the day following the morning bathing.

  15. Verification of impact of morning showering and mist sauna bathing on human physiological functions and work efficiency during the day.

    PubMed

    Lee, Soomin; Fujimura, Hiroko; Shimomura, Yoshihiro; Katsuura, Tetsuo

    2015-09-01

    Recently, a growing number in Japan are switching to taking baths in the morning (morning bathing). However, the effects of the morning bathing on human physiological functions and work efficiency have not yet been revealed. Then, we hypothesized that the effect of morning bathing on physiological functions would be different from those of night bathing. In this study, we measured the physiological functions and work efficiency during the day following the morning bathing (7:10-7:20) including showering, mist sauna bathing, and no bathing as a control. Ten male healthy young adults participated in this study as the subjects. We evaluated the rectal temperature (Tre), skin temperature (Tsk), heart rate (HR), heart rate variability (HRV), blood pressure (BP), the relative power density of the alpha wave (α-wave ratio) of electroencephalogram, alpha attenuation coefficient (AAC), and the error rate of the task performance. As a result, we found that the HR after the mist sauna bathing was significantly lower than those after no bathing rest 3 (11:00). Furthermore, we verified that the α-wave ratio of the Pz after the mist sauna bathing was significantly lower than those after no bathing during the task 6 (15:00). On the other hand, the α-wave ratio of the Pz after the mist sauna bathing was significantly higher than those after showering during the rest 3 (11:00). Tsk after the mist sauna bathing was higher than those after the showering at 9:00 and 15:00. In addition, the error rate of the task performance after the mist sauna bathing was lower than those after no bathing and showering at 14:00. This study concludes that a morning mist sauna is safe and maintains both skin temperature compared to other bathing methods. Moreover, it is presumed that the morning mist sauna bathing improves work efficiency comparing other bathing methods during the task period of the day following the morning bathing.

  16. Osmotic Propulsion: The Osmotic Motor

    NASA Astrophysics Data System (ADS)

    Córdova-Figueroa, Ubaldo M.; Brady, John F.

    2008-04-01

    A model for self-propulsion of a colloidal particle—the osmotic motor—immersed in a dispersion of “bath” particles is presented. The nonequilibrium concentration of bath particles induced by a surface chemical reaction creates an osmotic pressure imbalance on the motor causing it to move. The ratio of the speed of reaction to that of diffusion governs the bath particle distribution which is employed to calculate the driving force on the motor, and from which the self-induced osmotic velocity is determined. For slow reactions, the self-propulsion is proportional to the reaction velocity. When surface reaction dominates over diffusion the osmotic velocity cannot exceed the diffusive speed of the bath particles. Implications of these features for different bath particle volume fractions and motor sizes are discussed. Theoretical predictions are compared with Brownian dynamics simulations.

  17. Chemical precursor impact on the properties of Cu{sub 2}ZnSnS{sub 4} absorber layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vashistha, Indu B., E-mail: indu-139@yahoo.com; Sharma, S. K.; Sharma, Mahesh C.

    2016-04-13

    In present work impact of different chemical precursor on the deposition of solar absorber layer Cu{sub 2}ZnSnS{sub 4} (CZTS) were studied by Chemical Bath Deposition (CBD) method without using expensive vacuum facilities and followed by annealing. As compared to the other deposition methods, CBD method is interesting one because it is simple, reproducible, non-hazardous, cost effective and well suited for producing large-area thin films at low temperatures, although effect of precursors and concentration plays a vital role in the deposition. So, the central theme of this work is optimizing and controlling of chemical reactions for different chemical precursors. Further Effectmore » of different chemical precursors i.e. sulphate and chloride is analyzed by structural, morphological, optical and electrical properties. The X-ray diffraction (XRD) of annealed CZTS thin film revealed that films were polycrystalline in nature with kestarite tetragonal crystal structure. The Atomic Force micrographs (AFM) images indicated total coverage compact film and as well as growth of crystals. The band gap of annealed CZTS films was found in the range of optimal band gap by absorption spectroscopy.« less

  18. Zn–Se–Cd–S Interlayer Formation at the CdS/Cu 2 ZnSnSe 4 Thin-Film Solar Cell Interface

    DOE PAGES

    Bär, Marcus; Repins, Ingrid; Weinhardt, Lothar; ...

    2017-06-14

    The chemical structure of the CdS/Cu 2ZnSnSe 4 (CZTSe) interface was studied by a combination of electron and X-ray spectroscopies with varying surface sensitivity. We find the CdS chemical bath deposition causes a 'redistribution' of elements in the proximity of the CdS/CZTSe interface. In detail, our data suggest that Zn and Se from the Zn-terminated CZTSe absorber and Cd and S from the buffer layer form a Zn-Se-Cd-S interlayer. Here, we find direct indications for the presence of Cd-S, Cd-Se, and Cd-Se-Zn bonds at the buffer/absorber interface. Thus, we propose the formation of a mixed Cd(S,Se)-(Cd,Zn)Se interlayer. We also suggestmore » the underlying chemical mechanism is an ion exchange mediated by the amine complexes present in the chemical bath.« less

  19. Chemical bath deposition of Cu{sub 3}BiS{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshmukh, S.G., E-mail: deshmukhpradyumn@gmail.com; Vipul, Kheraj, E-mail: vipulkheraj@gmail.com; Panchal, A.K.

    2016-05-06

    First time, copper bismuth sulfide (Cu{sub 3}BiS{sub 3}) thin films were synthesized on the glass substrate using simple, low-cost chemical bath deposition (CBD) technique. The synthesized parameters such as temperature of bath, pH and concentration of precursors were optimized for the deposition of uniform, well adherent Cu{sub 3}BiS{sub 3} thin films. The optical, surface morphology and structural properties of the Cu{sub 3}BiS{sub 3} thin films were studied using UV-VIS-NIR spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The as- synthesized Cu{sub 3}BiS{sub 3} film exhibits a direct band gap 1.56 to 1.58 eV having absorption coefficient of the ordermore » of 10{sup 5} cm{sup −1}. The XRD declares the amorphous nature of the films. SEM images shows films were composed of close-packed fine spherical nanoparticles of 70-80 nm in diameter. The chemical composition of the film was almost stoichiometric. The optical study indicates that the Cu{sub 3}BiS{sub 3} films can be applied as an absorber layer for thin film solar cells.« less

  20. METAL COATING BATHS

    DOEpatents

    Robinson, J.W.

    1958-08-26

    A method is presented for restoring the effectiveness of bronze coating baths used for hot dip coating of uranium. Such baths, containing a high proportion of copper, lose their ability to wet uranium surfaces after a period of use. The ability of such a bath to wet uranium can be restored by adding a small amount of metallic aluminum to the bath, and skimming the resultant hard alloy from the surface.

  1. The chemical/physical and microbiological characteristics of typical bath and laundry waste waters. [waste water reclamation during manned space flight

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    Chemical/physical and microbiological characteristics are studied of typical bath and laundry waters collected during a 12 day test in which the untreated waste waters were reused for toilet flush. Most significant changes were found for ammonia, color, methylene blue active substances, phosphates, sodium, sulfates, total organic carbon, total solids, and turbidity in comparison with tap water baseline. The mean total number of microorganisms detected in the waste waters ranged from 1 million to 10 to the 7th power cells/m1 and the mean number of possible coliforms ranged from 10 to the 5th power to 1 million. An accumulation of particulates and an objectible odor were detected in the tankage used during the 12 day reuse of the untreated waste waters. The combined bath and laundry waste waters from a family of four provided 91 percent of the toilet flush water for the same family.

  2. Electrophoretic Deposition on Porous Non-Conductors

    NASA Technical Reports Server (NTRS)

    Compson, Charles; Besra, Laxmidhar; Liu, Meilin

    2007-01-01

    A method of electrophoretic deposition (EPD) on substrates that are porous and electrically non-conductive has been invented. Heretofore, in order to perform an EPD, it has been necessary to either (1) use a substrate material that is inherently electrically conductive or (2) subject a non-conductive substrate to a thermal and/or chemical treatment to render it conductive. In the present method, instead of relying on the electrical conductivity of the substrate, one ensures that the substrate is porous enough that when it is immersed in an EPD bath, the solvent penetrates throughout the thickness, thereby forming quasi-conductive paths through the substrate. By making it unnecessary to use a conductive substrate, this method simplifies the overall EPD process and makes new applications possible. The method is expected to be especially beneficial in enabling deposition of layers of ceramic and/or metal for chemical and electrochemical devices, notably including solid oxide fuel cells.

  3. Regenerating using aqueous cleaners with ozone and electrolysis

    NASA Technical Reports Server (NTRS)

    Mcginness, Michael P.

    1994-01-01

    A new process converts organic oil and grease contaminates in used water based cleaners into synthetic surfactants. This permits the continued use of a cleaning solution long after it would have been dumped using previously known methods. Since the organic soils are converted from contaminates to cleaning compounds the need for frequent bath dumps is totally eliminated. When cleaning solutions used in aqueous cleaning systems are exhausted and ready for disposal, they will always contain the contaminates removed from the cleaned parts and drag-in from prior cleaning steps. Even when the cleaner is biodegradable these contaminants will frequently cause the waste cleaning solution to be a hazardous waste. Chlorinated solvents are rapidly being replaced by aqueous cleaners to avoid the new ozone-depletion product-labeling-law. Many industry standard halocarbon based solvents are being completely phased out of production, and their prices have nearly tripled. Waste disposal costs and cradle-to-grave liability are also major concerns for industry today. This new process reduces the amount of water and chemicals needed to maintain the cleaning process. The cost of waste disposal is eliminated because the water and cleaning compounds are reused. Energy savings result by eliminating the need for energy currently used to produce and deliver fresh water and chemicals as well as the energy used to treat and destroy the waste from the existing cleaning processes. This process also allows the cleaning bath to be maintained at the peak performance of a new bath resulting in decreased cycle times and decreased energy consumption needed to clean the parts. This results in a more efficient and cost effective cleaning process.

  4. The Use of Wetting Agents/Fume Supressants for Minimizing the Atmospheric Emissions from Hard Chromium Electroplating Baths

    DTIC Science & Technology

    2003-08-01

    ESTCP FINAL REPORT For THE USE OF WETTING AGENTS/ FUME SUPPRESSANTS FOR MINIMIZING THE ATMOSPHERIC EMISSIONS FROM HARD CHROMIUM ...Introduction This project demonstrates that a “third” generation wetting agent / fume suppressant (WA/FS) chemical additive to hard chromium ...DOD operations fall in the same category.) Several papers, including Use of Fume Suppressants in Hard Chromium Baths - Quality Testing and Use

  5. Carbothermic reduction of uranium oxides into solvent metallic baths

    NASA Astrophysics Data System (ADS)

    Guisard Restivo, Thomaz A.; Capocchi, José D. T.

    2004-09-01

    The carbothermic reduction of UO 2 and U 3O 8 is studied employing tin and silicon solvent metallic baths in thermal analysis equipment, under Ar inert and N 2 reactive atmospheres. The metallic solvents are expected to lower the U activity by several orders of magnitude owing to strong interactions among the metals. The reduction products are composed of the solvent metal matrix and intermetallic U compounds. Silicon is more effective in driving the reduction since there is no residual UO 2 after the reaction. The gaseous product detected by mass spectrometer (MS) during the reduction is CO. A kinetic study for the Si case was accomplished by the stepwise isothermal analysis (SAI) method, leading to the identification of the controlling mechanisms as chemical reaction at the surface and nucleation, for UO 2 and U 3O 8 charges, respectively. One example for another system containing Al 2O 3 is also shown.

  6. ZnS Buffer Layers Grown by Modified Chemical Bath Deposition for CIGS Solar Cells

    NASA Astrophysics Data System (ADS)

    Lee, Dongchan; Ahn, Heejin; Shin, Hyundo; Um, Youngho

    2018-03-01

    ZnS thin films were prepared by the chemical bath deposition method using disodium ethylene-diaminetetraacetic acid and hexamethylenetetramine as complexing agents in acidic conditions. The film prepared using a preheated S-ion source showed full surface coverage, but some clusters were found that were generated by the cluster-by-cluster reaction mechanism. On the other hand, the film prepared without this source had a uniform, dense, and smooth surface and showed fewer clusters than the film prepared using a preheated S-ion source. The x-ray photoelectron spectroscopy spectra showed the energy core levels of Zn, O, and S components, and Zn-OH bonding decreased on the film using the preheated S-ion source. Especially, various binding energy peaks were found in the Zn 2p 3/2 spectrum by Gaussian function fitting, and no peak corresponding to Zn-OH bonding was found for the film prepared using a preheated S-ion source. Moreover, the x-ray diffraction spectrum of the ZnS thin film using a non-preheated S-ion source showed amorphous or nanoscale crystallinity, but the emission peaks indicated that the structure of the film using preheated S-ion source was zincblende.

  7. ZnS Buffer Layers Grown by Modified Chemical Bath Deposition for CIGS Solar Cells

    NASA Astrophysics Data System (ADS)

    Lee, Dongchan; Ahn, Heejin; Shin, Hyundo; Um, Youngho

    2018-07-01

    ZnS thin films were prepared by the chemical bath deposition method using disodium ethylene-diaminetetraacetic acid and hexamethylenetetramine as complexing agents in acidic conditions. The film prepared using a preheated S-ion source showed full surface coverage, but some clusters were found that were generated by the cluster-by-cluster reaction mechanism. On the other hand, the film prepared without this source had a uniform, dense, and smooth surface and showed fewer clusters than the film prepared using a preheated S-ion source. The x-ray photoelectron spectroscopy spectra showed the energy core levels of Zn, O, and S components, and Zn-OH bonding decreased on the film using the preheated S-ion source. Especially, various binding energy peaks were found in the Zn 2 p 3/2 spectrum by Gaussian function fitting, and no peak corresponding to Zn-OH bonding was found for the film prepared using a preheated S-ion source. Moreover, the x-ray diffraction spectrum of the ZnS thin film using a non-preheated S-ion source showed amorphous or nanoscale crystallinity, but the emission peaks indicated that the structure of the film using preheated S-ion source was zincblende.

  8. Exact theory of freeze-out

    NASA Astrophysics Data System (ADS)

    Cannoni, Mirco

    2015-03-01

    We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature . The point , which coincides with the stationary point of the equation for the quantity , is where the maximum departure of the WIMPs abundance from the thermal value is reached. For each mass and total annihilation cross section , the temperature and the actual WIMPs abundance are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval . The matching of the two abundances at is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1-2 % in the case of -wave and -wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics.

  9. Effect of Thermal Annealing on the Band GAP and Optical Properties of Chemical Bath Deposited ZnSe Thin Films

    NASA Astrophysics Data System (ADS)

    Ezema, F. I.; Ekwealor, A. B. C.; Osuji, R. U.

    2006-05-01

    Zinc selenide (ZnSe) thin films were deposited on glass substrate using the chemical bath deposition method at room temperature from aqueous solutions of zinc sulphate and sodium selenosulfate in which sodium hydroxide was employed as complexing agents. The `as-deposited' ZnSe thin films are red in color and annealed in oven at 473 K for 1 hour and on a hot plate in open air at 333 K for 5 minutes, affecting the morphological and optical properties. Optical properties such as absorption coefficient a and extinction coefficient k, were determined using the absorbance and transmission measurement from Unico UV-2102 PC spectrophotometer, at normal incidence of light in the wavelength range of 200-1000 nm. The films have transmittance in VIS-NIR regions that range between 26 and 87%. From absorbance and transmittance spectra, the band gap energy determined ranged between 1.60 eV and 1.75 for the `as deposited' samples, and the annealed samples exhibited a band gap shift of 0.15 eV. The high transmittance of the films together with its large band gap made them good materials for selective coatings for solar cells.

  10. Synthesis of Nanocrystalline SnOx (x = 1–2) Thin Film Using a Chemical Bath Deposition Method with Improved Deposition Time, Temperature and pH

    PubMed Central

    Ebrahimiasl, Saeideh; Yunus, Wan Md. Zin Wan; Kassim, Anuar; Zainal, Zulkarnain

    2011-01-01

    Nanocrystalline SnOx (x = 1–2) thin films were prepared on glass substrates by a simple chemical bath deposition method. Triethanolamine was used as complexing agent to decrease time and temperature of deposition and shift the pH of the solution to the noncorrosive region. The films were characterized for composition, surface morphology, structure and optical properties. X-ray diffraction analysis confirms that SnOx thin films consist of a polycrystalline structure with an average grain size of 36 nm. Atomic force microscopy studies show a uniform grain distribution without pinholes. The elemental composition was evaluated by energy dispersive X-ray spectroscopy. The average O/Sn atomic percentage ratio is 1.72. Band gap energy and optical transition were determined from optical absorbance data. The film was found to exhibit direct and indirect transitions in the visible spectrum with band gap values of about 3.9 and 3.7 eV, respectively. The optical transmittance in the visible region is 82%. The SnOx nanocrystals exhibit an ultraviolet emission band centered at 392 nm in the vicinity of the band edge, which is attributed to the well-known exciton transition in SnOx. Photosensitivity was detected in the positive region under illumination with white light. PMID:22163690

  11. Effect of Aluminum Doping on the Nanocrystalline ZnS:Al3+ Films Fabricated on Heavily-Doped p-type Si(100) Substrates by Chemical Bath Deposition Method

    NASA Astrophysics Data System (ADS)

    Zhu, He-Jie; Liang, Yan; Gao, Xiao-Yong; Guo, Rui-Fang; Ji, Qiang-Min

    2015-06-01

    Intrinsic ZnS and aluminum-doped nanocrystalline ZnS (ZnS:Al3+) films with zinc-blende structure were fabricated on heavily-doped p-type Si(100) substrates by chemical bath deposition method. Influence of aluminum doping on the microstructure, and photoluminescent and electrical properties of the films, were intensively investigated. The average crystallite size of the films varying in the range of about 9.0 ˜ 35.0 nm initially increases and then decreases with aluminum doping contents, indicating that the crystallization of the films are initially enhanced and then weakened. The incorporation of Al3+ was confirmed from energy dispersive spectrometry and the induced microstrain in the films. Strong and stable visible emission band resulting from the defect-related light emission were observed for the intrinsic ZnS and ZnS:Al3+ films at room temperature. The photoluminescence related to the aluminum can annihilate due to the self-absorption of ZnS:Al3+ when the Al3+ content surpasses certain value. The variation of the resistivity of the films that initially reduces and then increases is mainly caused by the partial substitute for Zn2+ by Al3+ as well as the enhanced crystallization, and by the enhanced crystal boundary scattering, respectively.

  12. Effect of bathing on atopic dermatitis during the summer season

    PubMed Central

    Kim, Hakyoung; Ban, Jeongsuk; Park, Mi-Ran; Kim, Do-Soo; Kim, Hye-Young; Han, Youngshin; Ahn, Kangmo

    2012-01-01

    Background There are little objective data regarding the optimal practice methods of bathing, although bathing and the use of moisturizers are the most important facets to atopic dermatitis (AD) management. Objective We performed this study to evaluate the effect of bathing on AD. Methods Ninety-six children with AD were enrolled during the summer season. Parents were educated to bathe them once daily with mildly acidic cleansers, and to apply emollients for 14 days. Parents recorded the frequency of bathing and skin symptoms in a diary. Scoring AD (SCORAD) scores were measured at the initial and follow-up visits. Patients were divided into two groups, based on the compliance of bathing; poor compliance was defined as ≥ 2 bathless days. Results There was an improvement of SCORAD score, itching, and insomnia in the good compliance group (all p < 0.001). The mean change in SCORAD score from the baseline at the follow-up visit was greater in the good compliance group than the poor compliance group (p = 0.038). Conclusion Daily bathing using weakly acidic syndets can reduce skin symptoms of pediatric AD during the summer season. PMID:23130333

  13. Ion chromatography in the manufacture of multilayer circuit boards

    NASA Astrophysics Data System (ADS)

    Smith, R. E.

    1987-10-01

    Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. IC provides results on ions not expected in the production solutions. Thus, solution contamination and breakdown products can be monitored in every phase of the circuit board manufacturing. During the first phase, epoxy laminates experience an etchback, first in chromic acid, which can be analyzed for trace chloride and sulfate, then in ammonium bifluoride/HCl, which can be analyzed for fluoride and chloride. Following a wet blasting to roughen up the surface, 20 mu in. of copper are deposited using an electroless bath. Again, IC is applicable for monitoring formate, tartarate, and sulfate levels. Next, an acid copper bath is used to electroplate the through holes with 0.001 in. of ductile copper. This bath is analyzed for trace chloride. Photoimaging is then performed, and the organic solvents used can be assayed for trace ionic chloride. Finally, a fluoroboric acid-based tin-lead bath is used to deposit a solderable alloy. This bath is analyzed for total fluoroborate, tin, and lead. In addition, mobile phase ion chromatography (MPIC) is used to monitor the nonionic organic brighteners in the baths.

  14. Reduced quantum dynamics with arbitrary bath spectral densities: hierarchical equations of motion based on several different bath decomposition schemes.

    PubMed

    Liu, Hao; Zhu, Lili; Bai, Shuming; Shi, Qiang

    2014-04-07

    We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly in the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.

  15. Reduced quantum dynamics with arbitrary bath spectral densities: Hierarchical equations of motion based on several different bath decomposition schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Zhu, Lili; Bai, Shuming

    2014-04-07

    We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly inmore » the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.« less

  16. SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques

    NASA Astrophysics Data System (ADS)

    Chaki, Sunil H.; Chaudhary, Mahesh D.; Deshpande, M. P.

    2016-05-01

    The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two temperatures: ambient and 70 °C. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.

  17. Non-equilibrium quantum heat machines

    NASA Astrophysics Data System (ADS)

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-11-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.

  18. Mean field treatment of heterogeneous steady state kinetics

    NASA Astrophysics Data System (ADS)

    Geva, Nadav; Vaissier, Valerie; Shepherd, James; Van Voorhis, Troy

    2017-10-01

    We propose a method to quickly compute steady state populations of species undergoing a set of chemical reactions whose rate constants are heterogeneous. Using an average environment in place of an explicit nearest neighbor configuration, we obtain a set of equations describing a single fluctuating active site in the presence of an averaged bath. We apply this Mean Field Steady State (MFSS) method to a model of H2 production on a disordered surface for which the activation energy for the reaction varies from site to site. The MFSS populations quantitatively reproduce the KMC results across the range of rate parameters considered.

  19. [Bath Plug Closure Method for Cerebrospinal Fluid Leakage by Endoscopic Endonasal Approach:Cooperative Treatment by Neurosurgeons and Otolaryngologists].

    PubMed

    Kawaguchi, Tomohiro; Arakawa, Kazuya; Nomura, Kazuhiro; Ogawa, Yoshikazu; Katori, Yukio; Tominaga, Teiji

    2017-12-01

    Endoscopic endonasal surgery, an innovative surgical technique, is used to approach sinus lesions, lesions of the skull base, and intradural tumors. The cooperation of experienced otolaryngologists and neurosurgeons is important to achieve safe and reliable surgical results. The bath plug closure method is a treatment option for patients with cerebrospinal fluid(CSF)leakage. Although it includes dural and/or intradural procedures, surgery tends to be performed by otolaryngologists because its indications, detailed maneuvers, and pitfalls are not well recognized by neurosurgeons. We reviewed the cases of patients with CSF leakage treated by using the bath plug closure method with an endoscopic endonasal approach at our institution. Three patients were treated using the bath plug closure method. CSF leakage was caused by a meningocele in two cases and trauma in one case. No postoperative intracranial complications or recurrence of CSF leakage were observed. The bath plug closure method is an effective treatment strategy and allows neurosurgeons to gain in-depth knowledge of the treatment options for CSF leakage by using an endoscopic endonasal approach.

  20. PRETREATING THORIUM FOR ELECTROPLATING

    DOEpatents

    Beach, J.G.; Schaer, G.R.

    1959-07-28

    A method is presented for pretreating a thorium surface prior to electroplating the surface. The pretreatment steps of the invention comprise cleaning by vapor blasting the surface, anodically pickling in a 5 to 15% by volume aqueous hydrochloric acid bath with a current of 125 to 250 amp/sq ft for 3 to 5 min at room temperature, chemically pickling the surface in a 5 to 15% by volume of aqueous sulfuric acid for 3 to 5 min at room temperature, and rinsing the surface with water.

  1. Ozonation of exhausted dark shade reactive dye bath for reuse.

    PubMed

    Sundrarajan, M; Vishnu, G; Joseph, Kurian

    2006-10-01

    Exhausted reactive dye bath of dark shades were collected from cotton knit wear dyeing units in Tirupur. Ozonation was conducted in a column reactor system fed with ozone at the rate of 0.16 g/min to assess its efficiency in reducing the color, chemical oxygen demand and total organic carbon. The potential of the decolorized dye bath for its repeated reuse was also analyzed. The results from the reusability studies indicate that the dyeing quality was not affected by the reuse of decolorized dye bath for two successive cycles. Complete decolorization of the effluent was achieved in 60 minutes contact time at an ozone consumption of 183 mg/L for Red, 175 for Navy Blue and 192 for Green shades respectively. The corresponding COD removal was 60%, 54% and 63% for the three shades while TOC removal efficiency was 59%, 55% and 62% respectively. It is concluded that ozonation is efficient in decolorization of exhausted dye bath effluents containing conventional reactive dyes. However, the corresponding removal of COD from the textile effluent was not significant.

  2. Nanostructured ZnO films for potential use in LPG gas sensors

    NASA Astrophysics Data System (ADS)

    Latyshev, V. M.; Berestok, T. O.; Opanasyuk, A. S.; Kornyushchenko, A. S.; Perekrestov, V. I.

    2017-05-01

    The aim of the work was to obtain ZnO nanostructures with heightened surface area and to study relationship between formation method and gas sensor properties towards propane-butane mixture (LPG). In order to synthesize ZnO nanostructures chemical and physical formation methods have been utilized. The first one was chemical bath deposition technology and the second one magnetron sputtering of Zn followed by oxidation. Optimal method and technological parameters corresponding to formation of material with the highest sensor response have been determined experimentally. Dynamical gas sensor response at different temperature values and dependencies of the sensor sensitivity on the temperature at different LPG concentrations in air have been investigated. It has been found, that sensor response depends on the sample morphology and has the highest value for the structure consisting of thin nanowires. The factors that lead to the decrease in the gas sensor operating temperature have been determined.

  3. Post Processing and Biological Evaluation of the Titanium Scaffolds for Bone Tissue Engineering.

    PubMed

    Wysocki, Bartłomiej; Idaszek, Joanna; Szlązak, Karol; Strzelczyk, Karolina; Brynk, Tomasz; Kurzydłowski, Krzysztof J; Święszkowski, Wojciech

    2016-03-15

    Nowadays, post-surgical or post-accidental bone loss can be substituted by custom-made scaffolds fabricated by additive manufacturing (AM) methods from metallic powders. However, the partially melted powder particles must be removed in a post-process chemical treatment. The aim of this study was to investigate the effect of the chemical polishing with various acid baths on novel scaffolds' morphology, porosity and mechanical properties. In the first stage, Magics software (Materialise NV, Leuven, Belgium) was used to design a porous scaffolds with pore size equal to (A) 200 µm, (B) 500 µm and (C) 200 + 500 µm, and diamond cell structure. The scaffolds were fabricated from commercially pure titanium powder (CP Ti) using a SLM50 3D printing machine (Realizer GmbH, Borchen, Germany). The selective laser melting (SLM) process was optimized and the laser beam energy density in range of 91-151 J/mm³ was applied to receive 3D structures with fully dense struts. To remove not fully melted titanium particles the scaffolds were chemically polished using various HF and HF-HNO₃ acid solutions. Based on scaffolds mass loss and scanning electron (SEM) observations, baths which provided most uniform surface cleaning were proposed for each porosity. The pore and strut size after chemical treatments was calculated based on the micro-computed tomography (µ-CT) and SEM images. The mechanical tests showed that the treated scaffolds had Young's modulus close to that of compact bone. Additionally, the effect of pore size of chemically polished scaffolds on cell retention, proliferation and differentiation was studied using human mesenchymal stem cells. Small pores yielded higher cell retention within the scaffolds, which then affected their growth. This shows that in vitro cell performance can be controlled to certain extent by varying pore sizes.

  4. Post Processing and Biological Evaluation of the Titanium Scaffolds for Bone Tissue Engineering

    PubMed Central

    Wysocki, Bartłomiej; Idaszek, Joanna; Szlązak, Karol; Strzelczyk, Karolina; Brynk, Tomasz; Kurzydłowski, Krzysztof J.; Święszkowski, Wojciech

    2016-01-01

    Nowadays, post-surgical or post-accidental bone loss can be substituted by custom-made scaffolds fabricated by additive manufacturing (AM) methods from metallic powders. However, the partially melted powder particles must be removed in a post-process chemical treatment. The aim of this study was to investigate the effect of the chemical polishing with various acid baths on novel scaffolds’ morphology, porosity and mechanical properties. In the first stage, Magics software (Materialise NV, Leuven, Belgium) was used to design a porous scaffolds with pore size equal to (A) 200 µm, (B) 500 µm and (C) 200 + 500 µm, and diamond cell structure. The scaffolds were fabricated from commercially pure titanium powder (CP Ti) using a SLM50 3D printing machine (Realizer GmbH, Borchen, Germany). The selective laser melting (SLM) process was optimized and the laser beam energy density in range of 91–151 J/mm3 was applied to receive 3D structures with fully dense struts. To remove not fully melted titanium particles the scaffolds were chemically polished using various HF and HF-HNO3 acid solutions. Based on scaffolds mass loss and scanning electron (SEM) observations, baths which provided most uniform surface cleaning were proposed for each porosity. The pore and strut size after chemical treatments was calculated based on the micro-computed tomography (µ-CT) and SEM images. The mechanical tests showed that the treated scaffolds had Young’s modulus close to that of compact bone. Additionally, the effect of pore size of chemically polished scaffolds on cell retention, proliferation and differentiation was studied using human mesenchymal stem cells. Small pores yielded higher cell retention within the scaffolds, which then affected their growth. This shows that in vitro cell performance can be controlled to certain extent by varying pore sizes. PMID:28773323

  5. Effects and safety of mechanical bathing as a complementary therapy for terminal stage cancer patients from the physiological and psychological perspective: a pilot study.

    PubMed

    Fujimoto, Sawako; Iwawaki, Yoko; Takishita, Yukie; Yamamoto, Yoko; Murota, Masako; Yoshioka, Saori; Hayano, Azusa; Hosokawa, Toyoshi; Yamanaka, Ryuya

    2017-11-01

    In palliative care hospitals in Japan, mechanical bathing is conducted to maintain cleanliness. However, the physiological and psychological influence of mechanical bathing on patients has not been sufficiently studied. The objective of this study was to assess, using physiological and psychological indices, the effects of mechanical bathing care for patients in the terminal stage of cancer. Mechanical bathing was performed using a Marine Court SB7000 in a supine or semi-seated position. The heart rate variability analysis method was used to measure autonomic nervous system function. The patients' state of anxiety was assessed using the State-Trait Anxiety Inventory (STAI), a psychological index, and patients' verbal responses were also collected after mechanical bathing. Twenty-four patients were enrolled in this study. Their sympathetic and parasympathetic nervous activity did not differ before and after bathing. A significant difference was found between pre- and post-bathing anxiety, as evaluated by STAI (P < 0.0001). In the patient's verbal responses that was collected, the most frequently mentioned descriptors were 'comfortable' and 'relaxed'. Patients were more relaxed after mechanical bathing according to STAI evaluation and their verbal responses. The findings suggest that the method of bathing used in this study is safe and pain-relieving for terminal stage cancer patients. It is thus possible to provide safe and comfortable care for terminal stage cancer patients using mechanical baths. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  6. Quantum dynamics simulations in an ultraslow bath using hierarchy of stochastic Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Ke, Yaling; Zhao, Yi

    2018-04-01

    The hierarchy of stochastic Schrödinger equation, previously developed under the unpolarised initial bath states, is extended in this paper for open quantum dynamics under polarised initial bath conditions. The method is proved to be a powerful tool in investigating quantum dynamics exposed to an ultraslow Ohmic bath, as in this case the hierarchical truncation level and the random sampling number can be kept at a relatively small extent. By systematically increasing the system-bath coupling strength, the symmetric Ohmic spin-boson dynamics is investigated at finite temperature, with a very small cut-off frequency. It is confirmed that the slow bath makes the system dynamics extremely sensitive to the initial bath conditions. The localisation tendency is stronger in the polarised initial bath conditions. Besides, the oscillatory coherent dynamics persists even when the system-bath coupling is very strong, in correspondence with what is found recently in the deep sub-Ohmic bath, where also the low-frequency modes dominate.

  7. Multi-pin chemiresistors for microchemical sensors

    DOEpatents

    Ho, Clifford K [Albuquerque, NM

    2007-02-20

    A multi-pin chemiresistor for use in microchemical sensors. A pair of free-standing, bare wires is supported by an electrically insulating support, and are oriented parallel to each other and spaced closely together. A free-standing film of a chemically sensitive polymer that swells when exposed to vapors of a volatile chemical is formed in-between the pair of closely-spaced wires by capillary action. Similar in construction to a thermocouple, this "chemicouple" is relatively inexpensive and easy to fabricate by dipping the pair of bare wires into a bath of well-mixed chemiresistor ink. Also, a chemiresistor "stick" is formed by dipping an electrically insulating rod with two or more linear or spiral-wrapped electrical traces into the bath of well-mixed chemiresistor ink, which deposits a uniform coating of the chemically sensitive polymer on the rod and the electrical traces. These "sticks" can be easily removed and replaced from a multi-chemiresistor plug.

  8. Role of H2O2 in the fluctuating patterns of COD (chemical oxygen demand) during the treatment of palm oil mill effluent (POME) using pilot scale triple frequency ultrasound cavitation reactor.

    PubMed

    Manickam, Sivakumar; Abidin, Norhaida binti Zainal; Parthasarathy, Shridharan; Alzorqi, Ibrahim; Ng, Ern Huay; Tiong, Timm Joyce; Gomes, Rachel L; Ali, Asgar

    2014-07-01

    Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Cadmium sulfide thin films growth by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Hariech, S.; Aida, M. S.; Bougdira, J.; Belmahi, M.; Medjahdi, G.; Genève, D.; Attaf, N.; Rinnert, H.

    2018-03-01

    Cadmium sulfide (CdS) thin films have been prepared by a simple technique such as chemical bath deposition (CBD). A set of samples CdS were deposited on glass substrates by varying the bath temperature from 55 to 75 °C at fixed deposition time (25 min) in order to investigate the effect of deposition temperature on CdS films physical properties. The determination of growth activation energy suggests that at low temperature CdS film growth is governed by the release of Cd2+ ions in the solution. The structural characterization indicated that the CdS films structure is cubic or hexagonal with preferential orientation along the direction (111) or (002), respectively. The optical characterization indicated that the films have a fairly high transparency, which varies between 55% and 80% in the visible range of the optical spectrum, the refractive index varies from 1.85 to 2.5 and the optical gap value of which can reach 2.2 eV. It can be suggested that these properties make these films perfectly suitable for their use as window film in thin films based solar cells.

  10. Annealing Temperature Dependence of ZnO Nanostructures Grown by Facile Chemical Bath Deposition for EGFET pH Sensors

    NASA Astrophysics Data System (ADS)

    Bazilah Rosli, Aimi; Awang, Zaiki; Sobihana Shariffudin, Shafinaz; Herman, Sukreen Hana

    2018-03-01

    Zinc Oxide (ZnO) nanostructures were deposited using chemical bath deposition (CBD) technique in water bath at 95 °C for 4 h. Post-deposition heat treatment in air ambient at various temperature ranging from 200-600 °C for 30 min was applied in order to enhance the electrical properties of ZnO nanostructures as the sensing membrane of extended-gate field effect transistor (EGFET) pH sensor. The as-deposited sample was prepared for comparison. The samples were characterized in terms of physical and sensing properties. FESEM images showed that scattered ZnO nanorods were formed for the as-deposited sample, and the morphology of the ZnO nanorods changed to ZnO nanoflowers when the heat treatment was applied from 200-600 °C. For sensing properties, the samples heated at 300 °C showed the higher sensitivity which was 39.9 mV/pH with the linearity of 0.9792. The sensing properties was increased with the increasing annealing treatment temperature up to 300 °C before decreased drastically.

  11. [Balneotherapy in the treatment of subjective symptoms of lumbar syndrome].

    PubMed

    Batsialou, Ioanna

    2002-01-01

    Chronic low back pain is a degenerative rheumatic disease and is characterized by various symptoms and clinical signs. Balneotherapy represents a therapy by various hot or warm baths in natural mineral waters of specific physical and chemical characteristics. When used externally, they have mechanical, chemical and thermic effects. Balneotherapy of lumbar syndrome includes: individual baths, swimming in the pool, hydrokinesitherapy, underwater massage, underwater extension, mud therapy, mud baths. The therapy should be closely monitored for optimal efficacy and it is necessary to examine: functional status of the lumbosacral region, general functional status (level of activity), lower extremities, pain measurement, use of non-steroid antirheumatic and analgesic agents. In order to follow-up the effects of therapy and establish the prognosis it is important to perform: detailed anamnesis, anthropometric measurements, socio-epidemiological research, clinical examinations. Lumbar syndrome is usually caused by a degenerative disease of the spinal column. More than 25% of people under 45 years of age are unable to work due to chronic low back pain. That is why preventive measures, prompt diagnosis and adequate therapy are of utmost importance.

  12. Quantum transport under ac drive from the leads: A Redfield quantum master equation approach

    NASA Astrophysics Data System (ADS)

    Purkayastha, Archak; Dubi, Yonatan

    2017-08-01

    Evaluating the time-dependent dynamics of driven open quantum systems is relevant for a theoretical description of many systems, including molecular junctions, quantum dots, cavity-QED experiments, cold atoms experiments, and more. Here, we formulate a rigorous microscopic theory of an out-of-equilibrium open quantum system of noninteracting particles on a lattice weakly coupled bilinearly to multiple baths and driven by periodically varying thermodynamic parameters like temperature and chemical potential of the bath. The particles can be either bosonic or fermionic and the lattice can be of any dimension and geometry. Based on the Redfield quantum master equation under Born-Markov approximation, we derive a linear differential equation for an equal time two point correlation matrix, sometimes also called a single-particle density matrix, from which various physical observables, for example, current, can be calculated. Various interesting physical effects, such as resonance, can be directly read off from the equations. Thus, our theory is quite general and gives quite transparent and easy-to-calculate results. We validate our theory by comparing with exact numerical simulations. We apply our method to a generic open quantum system, namely, a double quantum dot coupled to leads with modulating chemical potentials. The two most important experimentally relevant insights from this are as follows: (i) Time-dependent measurements of current for symmetric oscillating voltages (with zero instantaneous voltage bias) can point to the degree of asymmetry in the system-bath coupling and (ii) under certain conditions time-dependent currents can exceed time-averaged currents by several orders of magnitude, and can therefore be detected even when the average current is below the measurement threshold.

  13. Study of the morphology of ZnS thin films deposited on different substrates via chemical bath deposition.

    PubMed

    Gómez-Gutiérrez, Claudia M; Luque, P A; Castro-Beltran, A; Vilchis-Nestor, A R; Lugo-Medina, Eder; Carrillo-Castillo, A; Quevedo-Lopez, M A; Olivas, A

    2015-01-01

    In this work, the influence of substrate on the morphology of ZnS thin films by chemical bath deposition is studied. The materials used were zinc acetate, tri-sodium citrate, thiourea, and ammonium hydroxide/ammonium chloride solution. The growth of ZnS thin films on different substrates showed a large variation on the surface, presenting a poor growth on SiO2 and HfO2 substrates. The thin films on ITO substrate presented a uniform and compact growth without pinholes. The optical properties showed a transmittance of about 85% in the visible range of 300-800 nm with band gap of 3.7 eV. © Wiley Periodicals, Inc.

  14. Physical properties of nanostructured strontium oxide thin film grown by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Ahmad, Farhan; Belkhedkar, M. R.; Salodkar, R. V.

    2018-05-01

    Nanostructured SrO thin film of thickness 139 nm was deposited by chemical bath deposition technique onto glass substrates using SrCl2.6H2O and NaOH as cationic and anionic precursors without complexing agents. The X-ray diffraction studies revealed that, SrO thin film is nanocrystalline in nature with cubic structure. The surface morphology of the SrO film was investigated by means of field emission scanning electron microscopy. The optical studies showed that SrO film exhibits direct as well as indirect optical band gap energy. The electrical resistivity and activation energy of SrO thin film is found to be of the order of 106 Ω cm and 0.58eV respectively.

  15. Quantitative assessment of combination bathing and moisturizing regimens on skin hydration in atopic dermatitis.

    PubMed

    Chiang, Charles; Eichenfield, Lawrence F

    2009-01-01

    Standard recommendations for skin care for patients with atopic dermatitis stress the importance of skin hydration and the application of moisturizers. However, objective data to guide recommendations regarding the optimal practice methods of bathing and emollient application are scarce. This study quantified cutaneous hydration status after various combination bathing and moisturizing regimens. Four bathing/moisturizer regimens were evaluated in 10 subjects, five pediatric subjects with atopic dermatitis and five subjects with healthy skin. The regimens consisted of bathing alone without emollient application, bathing and immediate emollient application, bathing and delayed application, and emollient application alone. Each regimen was evaluated in all subjects, utilizing a crossover design. Skin hydration was assessed with standard capacitance measurements. In atopic dermatitis subjects, emollient alone yielded a significantly (p < 0.05) greater mean hydration over 90 minutes (206.2% baseline hydration) than bathing with immediate emollient (141.6%), bathing and delayed emollient (141%), and bathing alone (91.4%). The combination bathing and emollient application regimens demonstrated hydration values at 90 minutes not significantly greater than baseline. Atopic dermatitis subjects had a decreased mean hydration benefit compared with normal skin subjects. Bathing without moisturizer may compromise skin hydration. Bathing followed by moisturizer application provides modest hydration benefits, though less than that of simply applying moisturizer alone.

  16. Electroless deposition of Ni Cu P alloy and study of the influences of some parameters on the properties of deposits

    NASA Astrophysics Data System (ADS)

    Ashassi-Sorkhabi, H.; Dolati, H.; Parvini-Ahmadi, N.; Manzoori, J.

    2002-01-01

    Cupronickel alloys are known for their excellent corrosion resistance, especially in marine atmosphere. The development of an appropriate electroless bath involves the use of a reducing agent, complexing and stabilizing compounds and metallic salts. In this work, autocatalytic deposition of Ni-Cu-P alloys (28-95 wt.% Ni, 66-0 wt.% Cu, 7.5-3 wt.% P) has been carried out on 302 b steel sheets from bath containing: NiCl 2·6H 2O, CuCl 2·2H 2O, NaH 2PO 2, Na citrate, sulphosalicilic acid and triethanolamine. The effects of pH, temperature, and bath composition on the hardness and the composition of deposits have been studied. In addition, the deposition rates of alloy, nickel, copper and phosphorus were investigated and optimum conditions were obtained. The average rate of alloy deposition was 9 mg cm -2 h -1 and the optimum pH and temperature were 8.5 and 80 °C, respectively. The chemical stability of bath was desirable, and no spontaneous decomposition occurred. The changes in the structure of deposit by heat treatment were studied by the X-ray diffraction (XRD) method. The XRD patterns indicate that the copper content affects the structure changes. With increasing copper content, the phosphorus content decreased and the crystallinity of the deposits grew. After heat treatment of alloys with lower copper content at 400 °C for 1 h, the crystallization to Ni 3P was observed.

  17. High-throughput combinatorial chemical bath deposition: The case of doping Cu (In, Ga) Se film with antimony

    NASA Astrophysics Data System (ADS)

    Yan, Zongkai; Zhang, Xiaokun; Li, Guang; Cui, Yuxing; Jiang, Zhaolian; Liu, Wen; Peng, Zhi; Xiang, Yong

    2018-01-01

    The conventional methods for designing and preparing thin film based on wet process remain a challenge due to disadvantages such as time-consuming and ineffective, which hinders the development of novel materials. Herein, we present a high-throughput combinatorial technique for continuous thin film preparation relied on chemical bath deposition (CBD). The method is ideally used to prepare high-throughput combinatorial material library with low decomposition temperatures and high water- or oxygen-sensitivity at relatively high-temperature. To check this system, a Cu(In, Ga)Se (CIGS) thin films library doped with 0-19.04 at.% of antimony (Sb) was taken as an example to evaluate the regulation of varying Sb doping concentration on the grain growth, structure, morphology and electrical properties of CIGS thin film systemically. Combined with the Energy Dispersive Spectrometer (EDS), X-ray Photoelectron Spectroscopy (XPS), automated X-ray Diffraction (XRD) for rapid screening and Localized Electrochemical Impedance Spectroscopy (LEIS), it was confirmed that this combinatorial high-throughput system could be used to identify the composition with the optimal grain orientation growth, microstructure and electrical properties systematically, through accurately monitoring the doping content and material composition. According to the characterization results, a Sb2Se3 quasi-liquid phase promoted CIGS film-growth model has been put forward. In addition to CIGS thin film reported here, the combinatorial CBD also could be applied to the high-throughput screening of other sulfide thin film material systems.

  18. Influence of ammonium hydroxide solution on LiMn2O4 nanostructures prepared by modified chemical bath method

    NASA Astrophysics Data System (ADS)

    Koao, Lehlohonolo F.; Motloung, Setumo V.; Motaung, Tshwafo E.; Kebede, Mesfin A.

    2018-04-01

    LiMn2O4 (LMO) powders were prepared by modified chemical bath deposition (CBD) method by varying ammonium hydroxide solution (AHS). The volume of the AHS was varied from 5 to 120 mL in order to determine the optimum volume that is needed for preparation of LMO powders. The effect of AHS volume on the structure, morphology, and electrochemical properties of LMO powders was investigated. The X-ray diffraction (XRD) patterns of the LMO powders correspond to the cubic spinel LMO phase. It was found that the XRD peaks increased in intensity with increasing volume of the AHS up to 20 mL. The estimated average grain sizes calculated using the XRD patterns were found to be in the order of 66 ± 1 nm. It was observed that the estimated average grain sizes increased up to 20 mL of AHS. The scanning electron microscopy (SEM) results revealed that the AHS volume does not influence the surface morphology of the prepared nano-powders. Elemental energy dispersive (EDS) analysis mapping conducted on the samples revealed homogeneous distribution of Mn and O for the sample synthesized with 120 mL of AHS. The UV-Vis spectra showed a red shift with an increase in AHS up 20 mL. The cyclic voltammetry and galvanostatic charge/discharge cycle testing confirmed that 20 mL of AHS has superior lithium ion kinetics and electrochemical performance.

  19. Chemically Deposited Thin-Film Solar Cell Materials

    NASA Technical Reports Server (NTRS)

    Raffaelle, R.; Junek, W.; Gorse, J.; Thompson, T.; Harris, J.; Hehemann, D.; Hepp, A.; Rybicki, G.

    2005-01-01

    We have been working on the development of thin film photovoltaic solar cell materials that can be produced entirely by wet chemical methods on low-cost flexible substrates. P-type copper indium diselenide (CIS) absorber layers have been deposited via electrochemical deposition. Similar techniques have also allowed us to incorporate both Ga and S into the CIS structure, in order to increase its optical bandgap. The ability to deposit similar absorber layers with a variety of bandgaps is essential to our efforts to develop a multi-junction thin-film solar cell. Chemical bath deposition methods were used to deposit a cadmium sulfide (CdS) buffer layers on our CIS-based absorber layers. Window contacts were made to these CdS/CIS junctions by the electrodeposition of zinc oxide (ZnO). Structural and elemental determinations of the individual ZnO, CdS and CIS-based films via transmission spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy and energy dispersive spectroscopy will be presented. The electrical characterization of the resulting devices will be discussed.

  20. Safety in the Chemical Laboratory. Chemical Laboratory Safety: The Academic Anomaly.

    ERIC Educational Resources Information Center

    Bretherick, Leslie

    1990-01-01

    Discussed are accidents that occur in the laboratories of highly trained chemists. Four examples are provided to illustrate potential hazards that are often overlooked in chemistry laboratories, molten inorganic salt baths, the reaction of acetone and hydrogen peroxide, halogenated acetylene compounds, and the reaction of hydrogen peroxide and…

  1. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE THERMAL DESORPTION UNIT - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    ELI ECO Logic International, Inc.'s Thermal Desorption Unit (TDU) is specifically designed for use with Eco Logic's Gas Phase Chemical Reduction Process. The technology uses an externally heated bath of molten tin in a hydrogen atmosphere to desorb hazardous organic compounds fro...

  2. Emergent transport in a many-body open system driven by interacting quantum baths

    NASA Astrophysics Data System (ADS)

    Reisons, Juris; Mascarenhas, Eduardo; Savona, Vincenzo

    2017-10-01

    We analyze an open many-body system that is strongly coupled at its boundaries to interacting quantum baths. We show that the two-body interactions inside the baths induce emergent phenomena in the spin transport. The system and baths are modeled as independent spin chains resulting in a global nonhomogeneous X X Z model. The evolution of the system-bath state is simulated using matrix-product-states methods. We present two phase transitions induced by bath interactions. For weak bath interactions we observe ballistic and insulating phases. However, for strong bath interactions a diffusive phase emerges with a distinct power-law decay of the time-dependent spin current Q ∝t-α . Furthermore, we investigate long-lasting current oscillations arising from the non-Markovian dynamics in the homogeneous case and find a sharp change in their frequency scaling coinciding with the triple point of the phase diagram.

  3. Effect of growth time on Ti-doped ZnO nanorods prepared by low-temperature chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Bidier, Shaker A.; Hashim, M. R.; Al-Diabat, Ahmad M.; Bououdina, M.

    2017-04-01

    Ti-doped ZnO nanorod arrays were grown onto Si substrate using chemical bath deposition (CBD) method at 93 °C. To investigate the effect of time deposition on the morphological, and structural properties, four Ti-doped ZnO samples were prepared at various deposition periods of time (2, 3.5, 5, and 6.5 h). FESEM images displayed high-quality and uniform nanorods with a mean length strongly dependent upon deposition time; i.e. it increases for prolonged growth time. Additionally, EFTEM images reveal a strong erosion on the lateral side for the sample prepared for 6.5 h as compared to 5 h. This might be attributed to the dissolution reaction of ZnO with for prolonged growth time. XRD analysis confirms the formation of a hexagonal wurtzite-type structure for all samples with a preferred growth orientation along the c-axis direction. The (100) peak intensity was enhanced and then quenched, which might be the result of an erosion on the lateral side of nanorods as seen in EFTEM. This study confirms the important role of growth time on the morphological features of Ti-doped ZnO nanorods prepared using CBD. Increase the growth time causes an erosion in lateral side -(100) direction XRD- and enhances the axial direction -(002), XRD.

  4. Application of chemometric methods for assessment and modelling of microbiological quality data concerning coastal bathing water in Greece.

    PubMed

    Papaioannou, Agelos; Rigas, George; Papastergiou, Panagiotis; Hadjichristodoulou, Christos

    2014-12-02

    Worldwide, the aim of managing water is to safeguard human health whilst maintaining sustainable aquatic and associated terrestrial, ecosystems. Because human enteric viruses are the most likely pathogens responsible for waterborne diseases from recreational water use, but detection methods are complex and costly for routine monitoring, it is of great interest to determine the quality of coastal bathing water with a minimum cost and maximum safety. This study handles the assessment and modelling of the microbiological quality data of 2149 seawater bathing areas in Greece over 10-year period (1997-2006) by chemometric methods. Cluster analysis results indicated that the studied bathing beaches are classified in accordance with the seasonality in three groups. Factor analysis was applied to investigate possible determining factors in the groups resulted from the cluster analysis, and also two new parameters were created in each group; VF1 includes E. coli, faecal coliforms and total coliforms and VF2 includes faecal streptococci/enterococci. By applying the cluster analysis in each seasonal group, three new groups of coasts were generated, group A (ultraclean), group B (clean) and group C (contaminated). The above analysis is confirmed by the application of discriminant analysis, and proves that chemometric methods are useful tools for assessment and modeling microbiological quality data of coastal bathing water on a large scale, and thus could attribute to effective and economical monitoring of the quality of coastal bathing water in a country with a big number of bathing coasts, like Greece. Significance for public healthThe microbiological protection of coastal bathing water quality is of great interest for the public health authorities as well as for the economy. The present study proves that this protection can be achieved by monitoring only two microbiological parameters, E. coli and faecal streptococci/enterococci instead four microbiological parameters (the two mentioned above plus Total coliforms and Faecal coliforms) that are usually monitored today. As a consequence, countries, especially those with large quantities of coastal bathing sites, can perform microbiological monitoring of their bathing waters by checking only the mentioned two parameters, thus ensuring economies of scale. Thus, funds can be used in other actions to preserve the quality of coastal water and human health. This in turn, would aid in the assessment of the quality of coastal bathing waters and provide a more timely indication of bathing water quality, hence contributing to the immediate health protection of bathers.

  5. The effects of daily bathing on symptoms of patients with bronchial asthma

    PubMed Central

    Arimoto, Yoshihito; Homma, Chie; Takeoka, Shinjiro; Fukusumi, Munehisa; Mouri, Atsuto; Hamamoto, Yoichiro

    2016-01-01

    Background The influence of bathing in asthma patients is not yet fully known. Objective We conducted an observational study to investigate changes in symptoms and their degree by bathing in asthmatic patients. Methods A questionnaire focusing on ever experienced bathing-induced symptom changes and their degree, as well as contributing factors, was designed and administered to asthmatic patients in the outpatient department of our institute between January 2012 and November 2013. Results Two hundred fifteen cases were recruited. In 60 cases (27.9%), asthmatic symptoms appeared, including 20 cases of chest discomfort (33.3%), 19 cases of cough (31.7%), and 21 cases of wheezing (35.0%). The triggering factors included vapor inhalation (32 cases, 53.3%), hydrostatic pressure on the thorax due to body immersion in the bathtub (26 cases, 43.3%), and sudden change of air temperature (16 cases, 26.7%). Thirty-eight cases (17.7%) experienced improvement in active asthmatic symptoms by bathing. Vapor inhalation was the most common contributing factor (34 cases, 89.5%), followed by warming of the whole body (13 cases, 34.2%). There was no relationship between asthma severity and the appearance of bathing-induced symptoms or improvement of active asthmatic symptoms by bathing. Conclusion The effects of bathing in asthmatic patients widely differed from patient to patient and their etiology includes several factors. For those who suffer from bathing-induced asthma symptoms, preventive methods, such as premedication with bronchodilators before bathing, should be established. This study is registered in the University Hospital Medical Information Network (UMIN) clinical trials registry in Japan with the registration number UMIN000015641. PMID:27141485

  6. 40 CFR 60.601 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... means the water, solvent, or other chemical bath into which the polymer or prepolymer (partially reacted..., transportation, collection, concentration, and purification of organic solvents. It may include enclosures, hoods...

  7. 40 CFR 60.601 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... means the water, solvent, or other chemical bath into which the polymer or prepolymer (partially reacted..., transportation, collection, concentration, and purification of organic solvents. It may include enclosures, hoods...

  8. 40 CFR 60.601 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... means the water, solvent, or other chemical bath into which the polymer or prepolymer (partially reacted..., transportation, collection, concentration, and purification of organic solvents. It may include enclosures, hoods...

  9. 40 CFR 60.601 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... means the water, solvent, or other chemical bath into which the polymer or prepolymer (partially reacted..., transportation, collection, concentration, and purification of organic solvents. It may include enclosures, hoods...

  10. 40 CFR 60.601 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... means the water, solvent, or other chemical bath into which the polymer or prepolymer (partially reacted..., transportation, collection, concentration, and purification of organic solvents. It may include enclosures, hoods...

  11. Optical spectroscopy and system-bath interactions in molecular aggregates with full configuration interaction Frenkel exciton model

    NASA Astrophysics Data System (ADS)

    Seibt, Joachim; Sláma, Vladislav; Mančal, Tomáš

    2016-12-01

    Standard application of the Frenkel exciton model neglects resonance coupling between collective molecular aggregate states with different number of excitations. These inter-band coupling terms are, however, of the same magnitude as the intra-band coupling between singly excited states. We systematically derive the Frenkel exciton model from quantum chemical considerations, and identify it as a variant of the configuration interaction method. We discuss all non-negligible couplings between collective aggregate states, and provide compact formulae for their calculation. We calculate absorption spectra of molecular aggregate of carotenoids and identify significant band shifts as a result of inter-band coupling. The presence of inter-band coupling terms requires renormalization of the system-bath coupling with respect to standard formulation, but renormalization effects are found to be weak. We present detailed discussion of molecular dimer and calculate its time-resolved two-dimensional Fourier transformed spectra to find weak but noticeable effects of peak amplitude redistribution due to inter-band coupling.

  12. A maximum entropy thermodynamics of small systems.

    PubMed

    Dixit, Purushottam D

    2013-05-14

    We present a maximum entropy approach to analyze the state space of a small system in contact with a large bath, e.g., a solvated macromolecular system. For the solute, the fluctuations around the mean values of observables are not negligible and the probability distribution P(r) of the state space depends on the intricate details of the interaction of the solute with the solvent. Here, we employ a superstatistical approach: P(r) is expressed as a marginal distribution summed over the variation in β, the inverse temperature of the solute. The joint distribution P(β, r) is estimated by maximizing its entropy. We also calculate the first order system-size corrections to the canonical ensemble description of the state space. We test the development on a simple harmonic oscillator interacting with two baths with very different chemical identities, viz., (a) Lennard-Jones particles and (b) water molecules. In both cases, our method captures the state space of the oscillator sufficiently well. Future directions and connections with traditional statistical mechanics are discussed.

  13. Copper-zinc electrodeposition in alkaline-sorbitol medium: Electrochemical studies and structural, morphological and chemical composition characterization

    NASA Astrophysics Data System (ADS)

    de Almeida, M. R. H.; Barbano, E. P.; de Carvalho, M. F.; Tulio, P. C.; Carlos, I. A.

    2015-04-01

    The galvanostatic technique was used to analyze the electrodeposition of Cu-Zn on to AISI 1010 steel electrode from an alkaline-sorbitol bath with various proportions of the metal ions in the bath: Cu70/Zn30, Cu50/Zn50 and Cu30/Zn70. Coloration of Cu-Zn films were whitish golden, light golden, golden/gray depending on the Cu2+/Zn2+ ratios in the electrodeposition bath, deposition current density (jdep) and charge density (qdep). The highest current efficiency was ∼54.0%, at jdep -1.0 mA cm-2 and qdep 0.40 C cm-2 in the Cu70/Zn30 bath. Energy dispersive spectroscopy indicated that electrodeposits produced from the bath Cu70/Zn30 showed higher Cu content at lower jdep. Also, for same jdep the Cu content increased with qdep. Scanning electron microscopy showed that Cu-Zn electrodeposits of high quality were obtained from the Cu70/Zn30 bath, since the films were fine-grained, except the obtained at jdep -20.0 mA cm-2 and qdep 10.0 C cm-2. Also, these electrodeposits did not present cracks. X-ray analysis of the Cu-Zn electrodeposits obtained at jdep -8.0, -20.0 and -40.0 mA cm-2, in each case, with qdep 2.0 and 10.0 C cm-2, in the Cu70/Zn30 bath, suggested the occurrence of a mixture of the following phases, CuZn, CuZn5 and Cu5Zn8. Galvanostatic electrodeposits of Cu-Zn obtained from sorbitol-alkaline baths exhibited whitish golden color, with good prospects for industrial applications, especially for decorative purposes.

  14. Effects of system-bath coupling on a photosynthetic heat engine: A polaron master-equation approach

    NASA Astrophysics Data System (ADS)

    Qin, M.; Shen, H. Z.; Zhao, X. L.; Yi, X. X.

    2017-07-01

    Stimulated by suggestions of quantum effects in energy transport in photosynthesis, the fundamental principles responsible for the near-unit efficiency of the conversion of solar to chemical energy became active again in recent years. Under natural conditions, the formation of stable charge-separation states in bacteria and plant reaction centers is strongly affected by the coupling of electronic degrees of freedom to a wide range of vibrational motions. These inspire and motivate us to explore the effects of the environment on the operation of such complexes. In this paper, we apply the polaron master equation, which offers the possibilities to interpolate between weak and strong system-bath coupling, to study how system-bath couplings affect the exciton-transfer processes in the Photosystem II reaction center described by a quantum heat engine (QHE) model over a wide parameter range. The effects of bath correlation and temperature, together with the combined effects of these factors are also discussed in detail. We interpret these results in terms of noise-assisted transport effect and dynamical localization, which correspond to two mechanisms underpinning the transfer process in photosynthetic complexes: One is resonance energy transfer and the other is the dynamical localization effect captured by the polaron master equation. The effects of system-bath coupling and bath correlation are incorporated in the effective system-bath coupling strength determining whether noise-assisted transport effect or dynamical localization dominates the dynamics and temperature modulates the balance of the two mechanisms. Furthermore, these two mechanisms can be attributed to one physical origin: bath-induced fluctuations. The two mechanisms are manifestations of the dual role played by bath-induced fluctuations depending on the range of parameters. The origin and role of coherence are also discussed. It is the constructive interplay between noise and coherent dynamics, rather than the mere presence or absence of coherence or noise, that is responsible for the optimal heat engine performance. In addition, we find that the effective voltage of QHE exhibits superior robustness against the bath noise as long as the system-bath coupling is not very strong.

  15. Wash and Wean: Bathing Patients Undergoing Weaning Trials During Prolonged Mechanical Ventilation

    PubMed Central

    Happ, Mary Beth; Tate, Judith A.; Swigart, Valerie A.; DiVirgilio-Thomas, Dana; Hoffman, Leslie A.

    2010-01-01

    BACKGROUND Bathing is a fundamental nursing care activity performed for or with the self-assistance of critically ill patients. Few studies address caregiver and/or patient-family perspectives about bathing activity during weaning from prolonged mechanical ventilation. OBJECTIVE To describe practices and beliefs about bathing patients during weaning from prolonged mechanical ventilation (PMV). METHODS Secondary analysis of qualitative data (observational field notes, interviews, and clinical record review) from a larger ethnographic study involving 30 patients weaning from PMV and the clinicians who cared for them using basic qualitative description. RESULTS Bathing, hygiene, and personal care were highly valued and equated with “good” nursing care by families and nurses. Nurses and respiratory therapists reported “working around” bath time and promoted conducting weaning trials before or after bathing. Patients were nevertheless bathed during weaning trials despite clinicians expressed concerns for energy conservation. Clinicians’ recognized individual patient response to bathing during PMV weaning trials. CONCLUSION Bathing is a central care activity for PMV patients and a component of daily work processes in the ICU. Bathing requires assessment of patient condition and activity tolerance and nurse-respiratory therapist negotiation and accommodation with respect to the initiation and/or continuation of PMV weaning trials during bathing. Further study is needed to validate the impact (or lack of impact) of various timing strategies for bathing PMV patients. PMID:20561877

  16. Structural, optical and electrical properties of copper antimony sulfide thin films grown by a citrate-assisted single chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Loranca-Ramos, F. E.; Diliegros-Godines, C. J.; Silva González, R.; Pal, Mou

    2018-01-01

    Copper antimony sulfide (CAS) has been proposed as low toxicity and earth abundant absorber materials for thin film photovoltaics due to their suitable optical band gap, high absorption coefficient and p-type electrical conductivity. The present work reports the formation of copper antimony sulfide by chemical bath deposition using sodium citrate as a complexing agent. We show that by tuning the annealing condition, one can obtain either chalcostibite or tetrahedrite phase. However, the main challenge was co-deposition of copper and antimony as ternary sulfides from a single chemical bath due to the distinct chemical behavior of these metals. The as-deposited films were subjected to several trials of thermal treatment using different temperatures and time to find the optimized annealing condition. The films were characterized by different techniques including Raman spectroscopy, X-ray diffraction (XRD), profilometer, scanning electron microscopy (SEM), UV-vis spectrophotometer, and Hall Effect measurements. The results show that the formation of chalcostibite and tetrahedrite phases is highly sensitive to annealing conditions. The electrical properties obtained for the chalcostibite films varied as the annealing temperature increases from 280 to 350 °C: hole concentration (n) = 1017-1018 cm-3, resistivity (ρ) = 1.74-2.14 Ωcm and carrier mobility (μ) = 4.7-9.26 cm2/Vseg. While for the tetrahedrite films, the electrical properties were n = 5 × 1019 cm-3, μ = 18.24 cm2/Vseg, and ρ = 5.8 × 10-3 Ωcm. A possible mechanism for the formation of ternary copper antimony sulfide has also been proposed.

  17. Dust-bathing behavior of laying hens in enriched colony housing systems and an aviary system

    PubMed Central

    Louton, H.; Bergmann, S.; Reese, S.; Erhard, M. H.; Rauch, E.

    2016-01-01

    The dust-bathing behavior of Lohmann Selected Leghorn hens was compared in 4 enriched colony housing systems and in an aviary system. The enriched colony housing systems differed especially in the alignment and division of the functional areas dust bath, nest, and perches. Forty-eight-hour video recordings were performed at 3 time-points during the laying period, and focal animal sampling and behavior sampling methods were used to analyze the dust-bathing behavior. Focal animal data included the relative fractions of dust-bathing hens overall, of hens bathing in the dust-bath area, and of those bathing on the wire floor throughout the day. Behavior data included the number of dust-bathing bouts within a predefined time range, the duration of 1 bout, the number of and reasons for interruptions, and the number of and reasons for the termination of dust-bathing bouts. Results showed that the average duration of dust bathing varied between the 4 enriched colony housing systems compared with the aviary system. The duration of dust-bathing bouts was shorter than reported under natural conditions. A positive correlation between dust-bathing activity and size of the dust-bath area was observed. Frequently, dust baths were interrupted and terminated by disturbing influences such as pecking by other hens. This was especially observed in the enriched colony housing systems. In none of the observed systems, neither in the enriched colony housing nor in the aviary system, were all of the observed dust baths terminated “normally.” Dust bathing behavior on the wire mesh rather than in the provided dust-bath area generally was observed at different frequencies in all enriched colony housing systems during all observation periods, but never in the aviary system. The size and design of the dust-bath area influenced the prevalence of dust-bathing behavior in that small and subdivided dust-bath areas reduced the number of dust-bathing bouts but increased the incidence of sham dust bathing on the wire mesh. PMID:27044875

  18. Deposition of zinc sulfide thin films by chemical bath process

    NASA Astrophysics Data System (ADS)

    Oladeji, Isaiah O.; Chow, Lee

    1996-11-01

    Deposition of high quality zinc sulfide (ZnS) thin film over a large area is required if it is to be effectively used in electroluminescent devices, solar cells, and other optoelectronic devices. Of all deposition techniques, chemical bath deposition (CBD) is the least costly technique that meets the above requirements. Recently it is found that the growth of ZnS film, of thickness less than 100 nm in a single dip, by CBD is facilitated by the use of ammonia and hydrazine as complexing agents. Here we report that the thickness of the deposited ZnS film can be increased if ammonium salt is used as a buffer. We also present an analytical study to explain our results and to further understand the ZnS growth process in CBD.

  19. Synthesis of Mn-doped ZnS thin films by chemical bath deposition: Optical properties in the visible region

    NASA Astrophysics Data System (ADS)

    Erken, Ozge; Gunes, Mustafa; Gumus, Cebrail

    2017-04-01

    Transparent ZnS:Mn thin films were produced by chemical bath deposition (CBD) technique at 80 °C for 4h, 6h and 8h durations. The optical properties such as optical transmittance (T %), reflectance (R %), extinction coefficient (k) and refractive index (n) were deeply investigated in terms of contribution ratio, wavelength and film thickness. The optical properties of ZnS:Mn thin films were determined by UV/vis spectrophotometer transmittance measurements in the range of λ=300-1100 nm. Optical transmittances of the films were found from 12% to 92% in the visible region. The refractive index (n) values for visible region were calculated as 1.34-5.09. However, film thicknesses were calculated between 50 and 901 nm by gravimetric analysis.

  20. Chemical Bath Deposited Zinc Sulfide Buffer Layers for Copper Indium Gallium Sulfur-selenide Solar Cells and Device Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Sambhu N.; Olsen, Larry C.

    2005-01-03

    Cd free CIGSS thin film solar cell structures with a MgF2/TCO/CGD-ZnS/CIGSS/Mo/SLG structure have been fabricated using chemical bath deposited (CBD)-ZnS buffer layers and high quality CIGSS absorber layers supplied from Shell Solar Industries. The use of CBD-ZnS, which is a higher band gap materials than CdS, improved the quantum efficiency of fabricated cells at lower wavelengths, leading to an increase in short circuit current. The best cell to date yielded an active area (0.43 cm2) efficiency of 13.3%. This paper also presents a discussion of the issues relating to the use of the CBD-ZnS buffer materials for improving device performance.

  1. The study of metal sulphide nanomaterials obtained by chemical bath deposition and hot-injection technique

    NASA Astrophysics Data System (ADS)

    Maraeva, E. V.; Alexandrova, O. A.; Forostyanaya, N. A.; Levitskiy, V. S.; Mazing, D. S.; Maskaeva, L. N.; Markov, V. Ph; Moshnikov, V. A.; Shupta, A. A.; Spivak, Yu M.; Tulenin, S. S.

    2015-11-01

    In this study lead sulphide - cadmium sulphide based layers were obtained through chemical deposition of water solutions and cadmium sulphide quantum dots were formed through hot-injection technique. The article discusses the results of surface investigations with the use of atomic force microscopy, Raman spectroscopy and photoluminescence measurements.

  2. Surface pre-treatment of aluminium by cleaning, chemical ething and conversion coating

    NASA Astrophysics Data System (ADS)

    Zaki, Mohammad Hafizudden Mohd; Mohd, Yusairie; Isa, Nik Norziehana Che

    2017-12-01

    Surface pre-treatment is one of the critical treatments for surface modification of aluminium (Al). In this study, pre-treatment of Al surface involved three stages; (1) cleaning (polishing and degreasing), (2) chemical etching (alkaline and acid) and (3) conversion coating (ie: zincate treatment). Cleaning process of Al was conducted by polishing and degreasing with acetone while etching process was done by immersion in 1.25 M NaOH solution (i.e: alkaline etching) followed with acid etching using 8 M HNO3 solution. The zincate treatment was conducted via electroless coating method by immersion of Al into a bath solution containing 0.5 M Zn(NO3)2, 0.1 M HNO3 and 0.2 M NaBH4 (reducing agent) for one hour. Different temperatures (ie: 25 °C, 50 °C, 75 °C, 90 °C) of bath solutions at pH 4 were used to investigate the effect of temperature on zincate treatment. Surface morphology and chemical composition of the pre-treated Al were characterized using Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersion X-ray analysis (EDX), respectively. The results showed that oxide layer on Al surface decreased after chemical etching process. Temperature of zincate solution has significantly affected the conversion coating process of aluminium. It was found that zinc oxide (ZnO) and zinc borate (ZnO.B2O3) were dominantly formed after zincate treatment at high temperature (ie:90 °C) with curved blade-like structure and composition of Zn, B and O with 13.70 wt.%, 3.52 wt.% and 54.39 wt.%, respectively. However, zincate treatment at low temperature (ie:<50 °C) has produced low metallic Zn.

  3. Investigation of coercivity for electroplated Fe-Ni thick films

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Eguchi, K.; Koda, K.; Kaji, J.; Aramaki, H.; Takashima, K.; Nakano, M.; Fukunaga, H.

    2018-05-01

    We have already reported Fe-Ni firms with good soft magnetic properties prepared by using an electroplating method. In our previous studies, we prepared the Fe-Ni films from citric-acid-based baths (CA-baths) and ammonium-chloride-based ones (AC-baths), and confirmed that the coercivity for the AC-baths was lower than that for the CA-baths. In the present study, we investigated reasons for the lower coercivity for the AC-baths to further improve the soft magnetic properties. From an observation of magnetic domains of the Fe22Ni78 films, we found that Fe22Ni78 film for AC-bath had a magnetic anisotropy in the width direction, and also found that the coercivity in the width direction was lower than the longitudinal one for the AC-bath. As an annealing for a stress relaxation in the films reduced the difference in the coercivity, we considered that the anisotropy is attributed to the magneto-elastic effect.

  4. [Use of white turpentine bath emulsion and yellow turpentine solution for the treatment of chronic prostatitis complicated by excretory pathospermia].

    PubMed

    Karpukhin, I V; Li, A A; Gusev, M A

    2009-01-01

    The paper reports a review of up-to-date methods for the use of white turpentine bath emulsion and yellow turpentine solution in the treatment of chronic prostatitis complicated by excretory pathospermia. The results of bath therapy are presented. It is shown that the efficiency of white turpentine bath emulsion amounted to 69.7% compared with 88.3% in patients treated with the use of yellow turpentine solution.

  5. What Are Bath Salts?

    MedlinePlus

    ... made drugs often sold as marijuana substitutes (like Spice ). Although the law also bans chemically similar versions ... Ecstasy or Molly) Methamphetamine (Meth) Prescription Drugs Salvia Spice Tobacco, Nicotine, & E-Cigarettes Brain and Addiction Drug ...

  6. Steam sauna and mother roasting in Lao PDR: practices and chemical constituents of essential oils of plant species used in postpartum recovery

    PubMed Central

    2011-01-01

    Background Fundamental in traditional postpartum recovery in Lao PDR is the use of hotbeds, mother roasting, steam sauna and steam baths. During these treatments medicinal plants play a crucial role, but little has been published about how the treatments are carried out precisely, which species are used, the medicinal properties of these species, and the medicinal efficacy of their chemical constituents. Methods Sixty-five interviews, in 15 rural villages, with women of 4 different ethnic groups were conducted to survey confinement rituals, and postpartum plant use and salience. Essential oils from the main species used were extracted using steam distillation and the main chemical constituents characterized using gas chromatography-mass spectrometry (GC-MS). Results A total of 10 different species were used by three or more of the ethnic groups included in this study. All species were used in steam sauna and bath, but only 3 species were used in hotbed and mother roasting. Essential oils of Amomum villosum, Amomum microcarpum and Blumea balsamifera were found to contain significant amounts of the following terpenes: β-pinene, camphor, bornyl acetate, borneol, linalool, D-limonene, fenchone, terpinen-4-ol and α-terpinene. Conclusions Many of these terpenes have documented antimicrobial and analgesic properties, and some have also synergistic interactions with other terpenes. The mode of application in hotbed and mother roasting differs from the documented mechanisms of action of these terpenes. Plants in these two practices are likely to serve mainly hygienic purposes, by segregating the mother from infection sources such as beds, mats, stools, cloth and towels. Steam sauna medicinal plant use through inhalation of essential oils vapors can possibly have medicinal efficacy, but is unlikely to alleviate the ailments commonly encountered during postpartum convalescence. Steam sauna medicinal plant use through dermal condensation of essential oils, and steam bath cleansing of the perineal area is possibly a pragmatic use of the reported medicinal plants, as terpene constituents have documented antimicrobial, analgesic and anti-inflammatory properties. PMID:22171719

  7. Arrhenius parameter determination as a function of heating method and cellular microenvironment based on spatial cell viability analysis.

    PubMed

    Whitney, Jon; Carswell, William; Rylander, Nichole

    2013-06-01

    Predictions of injury in response to photothermal therapy in vivo are frequently made using Arrhenius parameters obtained from cell monolayers exposed to laser or water bath heating. However, the impact of different heating methods and cellular microenvironments on Arrhenius predictions has not been thoroughly investigated. This study determined the influence of heating method (water bath and laser irradiation) and cellular microenvironment (cell monolayers and tissue phantoms) on Arrhenius parameters and spatial viability. MDA-MB-231 cells seeded in monolayers and sodium alginate phantoms were heated with a water bath for 3-20 min at 46, 50, and 54 °C or laser irradiated (wavelength of 1064 nm and fluences of 40 W/cm(2) or 3.8 W/cm(2) for 0-4 min) in combination with photoabsorptive carbon nanohorns. Spatial viability was measured using digital image analysis of cells stained with calcein AM and propidium iodide and used to determine Arrhenius parameters. The influence of microenvironment and heating method on Arrhenius parameters and capability of parameters derived from more simplistic experimental conditions (e.g. water bath heating of monolayers) to predict more physiologically relevant systems (e.g. laser heating of phantoms) were assessed. Arrhenius predictions of the treated area (<1% viable) under-predicted the measured areas in photothermally treated phantoms by 23 mm(2) using water bath treated cell monolayer parameters, 26 mm(2) using water bath treated phantom parameters, 27 mm(2) using photothermally treated monolayer parameters, and 0.7 mm(2) using photothermally treated phantom parameters. Heating method and cellular microenvironment influenced Arrhenius parameters, with heating method having the greater impact.

  8. Study of the optical properties of CuAlS2 thin films prepared by two methods

    NASA Astrophysics Data System (ADS)

    Ahmad, S. M.

    2017-04-01

    CuAlS2 thin films were successfully deposited on glass substrates using two methods: chemical spray pyrolysis (CSP) and chemical bath deposition (CBD). It was confirmed from the X-ray diffraction (XRD) analysis that CSP films exhibited a polycrystalline nature while amorphous nature was diagnosed for CBD films. Also XRD analysis was utilized to compute grain size, strain and dislocation density. Surface morphology was characterized using scanning electron microscope and photomicroscope images. The optical absorption measurement revealed that the direct allowed electronic transition with band gaps 2.8 eV and 3.0 eV for CBD and CSP methods, respectively. The optical constants, such as extinction coefficient ( k), refractive index ( n), real and imaginary dielectric constants ( ɛ 1, ɛ 2) were discussed. The photoluminescence (PL) spectra of CuAlS2 thin films appeared as a single peak for each of them, and this is attributed to band-to-band transition.

  9. Detection of Legionella species in environmental water by the quantitative PCR method in combination with ethidium monoazide treatment.

    PubMed

    Inoue, Hiroaki; Takama, Tomoko; Yoshizaki, Miwa; Agata, Kunio

    2015-01-01

    We detected Legionella species in 111 bath water samples and 95 cooling tower water samples by using a combination of conventional plate culture, quantitative polymerase chain reaction (qPCR) and qPCR combined with ethidium monoazide treatment (EMA-qPCR) methods. In the case of bath water samples, Legionella spp. were detected in 30 samples by plate culture, in 85 samples by qPCR, and in 49 samples by EMA-qPCR. Of 81 samples determined to be Legionella-negative by plate culture, 56 and 23 samples were positive by qPCR and EMA-qPCR, respectively. Therefore, EMA treatment decreased the number of Legionella-positive bath water samples detected by qPCR. In contrast, EMA treatment had no effect on cooling tower water samples. We therefore expect that EMA-qPCR is a useful method for the rapid detection of viable Legionella spp. from bath water samples.

  10. Chemical bath deposition of II-VI compound thin films

    NASA Astrophysics Data System (ADS)

    Oladeji, Isaiah Olatunde

    II-VI compounds are direct bandgap semiconductors with great potentials in optoelectronic applications. Solar cells, where these materials are in greater demand, require a low cost production technology that will make the final product more affordable. Chemical bath deposition (CBD) a low cost growth technique capable of producing good quality thin film semiconductors over large area and at low temperature then becomes a suitable technology of choice. Heterogeneous reaction in a basic aqueous solution that is responsible for the II-VI compound film growth in CBD requires a metal complex. We have identified the stability constant (k) of the metal complex compatible with CBD growth mechanism to be about 106.9. This value is low enough to ensure that the substrate adsorbed complex relax for subsequent reaction with the chalcogen precursor to take place. It is also high enough to minimize the metal ion concentration in the bath participating in the precipitation of the bulk compounds. Homogeneous reaction that leads to precipitation in the reaction bath takes place because the solubility products of bulk II-VI compounds are very low. This reaction quickly depletes the bath of reactants, limit the film thickness, and degrade the film quality. While ZnS thin films are still hard to grow by CBD because of lack of suitable complexing agent, the homogeneous reaction still limits quality and thickness of both US and ZnS thin films. In this study, the zinc tetraammine complex ([Zn(NH3) 4]2+) with k = 108.9 has been forced to acquire its unsaturated form [Zn(NH3)3]2+ with a moderate k = 106.6 using hydrazine and nitrilotriacetate ion as complementary complexing agents and we have successfully grown ZnS thin films. We have also, minimized or eliminated the homogeneous reaction by using ammonium salt as a buffer and chemical bath with low reactant concentrations. These have allowed us to increase the saturation thickness of ZnS thin film by about 400% and raise that of US film form 0.2 to 0.5 mum with improved quality. A novel chemical activated diffusion of Cd into ZnS thin film at temperature lower than 100°C is also developed. This in conjunction with thermal activated diffusion at 400°C has enabled us to synthesize Cd1-xZn xS thin films suitable for solar cells from CBD grown CdS/ZnS multilayer. The potential application of the new Cd1-xZnxS/CdS/CdTe solar cell structure is also demonstrated. The unoptimized structure grown on transparent conducting oxide coated soda lime glass of 3mm thickness with no antireflection coating yielded a 10% efficiency. This efficiency is the highest ever recorded in any Cd1-xZnxS film containing CdTe solar cells.

  11. Comparison of Membrane Filtration and Multiple-Tube Fermentation by the Colilert and Enterolert Methods for Detection of Waterborne Coliform Bacteria, Escherichia coli, and Enterococci Used in Drinking and Bathing Water Quality Monitoring in Southern Sweden

    PubMed Central

    Eckner, Karl F.

    1998-01-01

    A total of 338 water samples, 261 drinking water samples and 77 bathing water samples, obtained for routine testing were analyzed in duplicate by Swedish standard methods using multiple-tube fermentation or membrane filtration and by the Colilert and/or Enterolert methods. Water samples came from a wide variety of sources in southern Sweden (Skåne). The Colilert method was found to be more sensitive than Swedish standard methods for detecting coliform bacteria and of equal sensitivity for detecting Escherichia coli when all drinking water samples were grouped together. Based on these results, Swedac, the Swedish laboratory accreditation body, approved for the first time in Sweden use of the Colilert method at this laboratory for the analysis of all water sources not falling under public water regulations (A-krav). The coliform detection study of bathing water yielded anomalous results due to confirmation difficulties. E. coli detection in bathing water was similar by both the Colilert and Swedish standard methods as was fecal streptococcus and enterococcus detection by both the Enterolert and Swedish standard methods. PMID:9687478

  12. SILAR deposition of nickel sulfide counter electrode for application in quantum dot sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Singh, Navjot; Siwatch, Poonam; Arora, Anmol; Sharma, Jadab; Tripathi, S. K.

    2018-05-01

    Quantum Dot Sensitized Solar Cells are a likely replacement for Silicon-based solar cells. Counter electrodes are a fundamental aspect of QDSSC's performance. NiS being a less expensive material is a decent choice for the purpose. In this paper, we have discussed the synthesis of NiS by Successive Ionic Layer Adsorption Reaction. Optical, Crystallographic and Electrical studies have been presented. Electrical studies of the device with NiS counter electrode is compared with characteristics of the device with CNTs as the counter electrode. SILAR method is easy and less time to consume than chemical bath deposition or any other method. Results show the success of NiS synthesized by SILAR method as the counter electrode.

  13. Combinatorial chemical bath deposition of CdS contacts for chalcogenide photovoltaics

    DOE PAGES

    Mokurala, Krishnaiah; Baranowski, Lauryn L.; de Souza Lucas, Francisco W.; ...

    2016-08-01

    Contact layers play an important role in thin film solar cells, but new material development and optimization of its thickness is usually a long and tedious process. A high-throughput experimental approach has been used to accelerate the rate of research in photovoltaic (PV) light absorbers and transparent conductive electrodes, however the combinatorial research on contact layers is less common. Here, we report on the chemical bath deposition (CBD) of CdS thin films by combinatorial dip coating technique and apply these contact layers to Cu(In,Ga)Se 2 (CIGSe) and Cu 2ZnSnSe 4 (CZTSe) light absorbers in PV devices. Combinatorial thickness steps ofmore » CdS thin films were achieved by removal of the substrate from the chemical bath, at regular intervals of time, and in equal distance increments. The trends in the photoconversion efficiency and in the spectral response of the PV devices as a function of thickness of CdS contacts were explained with the help of optical and morphological characterization of the CdS thin films. The maximum PV efficiency achieved for the combinatorial dip-coating CBD was similar to that for the PV devices processed using conventional CBD. Finally, the results of this study lead to the conclusion that combinatorial dip-coating can be used to accelerate the optimization of PV device performance of CdS and other candidate contact layers for a wide range of emerging absorbers.« less

  14. Conjugate gradient heat bath for ill-conditioned actions.

    PubMed

    Ceriotti, Michele; Bussi, Giovanni; Parrinello, Michele

    2007-08-01

    We present a method for performing sampling from a Boltzmann distribution of an ill-conditioned quadratic action. This method is based on heat-bath thermalization along a set of conjugate directions, generated via a conjugate-gradient procedure. The resulting scheme outperforms local updates for matrices with very high condition number, since it avoids the slowing down of modes with lower eigenvalue, and has some advantages over the global heat-bath approach, compared to which it is more stable and allows for more freedom in devising case-specific optimizations.

  15. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez, C.A.; Sandoval-Paz, M.G.; Cabello, G.

    Highlights: • High quality ZnS thin films have been deposited by chemical bath deposition technique from a non-toxic precursor’s solution. • Nanocrystalline ZnS thin films with large band gap energy were synthesized without using ammonia. • Evidence that the growing of the thin films is carried out by means of hydroxide mechanism was found. • The properties of these ZnS thin films are similar and in some cases better than the corresponding ones produced using toxic precursors such as ammonia. - Abstract: In solar cells, ZnS window layer deposited by chemical bath technique can reach the highest conversion efficiency; however,more » precursors used in the process normally are materials highly volatile, toxic and harmful to the environment and health (typically ammonia and hydrazine). In this work the characterization of ZnS thin films deposited by chemical bath in a non-toxic alkaline solution is reported. The effect of deposition technique (growth in several times) on the properties of the ZnS thin film was studied. The films exhibited a high percentage of optical transmission (greater than 80%); as the deposition time increased a decreasing in the band gap values from 3.83 eV to 3.71 eV was observed. From chemical analysis, the presence of ZnS and Zn(OH){sub 2} was identified and X-ray diffraction patterns exhibited a clear peak corresponding to ZnS hexagonal phase (1 0 3) plane, which was confirmed by electron diffraction patterns. From morphological studies, compact samples with well-defined particles, low roughness, homogeneous and pinhole-free in the surface were observed. From obtained results, it is evident that deposits of ZnS–CBD using a non-toxic solution are suitable as window layer for TFSC.« less

  17. Revealing electronic open quantum systems with subsystem TDDFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishtal, Alisa, E-mail: alisa.krishtal@rutgers.edu; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu

    2016-03-28

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustratemore » the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.« less

  18. Revealing electronic open quantum systems with subsystem TDDFT.

    PubMed

    Krishtal, Alisa; Pavanello, Michele

    2016-03-28

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.

  19. Revealing electronic open quantum systems with subsystem TDDFT

    NASA Astrophysics Data System (ADS)

    Krishtal, Alisa; Pavanello, Michele

    2016-03-01

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.

  20. Quantitative method for measuring heat flux emitted from a cryogenic object

    DOEpatents

    Duncan, Robert V.

    1993-01-01

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infra-red sensing devices.

  1. Quantitative method for measuring heat flux emitted from a cryogenic object

    DOEpatents

    Duncan, R.V.

    1993-03-16

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices.

  2. Evaluation of the structural, optical and electrical properties of AZO thin films prepared by chemical bath deposition for optoelectronics

    NASA Astrophysics Data System (ADS)

    Kumar, K. Deva Arun; Valanarasu, S.; Rosario, S. Rex; Ganesh, V.; Shkir, Mohd.; Sreelatha, C. J.; AlFaify, S.

    2018-04-01

    Aluminum doped zinc oxide (AZO) thin films for electrode applications were deposited on glass substrates using chemical bath deposition (CBD) method. The influence of deposition time on the structural, morphological, and opto-electrical properties of AZO films were investigated. Structural studies confirmed that all the deposited films were hexagonal wurtzite structure with polycrystalline nature and exhibited (002) preferential orientation. There is no other impurity phases were detected for different deposition time. Surface morphological images shows the spherically shaped grains are uniformly arranged on to the entire film surface. The EDS spectrum confirms the presence of Zn, O and Al elements in deposited AZO film. The observed optical transmittance is high (87%) in the visible region, and the calculated band gap value is 3.27 eV. In this study, the transmittance value is decreased with increasing deposition time. The room temperature PL spectrum exposed that AZO thin film deposited at (60 min) has good optical quality with less defect density. The minimum electrical resistivity and maximum carrier concentration values were observed as 8.53 × 10-3(Ω cm) and 3.53 × 1018 cm-3 for 60 min deposited film, respectively. The obtained figure of merit (ϕ) value 3.05 × 10-3(Ω/sq)- 1 is suggested for an optoelectronic device.

  3. Modeling and simulation of a chemically stimulated hydrogel bilayer bending actuator

    NASA Astrophysics Data System (ADS)

    Sobczyk, Martin; Wallmersperger, Thomas

    2017-04-01

    Stimuli-sensitive hydrogels are polymeric materials, which are able to reversibly swell in water in response to evironmental changes. Relevant stimuli include variations of pH, temperature, concentration of specific ions etc. Stacked layers composed of multiple thin hydrogels - also referred to as hydrogel-layer composites - combine the distinct sensing properties of different hydrogels. This approach enables the development of sophisticated microfluidic devices such as bisensitive valves or fluid-sensitive deflectors. In order to numerically simulate the swelling of a polyelectrolyte hydrogel in response to an ion concentration change the multifield theory is adopted. The set of partial differential equations - including the description of the chemical, the electrical and the mechanical field - are solved using the Finite Element Method. Simulations are carried out on a two-dimensional domain in order to capture interactions between the different fields. In the present work, the ion transport is governed by diffusive and migrative fluxes. The distribution of ions in the gel and the solution bath result in an osmotic pressure difference, which is responsible for the mechanical deformation of the hydrogel-layer composite. The realized numerical investigation gives an insight into the evolution of the displacement field, the distribution of ions and the electric potential within the bulk material and the interface between gel and solution bath. The predicted behavior of the relevant field variables is in excellent agreement with results available in the literature.

  4. Particle control near reticle and optics using showerhead

    DOEpatents

    Delgado, Gildardo R.; Chilese, Frank; Garcia, Rudy; Torczynski, John R.; Geller, Anthony S.; Rader, Daniel J.; Klebanoff, Leonard E.; Gallis, Michail A.

    2016-01-26

    A method and an apparatus to protect a reticle against particles and chemicals in an actinic EUV reticle inspection tool are presented. The method and apparatus utilizes a pair of porous metal diffusers in the form of showerheads to provide a continual flow of clean gas. The main showerhead bathes the reticle surface to be inspected in smoothly flowing, low pressure gas, isolating it from particles coming from surrounding volumes. The secondary showerhead faces away from the reticle and toward the EUV illumination and projection optics, supplying them with purge gas while at the same time creating a buffer zone that is kept free of any particle contamination originating from those optics.

  5. Ochre Bathing of the Bearded Vulture: A Bio-Mimetic Model for Early Humans towards Smell Prevention and Health

    PubMed Central

    Tributsch, Helmut

    2016-01-01

    Simple Summary The once widespread bearded vulture (Gypaetus barbatus) has the habit of bathing its polluted feathers and skin in red iron oxide-ochre-tainted water puddles. Primitive man may have tried to find out why: ochre is active in sunlight producing aggressive chemical species. They can kill viruses and bacteria and convert smelly organic substances into volatile neutral carbon dioxide gas. There is consequently a sanitary reason for the vulture’s habit of bathing in red ochre mud and this explains why prehistoric people included ochre use into their habits and rituals. Abstract Since primordial times, vultures have been competing with man for animal carcasses. One of these vultures, the once widespread bearded vulture (Gypaetus barbatus), has the habit of bathing its polluted feathers and skin in red iron oxide - ochre - tainted water puddles. Why? Primitive man may have tried to find out and may have discovered its advantages. Red ochre, which has accompanied human rituals and everyday life for more than 100,000 years, is not just a simple red paint for decoration or a symbol for blood. As modern experiments demonstrate, it is active in sunlight producing aggressive chemical species. They can kill viruses and bacteria and convert smelly organic substances into volatile neutral carbon dioxide gas. In this way, ochre can in sunlight sterilize and clean the skin to provide health and comfort and make it scentless, a definitive advantage for nomadic meat hunters. This research thus also demonstrates a sanitary reason for the vulture’s habit of bathing in red ochre mud. Prehistoric people have therefore included ochre use into their rituals, especially into those in relation to birth and death. Significant ritual impulses during evolution of man may thus have developed bio-mimetically, inspired from the habits of a vulture. It is discussed how this health strategy could be developed to a modern standard helping to fight antibiotics-resistant bacteria in hospitals. PMID:26784238

  6. Comparative Studies on Dyeability with Direct, Acid and Reactive Dyes after Chemical Modification of Jute with Mixed Amino Acids Obtained from Extract of Waste Soya Bean Seeds

    NASA Astrophysics Data System (ADS)

    Bhaumik, Nilendu Sekhar; Konar, Adwaita; Roy, Alok Nath; Samanta, Ashis Kumar

    2017-12-01

    Jute fabric was treated with mixed natural amino acids obtained from waste soya bean seed extract for chemical modification of jute for its cataionization and to enhance its dyeability with anionic dyes (like direct, reactive and acid dye) as well enabling soya modified jute for salt free dyeing with anionic reactive dyes maintaining its eco-friendliness. Colour interaction parameters including surface colour strength were assessed and compared for both bleached and soya-modified jute fabric for reactive dyeing and compared with direct and acid dye. Improvement in K/S value (surface colour strength) was observed for soya-modified jute even in absence of salt applied in dye bath for reactive dyes as well as for direct and acid dyes. In addition, reactive dye also shows good dyeability even in acid bath in salt free conditions. Colour fastness to wash was evaluated for bleached and soya-modified jute fabric after dyeing with direct, acid and reactive dyes are reported. Treatment of jute with soya-extracted mixed natural amino acids showed anchoring of some amino/aldemine groups on jute cellulosic polymer evidenced from Fourier Transform Infra-Red (FTIR) Spectroscopy. This amino or aldemine group incorporation in bleached jute causes its cationization and hence when dyed in acid bath for reactive dye (instead of conventional alkali bath) showed dye uptake for reactive dyes. Study of surface morphology by Scanning Electron Microscopy (SEM) of said soya-modified jute as compared to bleached jute was studied and reported.

  7. The effect of sonication method on the mechanical properties of nanosilicon/epoxy composite

    NASA Astrophysics Data System (ADS)

    Razali, Nur Zarifah; Abidin, Mohd Hanafiah; Romli, Ahmad Zafir

    2017-09-01

    An experimental work had been conducted to deeply understand the science of dispersion uniformity and mechanical properties exerted with the addition of nano-powder in composite system. The epoxy with nano-silicon contained between 1-5 wt% were utilized to investigate the mechanical behavior and identify the morphology changes and fracture by using optical micrograph images (in which will be discussed in the fractography section). Sonication method was utilized in distributing nano-silicon homogenously in the matrix and two type of devices opted were horn and bath sonicator. In this study, an in-direct sonication (bath) method which having a frequency of 42 kHz was introduced to the samples by using water as a medium and a comparison had been made between bath and horn sonicator efficiency. Non-destructive testing such as density and morphology testing like Optical micrograph was done as to identify the morphology changes in micro-level as well as to confirm the uniformity of nano-silicon distribution in the viscous epoxy. Whilst the destructive testing (i.e izod impact) was used to measure toughness and strength of composite sample. Result shows that Izod impact at velocity 2.0 ms-1 are 2.1kJ/m2 (for bath sonication) and 1.5kJ/m2 (for horn sonication) at velocity of 3.5 ms-1 are 2.8 kJ/m2 (for bath sonication) and 2.0kJ/m2 (for horn sonication). It can be concluded that bath sonication method give significant increment compared to horn sonication.

  8. Bath for electrolytic reduction of alumina and method therefor

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2001-07-10

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  9. Nonequilibrium steady state in open quantum systems: Influence action, stochastic equation and power balance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiang, J.-T., E-mail: cosmology@gmail.com; Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan; Hu, B.L.

    2015-11-15

    The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics for decades. For Gaussian systems, such as a chain of classical harmonic oscillators connected at each end to a heat bath, and for classical anharmonic oscillators under specified conditions, definitive answers exist in the form of proven theorems. Answering this question for quantum many-body systems poses a challenge for the present. In this work we address this issue by deriving the stochastic equations for the reduced system with self-consistent backaction from the two baths, calculatingmore » the energy flow from one bath to the chain to the other bath, and exhibiting a power balance relation in the total (chain + baths) system which testifies to the existence of a NESS in this system at late times. Its insensitivity to the initial conditions of the chain corroborates to its uniqueness. The functional method we adopt here entails the use of the influence functional, the coarse-grained and stochastic effective actions, from which one can derive the stochastic equations and calculate the average values of physical variables in open quantum systems. This involves both taking the expectation values of quantum operators of the system and the distributional averages of stochastic variables stemming from the coarse-grained environment. This method though formal in appearance is compact and complete. It can also easily accommodate perturbative techniques and diagrammatic methods from field theory. Taken all together it provides a solid platform for carrying out systematic investigations into the nonequilibrium dynamics of open quantum systems and quantum thermodynamics. -- Highlights: •Nonequilibrium steady state (NESS) for interacting quantum many-body systems. •Derivation of stochastic equations for quantum oscillator chain with two heat baths. •Explicit calculation of the energy flow from one bath to the chain to the other bath. •Power balance relation shows the existence of NESS insensitive to initial conditions. •Functional method as a viable platform for issues in quantum thermodynamics.« less

  10. Odor from a chemical perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wray, T.K.

    1995-06-01

    Early odor-detection measurements categorized chemicals according to odor quality. Recent methods focus on the odor threshold, or the quantitative amount of a chemical in air that can be detected by the human sense of smell. Researchers characterize and quantify odor using an array of sensory and analytical procedures. Humans possess one of the dullest mammalian senses of smell; however, they can recognize about 10,000 distinct odors at concentrations ranging from less than 1 part per billion to several hundred thousand parts per million. Each time humans inhale, they chemically analyze microscopic pieces of the environment that make physical contact withmore » the nerves in their noses. Individual molecules travel up the nose to a sheet of moist, mucus-bathed tissue that consists of about 5 million smell-sensing, olfactory neurons. After dissolving in the mucus, odor molecules ``float`` into appropriately shaped receptor pockets. A series of cellular reactions then transmit impulses to the limbic system, hippocampus and, finally, the neocortex. Odor detection is an important defense mechanism. The author presents the odor thresholds for selected organic compounds, and other hazardous chemicals.« less

  11. The River Ruhr - an urban river under particular interest for recreational use and as a raw water source for drinking water: The collaborative research project "Safe Ruhr" - microbiological aspects.

    PubMed

    Strathmann, Martin; Horstkott, Marina; Koch, Christoph; Gayer, Uta; Wingender, Jost

    2016-10-01

    Along the intense industrialization of the Ruhr valley (Germany), the River Ruhr became increasingly polluted. Over time, using it for recreational purposes became a serious health hazard and bathing was banned due to chemical and microbiological risks. The purpose of the collaborative project "Safe Ruhr" was to verify the current status and to provide a scientific basis for lifting the bathing ban. As the river also provides a raw water source for drinking water production, it was investigated how well the treatment procedures control possible hygienic risks. As study area, the barrier Lake Baldeney was chosen as it embraces earlier bathing sites and tributes to river bank filtration water for drinking water treatment plants. The hygienic condition of the river water was determined over 18 months by measuring general physical, chemical and microbiological water quality parameters including fecal indicators, bacterial obligate and facultative pathogens, parasitic protozoa, enteric viruses and schistosome parasites (Trichobilharzia). Samples were taken at eight locations including sites before and after receiving the discharge of stormwater and treated wastewater, potential future bathing sites and a raw water abstraction point for potable water production. In summary, for all investigated physico-chemical parameters no significant difference between the eight investigated sampling locations on a distinct sampling date were observed. This study focused on hygienically relevant bacteria and parasitic protozoa. Fecal indicators, Escherichia coli, intestinal enterococci and Clostridium perfringens as well as coliform bacteria were detected in 94-100% of the water samples. Enteric pathogens, including Campylobacter spp. and Salmonella enterica, were isolated from 33% and 28% of the samples, respectively, in relatively low concentrations. Among the environmental facultative pathogens, P. aeruginosa was detected at a high frequency of 82% of all samples, but in low numbers, while Aeromonas spp. were found in all water samples in relative high concentrations. The levels of all target organisms were not clearly associated with sources of pollution, with the exception of slightly enhanced numbers of coliform bacteria and E. coli downstream of a sewage discharge point from a wastewater treatment plant. Seasonal variations were observed with higher detection rates of Campylobacter spp. in winter and S. enterica in autumn and winter in contrast to the other bacterial groups, which showed no significant fluctuations throughout the year. Precipitation within two days prior to sampling resulted in a trend of enhanced numbers of coliform bacteria, E. coli, intestinal enterococci and Aeromonas. Sampling and analysis of parasitic protozoa was carried out in accordance to the European bathing water guideline and the ISO 15553 method. Characteristics of the river (flow, vegetation, birds protection zone, bathing of people, sewage etc.) were compared to the number of organisms detected. All in all 184 samples were investigated for Cryptosporidium spp. and Giardia spp. 80% of the samples were positive for Giardia spp. with a mean of 5cysts/100l (0.1-157.9). Highest values were achieved in autumn and winter, lowest values during the assumed bathing season. There seemed to be a trend to lower values in and after a reservoir in the river course, but with no statistical significance. A statistical significance could be shown for higher concentrations after heavy rainfall that led to discharge of combined sewage overflows in the city of Essen. Only 29% of the samples were positive for Cryptosporidium spp. with a single maximum value of 27.7 and all other concentrations below 5 oocysts/100l. On a low level there seemed to be slightly higher findings during summer and bathing season than in autumn and winter. No correlation to heavy rainfall could be found. The findings correspond to earlier results from the River Rhine (Germany). The influence of sewage on the water quality of the Ruhr could be shown from the correlation of Giardia load and activity of combined sewage overflows after heavy rainfall. The rare and low findings of Cryptosporidium spp. lead to the same conclusion, that microbial water quality in the investigation area is rather influenced from sewage water than from diffuse water sources into the River Ruhr. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Thermal baths as quantum resources: more friends than foes?

    NASA Astrophysics Data System (ADS)

    Kurizki, Gershon; Shahmoon, Ephraim; Zwick, Analia

    2015-12-01

    In this article we argue that thermal reservoirs (baths) are potentially useful resources in processes involving atoms interacting with quantized electromagnetic fields and their applications to quantum technologies. One may try to suppress the bath effects by means of dynamical control, but such control does not always yield the desired results. We wish instead to take advantage of bath effects, that do not obliterate ‘quantumness’ in the system-bath compound. To this end, three possible approaches have been pursued by us. (i) Control of a quantum system faster than the correlation time of the bath to which it couples: such control allows us to reveal quasi-reversible/coherent dynamical phenomena of quantum open systems, manifest by the quantum Zeno or anti-Zeno effects (QZE or AZE, respectively). Dynamical control methods based on the QZE are aimed not only at protecting the quantumness of the system, but also diagnosing the bath spectra or transferring quantum information via noisy media. By contrast, AZE-based control is useful for fast cooling of thermalized quantum systems. (ii) Engineering the coupling of quantum systems to selected bath modes: this approach, based on field-atom coupling control in cavities, waveguides and photonic band structures, allows one to drastically enhance the strength and range of atom-atom coupling through the mediation of the selected bath modes. More dramatically, it allows us to achieve bath-induced entanglement that may appear paradoxical if one takes the conventional view that coupling to baths destroys quantumness. (iii) Engineering baths with appropriate non-flat spectra: this approach is a prerequisite for the construction of the simplest and most efficient quantum heat machines (engines and refrigerators). We may thus conclude that often thermal baths are ‘more friends than foes’ in quantum technologies.

  13. Method of making composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOEpatents

    Ray, Siba P.; Rapp, Robert A.

    1986-01-01

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily.

  14. Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction.

    PubMed

    Ji, Liang-Wen; Hsiao, Yu-Jen; Tang, I-Tseng; Meen, Teen-Hang; Liu, Chien-Hung; Tsai, Jenn-Kai; Wu, Tien-Chuan; Wu, Yue-Sian

    2013-11-09

    The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%.

  15. Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction

    PubMed Central

    2013-01-01

    The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%. PMID:24206942

  16. Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction

    NASA Astrophysics Data System (ADS)

    Ji, Liang-Wen; Hsiao, Yu-Jen; Tang, I.-Tseng; Meen, Teen-Hang; Liu, Chien-Hung; Tsai, Jenn-Kai; Wu, Tien-Chuan; Wu, Yue-Sian

    2013-11-01

    The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%.

  17. pH effect on structural and optical properties of nanostructured zinc oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munef, R. A.

    2015-03-30

    ZnO nanostructures were Deposited on Objekttrager glasses for various pH values by chemical bath deposition method using Zn (NO3)2·6H2O (zinc nitrate hexahydrate) solution at 75°C reaction temperature without any posterior treatments. The ZnO nanostructures obtained were characterized by X-ray Diffraction (XRD, UV). The structure was hexagonal and it was found that some peaks disappear with various pH values. The grain sizes of ZnO films increases from 22-to-29nm with increasing pH. The transmission of the films was (85-95%)

  18. Using conversation analytic methods to assess fidelity to a talk-based healthcare intervention for frequently attending patients.

    PubMed

    Barnes, Rebecca K; Jepson, Marcus; Thomas, Clare; Jackson, Sue; Metcalfe, Chris; Kessler, David; Cramer, Helen

    2018-06-01

    The study aim was to assess implementation fidelity (i.e., adherence) to a talk-based primary care intervention using Conversation Analytic (CA) methods. The context was a UK feasibility trial where General Practitioners (GPs) were trained to use "BATHE" (Background,Affect,Trouble,Handling,Empathy) - a technique to screen for psychosocial issues during consultations - with frequently attending patients. 35 GPs received BATHE training between July-October 2015. 15 GPs across six practices self-selected to record a sample of their consultations with study patients at three and six months. 31 consultations were recorded. 21/26 patients in four intervention practices gave permission for analysis. The recordings were transcribed and initially coded for the presence or absence of the five BATHE components. CA methods were applied to assess delivery, focusing on position and composition of each component, and patients' responses. Initial coding showed most of the BATHE components to be present in most contacts. However the CA analysis revealed unplanned deviations in position and adaptations in composition. Frequently the intervention was initiated too early in the consultation, and the BATHE questions misunderstood by patients as pertaining to their presenting problems rather than the psychosocial context for their problems. Often these deviations resulted in reducing theoretical fidelity of the intervention as a whole. A CA approach enabled a dynamic assessment of the delivery and receipt of BATHE in situ revealing common pitfalls in delivery and provided valuable examples of more and less efficacious implementations. During the trial this evidence was used in top-up trainings to address problems in delivery and to improve GP engagement. Using CA methods enabled a more accurate assessment of implementation fidelity, a fuller description of the intervention itself, and enhanced resources for future training. When positioned appropriately, BATHE can be a useful tool for eliciting information about the wider context of the medical visit. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Molecular tools for bathing water assessment in Europe: Balancing social science research with a rapidly developing environmental science evidence-base.

    PubMed

    Oliver, David M; Hanley, Nick D; van Niekerk, Melanie; Kay, David; Heathwaite, A Louise; Rabinovici, Sharyl J M; Kinzelman, Julie L; Fleming, Lora E; Porter, Jonathan; Shaikh, Sabina; Fish, Rob; Chilton, Sue; Hewitt, Julie; Connolly, Elaine; Cummins, Andy; Glenk, Klaus; McPhail, Calum; McRory, Eric; McVittie, Alistair; Giles, Amanna; Roberts, Suzanne; Simpson, Katherine; Tinch, Dugald; Thairs, Ted; Avery, Lisa M; Vinten, Andy J A; Watts, Bill D; Quilliam, Richard S

    2016-02-01

    The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science-policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2 h) quantification of microbial pollution in bathing and recreational waters. In contrast, culture-based methods can take between 18 and 96 h for sample processing. Thus, molecular tools offer an opportunity to provide a more meaningful statement of microbial risk to water-users by providing near-real-time information enabling potentially more informed decision-making with regard to water-based activities. However, complementary studies concerning the potential costs and benefits of adopting rapid methods as a regulatory tool are in short supply. We report on findings from an international Working Group that examined the breadth of social impacts, challenges, and research opportunities associated with the application of molecular tools to bathing water regulations.

  20. The effects of normal and therapeutic baths on the central vascular organs of persons with healthy hearts, as measured by X-ray

    NASA Technical Reports Server (NTRS)

    Boehm, G.; Ekert, FR.

    1988-01-01

    According to current information, baths have a four-fold effect on the circulation: (1) Dilation or constriction is produced in the area of the blood vessels in the skin as a result of thermal, chemical or mechanical stimuli; (2) This reaction in the dermal vascular system produces a further effect on the central vessels in the extremities, the area of the splanchnicus, and other body cavities; (3) The reflect transposition of other organ systems, i.e., the respiratory organs, has a reaction on the circulation; and (4) The water pressure of the bath has a hydrostatic effect, i.e., on the one hand it empties peripheral veins more rapidly, and on the other it increases the intra-abdominal pressure and this reduces once again the circulation in the area of the splanchnicus.

  1. Search | Galaxy of Images

    Science.gov Websites

    ; Carriages and Sleighs > Centipedes and Millipedes > Chemical Apparatus > Corals and other Zoophytes > Costume and Dress > Crustaceans > Domestic Life > Electrical Apparatus > Explorers ; Plants - Line Drawings > Plumbing and Bath Equipment > Pop-up and Moveable Books > Postal

  2. Tuning the morphology of metastable MnS films by simple chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Dhandayuthapani, T.; Girish, M.; Sivakumar, R.; Sanjeeviraja, C.; Gopalakrishnan, R.

    2015-10-01

    In the present investigation, we have prepared the spherical particles, almond-like, and cauliflower-like morphological structures of metastable MnS films on glass substrate by chemical bath deposition technique at low temperature without using any complexing or chelating agent. The morphological change of MnS films with molar ratio may be due to the oriented aggregation of adjacent particles. The compositional purity of deposited film was confirmed by the EDAX study. X-ray diffraction and micro-Raman studies confirm the sulfur source concentration induced enhancement in the crystallization of films with metastable MnS phase (zinc-blende β-MnS, and wurtzite γ-MnS). The shift in PL emission peak with molar ratio may be due to the change in optical energy band gap of the MnS, which was further confirmed by the optical absorbance study. The paramagnetic behavior of the sample was confirmed by the M-H plot.

  3. Structural and optical properties of PbS thin films grown by chemical bath deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seghaier, S.; Kamoun, N.; Guasch, C.

    2007-09-19

    Lead sulphide thin films are grown on glass substrates at various deposition times tD, in the range of 40-60 min per step of 2 min, using the chemical bath deposition technique. X-ray diffraction and atomic force microscopy are used to characterize the film structure. The surface composition is analysed by Auger electron spectroscopy. It appears that the as-prepared thin films are polycrystalline with cubic structure. Nanometric scale crystallites are uniformly distributed on the surface. They exhibit almost a stoechiometric composition with a [Pb]/[S] ratio equal to 1.10. Optical properties are studied in the range of 300-3300 nm by spectrophotometric measurements.more » Analysis of the optical absorption data of lead sulphide thin layers reveals a narrow optical direct band gap equal to 0.46 eV for the layer corresponding to a deposition time equal to 60 min.« less

  4. In Situ X-ray Absorption Near-Edge Structure Spectroscopy of ZnO Nanowire Growth During Chemical Bath Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPeak, Kevin M.; Becker, Matthew A.; Britton, Nathan G.

    2010-12-03

    Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. Here we report the first use of in situ X-ray absorption spectroscopy during CBD, enabling detailed investigation of both reaction mechanisms and kinetics of ZnO nanowire growth from zinc nitrate and hexamethylenetetramine (HMTA) precursors. Time-resolved X-ray absorption near-edge structure (XANES) spectra were used to quantify Zn(II) speciation in both solution and solid phases. ZnO crystallizes directly from [Zn(H{sub 2}O){sub 6}]{sup 2+} without long-lived intermediates. Using ZnO nanowire deposition as an example,more » this study establishes in situ XANES spectroscopy as an excellent quantitative tool to understand CBD of nanomaterials.« less

  5. Effects of Metal Ions on the Aluminum Electrodeposition from Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Caporali, Stefano; Martinuzzi, Stefano M.; Von Czarnecki, Peter; Schubert, Thomas J. S.; Bardi, Ugo

    2017-02-01

    In this study, we report on the effects of three common transition metal ions, i.e., Ni2+, Cu2+ and Fe3+ on the electrodeposition of aluminum from a chloroaluminate ionic liquid, evaluated by means of electrochemical and morphological investigation. Aiming at the determination of the morphological and chemical effects on the aluminum coatings, variable amounts of ions were introduced into the electroplating bath. Thick (about 20 μm) Al coatings were obtained by direct deposition (galvanostatic, 10 mA cm2, 2 h) on brass or carbon steel substrates (10 mm diameter disks), and their morphology was examined via rugosimetry, optical and electron microscopy. The chemical composition of the deposits was provided by EDX analysis. Nickel and iron resulted to have only moderate effects on the coatings properties, but copper affected the process even in tiny amounts being detected in the deposits for bath content as low as 10 ppm.

  6. Quantitative nuclear magnetic resonance for additives determination in an electrolytic nickel bath.

    PubMed

    Ostra, Miren; Ubide, Carlos; Vidal, Maider

    2011-02-01

    The use of proton nuclear magnetic resonance (¹H-NMR) for the quantitation of additives in a commercial electrolytic nickel bath (Supreme Plus Brilliant, Atotech formulation) is reported. A simple and quick method is described that needs only the separation of nickel ions by precipitation with NaOH. The four additives in the bath (A-5(2X), leveler; Supreme Plus Brightener (SPB); SA-1, leveler; NPA, wetting agent; all of them are commercial names from Atotech) can be quantified, whereas no other analytical methods have been found in the literature for SA-1 and NPA. Two calibration methods have been tried: integration of NMR signals with the use of a proper internal standard and partial least squares regression applied to the characteristic NMR peaks. The multivariate method was preferred because of accuracy and precision. Multivariate limits of detection of about 4 mL L⁻¹ A-5(2X), 0.4 mL L⁻¹ SPB, 0.2 mL L⁻¹ SA-1 and 0.6 mL L⁻¹ NPA were found. The dynamic ranges are suitable to follow the concentration of additives in the bath along electrodeposition. ¹H-NMR spectra provide evidence for SPB and SA-1 consumption (A-5(2X) and NPA keep unchanged along the process) and the growth of some products from SA-1 degradation can be followed. The method can, probably, be extended to other electrolytic nickel baths.

  7. Bath for electrolytic reduction of alumina and method therefor

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-11-26

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode. Removing sulfur from the bath can also minimize cathode deposits. Aluminum formed on the cathode can be removed directly from the cathode.

  8. Fabrication and electrical properties of low temperature-processed thin-film-transistors with chemical-bath deposited ZnO layer.

    PubMed

    Ahn, Joo-Seob; Kwon, Ji-Hye; Yang, Heesun

    2013-06-01

    ZnO film was grown on ZnO quantum dot seed layer-coated substrate by a low-temperature chemical bath deposition, where sodium citrate serves as a complexing agent for Zn2+ ion. The ZnO film deposited under the optimal condition exhibited a highly uniform surface morphology with a thickness of approimately 30 nm. For the fabrication of thin-film-transistor with a bottom-gate structure, ZnO film was chemically deposited on the transparent substrate of a seed layer-coated SiN(x)/ITO (indium tin oxide)/glass. As-deposited ZnO channel was baked at low temperatures of 60-200 degrees C to investigate the effect of baking temperature on electrical performances. Compared to the device with 60 degrees C-baked ZnO channel, the TFT performances of one with 200 degrees C-baked channel were substantially improved, exhibiting an on-off current ratio of 3.6 x 10(6) and a saturated field-effect mobility of 0.27 cm2/V x s.

  9. Water bath accelerated curing of concrete.

    DOT National Transportation Integrated Search

    1970-01-01

    Water bath methods for accelerating the strength development of portland cement concrete were investigated in a two phase study as follows. Phase I - Participation in a cooperative accelerated strength testing program sponsored by the American Societ...

  10. Wort free amino nitrogen analysis adapted to a microplate format

    USDA-ARS?s Scientific Manuscript database

    The standard method for determining wort free amino nitrogen content calls for the use of test tubes and glass marbles, as well as boiling and 20°C water baths. In this paper we describe how the standard method can be updated and streamlined by replacing water baths, test tubes and marbles with a th...

  11. Method of freezing living cells and tissues with improved subsequent survival

    DOEpatents

    Senkan, Selim M.; Hirsch, Gerald P.

    1980-01-01

    This invention relates to an improved method for freezing red blood cells, ther living cells, or tissues with improved subsequent survival, wherein constant-volume freezing is utilized that results in significantly improved survival compared with constant-pressure freezing; optimization is attainable through the use of different vessel geometries, cooling baths and warming baths, and sample concentrations.

  12. Synthesis and characterization of structural, morphological and photosensor properties of Cu0.1Zn0.9S thin film prepared by a facile chemical method

    NASA Astrophysics Data System (ADS)

    Gubari, Ghamdan M. M.; Ibrahim Mohammed S., M.; Huse, Nanasaheb P.; Dive, Avinash S.; Sharma, Ramphal

    2018-05-01

    The Cu0.1Zn0.9S thin film was grown by facile chemical bath deposition (CBD) method on glass substrates at 60°C. The structural, morphological, photosensor properties of the as-grown thin film has been investigated. The structural and phase confirmation of the as-grown thin film was carried out by X-ray diffraction (XRD) technique and Raman spectroscopy. The FE-SEM images showed that the thin films are well covered with material on an entire glass substrate. From the optical absorption spectrum, the direct band gap energy for the Cu0.1Zn0.9S thin film was found to be ˜3.16 eV at room temperature. The electrical properties were measured at room temperature in the voltage range ±2.5 V, showed a drastic enhancement in current under light illumination with the highest photosensitivity of ˜72 % for 260 W.

  13. Low-Temperature Synthesis of Vertically Align ZnO Layer on ITO Glass: The Role of Seed Layer and Hydrothermal Process

    NASA Astrophysics Data System (ADS)

    Sholehah, Amalia; Achmad, NurSumiati; Dimyati, Arbi; Dwiyanti, Yanyan; Partuti, Tri

    2017-05-01

    ZnO thin layer has a broad potential application in optoelectronic devices. In the present study, vertically align ZnO layers on ITO glass were synthesized using wet chemical method. The seed layers were prepared using electrodeposition method at 3°C. After that, the growing process was carried out using chemical bath deposition (CBD) at 90°C. To improve the structural property of the ZnO layers, hydrothermal technique was used subsequently. Results showed that seeding layer has a great influence on the physical properties of the ZnO layers. Moreover, hydrothermal process conducted after the ZnO growth can enhance the morphological property of the layers. From the experiments, it is found that the ZnO layers has diameter of ∼60 nm with increasing thickness from ∼0.8 to 1.2 μm and band-gap energies of ∼3.2 eV.

  14. Image analysis for maintenance of coating quality in nickel electroplating baths--real time control.

    PubMed

    Vidal, M; Amigo, J M; Bro, R; van den Berg, F; Ostra, M; Ubide, C

    2011-11-07

    The aim of this paper is to show how it is possible to extract analytical information from images acquired with a flatbed scanner and make use of this information for real time control of a nickel plating process. Digital images of plated steel sheets in a nickel bath are used to follow the process under degradation of specific additives. Dedicated software has been developed for making the obtained results accessible to process operators. This includes obtaining the RGB image, to select the red channel data exclusively, to calculate the histogram of the red channel data and to calculate the mean colour value (MCV) and the standard deviation of the red channel data. MCV is then used by the software to determine the concentration of the additives Supreme Plus Brightner (SPB) and SA-1 (for confidentiality reasons, the chemical contents cannot be further detailed) present in the bath (these two additives degrade and their concentration changes during the process). Finally, the software informs the operator when the bath is generating unsuitable quality plating and suggests the amount of SPB and SA-1 to be added in order to recover the original plating quality. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Dissipative dynamics at conical intersections: simulations with the hierarchy equations of motion method.

    PubMed

    Chen, Lipeng; Gelin, Maxim F; Chernyak, Vladimir Y; Domcke, Wolfgang; Zhao, Yang

    2016-12-16

    The effect of a dissipative environment on the ultrafast nonadiabatic dynamics at conical intersections is analyzed for a two-state two-mode model chosen to represent the S 2 (ππ*)-S 1 (nπ*) conical intersection in pyrazine (the system) which is bilinearly coupled to infinitely many harmonic oscillators in thermal equilibrium (the bath). The system-bath coupling is modeled by the Drude spectral function. The equation of motion for the reduced density matrix of the system is solved numerically exactly with the hierarchy equation of motion method using graphics-processor-unit (GPU) technology. The simulations are valid for arbitrary strength of the system-bath coupling and arbitrary bath memory relaxation time. The present computational studies overcome the limitations of weak system-bath coupling and short memory relaxation time inherent in previous simulations based on multi-level Redfield theory [A. Kühl and W. Domcke, J. Chem. Phys. 2002, 116, 263]. Time evolutions of electronic state populations and time-dependent reduced probability densities of the coupling and tuning modes of the conical intersection have been obtained. It is found that even weak coupling to the bath effectively suppresses the irregular fluctuations of the electronic populations of the isolated two-mode conical intersection. While the population of the upper adiabatic electronic state (S 2 ) is very efficiently quenched by the system-bath coupling, the population of the diabatic ππ* electronic state exhibits long-lived oscillations driven by coherent motion of the tuning mode. Counterintuitively, the coupling to the bath can lead to an enhanced lifetime of the coherence of the tuning mode as a result of effective damping of the highly excited coupling mode, which reduces the strong mode-mode coupling inherent to the conical intersection. The present results extend previous studies of the dissipative dynamics at conical intersections to the nonperturbative regime of system-bath coupling. They pave the way for future first-principles simulations of femtosecond time-resolved four-wave-mixing spectra of chromophores in condensed phases which are nonperturbative in the system dynamics, the system-bath coupling as well as the field-matter coupling.

  16. Reproducible insulin secretion from isolated rat pancreas preparations using an organ bath.

    PubMed

    Morita, Asuka; Ouchi, Motoshi; Terada, Misao; Kon, Hiroe; Kishimoto, Satoko; Satoh, Keitaro; Otani, Naoyuki; Hayashi, Keitaro; Fujita, Tomoe; Inoue, Ken-Ichi; Anzai, Naohiko

    2018-02-09

    Diabetes mellitus is a lifestyle-related disease that is characterized by inappropriate or diminished insulin secretion. Ex vivo pharmacological studies of hypoglycemic agents are often conducted using perfused pancreatic preparations. Pancreas preparations for organ bath experiments do not require cannulation and are therefore less complex than isolated perfused pancreas preparations. However, previous research has generated almost no data on insulin secretion from pancreas preparations using organ bath preparations. The purpose of this study was to investigate the applicability of isolated rat pancreas preparations using the organ bath technique in the quantitative analysis of insulin secretion from β-cells. We found that insulin secretion significantly declined during incubation in the organ bath, whereas it was maintained in the presence of 1 µM GLP-1. Conversely, amylase secretion exhibited a modest increase during incubation and was not altered in the presence of GLP-1. These results demonstrate that the pancreatic organ bath preparation is a sensitive and reproducible method for the ex vivo assessment of the pharmacological properties of hypoglycemic agents.

  17. METHOD OF APPLYING COPPER COATINGS TO URANIUM

    DOEpatents

    Gray, A.G.

    1959-07-14

    A method is presented for protecting metallic uranium, which comprises anodic etching of the uranium in an aqueous phosphoric acid solution containing chloride ions, cleaning the etched uranium in aqueous nitric acid solution, promptly electro-plating the cleaned uranium in a copper electro-plating bath, and then electro-plating thereupon lead, tin, zinc, cadmium, chromium or nickel from an aqueous electro-plating bath.

  18. Iodine speciation in coastal and inland bathing waters and seaweeds extracts using a sequential injection standard addition flow-batch method.

    PubMed

    Santos, Inês C; Mesquita, Raquel B R; Bordalo, Adriano A; Rangel, António O S S

    2015-02-01

    The present work describes the development of a sequential injection standard addition method for iodine speciation in bathing waters and seaweeds extracts without prior sample treatment. Iodine speciation was obtained by assessing the iodide and iodate content, the two inorganic forms of iodine in waters. For the determination of iodide, an iodide ion selective electrode (ISE) was used. The indirect determination of iodate was based on the spectrophotometric determination of nitrite (Griess reaction). For the iodate measurement, a mixing chamber was employed (flow batch approach) to explore the inherent efficient mixing, essential for the indirect determination of iodate. The application of the standard addition method enabled detection limits of 0.14 µM for iodide and 0.02 µM for iodate, together with the direct introduction of the target water samples, coastal and inland bathing waters. The results obtained were in agreement with those obtained by ICP-MS and a colorimetric reference procedure. Recovery tests also confirmed the accuracy of the developed method which was effectively applied to bathing waters and seaweed extracts. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Coarse-grained representation of the quasi adiabatic propagator path integral for the treatment of non-Markovian long-time bath memory

    NASA Astrophysics Data System (ADS)

    Richter, Martin; Fingerhut, Benjamin P.

    2017-06-01

    The description of non-Markovian effects imposed by low frequency bath modes poses a persistent challenge for path integral based approaches like the iterative quasi-adiabatic propagator path integral (iQUAPI) method. We present a novel approximate method, termed mask assisted coarse graining of influence coefficients (MACGIC)-iQUAPI, that offers appealing computational savings due to substantial reduction of considered path segments for propagation. The method relies on an efficient path segment merging procedure via an intermediate coarse grained representation of Feynman-Vernon influence coefficients that exploits physical properties of system decoherence. The MACGIC-iQUAPI method allows us to access the regime of biological significant long-time bath memory on the order of hundred propagation time steps while retaining convergence to iQUAPI results. Numerical performance is demonstrated for a set of benchmark problems that cover bath assisted long range electron transfer, the transition from coherent to incoherent dynamics in a prototypical molecular dimer and excitation energy transfer in a 24-state model of the Fenna-Matthews-Olson trimer complex where in all cases excellent agreement with numerically exact reference data is obtained.

  20. A facile one-step synthesis of Mn{sub 3}O{sub 4} nanoparticles-decorated TiO{sub 2} nanotube arrays as high performance electrode for supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jianfang; Wang, Yan; Key Laboratory of Advance Functional Materials and Devices of Anhui Province, Hefei 230009

    Via a facile one-step chemical bath deposition route, homogeneously dispersed Mn{sub 3}O{sub 4} nanoparticles have been successfully deposited onto the inner surface of TiO{sub 2} nanotube arrays (TNAs). The content and size of Mn{sub 3}O{sub 4} can be controlled by changing the deposition time. Field emission scanning electron microscopy and transmission electron microscopy analysis reveal the morphologies structures of Mn{sub 3}O{sub 4}/TNAs composites. The crystal-line structures are characterized by the X-ray diffraction patterns and Raman spectra. X-ray photoelectron spectroscopy further confirms the valence states of the sample elements. The electrochemical properties of Mn{sub 3}O{sub 4}/TNAs electrodes are systematically investigated bymore » the combine use of cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The resulting Mn{sub 3}O{sub 4}/TNAs electrode prepared by deposition time of 3 h shows the highest specific capacitance of 570 F g{sup −1} at a current density of 1 A g{sup −1}. And it also shows an excellent long-term cycling stability at a current density of 5 A g{sup −1}, which remaining 91.8% of the initial capacitance after 2000 cycles. Thus this kind of Mn{sub 3}O{sub 4} nanoparticles decorated TNAs may be considered as an alternative promising candidate for high performance supercapacitor electrodes. - Graphical abstract: Mn{sub 3}O{sub 4} nanoparticles have been uniformly deposited onto the inner surfaces of TiO{sub 2} nanotube arrays through a facile one-step chemical bath deposition method. As electrodes for supercapacitors, they exhibit a relatively high specific capacity and excellent cycling stability. - Highlights: • Mn{sub 3}O{sub 4} nanoparticles have been deposited onto TiO{sub 2} nanotube arrays by chemical bath deposition. • The Mn{sub 3}O{sub 4}/TNAs exhibits a highest specific capacitance of 570 F g{sup –1} at a current density of 1 A g{sup –1}. • The Mn{sub 3}O{sub 4}/TNAs electrode shows an excellent cycling stability of 91.8% after 2000 cycles.« less

  1. Entropy production of active particles and for particles in active baths

    NASA Astrophysics Data System (ADS)

    Pietzonka, Patrick; Seifert, Udo

    2018-01-01

    Entropy production of an active particle in an external potential is identified through a thermodynamically consistent minimal lattice model that includes the chemical reaction providing the propulsion and ordinary translational noise. In the continuum limit, a unique expression follows, comprising a direct contribution from the active process and an indirect contribution from ordinary diffusive motion. From the corresponding Langevin equation, this physical entropy production cannot be inferred through the conventional, yet here ambiguous, comparison of forward and time-reversed trajectories. Generalizations to several interacting active particles and passive particles in a bath of active ones are presented explicitly, further ones are briefly indicated.

  2. Characteristic functions of quantum heat with baths at different temperatures

    NASA Astrophysics Data System (ADS)

    Aurell, Erik

    2018-06-01

    This paper is about quantum heat defined as the change in energy of a bath during a process. The presentation takes into account recent developments in classical strong-coupling thermodynamics and addresses a version of quantum heat that satisfies quantum-classical correspondence. The characteristic function and the full counting statistics of quantum heat are shown to be formally similar. The paper further shows that the method can be extended to more than one bath, e.g., two baths at different temperatures, which opens up the prospect of studying correlations and heat flow. The paper extends earlier results on the expected quantum heat in the setting of one bath [E. Aurell and R. Eichhorn, New J. Phys. 17, 065007 (2015), 10.1088/1367-2630/17/6/065007; E. Aurell, Entropy 19, 595 (2017), 10.3390/e19110595].

  3. Soil is the origin for the presence of Naegleria fowleri in the thermal recreational waters.

    PubMed

    Moussa, Mirna; Tissot, Océane; Guerlotté, Jérôme; De Jonckheere, Johan F; Talarmin, Antoine

    2015-01-01

    Naegleria fowleri is found in most geothermal baths of Guadeloupe and has been responsible for the death of a 9-year-old boy who swam in one of these baths in 2008. We wanted to determine the origin for the presence of this amoeba in the water. Water samples were taken at the origin of the geothermal sources and at the arrival in the baths. After filtration, cultures were made and the number of Naegleria present was determined using the most probable number method. Soil samples collected in the proximity of the baths were also tested for the presence of thermophilic amoebae. The species identification was obtained by PCR. During three consecutive months, no Naegleria could be found at the origin of any geothermal source tested. In contrast, N. fowleri was isolated at least once in all baths at the arrival of the water, except one. Thermophilic amoebae could be found in each soil sample, especially near the baths located at a lower altitude, but N. fowleri was only isolated near two baths, which were also the baths most often contaminated with this species. So it appears that the contamination of the water with N. fowleri occurs after emerging from the geothermal source when the water runs over the soil. Therefore, it should be possible to reduce the concentration of N. fowleri in the geothermal baths of Guadeloupe to for example less than 1 N. fowleri/10 L by installing a pipeline between the geothermal sources and the baths and by preventing flooding water from entering the baths after rainfall. By taking these measures, we were able to eliminate N. fowleri from a pool located inside a reeducation clinic.

  4. Short communication: Efficacy of copper sulfate hoof baths against digital dermatitis--Where is the evidence?

    PubMed

    Thomsen, Peter T

    2015-04-01

    Digital dermatitis is a major problem in modern dairy production because of decreased animal welfare and financial losses. Individual cow treatments are often seen as too time consuming by farmers, and walk-through hoof baths have therefore been used extensively to control digital dermatitis. For decades, copper sulfate hoof baths have been used to treat and prevent digital dermatitis. Copper sulfate has been referred to as the industry gold standard when it comes to hoof-bath chemicals. In several scientific studies testing the efficacy of other hoof-care products, copper sulfate has been used as a positive control, thereby indicating that copper sulfate has a known positive effect. However, this may not be the case. A dilemma may exist between (1) copper sulfate generally being perceived as being effective against digital dermatitis and (2) a possible lack of well-documented scientific evidence of this effect. The objective of this study was to evaluate the existing scientific literature to determine whether the efficacy of copper sulfate used in hoof baths against digital dermatitis has in fact been demonstrated scientifically. A systematic literature search identified 7 peer-reviewed journal articles describing the efficacy of copper sulfate in hoof baths as treatment or prevention of bovine digital dermatitis. Only 2 of the 7 studies compared copper sulfate to a negative control; most studies were relatively small, and often no clear positive effect of copper sulfate was demonstrated. In conclusion, the frequent claim that copper sulfate is widely reported to be effective is supported by little scientific evidence. Well-designed clinical trials evaluating the effect of copper sulfate against digital dermatitis compared with a negative control are needed. Until such studies have been made, the efficacy of copper sulfate in hoof baths against digital dermatitis remains largely unproven. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Method of making composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOEpatents

    Ray, S.P.; Rapp, R.A.

    1986-04-22

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. 8 figs.

  6. Extreme value theory applied to the definition of bathing water quality discounting limits.

    PubMed

    Haggarty, R A; Ferguson, C A; Scott, E M; Iroegbu, C; Stidson, R

    2010-02-01

    The European Community Bathing Water Directive (European Parliament, 2006) set compliance standards for bathing waters across Europe, with minimum standards for microbiological indicators to be attained at all locations by 2015. The Directive allows up to 15% of samples affected by short-term pollution episodes to be disregarded from the figures used to classify bathing waters, provided certain management criteria have been met, including informing the public of short-term water pollution episodes. Therefore, a scientifically justifiable discounting limit is required which could be used as a management tool to determine the samples that should be removed. This paper investigates different methods of obtaining discounting limits, focusing in particular on extreme value methodology applied to data from Scottish bathing waters. Return level based limits derived from threshold models applied at a site-specific level improved the percentage of sites which met at least the minimum required standard. This approach provides a method of obtaining limits which identify the samples that should be removed from compliance calculations, although care has to be taken in terms of the quantity of data which is removed. (c) 2009 Elsevier Ltd. All rights reserved.

  7. The potential of lipopolysaccharide as a real-time biomarker of bacterial contamination in marine bathing water.

    PubMed

    Sattar, Anas A; Jackson, Simon K; Bradley, Graham

    2014-03-01

    The use of total lipopolysaccharide (LPS) as a rapid biomarker for bacterial pollution was investigated at a bathing and surfing beach during the UK bathing season. The levels of faecal indicator bacteria Escherichia coli (E. coli), the Gram-positive enterococci, and organisms commonly associated with faecal material, such as total coliforms and Bacteroides, were culturally monitored over four months to include a period of heavy rainfall and concomitant pollution. Endotoxin measurement was performed using a kinetic Limulus Amebocyte Lysate (LAL) assay and found to correlate well with all indicators. Levels of LPS in excess of 50 Endotoxin Units (EU) mL(-1) were found to correlate with water that was unsuitable for bathing under the current European regulations. Increases in total LPS, mainly from Gram-negative indicator bacteria, are thus a potential real-time, qualitative method for testing bacterial quality of bathing waters.

  8. Improving efficiency, reducing infection, and enhancing experience.

    PubMed

    Massa, Judith

    For health professionals to make an informed choice and tailor each bed bath to the individual needs of the patient, they must firstly understand the different bed bath options available, their impact on skin integrity, and any associated risks they may pose to the patient in terms of cross-infection. Only with this knowledge can health professionals determine the appropriate form and frequency of the bed bath. Specialist wipes offer significant improvements in skin care and a reduced risk of cross-infection, compared with the traditional soap and water bed bath. Use of these wipes also improves the efficiency of the process, which links to the Productive Ward Initiative and results in clinical staff (i.e. nursing staff, healthcare assistants) having more time available to undertake additional patient care activities. This product focus highlights the benefits of moving to a wipe-based bed bath method, and the significant efficiency savings that can be realized as a result.

  9. Distribution of Legionella pneumophila bacteria and Naegleria and Hartmannella amoebae in thermal saline baths used in balneotherapy.

    PubMed

    Zbikowska, Elżbieta; Walczak, Maciej; Krawiec, Arkadiusz

    2013-01-01

    The present study was aimed at investigating the coexistence and interactions between free living amoebae of Naegleria and Hartmannella genera and pathogenic Legionella pneumophila bacteria in thermal saline baths used in balneotherapy in central Poland. Water samples were collected from November 2010 to May 2011 at intervals longer than 1 month. The microorganisms were detected with the use of a very sensitive fluorescence in situ hybridisation method. In addition, the morphology of the amoebae was studied. Despite relatively high salinity level, ranging from 1.5 to 5.0 %, L. pneumophila were found in all investigated baths, although their number never exceeded 10(6) cells dm(-3). Hartmannella were not detected, while Naegleria fowleri were found in one bath. The observation that N. fowleri and L. pneumophila may coexist in thermal saline baths is the first observation emphasising potential threat from these microorganisms in balneotherapy.

  10. Catalysis of heat-to-work conversion in quantum machines

    PubMed Central

    Ghosh, A.; Latune, C. L.; Davidovich, L.; Kurizki, G.

    2017-01-01

    We propose a hitherto-unexplored concept in quantum thermodynamics: catalysis of heat-to-work conversion by quantum nonlinear pumping of the piston mode which extracts work from the machine. This concept is analogous to chemical reaction catalysis: Small energy investment by the catalyst (pump) may yield a large increase in heat-to-work conversion. Since it is powered by thermal baths, the catalyzed machine adheres to the Carnot bound, but may strongly enhance its efficiency and power compared with its noncatalyzed counterparts. This enhancement stems from the increased ability of the squeezed piston to store work. Remarkably, the fraction of piston energy that is convertible into work may then approach unity. The present machine and its counterparts powered by squeezed baths share a common feature: Neither is a genuine heat engine. However, a squeezed pump that catalyzes heat-to-work conversion by small investment of work is much more advantageous than a squeezed bath that simply transduces part of the work invested in its squeezing into work performed by the machine. PMID:29087326

  11. Catalysis of heat-to-work conversion in quantum machines

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Latune, C. L.; Davidovich, L.; Kurizki, G.

    2017-11-01

    We propose a hitherto-unexplored concept in quantum thermodynamics: catalysis of heat-to-work conversion by quantum nonlinear pumping of the piston mode which extracts work from the machine. This concept is analogous to chemical reaction catalysis: Small energy investment by the catalyst (pump) may yield a large increase in heat-to-work conversion. Since it is powered by thermal baths, the catalyzed machine adheres to the Carnot bound, but may strongly enhance its efficiency and power compared with its noncatalyzed counterparts. This enhancement stems from the increased ability of the squeezed piston to store work. Remarkably, the fraction of piston energy that is convertible into work may then approach unity. The present machine and its counterparts powered by squeezed baths share a common feature: Neither is a genuine heat engine. However, a squeezed pump that catalyzes heat-to-work conversion by small investment of work is much more advantageous than a squeezed bath that simply transduces part of the work invested in its squeezing into work performed by the machine.

  12. Catalysis of heat-to-work conversion in quantum machines.

    PubMed

    Ghosh, A; Latune, C L; Davidovich, L; Kurizki, G

    2017-11-14

    We propose a hitherto-unexplored concept in quantum thermodynamics: catalysis of heat-to-work conversion by quantum nonlinear pumping of the piston mode which extracts work from the machine. This concept is analogous to chemical reaction catalysis: Small energy investment by the catalyst (pump) may yield a large increase in heat-to-work conversion. Since it is powered by thermal baths, the catalyzed machine adheres to the Carnot bound, but may strongly enhance its efficiency and power compared with its noncatalyzed counterparts. This enhancement stems from the increased ability of the squeezed piston to store work. Remarkably, the fraction of piston energy that is convertible into work may then approach unity. The present machine and its counterparts powered by squeezed baths share a common feature: Neither is a genuine heat engine. However, a squeezed pump that catalyzes heat-to-work conversion by small investment of work is much more advantageous than a squeezed bath that simply transduces part of the work invested in its squeezing into work performed by the machine.

  13. Environmental Life Cycle Assessment and Cost Analysis of Bath, NY Wastewater Treatment Plant: Potential Upgrade Implications

    EPA Science Inventory

    Many communities across the U.S. are required to upgrade wastewater treatment plants (WWTP) to meet increasingly stringent nutrient effluent standards. However, increased capital, energy and chemical requirements of upgrades create potential trade-offs between eutrophication pot...

  14. Chemical Degradation of the Cathodic Electrical Contact Between Carbon and Cast Iron in Aluminum Production Cells

    NASA Astrophysics Data System (ADS)

    Brassard, Martin; Désilets, Martin; Soucy, Gervais; Bilodeau, Jean-François; Forté, Martin

    2017-06-01

    The cathodic carbon to cast iron electrical contact degradation is one of the factors to consider in the cathode voltage drop (CVD) increase over the lifetime of aluminum production cells. Lab-scale experiments were carried out to study the cast iron to carbon interface chemical degradation and the impact of important cell parameters like temperature and bath chemistry. Laboratory degradation results were compared with industrial samples. A thermoelectric Ansys numerical model was then used to predict the effect of cast iron surface degradation over CVD. Results show that the aluminum formation on the cast iron surface and its subsequent diffusion creates an immiscible mixture of Fe-Al metal alloy and electrolytic bath. Disparities were also observed between industrial samples taken from two different technologies, suggesting that the degradation can be slowed down. Thermoelectric calculations finally revealed that the impact of the contact resistance augmentation is by far greater than the cast iron degradation.

  15. Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Barbagiovanni, E. G.; Strano, V.; Franzò, G.; Crupi, I.; Mirabella, S.

    2015-03-01

    Two deep level defects (2.25 and 2.03 eV) associated with oxygen vacancies (Vo) were identified in ZnO nanorods (NRs) grown by low cost chemical bath deposition. A transient behaviour in the photoluminescence (PL) intensity of the two Vo states was found to be sensitive to the ambient environment and to NR post-growth treatment. The largest transient was found in samples dried on a hot plate with a PL intensity decay time, in air only, of 23 and 80 s for the 2.25 and 2.03 eV peaks, respectively. Resistance measurements under UV exposure exhibited a transient behaviour in full agreement with the PL transient, indicating a clear role of atmospheric O2 on the surface defect states. A model for surface defect transient behaviour due to band bending with respect to the Fermi level is proposed. The results have implications for a variety of sensing and photovoltaic applications of ZnO NRs.

  16. Influence of a NiO intermediate layer on the properties of ZnO grown on Si by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Djiokap, S. R. Tankio; Urgessa, Z. N.; Mbulanga, C. M.; Boumenou, C. Kameni; Venter, A.; Botha, J. R.

    2018-04-01

    In this paper, the growth of ZnO nanorods on bare and NiO-coated p-Si substrates is reported. A two-step chemical bath deposition process has been used to grow the nanorods. X-ray diffraction and scanning probe microscopy confirmed that the NiO films were polycrystalline, and that the average grain size correlated with the NiO layer thickness. The ZnO nanorod morphology, orientation and optical properties seemed to be unaffected by the intermediate NiO layer thickness. Current-voltage measurements confirmed the rectifying behavior of all the ZnO/NiO/Si heterostructures. The inclusion of a NiO layer between the substrate and the ZnO nanorods are shown to cause a reduction in both the forward and reverse bias currents. This is in qualitative agreement with the band diagram of these heterostructures, which suggests that the intermediate NiO layer should act as an electron blocking layer.

  17. Design and validation of a tissue bath 3-D printed with PLA for optically mapping suspended whole heart preparations.

    PubMed

    Entz, Michael; King, D Ryan; Poelzing, Steven

    2017-12-01

    With the sudden increase in affordable manufacturing technologies, the relationship between experimentalists and the designing process for laboratory equipment is rapidly changing. While experimentalists are still dependent on engineers and manufacturers for precision electrical, mechanical, and optical equipment, it has become a realistic option for in house manufacturing of other laboratory equipment with less precise design requirements. This is possible due to decreasing costs and increasing functionality of desktop three-dimensional (3-D) printers and 3-D design software. With traditional manufacturing methods, iterative design processes are expensive and time consuming, and making more than one copy of a custom piece of equipment is prohibitive. Here, we provide an overview to design a tissue bath and stabilizer for a customizable, suspended, whole heart optical mapping apparatus that can be produced significantly faster and less expensive than conventional manufacturing techniques. This was accomplished through a series of design steps to prevent fluid leakage in the areas where the optical imaging glass was attached to the 3-D printed bath. A combination of an acetone dip along with adhesive was found to create a water tight bath. Optical mapping was used to quantify cardiac conduction velocity and action potential duration to compare 3-D printed baths to a bath that was designed and manufactured in a machine shop. Importantly, the manufacturing method did not significantly affect conduction, action potential duration, or contraction, suggesting that 3-D printed baths are equally effective for optical mapping experiments. NEW & NOTEWORTHY This article details three-dimensional printable equipment for use in suspended whole heart optical mapping experiments. This equipment is less expensive than conventional manufactured equipment as well as easily customizable to the experimentalist. The baths can be waterproofed using only a three-dimensional printer, acetone, a glass microscope slide, c-clamps, and adhesive. Copyright © 2017 the American Physiological Society.

  18. AFM investigation and optical band gap study of chemically deposited PbS thin films

    NASA Astrophysics Data System (ADS)

    Zaman, S.; Mansoor, M.; Abubakar; Asim, M. M.

    2016-08-01

    The interest into deposition of nanocrystalline PbS thin films, the potential of designing and tailoring both the topographical features and the band gap energy (Eg) by controlling growth parameters, has significant technological importance. Nanocrystalline thin films of lead sulfide were grown onto glass substrates by chemical bath deposition (CBD) method. The experiments were carried out by varying deposition temperature. We report on the modification of structural and optical properties as a function of deposition temperature. The morphological changes of the films were analyzed by using SEM and AFM. AFM was also used to calculate average roughness of the films. XRD spectra indicated preferred growth of cubic phase of PbS films in (200) direction with increasing deposition time. Optical properties have been studied by UV-Spectrophotometer. From the diffused reflectance spectra we have calculated the optical Eg shift from 0.649-0.636 eV with increasing deposition time.

  19. V2O5 encapsulated MWCNTs in 2D surface architecture: Complete solid-state bendable highly stabilized energy efficient supercapacitor device

    NASA Astrophysics Data System (ADS)

    Pandit, Bidhan; Dubal, Deepak P.; Gómez-Romero, Pedro; Kale, Bharat B.; Sankapal, Babasaheb R.

    2017-03-01

    A simple and scalable approach has been reported for V2O5 encapsulation over interconnected multi-walled carbon nanotubes (MWCNTs) network using chemical bath deposition method. Chemically synthesized V2O5/MWCNTs electrode exhibited excellent charge-discharge capability with extraordinary cycling retention of 93% over 4000 cycles in liquid-electrolyte. Electrochemical investigations have been performed to evaluate the origin of capacitive behavior from dual contribution of surface-controlled and diffusion-controlled charge components. Furthermore, a complete flexible solid-state, flexible symmetric supercapacitor (FSS-SSC) device was assembled with V2O5/MWCNTs electrodes which yield remarkable values of specific power and energy densities along with enhanced cyclic stability over liquid configuration. As a practical demonstration, the constructed device was used to lit the ‘VNIT’ acronym assembled using 21 LED’s.

  20. A Multicenter Pragmatic Interrupted Time Series Analysis of Chlorhexidine Gluconate Bathing in Community Hospital Intensive Care Units.

    PubMed

    Dicks, Kristen V; Lofgren, Eric; Lewis, Sarah S; Moehring, Rebekah W; Sexton, Daniel J; Anderson, Deverick J

    2016-07-01

    OBJECTIVE To determine whether daily chlorhexidine gluconate (CHG) bathing of intensive care unit (ICU) patients leads to a decrease in hospital-acquired infections (HAIs), particularly infections caused by methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). DESIGN Interrupted time series analysis. SETTING The study included 33 community hospitals participating in the Duke Infection Control Outreach Network from January 2008 through December 2013. PARTICIPANTS All ICU patients at study hospitals during the study period. METHODS Of the 33 hospitals, 17 hospitals implemented CHG bathing during the study period, and 16 hospitals that did not perform CHG bathing served as controls. Primary pre-specified outcomes included ICU central-line-associated bloodstream infections (CLABSIs), primary bloodstream infections (BSI), ventilator-associated pneumonia (VAP), and catheter-associated urinary tract infections (CAUTIs). MRSA and VRE HAIs were also evaluated. RESULTS Chlorhexidine gluconate (CHG) bathing was associated with a significant downward trend in incidence rates of ICU CLABSI (incidence rate ratio [IRR], 0.96; 95% confidence interval [CI], 0.93-0.99), ICU primary BSI (IRR, 0.96; 95% CI, 0.94-0.99), VRE CLABSIs (IRR, 0.97; 95% CI, 0.97-0.98), and all combined VRE infections (IRR, 0.96; 95% CI, 0.93-1.00). No significant trend in MRSA infection incidence rates was identified prior to or following the implementation of CHG bathing. CONCLUSIONS In this multicenter, real-world analysis of the impact of CHG bathing, hospitals that implemented CHG bathing attained a decrease in ICU CLABSIs, ICU primary BSIs, and VRE CLABSIs. CHG bathing did not affect rates of specific or overall infections due to MRSA. Our findings support daily CHG bathing of ICU patients. Infect Control Hosp Epidemiol 2016;37:791-797.

  1. Functional Nanoclay Suspension for Printing-Then-Solidification of Liquid Materials.

    PubMed

    Jin, Yifei; Compaan, Ashley; Chai, Wenxuan; Huang, Yong

    2017-06-14

    Additive manufacturing (AM) enables the freeform fabrication of complex structures from various build materials. The objective of this study is to develop a novel Laponite nanoclay-enabled "printing-then-solidification" additive manufacturing approach to extrude complex three-dimensional (3D) structures made of various liquid build materials. Laponite, a member of the smectite mineral family, is investigated to serve as a yield-stress support bath material for the extrusion printing of liquid build materials. Using the printing-then-solidification approach, the printed structure remains liquid and retains its shape with the help of the Laponite support bath. Then the completed liquid structures are solidified in situ by applying suitable cross-linking mechanisms. Finally, the solidified structures are harvested from the Laponite nanoclay support bath for any further processing as needed. Due to its chemical and physical stability, liquid build materials with different solidification/curing/gelation mechanisms can be fabricated in the Laponite bath using the printing-then-solidification approach. The feasibility of the proposed Laponite-enabled printing-then-solidification approach is demonstrated by fabricating several complicated structures made of various liquid build materials, including alginate with ionic cross-linking, gelatin with thermal cross-linking, and SU-8 with photo-cross-linking. During gelatin structure printing, living cells are included and the postfabrication cell viability is above 90%.

  2. Capacitance-voltage characterization of Al/Al2O3/PVA-PbSe MIS diode

    NASA Astrophysics Data System (ADS)

    Gawri, Isha; Sharma, Mamta; Jindal, Silky; Singh, Harpreet; Tripathi, S. K.

    2018-05-01

    The present paper reports the capacitance-voltage characterization of Al/Al2O3/PVA-PbSe MIS diode using chemical bath deposition method. Here anodic alumina layer prepared using electrolytic deposition method on Al substrate is used as insulating material. Using the capacitance-voltage variation at a fixed frequency, the different parameters such as Depletion layer width, Barrier height, Built-in voltage and Carrier concentration has been calculated at room temperature as well as at temperature range from 123 K to 323 K. With the increase in temperature the barrier height and depletion layer width follow a decreasing trend. Therefore, the capacitance-voltage characterization at different temperatures characterization provides strong evidence that the properties of MIS diode are primarily affected by diode parameters.

  3. Growth of thin film containing high density ZnO nanorods with low temperature calcinated seed layer

    NASA Astrophysics Data System (ADS)

    Panda, Rudrashish; Samal, Rudranarayan; Khatua, Lizina; Das, Susanta Kumar

    2018-05-01

    In this work we demonstrate the growth of thin film containing high density ZnO nanorods by using drop casting of the seed layer calcinated at a low temperature of 132 °C. Chemical bath deposition (CBD) method is used to grow the nanorods. X-ray diffraction (XRD) analysis and Field Emission Scanning Electron Microscopy (FESEM) are performed for the structural and morphological characterizations of the nanorods. The average diameter and length of nanorods are found to be 33 nm and 270 nm respectively. The bandgap of the material is estimated to be 3.2 eV from the UV-Visible absorption spectroscopy. The reported method is much more cost-effective and can be used for growth of ZnO nanorods for various applications.

  4. Coated Metal Articles and Method of Making

    DOEpatents

    Boller, Ernest R.; Eubank, Lowell D.

    2004-07-06

    The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

  5. Method of forming oxide coatings. [for solar collector heating panels

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E. (Inventor)

    1983-01-01

    This invention is concerned with an improved plating process for covering a substrate with a black metal oxide film. The invention is particularly directed to making a heating panel for a solar collector. A compound is electrodeposited from an aqueous solution containing cobalt metal salts onto a metal substrate. This compound is converted during plating into a black, highly absorbing oxide coating which contains hydrated oxides. This is achieved by the inclusion of an oxidizing agent in the plating bath. The inclusion of an oxidizing agent in the plating bath is contrary to standard electroplating practice. The hydrated oxides are converted to oxides by treatment in a hot bath, such as boiling water. An oxidizing agent may be added to the hot liquid treating bath.

  6. [Water fungi occurence in the River Supraśl-bath Jurowce near Białystok].

    PubMed

    Kiziewicz, Bozena; Kozłowska, Mariola; Godlewska, Anna; Muszyńvska, Elzbieta; Mazalska, Bozenna

    2004-01-01

    Studies on the occurrence of aquatic fungi in the bathing sites of the Supraśl River in Jurowce village were collected in years 2000-2003. Hydrochemical analysis was performed using standard methods. Bait method was used to isolate the fungi. In the Supraśl River at Jurowce village 36 fungi species were identified, among them fish pathogens Achlya orion, Aphanomyces laevis, Dictyuchus monosporus, Saprolegnia ferax, Saprolegnia monoica, S. parasitica, human pathogens Aspergillus flavus, Candida albicans, Lagenidium humanum, Penicillium mycetomagenum, Rhizophydium keratinophilum and Trichosporon cutaneum, phytopathogens Achlya racemosa, Phytophthora gonapodoides, Pythium butleri, P. myriotylum and P. debaryanum. Physicochemical parameters of waters in Supraśl River-bathing sites had no important effect on the occurrence of fungi.

  7. Safety of tomatillos and products containing tomatillos canned by the water-bath canning method.

    PubMed

    McKee, L H; Remmenga, M D; Bock, M A

    1998-01-01

    Three studies were conducted to evaluate the safety of tomatillos and products containing tomatillos canned by the water-bath processing method. In the first study, plain tomatillos were processed for 25, 37.5, 50 and 62.5 min. In the second study, five tomatillo/onion combinations were prepared while five tomatillo/green chile combinations were prepared in the third study. pH evaluations were conducted to determine safety in all studies using pH 4.2 as the cut-off value. No differences in the pH of plain tomatillos were detected due to processing time. All jars of plain tomatillos had pH values below 4.1. All combinations of tomatillos/onions and tomatillos/green chile containing more than 50% tomatillo had pH values below the 4.2 cut-off value. Results of the three studies indicate (1) acidification of plain tomatillos is probably unnecessary for canning by the water-bath processing method and (2) combinations of acidic tomatillos and low-acid onions or green chile must contain more than 50% tomatillos to have a pH low enough for safe water-bath processing.

  8. An Inexpensive Instrument for Demonstrating Automated Chemical Analysis.

    ERIC Educational Resources Information Center

    Paselk, Richard A.

    1982-01-01

    A technician auto analyzer (consisting of six modules: sampler, multichannel peristaltic pump, dialyser, heating/incubation bath, colorimeter, and recorder) was modified by using key modules and substituting standard equipment for others; spectronic 20 with homemade flow cell for colorimeter module. Descriptions and diagrams of the apparatus are…

  9. Domestic water buffaloes: Access to surface water, disease prevalence and associated economic losses.

    PubMed

    Elahi, Ehsan; Abid, Muhammad; Zhang, Huiming; Cui, Weijun; Ul Hasson, Shabeh

    2018-06-01

    Given the shortage and non-availability of freshwater in Pakistan, wastewater is being used for bathing water buffaloes; however, this has a negative impact on animal welfare. Although there is a vast literature on indirect linkages between wastewater and animal productivity, studies focusing on the direct impacts of water buffaloes bathing in wastewater on animal productivity and economic losses are rare. Therefore, using 360 domestic water buffalo farms, this study examines the expenditure and production losses associated with bathing (in wastewater and freshwater) and non-bathing water buffaloes by employing partial budgeting and resource adjustment component techniques. Furthermore, it investigates the prevalence of animal diseases and associated economic effects using correlation analysis and propensity score matching techniques, respectively. The findings reveal that compared to their counterparts (freshwater bathing and non-bathing water buffaloes), buffaloes bathing in wastewater are at increased risk of clinical mastitis, foot and mouth disease (FMD) and tick infestation. Moreover, the use of wastewater for bathing buffaloes also leads to higher economic and production losses by affecting milk productivity, causing premature culling, and reducing slaughter value. The findings of the double-log model show that economic losses are higher if buffaloes bathe in wastewater within 30 min after milking, as there are more chances that those buffaloes would be exposed to bacterial penetration in the teat ducts, which may result in intramammary infection. According to the propensity score matching method, the higher economic damages per month are associated with buffaloes bathing in wastewater and freshwater, 155 and 110 USD per farm, respectively. The study findings reference the need for policies to restrict wastewater access by water buffaloes, and a regular check of and access to cool clean water wallows for bathing during hot summer days, to reduce excess heat and economic losses, and thus improve animal welfare. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Removal of brownish-black tarnish on silver-copper alloy objects with sodium glycinate

    NASA Astrophysics Data System (ADS)

    de Figueiredo, João Cura D.'Ars; Asevedo, Samara Santos; Barbosa, João Henrique Ribeiro

    2014-10-01

    This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver-copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver-copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver-copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver-copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver-copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver-copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish-black tarnish. Absorption spectroscopy measured the percentage of silver and copper lixiviated in immersion baths, and very small quantities of these metals were detected. Infrared absorption spectroscopy and X-ray fluorescence characterized the obtained products. The greater efficiency of the sodium glycinate solution compared to the sodium acetylglycinate solution was explained by chelation and Hard-Soft Acid-Base Theory with the aid of quantum chemical calculations.

  11. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. Themore » X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.« less

  12. Modified Bose-Einstein and Fermi-Dirac statistics if excitations are localized on an intermediate length scale: applications to non-Debye specific heat.

    PubMed

    Chamberlin, Ralph V; Davis, Bryce F

    2013-10-01

    Disordered systems show deviations from the standard Debye theory of specific heat at low temperatures. These deviations are often attributed to two-level systems of uncertain origin. We find that a source of excess specific heat comes from correlations between quanta of energy if excitations are localized on an intermediate length scale. We use simulations of a simplified Creutz model for a system of Ising-like spins coupled to a thermal bath of Einstein-like oscillators. One feature of this model is that energy is quantized in both the system and its bath, ensuring conservation of energy at every step. Another feature is that the exact entropies of both the system and its bath are known at every step, so that their temperatures can be determined independently. We find that there is a mismatch in canonical temperature between the system and its bath. In addition to the usual finite-size effects in the Bose-Einstein and Fermi-Dirac distributions, if excitations in the heat bath are localized on an intermediate length scale, this mismatch is independent of system size up to at least 10(6) particles. We use a model for correlations between quanta of energy to adjust the statistical distributions and yield a thermodynamically consistent temperature. The model includes a chemical potential for units of energy, as is often used for other types of particles that are quantized and conserved. Experimental evidence for this model comes from its ability to characterize the excess specific heat of imperfect crystals at low temperatures.

  13. Method of preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals

    DOEpatents

    Peng, Yu-Min; Wang, Jih-Wen; Liue, Chun-Ying; Yeh, Shinn-Horng

    1994-01-01

    A method for preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals includes the steps of washing the silicon carbide particles with an organic solvent; washing the silicon carbide particles with an inorganic acid; grinding the silicon carbide particles; and heating the silicon carbide particles in a nickel-containing solution at a boiling temperature for a predetermined period of time.

  14. Evaluation of Temperature-Dependent Effective Material Properties and Performance of a Thermoelectric Module

    NASA Astrophysics Data System (ADS)

    Chien, Heng-Chieh; Chu, En-Ting; Hsieh, Huey-Lin; Huang, Jing-Yi; Wu, Sheng-Tsai; Dai, Ming-Ji; Liu, Chun-Kai; Yao, Da-Jeng

    2013-07-01

    We devised a novel method to evaluate the temperature-dependent effective properties of a thermoelectric module (TEM): Seebeck coefficient ( S m), internal electrical resistance ( R m), and thermal conductance ( K m). After calculation, the effective properties of the module are converted to the average material properties of a p- n thermoelectric pillar pair inside the module: Seebeck coefficient ( S TE), electrical resistivity ( ρ TE), and thermal conductivity ( k TE). For a commercial thermoelectric module (Altec 1091) chosen to verify the novel method, the measured S TE has a maximum value at bath temperature of 110°C; ρ TE shows a positive linear trend dependent on the bath temperature, and k TE increases slightly with increasing bath temperature. The results show the method to have satisfactory measurement performance in terms of practicability and reliability; the data for tests near 23°C agree with published values.

  15. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods.

    PubMed

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-10-19

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.

  16. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods

    PubMed Central

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-01-01

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples. PMID:26492259

  17. A phenomenological approach to modeling chemical dynamics in nonlinear and two-dimensional spectroscopy.

    PubMed

    Ramasesha, Krupa; De Marco, Luigi; Horning, Andrew D; Mandal, Aritra; Tokmakoff, Andrei

    2012-04-07

    We present an approach for calculating nonlinear spectroscopic observables, which overcomes the approximations inherent to current phenomenological models without requiring the computational cost of performing molecular dynamics simulations. The trajectory mapping method uses the semi-classical approximation to linear and nonlinear response functions, and calculates spectra from trajectories of the system's transition frequencies and transition dipole moments. It rests on identifying dynamical variables important to the problem, treating the dynamics of these variables stochastically, and then generating correlated trajectories of spectroscopic quantities by mapping from the dynamical variables. This approach allows one to describe non-Gaussian dynamics, correlated dynamics between variables of the system, and nonlinear relationships between spectroscopic variables of the system and the bath such as non-Condon effects. We illustrate the approach by applying it to three examples that are often not adequately treated by existing analytical models--the non-Condon effect in the nonlinear infrared spectra of water, non-Gaussian dynamics inherent to strongly hydrogen bonded systems, and chemical exchange processes in barrier crossing reactions. The methods described are generally applicable to nonlinear spectroscopy throughout the optical, infrared and terahertz regions.

  18. The Effects of ph on Structural and Optical Characterization of Iron Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Tezel, Fatma Meydaneri; Özdemir, Osman; Kariper, I. Afşin

    In this study, the iron oxide thin films have been produced by chemical bath deposition (CBD) method as a function of pH onto amorphous glass substrates. The surface images of the films were investigated with scanning electron microscope (SEM). The crystal structures, orientation of crystallization, crystallite sizes, and dislocation density i.e. structural properties of the thin films were analyzed with X-ray diffraction (XRD). The optical band gap (Eg), optical transmission (T%), reflectivity (R%), absorption coefficient (α), refraction index (n), extinction coefficient (k) and dielectric constant (ɛ) of the thin films were investigated depending on pH, deposition time, solution temperature, substrate temperature, thickness of the films by UV-VIS spectrometer.

  19. Changes in physiological and behavioral parameters of preterm infants undergoing body hygiene: a systematic review.

    PubMed

    Freitas, Patrícia de; Marques, Silvia Rezende; Alves, Taisy Bezerra; Takahashi, Juliana; Kimura, Amélia Fumiko

    2014-08-01

    Objective To verify the effect of bathing on the body temperature of preterm infants (PTI). Method Systematic review conducted in the following bibliographic electronic sources: Biblioteca Virtual em Saúde/Lilacs (BVS), Cumulated Index of Nursing and Allied Health Literature (CINAHL), Cochrane Library, Google Scholar, PubMed, SCOPUS and Web of Science, using a combination of search terms, keywords and free terms. The review question was adjusted to the PICO acronym (Patient/population, Intervention, Control/comparative intervention, Outcome). The selected publications were evaluated according to levels of evidence and grades of recommendation for efficacy/effectiveness studies, as established by the Joanna Briggs Institute. Results Eight hundred and twenty four (824) publications were identified and four studies met the inclusion criteria, of which three analyzed the effect of sponge baths and the effect of immersion baths. Conclusion Sponge baths showed a statistically significant drop in body temperature, while in immersion baths the body temperature remained stable, although they studied late preterm infants.

  20. Effect of an annealing on magnetic properties of Fe-Ni films electroplated in citric-acid-based plating baths

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Koda, K.; Eguchi, K.; Morimura, T.; Takashima, K.; Nakano, M.; Fukunaga, H.

    2018-04-01

    We have already reported Fe-Ni films with good soft magnetic properties prepared by using an electroplating method. In the present study, we employed an annealing for further improvement in soft magnetic properties of the electroplated Fe-Ni films. The annealing reduces the coercivity of the films, and the reduction rate of the coercivity depended on the Cl- ion concentration in the bath. The Fe22Ni78 films prepared in the plating bath with high Cl- ion concentration showed large reduction rate of the coercivity, and we found that the annealing is more effective for high Cl- ion concentration bath since much lower coercivity value can be obtained compared with that for low Cl- ion concentration one.

  1. Economic Value of Dispensing Home-Based Preoperative Chlorhexidine Bathing Cloths to Prevent Surgical Site Infection

    PubMed Central

    Bailey, Rachel R.; Stuckey, Dianna R.; Norman, Bryan A.; Duggan, Andrew P.; Bacon, Kristina M.; Connor, Diana L.; Lee, Ingi; Muder, Robert R.; Lee, Bruce Y.

    2012-01-01

    OBJECTIVE To estimate the economic value of dispensing preoperative home-based chlorhexidine bathing cloth kits to orthopedic patients to prevent surgical site infection (SSI). METHODS A stochastic decision-analytic computer simulation model was developed from the hospital’s perspective depicting the decision of whether to dispense the kits preoperatively to orthopedic patients. We varied patient age, cloth cost, SSI-attributable excess length of stay, cost per bed-day, patient compliance with the regimen, and cloth antimicrobial efficacy to determine which variables were the most significant drivers of the model’s outcomes. RESULTS When all other variables remained at baseline and cloth efficacy was at least 50%, patient compliance only had to be half of baseline (baseline mean, 15.3%; range, 8.23%–20.0%) for chlorhexidine cloths to remain the dominant strategy (ie, less costly and providing better health outcomes). When cloth efficacy fell to 10%, 1.5 times the baseline bathing compliance also afforded dominance of the preoperative bath. CONCLUSIONS The results of our study favor the routine distribution of bathing kits. Even with low patient compliance and cloth efficacy values, distribution of bathing kits is an economically beneficial strategy for the prevention of SSI. PMID:21515977

  2. [The application of the emulsified turpentine baths for the correction of the functional state of the cross-country skiers].

    PubMed

    Garnov, I O; Kuchin, A V; Loginova, T P; Varlamova, N G; Boiko, E R

    2016-01-01

    The baths with emulsified turpentine find the wide application in balneotherapy. They produce especially pronounced beneficial prophylactic effects in the patients presenting with microtrombosis and microvascular stasis. Moreover, these baths may be prescribed to improve microcirculation, increase the functional reserves and physical capacity in the athletes. At the same time, the current literature appears to contain no scientific publications on the application of emulsified turpentine baths for the restoration of the physical capacity of the professional ski runners. The lack of relevant information motivated the study reported in the present article. The main objective of the study involving 10 subjects was to evaluate the effectiveness of the modified emulsified turpentine baths as a method by which to restore and enhance the physical capacity of the professional cross-country skiers. The physical capacity of the athletes was evaluated from the results of the bicycle ergometer exercise test with the use of the «Oxycon Pro» system. The data obtained suggest that a course of the emulsified turpentine baths increases the activity of the cardiorespiratory system, improves the physical capacity, and enhances the functional reserves of the body in the anaerobic zone.

  3. Isotopic effects in vibrational relaxation dynamics of H on a Si(100) surface

    NASA Astrophysics Data System (ADS)

    Bouakline, F.; Lorenz, U.; Melani, G.; Paramonov, G. K.; Saalfrank, P.

    2017-10-01

    In a recent paper [U. Lorenz and P. Saalfrank, Chem. Phys. 482, 69 (2017)], we proposed a robust scheme to set up a system-bath model Hamiltonian, describing the coupling of adsorbate vibrations (system) to surface phonons (bath), from first principles. The method is based on an embedded cluster approach, using orthogonal coordinates for system and bath modes, and an anharmonic phononic expansion of the system-bath interaction up to second order. In this contribution, we use this model Hamiltonian to calculate vibrational relaxation rates of H-Si and D-Si bending modes, coupled to a fully H(D)-covered Si(100)-( 2 × 1 ) surface, at zero temperature. The D-Si bending mode has an anharmonic frequency lying inside the bath frequency spectrum, whereas the H-Si bending mode frequency is outside the bath Debye band. Therefore, in the present calculations, we only take into account one-phonon system-bath couplings for the D-Si system and both one- and two-phonon interaction terms in the case of H-Si. The computation of vibrational lifetimes is performed with two different approaches, namely, Fermi's golden rule, and a generalized Bixon-Jortner model built in a restricted vibrational space of the adsorbate-surface zeroth-order Hamiltonian. For D-Si, the Bixon-Jortner Hamiltonian can be solved by exact diagonalization, serving as a benchmark, whereas for H-Si, an iterative scheme based on the recursive residue generation method is applied, with excellent convergence properties. We found that the lifetimes obtained with perturbation theory, albeit having almost the same order of magnitude—a few hundred fs for D-Si and a couple of ps for H-Si—, are strongly dependent on the discretized numerical representation of the bath spectral density. On the other hand, the Bixon-Jortner model is free of such numerical deficiencies, therefore providing better estimates of vibrational relaxation rates, at a very low computational cost. The results obtained with this model clearly show a net exponential decay of the time-dependent survival probability for the H-Si initial vibrational state, allowing an easy extraction of the bending mode "lifetime." This is in contrast with the D-Si system, whose survival probability exhibits a non-monotonic decay, making it difficult to define such a lifetime. This different behavior of the vibrational decay is rationalized in terms of the power spectrum of the adsorbate-surface system. In the case of D-Si, it consists of several, non-uniformly distributed peaks around the bending mode frequency, whereas the H-Si spectrum exhibits a single Lorentzian lineshape, whose width corresponds to the calculated lifetime. The present work gives some insight into mechanisms of vibration-phonon coupling at surfaces. It also serves as a benchmark for multidimensional system-bath quantum dynamics, for comparison with approximate schemes such as reduced, open-system density matrix theory (where the bath is traced out and a Liouville-von Neumann equation is solved) or approximate wavefunction methods to solve the combined system-bath Schrödinger equation.

  4. The Use of Bacterial Adherence to Hydrocarbons (BATH) Assay in Evaluation of the Hydrophobic Surface Characteristics of Potential Water Pathogens

    EPA Science Inventory

    Bacterial adherence to hydrocarbons, BATH, is a method for determining the hydrophobic surface characteristics of bacterial cells. The strain’s affinity for water is evaluated by thoroughly mixing a culture and hydrocarbon suspension and then evaluating the decrease in optical de...

  5. A Study on the Effect of Electrodeposition Parameters on the Morphology of Porous Nickel Electrodeposits

    NASA Astrophysics Data System (ADS)

    Sengupta, Srijan; Patra, Arghya; Jena, Sambedan; Das, Karabi; Das, Siddhartha

    2018-03-01

    In this study, the electrodeposition of nickel foam by dynamic hydrogen bubble-template method is optimized, and the effects of key deposition parameters (applied voltage and deposition time) and bath composition (concentration of Ni2+, pH of the bath, and roles of Cl- and SO4 2- ions) on pore size, distribution, and morphology and crystal structure are studied. Nickel deposit from 0.1 M NiCl2 bath concentration is able to produce the honeycomb-like structure with regular-sized holes. Honeycomb-like structure with cauliflower morphology is deposited at higher applied voltages of 7, 8, and 9 V; and a critical time (>3 minutes) is required for the development of the foamy structure. Compressive residual stresses are developed in the porous electrodeposits after 30 seconds of deposition time (-189.0 MPa), and the nature of the residual stress remains compressive upto 10 minutes of deposition time (-1098.6 MPa). Effect of pH is more pronounced in a chloride bath compared with a sulfate bath. The increasing nature of pore size in nickel electrodeposits plated from a chloride bath (varying from 21 to 48 μm), and the constant pore size (in the range of 22 to 24 μm) in deposits plated from a sulfate bath, can be ascribed to the striking difference in the magnitude of the corresponding current-time profiles.

  6. Stochastic description of quantum Brownian dynamics

    NASA Astrophysics Data System (ADS)

    Yan, Yun-An; Shao, Jiushu

    2016-08-01

    Classical Brownian motion has well been investigated since the pioneering work of Einstein, which inspired mathematicians to lay the theoretical foundation of stochastic processes. A stochastic formulation for quantum dynamics of dissipative systems described by the system-plus-bath model has been developed and found many applications in chemical dynamics, spectroscopy, quantum transport, and other fields. This article provides a tutorial review of the stochastic formulation for quantum dissipative dynamics. The key idea is to decouple the interaction between the system and the bath by virtue of the Hubbard-Stratonovich transformation or Itô calculus so that the system and the bath are not directly entangled during evolution, rather they are correlated due to the complex white noises introduced. The influence of the bath on the system is thereby defined by an induced stochastic field, which leads to the stochastic Liouville equation for the system. The exact reduced density matrix can be calculated as the stochastic average in the presence of bath-induced fields. In general, the plain implementation of the stochastic formulation is only useful for short-time dynamics, but not efficient for long-time dynamics as the statistical errors go very fast. For linear and other specific systems, the stochastic Liouville equation is a good starting point to derive the master equation. For general systems with decomposable bath-induced processes, the hierarchical approach in the form of a set of deterministic equations of motion is derived based on the stochastic formulation and provides an effective means for simulating the dissipative dynamics. A combination of the stochastic simulation and the hierarchical approach is suggested to solve the zero-temperature dynamics of the spin-boson model. This scheme correctly describes the coherent-incoherent transition (Toulouse limit) at moderate dissipation and predicts a rate dynamics in the overdamped regime. Challenging problems such as the dynamical description of quantum phase transition (local- ization) and the numerical stability of the trace-conserving, nonlinear stochastic Liouville equation are outlined.

  7. CFD Modeling of Swirl and Nonswirl Gas Injections into Liquid Baths Using Top Submerged Lances

    NASA Astrophysics Data System (ADS)

    Huda, Nazmul; Naser, J.; Brooks, G.; Reuter, M. A.; Matusewicz, R. W.

    2010-02-01

    Fluid flow phenomena in a cylindrical bath stirred by a top submerged lance (TSL) gas injection was investigated by using the computational fluid dynamic (CFD) modeling technique for an isothermal air-water system. The multiphase flow simulation, based on the Euler-Euler approach, elucidated the effect of swirl and nonswirl flow inside the bath. The effects of the lance submergence level and the air flow rate also were investigated. The simulation results for the velocity fields and the generation of turbulence in the bath were validated against existing experimental data from the previous water model experimental study by Morsi et al.[1] The model was extended to measure the degree of the splash generation for different liquid densities at certain heights above the free surface. The simulation results showed that the two-thirds lance submergence level provided better mixing and high liquid velocities for the generation of turbulence inside the water bath. However, it is also responsible for generating more splashes in the bath compared with the one-third lance submergence level. An approach generally used by heating, ventilation, and air conditioning (HVAC) system simulations was applied to predict the convective mixing phenomena. The simulation results for the air-water system showed that mean convective mixing for swirl flow is more than twice than that of nonswirl in close proximity to the lance. A semiempirical equation was proposed from the results of the present simulation to measure the vertical penetration distance of the air jet injected through the annulus of the lance in the cylindrical vessel of the model, which can be expressed as L_{va} = 0.275( {do - di } )Frm^{0.4745} . More work still needs to be done to predict the detail process kinetics in a real furnace by considering nonisothermal high-temperature systems with chemical reactions.

  8. Effect of polymerization method and fabrication method on occlusal vertical dimension and occlusal contacts of complete-arch prosthesis.

    PubMed

    Lima, Ana Paula Barbosa; Vitti, Rafael Pino; Amaral, Marina; Neves, Ana Christina Claro; da Silva Concilio, Lais Regiane

    2018-04-01

    This study evaluated the dimensional stability of a complete-arch prosthesis processed by conventional method in water bath or microwave energy and polymerized by two different curing cycles. Forty maxillary complete-arch prostheses were randomly divided into four groups (n = 10): MW1 - acrylic resin cured by one microwave cycle; MW2 - acrylic resin cured by two microwave cycles: WB1 - conventional acrylic resin polymerized using one curing cycle in a water bath; WB2 - conventional acrylic resin polymerized using two curing cycles in a water bath. For evaluation of dimensional stability, occlusal vertical dimension (OVD) and area of contact points were measured in two different measurement times: before and after the polymerization method. A digital caliper was used for OVD measurement. Occlusal contact registration strips were used between maxillary and mandibular dentures to measure the contact points. The images were measured using the software IpWin32, and the differences before and after the polymerization methods were calculated. The data were statistically analyzed using the one-way ANOVA and Tukey test (α = .05). he results demonstrated significant statistical differences for OVD between different measurement times for all groups. MW1 presented the highest OVD values, while WB2 had the lowest OVD values ( P <.05). No statistical differences were found for area of contact points among the groups ( P =.7150). The conventional acrylic resin polymerized using two curing cycles in a water bath led to less difference in OVD of complete-arch prosthesis.

  9. Defining rolled metal performance for cold bolt upsetting (bolt head)

    NASA Astrophysics Data System (ADS)

    Pachurin, G. V.; Shevchenko, S. M.; Filippov, A. A.; Mukhina, M. V.; Kuzmin, N. A.

    2018-03-01

    Hardware items are one of the products for mass consumption. Rolled metal for cold forging shall have the required ductility, uniform mechanical characteristics along the mill length, corresponding chemical composition and shall be free from internal or superficial defects. Standard mechanical characteristics have been reviewed in this document and fracture criteria of calibrated rolled steel 40X have been calculated after its isothermal treatment at different temperatures in nitre bath and subsequent drawing with different deformation degrees. Comparison of synergy fracture criteria showed that rolled stock, treated as per the proposed conditions: bath patenting at the temperature of 400°C and drawing with reduction rate of 5% and 10%, are more preferable, comparing to processing conditions, existing in the industry.

  10. Protective conversion coating on mixed-metal substrates and methods thereof

    DOEpatents

    O'Keefe, Matthew J.; Maddela, Surender

    2016-09-06

    Mixed-metal automotive vehicle bodies-in-white comprising ferrous metal surfaces, zinc surfaces, aluminum alloy surfaces, and magnesium alloy surfaces are cleaned and immersed in an aqueous bath comprising an adhesion promoter and an aqueous electrocoat bath (the adhesion promoter may be in the electrocoat bath. The adhesion promoter, which may be a cerium salt, is selected to react with each metal in the body surfaces to form an oxide layer that provides corrosion resistance for the surface and adherence for the deposited polymeric paint coating. The body is cathodic in the electrocoat deposition.

  11. Effect of bath temperature on surface morphology and photocatalytic activity of ZnO nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sriharan, N.; Senthil, T. S., E-mail: tssenthi@gmail.com; Muthukumarasamy, N.

    2016-05-06

    ZnO nanorods were prepared by using simple hydrothermal method using four different bath temperatures. All the prepared ZnO nanorods are annealed at 450°C and are characterized by using various techniques such as X-ray diffraction, UV spectra and scanning electron microscopy. Photocatalytic activity of the prepared ZnO nanorods is analyzed. A novel photocatalytic reactor designed with ZnO nanorods prepared at 90°C shows enhanced catalytic efficiency. The role of light irradiation time, bath temperature and surface morphology of the ZnO nanorods on the performance of photocatalytic reaction is analyzed.

  12. Processing of CuInSe{sub 2}-based solar cells: Characterization of deposition processes in terms of chemical reaction analyses. Phase 2 Annual Report, 6 May 1996--5 May 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, T.

    This report describes research performed by the University of Florida during Phase 2 of this subcontract. First, to study CIGS, researchers adapted a contactless, nondestructive technique previously developed for measuring photogenerated excess carrier lifetimes in SOI wafers. This dual-beam optical modulation (DBOM) technique was used to investigate the differences between three alternative methods of depositing CdS (conventional chemical-bath deposition [CBD], metal-organic chemical vapor deposition [MOCVD], and sputtering). Second, a critical assessment of the Cu-In-Se thermochemical and phase diagram data using standard CALPHAD procedures is being performed. The outcome of this research will produce useful information on equilibrium vapor compositions (requiredmore » annealing ambients, Sex fluxes from effusion cells), phase diagrams (conditions for melt-assisted growth), chemical potentials (driving forces for diffusion and chemical reactions), and consistent solution models (extents of solid solutions and extending phase diagrams). Third, an integrated facility to fabricate CIS PV devices was established that includes migration-enhanced epitaxy (MEE) for deposition of CIS, a rapid thermal processing furnace for absorber film formation, sputtering of ZnO, CBD or MOCVD of CdS, metallization, and pattern definition.« less

  13. Electrodeposition of amorphous Ni P coatings onto Nd Fe B permanent magnet substrates

    NASA Astrophysics Data System (ADS)

    Ma, C. B.; Cao, F. H.; Zhang, Z.; Zhang, J. Q.

    2006-12-01

    Decorative and protective Ni-P amorphous coatings were electroplated onto NdFeB permanent magnet from an ortho-phosphorous acid contained bath. The influences of the main electroplating technological parameters including current density, bath pH, bath temperature and H3PO3 on the structure and chemical composition of Ni-P coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques in conjunction with X-ray diffraction (XRD), scanning transmission electron microscopy (SEM) and X-ray energy-dispersive spectrometry (EDX). The optimized amorphous Ni-P coated NdFeB can stand for ca. 180 h against neutral 3.0 wt.% NaCl salt spray without any pitting corrosion. Meanwhile, the results also showed that large phosphorous content is the precondition for Ni-P coatings to possess the amorphous structure, but too much high phosphorous content can damage the amorphous structure due to the separation of superfluous P from Ni2P/Ni3P and the resultant formation of multi-phase coatings (such as Ni2P-P).

  14. Simulation of Flow Fluid in the BOF Steelmaking Process

    NASA Astrophysics Data System (ADS)

    Lv, Ming; Zhu, Rong; Guo, Ya-Guang; Wang, Yong-Wei

    2013-12-01

    The basic oxygen furnace (BOF) smelting process consists of different chemical reactions among oxygen, slag, and molten steel, which engenders a vigorous stirring process to promote slagging, dephosphorization, decarbonization, heating of molten steel, and homogenization of steel composition and temperature. Therefore, the oxygen flow rate, lance height, and slag thickness vary during the smelting process. This simulation demonstrated a three-dimensional mathematical model for a 100 t converter applying four-hole supersonic oxygen lance and simulated the effect of oxygen flow rate, lance height, and slag thickness on the flow of molten bath. It is found that as the oxygen flow rate increases, the impact area and depth increases, which increases the flow speed in the molten bath and decreases the area of dead zone. Low oxygen lance height benefits the increase of impact depth and accelerates the flow speed of liquid steel on the surface of the bath, while high oxygen lance height benefits the increase of impact area, thereafter enhances the uniform distribution of radial velocity in the molten steel and increases the flow velocity of molten steel at the bottom of furnace hearth. As the slag thickness increases, the diameter of impinging cavity on the slag and steel surface decreases. The radial velocity of liquid steel in the molten bath is well distributed when the jet flow impact on the slag layer increases.

  15. Comparing the Effect of Foot Reflexology Massage, Foot Bath and Their Combination on Quality of Sleep in Patients with Acute Coronary Syndrome

    PubMed Central

    Rahmani, Ali; Naseri, Mahdi; Salaree, Mohammad Mahdi; Nehrir, Batool

    2016-01-01

    Introduction: Many patients in coronary care unit (CCU) suffer from decreased sleep quality caused by environmental and mental factors. This study compared the efficacy of foot reflexology massage, foot bath, and a combination of them on the quality of sleep of patients with acute coronary syndrome (ACS). Methods: This quasi-experimental study was implemented on ACS patients in Iran. Random sampling was used to divide the patients into four groups of 35 subjects. The groups were foot reflexology massage, foot bath, a combination of the two and the control group. Sleep quality was measured using the Veran Snyder-Halpern questionnaire. Data were analyzed by SPSS version 13. Results: The mean age of the four groups was 61.22 (11.67) years. The mean sleep disturbance in intervention groups (foot reflexology massage and foot bath groups) during the second and third nights was significantly less than before intervention. The results also showed a greater reduction in sleep disturbance in the combined group than in the other groups when compared to the control group. Conclusion: It can be concluded that the intervention of foot bath and massage are effective in reducing sleep disorders and there was a synergistic effect when used in combination. This complementary care method can be recommended to be implemented by CCU nurses. PMID:28032074

  16. Comparing the Effect of Foot Reflexology Massage, Foot Bath and Their Combination on Quality of Sleep in Patients with Acute Coronary Syndrome.

    PubMed

    Rahmani, Ali; Naseri, Mahdi; Salaree, Mohammad Mahdi; Nehrir, Batool

    2016-12-01

    Introduction: Many patients in coronary care unit (CCU) suffer from decreased sleep quality caused by environmental and mental factors. This study compared the efficacy of foot reflexology massage, foot bath, and a combination of them on the quality of sleep of patients with acute coronary syndrome (ACS). Methods: This quasi-experimental study was implemented on ACS patients in Iran. Random sampling was used to divide the patients into four groups of 35 subjects. The groups were foot reflexology massage, foot bath, a combination of the two and the control group. Sleep quality was measured using the Veran Snyder-Halpern questionnaire. Data were analyzed by SPSS version 13. Results: The mean age of the four groups was 61.22 (11.67) years. The mean sleep disturbance in intervention groups (foot reflexology massage and foot bath groups) during the second and third nights was significantly less than before intervention. The results also showed a greater reduction in sleep disturbance in the combined group than in the other groups when compared to the control group. Conclusion: It can be concluded that the intervention of foot bath and massage are effective in reducing sleep disorders and there was a synergistic effect when used in combination. This complementary care method can be recommended to be implemented by CCU nurses.

  17. Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of Methylene blue

    NASA Astrophysics Data System (ADS)

    Velanganni, S.; Pravinraj, S.; Immanuel, P.; Thiruneelakandan, R.

    2018-04-01

    In the present manuscript, thin films of Zinc Oxide (ZnO) have been deposited on a FTO substrate using a simple successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) method. Cadmium Sulphide (CdS) nanoparticles are sensitized over ZnO thin films using SILAR method. The synthesized nanostructured CdS/ZnO heterojunction thin films was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), High resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy and Raman spectroscopy techniques. The band gap of CdS nanoparticles over ZnO nanostructure was found to be about 3.20 eV. The photocatalytic activities of the deposited CdS/ZnO thin films were evaluated by the degradation of methylene blue (MB) in an aqueous solution under sun light irradiation.

  18. Thermal care of newborns: drying and bathing practices in Malawi and Bangladesh

    PubMed Central

    Khan, Shane M; Kim, Eunsoo Timothy; Singh, Kavita; Amouzou, Agbessi; Carvajal-Aguirre, Liliana

    2018-01-01

    Background Thermal care of newborns is one of the recommended strategies to reduce hypothermia, which contributes to neonatal morbidity and mortality. However, data on these two topics have not been collected at the national level in many surveys. In this study, we examine two elements of thermal care: drying and delayed bathing of newborns after birth with the objectives of examining how two countries collected such data and then looking at various associations of these outcomes with key characteristics. Further, we examine the data for potential data quality issues as this is one of the first times that such data are available at the national level. Methods We use data from two nationally-representative household surveys: the Malawi Multiple Indicator Cluster Survey 2014 and the Bangladesh Demographic and Health Survey 2014. We conduct descriptive analysis of the prevalence of these two newborn practices by various socio-demographic, economic and health indicators. Results Our results indicate high levels of immediate drying/drying within 1 hour in Malawi (87%). In Bangladesh, 84% were dried within the first 10 minutes of birth. Bathing practices varied in the two settings; in Malawi, only 26% were bathed after 24 hours but in Bangladesh, 87% were bathed after the same period. While in Bangladesh there were few newborns who were never bathed (less than 5%), in Malawi, over 10% were never bathed. Newborns delivered by a skilled provider tended to have better thermal care than those delivered by unskilled providers. Conclusion These findings reveal gaps in coverage of thermal care and indicate the need to further develop the role of unskilled providers who can give unspecialized care as a means to improve thermal care for newborns. Further work to harmonize data collection methods on these topics is needed to ensure comparable data across countries. PMID:29862028

  19. Carbonate precipitates and bicarbonate secretion in the intestine of sea bass, Dicentrarchus labrax.

    PubMed

    Faggio, Caterina; Torre, Agata; Lando, Gabriele; Sabatino, Giuseppe; Trischitta, Francesca

    2011-05-01

    The aim of this paper was to study the chemical composition of the precipitates found in the intestine of Dicentrarchus labrax and the source of HCO(3)(-) secreted into the intestinal lumen. The chemical analysis was performed by employing the potentiometric double titration method and by means of an electron microscope coupled with a spectrometer and X-ray powder diffraction. The results obtained suggest the presence of very insoluble intestinal precipitates, presumably formed by a mixture of CaCO(3) and MgCO(3), with a higher quantity of the former with respect to the latter. HCO(3)(-) secretion rate was investigated with the aid of the pH stat method in isolated tissues mounted in Ussing chamber, where the transepithelial electrical parameters were also measured. When the serosal surface of the intestinal mucosa was bathed in HCO(3)(-)-Ringer bubbled with 1% CO(2) in O(2) while the serosal surface was bathed in HCO(3)(-) free Ringer solution bubbled with pure O(2), bicarbonate secretion proceeded at an almost stable rate of 0.9 ± 0.05 μeq cm(-2) h(-1) for about 3 h while I(sc) maintained a constant value of 38 ± 1.5 μA cm(-2). The carbonic anhydrase inhibitor ethoxyzolamide elicited a progressive reduction of HCO(3)(-) secretion that was about 75% of the initial value after 80 min. When serosal HCO(3)(-)-CO(2) saline was substituted with Hepes-O(2) saline base secretion progressively declined reaching a value of about 20% of the initial value. It was also strongly inhibited when Na(+) was substituted with the impermeant cation choline and when either DIDS or ouabain were added to the basolateral side. These results suggest that most of the bicarbonate secreted is of extracellular source and is probably transported across the basolateral membrane by both Na(+) independent mechanism and Na(+) dependent transporter, presumably a NaHCO(3) cotransport.

  20. A hetero-homogeneous investigation of chemical bath deposited Ga-doped ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Rakhsha, Amir Hosein; Abdizadeh, Hossein; Pourshaban, Erfan; Golobostanfard, Mohammad Reza

    2018-01-01

    One-dimensional nanostructures of zinc oxide (ZnO) have been in the center of attention, mostly for electronic applications due to their distinctive properties such as high electron mobility (100 cm2V-1s-1) and crystallinity. Thanks to its high density of vacancies and interstitial sites, wurtzite lattice of ZnO is a suitable host for gallium (Ga) as a dopant element. Herein, ZnO nanorod arrays (NRAs) are synthesized by a low-temperature chemical bath deposition (CBD) method with various concentrations of gallium nitrate hydrate as a dopant precursor. Structural and morphological analyses confirm that optimum properties of gallium-doped ZnO (GZO) are obtained at 1% (Ga to Zn molar ratio). Owing to the replacement of smaller Ga3+ ions with Zn2+ ions in the GZO structure, a slight shift of (002) peak to higher angles could be observed in XRD pattern of GZO NRAs. The scanning electron microscope images demonstrate a proliferation in the ZnO NRAs length from 650 nm for undoped ZnO (UZO) to 1200 nm for GZO-1%. However, increasing the dopant concentration above 2.5% results in formation of homogeneous zinc gallium oxide in the bulk solution, which is a sign of inefficient process of doping in GZO NRAs. Furthermore, photoluminescence spectroscopy is used to characterize the band-gap variation of the samples, which demonstrates a small red-shift in the UV emission peak and a decrease in visible emission peak intensity with introducing Ga in ZnO lattice. Lower resistivity for GZO-1% (1.1 MΩ) sample compared to UZO (1.4 MΩ) is recorded, which is compelling evidence for the presence of Ga3+ in ZnO lattice. The results suggest that incorporating Ga into ZnO lattice using CBD method is an easy and effective technique to improve the electrical properties of ZnO NRAs that is an essential factor for a broad range of devices.

  1. Effect of band-aligned double absorber layers on photovoltaic characteristics of chemical bath deposited PbS/CdS thin film solar cells.

    PubMed

    Ho Yeon, Deuk; Chandra Mohanty, Bhaskar; Lee, Seung Min; Soo Cho, Yong

    2015-09-23

    Here we report the highest energy conversion efficiency and good stability of PbS thin film-based depleted heterojunction solar cells, not involving PbS quantum dots. The PbS thin films were grown by the low cost chemical bath deposition (CBD) process at relatively low temperatures. Compared to the quantum dot solar cells which require critical and multistep complex procedures for surface passivation, the present approach, leveraging the facile modulation of the optoelectronic properties of the PbS films by the CBD process, offers a simpler route for optimization of PbS-based solar cells. Through an architectural modification, wherein two band-aligned junctions are stacked without any intervening layers, an enhancement of conversion efficiency by as much as 30% from 3.10 to 4.03% facilitated by absorption of a wider range of solar spectrum has been obtained. As an added advantage of the low band gap PbS stacked over a wide gap PbS, the devices show stability over a period of 10 days.

  2. Optical properties of PVA capped nanocrystalline Cd1-xZnxS thin film synthesized by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Gogoi, Lipika; Chaliha, Sumbit; Saikia, Prasanta Kumar

    2018-04-01

    A simple cost effective Chemical Bath Deposition (CBD) technique has been employed for the preparation of nanocrystalline Cd1-xZnxS thin films in an alkaline medium at 333K for 120 minutes in polymer matrix. Optical parameters such as transmittance, optical band gap, reflectance, refractive index and extinction coefficient of the films was made using UV-Visible spectrophotometer. UV-spectroscopy study shows a good transmittance of 80-88% in visible wavelength region for the deposited films. The direct band gap energy (Eg) for the deposited films ranged from 3.5 to 3.7 eV depending on attribution of Zn into CdS. It shows a blue shift with respect to bulk value. A increase in transmittance and band gap is found with the increase of volume of Zn content. Cd1-xZnxS thin films exhibit the least reflectance for all the wavelengths in the visible region. The refractive indices (n) of the Cd1-xZnxS films were found in the range 1.38 to 2.94 in the visible region.

  3. In Situ Localized Surface Plasmon Resonance (LSPR) Spectroscopy to Investigate Kinetics of Chemical Bath Deposition of CdS Thin Films

    DOE PAGES

    Kalyanaraman, Ramki; Taz, Humaira; Ruther, Rose E.; ...

    2015-02-11

    Techniques that can characterize the early stages of thin film deposition from liquid phase processes can aid greatly in our understanding of mechanistic aspects of chemical bath deposition (CBD). Here we have used localized surface plasmon resonance (LSPR) spectroscopy to monitor in-situ the kinetics of early-stage growth of cadmium sulfide (CdS) thin films on Ag nanoparticle on quartz substrates. Real-time shift during CdS deposition showed that the LSPR wavelength red shifted rapidly due to random deposition of CdS on the substrate, but saturated at longer times. LSPR modeling showed that these features could be interpreted as an initial deposition ofmore » CdS islands followed by preferential deposition onto itself. The CdS also showed significantly enhanced Raman signals up to 170 times due to surface enhanced raman scattering (SERS) from the CdS/Ag NP regions. The ex-situ SERS effect supported the LSPR shift suggesting that these techniques could be used to understand nucleation and growth phenomena from the liquid phase.« less

  4. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-01

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  5. High resolution projection micro stereolithography system and method

    DOEpatents

    Spadaccini, Christopher M.; Farquar, George; Weisgraber, Todd; Gemberling, Steven; Fang, Nicholas; Xu, Jun; Alonso, Matthew; Lee, Howon

    2016-11-15

    A high-resolution P.mu.SL system and method incorporating one or more of the following features with a standard P.mu.SL system using a SLM projected digital image to form components in a stereolithographic bath: a far-field superlens for producing sub-diffraction-limited features, multiple spatial light modulators (SLM) to generate spatially-controlled three-dimensional interference holograms with nanoscale features, and the integration of microfluidic components into the resin bath of a P.mu.SL system to fabricate microstructures of different materials.

  6. Factors affecting Escherichia coli concentrations at Lake Erie public bathing beaches

    USGS Publications Warehouse

    Francy, Donna S.; Darner, Robert A.

    1998-01-01

    The environmental and water-quality factors that affect concentrations of Escherichia coli (E. coli) in water and sediment were investigated at three public bathing beachesEdgewater Park, Villa Angela, and Sims Parkin the Cleveland, Ohio metropolitan area. This study was done to aid in the determination of safe recreational use and to help water- resource managers assess more quickly and accurately the degradation of recreational water quality. Water and lake-bottom sediments were collected and ancillary environmental data were compiled for 41 days from May through September 1997. Water samples were analyzed for E. coli concentrations, suspended sediment concentrations, and turbidity. Lake- bottom sediment samples from the beach area were analyzed for E. coli concentrations and percent dry weight. Concentrations of E. coli were higher and more variable at Sims Park than at Villa Angela or Edgewater Park; concentrations were lowest at Edgewater Park. Time-series plots showed that short-term storage (less than one week) of E. coli in lake-bottom sediments may have occurred, although no evidence for long-term storage was found during the sampling period. E. coli concentrations in water were found to increase with increasing wave height, but the resuspension of E. coli from lake-bottom sediments by wave action could not be adequately assessed; higherwave heights were often associated with the discharge of sewage containing E. coli during or after a rainfall and wastewater-treatment plant overflow. Multiple linear regression (MLR) was used to develop models to predict recreational water quality at the in water. The related variables included turbidity, antecedent rainfall, antecedent weighted rainfall, volumes of wastewater-treatment plant overflows and metered outfalls (composed of storm-water runoff and combined-sewer overflows), a resuspension index, and wave heights. For the beaches in this study, wind speed, wind direction, water temperature, and the prswimmers were not included in the model because they were shown to be statistically unrelated to E. coli concentrations. From the several models developed, one model was chosen that accounted for 58 percent of the variability in E. coli concentrations. The chosen MLR model contained weighted categorical rainfall, beach-specific turbidity, wave height, and terms to correct for the different magnitudes of E. coli concentrations among the three beaches. For 1997, the MLR model predicted the recreational water quality as well as, and in some cases better than, antecedent E. coli concentrations (the current method). The MLR model improved the sensitivity of the prediction and the percentage of correct predictions over the current method; however, the MLR model predictions still erred to a similar degree as the current method with regard to false negatives. A false negative would allow swimming when, in fact, the bathing water standard was exceeded. More work needs to be done to validate the MLR model with data collected during other recreational seasons, especially during a season with a greater frequency and intensity of summer rains. Studies could focus on adding to the MLR model other environmental and water-quality variables that improve the predictive ability of the model. These variables might include concentrations of E. coli in deeper sediments outside the bathing area, the direction of lake currents, site-specific-rainfall amounts, time-of-day information on overflows and metered outfalls, concentrations of E. coli in treated wastewater-treatment plant effluents, and occurrences of sewage-line breaks. Rapid biological or chemical methods for determination of recreational water quality could also be used as variables in model refinements. Possible methods include the use of experimental rapid assay methods for determination of E. coli concentrations or other fecal indicators and the use of chemical tracers for fecal contamination, such as coprostanol (a degradation

  7. Effect of deposition temperature on the structural and optical properties of CdSe QDs thin films deposited by CBD method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laatar, F., E-mail: fakher8laatar@gmail.com; Harizi, A.; Smida, A.

    2016-06-15

    Highlights: • Synthesis of CdSe QDs with L-Cysteine capping agent for applications in nanodevices. • The films of CdSe QDs present uniform and good dispersive particles at the surface. • Effect of bath temperature on the structural and optical properties of CdSe QDs thin films. • Investigation of the optical constants and dispersion parameters of CdSe QDs thin films. - Abstract: Cadmium selenide quantum dots (CdSe QDs) thin films were deposited onto glass substrates by a chemical bath deposition (CBD) method at different temperatures from an aqueous solution containing L-Cysteine (L-Cys) as capping agent. The evolution of the surface morphologymore » and elemental composition of the CdSe films were studied by AFM, SEM, and EDX analyses. Structural and optical properties of CdSe thin films were investigated by XRD, UV–vis and PL spectroscopy. The dispersion behavior of the refractive index is described using the single oscillator Wemple-DiDomenico (W-D) model, and the physical dispersion parameters are calculated as a function of deposition temperature. The dispersive optical parameters such as average oscillator energy (E{sub o}), dispersion energy (E{sub d}), and static refractive index (n{sub o}) were found to vary with the deposition temperature. Besides, the electrical free carrier susceptibility (χ{sub e}) and the carrier concentration of the effective mass ratio (N/m*) were evaluated according to the Spitzer-Fan model.« less

  8. Redox artifacts in electrophysiological recordings

    PubMed Central

    Berman, Jonathan M.

    2013-01-01

    Electrophysiological techniques make use of Ag/AgCl electrodes that are in direct contact with cells or bath. In the bath, electrodes are exposed to numerous experimental conditions and chemical reagents that can modify electrode voltage. We examined voltage offsets created in Ag/AgCl electrodes by exposure to redox reagents used in electrophysiological studies. Voltage offsets were measured in reference to an electrode separated from the solution by an agar bridge. The reducing reagents Tris-2-carboxyethly-phosphine, dithiothreitol (DTT), and glutathione, as well as the oxidizing agent H2O2 used at experimentally relevant concentrations reacted with Ag in the electrodes to produce voltage offsets. Chloride ions and strong acids and bases produced offsets at millimolar concentrations. Electrolytic depletion of the AgCl layer, to replicate voltage clamp and sustained use, resulted in increased sensitivity to flow and DTT. Offsets were sensitive to electrode silver purity and to the amount and method of chloride deposition. For example, exposure to 10 μM DTT produced a voltage offset between 10 and 284 mV depending on the chloride deposition method. Currents generated by these offsets are significant and dependent on membrane conductance and by extension the expression of ion channels and may therefore appear to be biological in origin. These data demonstrate a new source of artifacts in electrophysiological recordings that can affect measurements obtained from a variety of experimental techniques from patch clamp to two-electrode voltage clamp. PMID:23344161

  9. Bath and Shower Effects in the Rat Parotid Gland Explain Increased Relative Risk of Parotid Gland Dysfunction After Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luijk, Peter van; Faber, Hette; Schippers, Jacobus M.

    2009-07-15

    Purpose: To assess in a rat model whether adding a subtolerance dose in a region adjacent to a high-dose irradiated subvolume of the parotid gland influences its response (bath-and-shower effect). Methods and Materials: Irradiation of the whole, cranial 50%, and/or the caudal 50% of the parotid glands of Wistar rats was performed using 150-MeV protons. To determine suitable (i.e., subtolerance) dose levels for a bath-dose, both whole parotid glands were irradiated with 5 to 25 Gy. Subsequently groups of Wistar rats received 30 Gy to the caudal 50% (shower) and 0 to 10 Gy to the cranial 50% (bath) ofmore » both parotid glands. Stimulated saliva flow rate (function) was measured before and up to 240 days after irradiation. Results: Irradiation of both glands up to a dose of 10 Gy did not result in late loss of function and is thus regarded subtolerance. Addition of a dose bath of 1 to 10 Gy to a high-dose in the caudal 50% of the glands resulted in enhanced function loss. Conclusion: Similar to the spinal cord, the parotid gland demonstrates a bath and shower effect, which may explain the less-than-expected sparing of function after IMRT.« less

  10. Investigation of the surface composition of electrodeposited black chromium by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Survilienė, S.; Češūnienė, A.; Jasulaitienė, V.; Jurevičiūtė, I.

    2015-01-01

    The paper reviews black chromium electrodeposited from a trivalent chromium bath containing ZnO as a second main component. The chemical compositions of the top layers of the black chromium coatings were studied by the X-ray photoelectron spectroscopy method. The surface of black chromium was found to be almost entirely covered with organic substances. To gain information on the state of each element in the deposit bulk, the layer-by-layer etching of the black chromium surface with argon gas was used. Analysis of XPS spectra has shown that the top layers of black chromium without zinc are composed of various Cr(III) components, organic substances and metallic Cr, whereas metallic Cr is almost absent in black chromium containing some amount of Zn(II) compounds. The ratios of metal/oxide phases were found to be 10/27 and 2/28 for black chromium without and with zinc, respectively. It has been determined that owing to the presence of ZnO in the Cr(III) bath, the percentage of metallic chromium is substantially reduced in black chromium which is quite important for good solar selective characteristics of the coating. The results confirm some of earlier observations and provide new information on the composition of the near-surface layers.

  11. Creation of superhydrophobic stainless steel surfaces by acid treatments and hydrophobic film deposition.

    PubMed

    Li, Lester; Breedveld, Victor; Hess, Dennis W

    2012-09-26

    In this work, we present a method to render stainless steel surfaces superhydrophobic while maintaining their corrosion resistance. Creation of surface roughness on 304 and 316 grade stainless steels was performed using a hydrofluoric acid bath. New insight into the etch process is developed through a detailed analysis of the chemical and physical changes that occur on the stainless steel surfaces. As a result of intergranular corrosion, along with metallic oxide and fluoride redeposition, surface roughness was generated on the nano- and microscales. Differences in alloy composition between 304 and 316 grades of stainless steel led to variations in etch rate and different levels of surface roughness for similar etch times. After fluorocarbon film deposition to lower the surface energy, etched samples of 304 and 316 stainless steel displayed maximum static water contact angles of 159.9 and 146.6°, respectively. However, etching in HF also caused both grades of stainless steel to be susceptible to corrosion. By passivating the HF-etched samples in a nitric acid bath, the corrosion resistant properties of stainless steels were recovered. When a three step process was used, consisting of etching, passivation and fluorocarbon deposition, 304 and 316 stainless steel samples exhibited maximum contact angles of 157.3 and 134.9°, respectively, while maintaining corrosion resistance.

  12. Synthesis of Ammonia-Assisted Porous Nickel Ferrite (NiFe₂O₄) Nanostructures as an Electrode Material for Supercapacitors.

    PubMed

    Bhojane, Prateek; Sharma, Alfa; Pusty, Manojit; Kumar, Yogendra; Sen, Somaditya; Shirage, Parasharam

    2017-02-01

    In this work, we report a low cost, facile synthesis method for Nickel ferrite (NiFe₂O₄) nanostructures obtained by chemical bath deposition method for alternate transition metal oxide electrode material as a solution for clean energy. We developed a template free ammonia assisted method for obtaining porous structure which offering better supercapacitive performance of NiFe₂O₄ electrode material than previously reported for pure NiFe₂O₄. Here we explore the physical characterizations X-ray diffraction, FESEM, HRTEM performed to under-stand its crystal structure and morphology as well as the electrochemical measurements was performed to understand the electrochemical behaviour of the material. Here ammonia plays an important role in governing the structure/morphology of the material and enhances the electrochemical performance. The specific capacitance of 541 Fg⁻¹ is achieved at 2 mVs⁻¹ scan rate which is highest for the pure NiFe₂O₄ electrode material without using any addition of carbon based material, heterostructure or template based method.

  13. The availability and depiction of synthetic cathinones (i.e., bath salts) on the internet: Do online suppliers employ features to maximize purchases?

    PubMed Central

    Meyers, Kathleen; Kaynak, Övgü; Bresani, Elena; Curtis, Brenda; McNamara, Ashley; Brownfield, Kristine; Kirby, Kimberly C.

    2015-01-01

    Background “Bath salts”, a derivative of cathinone, a naturally occurring beta-ketone amphetamine analogue found in the leaves of the khat (Catha edulis) plant, is a potent class of designer drugs associated with significant medical and psychiatric consequences. They are commonly used among 20 to 29 year olds, a group with easy access to the internet and an inclination to purchase online. Therefore, the internet has the potential to play a significant role in the distribution and associated consequences of these “legal highs”. Methods Google searches were used to determine bath salts availability on retail websites and how different search terms affected the proportion of retail websites obtained. Retail websites were reviewed by two independent raters who examined content with a focus on characteristics that increase the likelihood of online sales. Results Of the 250 websites found, 31 were unique retail websites. Most retail website hits resulted when a product name was used as the search term. The top three countries hosting retail websites were registered in the United States (n=14; 45%), Germany (n=7; 23%), and the United Kingdom (n=3; 10%). These online drug suppliers provided considerable information and purchasing choice about a variety of synthetic cathinones, legitimized their sites by using recognizable images, online chat features, and mainstream payment and shipping methods, and employed characteristics that promote online purchases. Conclusion Online designer drug suppliers use sophisticated methods to market unregulated products to consumers. The international community has taken diverse approaches to address designer drugs: legislative bans, harm reduction approaches, an interim regulated legal market. Multifaceted efforts that target bath salt users, suppliers, and emergency/poison control entities are critical to comprehensively address bath salt ingestion and its consequences. PMID:25641258

  14. A case–control study of maternal bathing habits and risk for birth defects in offspring

    PubMed Central

    2013-01-01

    Background Nearly all women shower or take baths during early pregnancy; however, bathing habits (i.e., shower and bath length and frequency) may be related to the risk of maternal hyperthermia and exposure to water disinfection byproducts, both of which are suspected to increase risk for multiple types of birth defects. Thus, we assessed the relationships between bathing habits during pregnancy and the risk for several nonsyndromic birth defects in offspring. Methods Data for cases with one of 13 types of birth defects and controls from the National Birth Defects Prevention Study delivered during 2000–2007 were evaluated. Logistic regression analyses were conducted separately for each type of birth defect. Results There were few associations between shower frequency or bath frequency or length and risk for birth defects in offspring. The risk for gastroschisis in offspring was increased among women who reported showers lasting ≥15 compared to <15 minutes (adjusted odds ratio: 1.43, 95% confidence interval: 1.18-1.72). In addition, we observed modest increases in the risk for spina bifida, cleft lip with or without cleft palate, and limb reduction defects in offspring of women who showered ≥15 compared to <15 minutes. The results of comparisons among more specific categories of shower length (i.e., <15 minutes versus 15–19, 20–29, and ≥ 30 minutes) were similar. Conclusions Our findings suggest that shower length may be associated with gastroschisis, but the modest associations with other birth defects were not supported by analyses of bath length or bath or shower frequency. Given that showering for ≥15 minutes during pregnancy is very common, further evaluation of the relationship between maternal showering habits and birth defects in offspring is worthwhile. PMID:24131571

  15. Apparatus and method for controlling plating uniformity

    DOEpatents

    Hachman Jr., John T.; Kelly, James J.; West, Alan C.

    2004-10-12

    The use of an insulating shield for improving the current distribution in an electrochemical plating bath is disclosed. Numerical analysis is used to evaluate the influence of shield shape and position on plating uniformity. Simulation results are compared to experimental data for nickel deposition from a nickel--sulfamate bath. The shield is shown to improve the average current density at a plating surface.

  16. Preparation of smooth, flexible and stable silver nanowires- polyurethane composite transparent conductive films by transfer method

    NASA Astrophysics Data System (ADS)

    Bai, Shengchi; Wang, Haifeng; Yang, Hui; Zhang, He; Guo, Xingzhong

    2018-02-01

    Silver nanowires (AgNWs)-polyurethane (PU) composite transparent conductive films were fabricated via transfer method using AgNWs conductive inks and polyurethane as starting materials, and the effects of post-treatments including heat treatment, NaCl solution bath and HCl solution bath for AgNWs film on the sheet resistance and transmittance of the composite films were respectively investigated in detail. AgNWs networks are uniformly embedded in the PU layer to improve the adhesion and reduce the surface roughness of AgNWs-PU composite films. Heat treatment can melt and weld the nanowires, and NaCl and HCl solution baths promote the dissolution and re-deposition of silver and the dissolving of the polymer, both which form conduction pathways and improve contact of AgNWs for reducing the sheet resistance. Smooth and flexible AgNWs-PU composite film with a transmittance of 85% and a sheet resistance of 15 Ω · sq‑1 is obtained after treated in 0.5 wt% HCl solution bath for 60 s, and the optoelectronic properties of the resultant composite film can maintain after 1000 cycles of bending and 100 days.

  17. Method for regeneration of electroless nickel plating solution

    DOEpatents

    Eisenmann, Erhard T.

    1997-01-01

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorous acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution.

  18. Method for regeneration of electroless nickel plating solution

    DOEpatents

    Eisenmann, E.T.

    1997-03-11

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorus acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution. 1 fig.

  19. Hybrid polymer/ZnO solar cells sensitized by PbS quantum dots

    PubMed Central

    2012-01-01

    Poly[2-methoxy-5-(2-ethylhexyloxy-p-phenylenevinylene)]/ZnO nanorod hybrid solar cells consisting of PbS quantum dots [QDs] prepared by a chemical bath deposition method were fabricated. An optimum coating of the QDs on the ZnO nanorods could strongly improve the performance of the solar cells. A maximum power conversion efficiency of 0.42% was achieved for the PbS QDs' sensitive solar cell coated by 4 cycles, which was increased almost five times compared with the solar cell without using PbS QDs. The improved efficiency is attributed to the cascade structure formed by the PbS QD coating, which results in enhanced open-circuit voltage and exciton dissociation efficiency. PMID:22313746

  20. Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yi-Mu, E-mail: ymlee@nuu.edu.t; Yang, Hsi-Wen

    2011-03-15

    High-transparency and high quality ZnO nanorod arrays were grown on the ITO substrates by a two-step chemical bath deposition (CBD) method. The effects of processing parameters including reaction temperature (25-95 {sup o}C) and solution concentration (0.01-0.1 M) on the crystal growth, alignment, optical and electrical properties were systematically investigated. It has been found that these process parameters are critical for the growth, orientation and aspect ratio of the nanorod arrays, showing different structural and optical properties. Experimental results reveal that the hexagonal ZnO nanorod arrays prepared under reaction temperature of 95 {sup o}C and solution concentration of 0.03 M possessmore » highest aspect ratio of {approx}21, and show the well-aligned orientation and optimum optical properties. Moreover the ZnO nanorod arrays based heterojunction electrodes and the solid-state dye-sensitized solar cells (SS-DSSCs) were fabricated with an improved optoelectrical performance. -- Graphical abstract: The ZnO nanorod arrays demonstrate well-alignment, high aspect ratio (L/D{approx}21) and excellent optical transmittance by low-temperature chemical bath deposition (CBD). Display Omitted Research highlights: > Investigate the processing parameters of CBD on the growth of ZnO nanorod arrays. > Optimization of CBD process parameters: 0.03 M solution concentration and reaction temperature of 95 {sup o}C. > The prepared ZnO samples possess well-alignment and high aspect ratio (L/D{approx}21). > An n-ZnO/p-NiO heterojunction: great rectifying behavior and low leakage current. > SS-DSSC has J{sub SC} of 0.31 mA/cm{sup 2} and V{sub OC} of 590 mV, and an improved {eta} of 0.059%.« less

  1. Structural and Optical Properties of Core-Shell TiO2/CdS Prepared by Chemical Bath Deposition

    NASA Astrophysics Data System (ADS)

    Al-Jawad, Selma M. H.

    2017-10-01

    Titanium dioxide (TiO2) nanorod arrays (NRAs) sensitized with cadmium sulfide (CdS) nanoparticles (NPs) were deposited by chemical bath deposition (CBD). TiO2 NRAs were also obtained by using the same method on glass substrates coated with fluorine-doped tin oxide (FTO). The structure of the FTO/TiO2/CdS core-shell was characterized by x-ray diffraction (XRD), atomic force microscopy, scanning electron microscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy, photoluminescence, and photoelectrocatalysis of FTO/TiO2 and FTO/TiO2/CdS. The FTO/TiO2 conformed to anatase and rutile phase structures for different pH values and also with annealing. XRD patterns of the FTO/TiO2/CdS sample exhibited two peaks corresponding to hexagonal (100) and (101) for CdS. Scanning electron micrographs showed nanorod structures for the TiO2 thin films deposited at a pH value equal 0.7. Optical results showed the CdS deposited on nanorod TiO2 exhibited increased absorption ability in the visible light, indicating an increased photocatalytic activity for TiO2/CdS core-shell nanorods in the visible light. When illuminated with a UV-Vis light source, the TiO2/CdS core-shell films displayed high responses. A composite exists between the TiO2 nanostructure and CdS NPs because the film absorbs the incident light located in both the visible and UV-Vis regions. A higher response to UV-Vis light was attained with the use of TiO2 NRAs/CdS NPs films prepared by CBD. This approach offers a technique for fabricating photoelectrodes.

  2. Tuning micropillar tapering for optimal friction performance of thermoplastic gecko-inspired adhesive.

    PubMed

    Kim, Yongkwan; Chung, Yunsie; Tsao, Angela; Maboudian, Roya

    2014-05-14

    We present a fabrication method and friction testing of a gecko-inspired thermoplastic micropillar array with control over the tapering angle of the pillar sidewall. A combination of deep reactive ion etching of vertical silicon pillars and subsequent maskless chemical etching produces templates with various widths and degrees of taper, which are then replicated with low-density polyethylene. As the silicon pillars on the template are chemically etched in a bath consisting of hydrofluoric acid, nitric acid, and acetic acid (HNA), the pillars are progressively thinned, then shortened. The replicated polyethylene pillar arrays exhibit a corresponding increase in friction as the stiffness is reduced with thinning and then a decrease in friction as the stiffness is again increased. The dilution of the HNA bath in water influences the tapering angle of the silicon pillars. The friction of the replicated pillars is maximized for the taper angle that maximizes the contact area at the tip which in turn is influenced by the stiffness of the tapered pillars. To provide insights on how changes in microscale geometry and contact behavior may affect friction of the pillar array, the pillars are imaged by scanning electron microscopy after friction testing, and the observed deformation behavior from shearing is related to the magnitude of the macroscale friction values. It is shown that the tapering angle critically changes the pillar compliance and the available contact area. Simple finite element modeling calculations are performed to support that the observed deformation is consistent with what is expected from a mechanical analysis. We conclude that friction can be maximized via proper pillar tapering with low stiffness that still maintains enough contact area to ensure high adhesion.

  3. Molten salt rolling bubble column, reactors utilizing same and related methods

    DOEpatents

    Turner, Terry D.; Benefiel, Bradley C.; Bingham, Dennis N.; Klinger, Kerry M.; Wilding, Bruce M.

    2015-11-17

    Reactors for carrying out a chemical reaction, as well as related components, systems and methods are provided. In accordance with one embodiment, a reactor is provided that includes a furnace and a crucible positioned for heating by the furnace. The crucible may contain a molten salt bath. A downtube is disposed at least partially within the interior crucible along an axis. The downtube includes a conduit having a first end in communication with a carbon source and an outlet at a second end of the conduit for introducing the carbon material into the crucible. At least one opening is formed in the conduit between the first end and the second end to enable circulation of reaction components contained within the crucible through the conduit. An oxidizing material may be introduced through a bottom portion of the crucible in the form of gas bubbles to react with the other materials.

  4. Highly abundant defense proteins in human sweat as revealed by targeted proteomics and label-free quantification mass spectrometry.

    PubMed

    Csősz, É; Emri, G; Kalló, G; Tsaprailis, G; Tőzsér, J

    2015-10-01

    The healthy human skin with its effective antimicrobial defense system forms an efficient barrier against invading pathogens. There is evidence suggesting that the composition of this chemical barrier varies between diseases, making the easily collected sweat an ideal candidate for biomarker discoveries. Our aim was to provide information about the normal composition of the sweat, and to study the chemical barrier found at the surface of skin. Sweat samples from healthy individuals were collected during sauna bathing, and the global protein panel was analysed by label-free mass spectrometry. SRM-based targeted proteomic methods were designed and stable isotope labelled reference peptides were used for method validation. Ninety-five sweat proteins were identified, 20 of them were novel proteins. It was shown that dermcidin is the most abundant sweat protein, and along with apolipoprotein D, clusterin, prolactin-inducible protein and serum albumin, they make up 91% of secreted sweat proteins. The roles of these highly abundant proteins were reviewed; all of which have protective functions, highlighting the importance of sweat glands in composing the first line of innate immune defense system, and maintaining the epidermal barrier integrity. Our findings with regard to the proteins forming the chemical barrier of the skin as determined by label-free quantification and targeted proteomics methods are in accordance with previous studies, and can be further used as a starting point for non-invasive sweat biomarker research. © 2015 European Academy of Dermatology and Venereology.

  5. The Use of Multi-Walled Carbon Nanotubes as Possible Carrier in Drug Delivery System for Aspirin

    NASA Astrophysics Data System (ADS)

    Yusof, Alias Mohd.; Buang, Nor Aziah; Yean, Lee Sze; Ibrahim, Mohd. Lokman

    2009-06-01

    Carbon nanotubes (CNTs) have raised great interest in a number of applications, including field emission, energy storage, molecular electronics, sensors, biochips and drug delivery systems. This is due to their remarkable mechanical properties, chemical stability and biofunctionalizability. This nanomaterial is low in weight, has high strength and a high aspect ratio (long length compared to a small diameter). This paper will present a brief overview of drugs adsorbed onto the surface of carbon nanotubes via sonication method. The surface area of carbon nanotubes was measured by methylene blue method, Carbon nanotubes synthesized by catalytic chemical vapor deposition (CCVD) method were purified and functionalized in a mixture of concentrated acids (H2SO4:HNO3 = 3:1) at room temperature (25° C) via sonication in water bath, yielding carboxylic acid group on the CNTs' surface. CNT was successfully loaded with 48 %(w/w) aspirin molecules by suspending CNTs in a solution of aspirin in alcohol. Analysis of loaded CNTs by Field Emission-Scanning Electron Microscope (FESEM), Fourier Transform Infrared Spectrum (FITR) and UV-visible Spectroscopy confirmed the loading of the drug onto the CNTs. The work presented is a prelude to the direction of using carbon nanotubes as a drug delivery system to desired sites in human body.

  6. A Three-Year Follow-Up Study of Antibiotic and Metal Residues, Antibiotic Resistance and Resistance Genes, Focusing on Kshipra—A River Associated with Holy Religious Mass-Bathing in India: Protocol Paper

    PubMed Central

    Diwan, Vishal; Purohit, Manju; Chandran, Salesh; Parashar, Vivek; Shah, Harshada; Mahadik, Vijay K.; Stålsby Lundborg, Cecilia; Tamhankar, Ashok J.

    2017-01-01

    Background: Antibiotic resistance (ABR) is one of the major health emergencies for global society. Little is known about the ABR of environmental bacteria and therefore it is important to understand ABR reservoirs in the environment and their potential impact on health. Method/Design: Quantitative and qualitative data will be collected during a 3-year follow-up study of a river associated with religious mass-bathing in Central India. Surface-water and sediment samples will be collected from seven locations at regular intervals for 3 years during religious mass-bathing and in absence of it to monitor water-quality, antibiotic residues, resistant bacteria, antibiotic resistance genes and metals. Approval has been obtained from the Ethics Committee of R.D. Gardi Medical College, Ujjain, India (No. 2013/07/17-311). Results: The results will address the issue of antibiotic residues and antibiotic resistance with a focus on a river environment in India within a typical socio-behavioural context of religious mass-bathing. It will enhance our understanding about the relationship between antibiotic residue levels, water-quality, heavy metals and antibiotic resistance patterns in Escherichia coli isolated from river-water and sediment, and seasonal differences that are associated with religious mass-bathing. We will also document, identify and clarify the genetic differences/similarities relating to phenotypic antibiotic resistance in bacteria in rivers during religious mass-bathing or during periods when there is no mass-bathing. PMID:28555050

  7. Systems and Methods for the Electrodeposition of a Nickel-cobalt Alloy

    NASA Technical Reports Server (NTRS)

    Ogozalek, Nance Jo (Inventor); Wistrand, Richard E. (Inventor)

    2013-01-01

    Systems and methods for electrodepositing a nickel-cobalt alloy using a rotating cylinder electrode assembly with a plating surface and an electrical contact. The assembly is placed within a plating bath and rotated while running a plating cycle. Nickel-cobalt alloy deposition is selectively controlled by controlling current density distribution and/or cobalt content in the plating bath while running the plating cycle to deposit an alloy of a desired yield strength onto the plating surface in a single plating cycle. In various embodiments, the rotating cylinder may be used as an insitu monitoring method to assist in obtaining the properties desired.

  8. The effectiveness of a simulated scenario to teach nursing students how to perform a bed bath: A randomized clinical trial.

    PubMed

    Miranda, Renata Pinto Ribeiro; de Cássia Lopes Chaves, Érika; Silva Lima, Rogério; Braga, Cristiane Giffoni; Simões, Ivandira Anselmo Ribeiro; Fava, Silvana Maria Coelho Leite; Iunes, Denise Hollanda

    2017-10-01

    Simulation allows students to develop several skills during a bed bath that are difficult to teach only in traditional classroom lectures, such as problem-solving, student interactions with the simulator (patient), reasoning in clinical evaluations, evaluation of responses to interventions, teamwork, communication, security and privacy. This study aimed to evaluate the effectiveness of a simulated bed bath scenario on improving cognitive knowledge, practical performance and satisfaction among nursing students. Randomized controlled clinical trial. Nursing students that were in the fifth period from two educational institutions in Brazil. Nursing students (n=58). The data were collected using the assessments of cognitive knowledge, practical performance and satisfaction were made through a written test about bed baths, an Objective Structured Clinical Examination (OSCE) and a satisfaction questionnaire. We identified that the acquisition and assimilation of cognitive knowledge was significantly higher in the simulation group (p=0.001). The performance was similar in both groups regardless of the teaching strategy (p=0.435). At follow-up, the simulation group had significantly more satisfaction with the teaching method than the control group (p=0.007). The teaching strategy based on a simulated scenario of a bed bath proved to be effective for the acquisition of cognitive knowledge regarding bed baths in clinical practice and improved student satisfaction with the teaching process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Recovery process for electroless plating baths

    DOEpatents

    Anderson, Roger W.; Neff, Wayne A.

    1992-01-01

    A process for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO.sub.3. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths.

  10. Socioeconomic status and exposure to disinfection by-products in drinking water in Spain.

    PubMed

    Castaño-Vinyals, Gemma; Cantor, Kenneth P; Villanueva, Cristina M; Tardon, Adonina; Garcia-Closas, Reina; Serra, Consol; Carrato, Alfredo; Malats, Núria; Rothman, Nathaniel; Silverman, Debra; Kogevinas, Manolis

    2011-03-16

    Disinfection by-products in drinking water are chemical contaminants that have been associated with cancer and other adverse effects. Exposure occurs from consumption of tap water, inhalation and dermal absorption. We determined the relationship between socioeconomic status and exposure to disinfection by-products in 1271 controls from a multicentric bladder cancer case-control study in Spain. Information on lifetime drinking water sources, swimming pool attendance, showering-bathing practices, and socioeconomic status (education, income) was collected through personal interviews. The most highly educated subjects consumed less tap water (57%) and more bottled water (33%) than illiterate subjects (69% and 17% respectively, p-value = 0.003). These differences became wider in recent time periods. The time spent bathing or showering was positively correlated with attained educational level (p < 0.001). Swimming pool attendance was more frequent among highly educated subjects compared to the illiterate (odds ratio = 3.4; 95% confidence interval 1.6-7.3). The most highly educated subjects were less exposed to chlorination by-products through ingestion but more exposed through dermal contact and inhalation in pools and showers/baths. Health risk perceptions and economic capacity may affect patterns of water consumption that can result in differences in exposure to water contaminants.

  11. Recovery process for electroless plating baths

    DOEpatents

    Anderson, R.W.; Neff, W.A.

    1992-05-12

    A process is described for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO[sub 3]. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths. 18 figs.

  12. Robust superhydrophobic needle-like nanostructured ZnO surfaces prepared without post chemical-treatment

    NASA Astrophysics Data System (ADS)

    Velayi, Elmira; Norouzbeigi, Reza

    2017-12-01

    Robust superhydrophobic ZnO surfaces with micro/nano hybrid hierarchical structures were synthesized on the stainless steel mesh by a facile single-step chemical bath deposition (CBD) method without using further low surface energy materials. The Taguchi L16 experimental design was applied to evaluate the effects of reaction time, type and concentration of the additive, type of the chelating agent, and the molar ratio of the chelating agent to the initial zinc (II) ions. The prepared sample at the optimal conditions exhibited a sustainable and time-independent superhydrophobic behavior with the water contact angle (WCA) of 162.8° ± 2.5° and contact angle hysteresis (CAH) of 1.8° ± 0.5°. The XRD, SEM, TEM and FTIR analyses were used to characterize the prepared samples. Surface characterization using scanning electron microscopy (SEM) indicated accumulation of micro/nano branched ZnO needles on the substrate with the average diameters of ∼85 nm. After 20 abrasion cycles the optimum sample indicated an excellent mechanical robustness via exposure to the pressure of 4.7 kPa. A suitable chemical resistance to the acidic and basic droplets with the pH range of 4 and 9 was observed.

  13. Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell

    PubMed Central

    Katerski, Atanas; Oja Acik, Ilona; Mere, Arvo; Mikli, Valdek; Krunks, Malle

    2016-01-01

    Chemical spray pyrolysis (CSP) is a fast wet-chemical deposition method in which an aerosol is guided by carrier gas onto a hot substrate where the decomposition of the precursor chemicals occurs. The aerosol is produced using an ultrasonic oscillator in a bath of precursor solution and guided by compressed air. The use of the ultrasonic CSP resulted in the growth of homogeneous and well-adhered layers that consist of submicron crystals of single-phase Sb2S3 with a bandgap of 1.6 eV if an abundance of sulfur source is present in the precursor solution (SbCl3/SC(NH2)2 = 1:6) sprayed onto the substrate at 250 °C in air. Solar cells with glass-ITO-TiO2-Sb2S3-P3HT-Au structure and an active area of 1 cm2 had an open circuit voltage of 630 mV, short circuit current density of 5 mA/cm2, a fill factor of 42% and a conversion efficiency of 1.3%. Conversion efficiencies up to 1.9% were obtained from solar cells with smaller areas. PMID:28144515

  14. CdS/CdSe co-sensitized SnO2 photoelectrodes for quantum dots sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lin, Yibing; Lin, Yu; Meng, Yongming; Tu, Yongguang; Zhang, Xiaolong

    2015-07-01

    SnO2 nanoparticles were synthesized by hydrothermal method and applied to photo-electrodes of quantum dots-sensitized solar cells (QDSSCs). After sensitizing SnO2 films via CdS quantum dots, CdSe quantum dots was decorated on the surface of CdS/SnO2 photo-electrodes to further improve the power conversion efficiency. CdS and CdSe quantum dots were deposited by successive ionic layer absorption and reaction method (SILAR) and chemical bath deposition method (CBD) respectively. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to identify the surface profile and crystal structure of SnO2 photo-electrodes before and after deposited quantum dots. After CdSe co-sensitized process, an overall power conversion efficiency of 1.78% was obtained in CdSe/CdS/SnO2 QDSSC, which showed 66.4% improvement than that of CdS/SnO2 QDSSC.

  15. Bulk heterojunction formation between indium tin oxide nanorods and CuInS2 nanoparticles for inorganic thin film solar cell applications.

    PubMed

    Cho, Jin Woo; Park, Se Jin; Kim, Jaehoon; Kim, Woong; Park, Hoo Keun; Do, Young Rag; Min, Byoung Koun

    2012-02-01

    In this study, we developed a novel inorganic thin film solar cell configuration in which bulk heterojunction was formed between indium tin oxide (ITO) nanorods and CuInS(2) (CIS). Specifically, ITO nanorods were first synthesized by the radio frequency magnetron sputtering deposition method followed by deposition of a dense TiO(2) layer and CdS buffer layer using atomic layer deposition and chemical bath deposition method, respectively. The spatial region between the nanorods was then filled with CIS nanoparticle ink, which was presynthesized using the colloidal synthetic method. We observed that complete gap filling was achieved to form bulk heterojunction between the inorganic phases. As a proof-of-concept, solar cell devices were fabricated by depositing an Au electrode on top of the CIS layer, which exhibited the best photovoltaic response with a V(oc), J(sc), FF, and efficiency of 0.287 V, 9.63 mA/cm(2), 0.364, and 1.01%, respectively.

  16. An operational method for the real-time monitoring of E. coli numbers in bathing waters.

    PubMed

    Lebaron, Philippe; Henry, A; Lepeuple, A-S; Pena, G; Servais, P

    2005-06-01

    The aim of this study was to investigate the potential application of the beta-d-glucuronidase (GLUase) activity measurement for the routine detection and quantification of E. coli in marine bathing waters. GLUase activity was measured as the rate of hydrolysis of 4-methylumbelliferyl-beta-d-glucuronide. Culturable E. coli were quantified by the most probable number (MPN) microplate method. Both methods were applied to a large set of seawater samples. Significant correlation was found between the log of GLUase activity and the log of culturable E. coli. The mean coefficient of variation (CV) of the GLUase activity was less than 15% at concentrations around the current standards of International regulations whereas the CV of the microplate method was around 30%. When samples were stored at 4 degrees C and 20 degrees C, the mean CV of the GLUase activity remained below 15% up to 6 hours after sample collection whereas the range of variation of the microplate method varied between 10 and 50%. We concluded that the GLUase activity is an operational, reproducible, simple, very rapid and low cost method for the real-time enumeration of E. coli in bathing waters and should be preferred to the microplate method. The GLUase activity method should be routinely applied to the rapid enumeration of E. coli in recreational waters and recommendations for its application were suggested to water quality managers.

  17. Computing Wigner distributions and time correlation functions using the quantum thermal bath method: application to proton transfer spectroscopy.

    PubMed

    Basire, Marie; Borgis, Daniel; Vuilleumier, Rodolphe

    2013-08-14

    Langevin dynamics coupled to a quantum thermal bath (QTB) allows for the inclusion of vibrational quantum effects in molecular dynamics simulations at virtually no additional computer cost. We investigate here the ability of the QTB method to reproduce the quantum Wigner distribution of a variety of model potentials, designed to assess the performances and limits of the method. We further compute the infrared spectrum of a multidimensional model of proton transfer in the gas phase and in solution, using classical trajectories sampled initially from the Wigner distribution. It is shown that for this type of system involving large anharmonicities and strong nonlinear coupling to the environment, the quantum thermal bath is able to sample the Wigner distribution satisfactorily and to account for both zero point energy and tunneling effects. It leads to quantum time correlation functions having the correct short-time behavior, and the correct associated spectral frequencies, but that are slightly too overdamped. This is attributed to the classical propagation approximation rather than the generation of the quantized initial conditions themselves.

  18. Synthesis and characterization of photoconducting (Cd:Zn)S thin films by hydrothermal assisted chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Mathew, Joissy; Devasia, Sebin; Anila, E. I.

    2018-04-01

    We report the synthesis of polycrystalline ternary (Cd:Zn)S thin films by hydrothermal assisted chemical bath deposition on glass substrates. X-ray diffraction reveals the hexagonal phase of cadmium zinc sulphide (CZS) film with preferred orientation along the (002) plane and the average grain size to be 22.78 nm. SEM image shows clusters of nano fibers grown on the film. The optical band gap obtained from the optical absorption studies using UV-Vis-NIR spectroscopy is 3.4 eV. Broad and asymmetric emission due to the combination of near band edge emission and emission fromintrinsic point defects was observed in the PL spectrum. The filmexhibit photo conductivity under illumination by light from 32 watts halogen bulb. In dark condition, the I-V curve shows non-linear behavior, whereas ohmic behavior under illumination. The Photo response of film was recorded for the light-on and light-off conditions at intervals of 100 seconds when 10V voltage was applied. We observed fast rise and decay of the photocurrent depicting high photosensitivity. This work present a simple way to obtain photo-detectors and will benefit in optical-electron devices manufacture.

  19. Flexible low-cost infrared photodetector based on SnS thin film grown by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Mahdi, Mohamed S.; Ibrahim, K.; Ahmed, Naser M.; Kadhim, A.; Azzez, Shrook A.; Mustafa, Falah I.; Bououdina, M.

    2017-10-01

    A novel, flexible, and low-cost infrared (IR) SnS photodetector was fabricated onto a polyethylene terephthalate (PET) substrate by a simple approach based on chemical bath deposition. X-ray diffraction analysis confirmed an orthorhombic structure, scanning electron microscopy observations revealed flower-like morphology, and UV-vis spectroscopy indicated a direct energy gap of 1.42 eV. The photodetector exhibited maximum responsivity at 850 nm under the illumination of a Hg (Xe) lamp. The photoresponse properties of the photodetector were determined under illumination of 850 nm at various bias voltages (3, 5 and 7 V). The photodetector manifested good sensitivity, excellent reproducibility and fast response time. Both rise/decay times measured at bias voltage of 3 V were determined: τ rise  =  0.38 s and τ decay  =  0.67 s. Additionally, the photoresponse versus different power density of illumination was also measured. The as-obtained results, highlighted that the newly fabricated SnS photodetector can be considered as a promising photoelectronic device that can be effectively used in the IR region due to its excellent photoresponce characteristics, low cost, flexibility, and non-toxicity.

  20. Cadmium sulphide (CdS) thin films deposited by chemical bath deposition (CBD) and dip coating techniques—a comparative study

    NASA Astrophysics Data System (ADS)

    Khimani, Ankurkumar J.; Chaki, Sunil H.; Malek, Tasmira J.; Tailor, Jiten P.; Chauhan, Sanjaysinh M.; Deshpande, M. P.

    2018-03-01

    The CdS thin films were deposited on glass slide substrates by Chemical Bath Deposition and dip coating techniques. The films thickness variation with deposition time showed maximum films deposition at 35 min for both the films. The energy dispersive analysis of x-ray showed both the films to be stoichiometric. The x-ray diffraction analysis confirmed the films possess hexagonal crystal structure. The transmission electron, scanning electron and optical microscopy study showed the films deposition to be uniform. The selected area electron diffraction exhibited ring patterns stating the films to be polycrystalline in nature. The atomic force microscopy images showed surface formed of spherical grains, hills and valleys. The recorded optical absorbance spectra analysis revealed the films possess direct optical bandgap having values of 2.25 eV for CBD and 2.40 eV for dip coating. The refractive index (η), extinction coefficient (k), complex dielectric constant (ε) and optical conductivity (σ 0) variation with wavelength showed maximum photon absorption till the respective wavelengths corresponding to the optical bandgap energy values. The recorded photoluminescence spectra showed two emission peaks. All the obtained results have been discussed in details.

  1. Chemical bath deposited ZnS buffer layer for Cu(In,Ga)Se2 thin film solar cell

    NASA Astrophysics Data System (ADS)

    Hong, Jiyeon; Lim, Donghwan; Eo, Young-Joo; Choi, Changhwan

    2018-02-01

    The dependence of Zn precursors using zinc sulfate (ZnSO4), zinc acetate (Zn(CH3COO)2), and zinc chloride (ZnCl2) on the characteristics of the chemical bath deposited ZnS thin film used as a buffer layer of Cu(In,Ga)Se2 (CIGS) thin film solar cell was studied. It is found that the ZnS film deposition rate increases with higher stability constant during decomplexation reaction of zinc ligands, which affects the crack formation and the amount of sulfur and oxygen contents within the film. The band gap energies of all deposited films are in the range of 3.40-3.49 eV, which is lower than that of the bulk ZnS film due to oxygen contents within the films. Among the CIGS solar cells having ZnS buffer layers prepared by different Zn precursors, the best cell efficiency with 9.4% was attained using Zn(CH3COO)2 precursor due to increased Voc mainly. This result suggests that [Zn(NH3)4]2+ complex formation should be well controlled to attain the high quality ZnS thin films.

  2. Effective properties of undoped and Indium3+-doped tin manganese telluride (Sn1 - xMnxTe) nanoparticles via using a chemical bath deposition route

    NASA Astrophysics Data System (ADS)

    Boon-on, Patsorn; Tubtimtae, Auttasit; Vailikhit, Veeramol; Teesetsopon, Pichanan; Choopun, Supab

    2017-06-01

    Tin manganese telluride nanoparticles (Sn1-xMnxTe NPs) were first synthesized on a niobium pentoxide (Nb2O5) film using a chemical bath deposition (CBD) route. An individual particle size before and after indium (In3+) doping of ∼70-150 nm was investigated with stoichiometric formation of the SnMnTe phase. Furthermore, a cubic or rocksalt structure of the Sn0.938Mn0.062Te phase was also kept incorporated in the structure. The plotted energy band gaps for undoped and In3+-doped samples were 2.17 and 1.83 eV, respectively. The reduction of photoluminescence (PL) spectra after In3+ doping, while the indium dopant acted as a trap state incorporated in Sn1-xMnxTe NPs, showed enhanced charge separation and reduced charge recombination, which resulted in a higher charge density trapped in the conduction band of Nb2O5 and was also confirmed by the result of anodic peaks in the cyclic voltammetry. These results suggest new possibilities in optoelectronic and electrochemical devices.

  3. Float processing of high-temperature complex silicate glasses and float baths used for same

    NASA Technical Reports Server (NTRS)

    Cooper, Reid Franklin (Inventor); Cook, Glen Bennett (Inventor)

    2000-01-01

    A float glass process for production of high melting temperature glasses utilizes a binary metal alloy bath having the combined properties of a low melting point, low reactivity with oxygen, low vapor pressure, and minimal reactivity with the silicate glasses being formed. The metal alloy of the float medium is exothermic with a solvent metal that does not readily form an oxide. The vapor pressure of both components in the alloy is low enough to prevent deleterious vapor deposition, and there is minimal chemical and interdiffusive interaction of either component with silicate glasses under the float processing conditions. Alloys having the desired combination of properties include compositions in which gold, silver or copper is the solvent metal and silicon, germanium or tin is the solute, preferably in eutectic or near-eutectic compositions.

  4. Diverging conductance at the contact between random and pure quantum XX spin chains

    NASA Astrophysics Data System (ADS)

    Chatelain, Christophe

    2017-11-01

    A model consisting of two quantum XX spin chains, one homogeneous and the second with random couplings drawn from a binary distribution, is considered. The two chains are coupled to two different non-local thermal baths and their dynamics is governed by a Lindblad equation. In the steady state, a current J is induced between the two chains by coupling them together by their edges and imposing different chemical potentials μ to the two baths. While a regime of linear characteristics J versus Δμ is observed in the absence of randomness, a gap opens as the disorder strength is increased. In the infinite-randomness limit, this behavior is related to the density of states of the localized states contributing to the current. The conductance is shown to diverge in this limit.

  5. Chemical Synthesis of ZnS:Cu Nanosheets

    NASA Astrophysics Data System (ADS)

    Bodo, Bhaskarjyoti; Kalita, P. K.

    2010-10-01

    ZnS thin films are synthesized through chemical bath deposition (CBD) technique from aqueous solution of ZnSO4 and thiourea mixing in equal volume and equimolar ratio. A 1% CuSO4 solution is mixed with the ZnSO4 solution for doping before the final chemical reaction. SEM image shows the formation of mainly nanosheets, teeth and comb like structures. Absorption studies show red shift of enhanced band gap on Cu doping. Photoluminescence of ZnS:Cu reveals the enhancement of blue luminescence at 468 nm and low intensity green emission at 493 nm which is attributed to more Cu2+ lying in the interstices. XRD shows that the prepared ZnS nanophosphors possess cubic zinc blende structures.

  6. Comparing the Effects of Reflexology and Footbath on Sleep Quality in the Elderly: A Controlled Clinical Trial

    PubMed Central

    Valizadeh, Leila; Seyyedrasooli, Alehe; Zamanazadeh, Vahid; Nasiri, Khadijeh

    2015-01-01

    Background: Sleep disorders are common mental disorders reported among the elderly in all countries, and with nonpharmacological interventions, they could be helped to improve their sleep quality. Objectives: The aim of this study was to compare the effects of two interventions, foot reflexology and foot bath, on sleep quality in elderly people. Patients and Methods: This three-group randomized clinical trial (two experimental groups and a control group) was conducted on 69 elderly men. The two experimental groups had reflexology (n = 23) and foot bath (n = 23) interventions for 6 weeks. The reflexology intervention was done in the mornings, once a week for ten minutes on each foot. The participants in the foot bath group were asked to soak their feet in 41°C to 42°C water one hour before sleeping. The pittsburgh sleep quality index (PSQI) was completed before and after the intervention through an interview process. Results: The results showed that the PSQI scores after intervention compared to before it in the reflexology and foot bath groups were statistically significant (P = 0.01 , P = 0.001); however, in the control group did not show a statistically significant difference (P = 0.14). In addition, the total score changes among the three groups were statistically significant (P = 0.01). Comparing the score changes of quality of sleep between the reflexology and foot bath groups showed that there was no significant difference in none of the components and the total score (P = 0.09). The two interventions had the same impact on the quality of sleep. Conclusions: It is suggested that the training of nonpharmacological methods to improve sleep quality such as reflexology and foot bath be included in the elderly health programs. In addition, it is recommended that the impact of these interventions on subjective sleep quality using polysomnographic recordings be explored in future research. PMID:26734475

  7. Analysis of the first- and second-generation Raving Dragon Novelty Bath Salts containing methylone and pentedrone.

    PubMed

    Poklis, Justin L; Wolf, Carl E; ElJordi, Omar I; Liu, Kai; Zhang, Shijun; Poklis, Alphonse

    2015-01-01

    In recent years, a large number of designer drugs sold as "Bath Salts" have appeared on the market. In July of 2011, Raving Dragon Novelty Bath Salts was obtained over the Internet. This product became unavailable in October of that year coinciding with the DEA issuing a temporarily schedule of mephedrone, methylone, and MDPV. Four months later in February of 2012, a new product was released from the same company under the new name Raving Dragon Voodoo Dust. The contents of both products were identified using spectroscopy methods: nuclear magnetic resonance, infrared, UV-visible, tandem mass spectrometry, and high-resolution time-of-flight mass spectrometry. It was determined that Raving Dragon Novelty Bath Salts contained methylone. The replacement product Raving Dragon Voodoo Dust contained the unscheduled drug pentedrone. The Raving Dragon brand of products illustrates the rapid change of ingredients in these products to circumvent laws restricting availability, distribution, and use. © 2014 American Academy of Forensic Sciences.

  8. Method for recovering light hydrocarbons from coal agglomerates

    DOEpatents

    Huettenhain, Horst; Benz, August D.; Getsoian, John

    1991-01-01

    A method and apparatus for removing light hydrocarbons, such as heptane, from coal agglomerates includes an enclosed chamber having a substantially horizontal perforate surface therein. The coal agglomerates are introduced into a water bath within the chamber. The agglomerates are advanced over the surface while steam is substantially continuously introduced through the surface into the water bath. Steam heats the water and causes volatilization of the light hydrocarbons, which may be collected from the overhead of the chamber. The resulting agglomerates may be collected at the opposite end from the surface and subjected to final draining processes prior to transportation or use.

  9. Effect of Initial Iron Content in a Zinc Bath on the Dissolution Rate of Iron During a Hot Dip Galvanizing Process

    NASA Astrophysics Data System (ADS)

    Lee, Sang Myung; Lee, Suk Kyu; Paik, Doo-Jin; Park, Joo Hyun

    2017-04-01

    The mechanism of iron dissolution and the effect of initial Fe content in a Zn bath on the dissolution rate of iron were investigated using a finger rotating method (FRM). When the initial iron content, [Fe]°, in the zinc bath was less than the solubility limit, the iron content in the zinc bath showed a rapid increase, whereas a moderate increase was observed when [Fe]° was close to the solubility limit. Based on Eisenberg's kinetic model, the mass transfer coefficient of iron in the present experimental condition was calculated to be k M = 1.2 × 10-5 m/s, which was similar to the results derived by Giorgi et al. under industrial practice conditions. A dissolution of iron occurred even when the initial iron content in the zinc bath was greater than the solubility limit, which was explained by the interfacial thermodynamics in conjunction with the morphology of the surface coating layer. By analyzing the diffraction patterns using TEM, the outermost dendritic-structured coating layer was confirmed as FeZn13 ( ζ). In order to satisfy the local equilibrium based on the Gibbs-Thomson equation, iron in the dendrite-structured phase spontaneously dissolved into the zinc bath, resulting in the enrichment of iron in front of the dendrite tip. Through the diffusion boundary layer in front of the dendritic-structured layer, dissolved Fe atoms diffused out and reacted with Zn and small amounts of Al, resulting in the formation of dross particles such as FeZn10Al x ( δ). It was experimentally confirmed that the smaller the difference between the initial iron content in the zinc bath and the iron solubility limit at a given temperature, the lower the number of formed dross particles.

  10. The oil-dispersion bath in anthroposophic medicine – an integrative review

    PubMed Central

    Büssing, Arndt; Cysarz, Dirk; Edelhäuser, Friedrich; Bornhöft, Gudrun; Matthiessen, Peter F; Ostermann, Thomas

    2008-01-01

    Background Anthroposophic medicine offers a variety of treatments, among others the oil-dispersion bath, developed in the 1930s by Werner Junge. Based on the phenomenon that oil and water do not mix and on recommendations of Rudolf Steiner, Junge developed a vortex mechanism which churns water and essential oils into a fine mist. The oil-covered droplets empty into a tub, where the patient immerses for 15–30 minutes. We review the current literature on oil-dispersion baths. Methods The following databases were searched: Medline, Pubmed, Embase, AMED and CAMbase. The search terms were 'oil-dispersion bath' and 'oil bath', and their translations in German and French. An Internet search was also performed using Google Scholar, adding the search terms 'study' and 'case report' to the search terms above. Finally, we asked several experts for gray literature not listed in the above-mentioned databases. We included only articles which met the criterion of a clinical study or case report, and excluded theoretical contributions. Results Among several articles found in books, journals and other publications, we identified 1 prospective clinical study, 3 experimental studies (enrolling healthy individuals), 5 case reports, and 3 field-reports. In almost all cases, the studies described beneficial effects – although the methodological quality of most studies was weak. Main indications were internal/metabolic diseases and psychiatric/neurological disorders. Conclusion Beyond the obvious beneficial effects of warm bathes on the subjective well-being, it remains to be clarified what the unique contribution of the distinct essential oils dispersed in the water can be. There is a lack of clinical studies exploring the efficacy of oil-dispersion baths. Such studies are recommended for the future. PMID:19055811

  11. Effect of Dispersion Method on Stability and Dielectric Strength of Transformer Oil-Based TiO2 Nanofluids.

    PubMed

    Lv, Yu-Zhen; Li, Chao; Sun, Qian; Huang, Meng; Li, Cheng-Rong; Qi, Bo

    2016-12-01

    Dispersion stability of nanoparticles in the liquid media is of great importance to the utilization in practice. This study aims to investigate the effects of mechanical dispersion method on the dispersibility of functionalized TiO 2 nanoparticles in the transformer oil. Dispersion methods, including stirring, ultrasonic bath, and probe processes, were systematically tested to verify their versatility for preparing stable nanofluid. The test results reveal that the combination of ultrasonic bath process and stirring method has the best dispersion efficiency and the obtained nanofluid possesses the highest AC breakdown strength. Specifically, after aging for 168 h, the size of nanoparticles in the nanofluid prepared by the combination method has no obvious change, while those obtained by the other three paths are increased obviously.

  12. Towards Improvements for Penetrating the Blood–Brain Barrier—Recent Progress from a Material and Pharmaceutical Perspective

    PubMed Central

    He, Quanguo; Liu, Jun; Liang, Jing; Liu, Xiaopeng; Li, Wen; Liu, Zhi; Ding, Ziyu; Tuo, Du

    2018-01-01

    The blood–brain barrier (BBB) is a critical biological structure that prevents damage to the brain and maintains its bathing microenvironment. However, this barrier is also the obstacle to deliver beneficial drugs to treat CNS (central nervous system) diseases. Many efforts have been made for improvement of delivering drugs across the BBB in recent years to treat CNS diseases. In this review, the anatomical and functional structure of the BBB is comprehensively discussed. The mechanisms of BBB penetration are summarized, and the methods and effects on increasing BBB permeability are investigated in detail. It also elaborates on the physical, chemical, biological and nanocarrier aspects to improve drug delivery penetration to the brain and introduces some specific drug delivery effects on BBB permeability. PMID:29570659

  13. A study on the enhancement of opto-electronic properties of CdS thin films: seed-assisted fabrication

    NASA Astrophysics Data System (ADS)

    Kumarage, W. G. C.; Wijesundera, R. P.; Seneviratne, V. A.; Jayalath, C. P.; Dassanayake, B. S.

    2017-04-01

    A novel method of fabricating chemical bath deposited CdS thin films (CBD-CdS) by using electrodeposited CdS (ED-CdS) as a seed layer is reported. The resulting thin, compact, uniform and adherent seed-assisted CdS films (ED/CBD-CdS) show enhanced effective surface area compared to both ED-CdS and CBD-CdS. The phase of these CdS films was determined to be hexagonal. The fabricated ED/CBD-CdS films show higher photoelectrochemical (PEC) cell efficiency than either ED-CdS and CBD-CdS thin films. Carrier concentration and flat band potential values for ED/CBD-CdS systems are also found to be superior compared to both ED-CdS and CBD-CdS systems.

  14. Synthesis and Thermodynamic Stability of Ba2B‧B″O6 and Ba3B*B″2O9 Perovskites Using the Molten Salt Method

    NASA Astrophysics Data System (ADS)

    Meng, Wei; Virkar, Anil V.

    1999-12-01

    A number of mixed perovskites of the types Ba2B‧B″O6 (BaB‧1/2B″1/2O3) and Ba3B*B″2O9 (BaB*1/3B″2/3O3) where B‧=Gd, La, Nd, Sm, or Y; B″=Nb and B*=Ca were synthesized by a conventional calcination process, as well as by the molten salt method. The former consists of calcining appropriate mixtures of oxide or carbonate precursors in air at elevated temperatures (∼1250°C). The latter method consists of adding appropriate mixtures of oxide or carbonate precursors to a molten salt bath at relatively low temperatures (on the order of 300 to 500°C) so that the requisite compound is formed by dissolution-reprecipitation. X-ray diffraction confirmed the formation of a single-phase perovskite in each case with calcination at 1250°C. In a molten salt bath, however, all except Ba2LaNbO6 and Ba2NdNbO6 formed the perovskite structure. On the contrary, powders of Ba2LaNbO6 and Ba2NdNbO6 formed by a high-temperature calcination process readily decomposed when introduced into the molten salt bath. The formation of the requisite perovskite at a temperature as low as 350°C in a molten salt suggests that: (a) The perovskite is stable at 350°C. (b) The molten salt exhibits sufficient precursor solubility for the dissolution-reprecipitation process to occur in a reasonable time. Similarly, the decomposition of Ba2LaNbO6 and Ba2NdNbO6 in a molten salt bath shows that these materials are thermodynamically unstable at the temperature of the molten salt bath.

  15. Creation of quantum steering by interaction with a common bath

    NASA Astrophysics Data System (ADS)

    Sun, Zhe; Xu, Xiao-Qiang; Liu, Bo

    2018-05-01

    By applying the hierarchy equation method, we computationally study the creation of quantum steering in a two-qubit system interacting with a common bosonic bath. The calculation does not adopt conventional approximate approaches, such as the Born, Markov, rotating-wave, and other perturbative approximations. Three kinds of quantum steering, i.e., Einstein-Podolsky-Rosen steering (EPRS), temporal steering (TS), and spatiotemporal steering (STS), are considered. Since the initial state of the two qubits is chosen as a product state, there does not exist EPRS at the beginning. During the evolution, we find that STS as well as EPRS are generated at the same time. An inversion relationship between STS and TS is revealed. By varying the system-bath coupling strength from weak to ultrastrong regimes, we find the nonmonotonic dependence of STS, TS, and EPRS on the coupling strength. It is interesting to study the dynamics of the three kinds of quantum steering by using an exactly numerical method, which is not considered in previous researches.

  16. ELECTROLYTIC CLADDING OF ZIRCONIUM ON URANIUM

    DOEpatents

    Wick, J.J.

    1959-09-22

    A method is presented for coating uranium with zircoalum by rendering the uranium surface smooth and oxidefree, immersing it in a molten electrolytic bath in NaCI, K/sub 2/ZrF/sub 6/, KF, and ZrO/sub 2/, and before the article reaches temperature equilibrium with the bath, applying an electrolyzing current of 60 amperes per square dectmeter at approximately 3 volts to form a layer of zirconium metal on the uranium.

  17. Habitual hot-spring bathing by a group of Japanese macaques (Macaca fuscata) in their natural habitat.

    PubMed

    Zhang, Peng; Watanabe, Kunio; Eishi, Tokida

    2007-12-01

    Japanese macaques (Macaca fuscata) in a free-ranging group in Jigokudani valley, Nagano prefecture, are known to bathe in a hot spring. We used scan sampling in a study aimed at elucidating the causal factors and possible social transmission of this behavior. From 1980-2003, 31% of a total 114 females in the group habitually bathed in the hot spring. The habit was more widespread in dominant matrilines than in subordinate matrilines. Infants whose mothers bathed were more likely to bathe than infants of mothers who did not bathe. The number of monkeys bathing was clearly influenced by ambient air temperature. More monkeys bathed in the hot spring in winter than in summer. The results support the thermoregulation hypothesis of hot-spring bathing. Bathing behavior varies among age and sex categories of monkeys, with adult females and juveniles bathing more often than adult males and subadults. We compared hot-spring bathing with other thermoregulatory behaviors in various primate populations. (c) 2007 Wiley-Liss, Inc.

  18. Cycle life improvement of alkaline batteries via optimization of pulse current deposition of manganese dioxide under low bath temperatures

    NASA Astrophysics Data System (ADS)

    Adelkhani, H.; Ghaemi, M.; Jafari, S. M.

    Pulse current electrodeposition (PCD) method has been applied to the preparation of novel electrolytic manganese dioxide (EMD) in order to enhance the cycle life of rechargeable alkaline MnO 2-Zn batteries (RAM). The investigation was carried out under atmospheric pressure through a systematic variation of pulse current parameters using additive free sulfuric acid-MnSO 4 electrolyte solutions. On time (t on) was varied from 0.1 to 98.5 ms, off time (t off) from 0.25 to 19.5 ms, pulse frequencies (f) from 10 to 1000 Hz and duty cycles (θ) from 0.02 to 0.985. A constant pulse current density (I p) of 0.8 A dm -2 and average current densities (I a) in the range of 0.08-0.8 A dm -2 were applied in all experiments. Resultant materials were characterized by analyzing their chemical compositions, X-ray diffractions (XRD) and scanning electron microscopy (SEM). Electrochemical characterizations carried out by charge/discharge cycling of samples in laboratory designed RAM batteries and cyclic voltammetric experiments (CV). It has been proved that specific selection of duty cycle, in the order of 0.25, and a pulse frequency of 500 Hz, results in the production of pulse deposited samples (pcMDs) with more uniform distribution of particles and more compact structure than those obtained by direct current techniques (dcMDs). Results of the test batteries demonstrated that, in spite of reduction of bath temperature in the order of 40 °C, the cycle life of batteries made of pcMDs (bath temperature: 60 °C) was rather higher than those made of conventional dcMDs (boiling electrolyte solution). Under the same conditions of EMD synthesis temperature of 80 °C and battery testing, the maximum obtainable cycle life of optimized pcMD was nearly 230 cycles with approximately 30 mAh g -1 MnO 2, compared to that of dcMD, which did not exceed 20 cycles. In accordance to these results, CV has confirmed that the pulse duty cycle is the most influential parameter on the cycle life than the pulse frequency. Because of operating at lower bath temperatures, the presented synthetic mode could improve its competitiveness in economical aspects.

  19. Non-equilibrium current via geometric scatterers

    NASA Astrophysics Data System (ADS)

    Exner, Pavel; Neidhardt, Hagen; Tater, Miloš; Zagrebnov, Valentin A.

    2014-10-01

    We investigate non-equilibrium particle transport in a system consisting of a geometric scatterer and two leads coupled to heat baths with different chemical potentials. We derive an expression for the corresponding current, the carriers of which are fermions, and analyze numerically its dependence on the model parameters in examples where the scatterer has a rectangular or triangular shape. Dedicated to the memory of Markus Büttiker (1950-2013).

  20. A new capillary electrophoresis buffer for determining organic and inorganic anions in electroplating bath with surfactant additives.

    PubMed

    Sun, H; Lau, K M; Fung, Y S

    2010-05-07

    Monitoring of trace impurities in electroplating bath is needed to meet EU requirements for WEEE and RoHS and for quality control of electrodeposits. Methods using IC and 100% aqueous CE buffer were found producing non-repeatable results attributed to interference of surfactants and major methanesulphonate anion. A new CE buffer containing 1.5mM tetraethylenepentaamine, 3mM 1,3,5-benzenetricarboxylic acid and 15 mM Tris in 20% (v/v) methanol at pH=8.4 was shown to enhance the separation window, reduce interaction between buffer and bath constituents, and give satisfactory repeatability with baseline separation for 14 organic and inorganic anions within 14 min, good repeatability for migration time (0.32-0.57% RSD), satisfactory peak area and peak height (2.9-4.5 and 3-4.7% respectively), low detection limit (S/N=2, 20-150 ppb), and wide working ranges (0.1-100 ppm). The CE buffer with 20% (v/v) methanol has demonstrated its capability for identifying anion impurities causing problem in aged tin bath and the use of only 10-fold dilution to produce reliable results for quality assessment in plating bath containing high surfactant additives. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  1. Pharmacokinetics of enrofloxacin after oral, intramuscular and bath administration in crucian carp (Carassius auratus gibelio).

    PubMed

    Shan, Q; Fan, J; Wang, J; Zhu, X; Yin, Y; Zheng, G

    2018-02-01

    The pharmacokinetics of enrofloxacin (ENR) was studied in crucian carp (Carassius auratus gibelio) after single administration by intramuscular (IM) injection and oral gavage (PO) at a dose of 10 mg/kg body weight and by 5 mg/L bath for 5 hr at 25°C. The plasma concentrations of ENR and ciprofloxacin (CIP) were determined by HPLC. Pharmacokinetic parameters were calculated based on mean ENR or CIP concentrations using WinNonlin 6.1 software. After IM, PO and bath administration, the maximum plasma concentration (C max ) of 2.29, 3.24 and 0.36 μg/ml was obtained at 4.08, 0.68 and 0 hr, respectively; the elimination half-life (T 1/2β ) was 80.95, 62.17 and 61.15 hr, respectively; the area under the concentration-time curve (AUC) values were 223.46, 162.72 and 14.91 μg hr/ml, respectively. CIP, an active metabolite of enrofloxacin, was detected and measured after all methods of drug administration except bath. It is possible and practical to obtain therapeutic blood concentrations of enrofloxacin in the crucian carp using IM, PO and bath immersion administration. © 2017 John Wiley & Sons Ltd.

  2. The availability and depiction of synthetic cathinones (bath salts) on the Internet: Do online suppliers employ features to maximize purchases?

    PubMed

    Meyers, Kathleen; Kaynak, Övgü; Bresani, Elena; Curtis, Brenda; McNamara, Ashley; Brownfield, Kristine; Kirby, Kimberly C

    2015-07-01

    "Bath salts", a derivative of cathinone, a naturally occurring beta-ketone amphetamine analogue found in the leaves of the khat (Catha edulis) plant, is a potent class of designer drugs associated with significant medical and psychiatric consequences. They are commonly used among 20-29 year olds, a group with easy access to the Internet and an inclination to purchase online. Therefore, the Internet has the potential to play a significant role in the distribution and associated consequences of these "legal highs". Google searches were used to determine bath salts availability on retail websites and how different search terms affected the proportion of retail websites obtained. Retail websites were reviewed by two independent raters who examined content with a focus on characteristics that increase the likelihood of online sales. Of the 250 websites found, 31 were unique retail websites. Most retail website hits resulted when a product name was used as the search term. The top three countries hosting retail websites were registered in the United States (n=14; 45%), Germany (n=7; 23%), and the United Kingdom (n=3; 10%). These online drug suppliers provided considerable information and purchasing choice about a variety of synthetic cathinones, legitimized their sites by using recognizable images, online chat features, and mainstream payment and shipping methods, and employed characteristics that promote online purchases. Online designer drug suppliers use sophisticated methods to market unregulated products to consumers. The international community has taken diverse approaches to address designer drugs: legislative bans, harm reduction approaches, an interim regulated legal market. Multifaceted efforts that target bath salt users, suppliers, and emergency/poison control entities are critical to comprehensively address bath salt ingestion and its consequences. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance.

    PubMed

    Baugh, J; Moussa, O; Ryan, C A; Nayak, A; Laflamme, R

    2005-11-24

    The counter-intuitive properties of quantum mechanics have the potential to revolutionize information processing by enabling the development of efficient algorithms with no known classical counterparts. Harnessing this power requires the development of a set of building blocks, one of which is a method to initialize the set of quantum bits (qubits) to a known state. Additionally, fresh ancillary qubits must be available during the course of computation to achieve fault tolerance. In any physical system used to implement quantum computation, one must therefore be able to selectively and dynamically remove entropy from the part of the system that is to be mapped to qubits. One such method is an 'open-system' cooling protocol in which a subset of qubits can be brought into contact with an external system of large heat capacity. Theoretical efforts have led to an implementation-independent cooling procedure, namely heat-bath algorithmic cooling. These efforts have culminated with the proposal of an optimal algorithm, the partner-pairing algorithm, which was used to compute the physical limits of heat-bath algorithmic cooling. Here we report the experimental realization of multi-step cooling of a quantum system via heat-bath algorithmic cooling. The experiment was carried out using nuclear magnetic resonance of a solid-state ensemble three-qubit system. We demonstrate the repeated repolarization of a particular qubit to an effective spin-bath temperature, and alternating logical operations within the three-qubit subspace to ultimately cool a second qubit below this temperature. Demonstration of the control necessary for these operations represents an important step forward in the manipulation of solid-state nuclear magnetic resonance qubits.

  4. Electrodepositing behaviors and properties of nano Fe-Ni-Cr/SiC composite coatings from trivalent chromium baths containing compound carboxylate-urea system.

    PubMed

    He, Xinkuai; Hou, Bailong; Cai, Youxing; Li, Chen; Jiang, Yumei; Wu, Luye

    2013-06-01

    The nano Fe-Ni-Cr/SiC composite coatings were prepared using pulse electrodeposition method from trivalent chromium baths containing compound carboxylate-urea system and nano SiC in ultrasonic field. The effects of the carboxylate-urea system on the nano Fe-Ni-Cr/SiC composite coatings have been investigated. These results indicated that the SiC and Cr contents and the thickness of the Fe-Ni-Cr/SiC composite coatings could be obviously improved by the compound carboxylate-urea system. The steady-state polarization curves showed that the hydrogen evolution reaction (HER) could be significantly inhibited by the compound carboxylate-urea system, which was benefit to increase the SiC and Cr contents and the thickness of the composite coatings. The cyclic voltammetry (CV) curves showed that the cathodic polarization of the matrix metal ions could be increased in the bath containing the compound carboxylate-urea system. Thus, a compact Fe-Ni-Cr/SiC composite coating could be obtained using this technique. The surface morphology of the Fe-Ni-Cr/SiC composite coatings checked with the scanning electron micrographs (SEM) showed that the surface smoothness could be also improved and the microcracks and pinholes could be decreased due to the presence of the compound carboxylate-urea system. The phase composition of the as-posited coating was measured by the X-ray diffraction (XRD). XRD data showed that the as-posited coating was Fe-Ni-Cr/SiC composite coating. The chemical composition of the coating was investigated by energy dispersive spectrum (EDS) analysis. The result showed the functional Fe-Ni-Cr/SiC composite coatings with 4.1 wt.% SiC and 25.1 wt.% Cr, and 23.9 microm thickness were obtained in this study, which had best corrosion resistance according to the results of the typical potentiodynamic polarization curves of the Fe-Ni-Cr/SiC composite coatings.

  5. Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Bin, Duan; Yang, Beibei; Wang, Caiqin; Ren, Fangfang; Du, Yukou

    2015-07-01

    Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly enhanced cycling stability toward ethanol oxidation in alkaline medium, which are mainly ascribed to the synergetic effect between Pd and Ru. This indicates that the Pd7/Ru1 catalysts should have great potential applications in direct ethanol fuel cells.Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly enhanced cycling stability toward ethanol oxidation in alkaline medium, which are mainly ascribed to the synergetic effect between Pd and Ru. This indicates that the Pd7/Ru1 catalysts should have great potential applications in direct ethanol fuel cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02713f

  6. Analysis of the co-deposition of Al2O3 particles with nickel by an electrolytic route: The influence of organic additives presence and Al2O3 concentration

    NASA Astrophysics Data System (ADS)

    Temam, H. B.; Temam, E. G.

    2016-04-01

    Alloy coatings were prepared by co-deposition of Al2O3 particles in Ni matrix on carbon steel substrate from nickel chloride bath in which metallic powders were held in suspension. The influence of metal powder amount in the bath on chemical composition, morphology, thickness, microhardness and corrosion behavior of obtained coatings, has been investigated. It was shown that the presence of Al2O3 particles in deposit greatly improves the hardness and the wear resistance of alloy coatings. Characterization by microanalysis (EDX) of the various deposits elaborated confirms that the rate of particles incorporated increases as the concentration of solid particles increasing. The results showed that the presence of organic additives in Ni-Al2O3 electrolyte deposition led to an increase in the hardness and corrosion resistance of the deposits.

  7. Normal mode analysis on the relaxation of an excited nitromethane molecule in argon bath

    NASA Astrophysics Data System (ADS)

    Rivera-Rivera, Luis; Wagner, Albert

    In our previous work [J. Chem. Phys. 142, 014303 (2015)] classical molecular dynamics simulations followed in an Ar bath the relaxation of nitromethane (CH3NO2) instantaneously excited by statistically distributing 50 kcal/mol among all its internal degrees of freedom. The 300 K Ar bath was at pressures of 10 to 400 atm, a range spanning the breakdown of the isolated binary collision approximation. Both rotational and vibrational energies exhibit multi-exponential decay. This study explores mode-specific mechanisms at work in the decay process. With the separation of rotation and vibration developed by Rhee and Kim [J. Chem. Phys. 107, 1394 (1997)], one can show that the vibrational kinetic energy decomposes only into vibrational normal modes while the rotational and Coriolis energies decompose into both vibrational and rotational normal modes. Then the saved CH3NO2 positions and momenta can be converted into mode-specific energies whose decay over 1000 ps can be monitored. The results identify vibrational and rotational modes that promote/resist energy lost and drive multi-exponential behavior. Increasing pressure can be shown to increasingly interfere with post-collision IVR. The work was supported by the U.S. Department of Energy, Office of Science, Chemical Sciences, Geosciences, and Biosciences Division.

  8. Approach to equilibrium of a quantum system and generalization of the Montroll-Shuler equation for vibrational relaxation of a molecular oscillator

    NASA Astrophysics Data System (ADS)

    Kenkre, V. M.; Chase, M.

    2017-08-01

    The approach to equilibrium of a quantum mechanical system in interaction with a bath is studied from a practical as well as a conceptual point of view. Explicit memory functions are derived for given models of bath couplings. If the system is a harmonic oscillator representing a molecule in interaction with a reservoir, the generalized master equation derived becomes an extension into the coherent domain of the well-known Montroll-Shuler equation for vibrational relaxation and unimolecular dissociation. A generalization of the Bethe-Teller result regarding energy relaxation is found for short times. The theory has obvious applications to relaxation dynamics at ultra-short times as in observations on the femtosecond time scale and to the investigation of quantum coherence at those short times. While vibrational relaxation in chemical physics is a primary target of the study, another system of interest in condensed matter physics, an electron or hole in a lattice subjected to a strong DC electric field that gives rise to well-known Wannier-Stark ladders, is naturally addressed with the theory. Specific system-bath interactions are explored to obtain explicit details of the dynamics. General phenomenological descriptions of the reservoir are considered rather than specific microscopic realizations.

  9. Combined effect of attrition and ultrasound on the disruption of Pseudomonas putida for the efficient release of arginine deiminase.

    PubMed

    Patil, Mahesh D; Shinde, Ashok S; Dev, Manoj J; Patel, Gopal; Bhilare, Kiran D; Banerjee, Uttam Chand

    2018-06-08

    Disruption of Pseudomonas putida KT2440 by ultrasound treatment in a bath sonicator, in presence of the glass beads, was carried out for the release of arginine deiminase (ADI) and the results were compared with that of by Dyno-mill. The release of ADI depended mainly on the bead size and cellmass concentration being disrupted in bead mill. Nearly 23 U/mL ADI was released when slurry with a cell-mass concentration of 250 g/L was disintegrated for 9 min with 80% bead loading (0.25 mm) in Dyno-mill. Marginally higher amount of ADI (24.1 U/mL) was released by the bath sonication of 250 g/L cellmass slurry for 30 min with the beads (0.1 mm) and a sonication power of 170 W. The glass beads, suspended along with the cellmass slurry in bath sonicator, efficiently disrupted the microbial cells to release ADI. Variation in the kinetic constants for the performance parameters implied that ADI release and cell disruption kinetics is a function of disruption technique used and the process variables thereof. Estimation of location factor suggested that selective release of ADI can be achieved. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  10. How Can We Best Assess the Quality of Life of People with Dementia? The Bath Assessment of Subjective Quality of Life in Dementia (BASQID)

    ERIC Educational Resources Information Center

    Trigg, Richard; Skevington, Suzanne M.; Jones, Roy W.

    2007-01-01

    Purpose: The study aim was to develop a measure of self-reported quality of life (QoL) for people with mild to moderate dementia based on their views--the Bath Assessment of Subjective Quality of Life in Dementia (BASQID). Design and Methods: We developed the measure through multiple stages. Two field tests of the measure (ns = 60 and 150)…

  11. Cavitation Enhancing Nanodroplets Mediate Efficient DNA Fragmentation in a Bench Top Ultrasonic Water Bath

    PubMed Central

    Malc, Ewa P.; Jayakody, Chatura N.; Tsuruta, James K.; Mieczkowski, Piotr A.; Janzen, William P.; Dayton, Paul A.

    2015-01-01

    A perfluorocarbon nanodroplet formulation is shown to be an effective cavitation enhancement agent, enabling rapid and consistent fragmentation of genomic DNA in a standard ultrasonic water bath. This nanodroplet-enhanced method produces genomic DNA libraries and next-generation sequencing results indistinguishable from DNA samples fragmented in dedicated commercial acoustic sonication equipment, and with higher throughput. This technique thus enables widespread access to fast bench-top genomic DNA fragmentation. PMID:26186461

  12. Preparation of electrochromic thin films by transformation of manganese(II) carbonate

    NASA Astrophysics Data System (ADS)

    Stojkovikj, Sasho; Najdoski, Metodija; Koleva, Violeta; Demiri, Sani

    2013-10-01

    A new chemical bath method for deposition of manganese(II) carbonate thin film on electroconductive FTO glass substrates is designed. The homogeneous thin films with thickness in the range of 70 to 500 nm are deposited at about 98 °C from aqueous solution containing urea and MnCl2. The chemical process is based on a low temperature hydrolysis of the manganese complexes with urea. Three types of films are under consideration: as-deposited, annealed and electrochemically transformed thin films. The structure of the films is studied by XRD, IR and Raman spectroscopy. Electrochemical and optical properties are examined in eight different electrolytes (neutral and alkaline) and the best results are achieved in two component aqueous solution of 0.1 M KNO3 and 0.01 M KOH. It is established that the as-deposited MnCO3 film undergoes electrochemically transformation into birnessite-type manganese(IV) oxide films, which exhibit electrochromic color changes (from bright brown to pale yellow and vice versa) with 30% difference in the transmittance of the colored and bleached state at 400 nm.

  13. Shallow V-Shape Nanostructured Pit Arrays in Germanium Using Aqua Regia Electroless Chemical Etching

    PubMed Central

    Chaabane, Ibtihel; Banerjee, Debika; Touayar, Oualid; Cloutier, Sylvain G.

    2017-01-01

    Due to its high refractive index, reflectance is often a problem when using Germanium for optoelectronic devices integration. In this work, we propose an effective and low-cost nano-texturing method for considerably reducing the reflectance of bulk Germanium. To do so, uniform V-shape pit arrays are produced by wet electroless chemical etching in a 3:1 volume ratio of highly-concentrated hydrochloridric and nitric acids or so-called aqua regia bath using immersion times ranging from 5 to 60 min. The resulting pit morphology, the crystalline structure of the surface and the changes in surface chemistry after nano-patterning are all investigated. Finally, broadband near-infrared reflectance measurements confirm a significant reduction using this simple wet etching protocol, while maintaining a crystalline, dioxide-free, and hydrogen-passivated surface. It is important to mention that reflectance could be further reduced using deeper pits. However, most optoelectronic applications such as photodetectors and solar cells require relatively shallow patterning of the Germanium to allow formation of a pn-junction close to the surface. PMID:28773215

  14. METHOD OF PROTECTIVELY COATING URANIUM

    DOEpatents

    Eubank, L.D.; Boller, E.R.

    1959-02-01

    A method is described for protectively coating uranium with zine comprising cleaning the U for coating by pickling in concentrated HNO/sub 3/, dipping the cleaned U into a bath of molten zinc between 430 to 600 C and containing less than 0 01% each of Fe and Pb, and withdrawing and cooling to solidify the coating. The zinccoated uranium may be given a; econd coating with another metal niore resistant to the corrosive influences particularly concerned. A coating of Pb containing small proportions of Ag or Sn, or Al containing small proportions of Si may be applied over the zinc coatings by dipping in molten baths of these metals.

  15. Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D., E-mail: sergei.ivanov@uni-rostock.de

    2015-06-28

    Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied,more » usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom.« less

  16. Ergodicity of the Stochastic Nosé-Hoover Heat Bath

    NASA Astrophysics Data System (ADS)

    Wei Chung Lo,; Baowen Li,

    2010-07-01

    We numerically study the ergodicity of the stochastic Nosé-Hoover heat bath whose formalism is based on the Markovian approximation for the Nosé-Hoover equation [J. Phys. Soc. Jpn. 77 (2008) 103001]. The approximation leads to a Langevin-like equation driven by a fluctuating dissipative force and multiplicative Gaussian white noise. The steady state solution of the associated Fokker-Planck equation is the canonical distribution. We investigate the dynamics of this method for the case of (i) free particle, (ii) nonlinear oscillators and (iii) lattice chains. We derive the Fokker-Planck equation for the free particle and present approximate analytical solution for the stationary distribution in the context of the Markovian approximation. Numerical simulation results for nonlinear oscillators show that this method results in a Gaussian distribution for the particles velocity. We also employ the method as heat baths to study nonequilibrium heat flow in one-dimensional Fermi-Pasta-Ulam (FPU-β) and Frenkel-Kontorova (FK) lattices. The establishment of well-defined temperature profiles are observed only when the lattice size is large. Our results provide numerical justification for such Markovian approximation for classical single- and many-body systems.

  17. Influence of chemical and mechanical polishing on water sorption and solubility of denture base acrylic resins.

    PubMed

    Rahal, Juliana Saab; Mesquita, Marcelo Ferraz; Henriques, Guilherme Elias Pessanha; Nóbilo, Mauro Antonio Arruda

    2004-01-01

    Influence of polishing methods on water sorption and solubility of denture base acrylic resins was studied. Eighty samples were divided into groups: Classico (CL), and QC 20 (QC) - hot water bath cured; Acron MC (AC), and Onda Cryl (ON) - microwave cured; and submitted to mechanical polishing (MP) - pumice slurry, chalk powder, soft brush and felt cone in a bench vise; or chemical polishing (CP) - heated monomer fluid in a chemical polisher. The first desiccation process was followed by storage in distilled water at 37 +/- 1 degrees C for 1 h, 1 day, 1, 2, 3 and 4 weeks. Concluding each period, water sorption was measured. After the fourth week, a second desiccation process was done to calculate solubility. Data were submitted to analysis of variance, followed by Tukey test (p

  18. Equilibrium stochastic dynamics of a Brownian particle in inhomogeneous space: Derivation of an alternative model

    NASA Astrophysics Data System (ADS)

    Bhattacharyay, A.

    2018-03-01

    An alternative equilibrium stochastic dynamics for a Brownian particle in inhomogeneous space is derived. Such a dynamics can model the motion of a complex molecule in its conformation space when in equilibrium with a uniform heat bath. The derivation is done by a simple generalization of the formulation due to Zwanzig for a Brownian particle in homogeneous heat bath. We show that, if the system couples to different number of bath degrees of freedom at different conformations then the alternative model gets derived. We discuss results of an experiment by Faucheux and Libchaber which probably has indicated possible limitation of the Boltzmann distribution as equilibrium distribution of a Brownian particle in inhomogeneous space and propose experimental verification of the present theory using similar methods.

  19. Structure, Surface Morphology, and Optical and Electronic Properties of Annealed SnS Thin Films Obtained by CBD

    NASA Astrophysics Data System (ADS)

    Reghima, Meriem; Akkari, Anis; Guasch, Cathy; Turki-Kamoun, Najoua

    2014-09-01

    SnS thin films were initially coated onto Pyrex substrates by the chemical bath deposition (CBD) method and annealed at various temperatures ranging from 200°C to 600°C for 30 min in nitrogen gas. X-ray diffraction (XRD) analysis revealed that a structural transition from face-centered cubic to orthorhombic occurs when the annealing temperature is over 500°C. The surface morphology of all thin layers was investigated by means of scanning electron microscopy and atomic force microscopy. The elemental composition of Sn and S, as measured by energy dispersive spectroscopy, is near the stoichiometric ratio. Optical properties studied by means of transmission and reflection measurements show an increase in the absorption coefficient with increasing annealing temperatures. The band gap energy is close to 1.5 eV, which corresponds to the optimum for photovoltaic applications. Last, the thermally stimulated current measurements show that the electrically active traps located in the band gap disappear after annealing at 500°C. These results suggest that, once again, annealing as a post-deposition treatment may be useful for improving the physical properties of the SnS layers included in photovoltaic applications. Moreover, the thermo-stimulated current method may be of practical relevance to explore the electronic properties of more conventional industrial methods, such as sputtering and chemical vapor deposition.

  20. Assessing the sustainability of daily chlorhexidine bathing in the intensive care unit of a Veteran's Hospital by examining nurses' perspectives and experiences.

    PubMed

    Musuuza, Jackson S; Roberts, Tonya J; Carayon, Pascale; Safdar, Nasia

    2017-01-14

    Daily bathing with chlorhexidine gluconate (CHG) of intensive care unit (ICU) patients has been shown to reduce healthcare-associated infections and colonization by multidrug resistant organisms. The objective of this project was to describe the process of daily CHG bathing and identify the barriers and facilitators that can influence its successful adoption and sustainability in an ICU of a Veterans Administration Hospital. We conducted 26 semi-structured interviews with a convenience sample of 4 nurse managers (NMs), 13 registered nurses (RNs) and 9 health care technicians (HCTs) working in the ICU. We used qualitative content analysis to code and analyze the data. Dedoose software was used to facilitate data management and coding. Trustworthiness and scientific integrity of the data were ensured by having two authors corroborate the coding process, conducting member checks and keeping an audit trail of all the decisions made. Duration of the interviews was 15 to 39 min (average = 26 min). Five steps of bathing were identified: 1) decision to give a bath; 2) ability to give a bath; 3) decision about which soap to use; 4) delegation of a bath; and 5) getting assistance to do a bath. The bathing process resulted in one of the following three outcomes: 1) complete bath; 2) interrupted bath; and 3) bath not done. The outcome was influenced by a combination of barriers and facilitators at each step. Most barriers were related to perceived workload, patient factors, and scheduling. Facilitators were mainly organizational factors such as the policy of daily CHG bathing, the consistent supply of CHG soap, and support such as reminders to conduct CHG baths by nurse managers. Patient bathing in ICUs is a complex process that can be hindered and interrupted by numerous factors. The decision to use CHG soap for bathing was only one of 5 steps of bathing and was largely influenced by scheduling/workload and patient factors such as clinical stability, hypersensitivity to CHG, patient refusal, presence of IV lines and general hygiene. Interventions that address the organizational, provider, and patient barriers to bathing could improve adherence to a daily CHG bathing protocol.

  1. Variational mixed quantum/semiclassical simulation of dihalogen guest and rare-gas solid host dynamics

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaolu; Cina, Jeffrey A.

    2014-07-01

    A variational mixed quantum-semiclassical theory for the internal nuclear dynamics of a small molecule and the induced small-amplitude coherent motion of a low-temperature host medium is developed, tested, and used to simulate the temporal evolution of nonstationary states of the internal molecular and surrounding medium degrees of freedom. In this theory, termed the Fixed Vibrational Basis/Gaussian Bath (FVB/GB) method, the system is treated fully quantum mechanically while Gaussian wave packets are used for the bath degrees of freedom. An approximate time-dependent wave function of the entire model is obtained instead of just a reduced system density matrix, so the theory enables the analysis of the entangled system and bath dynamics that ensues following initial displacement of the internal-molecular (system) coordinate from its equilibrium position. The norm- and energy-conserving properties of the propagation of our trial wave function are natural consequences of the Dirac-Frenkel-McLachlan variational principle. The variational approach also stabilizes the time evolution in comparison to the same ansatz propagated under a previously employed locally quadratic approximation to the bath potential and system-bath interaction terms in the bath-parameter equations of motion. Dynamics calculations are carried out for molecular iodine in a 2D krypton lattice that reveal both the time-course of vibrational decoherence and the details of host-atom motion accompanying energy dissipation and dephasing. This work sets the stage for the comprehensive simulation of ultrafast time-resolved optical experiments on small molecules in low-temperature solids.

  2. Efficacy of reducing agent and surfactant contacting pattern on the performance characteristics of nickel electroless plating baths coupled with and without ultrasound.

    PubMed

    Agarwal, Amrita; Pujari, Murali; Uppaluri, Ramgopal; Verma, Anil

    2014-07-01

    This article addresses furthering the role of sonication for the optimal fabrication of nickel ceramic composite membranes using electroless plating. Deliberating upon process modifications for surfactant induced electroless plating (SIEP) and combined surfactant and sonication induced electroless plating (SSOEP), this article highlights a novel method of contacting of the reducing agent and surfactant to the conventional electroless nickel plating baths. Rigorous experimental investigations indicated that the combination of ultrasound (in degas mode), surfactant and reducing agent pattern had a profound influence in altering the combinatorial plating characteristics. For comparison purpose, purely surfactant induced nickel ELP baths have also been investigated. These novel insights consolidate newer research horizons for the role of ultrasound to achieve dense metal ceramic composite membranes in a shorter span of total plating time. Surface and physical characterizations were carried out using BET, FTIR, XRD, FESEM and nitrogen permeation experiments. It has been analyzed that the SSOEP baths provided maximum ratio of percent pore densification per unit metal film thickness (PPDδ) and hold the key for further fine tuning of the associated degrees of freedom. On the other hand SIEP baths provided lower (PPDδ) ratio but higher PPD. For SSOEP baths with dropwise reducing agent and bulk surfactant, the PPD and metal film thickness values were 73.4% and 8.4 μm which varied to 66.9% and 13.3 μm for dropwise reducing agent and drop surfactant case. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Using a Systems Engineering Initiative for Patient Safety to Evaluate a Hospital-wide Daily Chlorhexidine Bathing Intervention.

    PubMed

    Caya, Teresa; Musuuza, Jackson; Yanke, Eric; Schmitz, Michelle; Anderson, Brooke; Carayon, Pascale; Safdar, Nasia

    2015-01-01

    We undertook a systems engineering approach to evaluate housewide implementation of daily chlorhexidine bathing. We performed direct observations of the bathing process and conducted provider and patient surveys. The main outcome was compliance with bathing using a checklist. Fifty-seven percent of baths had full compliance with the chlorhexidine bathing protocol. Additional time was the main barrier. Institutions undertaking daily chlorhexidine bathing should perform a rigorous assessment of implementation to optimize the benefits of this intervention.

  4. Chemical and electrochemical recycling of the nickel, cobalt, zinc and manganese from the positives electrodes of spent Ni-MH batteries from mobile phones

    NASA Astrophysics Data System (ADS)

    Santos, V. E. O.; Celante, V. G.; Lelis, M. F. F.; Freitas, M. B. J. G.

    2012-11-01

    Chemical and electrochemical recycling methods for the Ni, Co, Zn and Mn from the positives electrodes of spent Ni-MH batteries were developed. The materials recycled by chemical precipitation have the composition β-Ni(OH)2, Co(OH)2, Zn(OH)2 and Mn3O4. The powder retains sulphate, nitrate and carbonate anions from the mother solution as well as adsorbed water. Studies using cyclic voltammetry show that the current density decreases for scan rates greater than 10 mV s-1 because of the formation of hydroxide films. The amounts of Ni2+, Co2+, Zn2+ and Mn2+ were obtained by analysis of the solution using the inductively coupled plasma with optical emission spectroscopy technique, which demonstrated that the electrodeposition method exhibits anomalous behaviour. The amount of deposited nickel ions is related to the composition of the sulfamate bath. The presence of manganese in the electrodeposits is due to the precipitation of Mn(OH)2, and Zn(OH)42- does not undergo reduction in the investigated potential range. The electrodeposited material contains Ni, Co, CoO, Co(OH)2, and Mn3O4. A charge efficiency of 83.7% was attained for the electrodeposits formed by the application of -1.1 V vs. Ag/AgCl at a charge density of -90 C cm-2. The dissolution of the electrodeposits depends on the applied potential.

  5. Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling.

    PubMed

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H; Burghardt, Irene; Martinazzo, Rocco

    2015-09-28

    An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.

  6. Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonfanti, Matteo, E-mail: matteo.bonfanti@unimi.it; Jackson, Bret; Hughes, Keith H.

    2015-09-28

    An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theorymore » for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.« less

  7. Simple and double emulsions via electrospray

    NASA Astrophysics Data System (ADS)

    Barrero, Antonio; Loscertales, Ignacio G.

    2005-11-01

    Generation of nanoemulsions is of great interest in medical and pharmaceutical applications; drug delivery or antiviral emulsions are typical examples. The use of electrosprays for dispersing liquids inside liquid insulator baths have been recently reported, (Barrero et al. J. Colloid Interf. Sci. 272, 104, 2004). Capsules, nanotubes and coaxial nanofibers have been obtained from electrified coaxial jets (Loscertales et al. Science 295, n. 5560, 1695, 2002; J. American Chem. Soc. 126, 5376, 2004). Here we present a method for making double emulsions (both water-oil-water and o/w/o) based on the generation of compound electrosprays inside insulator liquid baths. Basically, a conducting liquid injected throughout a capillary needle is electroatomized in cone-jet mode inside a dielectric liquid bath. A third insulating liquid is injected inside the Taylor cone to form a second meniscus. Then, a steady coaxial jet, in which the insulating liquid is coated by the conducting one, develops. A double emulsion forms as a result of the jet breaking up into compound droplets electrically charged. Experimental results carried out with glycerine and different oils in a bath of heptane are reported.

  8. Cu doping concentration effect on the physical properties of CdS thin films obtained by the CBD technique

    NASA Astrophysics Data System (ADS)

    Albor Aguilera, M. L.; Flores Márquez, J. M.; Remolina Millan, A.; Matsumoto Kuwabara, Y.; González Trujillo, M. A.; Hernández Vásquez, C.; Aguilar Hernandez, J. R.; Hernández Pérez, M. A.; Courel-Piedrahita, M.; Madeira, H. T. Yee

    2017-08-01

    Cu(In, Ga)Se2 (CIGS) and Cu2ZnSnS4 (CZTS) semiconductors are direct band gap materials; when these types of material are used in solar cells, they provide efficiencies of 22.1% and 12.6%, respectively. Most traditional fabrication methods involve expensive vacuum processes including co-evaporation and sputtering techniques, where films and doping are conducted separately. On the other hand, the chemical bath deposition (CBD) technique allows an in situ process. Cu-doped CdS thin films working as a buffer layer on solar cells provide good performing devices and they may be deposited by low cost techniques such as chemical methods. In this work, Cu-doped CdS thin films were deposited using the CBD technique on SnO2:F (FTO) substrates. The elemental analysis and mapping reconstruction were conducted by EDXS. Morphological, optical and electrical properties were studied, and they revealed that Cu doping modified the CdS structure, band-gap value and the electrical properties. Cu-doped CdS films show high resistivity compared to the non-doped CdS. The appropriate parameters of Cu-doped CdS films were determined to obtain an adequate window or buffer layer on CIGS and CZTS photovoltaic solar cells.

  9. Effects of Thermal and Pressure Histories on the Chemical Strengthening of Sodium Aluminosilicate Glass

    NASA Astrophysics Data System (ADS)

    Svenson, Mouritz; Thirion, Lynn; Youngman, Randall; Mauro, John; Bauchy, Mathieu; Rzoska, Sylwester; Bockowski, Michal; Smedskjaer, Morten

    2016-03-01

    Glasses can be chemically strengthened through the ion exchange process, wherein smaller ions in the glass (e.g., Na+) are replaced by larger ions from a salt bath (e.g., K+). This develops a compressive stress (CS) on the glass surface, which, in turn, improves the damage resistance of the glass. The magnitude and depth of the generated CS depends on the thermal and pressure histories of the glass prior to ion exchange. In this study, we investigate the ion exchange-related properties (mutual diffusivity, CS, and hardness) of a sodium aluminosilicate glass, which has been densified through annealing below the initial fictive temperature of the glass or through pressure-quenching from the glass transition temperature at 1 GPa prior to ion exchange. We show that the rate of alkali interdiffusivity depends only on the density of the glass, rather than on the applied densification method. However, we also demonstrate that for a given density, the increase in CS and increase in hardness induced by ion exchange strongly depends on the densification method. Specifically, at constant density, the CS and hardness values achieved through thermal annealing are larger than those achieved through pressure-quenching. These results are discussed in relation to the structural changes in the environment of the network-modifier and the overall network densification.

  10. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    NASA Astrophysics Data System (ADS)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  11. Influence of Annealing Temperature on Some Optical and Structural Properties of Cu2ZnSnS4 Deposited by CZT Co-Electrodeposition Coupled with Chemical Bath Technique

    NASA Astrophysics Data System (ADS)

    Okoth, Obila Jorim; Domtau, Dinfa Luka; Marina, Mukabi; John, Onyatta; Awuor, Ogacho Alex

    Copper indium gallium selenide (CIGS) is currently most efficient thin film solar technology in use but it is faced with problems of material scarcity and toxicity. An alternative earth abundant and non-toxic materials consisting of Cu2ZnSnS4 (CZTS) have been investigated as a replacement for CIGS. In this work, CZTS thin films deposited by low cost co-electrodeposition, at a potential of -1.2V, coupled with chemical bath techniques at room temperature and then annealed under sulphur rich atmosphere were investigated. CZTS thin film quality determination was carried out using Raman spectroscopy which confirmed formation of quality CZTS film, main Raman peaks at 288cm-1 and 338cm-1 were observed. Electrical characterization was carried out using four-point probe instrument and the resistivity was in the order of ˜10-4Ω-cm. The optical characterization was done using UV-VIS-NIR spectrophotometer. The bandgaps of the annealed CZTS film ranged from 1.45 to 1.94eV with absorption coefficient of order ˜104cm-1 in the visible and near infrared range of the solar spectrum were observed.

  12. Elucidating doping driven microstructure evolution and optical properties of lead sulfide thin films grown from a chemical bath

    NASA Astrophysics Data System (ADS)

    Mohanty, Bhaskar Chandra; Bector, Keerti; Laha, Ranjit

    2018-03-01

    Doping driven remarkable microstructural evolution of PbS thin films grown by a single-step chemical bath deposition process at 60 °C is reported. The undoped films were discontinuous with octahedral-shaped crystallites after 30 min of deposition, whereas Cu doping led to a distinctly different surface microstructure characterized by densely packed elongated crystallites. A mechanism, based on the time sequence study of microstructural evolution of the films, and detailed XRD and Raman measurements, has been proposed to explain the contrasting microstructure of the doped films. The incorporation of Cu forms an interface layer, which is devoid of Pb. The excess Cu ions in this interface layer at the initial stages of film growth strongly interact and selectively stabilize the charged {111} faces containing either Pb or S compared to the uncharged {100} faces that contain both Pb and S. This interaction interferes with the natural growth habit resulting in the observed surface features of the doped films. Concurrently, the Cu-doping potentially changed the optical properties of the films: A significant widening of the bandgap from 1.52 eV to 1.74 eV for increase in Cu concentration from 0 to 20% was observed, making it a highly potential absorber layer in thin film solar cells.

  13. [The use of white and yellow turpentine baths with diabetic patients].

    PubMed

    Davydova, O B; Turova, E A; Golovach, A V

    1998-01-01

    In patients with insulin-dependent diabetes mellitus while and yellow turpentine baths produced a positive effect on carbohydrate metabolism. White baths were more effective in respect to lipid metabolism, blood viscosity, produced a good effect on plasmic hemocoagulation factors. Both while and yellow turpentine baths were beneficial for capillary blood flow: initially high distal blood flow in patients with prevailing distal polyneuropathy decreased while in patients with macroangiopathy initially subnormal blood flow increased. Both white and yellow turpentine baths promoted better pulse blood filling of the lower limbs and weaker peripheral resistance of large vessels. In patients with non-insulin-dependent diabetes mellitus white and yellow turpentine baths contributed to normalization of carbohydrate metabolism. Yellow baths were more effective in lowering lipids. White baths induced inhibition of platelet aggregation but had no effect on coagulation, yellow baths promoted a reduction of fibrinogen but had no effect on platelet aggregation. Yellow baths produced more pronounced effect than white ones on blood viscosity and microcirculation. Both yellow and white baths stimulated pulse blood filling, corrected peripheral resistance of large and small vessels of the lower limbs.

  14. Universal collisional activation ion trap mass spectrometry

    DOEpatents

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1993-04-27

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  15. Universal collisional activation ion trap mass spectrometry

    DOEpatents

    McLuckey, Scott A.; Goeringer, Douglas E.; Glish, Gary L.

    1993-01-01

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omkar, S.; Srikanth, R., E-mail: srik@poornaprajna.org; Banerjee, Subhashish

    A protocol based on quantum error correction based characterization of quantum dynamics (QECCD) is developed for quantum process tomography on a two-qubit system interacting dissipatively with a vacuum bath. The method uses a 5-qubit quantum error correcting code that corrects arbitrary errors on the first two qubits, and also saturates the quantum Hamming bound. The dissipative interaction with a vacuum bath allows for both correlated and independent noise on the two-qubit system. We study the dependence of the degree of the correlation of the noise on evolution time and inter-qubit separation.

  17. System for monitoring physical characteristics of fluids

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Wang, T. G. (Inventor)

    1983-01-01

    An apparatus and method are described for measuring physical characteristics of fluid, by placing a drop of the fluid in a batch of a second fluid and passing acoustic waves through the bath. The applied frequency of the acoustic waves is varied, to determine the precise value of a frequency at which the drop undergoes resonant oscillations. The resonant frequency indicates the interfacial tension of the drop in the bath, and the interfacial tension can indicate physical properties of the fluid in the drop.

  18. Herbal bathing: an analysis of variation in plant use among Saramaccan and Aucan Maroons in Suriname.

    PubMed

    van 't Klooster, Charlotte I E A; Haabo, Vinije; Ruysschaert, Sofie; Vossen, Tessa; van Andel, Tinde R

    2018-03-15

    Herbal baths play an important role in the traditional health care of Maroons living in the interior of Suriname. However, little is known on the differences in plant ingredients used among and within the Maroon groups. We compared plant use in herbal baths documented for Saramaccan and Aucan Maroons, to see whether similarity in species was related to bath type, ethnic group, or geographical location. We hypothesized that because of their dissimilar cultural background, they used different species for the same type of bath. We assumed, however, that plants used in genital baths were more similar, as certain plant ingredients (e.g., essential oils), are preferred in these baths. We compiled a database from published and unpublished sources on herbal bath ingredients and constructed a presence/absence matrix per bath type and study site. To assess similarity in plant use among and within Saramaccan and Aucan communities, we performed three Detrended Correspondence Analyses on species level and the Jaccard Similarity Index to quantify similarity in bath ingredients. We recorded 349 plants used in six commonly used bath types: baby strength, adult strength, skin diseases, respiratory ailments, genital steam baths, and spiritual issues. Our results showed a large variation in plant ingredients among the Saramaccan and Aucans and little similarity between Saramaccans and Aucans, even for the same type of baths. Plant ingredients for baby baths and genital baths shared more species than the others. Even within the Saramaccan community, plant ingredients were stronger associated with location than with bath type. Plant use in bathing was strongly influenced by study site and then by ethnicity, but less by bath type. As Maroons escaped from different plantations and developed their ethnomedicinal practices in isolation, there has been little exchange in ethnobotanical knowledge after the seventeenth century between ethnic groups. Care should be taken in extrapolating plant use data collected from one location to a whole ethnic community. Maroon plant use deserves more scientific attention, especially now as there are indications that traditional knowledge is disappearing.

  19. Morphology controllable time-dependent CoS nanoparticle thin films as efficient counter electrode for quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Reddy, Araveeti Eswar; Rao, S. Srinivasa; Gopi, Chandu V. V. M.; Anitha, Tarugu; Thulasi-Varma, Chebrolu Venkata; Punnoose, Dinah; Kim, Hee-Je

    2017-11-01

    Cobalt sulfide (CoS) agglomerated nanoparticle thin films obtained by a facile chemical bath method at different deposition times. The CoS counter electrode (CE) deposited at 3 h deposition time (CC-3h) based quantum dot sensitized solar cells (QDSSCs) achieves higher power conversion efficiency (η) of 3.67% than those of CC-2h (1.83%), CC-4h (2.52%), and Pt (1.48%) CEs, under one sun illumination (100 mW cm-2, AM 1.5 G). The electrochemical analysis revealed that CC-3h CE shows a smaller charge transfer resistance (9.22 Ω) at the CE/electrolyte interface than the CC-2h (23.34 Ω), CC-4h (19.73 Ω) and Pt (139.92 Ω) CEs, respectively.

  20. Electrodeposited Co-Pt thin films for magnetic hard disks

    NASA Astrophysics Data System (ADS)

    Bozzini, B.; De Vita, D.; Sportoletti, A.; Zangari, G.; Cavallotti, P. L.; Terrenzio, E.

    1993-03-01

    ew baths for Co-Pt electrodeposition have been developed and developed and ECD thin films (≤0.3μm) have been prepared and characterized structurally (XRD), morphologically (SEM), chemically (EDS) and magnetically (VSM); their improved corrosion, oxidation and wear resistance have been ascertained. Such alloys appear suitable candidates for magnetic storage systems, from all technological viewpoints. The originally formulated baths contain Co-NH 3-citrate complexes and Pt-p salt (Pt(NH 3) 2(NO 2) 2). Co-Pt thin films of fcc structure are deposited obtaining microcrystallites of definite composition. At Pt ⋍ 30 at% we obtain fcc films with a=0.369 nm, HC=80 kA m, and high squareness; increasing Co and decreasing Pt content in the bath it is possible to reduce the Pt content of the deposit, obtaining fcc structures containing two types of microcrystals with a = 0.3615 nm and a = 0.369 nm deposited simultaneously. NaH 2PO 2 additions to the bath have a stabilizing influence on the fcc structure of a = 0.3615 nm, Pt ⋍ 20 at% and HC as high as 200 kA/m, with hysteresis loops suitable for both longitudinal or perpendicular recording, depending on the thickness. We have prepared 2.5 in. hard disks for magnetic recording with ECD Co-Pt 20 at% with a polished and texturized ACD Ni-P underlayer. Pulse response, 1F & 2F frequency and frequency sweep response behaviour, as well as noise and overwrite characteristics have been measured for both our disks and high-standard sputtered Co-Cr-Ta production disks, showin improved D50 for Co-Pt ECD disks. The signal-to-noise ratio could be improved by pulse electrodeposition and etching post-treatments.

  1. Preparation of micro/nano-fibrous brushite coating on titanium via chemical conversion for biomedical applications

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Guo, Yong-yuan; Xiao, Gui-yong; Lu, Yu-peng

    2017-03-01

    Calcium phosphate coatings have been applied on the surface of Ti implants to realize better osseointegration. The formation of dicalcium phosphate dihydrate (CaHPO4·2H2O), mineralogically named brushite on pure Ti substrate has been investigated via chemical conversion method. Coating composition and microstructure have been investigated by X-ray diffractometer, Fourier transform infrared spectrometer and field emission scanning electron microscope. The results reveal that the coatings are composed of high crystalline brushite with minor scholzite (CaZn2(PO4)2·2H2O). A micro/nano-scaled fibrous morphology can be produced in the acidic chemical conversion bath with pH 5.00. The surface of the fibrous brushite coating exhibits high hydrophilicity and corrosion resistance in the simulated body fluid. The osteoblast cells grow and spread actively on the coated samples and the proliferation numbers and alkaline phosphate activities of the cells improve significantly compared to the uncoated Ti. It is suggested that the micro/nano-fibrous brushite coating can be a potential approach to improve the osteoinductivity and osteoconductivity of Ti implant, due to its similarity in morphology and dimension to inorganic components of biological hard tissues, and favorable responses to the osteoblasts.

  2. Freestanding films of crosslinked gold nanoparticles prepared via layer-by-layer spin-coating.

    PubMed

    Schlicke, Hendrik; Schröder, Jan H; Trebbin, Martin; Petrov, Alexey; Ijeh, Michael; Weller, Horst; Vossmeyer, Tobias

    2011-07-29

    A new, extremely efficient method for the fabrication of films comprised of gold nanoparticles (GNPs) crosslinked by organic dithiols is presented in this paper. The method is based on layer-by-layer spin-coating of both components, GNPs and crosslinker, and enables the deposition of films several tens of nanometers in thickness within a few minutes. X-ray diffraction and conductance measurements reveal the proper adjustment concentration of the crosslinker solution of the critical is in order to prevent the destabilization and coalescence of particles. UV/vis spectroscopy, atomic force microscopy, and conductivity measurements indicate that films prepared via layer-by-layer spin-coating are of comparable quality to coatings prepared via laborious layer-by-layer self-assembly using immersion baths. Because spin-coated films are not bound chemically to the substrate, they can be lifted-off by alkaline underetching and transferred onto 3d-electrodes to produce electrically addressable, freely suspended films. Comparative measurements of the sheet resistances indicate that the transfer process does not compromise the film quality.

  3. Freestanding films of crosslinked gold nanoparticles prepared via layer-by-layer spin-coating

    NASA Astrophysics Data System (ADS)

    Schlicke, Hendrik; Schröder, Jan H.; Trebbin, Martin; Petrov, Alexey; Ijeh, Michael; Weller, Horst; Vossmeyer, Tobias

    2011-07-01

    A new, extremely efficient method for the fabrication of films comprised of gold nanoparticles (GNPs) crosslinked by organic dithiols is presented in this paper. The method is based on layer-by-layer spin-coating of both components, GNPs and crosslinker, and enables the deposition of films several tens of nanometers in thickness within a few minutes. X-ray diffraction and conductance measurements reveal the proper adjustment concentration of the crosslinker solution of the critical is in order to prevent the destabilization and coalescence of particles. UV/vis spectroscopy, atomic force microscopy, and conductivity measurements indicate that films prepared via layer-by-layer spin-coating are of comparable quality to coatings prepared via laborious layer-by-layer self-assembly using immersion baths. Because spin-coated films are not bound chemically to the substrate, they can be lifted-off by alkaline underetching and transferred onto 3d-electrodes to produce electrically addressable, freely suspended films. Comparative measurements of the sheet resistances indicate that the transfer process does not compromise the film quality.

  4. An efficient BTX sensor based on ZnO nanoflowers grown by CBD method

    NASA Astrophysics Data System (ADS)

    Acharyya, D.; Bhattacharyya, P.

    2015-04-01

    In this paper, sensing performance of ZnO nanoflower like structures derived by chemical bath deposition method (CBD), towards Benzene Toluene and Xylene (BTX) vapors is reported. Relatively higher bath temperature (110 °C) and high pH value (pH: 11) of solution escort to higher growth rate along [0 0 0 1] plane of ZnO, which eventually resulted in pointed edge nanorod based flower like structures after 3 h. After detailed structural characterizations (field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD)), existence of different defect states (viz. oxygen vacancy (Vo), Zinc vacancy (VZn) and Zinc interstitials (Zni)) were authenticated by Photoluminescence (PL) spectroscopy. BTX sensing performance, employing the nanoflowers as the sensing layer, was carried out in resistive mode with two Pd lateral electrodes. The sensor study was performed at different temperatures (150-350 °C) in the concentration range of 0.5-700 ppm of the respective vapors. The highest normalized resistance response (NRR%) was achieved at 200 °C. At this optimum temperature, normalized resistance responses (39.3/92.6%, 45.8/96.9%, and 47.8/99% respectively) were found to be promising towards 0.5/700 ppm of benzene, toluene and xylene. The response time of the sensor towards the target species were also found to be appreciably fast (15 s, 6 s, and 5 s) towards 700 ppm of benzene, toluene and xylene respectively. Detailed sensing mechanism for BTX with such flower like ZnO structures was explained with the help of interaction of band structures (of ZnO) with the corresponding highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the target species.

  5. Temperature crossover of decoherence rates in chaotic and regular bath dynamics.

    PubMed

    Sanz, A S; Elran, Y; Brumer, P

    2012-03-01

    The effect of chaotic bath dynamics on the decoherence of a quantum system is examined for the vibrational degrees of freedom of a diatomic molecule in a realistic, constant temperature collisional bath. As an example, the specific case of I(2) in liquid xenon is examined as a function of temperature, and the results compared with an integrable xenon bath. A crossover in behavior is found: The integrable bath induces more decoherence at low bath temperatures than does the chaotic bath, whereas the opposite is the case at the higher bath temperatures. These results, verifying a conjecture due to Wilkie, shed light on the differing views of the effect of chaotic dynamics on system decoherence.

  6. Culture and long-term care: the bath as social service in Japan.

    PubMed

    Traphagan, John W

    2004-01-01

    A central feature of Japan's approach to community-based care of the elderly, including long-term home health care, is the emphasis on providing bath facilities. For mobile elders, senior centers typically provide a public bathing facility in which people can enjoy a relaxing soak along with friends who also visit the centers. In terms of in-home long-term care, visiting bath services are provided to assist family care providers with the difflcult task of bathing a frail or disabled elder--a task made more problematic as a result of the Japanese style of bathing. I argue that the bath, as social service, is a culturally shaped solution to a specific problem of elder care that arises in the Japanese context as a result of the importance of the bath in everyday life for Japanese. While the services may be considered specific to Japan, some aspects of bathing services, particularly the mobile bath service, may also have applicability in the United States.

  7. Chemical surface deposition of ultra-thin semiconductors

    DOEpatents

    McCandless, Brian E.; Shafarman, William N.

    2003-03-25

    A chemical surface deposition process for forming an ultra-thin semiconducting film of Group IIB-VIA compounds onto a substrate. This process eliminates particulates formed by homogeneous reactions in bath, dramatically increases the utilization of Group IIB species, and results in the formation of a dense, adherent film for thin film solar cells. The process involves applying a pre-mixed liquid coating composition containing Group IIB and Group VIA ionic species onto a preheated substrate. Heat from the substrate causes a heterogeneous reaction between the Group IIB and VIA ionic species of the liquid coating composition, thus forming a solid reaction product film on the substrate surface.

  8. A benchmark for reaction coordinates in the transition path ensemble

    PubMed Central

    2016-01-01

    The molecular mechanism of a reaction is embedded in its transition path ensemble, the complete collection of reactive trajectories. Utilizing the information in the transition path ensemble alone, we developed a novel metric, which we termed the emergent potential energy, for distinguishing reaction coordinates from the bath modes. The emergent potential energy can be understood as the average energy cost for making a displacement of a coordinate in the transition path ensemble. Where displacing a bath mode invokes essentially no cost, it costs significantly to move the reaction coordinate. Based on some general assumptions of the behaviors of reaction and bath coordinates in the transition path ensemble, we proved theoretically with statistical mechanics that the emergent potential energy could serve as a benchmark of reaction coordinates and demonstrated its effectiveness by applying it to a prototypical system of biomolecular dynamics. Using the emergent potential energy as guidance, we developed a committor-free and intuition-independent method for identifying reaction coordinates in complex systems. We expect this method to be applicable to a wide range of reaction processes in complex biomolecular systems. PMID:27059559

  9. 21 CFR 720.4 - Information requested about cosmetic products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... (iii) Other baby products. (2) Bath preparations. (i) Bath oils, tablets, and salts. (ii) Bubble baths. (iii) Bath capsules. (iv) Other bath preparations. (3) Eye makeup preparations. (i) Eyebrow pencil. (ii... preparations. (4) Fragrance preparations. (i) Colognes and toilet waters. (ii) Perfumes. (iii) Powders (dusting...

  10. 21 CFR 720.4 - Information requested about cosmetic products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... (iii) Other baby products. (2) Bath preparations. (i) Bath oils, tablets, and salts. (ii) Bubble baths. (iii) Bath capsules. (iv) Other bath preparations. (3) Eye makeup preparations. (i) Eyebrow pencil. (ii... preparations. (4) Fragrance preparations. (i) Colognes and toilet waters. (ii) Perfumes. (iii) Powders (dusting...

  11. Improved performance of CdSe/CdS co-sensitized solar cells adopting efficient CuS counter electrode modified by PbS film using SILAR method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolong; Lin, Yu; Wu, Jihuai; Fang, Biaopeng; Zeng, Jiali

    2018-04-01

    In this paper, CuS film was deposited onto fluorine-doped tin oxide (FTO) substrate using a facile chemical bath deposition method, and then modified by PbS using simple successive ionic layer absorption and reaction (SILAR) method with different cycles. These CuS/PbS films were utilized as counter electrodes (CEs) for CdSe/CdS co-sensitized solar cells. Field-emission scanning electron microscopy equipped with an energy-dispersive X-ray spectrometer was used to characterize the CuS/PbS films. The results show that CuS/PbS (10 cycles) CE exhibits an improved power conversion efficiency of 5.54% under the illumination of one sun (100 mW cm-2), which is higher than the CuS/PbS (0 cycles), CuS/PbS (5 cycles), and CuS/PbS (15 cycles) CEs. This enhancement is mainly attributed to good catalytic activity and lower charge-transfer and series resistances, which have been proved by electrochemical impedance spectroscopy, and Tafel polarization measurements.

  12. A novel electroless method to prepare a platinum electrocatalyst on diamond for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lyu, Xiao; Hu, Jingping; Foord, John S.; Wang, Qiang

    2013-11-01

    A novel electroless deposition method was demonstrated to prepare a platinum electrocatalyst on boron doped diamond (BDD) substrates without the need for pre-activation. This green method addresses the uniformity and particle size issues associated with electrodeposition and circumvents the pre-activation procedure which is necessary for conventional electroless deposition. The inert BDD substrate formed a galvanic couple with an iron wire, to overcome the activation barrier associated with conventional electroless deposition on diamond, leading to the formation of Pt nanoparticles on the electrode surface in a galvanic process coupled to a chemical process. When sodium hypophosphite was employed as the reducing agent to drive the electroless reaction Pt deposits which were contaminated with iron and phosphorus resulted. In contrast, the reducing agent ascorbic acid gave rise to high purity Pt nanoparticles. Optimal deposition conditions with respect to bath temperature, pH value and stabilizing additives are identified. Using this approach, high purity and uniformly distributed platinum nanoparticles are obtained on the diamond electrode surface, which demonstrate a high electrochemical activity towards methanol oxidation.

  13. Quantum Bath Refrigeration towards Absolute Zero: Challenging the Unattainability Principle

    NASA Astrophysics Data System (ADS)

    Kolář, M.; Gelbwaser-Klimovsky, D.; Alicki, R.; Kurizki, G.

    2012-08-01

    A minimal model of a quantum refrigerator, i.e., a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T→0 for certain realistic quantized baths, e.g., phonons in strongly disordered media (fractons) or quantized spin waves in ferromagnets (magnons). This result challenges Nernst’s third-law formulation known as the unattainability principle.

  14. Quantum bath refrigeration towards absolute zero: challenging the unattainability principle.

    PubMed

    Kolář, M; Gelbwaser-Klimovsky, D; Alicki, R; Kurizki, G

    2012-08-31

    A minimal model of a quantum refrigerator, i.e., a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T→0 for certain realistic quantized baths, e.g., phonons in strongly disordered media (fractons) or quantized spin waves in ferromagnets (magnons). This result challenges Nernst's third-law formulation known as the unattainability principle.

  15. Bath Salts Abuse Leading to New-Onset Psychosis and Potential for Violence.

    PubMed

    John, Michelle E; Thomas-Rozea, Crystal; Hahn, David

    Bath salts have recently emerged as a popular designer drug of abuse causing significant hazardous effects on mental health and physical health, resulting in public health legislation making its usage illegal in the United States. To educate mental health providers on the effects of the new designer drug bath salts, including its potential to cause psychosis and violence in patients. This is a case report on a 40-year-old male with no past psychiatric history who presented with new-onset psychosis and increased risk for violence after ingesting bath salts. In addition, a literature review was performed to summarize the documented effects of bath salts abuse and the current U.S. public health legislation on bath salts. The presented case illustrates a new-onset, substance-induced psychotic disorder related to bath salts usage. The literature review explains the sympathomimetic reaction and the potential for psychotic symptoms. To discuss the physical and psychological effects of bath salts, treatment options for bath salts abuse and U.S. legislation by Ohio state law to current U.S. federal law that bans production, sale, and possession of main substances found in bath salts. It is important for mental health providers to be aware of bath salts, understand the physical and psychiatric effects of bath salts and be familiar with current legislative policy banning its usage. Lastly, bath salts abuse should be in the differential diagnosis where psychosis is new onset or clinically incongruent with known primary presentation of a psychotic disorder.

  16. Histological study on the effect of electrolyzed reduced water-bathing on UVB radiation-induced skin injury in hairless mice.

    PubMed

    Yoon, Kyung Su; Huang, Xue Zhu; Yoon, Yang Suk; Kim, Soo-Ki; Song, Soon Bong; Chang, Byung Soo; Kim, Dong Heui; Lee, Kyu Jae

    2011-01-01

    Electrolyzed reduced water (ERW), functional water, has various beneficial effects via antioxidant mechanism in vivo and in vitro. However there is no study about beneficial effects of ERW bathing. This study aimed to determine the effect of ERW bathing on the UVB-induced skin injury in hairless mice. For this purpose, mice were irradiated with UVB to cause skin injury, followed by individually taken a bath in ERW (ERW-bathing) and tap water (TW-bathing) for 21 d. We examined cytokines profile in acute period, and histological and ultrastructural observation of skin in chronic period. We found that UVB-mediated skin injury of ERW-bathing group was significantly low compared to TW control group in the early stage of experiment. Consistently, epidermal thickening as well as the number of dermal mast cell was significantly lowered in ERW-bathing group. Defection of corneocytes under the scanning electron microscope was less observed in ERW-bathing group than in TW-bathing group. Further, the level of interleukin (IL)-1β, tumor necrosis factor (TNF)-α and IL-12p70 in ERW group decreased whereas those of IL-10 increased. Collectively, our data indicate that ERW-bathing significantly reduces UVB-induced skin damage through influencing pro-/anti-inflammatory cytokine balance in hairless mice. This suggests that ERW-bathing has a positive effect on acute UVB-mediated skin disorders. This is the first report on bathing effects of ERW in UVB-induced skin injury.

  17. A unified stochastic formulation of dissipative quantum dynamics. II. Beyond linear response of spin baths

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-Yu; Cao, Jianshu

    2018-01-01

    We use the "generalized hierarchical equation of motion" proposed in Paper I [C.-Y. Hsieh and J. Cao, J. Chem. Phys. 148, 014103 (2018)] to study decoherence in a system coupled to a spin bath. The present methodology allows a systematic incorporation of higher-order anharmonic effects of the bath in dynamical calculations. We investigate the leading order corrections to the linear response approximations for spin bath models. Two kinds of spin-based environments are considered: (1) a bath of spins discretized from a continuous spectral density and (2) a bath of localized nuclear or electron spins. The main difference resides with how the bath frequency and the system-bath coupling parameters are distributed in an environment. When discretized from a continuous spectral density, the system-bath coupling typically scales as ˜1 /√{NB } where NB is the number of bath spins. This scaling suppresses the non-Gaussian characteristics of the spin bath and justifies the linear response approximations in the thermodynamic limit. For the nuclear/electron spin bath models, system-bath couplings are directly deduced from spin-spin interactions and do not necessarily obey the 1 /√{NB } scaling. It is not always possible to justify the linear response approximations in this case. Furthermore, if the spin-spin Hamiltonian is highly symmetrical, there exist additional constraints that generate highly non-Markovian and persistent dynamics that is beyond the linear response treatments.

  18. Performance of Flow and Heat Transfer in a Hot-Dip Round Coreless Galvanizing Bath

    NASA Astrophysics Data System (ADS)

    Yue, Qiang; Zhang, Chengbo; Xu, Yong; Zhou, Li; Kong, Hui; Wang, Jia

    2017-04-01

    Flow field in a coreless hot-dip galvanizing pot was investigated through a water modeling experiment. The corresponding velocity vector was measured using an acoustic Doppler velocimeter. The flow field of molten zinc in the bath was also analyzed. Steel strip velocities from 1.7 to 2.7 m/s were adopted to determine the effect of steel strip velocity on the molten zinc flow in the bath. A large vortex filled the space at the right side of the sink roll, under linear speed from 1.0 to 2.7 m/s and width from 1.0 to 1.3 m of the steel strip, because of the effects of wall and shear stress. The results of the water modeling experiment were compared with those of numerical simulations. In the simulation, Maxwell equations were solved using finite element method to obtain magnetic flux density, electromagnetic force, and Joule heating. The Joule heating rate reached the maximum and minimum values near the side wall and at the core of the bath, respectively, because of the effect of skin and proximity. In an industrial-sized model, the molten zinc flow and temperature fields driven by electromagnetic force and Joule heating in the inductor of a coreless galvanizing bath were numerically simulated. The results indicated that the direction of electromagnetic force concentrated at the center of the galvanizing pot horizontal planes and exerted a pinch effect on molten zinc. Consequently, molten zinc in the pot was stirred by electromagnetic force. Under molten zinc flow and electromagnetic force stirring, the temperature of the molten zinc became homogeneous throughout the bath. This study provides a basis for optimizing electromagnetic fields in coreless induction pot and fine-tuning the design of steel strip parameters.

  19. Effect of Pseudomonas sp. MT5 baths on Flavobacterium columnare infection of rainbow trout and on microbial diversity on fish skin and gills.

    PubMed

    Suomalainen, L R; Tiirola, M A; Valtonen, E T

    2005-01-25

    Use of Pseudomonas sp. strain MT5 to prevent and treat Flavobacterium columnare infection was studied in 2 experiments with fingerling rainbow trout Oncorhynchus mykiss. In the first experiment, length heterogeneity analysis of PCR-amplified DNA fragments (LH-PCR) was used to assess the effect of antagonistic baths on the microbial diversity of healthy and experimentally infected fish. In the 148 samples studied, no difference was found between bathed and unbathed fish, and 3 fragment lengths were detected most frequently: 500 (in 75.7% of the samples), 523 (62.2%) and 517 bp (40.5%). The species contributing to these fragment sizes were Pseudomonas sp., Rhodococcus sp. and F. columnare, respectively. A specific PCR for detection of Pseudomonas sp. MT5 was designed, but none of the tissue samples were found to be positive, most likely indicating poor adhesion of the strain during bathing. LH-PCR was found to be a more powerful tool for detecting F. columnare in fish tissue than traditional culture methods (chi2 = 3.9, df = 1, p < 0.05). Antagonistic baths had no effect on the outbreak of infection or on fish mortality. F. columnare was also detected in healthy fish prior to and after experimental infection, indicating that these fish were carriers of the disease. In the second experiment, intensive Pseudomonas sp. MT5 antagonistic baths were given daily to rainbow trout suffering from a natural columnaris infection. Again, the antagonistic bacteria had no effect on fish mortality, which reached 95 % in both control and antagonist-treated groups in 7 d.

  20. Nonequilibrium, steady-state electron transport with N-representable density matrices from the anti-Hermitian contracted Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Rothman, Adam E.; Mazziotti, David A.

    2010-03-01

    We study molecular conductivity for a one-electron, bath-molecule-bath model Hamiltonian. The primary quantum-mechanical variable is the one-electron reduced density matrix (1-RDM). By identifying similarities between the steady-state Liouville equation and the anti-Hermitian contracted Schrödinger equation (ACSE) [D. A. Mazziotti, Phys. Rev. A 75, 022505 (2007)], we develop a way of enforcing nonequilibrium, steady-state behavior in a time-independent theory. Our results illustrate the relationship between current and voltage in molecular junctions assuming that the total number of electrons under consideration can be fixed across all driving potentials. The impetus for this work is a recent study by Subotnik et al. that also uses the 1-RDM to study molecular conductivity under different assumptions regarding the total number of electrons [J. E. Subotnik et al., J. Chem. Phys. 130, 144105 (2009)]. Unlike calculations in the previous study, our calculations result in 1-RDMs that are fully N-representable. The present work maintains N-representability through a bath-bath mixing that is related to a time-independent relaxation of the baths in the absence of the molecule, as governed by the ACSE. A lack of N-representability can be important since it corresponds to occupying energy states in the molecule or baths with more than one electron or hole (the absence of an electron) in violation of the Pauli principle. For this reason the present work may serve as an important, albeit preliminary, step in designing a 2-RDM/ACSE method for studying steady-state molecular conductivity with an explicit treatment of electron correlation.

  1. Spectral functions of strongly correlated extended systems via an exact quantum embedding

    NASA Astrophysics Data System (ADS)

    Booth, George H.; Chan, Garnet Kin-Lic

    2015-04-01

    Density matrix embedding theory (DMET) [Phys. Rev. Lett. 109, 186404 (2012), 10.1103/PhysRevLett.109.186404], introduced an approach to quantum cluster embedding methods whereby the mapping of strongly correlated bulk problems to an impurity with finite set of bath states was rigorously formulated to exactly reproduce the entanglement of the ground state. The formalism provided similar physics to dynamical mean-field theory at a tiny fraction of the cost but was inherently limited by the construction of a bath designed to reproduce ground-state, static properties. Here, we generalize the concept of quantum embedding to dynamic properties and demonstrate accurate bulk spectral functions at similarly small computational cost. The proposed spectral DMET utilizes the Schmidt decomposition of a response vector, mapping the bulk dynamic correlation functions to that of a quantum impurity cluster coupled to a set of frequency-dependent bath states. The resultant spectral functions are obtained on the real-frequency axis, without bath discretization error, and allows for the construction of arbitrary dynamic correlation functions. We demonstrate the method on the one- (1D) and two-dimensional (2D) Hubbard model, where we obtain zero temperature and thermodynamic limit spectral functions, and show the trivial extension to two-particle Green's functions. This advance therefore extends the scope and applicability of DMET in condensed-matter problems as a computationally tractable route to correlated spectral functions of extended systems and provides a competitive alternative to dynamical mean-field theory for dynamic quantities.

  2. Synaptic potentials recorded by the sucrosegap method from the rabbit superior cervical ganglion

    PubMed Central

    Kosterlitz, H. W.; Lees, G. M.; Wallis, D. I.

    1970-01-01

    1. Compound ganglionic potentials evoked by stimulation of the preganglionic nerves to the superior cervical ganglion of the rabbit were recorded by the sucrose-gap method. 2. When the distal part of the ganglion was bathed in flowing isotonic sucrose solution or sodium-deficient solutions, ganglionic action potentials were no longer evoked, only large synaptic potentials. 3. The compound synaptic potential, which remained unaltered for more than 1 h, originated in a population of cells at the interface between the Krebs and sucrose solutions. Hexamethonium reduced the size but did not alter the time course of the synaptic potential. 4. It is suggested that a higher concentration of sodium ions is required for the generation of ganglionic action potentials than for either conduction in the postganglionic axons or production of synaptic potentials. 5. When lithium replaced sodium in the solution bathing the distal part of the ganglion, the synaptic potential was greatly reduced in amplitude. Impulse propagation in the postganglionic axons was only slightly impaired when lithium replaced sodium in the solution bathing the axons. 6. A quantitative assessment of the potency of the ganglion-blocking drugs nicotine, pentolinium, hexamethonium and pempidine was made by measuring the depression of the synaptic potentials produced by bathing the distal part of the ganglion in flowing isotonic sucrose solution. The concentrations which produced a 50% depression were 8·1 μM nicotine, 26·5 μM pentolinium, 111 μM hexamethonium and 22·2 μM pempidine. PMID:5492898

  3. Effects of a warm hand bath on the blood flow in the shoulder, skin and deep body temperature, autonomic nervous activity, and subjective comfort in healthy women: An experimental cross-over trial.

    PubMed

    Kudo, Yukiko; Sasaki, Makiko; Kikuchi, Yukiko; Sugiyama, Reiko; Hasebe, Makiko; Ishii, Noriko

    2018-06-19

    The present study was conducted in order to clarify the effects of a warm hand bath at 40°C for 10 min on the blood flow in the shoulder, skin and deep body temperature, autonomic nervous activity, and subjective comfort in healthy women. The study's participants were 40 healthy adult women who were randomly assigned to either a structured hand bath first and no hand bath second (Group A) or to no hand bath first and a hand bath second (Group B). The blood flow in the shoulder, skin and deep body temperature, autonomic nervous activity, and subjective comfort then were recorded in all the participants. A repeated-measures ANOVA revealed no significant difference in the blood flow in the right shoulder or deep body temperature between groups. The skin temperature of the hands, forearms, and arms was significantly increased, but not of the face and upper back. The skin temperature of the forearms was maintained at 0.5°C-1°C higher for 30 min in the hand bath group, compared with the no hand bath group. The hand bath group had a significantly higher heart rate while bathing and a significantly lower parasympathetic nerve activity level during bathing. No significant difference was seen in the sympathetic activity level between groups. The hand bath group had a significantly higher subjective comfort level. Hand baths can improve the level of subjective comfort and increase the heart rate and might affect autonomic nervous activity. The skin temperature of the forearms was maintained for 30 min in the hand bath group. © 2018 Japan Academy of Nursing Science.

  4. Fission product ion exchange between zeolite and a molten salt

    NASA Astrophysics Data System (ADS)

    Gougar, Mary Lou D.

    The electrometallurgical treatment of spent nuclear fuel (SNF) has been developed at Argonne National Laboratory (ANL) and has been demonstrated through processing the sodium-bonded SNF from the Experimental Breeder Reactor-II in Idaho. In this process, components of the SNF, including U and species more chemically active than U, are oxidized into a bath of lithium-potassium chloride (LiCl-KCl) eutectic molten salt. Uranium is removed from the salt solution by electrochemical reduction. The noble metals and inactive fission products from the SNF remain as solids and are melted into a metal waste form after removal from the molten salt bath. The remaining salt solution contains most of the fission products and transuranic elements from the SNF. One technique that has been identified for removing these fission products and extending the usable life of the molten salt is ion exchange with zeolite A. A model has been developed and tested for its ability to describe the ion exchange of fission product species between zeolite A and a molten salt bath used for pyroprocessing of spent nuclear fuel. The model assumes (1) a system at equilibrium, (2) immobilization of species from the process salt solution via both ion exchange and occlusion in the zeolite cage structure, and (3) chemical independence of the process salt species. The first assumption simplifies the description of this physical system by eliminating the complications of including time-dependent variables. An equilibrium state between species concentrations in the two exchange phases is a common basis for ion exchange models found in the literature. Assumption two is non-simplifying with respect to the mathematical expression of the model. Two Langmuir-like fractional terms (one for each mode of immobilization) compose each equation describing each salt species. The third assumption offers great simplification over more traditional ion exchange modeling, in which interaction of solvent species with each other is considered. (Abstract shortened by UMI.)

  5. Hydrodynamic modelling of the influence of stormwater and combined sewer overflows on receiving water quality: Benzo(a)pyrene and copper risks to recreational water.

    PubMed

    Björklund, Karin; Bondelind, Mia; Karlsson, Anna; Karlsson, Dick; Sokolova, Ekaterina

    2018-02-01

    The risk from chemical substances in surface waters is often increased during wet weather, due to surface runoff, combined sewer overflows (CSOs) and erosion of contaminated land. There are strong incentives to improve the quality of surface waters affected by human activities, not only from ecotoxicity and ecosystem health perspectives, but also for drinking water and recreational purposes. The aim of this study is to investigate the influence of urban stormwater discharges and CSOs on receiving water in the context of chemical health risks and recreational water quality. Transport of copper (Cu) and benzo[a]pyrene (BaP) in the Göta River (Sweden) was simulated using a hydrodynamic model. Within the 16 km modelled section, 35 CSO and 16 urban stormwater point discharges, as well as the effluent from a major wastewater treatment plant, were included. Pollutant concentrations in the river were simulated for two rain events and investigated at 13 suggested bathing sites. The simulations indicate that water quality guideline values for Cu are exceeded at several sites, and that stormwater discharges generally give rise to higher Cu and BaP concentrations than CSOs. Due to the location of point discharges and the river current inhibiting lateral mixing, the north shore of the river is better suited for bathing. Peak concentrations have a short duration; increased concentrations of the pollutants may however be present for several days after a rain event. Monitoring of river water quality indicates that simulated Cu and BaP concentrations are in the same order of magnitude as measured concentrations. It is concluded that hydrodynamic modelling is a useful tool for identifying suitable bathing sites in urban surface waters and areas of concern where mitigation measures should be implemented to improve water quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Investigation on growth, structural, optical, electrical and X-ray sensing properties of chemically deposited zinc bismuth sulfide (ZnxBi2‑xS3) thin films

    NASA Astrophysics Data System (ADS)

    Sabarish, R.; Suriyanarayanan, N.; Kalita, J. M.; Sarma, M. P.; Wary, G.

    2018-05-01

    In the present work, ZnxBi2‑xS3 films were synthesized (x = 0.2 M) by a chemical bath deposition (CBD) technique at different bath temperatures (60 °C, 70 °C and 80 °C). The role of bath temperature on the formation of the films has been examined. The crystalline nature, structural parameters and surface morphology of the films were ascertained using x-ray diffraction (XRD), Raman spectroscopy and scanning electron microscope (SEM) and energy dispersive x-ray spectroscopy (EDS) respectively. These studies confirmed the formation of crystalline Zn0.2Bi1.8S3 films with uniform distribution of homogenous grains. The characterization results revealed that the film deposited at 70 °C has the good crystalline quality than the films deposited at 60 and 80 °C. Further, the optical absorption spectra showed that the bandgap (E g ) of the film deposited at 70 °C was about 2.39 eV which was found to be less than the same film deposited at 60 and 80 °C. The Current-Voltage (I-V) characteristics of all the films were measured under dark condition. This showed that the electrical conductivity of the film deposited at 70 °C was 1.61 × 10‑5 S cm‑1 which is ten times higher than other films. Further, the I-V characteristics of the film deposited at 70 °C was studied under x-ray radiation. The current under the x-ray radiation was significantly higher compared to the dark current. The x-ray detection sensitivity of the film was found to be maximum at 0.7 V and gradually decreases with increase of bias voltage. This analysis reveals that the film deposited at 70 °C can be used as an x-ray sensor.

  7. Antiparasitic activity, histopathology and physiology of Colossoma macropomum (tambaqui) exposed to the essential oil of Lippia sidoides (Verbenaceae).

    PubMed

    Soares, Bruna Viana; Neves, Lígia Rigôr; Ferreira, Drielly Oliveira; Oliveira, Marcos Sidney Brito; Chaves, Francisco Célio Maia; Chagas, Edsandra Campos; Gonçalves, Raissa Alves; Tavares-Dias, Marcos

    2017-01-30

    In vivo and in vitro antiparasitic activity of the essential oil of Lippia sidoides and blood and histological alterations were assessed in Colossoma macropomum (tambaqui). Essential oil concentrations of 10, 20, 40, 80, 160 and 320mg/L were assayed in vitro against monogenoideans Anacanthorus spathulatus, Notozothecium janauachensis and Mymarothecium boegeri from fish gills. Lippia sidoides essential oil concentrations of 320 and 160mg/L were 100% effective against monogenoideans in 10min and 1h of exposure, respectively. However, the effectiveness of 100% concentrations of 80mg/L and 40mg/L occurred in 3 and 6h, respectively. In the in vivo tests, juvenile fish were submitted to 60min of baths with 10mg/L and 15min of baths with 20mg/L of the essential oil of L. sidoides. These therapeutic baths were not efficient against Ichthyophthirius multifiliis, and monogenoideans present in the gills of C. macropomum. In addition, 10 and 20mg/L of the essential oil of L. sidoides caused an anesthetic effect on the fish and did not influence total glucose and protein plasma levels; however, it decreased the number of total erythrocytes in fish exposed to the higher concentration of this essential oil. Severe alterations and irreversible damage were observed in the fish gills just after L. sidoides essential oil baths and after 24h of recovery. The most recurrent lesions found were hyperplasia and fusion of the lamellar epithelium, vasodilation, detachment of the gill epithelium and lamellar aneurism, epithelial breakdown with hemorrhage, congestion, edema and necrosis, proliferation of the mucous cells and chloride cells and lamellar hypertrophy. Therefore, since the essential oil of L. sidoides has in vitro antiparasitic activity and low concentrations of it have shown toxic effects, the bioactive potential of its main chemical components should be investigated, as well as more efficient forms of its administration in therapeutic baths in order to eliminate fish parasites. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Bubble bath soap poisoning

    MedlinePlus

    ... medlineplus.gov/ency/article/002762.htm Bubble bath soap poisoning To use the sharing features on this page, please enable JavaScript. Bubble bath soap poisoning occurs when someone swallows bubble bath soap. ...

  9. The provision of patient personal hygiene in the intensive care unit: a descriptive exploratory study of bed-bathing practice.

    PubMed

    Coyer, Fiona M; O'Sullivan, Judy; Cadman, Nicola

    2011-08-01

    The provision of the patient bed-bath is a fundamental nursing care activity yet few quantitative data and no qualitative data are available on registered nurses' (RNs) clinical practice in this domain in the intensive care unit (ICU). The aim of this study was to describe ICU RNs current practice with respect to the timing, frequency and duration of the patient bed-bath and the cleansing and emollient agents used. The study utilised a two-phase sequential explanatory mixed method design. Phase one used a questionnaire to survey RNs and phase two employed semi-structured focus group (FG) interviews with RNs. Data was collected over 28 days across four Australian metropolitan ICUs. Ethical approval was granted from the relevant hospital and university human research ethics committees. RNs were asked to complete a questionnaire following each episode of care (i.e. bed-bath) and then to attend one of three FG interviews: RNs with less than 2 years ICU experience; RNs with 2-5 years ICU experience; and RNs with greater than 5 years ICU experience. During the 28-day study period the four ICUs had 77.25 beds open. In phase one a total of 539 questionnaires were returned, representing 30.5% of episodes of patient bed-baths (based on 1767 bed occupancy and one bed-bath per patient per day). In 349 bed-bath episodes 54.7% patients were mechanically ventilated. The bed-bath was given between 02.00 and 06.00h in 161 episodes (30%), took 15-30min to complete (n=195, 36.2%) and was completed within the last 8h in 304 episodes (56.8%). Cleansing agents used were predominantly pH balanced soap or liquid soap and water (n=379, 71%) in comparison to chlorhexidine impregnated sponges/cloths (n=86, 16.1%) or other agents such as pre-packaged washcloths (n=65, 12.2%). In 347 episodes (64.4%) emollients were not applied after the bed-bath. In phase two 12 FGs were conducted (three FGs at each ICU) with a total of 42 RN participants. Thematic analysis of FG transcripts across the three levels of RN ICU experience highlighted a transition of patient hygiene practice philosophy from shades of grey - falling in line for inexperienced clinicians to experienced clinicians concrete beliefs about patient bed-bath needs. This study identified variation in process and products used in patient hygiene practices in four ICUs. Further study to improve patient outcomes is required to determine the appropriate timing of patient hygiene activities and cleansing agents used to improve skin integrity. Copyright © 2010 Australian College of Critical Care Nurses Ltd. Published by Elsevier Ltd. All rights reserved.

  10. 33 CFR 334.45 - Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Shipyard, naval restricted area, Bath, Maine. 334.45 Section 334.45 Navigation and Navigable Waters CORPS... REGULATIONS § 334.45 Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine. (a) The... and other craft, except those vessels under the supervision or contract to local military or Naval...

  11. 33 CFR 334.45 - Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Shipyard, naval restricted area, Bath, Maine. 334.45 Section 334.45 Navigation and Navigable Waters CORPS... REGULATIONS § 334.45 Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine. (a) The... and other craft, except those vessels under the supervision or contract to local military or Naval...

  12. 33 CFR 334.45 - Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Shipyard, naval restricted area, Bath, Maine. 334.45 Section 334.45 Navigation and Navigable Waters CORPS... REGULATIONS § 334.45 Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine. (a) The... and other craft, except those vessels under the supervision or contract to local military or Naval...

  13. 33 CFR 334.45 - Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Shipyard, naval restricted area, Bath, Maine. 334.45 Section 334.45 Navigation and Navigable Waters CORPS... REGULATIONS § 334.45 Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine. (a) The... and other craft, except those vessels under the supervision or contract to local military or Naval...

  14. 33 CFR 334.45 - Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Shipyard, naval restricted area, Bath, Maine. 334.45 Section 334.45 Navigation and Navigable Waters CORPS... REGULATIONS § 334.45 Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine. (a) The... and other craft, except those vessels under the supervision or contract to local military or Naval...

  15. Chemical Reduction of SIM MOX in Molten Lithium Chloride Using Lithium Metal Reductant

    NASA Astrophysics Data System (ADS)

    Kato, Tetsuya; Usami, Tsuyoshi; Kurata, Masaki; Inoue, Tadashi; Sims, Howard E.; Jenkins, Jan A.

    2007-09-01

    A simulated spent oxide fuel in a sintered pellet form, which contained the twelve elements U, Pu, Am, Np, Cm, Ce, Nd, Sm, Ba, Zr,Mo, and Pd, was reduced with Li metal in a molten LiCl bath at 923 K. More than 90% of U and Pu were reduced to metal to form a porous alloy without significant change in the Pu/U ratio. Small fractions of Pu were also combined with Pd to form stable alloys. In the gap of the porous U-Pu alloy, the aggregation of the rare-earth (RE) oxide was observed. Some amount of the RE elements and the actinoides leached from the pellet. The leaching ratio of Am to the initially loaded amount was only several percent, which was far from about 80% obtained in the previous ones on simple MOX including U, Pu, and Am. The difference suggests that a large part of Am existed in the RE oxide rather than in the U-Pu alloy. The detection of the RE elements and actinoides in the molten LiCl bath seemed to indicate that they dissolved into the molten LiCl bath containing the oxide ion, which is the by-product of the reduction, as solubility of RE elements was measured in the molten LiCl-Li2O previously.

  16. Effect of timing of count events on estimates of sea lice abundance and interpretation of effectiveness following bath treatments.

    PubMed

    Gautam, R; Vanderstichel, R; Boerlage, A S; Revie, C W; Hammell, K L

    2017-03-01

    Effectiveness of sea lice bath treatment is often assessed by comparing pre- and post-treatment counts. However, in practice, the post-treatment counting window varies from the day of treatment to several days after treatment. In this study, we assess the effect of post-treatment lag time on sea lice abundance estimates after chemical bath treatment using data from the sea lice data management program (Fish-iTrends) between 2010 and 2014. Data on two life stages, (i) adult female (AF) and (ii) pre-adult and adult male (PAAM), were aggregated at the cage level and log-transformed. Average sea lice counts by post-treatment lag time were computed for AF and PAAM and compared relative to treatment day, using linear mixed models. There were 720 observations (treatment events) that uniquely matched pre- and post-treatment counts from 53 farms. Lag time had a significant effect on the estimated sea lice abundance, which was influenced by season and pre-treatment sea lice levels. During summer, sea lice were at a minimum when counted 1 day post-treatment irrespective of pre-treatment sea lice levels, whereas in the spring and autumn, low levels were observed for PAAM over a longer interval of time, provided the pre-treatment sea lice levels were >5-10. © 2016 John Wiley & Sons Ltd.

  17. Guide for First-Time Parents

    MedlinePlus

    ... Bathing Basics You should give your baby a sponge bath until: the umbilical cord falls off and ... towels or blankets a clean diaper clean clothes Sponge baths. For a sponge bath, select a safe, ...

  18. Interior view of bath 1 showing original cabinet and bath ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of bath 1 showing original cabinet and bath fixtures, facing southeast. - Albrook Air Force Station, Company Officer's Quarters, East side of Canfield Avenue, Balboa, Former Panama Canal Zone, CZ

  19. Iterative blip-summed path integral for quantum dynamics in strongly dissipative environments

    NASA Astrophysics Data System (ADS)

    Makri, Nancy

    2017-04-01

    The iterative decomposition of the blip-summed path integral [N. Makri, J. Chem. Phys. 141, 134117 (2014)] is described. The starting point is the expression of the reduced density matrix for a quantum system interacting with a harmonic dissipative bath in the form of a forward-backward path sum, where the effects of the bath enter through the Feynman-Vernon influence functional. The path sum is evaluated iteratively in time by propagating an array that stores blip configurations within the memory interval. Convergence with respect to the number of blips and the memory length yields numerically exact results which are free of statistical error. In situations of strongly dissipative, sluggish baths, the algorithm leads to a dramatic reduction of computational effort in comparison with iterative path integral methods that do not implement the blip decomposition. This gain in efficiency arises from (i) the rapid convergence of the blip series and (ii) circumventing the explicit enumeration of between-blip path segments, whose number grows exponentially with the memory length. Application to an asymmetric dissipative two-level system illustrates the rapid convergence of the algorithm even when the bath memory is extremely long.

  20. Effect of Cerium Oxide on Morphologies and Electrochemical Properties of Ni-W-P Coating on AZ91D Magnesium

    NASA Astrophysics Data System (ADS)

    Sun, Wan-chang; Xu, Jia-Min; Wang, Yuan; Guo, Fang; Jia, Zong-Wei

    2017-12-01

    AZ91D magnesium alloy substrate was first pretreated in a phosphoric acid to obtain a phosphate coating, and then, the electroless ternary Ni-W-P coating was deposited using a sulfate nickel bath. The morphologies of the Ni-W-P coating were observed by using scanning electron microscope, the deposition rate of the coating was examined with the method of gravimetric analysis, and the phase analysis was identified by x-ray diffractometer. Electrochemical property was tested by means of an electrochemical analyzer. The results indicated that the addition of an optimum concentration of CeO2 (cerium oxide) particles could evidently improve the deposition rate and the stability of the plating bath. However, it acted as an inhibiting effect as the concentration of CeO2 particles exceeded to 8 mg/L in the sulfate nickel bath. The results also revealed that the morphology of Ni-W-P coating became more smooth, compact and uniform with the increase in the concentrations of CeO2 particles in the bath, but the corrosion resistance decreased due to the precipitation of crystal phases (Ni3P, Ni4W, etc.) after heat treatment.

  1. Volume holographic elements in Kodak 131 plates processed with SHSG method

    NASA Astrophysics Data System (ADS)

    Collados, Manuel V.; Atencia, Jesus; Lopez, Ana M.; Quintanilla, Manuel M.

    2001-08-01

    A SHSG procedure to register volume phase holograms in Kodak 131 plates is presented. We analyze the influence on the diffraction efficiency of the developing step and the temperature of the bleaching bath of usual SHSG processes. Applying a simple 12 steps process to form phase transmission holograms developing with D-19, bleaching with R-10 at 70 degrees C and removing the sensitizing dyes that remain in the emulsion with a diluted methanol bath after the fixation step, we obtain relative efficiencies of 100 percent and effective efficiencies of 70 percent.

  2. Optical Properties of Silver Nanoparticulate Glasses

    NASA Astrophysics Data System (ADS)

    Evans, Rachel N.; Cannavino, Sarah A.; King, Christy A.; Lamartina, Joseph A.; Magruder, Robert H.; Ferrara, Davon W.

    The ion exchange method of embedding metal nanoparticles (NPs) into float glass is an often used technique of fabricating colored glasses and graded-index waveguides. The depth and size of NP formation in the glass depends on the concentration and temperature of metal ions in the molten bath. In this study we explore the dichroic properties of silver metal ion exchange restricted to only one side of a glass microscope slide using reflection and transmission spectroscopy and its dependence on temperature, concentration of silver ions, and length of time in the molten bath.

  3. A comparison of head-out mist bathing, with or without facial fanning, with head-out half-body low-water level bathing in humans--a pilot study.

    PubMed

    Iwase, Satoshi; Kawahara, Yuko; Nishimura, Naoki; Nishimura, Rumiko; Miwa, Chihiro; Kataoka, Yumiko; Kobayashi, Chihiro; Suzuki, Takahiro; Shigaraki, Masayuki; Maeda, Yoichi; Takada, Hiroki; Watanabe, Yoriko

    2014-07-01

    To reduce the risks of Japanese-style bathing, half-body bathing (HBLB) has been recommended in Japan, but discomfort due to the cold environment in winter prevents its widespread adoption. The development of the mist sauna, which causes a gradual core temperature rise with sufficient thermal comfort, has reduced the demerits of HBLB. We examined head-out 42 °C mist bathing with 38 °C HBLB up to the navel to see if it could improve thermal comfort without detracting from the merits of HBLB, with and without the effects of facial fanning (FF). The subjects were seven healthy males aged 22-25 years. The following bathing styles were provided: (1) HBLB-head-out half-body low bathing of 38 °C up to the navel (20 min); (2) HOMB-head-out mist bathing of 42 °C and HBLB of 38 °C (20 min); and (3) HOMBFF-HOMB with FF (20 min). HOMB raised the core temperature gradually. HOMBFF suppressed the core temperature rise in a similar fashion to HOMB. Increases in blood pressure and heart rate usually observed in Japanese traditional-style bathing were less marked in HOMBs with no significant difference with and without FF. The greatest body weight loss was observed after Japanese traditional-style bathing, with only one-third of this amount lost after mist bathing, and one-sixth after HBLB. HOMB increased thermal sensation, and FF also enhanced post-bathing invigoration. We conclude that HOMB reduces the risks of Japanese traditional style bathing by mitigating marked changes in the core temperature and hemodynamics, and FF provides thermal comfort and invigoration.

  4. A comparison of head-out mist bathing, with or without facial fanning, with head-out half-body low-water level bathing in humans—a pilot study

    NASA Astrophysics Data System (ADS)

    Iwase, Satoshi; Kawahara, Yuko; Nishimura, Naoki; Nishimura, Rumiko; Miwa, Chihiro; Kataoka, Yumiko; Kobayashi, Chihiro; Suzuki, Takahiro; Shigaraki, Masayuki; Maeda, Yoichi; Takada, Hiroki; Watanabe, Yoriko

    2014-07-01

    To reduce the risks of Japanese-style bathing, half-body bathing (HBLB) has been recommended in Japan, but discomfort due to the cold environment in winter prevents its widespread adoption. The development of the mist sauna, which causes a gradual core temperature rise with sufficient thermal comfort, has reduced the demerits of HBLB. We examined head-out 42 °C mist bathing with 38 °C HBLB up to the navel to see if it could improve thermal comfort without detracting from the merits of HBLB, with and without the effects of facial fanning (FF). The subjects were seven healthy males aged 22-25 years. The following bathing styles were provided: (1) HBLB—head-out half-body low bathing of 38 °C up to the navel (20 min); (2) HOMB—head-out mist bathing of 42 °C and HBLB of 38 °C (20 min); and (3) HOMBFF—HOMB with FF (20 min). HOMB raised the core temperature gradually. HOMBFF suppressed the core temperature rise in a similar fashion to HOMB. Increases in blood pressure and heart rate usually observed in Japanese traditional-style bathing were less marked in HOMBs with no significant difference with and without FF. The greatest body weight loss was observed after Japanese traditional-style bathing, with only one-third of this amount lost after mist bathing, and one-sixth after HBLB. HOMB increased thermal sensation, and FF also enhanced post-bathing invigoration. We conclude that HOMB reduces the risks of Japanese traditional style bathing by mitigating marked changes in the core temperature and hemodynamics, and FF provides thermal comfort and invigoration.

  5. Hard water softening effect of a baby cleanser

    PubMed Central

    Walters, Russel M; Anim-Danso, Emmanuel; Amato, Stephanie M; Capone, Kimberly A; Mack, M Catherine; Telofski, Lorena S; Mays, David A

    2016-01-01

    Background Hard water is associated with atopic dermatitis (eczema). We wanted to determine if a baby cleanser and its individual components altered free ionized calcium (Ca2+) in a simulated hard water baby bath. For these studies, an in vitro determination of free Ca2+ in a simulated hard water baby bath, and an in vivo exploratory study of free Ca2+ absorption into skin from hard water were performed. Methods Free Ca2+ was measured with an ion-sensitive electrode in vitro in hard water (100–500 ppm, Ca2+) before and after addition of the cleanser and/or its components. In an exploratory study, absorption of Ca2+ into skin from hard water was determined in three female participants (aged 21–29 years). Results At an in-use dilution of 1%, the test cleanser reduced free Ca2+ from ~500 ppm to <200 ppm; a 10% in-use dilution bound virtually all free Ca2+. The anionic surfactant component contributed the most to this effect. In the exploratory in vivo study, we measured a reduction of ~15% in free Ca2+ from simulated hard water over 10 minutes. Conclusion Baby cleansers can bind free Ca2+ and reduce the effective water hardness of bath water. Reducing the amount of free Ca2+ in the water will reduce the availability of the ion for binding to the skin. Altering or reducing free Ca2+ concentrations in bath water may be an important parameter in creating the ideal baby bath. PMID:27789967

  6. [Turpentine white emulsion baths in the rehabilation in patients with sexual dysfunctions].

    PubMed

    Karpukhin, I V; Li, A A; Gusev, M E

    2000-01-01

    100 patients with sexual dysfunction (SD) and 20 SD patients took turpentine white emulsion baths and sodium chloride baths, respectively. The turpentine baths were given with step-by-step rise in turpentine concentration from 20 to 50 ml per 200 l of water, temperature 36-37 degrees C, duration of the procedure 10-15 min. The course consisted of 10-12 procedures which were conducted daily or each other day. The turpentine baths were more effective than sodium chloride baths (85 vs 50%, respectively).

  7. Effect of trunk-to-head bathing on physiological responses in newborns.

    PubMed

    So, Hyun-Sook; You, Mi-Ae; Mun, Je-Yung; Hwang, Myeong-Jin; Kim, Hyun-Kyung; Pyeon, Suk-Jin; Shin, Mi-Young; Chang, Bong-Hee

    2014-01-01

    To determine the effect of trunk-to-head bathing versus the traditional head-to-trunk bathing on newborns' body temperature, heart rate, and oxygen saturation. A prospective, two-group, quasi-experimental repeated measures design. A newborn nursery in an urban university hospital. Sixty-two healthy full-term newborns. Newborns were randomly assigned to two groups. The newborns in the experimental group were bathed from trunk to head; those in the control group were bathed from head to trunk. Measurements of body temperature, heart rate, and oxygen saturation were obtained at four time points: before the bath, immediately after the bath, 30 minutes after the bath, and 60 minutes after the bath. No significant differences in body temperature, heart rate, or oxygen saturation were observed between groups. However, body temperature was significantly different across measurement times, and there was a significant interaction between group and measurement time. The mean body temperature dropped 0.2°C after bathing in both groups, but the experimental group returned to their initial body temperature more rapidly than the control group. These findings suggest that newborns who were bathed from trunk to head and whose heads were wet for shorter periods of time benefited with a more rapid recovery of body temperature and decreased heat loss due to evaporation. © 2014 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.

  8. Method for conducting electroless metal-plating processes

    DOEpatents

    Petit, George S.; Wright, Ralph R.

    1978-01-01

    This invention is an improved method for conducting electroless metal-plating processes in a metal tank which is exposed to the plating bath. The invention solves a problem commonly encountered in such processes: how to determine when it is advisable to shutdown the process in order to clean and/or re-passivate the tank. The new method comprises contacting the bath with a current-conducting, non-catalytic probe and, during plating operations, monitoring the gradually changing difference in electropotential between the probe and tank. It has been found that the value of this voltage is indicative of the extent to which nickel-bearing decomposition products accumulate on the tank. By utilizing the voltage to determine when shutdown for cleaning is advisable, the operator can avoid premature shutdown and at the same time avoid prolonging operations to the point that spontaneous decomposition occurs.

  9. Controlling the quantum dynamics of a mesoscopic spin bath in diamond

    PubMed Central

    de Lange, Gijs; van der Sar, Toeno; Blok, Machiel; Wang, Zhi-Hui; Dobrovitski, Viatcheslav; Hanson, Ronald

    2012-01-01

    Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing. PMID:22536480

  10. Linear-algebraic bath transformation for simulating complex open quantum systems

    DOE PAGES

    Huh, Joonsuk; Mostame, Sarah; Fujita, Takatoshi; ...

    2014-12-02

    In studying open quantum systems, the environment is often approximated as a collection of non-interacting harmonic oscillators, a configuration also known as the star-bath model. It is also well known that the star-bath can be transformed into a nearest-neighbor interacting chain of oscillators. The chain-bath model has been widely used in renormalization group approaches. The transformation can be obtained by recursion relations or orthogonal polynomials. Based on a simple linear algebraic approach, we propose a bath partition strategy to reduce the system-bath coupling strength. As a result, the non-interacting star-bath is transformed into a set of weakly coupled multiple parallelmore » chains. Furthermore, the transformed bath model allows complex problems to be practically implemented on quantum simulators, and it can also be employed in various numerical simulations of open quantum dynamics.« less

  11. Cd-free buffer layer materials on Cu2ZnSn(SxSe1-x)4: Band alignments with ZnO, ZnS, and In2S3

    NASA Astrophysics Data System (ADS)

    Barkhouse, D. Aaron R.; Haight, Richard; Sakai, Noriyuki; Hiroi, Homare; Sugimoto, Hiroki; Mitzi, David B.

    2012-05-01

    The heterojunctions formed between Cu2ZnSn(SxSe1-x)4 (CZTSSe) and three Cd-free n-type buffers, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission and photovoltage spectroscopy. The electronic properties including the Fermi level location at the interface, band bending in the CZTSSe substrate, and valence and conduction band offsets were determined and correlated with device properties. We also describe a method for determining the band bending in the buffer layer and demonstrate this for the In2S3/CZTSSe system. The chemical bath deposited In2S3 buffer is found to have near optimal conduction band offset (0.15 eV), enabling the demonstration of Cd-free In2S3/CZTSSe solar cells with 7.6% power conversion efficiency.

  12. H3PO4 treated surface modified CuS counter electrodes with high electrocatalytic activity for enhancing photovoltaic performance of quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Panthakkal Abdul Muthalif, Mohammed; Sunesh, Chozhidakath Damodharan; Choe, Youngson

    2018-05-01

    Herein we report a simple synthetic strategy to prepare highly efficient and surface modified CuS counter electrodes (CEs) for quantum dot-sensitized solar cells (QDSSCs) in the presence of phosphoric acid (H3PO4) using the chemical bath deposition method. This is the first report of successful treatment of H3PO4 on the surface of CuS CEs for designing a high-performance QDSSCs with improved photovoltaic properties. After optimization, the 4 ml H3PO4 treated CuS CE-based QDSSC exhibits excellent photovoltaic performance with a conversion efficiency (η) of 4.20% (Voc = 0.592 V, Jsc = 13.35 mA cm-2, FF = 0.532) under one full-sun illumination (100 mW cm-2, AM 1.5 G).

  13. Effect of dopent on the structural and optical properties of ZnS thin film as a buffer layer in solar cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vashistha, Indu B., E-mail: indu-139@yahoo.com; Sharma, S. K.; Sharma, Mahesh C.

    2015-08-28

    In order to find the suitable alternative of toxic CdS buffer layer, deposition of pure ZnS and doped with Al by chemical bath deposition method have been reported. Further as grown pure and doped thin films have been annealed at 150°C. The structural and surface morphological properties have been characterized by X-Ray diffraction (XRD) and Atomic Force Microscope (AFM).The XRD analysis shows that annealed thin film has been polycrystalline in nature with sphalerite cubic crystal structure and AFM images indicate increment in grain size as well as growth of crystals after annealing. Optical measurement data give band gap of 3.5more » eV which is ideal band gap for buffer layer for solar cell suggesting that the obtained ZnS buffer layer is suitable in a low-cost solar cell.« less

  14. Three-dimensional cotton-like nickel nanowire@Ni-Co hydroxide nanosheet arrays as binder-free electrode for high-performance asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Wan, Houzhao; Li, Lang; Xu, Yang; Tan, Qiuyang; Liu, Xiang; Zhang, Jun; Wang, Hanbin; Wang, Hao

    2018-05-01

    Three-dimensional (3D) cotton-like Ni-Co layered double hydroxide nanosheet arrays/nickel nanowires (3D Ni-Co LDH/NiNw) were successfully fabricated through a facile chemical bath deposition method. The 3D nickel nanowires are used as a conductive substrate with robust adhesion for high-pseudocapacitance Ni-Co LDH. The 3D Ni-Co LDH/NiNw electrode shows a high areal specific capacitance of 14 F cm-2 at 5 mA cm-2 and quality specific capacitance of 466.6 F g-1 at 0.125 A g-1 with respect to the whole quality of the electrode. The fabricated asymmetric supercapacitor exhibits a remarkable energy density of 0.387 mWh cm-2 using Ni-Co LDH/NiNw as the negative electrode. This high-performance composite electrode presents a new and affordable general approach for supercapacitors.

  15. Fabrication of Nanopipette Arrays for Biosensing

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya (Inventor)

    2015-01-01

    Method for providing a nanopipette array for biosensing applications. A thin substrate of anodizable metal ("AN-metal," such as Al, Mg, Zn, Ti, Ta and/or Nb) is anodized at temperature T=20-200.degree. C., chemical bath pH=4-6 and electrical potential 1-300 Volts, to produce an array of anodized nanopipette channels, having diameters 10-50 nm, with oxidized channel surfaces of thickness 5-20 nm. A portion of exposed non-oxidized AN-metal between adjacent nanopipette channels, of length 1-5 .mu.m, is etched away, exposing inner and outer surfaces of a nanopipette channel. A probe molecule, is deposited on one or both surfaces to provide biosensing capability for K(.gtoreq.1) target molecules. Target molecule presence, in an above-threshold concentration, in a fluid passed through or adjacent to a nanopipette channel, produces characteristic detection signals associated with the probe molecule site.

  16. Three-dimensional cotton-like nickel nanowire@Ni-Co hydroxide nanosheet arrays as binder-free electrode for high-performance asymmetric supercapacitor.

    PubMed

    Wan, Houzhao; Li, Lang; Xu, Yang; Tan, Qiuyang; Liu, Xiang; Zhang, Jun; Wang, Hanbin; Wang, Hao

    2018-05-11

    Three-dimensional (3D) cotton-like Ni-Co layered double hydroxide nanosheet arrays/nickel nanowires (3D Ni-Co LDH/NiNw) were successfully fabricated through a facile chemical bath deposition method. The 3D nickel nanowires are used as a conductive substrate with robust adhesion for high-pseudocapacitance Ni-Co LDH. The 3D Ni-Co LDH/NiNw electrode shows a high areal specific capacitance of 14 F cm -2 at 5 mA cm -2 and quality specific capacitance of 466.6 F g -1 at 0.125 A g -1 with respect to the whole quality of the electrode. The fabricated asymmetric supercapacitor exhibits a remarkable energy density of 0.387 mWh cm -2 using Ni-Co LDH/NiNw as the negative electrode. This high-performance composite electrode presents a new and affordable general approach for supercapacitors.

  17. Hydrothermal-electrochemical growth of heterogeneous ZnO: Co films

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ceren; Unal, Ugur

    2017-10-01

    This study demonstrates the preparation of heterogeneous ZnO: Co nanostructures via hydrothermal-electrochemical deposition at 130 °C and -1.1 V (vs Ag/AgCl (satd)) in dimethyl sulfoxide (DMSO)-H2O mixture. Under the stated conditions, ZnO: Co nanostructures grow preferentially along (002) direction. Strength of directional growth progressively increases with the increasing concentration of Co(II) in the deposition bath. Films are composed of hexagonal Wurtzite ZnO, metallic cobalt, and mixed cobalt oxide on the surface and cobalt(II) oxide in deeper levels. Increasing the Co(II) concentration in the deposition bath results in different morphological features as well as phase separation. Platelets, sponge-like structures, cobalt-rich spheres, microislands of cobalt-rich spheres which are interconnected by ZnO network can be synthesized by adjusting [Co(II)]: [Zn(II)] ratio. Growth mechanisms giving rise to these particular structures, surface morphology, crystal structure, phase purity, chemical binding characteristics, and optical properties of the deposits are discussed in detail.

  18. Atypical dopamine efflux caused by 3,4-methylenedioxypyrovalerone (MDPV) via the human dopamine transporter.

    PubMed

    Shekar, Aparna; Aguilar, Jenny I; Galli, Greta; Cozzi, Nicholas V; Brandt, Simon D; Ruoho, Arnold E; Baumann, Michael H; Matthies, Heinrich J G; Galli, Aurelio

    2017-10-01

    Synthetic cathinones are similar in chemical structure to amphetamines, and their behavioral effects are associated with enhanced dopaminergic signaling. The past ten years of research on the common constituent of bath salts, MDPV (the synthetic cathinone 3,4-methylenedioxypyrovalerone), has aided the understanding of how synthetic cathinones act at the dopamine (DA) transporter (DAT). Several groups have described the ability of MDPV to block the DAT with high-affinity. In this study, we demonstrate for the first time a new mode of action of MDPV, namely its ability to promote DAT-mediated DA efflux. Using single cell amperometric assays, we determined that low concentrations of MDPV (1nM) can cause reverse transport of DA via DAT. Notably, administration of MDPV leads to hyperlocomotion in Drosophila melanogaster. These data describe further how MDPV acts at the DAT, possibly paving the way for novel treatment strategies for individuals who abuse bath salts. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cloistered Baryogenesis

    NASA Astrophysics Data System (ADS)

    Fong, Chee Sheng

    2015-10-01

    The cosmic matter-antimatter asymmetry can be generated through baryon number conserving decays of heavy particles that produce asymmetries in the two final states that carry equal and opposite baryon number in which one of them couples directly or indirectly to electroweak sphalerons. The final state that participates in electroweak sphalerons will have its baryon asymmetry partly reprocessed to a lepton asymmetry while the other remains chemically decoupled from the thermal bath or cloistered with its baryon content frozen. The key condition for this mechanism to work is for the decoupled particles to remain cloistered until after electroweak sphalerons freeze out and then the subsequent decays of the particles will inject an unbalanced baryon asymmetry in the thermal bath giving rise to a net nonzero baryon asymmetry. Such a condition implies weakly coupled particles and if produced in a collider could give signatures of long-lived (on a collider timescale) particles. We discuss such a scenario with a type-I seesaw model extended by a new colored scalar.

  20. Effects of Various Parameters on Structural and Optical Properties of CBD-Grown ZnS Thin Films: A Review

    NASA Astrophysics Data System (ADS)

    Sinha, Tarkeshwar; Lilhare, Devjyoti; Khare, Ayush

    2018-02-01

    Zinc sulfide (ZnS) thin films deposited by chemical bath deposition (CBD) technique have proved their capability in a wide area of applications including electroluminescent and display devices, solar cells, sensors, and field emitters. These semiconducting thin films have attracted a much attention from the scientific community for industrial and research purposes. In this article, we provide a comprehensive review on the effect of various parameters on various properties of CBD-grown ZnS films. In the first part, we discuss the historical background of ZnS, its basic properties, and the advantages of the CBD technique. Detailed discussions on the film growth, structural and optical properties of ZnS thin films affected by various parameters, such as bath temperature and concentration, deposition time, stirring speed, complexing agents, pH value, humidity in the environment, and annealing conditions, are also presented. In later sections, brief information about the recent studies and findings is also added to explore the scope of research work in this field.

  1. Fabrication and characterization of Ga-doped ZnO / Si heterojunction nanodiodes

    NASA Astrophysics Data System (ADS)

    Akgul, Guvenc; Akgul, Funda Aksoy

    2017-02-01

    In this study, temperature-dependent electrical properties of n-type Ga-doped ZnO thin film / p-type Si nanowire heterojunction diodes were reported. Metal-assisted chemical etching (MACE) process was performed to fabricate Si nanowires. Ga-doped ZnO films were then deposited onto nanowires through chemical bath deposition (CBD) technique to build three-dimensional nanowire-based heterojunction diodes. Fabricated devices revealed significant diode characteristics in the temperature range of 220 - 360 K. Electrical measurements shown that diodes had a well-defined rectifying behavior with a good rectification ratio of 103 ±3 V at room temperature. Ideality factor (n) were changed from 2.2 to 1.2 with increasing temperature.

  2. Two-level system in spin baths: Non-adiabatic dynamics and heat transport

    NASA Astrophysics Data System (ADS)

    Segal, Dvira

    2014-04-01

    We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model.

  3. Rapid determination of tannins in tanning baths by adaptation of BSA method.

    PubMed

    Molinari, R; Buonomenna, M G; Cassano, A; Drioli, E

    2001-01-01

    A rapid and reproducible method for the determination of tannins in vegetable tanning baths is proposed as a modification of the BSA method for grain tannins existing in literature. The protein BSA was used instead of leather powder employed in the Filter Method, which is adopted in Italy and various others countries of Central Europe. In this rapid method the tannin contents is determined by means a spectrophotometric reading and not by means a gravimetric analysis of the Filter Method. The BSA method, which belongs to mixed methods (which use both precipitation and complexation of tannins), consists of selective precipitation of tannin from a solution containing also non tannins by BSA, the dissolution of precipitate and the quantification of free tannin amount by its complexation with Fe(III) in hydrochloric solutions. The absorbance values, read at 522 nm, have been expressed in terms of tannic acid concentration by using a calibration curve made with standard solutions of tannic acid; these have been correlated with the results obtained by using the Filter Method.

  4. Metallization of Large Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Pryor, R. A.

    1978-01-01

    A metallization scheme was developed which allows selective plating of silicon solar cell surfaces. The system is comprised of three layers. Palladium, through the formation of palladium silicide at 300 C in nitrogen, makes ohmic contact to the silicon surface. Nickel, plated on top of the palladium silicide layer, forms a solderable interface. Lead-tin solder on the nickel provides conductivity and allows a convenient means for interconnection of cells. To apply this metallization, three chemical plating baths are employed.

  5. RAPID METHODS FOR MEASURING INDICATOR BACTERIA IN BATHING BEACH WATERS

    EPA Science Inventory

    The current methods for measuring the quality of recreational waters were developed in the 1970's and were recommended to the States by EPA in 1986. These methods detect and quantify Escherichia coli and enterococci, two bacteria that are consistently associated with fecal wast...

  6. Synthesis and characterization of lead sulphide thin films from ethanolamine (ETA) complexing agent chemical bath

    NASA Astrophysics Data System (ADS)

    Gashaw Hone, Fekadu; Dejene, F. B.

    2018-02-01

    Polycrystalline lead sulphide (PbS) thin films were grown on glass substrates by chemical bath deposition route using ethanolamine (ETA) as a complexing agent. The effects of ETA molar concentration on the structural, morphological, electrical and optical properties of lead sulphide thin films were thoroughly studied. The XRD analyses revealed that all the deposited thin films were face center cubic crystal structure and their preferred orientations were varied along the (111) and (200) planes. The XRD results further confirmed that ETA concentration had a significant effects on the strain, average crystalline size and dislocation density of the deposited thin films. The SEM studies illustrated the evolution and transformation of surface morphology as ETA molar concentration increased from 0.41 M to 1.64 M. The energy dispersive x-ray analysis was used to verify the compositional elements of the deposited thin films. Optical spectroscopy investigation established that the band gap of the PbS thin films were reduced from 0.98 eV to 0.68 eV as ETA concentration increased. The photoluminescence spectra showed a well defined peak at 428 nm and shoulder around 468 nm for all PbS thin films. The electrical resistivity of the thin films found in the order of 103 Ω cm at room temperature and decreased as the ETA molar concentration was increased.

  7. Multi-phase structures of boron-doped copper tin sulfide nanoparticles synthesized by chemical bath deposition for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Rakspun, Jariya; Kantip, Nathakan; Vailikhit, Veeramol; Choopun, Supab; Tubtimtae, Auttasit

    2018-04-01

    We investigated the influence of boron doping on the structural, optical, and electrical properties of copper tin sulfide (CTS) nanoparticles coated on a WO3 surface and synthesized using chemical bath deposition. Boron doping at concentrations of 0.5, 1.0, 1.5, and 2.0 wt% was investigated. The X-ray diffraction pattern of CTS showed the presence of monoclinic Cu2Sn3S7, cubic Cu2SnS3, and orthorhombic Cu4SnS4. Boron doping influenced the preferred orientation of the nanoparticles for all phase structures and produced a lattice strain effect and changes in the dislocation density. Increasing the concentration of boron in CTS from 0.5 wt% to 2.0 wt% reduced the band gap for all phases of CTS from 1.46 to 1.29 eV and reduced the optical transmittance. Optical constants, such as the refractive index, extinction coefficient, and dissipation factor, were also obtained for B-doped CTS. The dispersion behavior of the refractive index was investigated in terms of a single oscillator model and the physical parameters were determined. Fourier transform infrared spectroscopy confirmed the successful synthesis of CTS nanoparticles. Cyclic voltammetry indicated that optimum boron doping (<1.5 wt% for all phases) resulted in desirable p-n junction behavior for optoelectronic applications.

  8. Heat, temperature and Clausius inequality in a model for active Brownian particles

    PubMed Central

    Marconi, Umberto Marini Bettolo; Puglisi, Andrea; Maggi, Claudio

    2017-01-01

    Methods of stochastic thermodynamics and hydrodynamics are applied to a recently introduced model of active particles. The model consists of an overdamped particle subject to Gaussian coloured noise. Inspired by stochastic thermodynamics, we derive from the system’s Fokker-Planck equation the average exchanges of heat and work with the active bath and the associated entropy production. We show that a Clausius inequality holds, with the local (non-uniform) temperature of the active bath replacing the uniform temperature usually encountered in equilibrium systems. Furthermore, by restricting the dynamical space to the first velocity moments of the local distribution function we derive a hydrodynamic description where local pressure, kinetic temperature and internal heat fluxes appear and are consistent with the previous thermodynamic analysis. The procedure also shows under which conditions one obtains the unified coloured noise approximation (UCNA): such an approximation neglects the fast relaxation to the active bath and therefore yields detailed balance and zero entropy production. In the last part, by using multiple time-scale analysis, we provide a constructive method (alternative to UCNA) to determine the solution of the Kramers equation and go beyond the detailed balance condition determining negative entropy production. PMID:28429787

  9. Heat, temperature and Clausius inequality in a model for active Brownian particles.

    PubMed

    Marconi, Umberto Marini Bettolo; Puglisi, Andrea; Maggi, Claudio

    2017-04-21

    Methods of stochastic thermodynamics and hydrodynamics are applied to a recently introduced model of active particles. The model consists of an overdamped particle subject to Gaussian coloured noise. Inspired by stochastic thermodynamics, we derive from the system's Fokker-Planck equation the average exchanges of heat and work with the active bath and the associated entropy production. We show that a Clausius inequality holds, with the local (non-uniform) temperature of the active bath replacing the uniform temperature usually encountered in equilibrium systems. Furthermore, by restricting the dynamical space to the first velocity moments of the local distribution function we derive a hydrodynamic description where local pressure, kinetic temperature and internal heat fluxes appear and are consistent with the previous thermodynamic analysis. The procedure also shows under which conditions one obtains the unified coloured noise approximation (UCNA): such an approximation neglects the fast relaxation to the active bath and therefore yields detailed balance and zero entropy production. In the last part, by using multiple time-scale analysis, we provide a constructive method (alternative to UCNA) to determine the solution of the Kramers equation and go beyond the detailed balance condition determining negative entropy production.

  10. Immunocytochemistry associated with oral exfoliative cytology: methodological analysis..

    PubMed

    da Silva, Alessandra Dutra; Lima, Celina Faig; Maraschin, Bruna Jalfim; Laureano, Natália Koerich; Daroit, Natália Batista; Brochier, Fernanda; Sant'Ana Filho, Manoel; Visioli, Fernanda; Rados, Pantelis Varvaki

    2015-04-01

    To evaluate different immunocytochemical protocol variations to find the most effective protocol for the analysis of involucrin, epidermal growth factor receptor (EGFR), and E-cadherin antibodies. Exfoliative cytology is a noninvasive method used to monitor and screen for early changes in the oral mucosa of patients exposed to carcinogens such as tobacco and alcohol. It has been postulated that its association with immunocytochemistry may improve the effectiveness of the screening process. Four graduate students from Porto Alegre in southern Brazil had oral smears collected from the border of the tongue using a cytobrush. The following variables were analyzed: cell membrane permeability, antigen retrieval method (microwave oven or water bath), antibody incubation time (overnight or 1 hour), detection system used (Envision or LSAB), and chromogen incubation time (10 seconds or 5 minutes). Best results were obtained with the following combinations: (1) for involucrin: water bath, 1-hour incubation for primary antibody, Envision, and chromogen incubation for 10 seconds; (2)for EGFR: microwave, overnight incubation, LSAB, and chromogen incubation for 5 minutes; and (3) for E-cadherin: water bath, over-night incubation, Envision, and chromogen incubation for 5 minutes. Our findings suggest that each antibody requires a specific immunocytochemical protocol to guarantee optimal results with oral smears.

  11. Molten salt bath circulation design for an electrolytic cell

    DOEpatents

    Dawless, Robert K.; LaCamera, Alfred F.; Troup, R. Lee; Ray, Siba P.; Hosler, Robert B.

    1999-01-01

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.

  12. Responses of Lithium-Modified Bath to a Shift in Heat Input/Output Balance and Observation of Freeze-Lining Formation During the Heat Balance Shift

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Taylor, Mark; Dorreen, Mark

    2018-02-01

    In the aluminum electrolysis process, new industrial aluminum/electricity power markets demand a new cell technology to extend the cell heat balance and amperage operating window of smelters by shifting the steady states. The current work investigates the responses of lithium-modified bath system when the input/output balance is shifted in a laboratory analogue to the industrial heat balance shift. Li2CO3 is added to the cryolite-AlF3-CaF2-Al2O3 system as a bath modifier. A freeze deposit is formed on a `cold finger' dipped into the bath and investigated by X-ray diffraction analysis and electron probe X-ray microanalysis. The macro- and micro-structure of the freeze lining varies with the bath superheat (bath temperature minus bath liquidus temperature) and an open crystalline layer with entrapped liquid dominates the freeze thickness. Compared with the cryolite-AlF3-CaF2-Al2O3 bath system, the lithium-modified bath freeze is more sensitive to the heat balance shift. This freeze investigation provides primary information to understand the variation of the side ledge in an industrial cell when the lithium-modified bath system is used.

  13. Quantum Otto engine using a single ion and a single thermal bath

    NASA Astrophysics Data System (ADS)

    Biswas, Asoka; Chand, Suman

    2016-05-01

    Quantum heat engines employ a quantum system as the working fluid, that gives rise to large work efficiency, beyond the limit for classical heat engines. Existing proposals for implementing quantum heat engines require that the system interacts with the hot bath and the cold bath (both modelled as a classical system) in an alternative fashion and therefore assumes ability to switch off the interaction with the bath during a certain stage of the heat-cycle. However, it is not possible to decouple a quantum system from its always-on interaction with the bath without use of complex pulse sequences. It is also hard to identify two different baths at two different temperatures in quantum domain, that sequentially interact with the system. Here, we show how to implement a quantum Otto engine without requiring to decouple the bath in a sequential manner. This is done by considering a single thermal bath, coupled to a single trapped ion. The electronic degree of freedom of the ion is chosen as a two-level working fluid while the vibrational degree of freedom plays the role of the cold bath. Measuring the electronic state mimics the release of heat into the cold bath. Thus, our model is fully quantum and exhibits very large work efficiency, asymptotically close to unity.

  14. A Study on Characterization of Light-Induced Electroless Plated Ni Seed Layer and Silicide Formation for Solar Cell Application

    NASA Astrophysics Data System (ADS)

    Takaloo, Ashkan Vakilipour; Joo, Seung Ki; Es, Firat; Turan, Rasit; Lee, Doo Won

    2018-03-01

    Light-induced electroless plating (LIEP) is an easy and inexpensive method that has been widely used for seed layer deposition of Nickel/Copper (Ni/Cu)-based metallization in the solar cell. In this study, material characterization aspects of the Ni seed layer and Ni silicide formation at different bath conditions and annealing temperatures on the n-side of a silicon diode structure have been examined to achieve the optimum cell contacts. The effects of morphology and chemical composition of Ni film on its electrical conductivity were evaluated and described by a quantum mechanical model. It has been found that correlation exists between the theoretical and experimental conductivity of Ni film. Residual stress and phase transformation of Ni silicide as a function of annealing temperature were evaluated using Raman and XRD techniques. Finally, transmission line measurement (TLM) technique was employed to determine the contact resistance of Ni/Si stack after thermal treatment and to understand its correlation with the chemical-structural properties. Results indicated that low electrical resistive mono-silicide (NiSi) phase as low as 5 mΩ.cm2 was obtained.

  15. Chemical synthesis of hierarchical NiCo2S4 nanosheets like nanostructure on flexible foil for a high performance supercapacitor.

    PubMed

    Kim, D -Y; Ghodake, G S; Maile, N C; Kadam, A A; Sung Lee, Dae; Fulari, V J; Shinde, S K

    2017-08-29

    In this study, hierarchical interconnected nickel cobalt sulfide (NiCo 2 S 4 ) nanosheets were effectively deposited on a flexible stainless steel foil by the chemical bath deposition method (CBD) for high-performance supercapacitor applications. The resulting NiCo 2 S 4 sample was characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and electrochemical measurements. XRD and X-ray photoelectron spectroscopy (XPS) results confirmed the formation of the ternary NiCo 2 S 4 sample with a pure cubic phase. FE-SEM and HR-TEM revealed that the entire foil surface was fully covered with the interconnected nanosheets like surface morphology. The NiCo 2 S 4 nanosheets demonstrated impressive electrochemical characteristics with a specific capacitance of 1155 F g -1 at 10 mV s -1 and superior cycling stability (95% capacity after 2000 cycles). These electrochemical characteristics could be attributed to the higher active area and higher conductivity of the sample. The results demonstrated that the interconnected NiCo 2 S 4 nanosheets are promising as electrodes for supercapacitor and energy storage applications.

  16. Comparative evaluation of surface porosities in conventional heat polymerized acrylic resin cured by water bath and microwave energy with microwavable acrylic resin cured by microwave energy

    PubMed Central

    Singh, Sunint; Palaskar, Jayant N.; Mittal, Sanjeev

    2013-01-01

    Background: Conventional heat cure poly methyl methacrylate (PMMA) is the most commonly used denture base resin despite having some short comings. Lengthy polymerization time being one of them and in order to overcome this fact microwave curing method was recommended. Unavailability of specially designed microwavable acrylic resin made it unpopular. Therefore, in this study, conventional heat cure PMMA was polymerized by microwave energy. Aim and Objectives: This study was designed to evaluate the surface porosities in PMMA cured by conventional water bath and microwave energy and compare it with microwavable acrylic resin cured by microwave energy. Materials and Methods: Wax samples were obtained by pouring molten wax into a metal mold of 25 mm × 12 mm × 3 mm dimensions. These samples were divided into three groups namely C, CM, and M. Group C denotes conventional heat cure PMMA cured by water bath method, CM denotes conventional heat cure PMMA cured by microwave energy, M denotes specially designed microwavable acrylic denture base resin cured by microwave energy. After polymerization, each sample was scanned in three pre-marked areas for surface porosities using the optical microscope. As per the literature available, this instrument is being used for the first time to measure the porosity in acrylic resin. It is a reliable method of measuring area of surface pores. Portion of the sample being scanned is displayed on the computer and with the help of software area of each pore was measured and data were analyzed. Results: Conventional heat cure PMMA samples cured by microwave energy showed maximum porosities than the samples cured by conventional water bath method and microwavable acrylic resin cured by microwave energy. Higher percentage of porosities was statistically significant, but well within the range to be clinically acceptable. Conclusion: Within the limitations of this in-vitro study, conventional heat cure PMMA can be cured by microwave energy without compromising on its property such as surface porosity. PMID:24015000

  17. Evaluation of different sterilization and disinfection methods on commercially made preformed crowns.

    PubMed

    Yilmaz, Y; Guler, C

    2008-12-01

    The aim of this study was to evaluate the changes caused by different sterilization or disinfection methods on the vestibular surface of four commercially made preformed crowns using stereomicroscopy and scanning electron microscopy (SEM). Preformed crowns (NuSmile Primary Anterior Crown (NSC), Kinder Krowns (KK), Pedo Pearls (PP) and polycarbonate crowns (PC)) were sterilized and/or disinfected by one of the following techniques: no sterilization or disinfection (G1 control group); steam autoclaving at 134 degrees C (30 psi) for 4 min (G2); steam autoclaving at 134 degrees C (30 psi) for 12 min (G3); steam autoclaving at 121 degrees C (15 psi) for 30 min (G4); and ultrasonication in a bath containing 4% Lysetol AF for 5 min at room temperature (chemical disinfection) (G5). Scanning electron micrographs of the crowns were taken before and after their sterilization or disinfection. The changes on the vestibular surface were then scored for the presence or absence of crazing, contour alteration, fracturing, and vestibular surface changes. The data were analyzed statistically using the chi-square test. No changes were observed before and after sterilization or disinfection in the stereomicroscopic evaluation of the vestibular surface of the crowns. However, all methods in which steam autoclaving was used to sterilize the crowns caused significant (P < 0.05) crazing and contour alterations of the vestibular surface of the crowns when they were examined by SEM. Chemical disinfection using an aldehyde-free disinfectant is the preferred method of disinfection for crowns that have been used previously in other dental patients.

  18. Diffusion mechanism in molten salt baths during the production of carbide coatings via thermal reactive diffusion

    NASA Astrophysics Data System (ADS)

    Ghadi, Aliakbar; Saghafian, Hassan; Soltanieh, Mansour; Yang, Zhi-gang

    2017-12-01

    The diffusion mechanism of carbide-forming elements from a molten salt bath to a substrate surface was studied in this research, with particular focus on the processes occurring in the molten bath at the time of coating. Metal, oxide, and metal-oxide baths were investigated, and the coating process was performed on H13 steel substrates. Scanning electron microscopy and electron-probe microanalysis were used to study the coated samples and the quenched salt bath. The thickness of the carbide coating layer was 6.5 ± 0.5, 5.2 ± 0.5, or 5.7 ± 0.5 μm depending on whether it was deposited in a metal, oxide, or metal-oxide bath, respectively. The phase distribution of vanadium-rich regions was 63%, 57%, and 74% of the total coating deposited in metal, oxide, and metal-oxide baths, respectively. The results obtained using the metal bath indicated that undissolved suspended metal particles deposited onto the substrate surface. Then, carbon subsequently diffused to the substrate surface and reacted with the metal particles to form the carbides. In the oxide bath, oxide powders dissolved in the bath with or without binding to the oxidative structure (Na2O) of borax; they were then reduced by aluminum and converted into metal particles. We concluded that, in the metal and oxide baths, the deposition of metal particles onto the sample surface is an important step in the formation of the coating.

  19. Bathroom Accessibility.

    ERIC Educational Resources Information Center

    Exceptional Parent, 1991

    1991-01-01

    Problems in bathing a child who is physically disabled are described, and products that can assist are reviewed, such as reclining bath seats and bath lifts. A directory of bath and incontinence aids lists approximately 80 companies with codes for the types of products they make available. (JDD)

  20. INVESTIGATION INTO THE REJUVENATION OF SPENT ELECTROLESS NICKEL BATHS BY ELECTRODIALYSIS

    EPA Science Inventory

    Electroless nickel plating generates substantially more waste than other metal-finishing processes due to the inherent limited bath life and the need for regular bath disposal. Electrodialysis can be used to generate electroless nickel baths, but poor membrane permselectivity, l...

  1. Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry [Ephemeral collision complexes induce chemically termolecular transformations that affect global chemistry

    DOE PAGES

    Burke, Michael P.; Klippenstein, Stephen J.

    2017-08-14

    Termolecular association reactions involve ephemeral collision complexes—formed from the collision of two molecules—that collide with a third and chemically inert ‘bath gas’ molecule that simply transfers energy to/from the complex. These collision complexes are generally not thought to react chemically on collision with a third molecule in the gas-phase systems of combustion and planetary atmospheres. Such ‘chemically termolecular’ reactions, in which all three molecules are involved in bond making and/or breaking, were hypothesized long ago in studies establishing radical chain branching mechanisms, but were later concluded to be unimportant. Here, with data from ab initio master equation and kinetic-transport simulations,more » we reveal that reactions of H+O 2 collision complexes with other radicals constitute major kinetic pathways under common combustion situations. These reactions are also found to influence flame propagation speeds, a common measure of global reactivity. As a result, analogous chemically termolecular reactions mediated by ephemeral collision complexes are probably of significance in various combustion and planetary environments.« less

  2. Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry [Ephemeral collision complexes induce chemically termolecular transformations that affect global chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Michael P.; Klippenstein, Stephen J.

    Termolecular association reactions involve ephemeral collision complexes—formed from the collision of two molecules—that collide with a third and chemically inert ‘bath gas’ molecule that simply transfers energy to/from the complex. These collision complexes are generally not thought to react chemically on collision with a third molecule in the gas-phase systems of combustion and planetary atmospheres. Such ‘chemically termolecular’ reactions, in which all three molecules are involved in bond making and/or breaking, were hypothesized long ago in studies establishing radical chain branching mechanisms, but were later concluded to be unimportant. Here, with data from ab initio master equation and kinetic-transport simulations,more » we reveal that reactions of H+O 2 collision complexes with other radicals constitute major kinetic pathways under common combustion situations. These reactions are also found to influence flame propagation speeds, a common measure of global reactivity. As a result, analogous chemically termolecular reactions mediated by ephemeral collision complexes are probably of significance in various combustion and planetary environments.« less

  3. RAPID, PCR-BASED METHODS FOR MEASURING THE QUALITY OF BATHING BEACH WATERS

    EPA Science Inventory

    The current methods for measuring the quality of recreational waters were developed in the 1970's and were recommended to the States by EPA in 1986. These methods detect and quantify Escherichia coli and enterococci, two bacteria that are consistently associated with fecal wast...

  4. 28 CFR 551.7 - Bathing and clothing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Bathing and clothing. 551.7 Section 551.7 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INSTITUTIONAL MANAGEMENT MISCELLANEOUS Grooming § 551.7 Bathing and clothing. Each inmate must observe the standards concerning bathing and...

  5. 28 CFR 551.7 - Bathing and clothing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Bathing and clothing. 551.7 Section 551.7 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INSTITUTIONAL MANAGEMENT MISCELLANEOUS Grooming § 551.7 Bathing and clothing. Each inmate must observe the standards concerning bathing and...

  6. The Association Between Bathing Habits and Severity of Atopic Dermatitis in Children.

    PubMed

    Koutroulis, Ioannis; Pyle, Tia; Kopylov, David; Little, Anthony; Gaughan, John; Kratimenos, Panagiotis

    2016-02-01

    Atopic dermatitis is an inflammatory skin disease that frequently affects children. The current recommendations on management using lifestyle modification are highly variable, leading to confusion and uncertainty among patients. To determine current bathing behaviors and the subsequent impact on disease severity. This was an observational cross-sectional study conducted at an urban pediatric emergency department. Parents were asked to fill out a questionnaire concerning the patient's bathing habits. The results were correlated with the atopic dermatitis severity determined by the SCORAD (SCORing Atopic Dermatitis) tool. No difference between variables was found to be significant for bathing frequency, time spent bathing, or use of moisturizers. Multivariate analysis showed that atopic dermatitis severity increased with age greater than 2 years (P = .0004) and with greater bathing duration (P = .001). Atopic dermatitis severity may be associated with a longer duration of bathing. The frequency of bathing does not appear to affect atopic dermatitis severity. © The Author(s) 2015.

  7. Determination of Se in biological samples by axial view inductively coupled plasma optical emission spectrometry after digestion with aqua regia and on-line chemical vapor generation

    NASA Astrophysics Data System (ADS)

    dos Santos, Éder José; Herrmann, Amanda Beatriz; de Caires, Suzete Kulik; Frescura, Vera Lúcia Azzolin; Curtius, Adilson José

    2009-06-01

    A simple and fast method for the determination of Se in biological samples, including food, by axial view inductively coupled plasma optical emission spectrometry using on-line chemical vapor generation (CVG-ICP OES) is proposed. The concentrations of HCl and NaBH 4, used in the chemical vapor generation were optimized by factorial analysis. Six certified materials (non-fat milk powder, lobster hepatopancreas, human hair, whole egg powder, oyster tissue, and lyophilised pig kidney) were treated with 10 mL of aqua regia in a microwave system under reflux for 15 min followed by additional 15 min in an ultrasonic bath. The solutions were transferred to a 100 mL volumetric flask and the final volume was made up with water. The Se was determined directly in these solutions by CVG-ICP OES, using the analytical line at 196.026 nm. Calibration against aqueous standards in 10% v/v aqua regia in the concentration range of 0.5-10.0 µg L - 1 Se(IV) was used for the analysis. The quantification limit, considering a 0.5 g sample weight in a final volume of 100 mL - 1 was 0.10 µg g - 1. The obtained concentration values were in agreement with the total certified concentrations, according to the t-test for a 95% confidence level.

  8. Molten salt bath circulation design for an electrolytic cell

    DOEpatents

    Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

    1999-08-17

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

  9. The Effect of Fabric Position to the Distribution of Acoustic Pressure Field in Ultrasonic Bath

    NASA Astrophysics Data System (ADS)

    Gürses, B. O.; Özdemir, A. O.; Tonay, Ö.; Şener, M.; Perinçek, S.

    2017-10-01

    Nowadays, the use of ultrasonic energy in textile wet processes at industrial-scale is limited. It is largely due to the lack of understanding about design, operational and performance characteristics of the ultrasonic bath, suitable for textile treatments. In the context of this study, the effect of fabric position, as one of the design parameter, to the distribution of acoustic pressure field in ultrasonic bath was investigated. The ultrasonic bath in the size 20×30 cm2 with one transducer at frequency 40 kHz was used in experiments. The cotton fabric with 1 mm thickness was moved along vertical and horizontal directions of the ultrasonic bath. The acoustic field and cavitation volume density in the bath is analyzed by COMSOL Multiphysic. The cavitation volume density is calculated by comparing the pressure points in the bath with cavitation threshold pressure. Consequently, it was found that the position of the textile material in the ultrasonic bath is one of the most important factors to achieve the uniform and maximum acoustic cavitation field. So, it should be taken into consideration during the design of industrial-scale ultrasonic bath used in textile wet processes.

  10. 36 CFR 21.5 - Therapeutic bathing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Therapeutic bathing requirements. 21.5 Section 21.5 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.5 Therapeutic bathing requirements. Baths...

  11. 36 CFR 21.5 - Therapeutic bathing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Therapeutic bathing requirements. 21.5 Section 21.5 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.5 Therapeutic bathing requirements. Baths...

  12. 36 CFR 21.5 - Therapeutic bathing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Therapeutic bathing requirements. 21.5 Section 21.5 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.5 Therapeutic bathing requirements. Baths...

  13. 36 CFR 21.5 - Therapeutic bathing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Therapeutic bathing requirements. 21.5 Section 21.5 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.5 Therapeutic bathing requirements. Baths...

  14. 36 CFR 21.5 - Therapeutic bathing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Therapeutic bathing requirements. 21.5 Section 21.5 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.5 Therapeutic bathing requirements. Baths...

  15. Effect of micro mist sauna bathing on thermoregulatory and circulatory functions and thermal sensation in humans

    NASA Astrophysics Data System (ADS)

    Iwase, Satoshi; Kawahara, Yuko; Nishimura, Naoki; Sugenoya, Junichi

    2016-05-01

    To examine the effects of micro mist sauna bathing, produced by water crushing method, we exposed ten male subjects to five cases of micro mist sauna, namely (1) room temperature (RT) 38 °C with 100 % (actually 91 %) relative humidity (RH), (2) RT 41.5 °C with 80 % (actually 81 %) RH, (3) RT 41.5 °C with 100 % (actually 96 %) RH, (4) RT 45.0 °C with 64 % (actually 61 %) RH, and (5) RT 45.0 °C with 100 % (actually 86 %) RH, and measured tympanic temperature, mean skin temperature, heart rate (HR), and cheek moisture content, as well as ratings of thermal and sweating sensation tympanic temperatures at RT 45 °C were significantly higher at 86 % RH than those at 61 % RH; however, those at RT 45 °C with 61 % RH were higher than those with 86 % RH during recovery. There were no significant differences at RT 41.5 °C between with 81 % RH and with 96 % RH. Mean skin temperature was the highest at RT 45 °C 86 % RH case, followed by at RT 41.5 °C 96 % RH, RT 45 °C 61 % RH, RT 41.5 °C 81 % RH, and finally at RT 38 °C 91 % RH. HR change showed the same order as for mean skin temperature. A significant difference in cheek moisture content was observed between RT 41.5 °C with 81 % RH and RT 45 °C with 86 % RH 10 min after the micro mist bathing. There were no significant differences between ratings of thermal sensation at RT 41.5 °C with 81 % RH and at RT 45 °C with 61 % RH and RT 45 °C with 61 % RH and RT 45 °C with 86 % RH. Between RT 45 °C with 86 % RH and RT 41.5 °C with 81 % RH, there was a tendency for interaction (0.05 < p < 0.1). Other cases showed significant higher ratings of thermal sensation at higher room temperature or higher relative humidity. The ratings of sweating sensation 10 min after the mist sauna bathing were significantly higher at higher RT and RH except between RT 41.5 °C 96 % RH and RT 45 °C 86 % RH which exhibited no significant difference. We concluded that the micro mist sauna produced by water crushing method induced more moderate and effective thermal effect during micro mist sauna bathing than the conventional mist sauna bathing. In addition, micro mist sauna is as effective for heating the human subjects as bathtub bathing as well as more moderate thermal and sweating sensations.

  16. Synthesis and Physical Properties Characterization of CdSe1-ySy Nanolayers Deposited by Chemical Bath Deposition at Low-Temperature Treatment

    NASA Astrophysics Data System (ADS)

    Flores-Mena, J. E.; Contreras-Rascón, J. I.; Diaz-Reyes, J.; Castillo-Ojeda, R. S.

    In this work, we present the synthesis and structural and optical characterizations of CdSe1-y S y deposited by chemical bath deposition (CBD) technique on corning glass at a temperature of 20 ± 2 °C. The sulfur molar fraction was varied from 0 to 42.13 %, which was realized by varying the thiourea volume added to the growth solution in the range from 0 to 30 mL. The chemical stoichiometry was estimated by energy dispersive spectrometry (EDS). The CdSe1-y S y showed hexagonal wurtzite crystalline phase that was found by X-ray diffraction (XRD) analysis and Raman spectroscopy. The average grain size range of the films was 1.48-1.68 nm that was determined using the Debye-Scherrer equation W(002) direction and was confirmed by high-resolution transmission electron microscopy (HRTEM). Raman scattering shows that the lattice dynamics is characteristic of bimodal behavior and the multipeaks adjust to the first optical longitudinal mode for the CdSeS, in all cases, Raman spectra show two dominant vibrational bands about 208 and 415 cm-1 associated at CdSe-1LO-like and CdSe-2LO-like. CdSe1-y S y band gap energy can be varied from 1.86 to 2.16 eV by varying the thiourea volume added in growth solution in the investigated range obtained by transmittance measurements at room temperature. The room temperature photoluminescence shows a dominant radiation band at about 3.0 eV that can be associated with exciton bonded to donor impurity and the quantum confinement because of the grain size is less than the Bohr radius.

  17. Effect of Bath Temperature on Cooling Performance of Molten Eutectic NaNO3-KNO3 Quench Medium for Martempering of Steels

    NASA Astrophysics Data System (ADS)

    Pranesh Rao, K. M.; Narayan Prabhu, K.

    2017-10-01

    Martempering is an industrial heat treatment process that requires a quench bath that can operate without undergoing degradation in the temperature range of 423 K to 873 K (150 °C to 600 °C). The quench bath is expected to cool the steel part from the austenizing temperature to quench bath temperature rapidly and uniformly. Molten eutectic NaNO3-KNO3 mixture has been widely used in industry to martemper steel parts. In the present work, the effect of quench bath temperature on the cooling performance of a molten eutectic NaNO3-KNO3 mixture has been studied. An Inconel ASTM D-6200 probe was heated to 1133 K (860 °C) and subsequently quenched in the quench bath maintained at different temperatures. Spatially dependent transient heat flux at the metal-quenchant interface for each bath temperature was calculated using inverse heat conduction technique. Heat transfer occurred only in two stages, namely, nucleate boiling and convective cooling. The mean peak heat flux ( q max) decreased with increase in quench bath temperature, whereas the mean surface temperature corresponding to q max and mean surface temperature at the start of convective cooling stage increased with increase in quench bath temperature. The variation in normalized cooling parameter t 85 along the length of the probe increased with increase in quench bath temperature.

  18. Avian Assemblages at Bird Baths: A Comparison of Urban and Rural Bird Baths in Australia

    PubMed Central

    Cleary, Gráinne P.; Parsons, Holly; Davis, Adrian; Coleman, Bill R.; Jones, Darryl N.; Miller, Kelly K.; Weston, Michael A.

    2016-01-01

    Private gardens provide habitat and resources for many birds living in human-dominated landscapes. While wild bird feeding is recognised as one of the most popular forms of human-wildlife interaction, almost nothing is known about the use of bird baths. This citizen science initiative explores avian assemblages at bird baths in private gardens in south-eastern Australia and how this differs with respect to levels of urbanisation and bioregion. Overall, 992 citizen scientists collected data over two, four-week survey periods during winter 2014 and summer 2015 (43% participated in both years). Avian assemblages at urban and rural bird baths differed between bioregions with aggressive nectar-eating species influenced the avian assemblages visiting urban bird baths in South Eastern Queensland, NSW North Coast and Sydney Basin while introduced birds contributed to differences in South Western Slopes, Southern Volcanic Plains and Victorian Midlands. Small honeyeaters and other small native birds occurred less often at urban bird baths compared to rural bird baths. Our results suggest that differences between urban versus rural areas, as well as bioregion, significantly influence the composition of avian assemblages visiting bird baths in private gardens. We also demonstrate that citizen science monitoring of fixed survey sites such as bird baths is a useful tool in understanding large-scale patterns in avian assemblages which requires a vast amount of data to be collected across broad areas. PMID:26962857

  19. Numerical renormalization group method for entanglement negativity at finite temperature

    NASA Astrophysics Data System (ADS)

    Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.

    2018-04-01

    We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.

  20. Method for cleaning bomb-reduced uranium derbies

    DOEpatents

    Banker, John G.; Wigginton, Hubert L.; Beck, David E.; Holcombe, Cressie E.

    1981-01-01

    The concentration of carbon in uranium metal ingots induction cast from derbies prepared by the bomb-reduction of uranium tetrafluoride in the presence of magnesium is effectively reduced to less than 100 ppm by removing residual magnesium fluoride from the surface of the derbies prior to casting. This magnesium fluoride is removed from the derbies by immersing them in an alkali metal salt bath which reacts with and decomposes the magnesium fluoride. A water quenching operation followed by a warm nitric acid bath and a water rinse removes the residual salt and reaction products from the derbies.

  1. Method for cleaning bomb-reduced uranium derbies

    DOEpatents

    Banker, J.G.; Wigginton, H.L.; Beck, D.E.; Holcombe, C.E.

    The concentration of carbon in uranium metal ingots induction cast from derbies prepared by the bomb-reduction of uranium tetrafluoride in the presence of magnesium is effectively reduced to less than 100 ppM by removing residual magnesium fluoride from the surface of the derbies prior to casting. This magnesium fluoride is removed from the derbies by immersing them in an alkali metal salt bath which reacts with and decomposes the magnesium fluoride. A water quenching operation followed by a warm nitric acid bath and a water rinse removes the residual salt and reaction products from the derbies.

  2. Technical Status and Progress of Lead Recycling of Battery

    NASA Astrophysics Data System (ADS)

    Li, Wei-feng; Jiang, Li-hua; Zhan, Jing; Zhang, Chuan-fu

    The characteristics of various components in waste lead acid battery are analyzed in this paper. The present status and the study progress situation in industry production and research field of recycling of waste lead acid battery and lead paste used broken-separation technology are introduced. The comparison of advantages and disadvantages in different industry processes is carried. The advantages of redox bath smelting of lead concentrate and lead paste are analyzed. The method of redox bath smelting will be a low-carbon, environmentally friendly and efficient processes of secondary lead production and can be intensive to desulfurize for high temperature pool.

  3. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Bathing facilities; change rooms; sanitary...

  4. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Bathing facilities; change rooms; sanitary...

  5. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Bathing facilities; change rooms; sanitary...

  6. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Bathing facilities; change rooms; sanitary...

  7. Single-walled carbon nanotubes as delivery vehicles enhance the immunoprotective effects of a recombinant vaccine against Aeromonas hydrophila.

    PubMed

    Gong, Yu-Xin; Zhu, Bin; Liu, Guang-Lu; Liu, Lei; Ling, Fei; Wang, Gao-Xue; Xu, Xin-Gang

    2015-01-01

    To reduce the economic losses caused by diseases in aquaculture industry, more efficient and economic prophylactic measures should be urgently investigated. In this research, the effects of a novel functionalized single-walled carbon nanotubes (SWCNTs) applied as a delivery vehicle for recombinant Aeromonas hydrophila vaccine administration via bath or injection in juvenile grass carp were studied. The results showed that SWCNT as a vector for the recombinant protein aerA, augmented the production of specific antibodies, apparently stimulated the induction of immune-related genes, and induced higher level of survival rate compared with free aerA subunit vaccine. Furthermore, we compared the routes of bath and intramuscular injection immunization by SWCNTs-aerA vaccine, and found that similar antibody levels induced by SWCNTs-aerA were observed in both immunization routes. Meanwhile, a similar relative percentage survival (approximately 80%) was found in both a 40 mg/L bath immunization group, and a 20 μg injection group. The results indicate that functionalized SWCNTs could be a promising delivery vehicle to potentiate the immune response of recombinant vaccines, and might be used to vaccinate juvenile fish by bath administration method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Controlled electrosprayed formation of non-spherical microparticles

    NASA Astrophysics Data System (ADS)

    Jeyhani, Morteza; Mak, Sze Yi; Sammut, Stephen; Shum, Ho Cheung; Hwang, Dae Kun; Tsai, Scott S. H.

    2017-11-01

    Fabrication of biocompatible microparticles, such as alginate particles, with the possibility of controlling the particles' morphology in a high-throughput manner, is essential for pharmaceutical and cosmetic industries. Even though the shape of alginate particles has been shown to be an important parameter in controlling drug delivery, there are very limited manufacturing methods to produce non-spherical alginate microparticles in a high-throughput fashion. Here, we present a system that generates non-spherical biocompatible alginate microparticles with a tunable size and shape, and at high-throughput, using an electrospray technique. Alginate solution, which is a highly biocompatible material, is flown through a needle using a constant flow rate syringe pump. The alginate phase is connected to a high-voltage power supply to charge it positively. There is a metallic ring underneath the needle that is charged negatively. The applied voltage creates an electric field that forces the dispensing droplets to pass through the metallic ring toward the collection bath. During this migration, droplets break up to smaller droplets to dissipate their energy. When the droplets reach the calcium chloride bath, polymerization happens and solidifies the droplets. We study the effects of changing the distance from the needle to the bath, and the concentration of calcium chloride in the bath, to control the size and the shape of the resulting microparticles.

  9. Comparing the Effects of Reflexology and Footbath on Sleep Quality in the Elderly: A Controlled Clinical Trial.

    PubMed

    Valizadeh, Leila; Seyyedrasooli, Alehe; Zamanazadeh, Vahid; Nasiri, Khadijeh

    2015-11-01

    Sleep disorders are common mental disorders reported among the elderly in all countries, and with nonpharmacological interventions, they could be helped to improve their sleep quality. The aim of this study was to compare the effects of two interventions, foot reflexology and foot bath, on sleep quality in elderly people. This three-group randomized clinical trial (two experimental groups and a control group) was conducted on 69 elderly men. The two experimental groups had reflexology (n = 23) and foot bath (n = 23) interventions for 6 weeks. The reflexology intervention was done in the mornings, once a week for ten minutes on each foot. The participants in the foot bath group were asked to soak their feet in 41°C to 42°C water one hour before sleeping. The pittsburgh sleep quality index (PSQI) was completed before and after the intervention through an interview process. The results showed that the PSQI scores after intervention compared to before it in the reflexology and foot bath groups were statistically significant (P = 0.01 , P = 0.001); however, in the control group did not show a statistically significant difference (P = 0.14). In addition, the total score changes among the three groups were statistically significant (P = 0.01). Comparing the score changes of quality of sleep between the reflexology and foot bath groups showed that there was no significant difference in none of the components and the total score (P = 0.09). The two interventions had the same impact on the quality of sleep. It is suggested that the training of nonpharmacological methods to improve sleep quality such as reflexology and foot bath be included in the elderly health programs. In addition, it is recommended that the impact of these interventions on subjective sleep quality using polysomnographic recordings be explored in future research.

  10. Novel Strategies for Enhanced Removal of Persistent Bacillus anthracis Surrogates and Clostridium difficile Spores from Skin

    PubMed Central

    Nerandzic, Michelle M.; Rackaityte, Elze; Jury, Lucy A.; Eckart, Kevin; Donskey, Curtis J.

    2013-01-01

    Background Removing spores of Clostridium difficile and Bacillus anthracis from skin is challenging because they are resistant to commonly used antimicrobials and soap and water washing provides only modest efficacy. We hypothesized that hygiene interventions incorporating a sporicidal electrochemically generated hypochlorous acid solution (Vashe®) would reduce the burden of spores on skin. Methods Hands of volunteers were inoculated with non-toxigenic C. difficile spores or B. anthracis spore surrogates to assess the effectiveness of Vashe solution for reducing spores on skin. Reduction in spores was compared for Vashe hygiene interventions versus soap and water (control). To determine the effectiveness of Vashe solution for removal of C. difficile spores from the skin of patients with C. difficile infection (CDI), reductions in levels of spores on skin were compared for soap and water versus Vashe bed baths. Results Spore removal from hands was enhanced with Vashe soak (>2.5 log10 reduction) versus soap and water wash or soak (~2.0 log10 reduction; P <0.05) and Vashe wipes versus alcohol wipes (P <0.01). A combined approach of soap and water wash followed by soaking in Vashe removed >3.5 log10 spores from hands (P <0.01 compared to washing or soaking alone). Bed baths using soap and water (N =26 patients) did not reduce the percentage of positive skin cultures for CDI patients (64% before versus 57% after bathing; P =0.5), whereas bathing with Vashe solution (N =21 patients) significantly reduced skin contamination (54% before versus 8% after bathing; P =0.0001). Vashe was well-tolerated with no evidence of adverse effects on skin. Conclusions Vashe was safe and effective for reducing the burden of B. anthracis surrogates and C. difficile spores on hands. Bed baths with Vashe were effective for reducing C. difficile on skin. These findings suggest a novel strategy to reduce the burden of spores on skin. PMID:23844234

  11. Factors Associated With Aggressive Behavior Among Nursing Home Residents With Dementia

    PubMed Central

    Whall, Ann L.; Colling, Kathleen B.; Kolanowski, Ann; Kim, HyoJeong; Hong, Gwi-Ryung Son; DeCicco, Barry; Ronis, David L.; Richards, Kathy C.; Algase, Donna; Beck, Cornelia

    2012-01-01

    Purpose In an attempt to more thoroughly describe aggressive behavior in nursing home residents with dementia, we examined background and proximal factors as guided by the Need-Driven Dementia-Compromised Behavior model. Design and Methods We used a multivariate cross-sectional survey with repeated measures; participants resided in nine randomly selected nursing homes within four midwestern counties. The Minimum Data Set (with verification by caregivers) identified participants. We used a disproportionate probability sample of 107 participants (51% with a history of aggressive behavior) to ensure variability. Videotaped care events included four of direct care (shower baths, meals, dressing, and undressing) and two of nondirect care (two randomly selected 20-minute time periods in the afternoon and evening). The majority of participants (75%) received three shower baths, for a total of 282 videotaped baths. Results Because the shower bath was the only care event significantly related to aggressive behavior (F = 6.9, p < .001), only those data are presented. Multilevel statistical modeling identified background factors (gender, mental status score, and lifelong history of less agreeableness) and a proximal factor (amount of nighttime sleep) as significant predictors (p < .05) of aggressive behavior during the shower bath. We found significant correlations between aggressive behavior and negative subject affect (r = .27) during the bath, and aggressive behavior and lifetime agreeableness level (r = − .192). We also found significant correlations between mental status and the amount of education (r = .212), and between negative caregiver affect and negative participant affect (r = .321). Implications We identified three background and one proximal factor as significant risk factors for aggressive behavior in dementia. Data identify not only those persons most at risk for aggressive behavior during care, but also the care event most associated with aggressive behavior. Together these data inform both caregiving for persons with dementia as well as the design of intervention studies for aggressive behavior in dementia. PMID:19139246

  12. Preparation and characterization of ZnS thin films by the chemical bath deposition method (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ando, Shizutoshi; Iwashita, Taisuke

    2017-06-01

    Nowadays, the conversion efficiency of Cu(In・Ga)Se2 (CIGS)-based solar cell already reached over 20%. CdS thin films prepared by chemical bath deposition (CBD) method are used for CIGS-based thin film solar cells as the buffer layer. Over the past several years, a considerable number of studies have been conducted on ZnS buffer layer prepared by CBD in order to improve in conversion efficiency of CIGS-based solar cells. In addition, application to CIGS-based solar cell of ZnS buffer layer is expected as an eco-friendly solar cell by cadmium-free. However, it was found that ZnS thin films prepared by CBD included ZnO or Zn(OH)2 as different phase [1]. Nakata et. al reported that the conversion efficiency of CIGS-based solar cell using ZnS buffer layer (CBD-ZnS/CIGS) reached over 18% [2]. The problem which we have to consider next is improvement in crystallinity of ZnS thin films prepared by CBD. In this work, we prepared ZnS thin films on quarts (Si02) and SnO2/glass substrates by CBD with the self-catalysis growth process in order to improve crystallinity and quality of CBD-ZnS thin films. The solution to use for CBD were prepared by mixture of 0.2M ZnI2 or ZnSO4, 0.6M (NH2)2CS and 8.0M NH3 aq. In the first, we prepared the particles of ZnS on Si02 or SnO2/glass substrates by CBD at 80° for 20 min as initial nucleus (1st step ). After that, the particles of ZnS on Si02 or SnO2/glass substrates grew up to be ZnS thin films by CBD method at 80° for 40 min again (2nd step). We found that the surface of ZnS thin films by CBD with the self-catalyst growth process was flat and smooth. Consequently, we concluded that the CBD technique with self-catalyst growth process in order to prepare the particles of ZnS as initial nucleus layer was useful for improvement of crystallinity of ZnS thin films on SnO2/glass. [1] J.Vidal et,al., Thin Solid Films 419 (2002) 118. [2] T.Nakata et.al., Jpn. J. Appl. Phys. 41(2B), L165-L167 (2002)

  13. Development of a Toolbox Using Chemical, Physical and Biological Technologies for Decontamination of Sediments to Support Strategic Army Response to Natural Disasters

    DTIC Science & Technology

    2006-11-01

    disinfection) was tested using soil microcosms and respirometry to determine diesel range and total organic compound degradation. These tests were...grease) such as benzo(a)pyrene were detected above chronic (long term-measured in years) screening levels. Levels of diesel and oil range organics... bioremediation , and toxicity of liquid and solid samples. The Comput-OX 4R is a 4 reactor unit with no stirring modules or temperature controlled water bath

  14. Proceedings of NEUROTOX󈨜, Molecular Basis of Drug & Pesticide Action (3rd) Held in Bath, England on 10-15 April 1988: Abstracts

    DTIC Science & Technology

    1988-04-15

    provoke the displacement. .,pression of decreasing the content of GA3L, GA and AA werat registerid. after 30 minutes iajection pesticides accort.ingl, In...The Society, of Chemical Industry NE.UROTOX-98 Molecular, Basis: of Drug’& Pesticide Action *ABSTRACTS 00 : ~ y E-~ySnglanvd PHOTOGRAPH THIS SHEET 00...NEUROPEPTIDES B - PHYSIOLOICAL ASPECTS OF RECEPTORS AND CHANNELS C - BIOCHEMISTRY AND MOLECULAR BIOLOGY OF NEUROTRANSMISSION D - DRUGS AND PESTICIDES

  15. Antibody-Functionalized Carbon Nanotube Transistors as Biosensors for the Detection of Prostate Cancer

    DTIC Science & Technology

    2013-09-01

    nearly identical responses to the chemically similar odorants 2-heptanone and n-amyl acetate. The molecules differ only by a single oxygen atom in...briefly bathed in activation buffer and placed in a solution of 11.3 mM NR,NR-bis(carboxymethyl)-L-lysine hydrate (NTA- NH2) prepared with PBS (0.1 M...purity nitrogen or argon gas. A solution containing mORs in digitonin micelles or nanodiscs, prepared as described above, was de- posited on the

  16. Balneology: Spa Science

    NASA Astrophysics Data System (ADS)

    Williams, Kathryn R.

    2008-02-01

    In his 1938 Sigma Xi address (subsequently published as J. Chem. Educ. 1939 , 16 , 440-448 ), Oskar Baudisch emphasizes the importance of balneology, the therapeutic use of baths and natural mineral waters. Although some favorable health effects can be attributed to the psychological influences of the spa resort, Baudisch argues that scientific investigations can reveal how the chemical and physical properties of the springs promote specific cures. He gives numerous examples of previous scientific findings, including his own applications of coordination theory and isotope ratio analysis.

  17. Investigation of Compressible Fluids for Use in soft Recoil Mechanisms

    DTIC Science & Technology

    1977-09-01

    deNemours & Co., Wilmington, DE . A chemical formula for this material is F This particular material is available in limited stocks and is no longer being...in a dry ice bath,, transported to the laboratory, connected to the gas buret and allowed to warm to room temperature. The gas volume was measured and...their flash points are very low. The MIEL -H-5606 fluid was included here for comparison with published bulk modulus data. Another material evaluated, the

  18. Chemical Preparation Laboratory IND Candidate Compounds.

    DTIC Science & Technology

    1986-01-21

    filtered. The filtrate was neutralized with hydrochloric acid (3.2 L) and the resulting precipitate was collected by filtration. The product was dried...lit. 242-244-) 1.2.4-Triazole-3-carboxylic acid (4)9: 5-Amino-l,2,4-triazole-3- carboxylic acid (1 Kg, 7.8 mol) was dissolved in hot hydrochloric acid ...300 mL), cooled in an ice bath, and adjusted to pH 1 with con- centrated hydrochloric acid (25 mL). The resulting oil started to crystal- lize and the

  19. Photo- and electroluminescence of sulfide and silicate phosphors embedded in synthetic opal

    NASA Astrophysics Data System (ADS)

    Kaplan, S. F.; Kartenko, N. F.; Kurdyukov, D. A.; Medvedev, A. V.; Badalyan, A. G.; Golubev, V. G.

    2007-02-01

    The sulfide (ZnS:Mn, Zn xCd 1 -xS:Mn, Zn xCd 1- xS:Ag) and silicate (Zn 2SiO 4:Mn) phosphors were synthesized directly inside the pores of synthetic opal by chemical bath deposition. These composites are perfect three-dimensional photonic crystals, which produce effective photo- and electroluminescence at room temperature. The emission spectra are considerably modified by the photonic crystal structure to become anisotropic in accordance with the photonic band gap angular dispersion.

  20. Electro-deposition of superconductor oxide films

    DOEpatents

    Bhattacharya, Raghu N.

    2001-01-01

    Methods for preparing high quality superconducting oxide precursors which are well suited for further oxidation and annealing to form superconducting oxide films. The method comprises forming a multilayered superconducting precursor on a substrate by providing an electrodeposition bath comprising an electrolyte medium and a substrate electrode, and providing to the bath a plurality of precursor metal salts which are capable of exhibiting superconducting properties upon subsequent treatment. The superconducting precursor is then formed by electrodepositing a first electrodeposited (ED) layer onto the substrate electrode, followed by depositing a layer of silver onto the first electrodeposited (ED) layer, and then electrodepositing a second electrodeposited (ED) layer onto the Ag layer. The multilayered superconducting precursor is suitable for oxidation at a sufficient annealing temperature in air or an oxygen-containing atmosphere to form a crystalline superconducting oxide film.

  1. Synthesis and Characterization of Doped ZnO Nanomaterials: Potential Application in Third Generation Solar Cells

    NASA Astrophysics Data System (ADS)

    Adcock Smith, Echo D.

    ZnO nanomaterials are being incorporated into next-generation solar cell designs including dye-sensitized solar cells, multijunction solar cells, and quantum dot sensitized solar cells. ZnO nanorod (NR) arrays and nanoparticles (NP) used in these devices are typically fabricated using chemical vapor deposition and/or high-temperature reaction conditions. These methods are costly, require high energy, pressure or excessive time, but produce repeatable, defined growth that is capable of easily incorporating metal dopants. Less expensive methods of fabrication such as chemical bath deposition (CBD) eliminate the costly steps but can suffer from undefined growth, excessive waste and have a difficult time incorporating dopants into ZnO materials without additives or increased pH. This dissertation presents a novel method of growing cobalt and vanadium doped ZnO nanomaterials through microwave synthesis. The cobalt growth was compared to standard CBD and found to be faster, less wasteful, reproducible and better at incorporating cobalt ions into the ZnO lattice than typical oven CBD method. The vanadium doped ZnO microwave synthesis procedure was found to produce nanorods, nanorod arrays, and nanoparticles simultaneously. Neither the cobalt nor the vanadium growth required pH changes, catalysts or additives to assist in doping and therefore use less materials than traditional CBD. This research is important because it offers a simple, quick way to grow ZnO nanostructures and is the first to report on growing both cobalt and vanadium doped zinc oxide nanorod arrays using microwave synthesis. This synthesis method presented is a viable candidate for replacing conventional growth synthesis which will result in lowering the cost and time of production of photovoltaics while helping drive forward the development of next-generation solar cells.

  2. [The use of sodium chloride baths in the treatment of diabetic patients with micro- and macroangiopathies].

    PubMed

    Davydova, O B; Turova, E A; Grishina, E V

    1998-01-01

    Patients suffering from insulin-dependent or non-insulin-dependent diabetes mellitus with micro- and macroangiopathy took sodium chloride baths of diverse concentration (30 and 50 g/l). A control group consisted of patients who had taken "neutral" baths. The response to sodium chloride baths was registered in carbohydrate and lipid metabolism, microcirculation, hemorheology, lower limbs circulation, exercise tolerance. Baths with sodium chloride concentrations 50 g/l have advantages, especially in patients with insulin-dependent diabetes mellitus.

  3. Effect of tungsten (W) on structural and magnetic properties of electroplated NiFe thin films for MEMS applications

    NASA Astrophysics Data System (ADS)

    Kannan, R.; Devaki, P.; Premkumar, P. S.; Selvambikai, M.

    2018-04-01

    Electrodeposition of nanocrystalline NiFe and NiFeW thin films were carried out from ammonium citrate bath at a constant current density and controlled pH of 8 by varying the bath temperature from 40 °C to 70 °C. The surface morphology and chemical composition of the electrodeposited NiFe and NiFeW soft magnetic thin films were studied by using SEM and EDAX. The SEM micrographs of the films coated at higher electrodeposited bath temperature have no micro cracks and also the films have more uniform surface morphology. The existence of crystalline nature of the coated films were analysed by XRD. The presence of predominant peaks in x-ray diffraction pattern (compared with JCPDS data) reveal that the average crystalline size was in the order of few tens of nano meters. The magnetic properties such as coercivity, saturation magnetization and magnetic flux density have been calculated from vibrating sample magnetometer analysis. The VSM result shows that the NiFeW thin film synthesised at 70 °C exhibit the lower coercivity with higher saturation magnetization. The hardness and adhesion of the electroplated films have been investigated. Reasons for variation in magnetic properties and structural characteristics are also discussed. The electroplated NiFe and NiFeW thin films can be used for Micro Electro Mechanical System (MEMS) applications due to their excellent soft magnetic behaviour.

  4. Non-Markovian dynamics of fermionic and bosonic systems coupled to several heat baths

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, A. A.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Lacroix, D.

    2018-03-01

    Employing the fermionic and bosonic Hamiltonians for the collective oscillator linearly FC-coupled with several heat baths, the analytical expressions for the collective occupation number are derived within the non-Markovian quantum Langevin approach. The master equations for the occupation number of collective subsystem are derived and discussed. In the case of Ohmic dissipation with Lorenzian cutoffs, the possibility of reduction of the system with several heat baths to the system with one heat bath is analytically demonstrated. For the fermionic and bosonic systems, a comparative analysis is performed between the collective subsystem coupled to two heat baths and the reference case of the subsystem coupled to one bath.

  5. Phase transformation synthesis of TiO2/CdS heterojunction film with high visible-light photoelectrochemical activity

    NASA Astrophysics Data System (ADS)

    Liu, Canjun; Yang, Yahui; Li, Jie; Chen, Shu

    2018-06-01

    CdS/TiO2 heterojunction film used as a photoanode has attracted much attention in the past few years due to its good visible light photocatalytic activity. However, CdS/TiO2 films prepared by conventional methods (successive ionic layer adsorption and reaction, chemical bath deposition and electrodeposition) show numerous grain boundaries in the CdS layer and an imperfect contact at the heterojunction interface. In this study, we designed a phase transformation method to fabricate CdS/TiO2 nanorod heterojunction films. The characterization results showed that the CdS layer with fewer grain boundaries was conformally coated on the TiO2 nanorod surface and the formation mechanism has been explained in this manuscript. Moreover, the prepared CdS/TiO2 films show a high photocatalytic activity and the photocurrent density is as high as 9.65 mA cm‑2 at 0.80 V versus RHE. It may be attributed to fewer grain boundaries and a compact heterojunction contact, which can effectively improve charge separation and transportation.

  6. Characterization of electronic structures from CdS/Si nanoheterostructure array based on silicon nanoporous pillar array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yong, E-mail: liyong@pdsu.edu.cn; Song, Xiao Yan; Song, Yue Li

    2016-02-15

    Highlights: • CdS/Si nanoheterostructure array has been fabricated through a CBD method. • The electronic properties have been investigated by the I–V and C–V techniques. • The onset voltages, characteristic frequency and built-in potential are investigated. • The electronic structures can be tuned through the annealing treatments. - Abstract: The electronic properties of heterostructures are very important to its applications in the field of optoelectronic devices. Understanding and control of electronic properties are very necessary. CdS/Si nanoheterostructure array have been fabricated through growing CdS nanocrystals on the silicon nanoporous pillar array using a chemical bath deposition method. The electronic propertiesmore » of CdS nanoheterostructure array have been investigated by the current–voltage, complex impedance spectroscopy and capacitance–voltage techniques. The onset voltages, characteristic frequency and built-in potential are gradually increased with increasing the annealing temperature. It is indicated that the electronic structures of CdS/Si nanoheterostructure array can be tuned through the annealing treatments.« less

  7. Fabrication of p-Si/n-ZnO:Al heterojunction diode and determination of electrical parameters

    NASA Astrophysics Data System (ADS)

    Ilican, Saliha; Gorgun, Kamuran; Aksoy, Seval; Caglar, Yasemin; Caglar, Mujdat

    2018-03-01

    We present a fundamental experimental study of a microwave assisted chemical bath deposition (MW-CBD) method for Al doped ZnO films. Field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) spectroscopy were used to analyze the microstructures and crystalline structures of these films, respectively. The p-Si/n-ZnO:Al heterojunction diodes were fabricated. The current-voltage (I-V) characteristics of these diodes were measured at room temperature. The important electrical parameters such as series resistance, the ideality factor and the barrier height were determined by performing plots from the forward bias I-V characteristics using different methods. The obtained results indicate that Al doping improve the electrical properties of the p-Si/n-ZnO diode. The best rectification properties were observed in the p-Si/n-ZnO:5%Al heterojunction diode, so only capacitance-voltage (C-V) measurements of this diode were taken. Electrical parameter values such as series resistance, the built-in potential and the acceptor concentration calculated for this heterojunction diode.

  8. Daily Bathing with Chlorhexidine and Its Effects on Nosocomial Infection Rates in Pediatric Oncology Patients.

    PubMed

    Raulji, Chittalsinh M; Clay, Kristin; Velasco, Cruz; Yu, Lolie C

    2015-01-01

    Infections remain a serious complication in pediatric oncology patients. To determine if daily bathing with Chlorhexidine gluconate can decrease the rate of nosocomial infection in pediatric oncology patients, we reviewed rates of infections in pediatric oncology patients over a 14-month span. Intervention group received daily bath with Chlorhexidine, while the control group did not receive daily bath. The results showed that daily bath with antiseptic chlorhexidine as daily prophylactic antiseptic topical wash leads to decreased infection density amongst the pediatric oncology patients, especially in patients older than 12 years of age. Furthermore, daily chlorhexidine bathing significantly reduced the rate of hospital acquired infection in patients older than 12 years of age. The findings of this study suggest that daily bathing with chlorhexidine may be an effective measure of reducing nosocomial infection in pediatric oncology patients.

  9. Thermodynamic analysis and experimental study on the oxidation of the Zn-Al-Mg coating baths

    NASA Astrophysics Data System (ADS)

    Su, Xuping; Zhou, Jie; Wang, Jianhua; Wu, Changjun; Liu, Ya; Tu, Hao; Peng, Haoping

    2017-02-01

    Surface oxidation of molten Zn-6Al baths containing 0.0, 3.0 and 6.0 wt. % Mg were analyzed using X-ray photoelectron spectroscopy. γ-Al2O3 is formed on the surface of the Zn-6Al bath, while MgAl2O4 and MgO occur at 460 °C in the Zn-6Al-3Mg and Zn-6Al-6Mg baths, respectively. Thermodynamic analysis on the oxidation of the Zn-Al-Mg baths was performed. Calculated phase diagrams at 460 °C and 560 °C show good agreements with the experimental results. MgO or MgAl2O4 exists in almost the entire composition range of the calculated oxidation diagrams. According to the calculation, oxidation products depend on the composition and temperature of the baths. The primary and secondary oxidation products of the Zn-Al-Mg baths can be reasonably explained by oxidation phase diagrams. Utilizing these results, the favorable practical bath melts and operating conditions can be designed.

  10. [The use of sodium chloride baths in children with a heart lesion subjected to long-term exposure to low radiation doses].

    PubMed

    Poberskaia, V A; Dement'eva, O I

    1997-01-01

    Children exposed to low-dose radiation are often treated in sanatoria with mineral baths. Of the latter balneoprocedures widely practiced are sodium chloride (SC) baths with mineralization 20-30 g/l. Mineralization 40 g/l is less frequently used. To specify changes in the function of cardiovascular system induced by SC baths of different concentration (40 versus 20 g/l) 131 senior schoolchildren exposed to low-dose radiation or other environmental pollutants were examined both after a single balneological procedure and after the course treatment (maximum 10 procedures). The baths lasted 8-15 min at water temperature 36-38 OC in a day intervals. The response was assessed by ECG, tetrapolar chest rheography, bicycle exercise. All the children had cardiovascular disorders of non-rheumatic origin. Therapeutic effect was more pronounced after baths with SC concentration 40 g/l. These baths are recommended for improvement of vegetative regulation of the heart, correction of hemodynamic defects. Baths with mineralization 20 g/l are better in upgrading function of the autonomic nervous system.

  11. Bath water contamination with Legionella and nontuberculous mycobacteria in 24-hour home baths, hot springs, and public bathhouses of Nagano Prefecture, Japan.

    PubMed

    Kobayashi, Michiko; Oana, Kozue; Kawakami, Yoshiyuki

    2014-01-01

    Bath water samples were collected from 116 hot springs, 197 public bathhouses, and 38 24-hour home baths in Nagano Prefecture, Japan, during the period of April 2009 to November 2011, for determining the presence and extent of contamination with Legionella and nontuberculous mycobacteria. Cultures positive for Legionella were observed in 123 of the 3,314 bath water samples examined. The distribution and abundance of Legionella and/or combined contamination with Legionella and nontuberculous mycobacteria were investigated to clarify the contamination levels. The abundance of Legionella was demonstrated to correlate considerably with the levels of combined contamination with Legionella and nontuberculous mycobacteria. Legionella spp. were obtained from 61% of the water samples from 24-hour home baths, but only from 3% of the samples from public bathhouses and hot springs. This is despite the fact that a few outbreaks of Legionnaires' disease in Nagano Prefecture as well as other regions of Japan have been traced to bath water contamination. The comparatively higher rate of contamination of the 24-hour home baths is a matter of concern. It is therefore advisable to routinely implement good maintenance of the water basins, particularly of the 24-hour home baths.

  12. L-Cysteine capped CdTe-CdS core-shell quantum dots: preparation, characterization and immuno-labeling of HeLa cells.

    PubMed

    Zhang, Hongyan; Sun, Pan; Liu, Chang; Gao, Huanyu; Xu, Linru; Fang, Jin; Wang, Meng; Liu, Jinling; Xu, Shukun

    2011-01-01

    Functionalized CdTe-CdS core-shell quantum dots (QDs) were synthesized in aqueous solution via water-bathing combined hydrothermal method using L-cysteine (L-Cys) as a stabilizer. This method possesses both the advantages of water-bathing and hydrothermal methods for preparing high-quality QDs with markedly reduced synthesis time, and better stability than a lone hydrothermal method. The QDs were characterized by transmission electronic microscopy and powder X-ray diffraction and X-ray photoelectron spectroscopy. The CdTe-CdS QDs with core-shell structure showed both enhanced fluorescence and better photo stability than nude CdTe QDs. After conjugating with antibody rabbit anti-CEACAM8 (CD67), the as-prepared l-Cys capped CdTe-CdS QDs were successfully used as fluorescent probes for the direct immuno-labeling and imaging of HeLa cells. It was indicated that this kind of QD would have application potential in bio-labeling and cell imaging. Copyright © 2009 John Wiley & Sons, Ltd.

  13. Prevalence of Legionella species isolated from shower water in public bath facilities in Toyama Prefecture, Japan.

    PubMed

    Kanatani, Jun-Ichi; Isobe, Junko; Norimoto, Shiho; Kimata, Keiko; Mitsui, Chieko; Amemura-Maekawa, Junko; Kura, Fumiaki; Sata, Tetsutaro; Watahiki, Masanori

    2017-05-01

    We investigated the prevalence of Legionella spp. isolated from shower water in public bath facilities in Toyama Prefecture, Japan. In addition, we analyzed the genetic diversity among Legionella pneumophila isolates from shower water as well as the genetic relationship between isolates from shower water and from stock strains previously analyzed from sputum specimens. The isolates were characterized using serogrouping, 16S rRNA gene sequencing, and sequence-based typing. Legionella spp. were isolated from 31/91 (34.1%) samples derived from 17/37 (45.9%) bath facilities. Isolates from shower water and bath water in each public bath facility were serologically or genetically different, indicating that we need to isolate several L. pneumophila colonies from both bath and shower water to identify public bath facilities as sources of legionellosis. The 61 L. pneumophila isolates from shower water were classified into 39 sequence types (STs) (index of discrimination = 0.974), including 19 new STs. Among the 39 STs, 12 STs match clinical isolates in the European Working Group for Legionella Infections database. Notably, ST505 L. pneumophila SG 1, a strain frequently isolated from patients with legionellosis and from bath water in this area, was isolated from shower water. Pathogenic L. pneumophila strains including ST505 strain were widely distributed in shower water in public bath facilities, with genetic diversity showing several different origins. This study highlights the need to isolate several L. pneumophila colonies from both bath water and shower water to identify public bath facilities as infection sources in legionellosis cases. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. A brain slice bath for physiology and compound microscopy, with dual-sided perifusion.

    PubMed

    Heyward, P M

    2010-12-01

    Contemporary in vitro brain slice studies can employ compound microscopes to identify individual neurons or their processes for physiological recording or imaging. This requires that the bath used to maintain the tissue fits within the working distances of a water-dipping objective and microscope condenser. A common means of achieving this is to maintain thin tissue slices on the glass floor of a recording bath, exposing only one surface of the tissue to oxygenated bathing medium. Emerging evidence suggests that physiology can be compromised by this approach. Flowing medium past both sides of submerged brain slices is optimal, but recording baths utilizing this principle are not readily available for use on compound microscopes. This paper describes a tissue bath designed specifically for microscopy and physiological recording, in which temperature-controlled medium flows past both sides of the slices. A particular feature of this design is the use of concentric mesh rings to support and transport the live tissue without mechanical disturbance. The design is also easily adapted for use with thin acute slices, cultured slices, and acutely dispersed or cultured cells maintained either on cover slips or placed directly on the floor of the bath. The low profile of the bath provides a low angle of approach for electrodes, and allows use of standard condensers, nosepieces and water-dipping objective lenses. If visualization of individual neurons is not required, the bath can be mounted on a simple stand and used with a dissecting microscope. Heating is integral to the bath, and any temperature controller capable of driving a resistive load can be used. The bath is robust, readily constructed and requires minimal maintenance. Full construction and operation details are given. © 2010 The Author Journal of Microscopy © 2010 The Royal Microscopical Society.

  15. Detection of “Bath Salts” and Other Novel Psychoactive Substances in Hair Samples of Ecstasy/MDMA/“Molly” Users

    PubMed Central

    Palamar, Joseph J.; Salomone, Alberto; Vincenti, Marco; Cleland, Charles M.

    2016-01-01

    Background Ecstasy (MDMA) in the US is commonly adulterated with other drugs, but research has not focused on purity of ecstasy since the phenomenon of “Molly” (ecstasy marketed as pure MDMA) arose in the US. Methods We piloted a rapid electronic survey in 2015 to assess use of novel psychoactive substances (NPS) and other drugs among 679 nightclub/festival-attending young adults (age 18–25) in New York City. A quarter (26.1%) of the sample provided a hair sample to be analyzed for the presence of select synthetic cathinones (“bath salts”) and some other NPS. Samples were analyzed using fully validated UHPLC-MS/MS methods. To examine consistency of self-report, analyses focused on the 48 participants with an analyzable hair sample who reported lifetime ecstasy/MDMA/Molly use. Results Half (50.0%) of the hair samples contained MDMA, 47.9% contained butylone, and 10.4% contained methylone. Of those who reported no lifetime use of “bath salts”, stimulant NPS, or unknown pills or powders, about four out of ten (41.2%) tested positive for butylone, methylone, alpha-PVP, 5/6-APB, or 4-FA. Racial minorities were more likely to test positive for butylone or test positive for NPS after reporting no lifetime use. Frequent nightclub/festival attendance was the strongest predictor of testing positive for MDMA, butylone, or methylone. Discussion Results suggest that many ecstasy-using nightclub/festival attendees may be unintentionally using “bath salts” or other NPS. Prevention and harm reduction education is needed for this population and “drug checking” (e.g., pill testing) may be beneficial for those rejecting abstinence. PMID:26883685

  16. Mixed quantum-classical simulation of the hydride transfer reaction catalyzed by dihydrofolate reductase based on a mapped system-harmonic bath model

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Song, Kai; Shi, Qiang

    2018-03-01

    The hydride transfer reaction catalyzed by dihydrofolate reductase is studied using a recently developed mixed quantum-classical method to investigate the nuclear quantum effects on the reaction. Molecular dynamics simulation is first performed based on a two-state empirical valence bond potential to map the atomistic model to an effective double-well potential coupled to a harmonic bath. In the mixed quantum-classical simulation, the hydride degree of freedom is quantized, and the effective harmonic oscillator modes are treated classically. It is shown that the hydride transfer reaction rate using the mapped effective double-well/harmonic-bath model is dominated by the contribution from the ground vibrational state. Further comparison with the adiabatic reaction rate constant based on the Kramers theory confirms that the reaction is primarily vibrationally adiabatic, which agrees well with the high transmission coefficients found in previous theoretical studies. The calculated kinetic isotope effect is also consistent with the experimental and recent theoretical results.

  17. The effects of aroma massage and foot bath on psychophysiological response in stroke patients.

    PubMed

    Lee, Jeong Hoon; Seo, Eun Kyung; Shim, Jae Soon; Chung, Sung Pil

    2017-08-01

    [Purpose] This research aimed to examine the effects of back massage and foot bath with blended essential oil on psychophysiological response in stroke patients. [Subjects and Methods] The subjects were 14 adult stroke patients randomly divided into the experimental group (7 patients) and the control group (7 patients). Physical and psychological stress, mood state and sleep satisfaction was measured using evaluation instruments and body temperature was measured with infrared thermography (T-1000). [Results] Measurements included physical and psychological stress, and mood state of the experiment group became significantly lower than that of the control group. The body temperature and sleeping satisfaction of the experimental group became significantly higher than that of the control group. [Conclusion] The present study suggested that aroma therapy and foot bath that can be used as alternative physical therapy that offers an overall beneficial effect on psychophysiological response such as reduced stress, mood state and increased body temperature, sleeping satisfaction of stroke patients.

  18. The effects of aroma massage and foot bath on psychophysiological response in stroke patients

    PubMed Central

    Lee, Jeong Hoon; Seo, Eun Kyung; Shim, Jae Soon; Chung, Sung Pil

    2017-01-01

    [Purpose] This research aimed to examine the effects of back massage and foot bath with blended essential oil on psychophysiological response in stroke patients. [Subjects and Methods] The subjects were 14 adult stroke patients randomly divided into the experimental group (7 patients) and the control group (7 patients). Physical and psychological stress, mood state and sleep satisfaction was measured using evaluation instruments and body temperature was measured with infrared thermography (T-1000). [Results] Measurements included physical and psychological stress, and mood state of the experiment group became significantly lower than that of the control group. The body temperature and sleeping satisfaction of the experimental group became significantly higher than that of the control group. [Conclusion] The present study suggested that aroma therapy and foot bath that can be used as alternative physical therapy that offers an overall beneficial effect on psychophysiological response such as reduced stress, mood state and increased body temperature, sleeping satisfaction of stroke patients. PMID:28878450

  19. Responses to applied forces and the Jarzynski equality in classical oscillator systems coupled to finite baths: an exactly solvable nondissipative nonergodic model.

    PubMed

    Hasegawa, Hideo

    2011-07-01

    Responses of small open oscillator systems to applied external forces have been studied with the use of an exactly solvable classical Caldeira-Leggett model in which a harmonic oscillator (system) is coupled to finite N-body oscillators (bath) with an identical frequency (ω(n) = ω(o) for n = 1 to N). We have derived exact expressions for positions, momenta, and energy of the system in nonequilibrium states and for work performed by applied forces. A detailed study has been made on an analytical method for canonical averages of physical quantities over the initial equilibrium state, which is much superior to numerical averages commonly adopted in simulations of small systems. The calculated energy of the system which is strongly coupled to a finite bath is fluctuating but nondissipative. It has been shown that the Jarzynski equality is valid in nondissipative nonergodic open oscillator systems regardless of the rate of applied ramp force.

  20. Quantum kinetic expansion in the spin-boson model: Matrix formulation and system-bath factorized initial state.

    PubMed

    Gong, Zhihao; Tang, Zhoufei; Wang, Haobin; Wu, Jianlan

    2017-12-28

    Within the framework of the hierarchy equation of motion (HEOM), the quantum kinetic expansion (QKE) method of the spin-boson model is reformulated in the matrix representation. The equivalence between the two formulations (HEOM matrices and quantum operators) is numerically verified from the calculation of the time-integrated QKE rates. The matrix formulation of the QKE is extended to the system-bath factorized initial state. Following a one-to-one mapping between HEOM matrices and quantum operators, a quantum kinetic equation is rederived. The rate kernel is modified by an extra term following a systematic expansion over the site-site coupling. This modified QKE is numerically tested for its reliability by calculating the time-integrated rate and non-Markovian population kinetics. For an intermediate-to-strong dissipation strength and a large site-site coupling, the population transfer is found to be significantly different when the initial condition is changed from the local equilibrium to system-bath factorized state.

Top